ETH

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Stéephane Racine

Analysis of Internet Relay Chat Usage
by DDoS Zombies

Master’s Thesis MA-2004-01
October 2003 - April 2004

Tutor:
Thomas Diibendorfer

Supervisor:
Prof. Dr. Bernhard Plattner

26.4.2004

(Institut fiir Technische Informatik und Kommunikationsnetze
[¥ | Computer Engineering and Networks Laboratory

Abstract

This report gives an introduction to “Internet Relay Chat” (IRC), a popular
chatting system, discusses the misuse of IRC to launch and control “Dis-
tributed Denial-of-Service” (DDoS) attacks and finally proposes methods for
detecting the preparation of such IRC-based DDoS attacks. This detection
is based on the analysis of Cisco NetFlow data, in other words, recorded
network traffic with highly reduced information content.

Die hier vorliegende Dokumentation liefert eine Einfithrung in “Internet Relay
Chat” (IRC), ein weit verbreitetes Chatsystem, bespricht einige der iiber IRC
gesteuerten “Distributed Denial-of-Service”-Attacken (DDoS-Attacken) und
schldgt schliesslich Methoden zur Fritherkennung der Vorbereitung solcher
IRC-basierten DDoS-Attacken vor. Wesentlich dabei ist, dass die Erkennung
aufgrund von Cisco NetFlow Daten geschieht, also aufgezeichnetem Netz-
werkverkehr mit sehr stark reduziertem Informationsgehalt.

Preface

During my studies I attended a lot of different and interesting courses, but
the two ones which attracted my attention most were called “Communica-
tion Networks” and “Practical IT Security”, both taught at the Computer
Engineering and Networks Laboratory (TIK) of the ETH Zurich.

Accordingly to my interests and the various possibilities for student the-
ses I decided to write my thesis at TIK. In the context of the DDoSVax
project [1] I focused my work on the “Analysis of Internet Relay Chat Usage
by DDoS Zombies”.

The following chapter-by-chapter text organisation gives a short overview
over this Master’s Thesis documentation:

e Chapter 1 introduces the topic, motivates the work and formulates the
Master’s Thesis task.

e Chapter 2 gives an introduction to Internet Relay Chat (IRC).

e Chapter 3 shortly explains the mode of operation of denial-of-service
(DoS) and distributed denial-of-service (DDoS) attacks and illustrates
how current IRC-based DDoS attacks work.

e Chapter 4 shows the way several analyses of IRC traffic were done using
Cisco NetFlow data.

e Chapter 5 discusses the steps conducted to develop an algorithm for
the detection of IRC bots.

e Chapter 6 contains an evaluation of the developed algorithm and results
on the investigation of the quality of the NetFlow data.

e Chapter 7 finally concludes the thesis and states what could be done
further.

iii

iv

Acknowledgements

Many thanks to my tutor Thomas Diibendorfer and my co-tutor Arno Wagner
for having assisted me during the entire period of my Master’s Thesis. Their
always opened door allowed a very agreeable working atmosphere.

Furthermore I would like to thank Prof. Dr. Bernhard Plattner for giving
me the opportunity to work on a highly interesting subject.

In addition, my thanks go to Pascal Gloor, the administrator of an Un-
dernet IRC server used for this thesis, the people at SWITCH and all other
persons, especially the “ETZ G69” student crew (Roman Plessl, Lukas Ham-
merle, Samuel Nobs, Simon Steinegger), who helped and encouraged me in
many ways.

Last but not least, also special thanks to Leo [2], that gave me a lot of
inspiration for writing this thesis in English.

Author
Stéphane Racine
<sracine@ee.ethz.ch>

School

Institut fiir Technische Informatik und Kommunikationsnetze (TIK)
Departement Informationstechnologie und Elektrotechnik (D-ITET)
Eidgendossische Technische Hochschule Ziirich (ETH)

Computer Engineering and Networks Laboratory (TIK)
Department of Information Technology and Electrical Engineering (D-ITET)
Swiss Federal Institute of Technology Zurich (ETH)

Contents

Abstract

Preface

Contents

List of Figures

List of Tables

1 Introduction and Problem Description

2

1.1
1.2

1.3

Internet Relay Chat and DDoS
The DDoSVax project
1.2.1 Motivation and objectives
Master’s Thesis task

Internet Relay Chat Survey

2.1

2.2

2.3
24

2.5

2.6
2.7

Introduction
2.1.1 History of the IRC protocol
Components and architecture
221 Servers
222 Clients
223 Channels.
Concepts and communication paths
Protocol
241 Messages
2.4.2 Client-specific protocols
IRC software
251 IRCclients
252 IRCservers
Statistics of IRC networks
Problems of the IRC protocol

iii

ix

xi

vi CONTENTS

2.7.1 Problems due to the architecture of the protocol 17

2.7.2 Security considerations 21

3 IRC-based DDoS Attack Survey 23

3.1 Introduction 23

3.2 DoS and DDoS attacks L 24

3.3 IRC-based DDoS attacks 26

3.3.1 IRC bots and botnets 29

3.3.2 Host infection and bot control process 30

3.3.3 Some known DDoS bots 32

4 Monitoring IRC Traffic 37

4.1 Flow-level Internet traffic data (Cisco NetFlow) 37

4.2 Network configuration 38

4.3 Analysis of NetFlow data over time 38
4.3.1 Two-day analysis of IRC traffic received and sent by

an IRCserver, 39

4.4 Analysis of full IRC network traffic 42

4.5 Scenarios. 42

4.5.1 Scenariol 42

452 ScenarioIl., 43

4.5.3 Botsoftware. 46

5 IRC Attack Preparation Detection Signatures 51

5.1 Ideas for detecting bots 51
5.1.1 Outline of a possible botnet detection algorithm using

analysing NetFlow data 52

5.2 Detection of inactive connections 53

5.2.1 Ping and Pong signatures 53

5.2.2 The Ping-Pong Algorithm 57

5.2.3 Examples of Ping-Pong traffic 59

5.2.4 Difficulties and drawbacks 59

5.3 Countermeasures 60

6 Results and Evaluation of the Algorithm 65

6.1 Evaluation of the Ping-Pong algorithm 65

6.2 Quality of the NetFlow data used for the evaluation 69

7 Summary 71

7.1 Conclusions 71

7.2 Outlook 72

CONTENTS vii
A A Short Chat 73
B Source Code 77
B.1 chatter.pl 7
B2 slaveplo 82
B.3 ircsnmiffer.pl.o 85
B.4 compare_dumps_to_flows.pl. 87

C Configuration Files 103
C.1 IRC test server configuration files 103
C.1.1 Configuration file for the Hub 103

C.1.2 Configuration file for the Leaf 104
Bibliography 107

viii CONTENTS

List of Figures

2.1
2.2

2.3
24
2.5
2.6

3.1
3.2
3.3
3.4

4.1
4.2
4.3

4.4

4.5
4.6
4.7
4.8
4.9
4.10

0.1

Format of a small IRC server network (spanning tree) 7
Sample small IRC network with clients connected to several

SEIVETS .« © o v v e e e e e e e e e e e e 9
Some clients having joined the same channel 10

Top 10 TRC networks 2003 — Server statistics by netsplit.de [23] 18
Top 10 TRC networks 2003 — User statistics by netsplit.de [23] 19
Top 10 IRC networks 2003 — Channel statistics by netsplit.de

23] . 20
Direct DDoS attack architecture 25
Reflector DDoS attack architecture 27
IRC-based DDoS attack architecture 28
Host infection process 31
DDoSVax network topology 38
Bucket analysis Lo 39
Two-day analysis of cumulated (by port) IRC traffic coming

from geneva.ch.eu.undernet.org 40
Two-day analysis of cumulated (by port) IRC traffic going to

geneva.ch.eu.undernet.org 41
Network topology: ScenarioI 43
Analyzed Scenario I: Traffic with Client 2 as source 44
Analyzed Scenario I: Traffic with Client 2 as destination . . . 45
Network topology: Scenario IT 46
Analysed Scenario II: Traffic with Client 2 as source 47
Analysed Scenario II: Traffic with Client 2 as destination . . . 48

Sequence of TCP packets exchanged between an IRC server
and client during an “IRC Ping-Pong”. Time values sg, eg,

ix

LIST OF FIGURES

List of Tables

2.1

2.2

5.1
5.2
2.3
0.4

2.5

6.1

6.2

6.3
6.4

Statistics for the four largest IRC networks by SearchIRC' [22]

(average over the last week), November 2003 17
Statistics for the four largest IRC networks by netsplit.de [23]
(average over the last day), November 2003 17
Minimal and maximal sizes of an IRC server name and IRC,

TCP and IP messages resp. packets (IRC Ping). 55
Ping-Pong signature 61
Pong signature oL 62
Example 1: Two Ping-Pongs found in NetFlow data (mIRC
client) 63
Example 2: One Ping-Pong captured with tepdump (self-written
bot) . ..o 64

Measurement 1: Comparison of supposed Pong messages and
effective Pong messages, Part a). All connections to our IRC
server, port 6661, during one hour 67
Measurement 1: Comparison of supposed Pong messages and
effective Pong messages, Part b). All connections to our IRC
server, port 6661, during one hour. 68
Averages of the FP, TN and TP columns of Tables 6.1 and 6.2 69
Packet loss rate in the NetFlow data. (Connections from/to
geneva.ch.eu.undernet.org, port 6661) 69

xi

xii

LIST OF TABLES

Chapter 1

Introduction and Problem
Description

Distributed denial-of-service (DDoS) attacks are a threat to Internet ser-
vices ever since the widely published attacks on ebay.com and amazon.com
in 2000. ETH itself was the target of such an attack six months before these
commercial sites where hit. ETH suffered repeated complete loss of Internet
connectivity ranging from minutes to hours in duration. Massive distributed
DDoS attacks have the potential to cause major disruption of Internet func-
tionality up to severely decreasing backbone availability. [1]

1.1 Internet Relay Chat and DDoS

It is well known that Internet Relay Chat (IRC) is used not only by humans
for chatting but can also serve as a means to send commands to malicious
programs (the bots) running on compromised hosts (the zombies). A person
(the master) can log into a specific IRC channel, which hundreds or even
thousands of bots are listening to, and issue a command such as e.g. attack
<IP address> that is received and executed by the bots. In this way, the
IRC service can be abused to coordinate and launch DDoS attacks.

1.2 The DDoSVax project

In the joint ETH/SWITCH research project DDoSVax [1] aggregated In-
ternet traffic data (Cisco NetFlow) is collected at all border gateway routers
operated by SWITCH [3]. This data contains information about which Inter-
net hosts were connected to which others and how much data was exchanged
over which protocols.

2 CHAPTER 1. Introduction and Problem Description

For this thesis the DDoSVax research team has established a contact to
an administrator of a frequently used IRC system that is temporarily located
in the SWITCH network.

1.2.1 Motivation and objectives

The DDoSVax project is motivated by the fact that more and more hosts are
connected to the Internet for longer times, often without competent system
administration. One of the largest sources of weakly protected hosts are
private users and small businesses that use cheap ADSL or television cable
based Internet access. While the individual network bandwidth of these hosts
is small, control of a larger, well distributed number of these hosts is enough to
threaten not only individual servers or networks, but to conduct devastating
attacks on the Internet infrastructure itself. Research into countermeasures
to these threats is therefore essential.
The DDoSVax project has the following objectives:

e Detection of infection phases while infection takes place.

e Detection and analysis of massive DDoS attacks when they start in
near real-time.

e Provision of methods and tools that support countermeasures during
both phases.

The hypothesis of the DDoSVax project team is that both attack phases
exhibit distinct traffic patterns that allow detection. They will test this
hypothesis with measurements of real network traffic and with simulations.

[1]

1.3 Master’s Thesis task

The task of the student is split in four subtasks:
e IRC analysis,
e [IRC-based DDoS attacks,
e NetFlow-based IRC abuse detection,

e and, as a task with less importance, DDoS attack countermeasures.

1.3 Master’s Thesis task 3

IRC analysis

The IRC service and protocol must be thoroughly understood and analysed.
We recommend to read the IRC protocol specification RFC, to investigate
various IRC clients!, to connect to various IRC servers and to listen as well
as to participate in many IRC channel discussions.

A rough estimation on the IRC user community size and a classification
should be made to judge the importance of this service.

TRC-based DDoS attacks

Related work about IRC abuse for DDoS attacks will be considered and
a survey written. By analyzing the logs and parameters of a specific IRC
system, channels that are abused by bots will have to be identified and their
behaviour will be observed and various methods for detection of such channels
will be proposed.

NetFlow-based IRC abuse detection

The IRC traffic between IRC clients outside the SWITCH network and the
IRC server within the SWITCH network, which is investigated in this thesis,
crosses one of SWITCH’s various border gateway routers. As the DDoSVax
project collects NetFlow traffic data at those border gateway routers, such
IRC traffic data is available for analysis.

Before any analysis can be done, the student must understand the struc-
ture and limitations of NetFlow data as well as the data capturing process
used in the DDoSVax project. Already existing tools for data analysis should
be considered.

With the results of the previous steps, various algorithms to extract and
analyse IRC traffic data and especially such data that belongs to possibly
abused IRC channels will have to be developed and thoroughly tested for
effectiveness. The result will be one or more implemented and tested “IRC
attack detection signature” that can detect IRC-based DDoS attack prepa-
ration traffic in NetFlow traffic data.

IRC-based DDoS attack countermeasures

Assuming that we can detect suspicious IRC traffic in near-real-time, coun-
termeasures that could be applied to routers and/or IRC systems will be
proposed (on a rather conceptual basis) and their effectiveness evaluated.

!mIRC is a very commonly used IRC client

4 CHAPTER 1. Introduction and Problem Description

Validation of the results

Thanks to the fact, that we have access to

e an IRC server (being part of a one of the largest IRC networks) located
inside AS-559 (SWITCH)

and

e the NetFlow data captured at the border gateway routers of the SWITCH
network,

there is the possibility to also validate the proposed solutions and algorithms.

Chapter 2

Internet Relay Chat Survey

This chapter explains current Internet Relay Chat (IRC) services. A large
part of this text was adapted from the different Requests for Comments®
(REC’s)

e RFC 1459 Internet Relay Chat Protocol [4],

e RFC 2810 Internet Relay Chat: Architecture [5],

e RFC 2811 Internet Relay Chat: Channel Management [6],
e RFC 2812 Internet Relay Chat: Client Protocol [7] and

e RFC 2813 Internet Relay Chat: Server Protocol [8].

The goal of writing this survey was not to create a user’s manual, but
to give an overview on IRC characteristics that might be of interest for an
analysis of Internet Relay Chat usage by DDoS zombies.

There are many user guides on the Internet. A good starting point for
new IRC users is IRChelp.org [9] on which one can find “The IRC Prelude”
and “An IRC Tutorial”. Further on there is a German introduction from Kai
Seidler [10]. Also the “History of IRC” [11] was a source of information for
this survey.

The fact, that we (my tutor and me) had privileged access to an IRC
server (geneva.ch.eu.undernet.org) connected to the Undernet IRC network
[12] explains why this text sometimes focuses on this specific IRC network.

'RFC’s can be found at the web pages of the Internet Engineering Task Force (IETF):
http://www.ietf.org/rfc.html

http://www.ietf.org/rfc.html

6 CHAPTER 2. Internet Relay Chat Survey

2.1 Introduction

As explained on IRChelp.org 9], IRC provides a way to use the Internet to
communicate in real-time with people from all over the world. In other words:
IRC is a multi-user, multi-channel chatting system. This communication
takes place on a computer screen in the form of text lines. When “talking”
on IRC, everything one types will instantly be transmitted around the world
to other users that might be watching their terminals at that time. They can
then type something and respond to messages, and vice versa. An IRC system
(IRC network) consists of IRC' servers, machines to which users connect. In
most cases a user runs a program (/RC client) which connects to a server
on one of the IRC networks (e.g. the Undernet IRC network). The server is
responsible for relaying information to and from other servers on the same
net.

Once connected to an IRC server on an IRC network, a user will usually
join one or more channels (comparable to a “chat room” on other chatting
systems) and converse with others there. Conversations may be public (where
everyone in a channel can see what is written) or private (messages between
only two people, who may or may not be on the same channel).

On an IRC network each user is known by its nickname.

2.1.1 History of the IRC protocol

IRC was born during summer 1988 when Jarkko Oikarinen wrote the first
IRC client and server at the University of Oulu (Finland), where he was
working at the Department of Information Processing Science.

Jarkko intended to extend a Bulletin Board System (BBS) software he
administrated, to allow Usenet news-kind of discussion, real-time discussions
and similar BBS features. The first part he implemented was the chat part,
which he did with adapted program parts written by some friends. It was
initially tested on a single machine, and according to the words from Jarkko
himself “The birthday of IRC was in August 1988” [13]. The first IRC server
was named “tolsun.oulu.fi”.

Jarkko got some people at the Helsinki and Tampere Universities to start
running IRC servers when the number of users increased. Markku Jarvinen
helped improving the client. At this time Jarkko realized that the rest of the
BBS features probably wouldn’t fit in his program.

In November 1988 some guys at the University of Denver and Oregon
State University had got an IRC network running (they had got the program
from one of Jarkko’s friends) and wanted to connect to the Finnish network.
IRC then grew larger and got used on the entire Finnish national network

2.2 Components and architecture 7

B/C

Servers: A, B,C,D, E

Figure 2.1: Format of a small IRC server network (spanning tree)

(Funet) and then connected to Nordunet, the Scandinavian branch of the
Internet. In November 1988, IRC had spread across the Internet.

In the 1989, there were some 40 servers worldwide and #rcll (an IRC
client) was released by Michael Sandrof. In July 1990, IRC averaged at 12
users on 38 servers. [11]

Some more up-to-date statistics will be discussed later in Section 2.6.

2.2 Components and architecture

IRC is based on a client-server model. A user runs a client program on his
computer and connects to a server in the Internet. These servers for their
part link to many other servers to make up an IRC network, which transports
messages from one user (resp. client) to another.

An IRC network is defined by a group of servers connected to each other.
A single server forms the simplest IRC network. Figure 2.1 shows a possible
format of a small IRC server network. The IRC protocol defined by the
RFC’s provides no means for two clients to directly communicate (without
the need of servers in between)?. All communication between clients (e.g.
messages) is relayed by the server(s).

2Nevertheless there are ways to do so. For further information see Section 2.4.2 on the
Client-To-Client-Protocol (CTCP) and the Direct-Client-Connection (DCC).

8 CHAPTER 2. Internet Relay Chat Survey

2.2.1 Servers

The server forms the backbone of IRC, providing a service (typically by
default on TCP port 6667) to which clients may connect to in order to talk
to each other, and a service for other servers to connect to (also through TCP
connections), forming an IRC network.

The server is also responsible for providing the basic services required for
real-time conferencing defined by the IRC protocol (client locator, message
relaying, channel hosting and management).

Although the IRC protocol defines a fairly distributed model, each server
maintains a “global state database” about the whole IRC network. This
database is, in theory, identical on all servers.

Servers are uniquely identified by their name which has a maximum length
of 63 ASCII characters.

The only network configuration allowed for IRC servers is that of a span-
ning tree (see Figure 2.1) where each server acts as a node.

2.2.2 Clients

A client?® is (a computer program on) a host connecting to a server. Each
user (of a client) is distinguished from other users by a network-wide unique
nickname having a maximum length of 9 ASCII characters. In addition to
the nickname of a user, all servers must have the following information about
all clients:

e the real name of the host that the client is running on,

e the user name of the client on that host,

e and the server to which the client directly is connected to.
Some clients connected to a small sample IRC network are shown in Figure
2.2.
IRC operators

To manage an IRC network, a special class of users (IRC operators) is al-
lowed to perform general maintenance functions on the network. Operators
should be able to perform basic network tasks such as disconnecting and re-
connecting servers as needed to prevent long-term use of slow links in the
spanning tree.

3There are two types of clients: user-clients and service-clients. The difference won’t
be explained in more details here, but can be found in [5, Section 2.2].

2.2 Components and architecture 9

oNg -
2 :

@ E

Servers: A,B,C,D, E
Clients: 1,2, 3,4

Figure 2.2: Sample small IRC network with clients connected to several
servers

IRC operators also have the ability to remove a user from the connected
network by “force”, i.e. IRC operators are able to close the connection be-
tween any client and server.

2.2.3 Channels

A channel is a named group of one or more clients (resp. users) which will
all receive messages addressed to that channel. A channel is characterised
by its name and current members, it also has a set of properties (channel
modes) which can be manipulated by (some of) its members. A user can be
concurrently connected to more than one channel.

Channels provide a means for a message to be sent to several clients.
Servers host channels and provide the necessary message broadcasting to
the clients (depending on which channels the user is in). Servers are also
responsible for managing channels by keeping track of the channel members.

To create a new channel or become part of an existing channel, a user is
required to join the channel. If the channel doesn’t exist prior to joining, the
channel is created and the creating user becomes a channel operator (similar
to a moderator). The channel ceases to exist when the last client (resp. user)
leaves it. While a channel exists, any client can reference the channel using
the name of the channel.

A channel entity is known by one or more servers on the IRC network. A
user can only become member of a channel known by the server to which his

10 CHAPTER 2. Internet Relay Chat Survey

O

®

Servers: A,B,C,D, E Channel
Clients: 1,2, 3,4

Figure 2.3: Some clients having joined the same channel

client is directly connected. The list of servers which know of the existence
of a particular channel must be in a contiguous part of the IRC network, in
order for the messages addressed to the channel to be sent to all the channel
members. Different clients being members of the same channel are shown in
Figure 2.3.

Channel names are strings of length up to 50 ASCII characters with the
requirement that the first character (channel prefix) has to be either “#”,
“&7, “47 or “I7.

If the IRC network becomes disjoint because of a split? (network split resp.
net split) between two servers, the channel on each side is only composed of
those clients which are connected to servers on the respective sides of the
split, possibly ceasing to exist on one side of the split. When the split is
healed, the connecting servers announce to each other who they think is in
each channel.

Channel modes

Channel modes define the characteristics and attributes of channels. Channel
operators are able to change these modes and can thus permit or forbid cer-
tain actions of (normal) users. For instance a channel can be key (password)
protected or visible to only some users. More on channel modes can be read
in [6, Chapter 4].

4A split can occur when a router fails or the network is congested.

2.3 Concepts and communication paths 11

Channel operators

The channel operator (which is not the same as an IRC operator) on a given
channel is considered to “own” that channel. In recognition of this status,
channel operators are endowed with certain powers which enable them to
keep control and some sort of sanity in their channel. They have the power
to:

Eject a client from the channel

Change the channel’s mode

Invite a client to an invite-only channel

Change the channel topic

A channel operator is identified by the “@” symbol next to his nickname.

2.3 Concepts and communication paths

This section is devoted to describe the concepts behind the organisation of
the IRC protocol and the different classes of messages. Figure 2.2 shows a
small sample TRC network.

There are three different types of communication:

e one-to-one communication

e one-to-many communication (e.g. to a channel, which corresponds to
a multi-cast message)

e one-to-all communication (e.g. a broadcast message to all clients or
servers or both)

Communication on a one-to-one basis is usually performed by clients. To
provide a means for clients to talk to each other, it is required that all servers
are able to send a message along the spanning tree in order to reach any client.
Thus the path of a message being delivered is the shortest path between any
two points of the spanning tree. The following example refers to Figure 2.2:
A private message between clients 1 and 3 is seen by servers A and B, and
clients 1 and 3. No other clients or servers are allowed to see the message.
The main goal of IRC is to provide a platform which allows easy and
efficient conferencing (one-to-many conversations). In IRC the channels have
a role equivalent to that of the multi-cast group; their existence is dynamic
and the actual conversation carried out on a channel must only be sent to

12 CHAPTER 2. Internet Relay Chat Survey

servers which are supporting users on a given channel. Moreover, the message
shall only be sent once to every local link as each server is responsible to
fan the original message to ensure that it will reach all the recipients. The
following example refers to Figure 2.3: Clients 1, 2 and 3 are members of
the same channel. All messages to this channel are sent to only those clients
and servers which must be traversed by the messages as if they were private
messages to a single client. If client 1 sends a message, it goes via server A
to client 2 and via server A and B to client 3.

The one-to-all type of message is better described as a broadcast message,
sent to all clients or servers or both. On a large network of users and servers,
a single message can result in a lot of traffic being sent over the network in an
effort to reach all of the desired destinations. For some sort of messages, there
is no option but to broadcast it to all servers so that the state information
held by each server is consistent between servers. There is no class of message
which, from a single client-message, results in a message being sent to every
other client in the IRC network. Most of the commands which result in a
change of state information (such as channel membership, channel mode, user
status, etc.) must be sent to all servers by default. While most messages
between servers are distributed to all other servers, this is only required
for any message that affects a user, channel or server. Since these are the
basic items found in IRC, nearly all messages originating from a server are
broadcast to all other connected servers.

2.4 Protocol

IRC has been implemented as a text-based (8-bit characters) protocol on top
of TCP (usually using ports in the range of 6000 to 7000°, whereas the non-
registered port 6667 is often used as default) since TCP supplies a reliable
network protocol.

Even if the IRC protocol has been developed on systems using the TCP /IP
network protocol, there is no requirement that this remains the only protocol
suite in which it operates.

2.4.1 Messages

Servers and clients send each other IRC messages which may or may not
generate a reply. If the message contains a valid command the client or server

>The server to which we had access to (geneva.ch.eu.undernet.org) has enabled the fol-
lowing ports for IRC clients: 6660-6669, 7000, 7777, 8000. Undernet servers communicate
on port 4400 with each other.

2.4 Protocol 13

should expect a reply but it is not advised to wait forever for the reply; client-
to-server and server-to-server communication is essentially asynchronous in
nature.

Each TRC message may consist of up to three main parts:

e the prefix (optional),
e the command,
e and the command parameters.

The prefix, command, and all parameters are separated by one ASCII space
character each.

The presence of a prefix is indicated with a leading colon character (“:”),
which, if present, must be the first character of the message itself. There must
be no gap (whitespace) between the colon and the prefix. The prefix is used
by servers to indicate the true origin of the message. If the prefix is missing
from the message, it is assumed to have originated from the connection it was

received from. As an example two messages from Appendix A were taken:
e :ddv_argan'!ddosvax@pc-abcd.ethz.ch JOIN #ddv_ddvax
e PRIVMSG #ddv_ddvax :Hello everybody!

The first message contains a prefix indicating, that a user “ddosvax” on
“pc-abced.ethz.ch” having “ddv_argan” as his nickname has joined channel
“#ddv_ddvax”. Such a message would be sent through the IRC network to
all users already being part of this channel. The second message without
a prefix would be seen between a client and the server it is directly con-
nected to, meaning that the user of the client sends the text (indicated by
the command “PRIVMSG”) “Hello everybody!” to channel “#ddv_ddvax”.

IRC messages are always lines of characters terminated with a CR-LF
(Carriage Return - Line Feed) pair, and these messages must not exceed 512
characters in length, counting all characters including the trailing CR-LF.
Thus, there are 510 characters maximum allowed for the prefix, the command
and its parameters.

Numeric replies

Most of the messages sent to the server generate a reply of some sort. The
most common reply is the numeric reply, used for both errors and normal
replies.

14 CHAPTER 2. Internet Relay Chat Survey

2.4.2 Client-specific protocols

As already mentioned in Section 2.2, the IRC protocol specified by the RFC’s
has no possibility for two clients to communicate directly. This drawback has
been eliminated with the implementations of the Client-To-Client-Protocol
(CTCP) and the Direct-Client-Connection (DCC). In both cases the servers
in the IRC network have nothing to do with these extended features. The
whole protocols are sent and interpreted by the clients. The specification and
more detailed information can be found in [14], [15] and [16].

Client-To-Client-Protocol

If one would use the layered view of network protocols to explain CTCP, then
CTCP is best seen as being just over the “real” IRC protocol. Every CTCP
message,/command is “packed” into a normal TRC message on the client side,
sent over the IRC network to the desired client (resp. user) like a private
message and “unpacked” and interpreted by the receiving client.

The Client-To-Client-Protocol is meant to be used as a way to

e in general send structured data between users clients,
and in a more specific case:

e place a query to a user’s client and getting an answer.

Direct-Client-Connection

DCC uses direct TCP connections® between the clients taking part to carry
data. There is no flood control (on application level), so packets can be sent
at full speed, and there is no dependence on server links (or load imposed on
them). In addition, since only the initial handshake for DCC connections is
carried by CTCP messages through the IRC network, two clients using DCC
have a somewhat more secure chat connection while still in an IRC-oriented
protocol.

CTCP DCC extended data messages are used to negotiate file transfers
between clients and to negotiate chat connections over TCP connections be-
tween two clients, with no IRC server involved.

6As an example the mIRC client sets the port to a random number between 1024 and
5000.

2.5 IRC software 15

2.5 IRC software

2.5.1 IRC clients
ircll

In the early days of IRC, the ircIl [17] program was the premiere client. Up
to now it is still enhanced with new features. A lot of other clients are based
on this one. The ircll client is designed to run in text-mode. If, for example,

you type

ircII ddv_argan geneva.ch.eu.undernet.org
in a terminal of a UNIX environment with ércIl installed, this will connect
you as user “ddv_argan” to the default IRC port (6667) of the IRC server
“geneva.ch.eu.undernet.org”. Once you are connected you can type something
like

/JOIN #ddv_ddvax

which will make user “ddv_argan” enter the channel “#ddv_ddvax”.
To leave the channel type

/PART
and then type
/QUIT

to disconnect from the server.

mIRC

mIRC [18] is the most popular and probably most powerful IRC client for
Windows (shareware).

ChatZilla

IRC client being part of the Mozilla [19] web browser.

16 CHAPTER 2. Internet Relay Chat Survey

2.5.2 IRC servers
Undernet IRC server

The Undernet IRC server (ircu) [20] uses an adapted version of the server pro-
tocol described in [8]. Servers connected to Undernet communicate through
the Undernet P10 Protocol [21].

The P10 protocol uses a scheme of “numerics” to uniquely identify a client
or server within the network. Each server has its own unique number (0 to
4095) and each client has its own number within that server (0 to 262,143).

The numbers are encoded into a Base64 stream to maintain human read-
able data flow and reduce the size of the messages. Also the possible com-
mands contained in a message of the server-to-server-protocol are different.
As an example the command “PRIVMSG” becomes “P”. In this context “P”
is called a token.

The aim of tokenisation is to reduce the bandwidth used during network
communication by reducing the length of common message identifiers.

2.6 Statistics of IRC networks

On the 12th of November 2003 the IRC search engine of SearchIRC [22]
monitored

e 1,265 IRC networks with a total of
e 1,026,097 people in
e 628,346 channels,
while the pages of netsplit.de [23] indexed
e 662 networks, with
e 1,082,747 people,
e 627,267 channels and
e 5,316 servers.

These numbers from two different sources, which in some points diverge a
lot, show the difficulty to give an exact statement for statistics of IRC usage.
Exact numbers of the worldwide amount of IRC networks can’t be given.

Since these two mentioned sources don’t publish how they exactly do
the measurements and the counting, it is comprehensible that the respective
numbers differ from each others.

2.7 Problems of the TRC protocol 17

’ | servers | channels | users ‘

1. QuakeNet n/a 138,754 | 155,443
2. EFnet n/a 38,354 | 126,558
3. Undernet n/a 35,345 | 112,622
4. IRCnet n/a 46,331 | 101,847

Table 2.1: Statistics for the four largest IRC networks by SearchIRC' [22]
(average over the last week), November 2003

’ | servers | channels | users ‘

1. QuakeNet 44 173,851 | 157,123
2. EFnet 49 46,028 | 128,032
3. Undernet 35 47,165 | 113,610
4. IRCnet 44 53,827 | 105,600

Table 2.2: Statistics for the four largest IRC networks by netsplit.de [23]
(average over the last day), November 2003

Tables 2.1 and 2.2 show the statistics for the four largest IRC networks.

An IRC network does not always consist of the same number of servers.
This is illustrated by Figure 2.4.

Figure 2.5 shows that on certain networks the user community is still
growing.

When comparing Figure 2.6 to Figure 2.5 one can see that the number of
channels is almost proportional to the number of users on a specific network.

2.7 Problems of the IRC protocol

This section will introduce the most important problems of the IRC protocol.

2.7.1 Problems due to the architecture of the protocol
Scalability

It is widely recognised that this protocol does not scale sufficiently well when
used in large IRC networks. The main problem comes from the requirement
that all servers know about all other servers, clients and channels and this
information has to be updated as soon as it changes.

18 CHAPTER 2. Internet Relay Chat Survey

78 T T T T T T T T T T T T
QuakeMet a
EFnet b
b Undernet c
IRChet d
68 r'ﬂ1 HekChat e
GamesHET f
rljw IALnet g
h
Rizon i
34 GalaxyMet i

VR
w8 o n o l"'"np'-“‘m'lﬂ i —r
L WS, i T A
g HTF L::JI;LHA I;;:, -ﬂl i MHHLI'IIﬂ'u"rLL“‘rlf"m'r\'mﬂJ af"—Jn#ﬂ: Lﬁl'ﬂr ;"1
0 ft I
2@ 1“[”r”r\'u' \‘r\-\ﬂh—v.',n,-"l"\ﬁl" I,:II 'v] {J |
g . A
za E"{J_J*“lil A, 'H'T v
Y

5] 1

cBB3 Feb Mar Apr May Jun Jul Aug Sep O0ct MHow Dec 2864

- source! irc.hnetsplit.de -

Figure 2.4: Top 10 IRC networks 2003 — Server statistics by netsplit.de [23]

2.7 Problems of the IRC protocol

19

258088

ZaanEa

156868

users

leaana

SEaEa

5]

QuakeMet

EFnet

Underne

IRChet

a HebChat
GamesHET

DALhet

Rizon
GalaxyMet

i HL i A pare
Ly FANIEPY 4,9.9'@%‘5,;@.@‘0? e ;\'_',:nra';.ip'rJrnﬁ,::'; Ve -..-w?l!;ggf{fﬁ"‘w
o Lol oy A1 | A
e L)
«ﬁ%ﬁ,; Sap A e e LT
| .

2883 Feb Mar Apr May Jun Jul Aug Sep Oct Mow Dec B84

- source! irc.hnetsplit.de -

Figure 2.5: Top 10 IRC networks 2003 — User statistics by netsplit.de [23]

20 CHAPTER 2. Internet Relay Chat Survey
2ABaEE T T T T T T T T T T T T
QuakeMet a
a EFnet b
L c_|
teaaas M“WW IRChet d
M’r - WekChat e
GamesHET f
1688868 DAaLrnet a7
Y h
w Rizon i
148088 },{,v-"d GalaxuMet i
128888 -
"
o
S leoeen |- -
m
s
o
26888 - -1
sEE8E - d -
c
e | e S e g fo bt -'_:}.o\’
4moBa ‘ e T .
L T
- ___‘_,.,-—'—'_'_'_W.—_
20008 Pl e 7
["\"\‘-w(---\.-4—.—--'--wm-—.—..u--v.-,-qr-W-,w,ah\,m-\,-\W-—-\A_p-\»—-q..—u—-.-r-‘.\,\.--ve——-p--
o) 1 1 1 L L L I L L i L |

2883 Feb Mar Apr May Jun Jul

Aug Sep Oct Now Dec 26864

- source! irc.hnetsplit.de -

Figure 2.6: Top 10 IRC networks 2003 — Channel statistics by netsplit.de

[23]

2.7 Problems of the TRC protocol 21

Reliability

As the only network configuration allowed for IRC servers is that of a span-
ning tree, each link between two servers is an obvious and quite serious single
point of failure. This particular issue is addressed in more detail in [8].

Network congestion

Another problem related to the scalability and reliability issues, as well as the
spanning tree architecture, is that the protocol and architecture for IRC are
extremely vulnerable to network congestions. If congestion and high traffic
volume cause a link between two servers to fail, not only this failure generates
more network traffic, but the reconnection (eventually to another node in the
spanning tree) of two servers also generates more traffic.

Privacy and anonymity

Besides not scaling well, the fact that servers need to know most information
(e.g. nickname, host name) about other entities, the issue of privacy of IRC
users is also a concern. This is in particular true for channels, as the user-
related information on channels is revealing a lot more than whether a user
is online or not.

2.7.2 Security considerations
Access control

One of the main ways to control access to a channel is to use checks which
are based on the user name and host name of the user connections. This
mechanism can only be efficient and safe if the IRC servers have an accurate
way of authenticating user connections, and if users cannot easily get around
it. While it is in theory possible to implement such a strict authentication
mechanism, most IRC networks (especially public networks) do not have
anything like this in place and provide little guarantee about the authenticity
of the user name and host name for a particular client connection.

Another way to control access is to use a channel key (password), but
since this key is sent in plain-text, it is vulnerable to traditional packet sniffing
attacks.

22 CHAPTER 2. Internet Relay Chat Survey

Channel privacy

Because channel collisions (which can happen when two servers (re-)connect
to each other) are treated as inclusive events’ (see [6, Section 6.3]), it is
possible for users to join a channel overriding its access control settings.
This method has long been used by individuals to “take over” channels by
“illegitimately” gaining channel operator status on the channel. The same
method can be used to find out the exact list of members of a channel, as
well as to eventually receive some of the messages sent to the channel.

Authentication

Servers only have two means of authenticating incoming connections: plain
text password, and DNS lookups. While these methods are weak and widely
recognised as unsafe, their combination has proven to be sufficient in the
past.

The same comments apply to the authentication of IRC operators. It
should also be noted that while there has been no real demand over the
years for stronger authentication, and no real effort to provide better means
to authenticate users, the current protocol offers enough to be able to eas-
ily plug-in external authentication methods based on the information that
a client can submit to the server upon connection: nickname, user name,
password.

Integrity

Since the messages of the IRC protocol are sent in clear text, a stream layer
encryption mechanism (like “The TLS Protocol” [24]) could be used to protect
password transmissions.

"This means, that the resulting channel has for members all the users who are members
on either server prior to the (re-)connection.

Chapter 3

IRC-based DDoS Attack
Survey

This chapter explains current IRC-based distributed denial-of-service (dis-
tributed DoS or DDoS) attack methods, but will first give a short introduc-
tion to the problem of denial-of-service (DoS) attacks in general.

Like in Chapter 2 this survey will give a summary of related work and
literature covering this topic. Most, if not all, of the references were found
in the Internet.

If you are not very familiar with what this chapter is all about and like to
read “good” (depending on your own opinion) thrillers, I suggest to at least
have a look at [25].

3.1 Introduction

The traditional purpose and impact of DoS or DDoS attacks is to prevent
or deteriorate the legitimate use of computer or network resources. These
attacks illegitimately consume the resources of hosts or networks.

As already mentioned in Chapter 1, distributed DoS attacks are a threat
to Internet services ever since the widely published attacks on Yahoo, Ebay
and Amazon in February 2000. Massively distributed DoS attacks have the
potential to cause major disruption of Internet functionality up to severely
decreasing backbone availability. They are a significant problem because they
can shut an organization off the Internet and because there is no comprehen-
sive solution for protecting a site from a denial-of-service attack.

In the years 2000 and 2001 there has been seen an increase in the use of
IRC protocols and networks as the communications backbone for DDoS net-
works ([26]). The use of IRC essentially replaces the function of the handlers

23

24 CHAPTER 3. IRC-based DDoS Attack Survey

in older DDoS network models (compare to Section 3.2 and Figure 3.1). IRC-
based DDoS networks are sometimes referred to as botnets, referring to the
concept of bots (robots) on IRC networks being software-driven participants
rather than human participants. [26]

3.2 DoS and DDoS attacks

A denial-of-service attack’s primary goal is to deny a victim (host, router or
entire network) providing or receiving normal services in the Internet. It is
an explicit attempt by attackers to prevent users or providers of a computer-
related service from using, respectively providing, that particular resource.

Today, the most common DoS attack type reported involves sending a
large number of packets to a destination which causes the endpoint (and
possibly transit) network bandwidth to be used up.

There are two principal classes of attacks: logic attacks and (packet) flood-
ing attacks. Attacks in the first class, exploit existing software vulnerabilities
to cause remote servers to crash or substantially degrade in performance.
The second class, flooding-based DoS attacks, floods the victim’s CPU (e.g.
by imposing computationally intensive tasks on a victim, such as encryp-
tion and decryption computation), memory or network resources by sending
large numbers of faked requests or packets. Because there is typically no
simple way to distinguish the “good” packets from the “bad” ones, it can be
extremely difficult to defend against flooding attacks.

Early DoS attack technology involved simple tools that generated and
sent packets from a single source aimed at a single destination. Over time
the model for denial-of-service attacks has evolved from

e ‘“single attacker machine against single target machine” (DoS) to

e “multiple attacker machines flooding requests to single (or multiple)
target machine(s)” (DDoS)

The DDoS model was improved by attackers by using multiple handlers (see
Figure 3.1) for directing and managing a large number of hosts against a
single target.

DDoS attacks do not rely on particular network protocols or system weak-
nesses. Instead, they simply exploit the huge resource asymmetry between
the many attacking hosts and the victim in that a sufficient number of hosts
is amassed to send useless packets toward a victim around the same time.
Typically an attacker compromises a set of Internet hosts (using manual or
automated methods) and installs a small attack daemon on each, producing

3.2 DoS and DDoS attacks 25

Attacker

N

Masters
(Handlers)

P I

Agents
(Daemons
or Zombies)

N

Victim

Figure 3.1: Direct DDoS attack architecture

a group of zombie hosts. This daemon typically contains both the code for
sourcing a variety of attacks and some basic communications infrastructure
to allow remote control of the zombies. This allows an attacker to focus a
coordinated attack from thousands of zombies onto a single site. The mag-
nitude of the combined traffic is significant enough to congest, or even crash,
the victim’s system (system resource exhaustion), or its Internet connection
(network bandwidth exhaustion), or both, therefore effectively taking the
victim off the Internet. The widely publicized DDoS attacks against popu-
lar Web sites in the year 2000 revealed the vulnerability of even very well
equipped networks.

Before launching a direct DDoS attack (Figure 3.1), an attacker first sets
up a DDoS attack network, consisting of one or more attacking hosts, a
number of masters or handlers, and a large number of agents (also referred
to as daemons or zombies). The attacking host is a compromised machine
used by the actual attacker to scan for vulnerable hosts and to implant specific
DDoS master and agent programs'. Each attacking host controls one or more
masters, and each master in turn is connected to a group of agents. With an
attack network ready, the attacker may launch a DDoS attack by issuing an

le.g. Trinoo, Tribe Flood Network 2000, Stacheldraht, etc.

26 CHAPTER 3. IRC-based DDoS Attack Survey

attack command with the victim’s address, attack duration, attack methods
and other instructions to the masters. This communication is often based on
TCP and the messages are sometimes even encrypted. Each master, when
having received the instructions, passes them to its agents for execution.
Today’s DDoS attack tools can launch attacks against multiple victims at
the same time and use various types of attack packets?.

To hide their location, attackers can forge, or “spoof”, the IP source ad-
dress of each packet that a zombie sends. Consequently, the packets appear
to the victim to be arriving from one or more third parties. Spoofing can also
be used to “reflect” an attack through an innocent third party (see Figure
3.2). In such reflector DDoS attacks the agents send packets that require re-
sponses (e.g. ICMP echo requests) to the reflectors with the packet’s source
address set to the victim’s address. Without realizing that the source address
was spoofed, the reflectors send the response packets to the victim.

3.3 IRC-based DDoS attacks

Interestingly, the use of handlers (see Figures 3.1 and 3.2) to manage and
direct large number of zombie hosts (infected systems under attacker control)
has in recent years largely been replaced by IRC networks, acting as the
attacker’s virtual command and control centers. Such an IRC-based DDoS
attack architecture is shown in Figure 3.3. The term bots is used in analogy
to the term agents which, in traditional DDoS models (compare to Section
3.2), infect host machines and maintain access for attackers to control them
via handlers. Analogous one refers to IRC' botnets when talking about the
control infrastructure.

The use of IRC makes it quite difficult to identify DDoS networks. IRC
networks and protocols allow DDoS agents being placed on compromised
systems to establish out-bound connections to a standard service port (e.g.
6667) used by a legitimate network service (e.g. IRC). Agent communica-
tion to the control point may not be easily discernible from other legitimate
network traffic. Also, the agents do not incorporate a listening port that is
easily detectable with network scanners. An attacker or master can estab-
lish a connection to an IRC server using legitimate communication channels
to control the DDoS agents. Security policies that control out-bound access
to standard IRC-related ports (e.g. 6660-6669) may be able to detect and
prevent unauthorized connections, but the popularity of IRC services means
that such access controls are not widely implemented in security policies.

2 Attack packet types can be TCP, ICMP, UDP, or a mixture of them. [27]

3.3 IRC-based DDoS attacks

27

Attacker

Masters
(Handlers)

Agents
(Daemons
or Zombies)

Reflectors

Victim

N

SN I

R V= S N

W=

Figure 3.2: Reflector DDoS attack architecture

28 CHAPTER 3. IRC-based DDoS Attack Survey

Attacker
4 (resp. Master)

normal
IRC Client

D,
3
o
%

Victim
X.Y.

Zombie
(resp. Bot)

Channel

Figure 3.3: IRC-based DDoS attack architecture

3.3 IRC-based DDoS attacks 29

IRC networks and protocols also offer good survivability of DDoS net-
works. The IRC server tracks the addresses for connected agents and allows
communication between the master and the agents. The need for custom
protocols and tracking of agents is therefore eliminated. Thus, the discovery
of a single agent may lead to the identification of one or more IRC servers
and channel names used by the DDoS network. From there, identification of
the DDoS network depends on the ability to track agents currently connected
to the IRC server.

For public IRC networks such as Undernet removing an IRC server to
disable a DDoS network is not a realistic option. Thus, the use of public
IRC networks has the advantage of providing a stable communication in-
frastructure for DDoS networks. On the other hand, public IRC networks
expose DDoS networks and agent locations to external identification by secu-
rity teams who are able to respond in some capacity. This is the reason why
intruders are also using private IRC servers as the communication backbone
for DDoS networks.

Some IRC-based DDoS agents (bots) also include the capability for an
attacker to move the agent connection point by issuing a command to the
agents. In other words, remote reconfiguration is being built into DDoS
agents to make it possible for intruders to manage and control their DDoS
networks. Regardless of that ability, it is trivial for intruders to alter the con-
nection point in agent code and quickly redeploy DDoS agents that connect
to a different IRC control point. As a consequence, the discovery of (ex-
pendable) agents being part of an IRC-based DDoS network (botnet) does
not compromise and has only little impact to the effectiveness of the DDoS
network. [26]

3.3.1 IRC bots and botnets

IRC bots (short for robots) are special programs or IRC scripts designed
to perform predefined functions in an automated fashion. IRC scripts are
programs used by IRC clients such as mIRC' to extend their set of features
in ways that either provide new functions for channel/user management, or
provide malicious features to disrupt other user’s IRC sessions. The original
intent of bots was to enable a twenty-four-hour presence and a remote method
for maintaining control of IRC channels. Its prevalent purpose is to remain
on the IRC channel at all times and provide services (e.g. file sharing) to
members of that channel. Also, bots may provide services to the clients of a
certain server or to the users of an entire network.

Bots in their malicious mutation are used by attackers to infect victim
machines after they have been compromised or the victim machine’s user

30 CHAPTER 3. IRC-based DDoS Attack Survey

is tricked into performing the installation. Typically, a bot establishes out-
bound connections to a standard IRC network service port, joins the (config-
ured) attacker’s private IRC channel and waits for the attacker’s commands.
Public IRC networks such as Undernet provide a stable, scalable and free of
charge communication infrastructure which can be misused by attackers to
maintain, expand, manage and control their bots army.

A malicious bot is typically an executable file, capable of performing a
set of functions, each of which could be triggered by a specific command. A
bot when installed on a victim’s machine changes the system configuration
to start each time the system boots.

The typical size of a compressed bot is less than 15 Kilobytes in size. A
“standard” bot generally used by less sophisticated attackers can be down-
loaded from warez sites on the Internet and edited to include the desired
remote IRC server to connect to, the remote TCP port to use for the con-
nection, the channel to join on that server and the authentication password
(resp. “key”) to gain access to the attacker’s private channel. A more so-
phisticated attacker can even manipulate the bot characteristics like the files
created after installation and the install directory where the bot files reside
after installation.

One important point to note is that bots are not the exploits of an op-
erating system or an application, they are the payload carried by worms, or
means used to install a backdoor once a machine has been compromised.

Till this day there have been reported botnets with the impressive dimen-
sion of 11,000 bots [28] and up to 25,000 bots [29].

In summary, IRC bots (resp. zombies) are automated and controlled by
events which could be commands given in an IRC channel by another IRC
bot or a client with necessary privileges. The attacker or master is the one
that installs, configures, controls and directs the bots once they joined the
predefined IRC channel. Finally the “control center” or “control channel”
used is usually a private IRC channel created by the attacker as meeting
point for the bots to be joined once they are installed on infected machines
and are online. All the bots once connected to control the channel form a
botnet (i.e. network of bots), awaiting the attacker’s commands. [30]

3.3.2 Host infection and bot control process

The process of host infection and the following bot control process are ex-
plained in the enumerated list below. The numbers refer to the Figures 3.3
and 3.4.

1. The attacker attempts to infect the victim machines with bots through

3.3 IRC-based DDoS attacks 31

1

Agent infect with bot Attacker
(Zomble)/\(resp. Master)
ot 2. 4. o
Q e % ‘y’ =
S, 5@ o
“ JON er C %\(\6\
éb/)a x S S 7 z $ Q\\
3. e Y Y 5
Channel

Figure 3.4: Host infection process

either exploiting some operating system or application vulnerabilities
or trick the user into executing a malicious program leading to a bot
installation. A typical way for attackers to infect large groups of hosts
is to use exploit code of recently published vulnerabilities, use them
to gain access to the victim’s machines and install bots as backdoor to
maintain an access. The described process could be automated by using
a directed worm that will scan a target subnet for known vulnerabilities,
exploit the largely unpatched systems and infect them with a malicious
bot. Another way is to exploit unpatched web applications and trick
the user into executing some malicious program or virus leading to bot
infection. A user could install an IRC client with a Trojan inside which,
while doing all legitimate tasks of an IRC client, also installs a bot on
the user’s machine.

After the bot has been installed on the victim’s machine it copies itself
to the install directory and usually updates the registry keys in case of
windows platform.

Once infected these hosts are also referred to as zombies.

2. In the next stage, the bot attempts to connect to an IRC server with a
randomly generated nickname, i.e. the unique name representing that
bot in the attacker’s private channel.?

3. Once the bot has connected to the IRC server, it joins, with a predefined
“key” (authentication password), the attacker’s channel as part of the
attacker’s botnet army and waits for instructions.

3Frequently, the attackers use public IRC servers for these activities and could be
banned by IRC administrators, thus loosing their botnet army. To avoid this, attacker
sometimes use service providers like dyndns.org or no-ip.com to dynamically map their
bots with multiple IRC servers.

32 CHAPTER 3. IRC-based DDoS Attack Survey

4. From time to time also the attacker will connect to the IRC server and

5. join the channel using IRC to log into the zombies with a possibly
complex and sometimes encrypted access password, ensuring that the
bots cannot be controlled by others and making it harder for someone
to hijack the botnet.

6. After the access has been accepted the attacker may direct and remotely
control the action of a large number of infected zombies via the botnet,
launch attacks or use it for other malicious activities. When there are
enough bots listening and waiting, the master sends an attack command
to the channel which the bots will execute immediately (see Figure 3.3).

3.3.3 Some known DDoS bots

The company Simovits Consulting® maintains a huge list [31] with the de-
scriptions of Trojans and bots. In the next two sections you will find detailed
descriptions of some Windows- and Unix-based DDoS bots.

Evilbot, Slackbot (Windows)

There are several IRC DDoS bots targeted to run on Windows hosts. Two,
rather similar ones, of them (Evilbot and Slackbot) will be discussed in this
section.

Evilbot is one of those publicly available bots (Slackbot 1.0 is the other
one), which happens to be the bot that was used to flood “grc.com” (see [25]).
A closer look at this 16 Kilobytes long executable will show the following
behavior: When a victim executes the bot file it copies itself to a Windows
directory with a specified name (e.g. \Windows\WinRun2.exe). As the
“WinRun2.exe” file must be run every time the computer is booted, it adds
itself to registry’s autostart as follows:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows)
CurrentVersion\Run\<a specified reg key here>

(e.g. HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\
CurrentVersion\Run\WinRun)

That WinRun key points to “WinRun2.exe” which was copied to the Win-
dows directory. If there is already a “WinRun2.exe” named file on Windows
directory the Evilbot won’t overwrite that file, instead it will add a similar

‘http://www.simovits.com/

http://www.simovits.com/

3.3 IRC-based DDoS attacks 33

registry key as above but point it to load the file from the current directory
where the bot is saved and where it was run.

Next the bot tries to connect to a specified IRC server. When it has
joined the specified channel it sits and waits for commands. At the same
time the bot connects to a Web or FTP server where it downloads a pro-
gram file (e.g. a Trojan server or whatever there is behind the URL “up-
date.ur.address. /thepath.exe”) and then executes it. (Note: The dots sur-
rounding “ur” are dots but the dot sign between “address” and “/” stands for
a null). If the Evilbot is the first who joins a non-registered channel it sets
by default the following channel modes: +nstk.’

Evilbot accepts commands from anyone who is on the same channel with
it (whereas Slackbot 1.0 requires a password before listening to commands
from anyone). The following command on the same IRC channel where
Evilbot is, would cause a UDP packet flood attack against a certain host:

ludp A.B.C.D 1000 0

1000 stands for the amount of packets that will be sent and 0 at the end
of the line stands for the delay between each packet. Evilbot can attack by
“pinging” a target host too. It supports four different kind of ping attacks:

e !pd <victim ip>
Sends 10,000 64 Kilobytes ping packets to specified IP

e !p3 <victim ip>
Sends 1,000 64 Kilobytes ping packets to specified TP

e !p2 <yictim ip>
Sends 100 64 Kilobytes ping packets to specified 1P

e !pl <victim ip>
Sends 10 64 Kilobytes ping packets to specified IP

The amount of Pings and the ping size can be configured (e.g. the !p4
command could be set to send 15000 32 Bytes ICMP packets to a specified
host, but by default it uses the above values).

Evilbot also understands other commands such as part/join a channel.
32]

5As specified in [6]: n: toggle the no messages to channel from clients on the outside;
s: toggle the secret channel flag; t: toggle the topic settable by channel operator only flag;
k: set/remove the channel key (password);

34 CHAPTER 3. IRC-based DDoS Attack Survey

Trinity (Unix/Linux)

Trinity is a Linux-based DDoS attack tool used to launch coordinated denial
of service attacks against one or more target systems simultaneously. As
reported by [26] it was first seen in August 2000. Much the same as its
predecessors®, the Trinity tool consists of master and daemons. However,
Trinity is a much more convenient tool for the attack since the daemons can
be remotely controlled through a standard Internet Relay Chat, AOL’s chat
or ICQ. Another feature which makes Trinity difficult to detect is the fact
that the daemons do not listen to specific ports to receive commands from
the master, but receive them over an IRC or ICQ channel. There are at least
eight variations of Trinity discovered on the Undernet Internet Relay Chat
network (which requires a special password to access).

To launch a DDoS attack, the daemons must first be secretly installed on
a number of compromised Linux machines. Then, each compromised machine
or daemon will join a specific IRC channel and waits for attack instructions
from the master. The Trinity master, under the control of an attacker, then
orders the daemons to generate a specified type of denial-of-service attack
against one or more target servers. Trinity is capable of generating a variety
of DDoS attacks”. The flooding commands have this format:

<flood> <password> <victim> <time>,

where <flood> is the type of flood, <password> is the daemon’s password,
<victim> is the victim’s IP address, and <time> is the length of time to flood
(in seconds).

In the example from the alert issued by Internet Security Systems (ISS)?,
the daemon binary is installed at “/usr/lib/idle.so”. When “idle.so” is started,
it connects to an Undernet IRC server on port 6667 (TCP). The daemon
binary also contains a list of servers.

When a Trinity daemon enters the channel “#b3eblebrOx”, it sets its
nickname as the first six characters of its host name plus three random letters
or numbers (e.g. compromised.machine.com — comproxyz). The daemons
always respond to commands on lines beginning with “(trinity)”, hence ISS
named this DDoS attack tool as Trinity.

With the earlier distributed denial-of-service attack tools, the attackers
had to keep a list of all the machines they broke into, while with Trinity, all
compromised machines simply show up in the specified channel. The chat

6e.g. Trinoo, Tribe Flood Network 2000, Stacheldraht

"e.g. UDP Flood, TCP SYN Flood, TCP ACK Flood, TCP RST Flood, TCP NULL
Flood, TCP Fragment Flood, TCP Random Flood attacks

Shttp://www.iss.net/

http://www.iss.net/

3.3 IRC-based DDoS attacks 35

feature in the Trinity tool also makes it easier for an attacker to launch the
attack and prevents the attacker’s real identity from being discovered, since
attackers usually change their IP addresses for use in a channel.

In order to determine whether a system has been compromised by Trinity,
just scan port 33270 (TCP) for any connection since it is reported that the
Trinity port-shell may be installed there. [33]

36

CHAPTER 3. IRC-based DDoS Attack Survey

Chapter 4

Monitoring IRC Traffic

To better understand the way IRC works, what characteristics it has and
how network traffic, especially IRC traffic, is represented in Cisco NetFlow
data, several analyses were made. Some of them are shortly presented in this
chapter. A brief introduction to Cisco NetFlow will be given too.

The network measurements of IRC server traffic were made on “the IRC
server” geneva.ch.eu.undernet.org.

4.1 Flow-level Internet traffic data (Cisco Net-
Flow)

Cisco NetFlow [43] was developed and patented at Cisco Systems in 1996 and
is now the primary network accounting technology in the industry. It regards
network traffic not as a heap of single packets but rather as a collection of
flows, each flow describing one half of a packet stream between two hosts.
There is no information about the data being sent in the IP packets like, for
instance, HT'TP headers. Not even the size of the single packets is known,
only the total number of packets in a flow and their cumulated sizes.

NetFlow starts a new log entry for existing connections every fifteen min-
utes. That means one flow lasts at most fifteen minutes (or less if the con-
nection is idle for longer than a predefined idle time), after that the current
entry will be closed and a new flow entry will be started. [44]

An example of NetFlow entries is shown later in Table 5.4.

37

38 CHAPTER 4. Monitoring IRC Traffic

Q IRC client
!
i
IRC Server

\ ’,I
o

SWITCH border

\
\\
gateway router O

geneva.ch.eu.undernet.org

,
’
’
,
’
’
,

Figure 4.1: DDoSVax network topology

4.2 Network configuration

As already explained, we have access to NetFlow data collected on the four
border gateway routers of SWITCH (see Figure 4.1). In principle any network
traffic from or to the outside of SWITCH can be routed through one or more
of these four routers. Therefore it is absolutely possible, that some traffic
belonging to the same connection will appear in the NetFlow data of more
than one border gateway router.

Moreover it is important to know, that the IRC server we considered is
directly connected to one of these border gateway routers. If one wants to
analyse the traffic from and to the IRC server found in the NetFlow data,
then it suffice to look only at the flows captured by the router to which the
IRC server is directly connected.

4.3 Analysis of NetFlow data over time

Thanks to some already available software tools (e.g. netflow_to_tezt) of the
DDoSVax project, it is possible to read binary NetFlow data files and get the
needed information (source/destination IP, source/destination port, number
of packets, size of flow, start/end time, etc.) back from the software in a
human readable way.

To analyse (e.g. the number of packets sent from a server per minute)

4.3 Analysis of NetFlow data over time 39

| — |

10:35:18 10:35:19 10:35:20 Buckets
(one per
second)

30 % 60 % 10 %
\

Flow

| | | |

[[[[Time
10:35:18 10:35:19 10:35:20 10:35:21

Figure 4.2: Bucket analysis

captured flows over time, the bucket analysis shown in Figure 4.2 was used.

If for example a flow starts some milliseconds after the time 10:35:18 and
lasts some milliseconds longer than the time 10:35:20, then the flow (e.g. the
number of packets) will be divided in a linear way (respecting the amount of
time overlapping each second) into three parts and added to the buckets of
every time interval (for this example one second). Having, as in Figure 4.2,
a flow containing 100 packets, will result in the three buckets having 30, 60
and 10 “packets” added.

4.3.1 Two-day analysis of IRC traffic received and sent
by an IRC server

Figure 4.3 and Figure 4.4 show such a bucket analysis. They show a two-day
analysis of the cumulated traffic (number of Bytes) reaching and leaving an
IRC server on the known IRC ports. The time interval of every bucket was
set to 60 seconds.

As one certainly expected there is a cyclical variation of the traffic over
day time, indicating that probably most of the chatters are active between
eight and twelve o’clock in the evening. The omnipresent jitter is due to the
small size of the buckets (60 seconds).

CHAPTER 4. Monitoring TRC Traffic

40

(LS3D '7002) swiL

00:00 00:02 00:9T 00:2T 00:80 00:70 00:00 00:02 00:9T 00:ZT 00:80 00:+0 00:00
1062 10'82 T0°8¢ 1082 1082 1082 1082 1022 T0°L2 T0°L2 T0°22 1022 1022
—— 7 7 7T 7T 7T 7 77— 71— 0
- 90+35
L0+9T
| L0+35°T
| L0+3Z
L0+95°C
-t £999 HOd 7 £0+%€
““““ 2999 Mod
““““ 1999 Hod
——— 0999 Mod
..._.._..._..._..._..._..._..._..._..._..._...NO.Tmm.m

61019UI8pUN N3 Y9 BABUSH 921N0S :SISAleuy

Spu02as 09 Jad salkg
Figure 4.3: Two-day analysis of cumulated (by port) IRC traffic coming from

geneva.ch.eu.undernet.org

41

4.3 Analysis of NetFlow data over time

00-:00 00:0¢

(LS3D '¥002) swiL

00:9T 00:¢T 00:80 00:70 00:00 00:0¢

00-9T 00:¢T 00:80 00:70 00:00

T0'6¢C '10°8¢

£999 Hod
- 2999 Mod
““““ 1999 Hod
—— 0999 Uod

'10°8¢ '10°8¢ '10°'8¢ '10°'8¢ "10°'8¢

'T0°L¢e

B10-19Ul8punna’ya-eAauab uoneunsaq :

sisAreuy

'T0°Le '10°L¢e 10°L¢ 10°L¢ 10°L¢

90+9¢€

o 90+9

90+99

90+39

90+3.

90+98

Spu02as 09 Jad salkg

Figure 4.4: Two-day analysis of cumulated (by port) IRC traffic going to

geneva.ch.eu.undernet.org

42 CHAPTER 4. Monitoring IRC Traffic

4.4 Analysis of full IRC network traffic

For the purposes of this thesis it turned out, that tepdump [45] was the best
and handiest tool to capture full network traffic (including payload).

A dump file created with tcpdump could then be analysed with Ethereal
[46] or with the Perl script “ircsniffer.pl” (see Appendix B.3) originally written
by Pascal Gloor and slightly adapted by the author of this thesis. The latter
script can either directly sniff on a network interface or read from a dump
file, but needs to get IRC traffic on the well-known IRC ports. Its output
are human readable IRC messages, the connections the messages come from
and the time the messages were sent.

With the tools described above it is now possible to either do a kind of
bucket analysis to compare full network traffic to NetFlow data or to search
for special IRC messages and try to find out how they look like in NetFlow
data.

4.5 Scenarios

One idea to detect IRC bots is to find obvious patterns in the time behaviour
of the network traffic IRC bots generate. For this purpose two scenarios were
developed. Scenario I simulates a normal chat session which could occur
between human users, whereas Scenario II, based on the findings in Chapter
3, simulates the behavior malicious bots could have. All hosts participating
from the outside of SWITCH belonged to PlanetLab [47].

Since this kind of investigation did not result in simple and manageable
time patterns for a possibly reliable detection of IRC bots, not more time
was spent into further analysis of these graphs. Another, later explained,
approach seemed more promising.

4.5.1 Scenario I

Figure 4.5 shows the network topology used for Scenario I. Clients 1 to 5
(nicknames: ddv_argan, ddv_clean, ddv_beral, ddv_tione, ddv_angel) repre-
sent the five different participants of the chat. Client 7 was used as channel
operator. The “spoken” text (see Appendix B.1) was issued from a play
written by Moliere.

The resulting bucket analysis of the simulated human chat can be found
in Figures 4.6 and 4.7. One part of each graph is the analysis of the flow
data, the other part is the analysis of the also done full capturing (every
single packet with payload).

4.5 Scenarios 43

@ IRC client
/
K
IRC Server

.
.
/
'
\ ’
@ N losangeles.ca.us.undernef(oi
N

=]

\/\

\ i ‘/\
\\ //,
\
@ \ e ddv_op
- \ .
< N L
~ D \ .
Al

osloYro.eu.undernet.org
,
. geneva.ch.eu.undernet.org
P
.
,

sanjose.ca.us.undernet.org

Figure 4.5: Network topology: Scenario I

Figure 4.6 clearly shows that all messages (including simple TCP Acks
without IRC payload) coming from client 2 are aggregated into three flows
(the arrows in the figure point at the start times of the flows) for the duration
of the chat. The many small peaks in Figure 4.6 (about 50 Bytes in size) are
TCP Acks sent back to the server. In Figure 4.7 one can see, that the largest
part of the conversation (10:36 to 10:39) is aggregated into only one flow.

As a matter of fact, this IRC chat (with a total of 24 “spoken” messages)
lasting more than six minutes is in one direction represented by three flows
and in the other direction by four flows.

4.5.2 Scenario I1

Scenario II, shown in Figure 4.8, tried to reproduce the behaviour known
from DDoS attacks based on IRC: Several clients join the same channel and
wait for instructions from the master. As soon as the master (client 6)
sent the command “!ready”, every single client answered with a message
“xxddv_slvXY** ready for test”.

The traffic between 10:47 and 10:49 seen in Figures 4.9 and 4.10 contains
the login to the server, followed by the joining of channel “#ddv_ddvax”.

At about 10:50:40 (exactly three minutes after the beginning of the login
procedure) one can see an exchange of Ping and Pong messages.

Around 10:53:10 the “!'ready” command occurred. The latest traffic peak

CHAPTER 4. Monitoring IRC Traffic

44

(LS32 '7002) swiL

LE:0T 9€:0T
e0'Le e0'Le

e0'Le

€e:0T

........ (mopeN) Z w0 :S
— (jeasayia) g uald S

T Ty

- 00T

- 0ST

- 00¢

- 0S¢

- 00€

- 0S€

- 00

- 0S¥

(821n0S) z 311D ‘| OLRUAIS :SISAleuY

00S

puodas 1ad saikg

Figure 4.6: Analyzed Scenario I: Traffic with Client 2 as source

45

4.5 Scenarios

0v-:0T
e0’Le

6€:0T
e0'Le

(LS3D 7002) swiL

8E:0T LE:0T 9€:0T SE0T 7€:0T
e0'Le e0'Le e0'Le ¢0'Le e0'Le

e0’Le

€€:0T

(mopeN) z wal0 :a

— (jeasvyia) ¢ ald :a

- 00T

- 0ST

- 00¢

- 0S¢

- 00€

- 0S€

- 00

- 0S¥

(uonreunsaq) g walD ‘| OLRUBIS :SISAleuy

00§

puodas Jad salkg

Figure 4.7: Analyzed Scenario I: Traffic with Client 2 as destination

46 CHAPTER 4. Monitoring IRC Traffic

@ IRC client

’

1

IRC Server K

’
1

/
\ C
@ ~ losangeles.ca.us.undernetforg
\\\\
N ~
N

N
N
\ @
\
\ .
\ .
. .
\ e ddv_op
" X
D L @

osloYio.eu.undernet.org
d gen{ava.ch.eu.undemet.org
p
.
,

1

|
|
\

B |-

sanjose.ca.us.undernet.org

Figure 4.8: Network topology: Scenario II

at 10:55 shows the “!end” command, which instructs the slaves to send a
message “x*ddv_slvXY** leaves” and quit the channel.

One should also notice, that in Figure 4.9 one packet (Ack) was not found
in the NetFlow data (10:48:20).

Since the flow idle time was largely exceeded between the launch of each
command, the messages resulting from “!ready” and “!end” are, in each case,
all found in one flow.

When only regarding the flows in Figures 4.9 and 4.10, it is interesting to
see, that a flow with a high peak found in one direction occurs at the same
time a flow with a small peak is found in the other direction.

4.5.3 Bot software

The Perl code of the software used for Scenario I (chatter.pl) and Scenario
IT (slave.pl) can be found in Appendix B.1 and B.2. In principle both Perl
scripts have the ability to log on an IRC server, join a channel and then read
messages sent to this channel. Depending on the messages the bots get, they
can send responses back to the channel.

Both bots are based on the “HelloBot” found on [48]. Be aware that the
used Perl module Net::IRC, which must be installed to be able to run the

47

4.5 Scenarios

o)
O
=
=]
. o
(1LS392 ‘v002) awiL n
9G:0T SG.0T 50T €5.0T 2¢S:0T 1G0T 0S:0T 67:0T 8¥:0T Ly:0T 9v:0T %
c0’Le c0’Le c0’Le c0’Le c0’Le c0’Le c0’Le c0’Le c0’Le 0’2 c0’Le a
| L B B BN I ———T 1 0 -
: : g
: (&)
: @)
i - oot e
ﬂ o r—
| =
- : -1 0ST mm
: W ©
- . 4002 = —
5 =

2]
- ..
- Josz & =
2 9
=
- -4 00g S <
o =
3]
L -1 0S€ wn
g
- -1 00¥% n
2
<
- - 0S¥ >
........ (mopaN) Z 181D 'S <
—— (jeasayig) zwLID 'S ..
" " " " " 1 " " " L " 1 1 " " " " " 1 " " " " " 1 " " " " " 1 " " " " " 1 " " " " " 1 " " " " " 1 " " " " " Oom 9
(221n0S) Z waID ‘|| OLBUSIS :SISAleuy ~
)
<
S
St
=

CHAPTER 4. Monitoring IRC Traffic

48

(LS32 '7002) swiL
9G:0T SG:0T 50T €5:0T ¢S:0T TS:0T 0G:0T 61:0T 817:0T Lv:0T 90T
e0'Le e0'Le e0'Le 'e0'Le e0'Le e0'Le e0'Le e0'Le ¢0'Le e0'Le e0'Le

R \ v [h)

- 00T

- 0ST

= - 00¢

- 0S¢

- 00€

- - 0S€

o - 00

- os¥
........ (mopaN) Z WD :a
- A_mm:w_sm_v cwalo :a

1 " " " " " 1 " " " " " 1 " " " " " 1 " " " " " 1 " " " " " 1 " " " " 1 " " " " " OOm
(uoneunsaq) g walD ‘|| OLBUIS :SISAleuy

puodas 1ad saikg
Figure 4.10: Analysed Scenario II: Traffic with Client 2 as destination

4.5 Scenarios 49

bot, is outdated and thus the bot may not run correctly on some computers.
The author of the “HelloBot” recommends to use the POE::Component::IRC
module.

50

CHAPTER 4. Monitoring IRC Traffic

Chapter 5

IRC Attack Preparation
Detection Signatures

Having studied IRC and its protocol and illustrated the way IRC-based DDoS
attacks work in previous chapters, the purpose of this chapter is to explain
the steps made to develop an algorithm to detect possible botnets.

5.1 Ideas for detecting bots

The question we asked ourselves was:

e How can one find out, whether an IRC connection belongs to a normal
IRC client used by a human user or to a bot respectively to a “machine”?

If one can answer this question and provide an algorithm which does the
distinction, then this would certainly be a big step in the right direction.

It would also be of interest for an attack (preparation) detection to be
able to find out which channels a user (resp. “connection”) has joined, and
this only by analysing network traffic (in this case NetFlow data).

We know from Chapter 3, that bots having joined the specified attacker
channel, will in most cases just wait for commands. Therefore they do not
send any messages (except Pong messages to the server) to the channel and
can thus be considered as inactive connections.

Besides the already given ideas above, there are some more proposals to
detect bots or find characteristics of bots. The following list can be regarded
as a kind of brainstorming:

e Analysis of the IRC server-to-server protocol (see Section 2.5.2)

51

52 CHAPTER 5. IRC Attack Preparation Detection Signatures

e Install a malicious bot in a secured environment, then capture the
emerging network traffic and search for typical patterns. Also observe
the behaviour in the control channel. — How does typical bot traffic
look like?

e Are there messages, that, due to their size and frequency, can not be
originating from a human user? There is a threshold of the typing rate
of humans.

e Like in Section 4.5 one could think of scenarios with much more par-
ticipants (bots). Are there patterns based on the chronological order
or the quantity or size of messages/flows?

e A botnet consists of bots joining and leaving a channel. It might be,
that a bot will not send the /PART and /QUIT commands when leaving
the channel and disconnecting from the server (because an infected
host is shut down without warnings to the bot). This may result in
unanswered Ping messages.

e A suddenly large amount of messages to a channel might indicate
answers to a command concerning all bots.

5.1.1 Outline of a possible botnet detection algorithm
using analysing NetFlow data

First of all, we know that bots remain inactive most of the time. Because
every normal user may have the same behavior, this can’t be the only charac-
teristic describing a bot. Consider the step of finding inactive clients as a one
of multiple possible “filters” to achieve the goal of finding hosts respectively
zombies being part of a botnet.

As a second step one would be interested to know which (inactive) client
or user is belonging to which channel, respectively which clients/users are
belonging to the same channel. If this could be done, then large groups of
inactive clients belonging to the same channel would be suspicious.

Finally, if one was able to group inactive clients by channel membership,
one could imagine a last filter which would analyse the traffic a channel
generates and search for typical bot/botnet patterns (e.g. a sudden and si-
multaneous packet flood from the clients to the channel, which could signalise
a response to a command the master sent).

In summary an outline of a possible botnet detection algorithm might be:

1. Find inactive “clients” (see Section 5.2).

5.2 Detection of inactive connections 53

2. Classify and group inactive “clients” by channel membership.

3. Analyse IRC traffic by channel and search for characteristic botnet
traffic.

For the steps two and three no algorithm was developed. Therefore they will
not be discussed further in this documentation. Subsection 5.1 gives some
ideas on how to proceed after step one.

5.2 Detection of inactive connections

This section discusses the first step (find inactive clients) of the possible de-
tection algorithm presented in Section 5.1.1. When referring to this first part
of the possible detection algorithm, we will talk of the “Ping-Pong algorithm”.

The reason for this name is rather simple. Every client which is connected
to an IRC server and is idle for longer than a predefined period (three minutes
for “our” IRC server) will be ping-ed by the server (IRC Ping message). The
client’s response to the Ping message is an IRC Pong message. If the client
does not respond, the server will assume that the connection does not need
to exist anymore and thus terminates it.

So, finding IRC Pong messages in the NetFlow data and being able to as-
sign them to a connection will allow us to detect inactive clients, respectively
possible bots.

The input of the “Ping-Pong algorithm” is a set of NetFlow data, the
output is a set of inactive connections.

5.2.1 Ping and Pong signatures

To be able to detect inactive connections from NetFlow data we need to
exactly know how these Ping and Pong messages look like. For this purpose

let us first remember the definitions of those messages.
In [7] the Ping message is defined as follows:

Command: PING
Parameters: <server1> [<server2>]

The PING command is used to test the presence of an active client or server at the
other end of the connection. Servers send a PING message at regular intervals if no
other activity detected coming from a connection. If a connection fails to respond
to a PING message within a set amount of time, that connection is closed. A PING
message MAY be sent even if the connection is active!.

IBecause this would generate unneeded traffic on the network, this is normally not
done.

54 CHAPTER 5. IRC Attack Preparation Detection Signatures

When a PING message is received, the appropriate PONG message must be sent as
reply to <server1> (server which sent the PING message out) as soon as possible.
If the <server2> parameter is specified, it represents the target of the ping, and
the message gets forwarded there.

Examples:

— PING tolsun.oulu.fi ; Command to send a PING message to server

— PING WiZ tolsun.oulu.fi ; Command from WiZ to send a PING message to
server "tolsun.oulu.fi”

— PING :irc.funet.fi ; PING message sent by server “irc.funet.fi”

On the other hand, a Pong message has the following definition [7]:

Command: PONG
Parameters: <server> [<server2>]

PONG message is a reply to a ping message. If parameter <server2> is given, this
message MUST be forwarded to the given target. The <server> parameter is the
name of the entity who has responded to the PING message and generated this
message.

Example:

— PONG csd.bu.edu tolsun.oulu.fi ; PONG message from csd.bu.edu to tol-
sun.oulu.fi

As an example, if the IRC server (geneva.ch.eu.undernet.org) sends the mes-
sage

PING :Geneva.CH.EU.Undernet.org
to a client connected to it, the message
PONG :Geneva.CH.EU.Undernet.org

will be sent as a response from that client.

Measurements? with different clients (mIRC, ircll, ChatZilla, self-written
and non-malicious bot) revealed, that even if the IRC messages sent were
always exactly the same (namely PING :Geneva.CH.EU.Undernet.org and
PONG :Geneva.CH.EU.Undernet.org), the captured IP respectively TCP
packets did not always have the same size. This is due to the fact, that some
hosts and servers enable the “T'CP Extensions for High Performance” [49],
which may add 12 Bytes to the size of a TCP packet (resp. TCP header).
This leads to two different possible sizes (20 Bytes without and 32 Bytes
with this option enabled) of an empty TCP packet (e.g. an “Ack” without
payload) as shown in Table 5.1.

2Packet sniffing occurred with the tools Ethereal [46] and tcpdump [45).

5.2 Detection of inactive connections 55

| message / packet min. size [Bytes] | max. size[Bytes] |
<IRC server name> not defined (0) 63
RC[Ping] = 6 69
PING: <IRC server name>
TCP[Ack / empty | 20 32
(TCP time stamp option)
TCP[IRC[Ping] | 2 101
TCP[Ack, IRC[Ping] | 26 101
IP[TCP[Ack / empty]] 40 52
IP[TCP[IRC[Ping]]] 16 121

Table 5.1: Minimal and maximal sizes of an IRC server name and IRC, TCP
and IP messages resp. packets (IRC Ping).

Table 5.1 gives, starting from the restriction that an IRC server’s name
is maximally 63 characters long (see Chapter 2 and [8]), the maximal sizes of
IRC Pings for different layers of the “OSI Reference Model”. Since the word
“ping” is four characters long, as is the word “pong”, the mentioned sizes in
Table 5.1 are also valid for Pong messages.

Now let us examine the chronological order of TCP packets exchanged
during an “IRC Ping-Pong”. Figure 5.1 demonstrates two different chrono-
logical orders of Ping and Pong messages. The part a) on the left was seen
for the three IRC clients mIRC, ircll and ChatZilla. A self-written bot in
Perl (see Appendix B.2) showed the behavior in part b).

The four time values also found in Figure 5.1 mean the following:

e sg: start time of the server-to-client flow
e cg: end time of the server-to-client flow
e sc: start time of the client-to-server flow

e sc: end time of the client-to-server flow

Ping-Pong signature

Taking the results of Table 5.1 and Figure 5.1 into consideration, then the
signature found in Table 5.2 for searching Ping-Pong messages in NetFlow
data can be used. It is also assumed, that the only IRC traffic between the
server and the client are these periodically exchanged Ping-Pong messages.
“Our” IRC server has set this period to three minutes. Since the NetFlow

56 CHAPTER 5. IRC Attack Preparation Detection Signatures

Client Server Client Server
sS

sC

eC

<Pl pok)

eS tcPl

eS

a) b)

Figure 5.1: Sequence of TCP packets exchanged between an IRC server and
client during an “IRC Ping-Pong”. Time values sg, eg, s¢, ec.

flow idle time out is in our case 30 seconds, we will get new flows every three
minutes and are therefore sure, that there are only packets belonging to the
Ping respectively Pong message in it.

It is obvious, that for the start and end times of the flows the following
must apply:

Sg < €g (51)

Sc < ec (52)

Comparing the start time of the flow for the “Server — Client” connection
to the start time of the flow for the “Client — Server” connection leads to

Sg < S¢ (53)
For the end times holds
es > eo (54)
and thus
Sg < S¢g < ec < eg (55)

The Pong flow is therefore “enclosed” by the Ping flow.

5.2 Detection of inactive connections 57

Pong signature

Another approach, which is only interested in finding Pong messages without
being sure of a corresponding Ping message changes the signature shown
above.

By slightly adapting the Ping-Pong signature, we get the Pong signature
proposed in Table 5.3.

The time conditions already discussed in the Section about the Ping-Pong
signature almost remain the same. Instead of the time sg (time on which the
server sends the first packet belonging to a Ping message) we use the times
ssc (start time of a flow from the server to the client) and ege (end time of
a flow from the server to the client):

SsC S Ss (56)
€sc > €g (57)
= Ssc < S5 <S¢ <ec <eg < ego (58)
or shorter
Sgo < S < ec < egeo (59)

5.2.2 The Ping-Pong Algorithm

The proposed algorithm takes as input NetFlow data, will then analyse these

data and search for connections matching the Pong signature discussed in

Subsection 5.2.1. The output is a list containing client-to-server connections,

which are hosts possibly running a bot or being inactive in an IRC channel.
The Ping-Pong algorithm in pseudo-code:

HELHABAHBLH AR H AR H AR H SRR AR BB B H BB BB B RSB BB H BB S BB SRR EH B S B H
Pseudo code of the Ping-Pong algorithm
HAAHBAHBAH AR H B AR BB H AR R B R AR R BB BB B RSB R B R B RS BB SRR SRR SRR H

length of flow (Bytes)

: number of packets in flow
start time of flow

end time of flow

H H O H
o n v -

Step 1: Filter for possible candidate connections
HHAHHHHEHAHAH AR BEHEHEHAH B R B HEHAH AR B S B HEHBH AR B SRS H AR BB H 4 H
for (each Flow) {

getFromFlow (SrcIP, DstIP, SrcPort, DstPort, 1, p)

if (. (1 >= 46)
AND
(1 <= 173)
AND
((p = 1) OR (p = 2))
AND

58 CHAPTER 5. IRC Attack Preparation Detection Signatures

(DstPort = an IRC server port)) {
Connection = (SrcIP, DstIP, SrcPort, DstPort)

if (Connection does not exist) {
add Connection to Candidates
}
}
¥

Step 2: Search for Ping and Pong candidates
HARHHBEABHBARHBARHBAARHEA AR BARHBARHBEARHBARHBARH B AR BB ER AR BRR S
for (each Flow) {

getFromFlow (SrcIP, DstIP, SrcPort, DstPort, 1, p, s, e)

if (DstPort = an IRC server port) {
Connection = (SrcIP, DstIP, SrcPort, DstPort)

}
else {
Connection = (DstIP, SrcIP, DstPort, SrcPort)

}

if (Connection exists in Candidates) {
if ((DstPort = an IRC server port)
AND
(((1 >= 46) AND (1 <= 121) AND (p = 1))
OR
((1 >= 86) AND (1 <= 173) AND (p = 2)))) {
add Flow to PongCandidates
}
else if ((p >= 2) AND (1 >= 86)) {
add Flow to PingCandidates
}
}

Step 3: Search for every Pong candidate a corresponding
Ping candidate
HARHHBHARHAHHHBREHHAHRRHBR BB RH R AR B R R R R R H R RSB R R R R H SRS 1
for (each PongCandidate) {
getFromPongCandidate (SrcIP1, DstIP1, SrcPortl, DstPortl, 11, pl, si1, el «
)

Connectionl = (SrcIP1, DstIP1, SrcPortl, DstPortil)
for (each PingCandidate) {
getFromPingCandidate (SrcIP2, DstIP2, SrcPort2, DstPort2, 12, p2, s2 «

, e2)

Connection2 = (DstIP2, SrcIP2, DstPort2, SrcPort2)

if ((Connectionl = Connection2)
AND
(s2 <= s1)
AND

(e2 >= el)) {
add Connectionl to InactiveConnections
go to <LABEL>
}
}
<LABEL>

5.2 Detection of inactive connections 59

5.2.3 Examples of Ping-Pong traffic

An example on how two IRC Ping-Pong messages (compare to Figure 5.1.a)
occur in the NetFlow data is given in Table 5.4. Whereas Table 5.5 also
shows IRC Ping-Pong messages (compare to Figure 5.1.b), but this time in
the way they will appear in tcpdump data.

The values [, p, s, and d found in Table 5.4 mean the following:

e [: total number of Bytes in the flow (IP layer)

e p: total number of packets in the flow

s: start time of the flow

e: end time of the flow

d: duration of the flow (d = e — s)

5.2.4 Difficulties and drawbacks

Suppose the client once sends

PONG :Geneva.CH.EU.Undernet.org
and some minutes later

PRIVMSG #ddv_ddvax :Hello guys!

Considering each of these two messages separately, they will have exactly the
same appearance in the NetFlow data. Source IP, destination IP, source port,
destination port, length, number of packets (in this case one) and duration
(in this case zero) of the two flows will be exactly the same. Only the start
and end times will differ.

The example above makes clear, that even if the constraints of the Pong
signature (see Table 5.3) are fulfilled, it is by far not sure, that the flow
contains an IRC Pong message.

Although the Ping-Pong and the Pong signatures in Subsection 5.2.1 at
first sight seem to be a good and reliable method to detect inactive clients,
they have an important drawback: By far not all inactive clients will be
detected by an algorithm using these signatures.

The reason is simple. Even if a client is inactive, he will most of the
time be inactive in a channel where other users or bots join, “chat” and
leave that channel. As the servers send, respectively “forward”, messages
sent, to the channel to everyone in the channel, the Ping messages or packets

60 CHAPTER 5. IRC Attack Preparation Detection Signatures

will not be the only packets aggregated into a flow for inactive server-to-
client connections and therefore making the signatures of Tables 5.2 and 5.3
adequate only in a limited fashion. Also the Pong message will not appear
in a flow consisting only of the Pong packets. The TCP Acks sent back to
the server will also show up in the client-to-server flow.

Nevertheless the Ping-Pong algorithm was implemented and validated.
The results will be shown in Chapter 6.

5.3 Countermeasures

It can be thought of two ways to impede the misuse of IRC for DDoS attacks.
First, one could apply countermeasures in the (border gateway) routers or
firewalls, thus the network itself. The simplest solutions would be to block
all well-known IRC ports. But this would be counterproductive. On the one
hand there are a lot of Internet users enjoying IRC chat sessions, on the other
hand it is only a matter of configuration to use other ports for connecting
clients to an IRC server.

Secondly, there is the possibility to improve the authentication process
of IRC. As an example one could think of a much stronger need to identify
oneself before being allowed to use an IRC service. This would only prevent
the misuse of large IRC networks. Attackers still would have the possibility
to “hijack” Internet hosts and install their own IRC servers without security
mechanism.

61

5.3 Countermeasures

99 s [€LT =08+ TCT | 98=0V+9¥ ARG — WD) | (TG
52 i G €LT =08+ TeT |98 =0V +9¥ YOI — ARG | (TG
9 Os I 1zl 9F 0AI0G — W) | (BTG
5 Ss ¢ €LT=CG+ 12l [98=07+9F |3l « ®AG | (TG
MOTJ Ul
MO Jo moy jo sjoxoed [se14d] [se14d] (03 «— woy)
ouwIl} PUj | W) }Ie)S | JO JoqUINN] | 9ZIS MO "Xeul | 9ZIS MO ‘Ul uorpoduuo)) | oanSrq

Table 5.2: Ping-Pong signature

CHAPTER 5. IRC Attack Preparation Detection Signatures

62

29 o ¢ €L1 =2G+ 12l | 98 =07 +9F WADG — D | (4T'G
959 D85 ¢ < peugepun 98 =0V +9¥ WOID « 0A1S | (TG
09 Og 1 121 oF IOAISG «+— JUaI[) (e'1°¢g
959 D85 ¢ < poufjopur 98 = 0¥V + 97 JUOT) «— IOAIOS (e1g
MOJJ Ul
MOJ} Jo MOY JO sjaxoed [se14d] [se14d] (03 «— woay)
ouil) pug | 9w} }Ie}§ | Jo JoqunN] | 9ZIS MO "Xeul | 9ZIS MO ‘UIl uo1309uuo0)) | 2an3rg

Table 5.3: Pong signature

63

5.3 Countermeasures

0000 | PP0°8GTHGT | #FOSGTHGT [T [2L [1999 [9¢62 0a108 DU | dD'AV | dOL
€0T°0 | SPT'SGTHGT | GHO'SGTFGT | € | €T | 9E6T | 1999 aD'aV | a1s DUI | dOL
000°0 | S70'8G'8E:GT | SV0'8G'8E:GT | T | 2L | 1999 | 9862 2108 DUI | D'V | dOL
960°0 | €FT°8G'8E:CT | LF0'SG'8E:GT | € | €11 | 9€6T | 1999 a@odayv [waws oI | dOL

P 2 s|d] 1]310g3s@|30d01g| dIIsa| dI 218 | [000304 |

Table 5.4: Example 1: Two Ping-Pongs found in NetFlow data (mIRC client)

CHAPTER 5. IRC Attack Preparation Detection Signatures

64

(V) | 98ETH TH0GTT | 58 €689F | 1999 | A'D'AV | A0S DUT | ADL

810-gouropup) (i HY eAduoD): HDNOJ | 66¥¢€ TH0S 1T | 68 1999 | €€89% | alS DYI | A'D'AYV | dOL

(PV) | 86758 TH:0S 1T | 25 1999 | €689F | 1oAwes DUI | DAY | dOL

810" j9ULPUN) NH H) "®AdUeN): HNIJ | E8TT0 TF0STT | 8 €689F | 1999 | DAV | 0108 DT | AD.L
(o4r) yped J1 | j10d | 3104

peojeq owiy, | Jo yySue | s | 21§ | dI 35 dl 21§ | ‘j01g

Table 5.5: Example 2: One Ping-Pong captured with tepdump (self-written

bot)

Chapter 6

Results and Evaluation of the
Algorithm

In Chapter 5 our “Ping-Pong algorithm” was proposed. Based on the Pong
signature given in Table 5.3 this algorithm is aimed at finding inactive IRC
connections in a set of NetFlow data.

This chapter evaluates the reliability of the algorithm and mentions the
quality of the data basis, namely the captured flows at the border gateway
router the IRC server is connected to.

6.1 Evaluation of the Ping-Pong algorithm

In order to be able to make some statements about the reliability of the
output of the actual version of the Ping-Pong algorithm (based on the Pong
signature), tcpdump data was captured on port 6661 of the IRC server during
two distinct one hour periods. The second measurement was done after
SWITCH did some tuning of the routing tables and NetFlow parameters of
the border gateway routers.

Tables 6.1 and 6.2 show, for the first measurement, the comparison of
the effective number (per connection) of Pong messages in the tcpdump data
and the number of Pong messages the algorithm has detected in the NetFlow
data. A connection is characterised by the tuple: (Source IP, Destination
IP, Source Port, Destination Port). Furthermore there are six more columns
which interpret the result in a way it is used for intrusion detection systems

(IDS):

e True positive (TP) is the number of detected Pongs, which in reality
are Pongs, i.e. the number of correctly detected Pongs.

65

66 CHAPTER 6. Results and Evaluation of the Algorithm

Analysis of supposed Pong’s (Duration: 1 day)
1E+065"'I""I""I""I""I""I""I""I"":

100000 k 3
10000 K 5
1000 K 5

100 3 E

Number of Connections
|

5 10 15 20 25 30 35 40 45
Number of supposed Pong’s

Figure 6.1: Pong analysis of one day

e True negative (TN) is the number of Pongs not detected by the algo-
rithm, which in reality are Pongs.

e Fualse positive (FP) is the number of Pongs detected by the algorithm,
which in reality are not Pongs.

e (False negative (FN) is the number of not detected Pongs, which in
reality also are not Pongs, i.e. the number of correctly discarded Pongs.
This number is not available for this analysis.)

The average values for the columns TP (%), TN(%) and FP(%) of Tables
6.1 and 6.2, as well as the average values of the second measurement, are
given in Table 6.3.

Referring to Figure 6.1, it is not surprising, that a one-day analysis of
NetFlow data with the Ping-Pong algorithm (filtered for our IRC server,
IRC server TCP ports 6660-6669, 7000, 7777, 8000) reveals, that there are
only few clients being idle over a long period.

6.1 Evaluation of the Ping-Pong algorithm 67
SrcIP | SrcPort | eff. supp. | FP TN TP
Pongs | Pongs | abs. % abs. % abs. %

1P001 3973 21 0 0 0.0 21 100.0 0 0.0
1P002 4271 6 0 0 0.0 6 100.0 0 0.0
TP003 30183 20 8 0 0.0 12 60.0 8 40.0
1P004 65117 2 0 0 0.0 2 100.0 0 0.0
TP005 4952 20 15 0 0.0 5 25.0 15 75.0
TP006 1798 8 0 0 0.0 8 100.0 0 0.0
IP007 1079 20 8 0 0.0 12 60.0 8 40.0
TP008 2507 20 19 0 0.0 1 5.0 19 95.0
TP009 2914 16 0 0 0.0 16 100.0 0 0.0
1P010 21091 13 0 0 0.0 13 100.0 0 0.0
IP011 4773 20 21 1 4.8 0 0.0 20 100.0
1P012 2770 20 3 0 0.0 17 85.0 3 15.0
1P013 2964 4 2 0 0.0 2 50.0 2 50.0
1P014 2096 20 0 0 0.0 20 100.0 0 0.0
1P015 3370 20 10 0 0.0 10 50.0 10 50.0
1P016 1038 20 21 1 4.8 0 0.0 20 100.0
1PO17 1094 20 8 0 0.0 12 60.0 8 40.0
IP018 33714 12 0 0 0.0 12 100.0 0 0.0
1P019 1114 20 0 0 0.0 20 100.0 0 0.0
1P020 4167 18 0 0 0.0 18 100.0 0 0.0
1P021 4930 20 0 0 0.0 20 100.0 0 0.0
1P022 1031 8 2 0 0.0 6 75.0 2 25.0
1P023 3382 19 22 3 13.6 0 0.0 19 100.0
1P024 1151 1 0 0 0.0 1 100.0 0 0.0
1P025 5149 5 4 0 0.0 1 20.0 4 80.0
1P026 62556 20 6 0 0.0 14 70.0 6 30.0
1P027 3477 5 0 0 0.0 5 100.0 0 0.0
1P028 64184 21 20 0 0.0 1 4.8 20 95.2
1P029 26667 20 17 0 0.0 3 15.0 17 85.0
TP030 1524 20 0 0 0.0 20 100.0 0 0.0
T1P031 3356 3 0 0 0.0 3 100.0 0 0.0
1P032 63422 20 0 0 0.0 20 100.0 0 0.0
1P033 1052 2 0 0 0.0 2 100.0 0 0.0
1P034 3298 20 1 0 0.0 19 95.0 1 5.0
1P035 3632 20 7 0 0.0 13 65.0 7 35.0
1P036 61475 28 19 0 0.0 9 32.1 19 67.9
1P037 3058 20 24 4 16.7 0 0.0 20 100.0
TP038 1040 2 5 3 60.0 0 0.0 2 100.0
1P039 1113 12 10 0 0.0 2 16.7 10 83.3
1P040 1485 20 1 0 0.0 19 95.0 1 5.0
1P041 11676 20 6 0 0.0 14 70.0 6 30.0
1P042 1211 19 0 0 0.0 19 100.0 0 0.0
1P043 3041 5 0 0 0.0 5 100.0 0 0.0
1P044 1112 3 0 0 0.0 3 100.0 0 0.0
1P045 30557 3 1 0 0.0 2 66.7 1 33.3
1P046 34415 19 0 0 0.0 19 100.0 0 0.0
1P047 4396 19 24 5 20.8 0 0.0 19 100.0
1P048 2936 20 10 0 0.0 10 50.0 10 50.0
1P049 1278 20 0 0 0.0 20 100.0 0 0.0
T1P050 1960 20 0 0 0.0 20 100.0 0 0.0
1P051 61062 12 17 5 294 0 0.0 12 100.0
1P052 3883 21 12 0 0.0 9 42.9 12 57.1
1P053 3013 19 2 0 0.0 17 89.5 2 10.5

Table 6.1: Measurement 1: Comparison of supposed Pong messages and
effective Pong messages, Part a). All connections to our IRC server, port
6661, during one hour

68 CHAPTER 6. Results and Evaluation of the Algorithm

SrcIP | SrcPort | eff. supp. | FP TN TP
Pongs | Pongs | abs. % abs. % abs. %

1P054 3429 11 0 0 0.0 11 100.0 0 0.0
1P055 1155 1 0 0 0.0 1 100.0 0 0.0
TP056 3069 4 0 0 0.0 4 100.0 0 0.0
1P057 1575 1 0 0 0.0 1 100.0 0 0.0
TP058 1048 14 0 0 0.0 14 100.0 0 0.0
1P059 2708 7 0 0 0.0 7 100.0 0 0.0
TP060 2276 1 0 0 0.0 1 100.0 0 0.0
1P061 1219 4 0 0 0.0 4 100.0 0 0.0
1P062 5397 18 0 0 0.0 18 100.0 0 0.0
1P063 1040 2 1 0 0.0 1 50.0 1 50.0
1P064 1700 6 1 0 0.0 5 83.3 1 16.7
1P065 20525 3 0 0 0.0 3 100.0 0 0.0
TP066 1073 3 0 0 0.0 3 100.0 0 0.0
1P067 1049 3 0 0 0.0 3 100.0 0 0.0
TP068 2452 10 0 0 0.0 10 100.0 0 0.0
1P069 1066 9 1 0 0.0 8 88.9 1 11.1
TPO70 2969 6 0 0 0.0 6 100.0 0 0.0
1P071 3015 6 0 0 0.0 6 100.0 0 0.0
1P072 1629 14 0 0 0.0 14 100.0 0 0.0
1P073 1038 1 0 0 0.0 1 100.0 0 0.0
1P074 1366 5 0 0 0.0 5 100.0 0 0.0
1P075 63558 1 0 0 0.0 1 100.0 0 0.0
1P076 4422 1 3 2 66.7 0 0.0 1 100.0
1PO7T7 1093 1 0 0 0.0 1 100.0 0 0.0
IP0O78 3032 5 3 0 0.0 2 40.0 3 60.0
1P079 3219 8 0 0 0.0 8 100.0 0 0.0
TP080 50071 7 2 0 0.0) 71.4 2 28.6
1P081 3649 8 4 0 0.0 4 50.0 4 50.0
1P082 1472 1 7 6 85.7 0 0.0 1 100.0
TP0O83 1033 4 0 0 0.0 4 100.0 0 0.0
1P084 4367 6 6 0 0.0 0 0.0 6 100.0
T1P085 3674 4 1 0 0.0 3 75.0 1 25.0
TP086 20133 1 0 0 0.0 1 100.0 0 0.0
TPO87 1093 5 1 0 0.0 4 80.0 1 20.0
TP088 1265 2 0 0 0.0 2 100.0 0 0.0
TP089 1086 1 0 0 0.0 1 100.0 0 0.0
TP090 4486 3 2 0 0.0 1 33.3 2 66.7
TP091 1073 1 4 3 75.0 0 0.0 1 100.0
1P092 3331 1 0 0 0.0 1 100.0 0 0.0
1P093 61490 2 0 0 0.0 2 100.0 0 0.0
1P094 61491 2 3 1 33.3 0 0.0 2 100.0
1P095 3004 1 0 0 0.0 1 100.0 0 0.0
1P096 3013 1 0 0 0.0 1 100.0 0 0.0
1P097 34121 0 1 1 100.0 0 0.0 0 0.0
TP098 2258 0 3 3 100.0 0 0.0 0 0.0
1P099 4190 0 4 4 100.0 0 0.0 0 0.0
1P100 1187 0 1 1 100.0 0 0.0 0 0.0
1P101 1036 0 1 1 100.0 0 0.0 0 0.0
1P102 2701 0 2 2 100.0 0 0.0 0 0.0
1P103 29358 0 2 2 100.0 0 0.0 0 0.0
1P104 2912 0 1 1 100.0 0 0.0 0 0.0
1P105 1088 0 1 1 100.0 0 0.0 0 0.0

Table 6.2: Measurement 1: Comparison of supposed Pong messages and
effective Pong messages, Part b). All connections to our IRC server, port
6661, during one hour.

6.2 Quality of the NetFlow data used for the evaluation 69

Average

Measurement 1 Measurement 2
True positive (TP) 27.3 % 55.8 %
True negative (TN) 2.7 % 44.2 %
False positive (FP) 12.5 % 37.0 %
False negative (FN) n/a n/a

Table 6.3: Averages of the FP, TN and TP columns of Tables 6.1 and 6.2

Average

Measurement 1 Measurement 2
Server — Client 33.7 % 26.2 %
Client — Server 15.3 % 4.7 %

Table 6.4: Packet loss rate in the NetFlow data.
geneva.ch.eu.undernet.org, port 6661)

(Connections from/to

6.2 Quality of the NetFlow data used for the
evaluation

Because of observations (loss of packets) made during the analysis of the
NetFlow data on which the Ping-Pong algorithm was tested, there was, as
will be shown, the need to know about the quality and the reliability of the
data basis.

For this purpose tecpdump data was captured (without packet loss) during
two distinct one hour intervals on port 6661 of the IRC server. In a next step
this traffic was compared to the flows found in the NetFlow data for the
same time periods. Flows overlapping the start and end time of the hour
were taken into account in a linear manner (e.g. the number of packets was
divided by the duration of the flow and multiplied by the overlapping time).
More details on how the comparison was made are given in the Perl script
“compare_dumps_to_flows.pl” in Appendix B.4.

The results of this comparison are shown in Table 6.4. In one direction
more than 30% of the traffic did not appear in the NetFlow data. After the
tuning of the router parameters by SWITCH, the packet loss did reduce in
both directions.

70 CHAPTER 6. Results and Evaluation of the Algorithm

Chapter 7

Summary

In this last chapter some conclusions will be drawn and finally stated what
needs to be done further.

7.1 Conclusions

There are many different factors that can influence a proper detection of
IRC-based DDoS attacks. It starts with the unequal behaviour of different
clients and bots and the unpredictable existence or absence of TCP options.
It goes further with the fact, that every IRC message in the NetFlow data
could be a completely different message and ends with the uncertainty of the
captured NetFlow data.

It should also be taken into consideration that the analysis of the captured
flows requires the processing of a huge amount of data. Even Scylla!, an
experimental research computer cluster, needed several hours to process a
one day log of NetFlow data at the border gateway routers of SWITCH.

There is certainly the need for further measurements to make final conclu-
sions about the quality of both, the Ping-Pong algorithm and the NetFlows.
The apparent improvement of the flow quality did not, as could be expected,
also improve the results of the algorithm. Although the amount of correctly
identified Pongs did increase, the value of wrongly caught Pongs did also
rise (see Tables 6.3 and 6.4). Adapted versions of the algorithm with more
constraints (e.g. be sure that supposed Pongs have chronological distance
of three minutes), could provide better results for the amount of “false posi-
tives”, but would certainly also reduce the value for the “true positives”.

The “good news” are, that IRC itself does not evolve very rapidly. Even
if some IRC operators of large IRC networks have developed their own server

http://www.tik.ee.ethz.ch/~ddosvax/cluster/index.html

71

http://www.tik.ee.ethz.ch/~ddosvax/cluster/index.html

72 CHAPTER 7. Summary

software, the basic functionality remained the same. It is still possible to use
every IRC client on every IRC network. Hence one can also conclude, that
the way IRC is misused by bots will not change very soon. Naturally this
does not mean, that the functionality and the threat of bots will not increase,
but rather that continuing research on the topic is worthwhile.

7.2 Outlook

From my point of view it is important to find out the reason(s) of flow loss.
Especially short flows (duration), as they occur when a client is idle, seem to
be affected. If the flow quality remains a problem to test further algorithms,
there is the possibility to use tools like nProbe? and tepreplay® to convert
network traffic captured with tepdump into NetFlow data. However, in high-
speed networks you most probably will run into performance problems with
such a software based solution.

It might also be worth to build up bigger, but still manageable, scenarios
in a secured environment. A large number of deliberately infected hosts (with
a malicious bot) could be advised to connect to an own IRC server (Appendix
C contains working configuration files for the Undernet IRC server software)
and then instructed to attack a host in the secured environment. Maybe
there are not yet found patterns in the behaviour of bots.

Further ideas found in Section 5.1 could also be looked at. Especially
methods that improve step one and solve the problems of steps two and
three mentioned in Section 5.1.1 are of interest.

’http://www.ntop.org
Shttp://tcpreplay.sourceforge.net/

http://www.ntop.org
http://tcpreplay.sourceforge.net/

Appendix A

A Short Chat

If you use the ircll client to connect to “geneva.ch.eu.undernet.org” as user
“ddv_argan”, join channel “#ddv_ddvax”, say “Hello everybody!” and then
leave the channel and disconnect from the server you will see the following
appear on your terminal:

k%%

ok ok

k%%

* k%

k% %

k%%

k%%

* k%

kkk

k% %
* % %

k%%

k%%

k%%
* k%
* % %
* k%

Connecting to port 6667 of server
geneva.ch.eu.undernet.org

Looking up your hostname

Checking Ident

Found your hostname

Got ident response

Welcome to the UnderNet IRC Network via SPALE Network,
ddv_argan

/etc/irc/script/local V0.5 for Debian finished. Welcome
to ircII.

If you have not already done so, please read the new
user information with /HELP NEWUSER

Your host is Geneva.CH.EU.Undernet.org, running version
u2.10.11.06

This server was created Sun Jan 11 2004 at 04: 06:09 CET
umodes available dioswkgx, channel modes available
biklmnopstvr

WHOX WALLCHOPS WALLVOICES USERIP CPRIVMSG CNOTICE
SILENCE=15 MODES=6 MAXCHANNELS=15 MAXBANS=45 NICKLEN=9
MAXNICKLEN=15 are supported by this server

TOPICLEN=160 AWAYLEN=160 KICKLEN=160 CHANTYPES=#&
PREFIX=(ov)@+ CHANMODES=b,k,l,imnpstr
CASEMAPPING=rfc1459 NETWORK=UnderNet are supported by
this server

There are 45824 users and 71385 invisible on 38 servers
There are 96 operators online

60 unknown connection(s)

49046 channels have been formed

73

74

CHAPTER A. A Short Chat

kKX
* %%k
* %%k
* k%
XXX

* Kk

* %k %k

* %%k

XXX

This server has 3245 clients and 1 servers connected
Highest connection count: 7883 (7882 clients)

- Geneva.CH.EU.Undernet.org Message of the Day -
Welcome to the Swiss Undernet IRC Server

Type /MOTD to read the AUP before continuing using this
service.

The message of the day was last changed: 2003-12-5 16:23
on 1 ca 1(4) ft 10(10) tr

ddv_argan (ddosvax@pc-abcd.ethz.ch) has joined channel
#ddv_ddvax

#ddv_ddvax 1076504066

> Hello everybody!

* k%

The short “conversation” above will generate all the messages (without
Client: or Server:) below, which are exchanged between the client and the

server:

ddv_argan has left channel #ddv_ddvax

Client: NICK ddv_argan
Server: NOTICE AUTH :**xx Looking up your hostname
Client: USER ddosvax debian-sr geneva.ch.eu.undernet.org

:Debian User

Server: NOTICE AUTH :*** Checking Ident

Server: NOTICE AUTH :*** Found your hostname

Server: NOTICE AUTH :**xx Got ident response

Server: PING :1854915901

Client: PONG :1854915901

Server: :Geneva.CH.EU.Undernet.org 001 ddv_argan :Welcome to

the UnderNet IRC Network via SPALE Network, ddv_argan

Server: :Geneva.CH.EU.Undernet.org 002 ddv_argan :Your host

is Geneva.CH.EU.Undernet.org, running version
u2.10.11.06

Server: :Geneva.CH.EU.Undernet.org 003 ddv_argan :This

server was created Sun Jan 11 2004 at 04:06:09 CET

Server: :Geneva.CH.EU.Undernet.org 004 ddv_argan

Geneva.CH.EU.Undernet.org u2.10.11.06 dioswkgx
biklmnopstvr bklov

Server: :Geneva.CH.EU.Undernet.org 005 ddv_argan WHOX

WALLCHOPS WALLVOICES USERIP CPRIVMSG CNOTICE
SILENCE=15 MODES=6 MAXCHANNELS=15 MAXBANS=45
NICKLEN=9 MAXNICKLEN=15 :are supported by this
server

Server: :Geneva.CH.EU.Undernet.org 005 ddv_argan

TOPICLEN=160 AWAYLEN=160 KICKLEN=160 CHANTYPES=#&
PREFIX=(ov)@+ CHANMODES=b,k,1l,imnpstr
CASEMAPPING=rfc1459 NETWORK=UnderNet :are supported
by this server

Server: :Geneva.CH.EU.Undernet.org 251 ddv_argan :There are

45824 users and 71385 invisible on 38 servers

75

Server: :Geneva.CH.EU.Undernet.org 252 ddv_argan 96
:operator(s) online

Server: :Geneva.CH.EU.Undernet.org 253 ddv_argan 60 :unknown
connection(s)

Server: :Geneva.CH.EU.Undernet.org 254 ddv_argan 49046
:channels formed

Server: :Geneva.CH.EU.Undernet.org 255 ddv_argan :I have
3245 clients and 1 servers

Server: :Geneva.CH.EU.Undernet.org NOTICE ddv_argan :Highest
connection count: 7883 (7882 clients)

Server: :Geneva.CH.EU.Undernet.org 375 ddv_argan :-
Geneva.CH.EU.Undernet.org Message of the Day -

Server: :Geneva.CH.EU.Undernet.org 372 ddv_argan :Welcome to
the Swiss Undernet IRC Server

Server: :Geneva.CH.EU.Undernet.org 372 ddv_argan :Type /MOTD
to read the AUP before continuing using this service.

Server: :Geneva.CH.EU.Undernet.org 372 ddv_argan :The
message of the day was last changed: 2003-12-5 16:23

Server: :Geneva.CH.EU.Undernet.org 376 ddv_argan :End of
/MOTD command.

Server: :Geneva.CH.EU.Undernet.org NOTICE ddv_argan :on 1 ca
1(4) ft 10(10) tr

Client: JOIN #ddv_ddvax

Server: :ddv_argan!ddosvax@pc-abcd.ethz.ch JOIN #ddv_ddvax

Server: :Geneva.CH.EU.Undernet.org 353 ddv_argan =
#ddv_ddvax :@ddv_argan

Server: :Geneva.CH.EU.Undernet.org 366 ddv_argan #ddv_ddvax
:End of /NAMES list.

Client: MODE #ddv_ddvax

Server: :Geneva.CH.EU.Undernet.org 324 ddv_argan #ddv_ddvax +

Server: :Geneva.CH.EU.Undernet.org 329 ddv_argan #ddv_ddvax
1076504066

Client: PRIVMSG #ddv_ddvax :Hello everybody!

Client: PART #ddv_ddvax

Server: :ddv_argan!ddosvax@pc-abcd.ethz.ch PART #ddv_ddvax

Client: QUIT :Leaving

All of this was done within 16 TCP packets (without counting packets for
establishing and terminating a TCP connection and the acknowledgements
exchanged) containing all the 37 IRC messages above.

76

CHAPTER A. A Short Chat

10

12

14

16

18

20

22

24

26

28

30

32

34

36

Appendix B

Source Code

B.1 chatter.pl

The Perl script chatter.pl (based on the “HelloBot” [48]):

#!/usr/bin/perl -w

use Net::IRC;
#use strict;

HUARHBRAAHBARABAARBBARHBRBRBAAABRARHBAABHBAR BB AR B RARBBAAHBARHRARSH

BEGIN
#

use Time::HiRes quw(sleep);
use Getopt::Std;

Programmargumente verarbeiten:

Usage:

-c <Kanal> Kanalname

-d <Datei> Gespraechsdatei

-h Benutzung (Hilfe)

-i <Server> IRC-Server

-n <Nick> Nickname

-p <PortNr> Portnummer

-s <Dauer> Sleep-Dauer (Sekunden), Intervall beim Buchstabentippen

+*

getopts: vergleiche Perl Kochbuch Kapitel 15.1
getopts("c:d:hi:n:p:s:", \jargs);

ARGUMENT -h
if ($args{h}) {
print "++ Benutzung:\n";

print "++ -c <Kanal> Kanalname\n";

print "++ -d <Datei> Gespraechsdateil\n";

print "++ -h Benutzung (Hilfe)\n";

print "++ -i <Server> IRC-Server\n";

print "++ -n <Nick> Nickname\n";

print "++ -p <PortNr> Portnummer\n";

print "++ -s <Dauer> Sleep-Dauer (Sekunden), Intervall
Buchstabentippen\n";

77

beim

«

38

40

42

44

46

48

50

52

54

56

60

62

64

66

68

70

72

74

76

78

80

82

84

86

88

90

92

94

96

98

78 CHAPTER B. Source Code

exit;

}

ARGUMENT -c
if ($args{c}) {
$channelname = $args{c};
print "++ Kanal: ", $channelname, "\n";
¥
else {
print "WRONG USAGE!!! --> Argument -c falsch\n";
exit;

}

ARGUMENT -d
if ($args{d}) {
$Datei = $args{dl};
print "++ Datei: ", $Datei, "\n";
}
else {
print "WRONG USAGE!!! --> Argument -d falsch\n";
exit;

}

ARGUMENT -i
if ($args{i}) {
$ircserver = $args{il};
print "++ IRC-Server: ", $ircserver, "\n";
¥
else {
print "WRONG USAGE!!! --> Argument -i falsch\n";
exit;

}

ARGUMENT -n
if ($args{n}) {
$thisbotname = $args{n};
print "++ Nickname: ", $thisbotname, "\n";
¥
else {
print "WRONG USAGE!!! --> Argument -n falsch\n";
exit;

}

ARGUMENT -p
if ($args{p}) {
$PortNumber = $args{pl};
print "++ Port: ", $PortNumber, "\n";
}
else {
print "WRONG USAGE!!! --> Argument -p falsch\n";
exit;

}

ARGUMENT -s
if ($args{s}) {
$SleepDauer = $args{s};
print "++ Sleep-Dauer: ", $SleepDauer, "\n";
¥
else {
print "WRONG USAGE!!! --> Argument -s falsch\n";
exit;

}

100

102

104

106

108

110

112

114

116

118

120

122

124

126

128

130

132

134

136

138

140

142

144

146

148

152

154

156

158

B.1 chatter.pl 79

Gespraechs-Datei einlesen
$t = 0;
open (DATEI, "< $Datei") or die "Konnte $Datei nicht oeffnen: $!\n";
while (defined($Zeile = <DATEI>)) {
#print "++ ", $Zeile;

$TempString = substr($Zeile, 0, 1);

if ($TempString ne "#") {
@Eintraege = split /:::/, $Zeile;

chomp ($Eintraege [0]) ;
chomp ($Eintraege [1]);

#print "++ ", $Eintraege[0], "\n";
#print "++ ", $Eintraege[1], "\n";

$messages [$t]1 [0] = $Eintraege [0];
$messages [$t][1] $Eintraege [1];

#print $messages[$t][0], ":::", $messages[$tI[1], "\n";

$t = $t + 1;

}
}
my $AnzahlEintraegeDatei = $t;
print "++ Anzahl Eintraege Datei : ", $AnzahlEintraegeDatei, "\n";

close (DATEI) ;

my $MsgNumber = 0;
my $MaxMessages = $AnzahlEintraegeDatei;
my $DefaultMessage = "";

sub generateMessage {
my ($TempMessage) = Q_;
my $TempMessage2 =
my $Length = length($TempMessage);

#print "Laenge: ", $Length, "\n";

o,
H

if ($Length > 400) {
print "Message zu lang!!!";
exit;

}

for (my $i = 0; $i < $Length; $i++) {
$TempMessage2 = $TempMessage2 . substr($TempMessage, $i, 1);
#print $TempMessage2, "\n";
sleep($SleepDauer) ;

}

return $TempMessage?2;

}
#

END
HAEARHBRAAHBARHBAAHBBARHBRBRBARHBAARBBABHBRR BB AR A BRARHRAARBARHBARSH

create the IRC object

162

164

168

170

172

174

176

178

180

182

184

188

190

192

194

196

198

202

204

206

208

210

212

214

216

218

220

80 CHAPTER B. Source Code

my $irc = new Net::IRC;

Create a connection object. You can have more than one "connection"
per
IRC object, but we’ll just be working with one.
my $conn = $irc->newconn (
Server => shift || $ircserver,
Port => shift || $PortNumber,
Nick => $thisbotname,
Ircname = ’I like to greet!’,
Username => $thisbotname
)

We’re going to add this to the conn hash so we know what channel we
want to operate in.
$conn->{channel} = shift || $channelname;

sub on_connect {
#shift in our connection object that is passed automatically
my $conn = shift;

#when we connect, join our channel and greet it
print "Joining channel $conn->{channell} ...";
$conn->join($conn->{channell});

Jjoin

print " dome.\n";
#$conn->privmsg ($conn->{channel}, ’Hello everyone!’);
$conn->{connected} = 1;

HHBHHHBARHBRARBRARHARRRBABHBRARBRAABBARBBAAHBRAR B AR B RARHBRAHBESH
BEGIN
#

sub on_public {

on an event, we get connection object and event hash
my ($conn, $event) = Q@_;

this is what was said in the event

my $text = $event->{args}[0];

my $nick = $event->{nick};

if ($messages [$MsgNumber] [0] eq $thisbotname) {
$DefaultMessage = generateMessage ($messages [$MsgNumber] [1]);
$conn->privmsg($conn->{channel}, $DefaultMessage);
$MsgNumber = $MsgNumber + 1;

if ($MsgNumber == $MaxMessages) {

sleep(2);
$conn->privmsg($conn->{channel}, ’ByeBye’);

sleep(2);
exit;

}
$MsgNumber = $MsgNumber + 1;
}

add event handlers
$conn->add_handler (’public’, \&on_public);

222

224

226

228

230

232

10

12

14

16

18

20

22

24

26

B.1 chatter.pl 81

#
END
HAEARHBRAHBARABAARHBARHBRBRBAR AR ARRHBABHBAR BB AR HBRARHBAA BB AR HRARHH

The end of MOTD (message of the day), numbered 376 signifies we’ve <«
connect
$conn->add_handler (’376°, \&on_connect);

start IRC
$irc->start () ;

The input file (“-d” option of chatter.pl) containing the messages used for
Scenario I (see Section 4.5.1): (The basis of the text was found on [50])

THE IMAGINARY INVALID, Moliere
Act III, Scene XXII

Argan, Beralde, Angelique, Cleante, Toinette
Angelique (337 Bytes)
ddv_angel:::Ah! What a delightful surprise! Father, since heaven has <«
given you back to our love, let me here throw myself at your feet to <«
implore one favour of you. If you do not approve of what my heart <«
feels, if you refuse to give me Cleante for a husband, I conjure you «>
, at least, not to force me to marry another. It is all I have to ask <
of you.
Cleante (141 Bytes)
ddv_clean::: (THROWING HIMSELF AT ARGAN’S FEET). Ah! Sir, allow your heart «
to be touched by her entreaties and by mine, and do not oppose our <«
mutual love.
Beralde (37 Bytes)

H OH OH

ddv_beral:::Brother, how can you resist all this?

Toinette (49 Bytes)

ddv_toine:::Will you remain insensible before such affection?

Argan (135 Bytes)

ddv_argan:::Well, let him become a doctor, and I will consent to the <«
marriage. (TO CLEANTE) Yes, turn doctor, Sir, and I will give you my <«
daughter.

Cleante (235 Bytes)

ddv_clean:::Very willingly, Sir, if it is all that is required to become

your son-in-law. I will turn doctor; apothecary also, if you like. It
is not such a difficult thing after all, and I would do much more to
obtain from you the fair Angelique.

Beralde (140 Bytes)

ddv_beral:::But, brother, it just strikes me; why don’t you turn doctor <+
yourself? It would be much more convenient to have all you want «
within yourself.

Toinette (124 Bytes)

ddv_toine:::Quite true. That is the very way to cure yourself. There is <«
no disease bold enough to dare to attack the person of a doctor.

Argan (71 Bytes)

ddv_argan:::I imagine, brother, that you are laughing at me. Can I study <«
at my age?

Beralde (125 Bytes)

ddv_beral:::Study! What need is there? You are clever enough for that; «
there are a great many who are not a bit more clever than you are.

Argan (104 Bytes)

ddv_argan:::But one must be able to speak Latin well, and know the <>
different diseases and the remedies they require.

Beralde (140 Bytes)

[

28

30

32

34

36

38

40

42

44

46

48

50

52

10

12

14

16

82 CHAPTER B. Source Code

ddv_beral:::When you put on the cap and gown of a doctor, all that wi
come of itself, and you will afterwards be much more clever than
care to be.

Argan (75 Bytes)

11 <
you <«

ddv_argan:::What! We understand how to discourse upon diseases when we <«

have that dress?
Beralde (118 Bytes)

ddv_beral:::Yes; you have only to hold forth; when you have a cap and <«

gown, any stuff becomes learned, and all rubbish good sense.

Toinette (74 Bytes)

ddv_toine:::Look you, Sir; a beard is something in itself; a beard is
half the doctor.

Cleante (34 Bytes)

ddv_clean:::Anyhow, I am ready for everything.

Beralde (53 Bytes)

ddv_beral:::(TO ARGAN). Shall we have the thing done immediately?

Argan (17 Bytes)

ddv_argan:::How, immediately?

Beralde (19 Bytes)

ddv_beral:::Yes, in your house.

Argan (12 Bytes)

ddv_argan:::In my house?

Beralde (145 Bytes)

ddv_beral:::Yes, I know a body of physicians, friends of mine, who wi
come presently, and will perform the ceremony in your hall. It wi
cost you nothing.

Argan (38 Bytes)

ddv_argan:::But what can I say, what can I answer?

Beralde (151 Bytes)

ddv_beral:::You will be instructed in a few words, and they will give

in writing all you have to say. Go and dress yourself directly,

I will send for them.

Argan (26 Bytes)

ddv_argan:::Very well; let it be done.

#

#

#

«

11
11

U1

you <«
and <«

B.2 slave.pl

The Perl script slave.pl (based on the “HelloBot” [48]):

#!/usr/bin/perl -w

use Net::IRC;
#use strict;

HHBHAHBARHBAARBRARHAARHBARBHBAA BB AR AR RARHBASHBRRA BB AR R B BARHBRAHBERH
BEGIN
#

#use Time::HiRes qw(sleep);
use Getopt::S8td;

Programmargumente verarbeiten:
Usage:
-c <Channel> Kanalname

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

54

56

58

60

62

64

66

68

70

72

74

76

78

B.2 slave.pl 83

-h Benutzung (Hilfe)

-i <Server> IRC-Server

-n <Nick> Nickname

-p <PortNr> Portnummner

#

getopts: vergleiche Perl Kochbuch Kapitel 15.1
getopts("c:hi:n:p:", \largs);

ARGUMENT -h
if ($args{h}) {
print "++ Benutzung:\n";

print "++ -c <Channel> Kanalname\n";

print "++ -h Benutzung (Hilfe)\n";
print "++ -i <Server> IRC-Server\n";

print "++ -n <Nick> Nickname\n";

print "++ -p <PortNr> Portnummer\n";

exit;

}

ARGUMENT -c
if ($args{c}) {
$channelname = $args{c};
print "++ Kanalname: ", $channelname, "\n";
}
else {
print "WRONG USAGE!!! --> Argument -c falsch\n";
exit;

}

ARGUMENT -i
if ($args{i}) {
$ircserver = $args{il};
print "++ IRC-Server: ", $ircserver, "\n";
}
else {
print "WRONG USAGE!!! --> Argument -i falsch\n";
exit;

}

ARGUMENT -n
if ($args{n}) {
$thisbotname = $args{n};
print "++ Nickname: ", $thisbotname, "\n";
}
else {
print "WRONG USAGE!!! --> Argument -n falsch\n";
exit;

}

ARGUMENT -p
if ($args{p}) {
$PortNumber = $args{pl};
print "++ Port: ", $PortNumber, "\n";
}
else {
print "WRONG USAGE!!! --> Argument -p falsch\n";
exit;

}

#
END
HAARHBRAHBARHHBRHHBARHBAB R B AR AR BRRHBRBHBAR BB AR R B RRRHBRAH B AR HHARSH

80

82

84

86

88

90

92

94

96

98

100

102

104

106

108

110

112

114

116

118

120

122

124

126

128

130

132

134

136

84 CHAPTER B. Source Code

create the IRC object
my $irc = new Net::IRC;

Create a connection object. You can have more than one "connection"
per
IRC object, but we’ll just be working with one.
my $conn = $irc->newconn (
Server => shift || $ircserver,
Port => shift || $PortNumber,
Nick => $thisbotname,
Ircname => ’I like to greet!’,
Username => $thisbotname
)5

We’re going to add this to the conn hash so we know what channel we
want to operate in.
$conn->{channel} = shift || $channelname;

sub on_connect {
#shift in our connection object that is passed automatically
my $conn = shift;

#when we connect, join our channel and greet it

print "Joining channel $conn->{channell} ...";
$conn->join($conn->{channell});

print " domne.\n";

$conn->privmsg ($conn->{channel}, "**$thisbotname** logged in");
$conn->{connected} = 1;

HHBHAHBARHBAAH B AR B H AR R BB AR HBAA BB AR A B RARHBAAH B R BB AR A B BARHBRABHBERH
BEGIN
#

sub on_public {

on an event, we get connection object and event hash
my ($conn, $event) = @_;

this is what was said in the event
my $text = $event->{args}[0];
my $nick = $event->{nick};

if ($text =" /\lready/) {
$conn->privmsg ($conn->{channell}, "**$thisbotname** ready for
test");
}
elsif ($text =~ /\lend/) {
$conn->privmsg ($conn->{channel}, "*x*x$thisbotname**x leaves");
sleep(2);
exit;
}

}

add event handlers
$conn->add_handler (’public’, \&on_public);

#
END

140

142

144

146

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

B.3 ircsniffer.pl

HUARHBRAHBARHB AR B BARHBRBRBARBHBRARBBABHBRRBBAAHBRARHBRAHBERHBRRSH

#

The end of MOTD (message of the day), numbered 376 signifies we’ve <«
connect

$conn->add_handler (’376°’, \&on_connect);

#

start IRC

$irc->start () ;

B.3 ircsniffer.pl

#!/usr/bin/perl

HOH H O H O HH R HHH R

#

| This is a little script called "ircsniffer" and is |
| licensed under SPALEWARE. You may freely modify and distribute |
| this script or parts of it. But you MUST keep the SPALWARE |
| license in it! |
I I

Author : Pascal Gloor

Date :24.10.2003

Contact : spale@undernet.org
Version : 1.1

--> adapted by SR
--> 0ct 2003 - Apr 2004

non printable chars are replaced by..

$npchar = ’77;

$tcpdump = "/usr/sbin/tcpdump";

if (!'$tcpdump) {

}

print STDERR "FATAL ERROR: tcpdump not found\n";
print STDERR "make sure tcpdump is in the PATH\n";
exit 1;

if (@ARGV) {

}

foreach (@ARGV) {
$options .= sprintf(" %s",$_);
}
print "Starting decoder with ’$tcpdump -1lnx -s 1500$options’\n";
else {
print "Usage: $0 <tcpdump_options>\n\n";
print "Example 1: $0 -i ethO tcp and dst port 6667\n";
print "or\m";
print "Example 2: $0 -r dumpfile.dump port 6661\n";
print "\n";
print "WARNING: you must ensure that you will only match IRC traffic,\n

"n.
H

46

48

52

54

56

60

62

64

66

68

70

72

74

76

78

80

82

84

86

88

90

92

94

96

98

100

86 CHAPTER B. Source Code

print "matching non-IRC traffic may break your terminal by displaying\n «

".
B

print "non-printable chars!\n\n";
exit;

}

$1=1;
open (STDIN,"$tcpdump -1lnx -s 1500 $options [");
while (<STDIN>) {

s/(\r|\n)+$//; # \r = Carriage Return; \n = Linefeed; $ = matches end <«
of line

if (/°[0-91/) { # ~ = matches beginning of line
Trying to guess which is the server side.
if ($from =~ /\.(666[0-9117000|777718000/9000)%/) {
$peer = $to;

$dir = ’server’;
}
else {

$peer = $from;

$dir = ’client’;
}

undef $offset;
$len = length($packet);

So, how long is this header?

$ip_head_len = unpack("B8",pack(’H2’,substr($packet ,$offset ,2)));
$ip_head_len =" s/.*(....)$/8$1/;

$ip_head_len = hex(unpack("H1",pack("B4",$ip_head_len))) * 4;
$offset += $ip_head_len * 2;

So, where does data start, must be somewhere in the TCP header .. ; «
P

$tcp_head_len = hex(substr ($packet,$offset+24,1)) * 4;

$offset += $tcp_head_len * 2;

undef $char;

$lchar = -1;
#$test = substr($packet ,$offset,$len-$offset);
$test = $packet; # by SR --> <
also consider Ack’s (empty packets)
$temppacket = substr($packet, $offset, $len-$offset); # by SR
$temppacket =~ s/(00)+$//; # by SR
if (length($temppacket) == 0) { # by SR
$len = $offset; # by SR
} # by SR
if ($test =" /[1-9a-f]l/i) {
#printf ("%21s %s ",$peer,$dir);
printf ("%15s;;;%21s;;;%21s;;;%56s;;;", $time, $from, $to, $len/2); <«

by SR
for ($pos = $offset; $pos < $len; $pos+=2) {

#if ($lchar eq 10) { printf ("\n%21s %s ",$peer,$dir); }
if ($lchar eq 10) {
printf ("\n%15s;;;%21s;;;%21s;;;%5s;;;", $time, $from, $to, $len «
/2);
} # by SR

102

104

106

110

112

114

116

118

120

122

124

126

128

130

132

134

10

12

14

16

18

20

22

B.4 compare_dumps_to_flows.pl

87

$char = hex(substr ($packet,$pos,2));
if ($char >= 32) {
print chr($char);

}
elsif ($char eq 27) {
print "°";
}
elsif ($char eq 10) {
print "";
¥
elsif ($char eq 13) {
Erint ||||;
}
elsif ($char eq 3) {
print "~ [[7m~C~[[Om";
}
else {
print "$npchar";
¥
$lchar = $char;
}
print "\n";
}
($time , $from,undef ,$to)=split (/ /);
$to =~ s/:$//;
undef $packet;
}
else {
s/ +//;
s/ //g;
$packet .= $_;
}
}

B.4 compare_dumps_to_flows.pl

#!/usr/bin/perl -w

HHBARBHH AR HH AR R H AR AR RAR BB AR H B AR B HBRHHBARHBRB R B AR H BB BB ERHH AR R BB AR HBRR RS
used modules
HUSRHHUBH B AR H B A SR B RS R B RS H B RSB H B RSB B A S H B E R B RS R B BB BB SH B RS H B SH B R SRSB4

use Getopt::Std; # fuer ’getopts’-Funktion
use P0OSIX; # fuer ’ceil’-Funktion
use Time::Local; # fuer ’timelocal’-Funktion

HUHHARARARAH AR RS HAHARBRBHRRARRRRRRRRRRRRRBRBHBHBRBRBRBRBRBRBRBH R RR RS H
process program options
HUFHARARARAHARA RS HAHARRRRHRHRBRBRARF BB BB RFRFBHBHRFBRBRBARARRBRRARARA RS H

getopts:

see Perl cookbook
HARBRHABHABHHBRARRRRBRRBR B RAH BB B RSB RS HH
getopts("d:hi:n:s:t:u:", \jargs);

24

26

28

30

32

34

36

38

40

42

44

46

48

52

54

56

58

60

62

64

66

68

70

72

74

76

78

88 CHAPTER B. Source Code

ARGUMENT -h
HHHHSHSH B SR RHY
if ($args{h}) {

print "++ usage:\n";

print "++ -d <path> path to the directory containing netflow <«
data\n";

print "++ -h usage of this program\n";

print "++ -i <IP> IP address to analyse\n";

print "++ -n <path> path to the program ’netflow_to_text’ (only «

path)\n";

print "++ -s <path> path to the program ’ircsniffer.pl’ (only <
path)\n";

print "++ -t <file> tcpdump file 1 \n";

print "++ -u <file> tcpdump file 2 \n";

exit;

}

ARGUMENT -d
HHHAARBHHHBRHHHH
if ($args{d}) {

$PfadNetflowDaten = $args{d};
printf ("++ path to the netflow data: %s\n", $PfadNetflowDaten);
¥
else {
print "WRONG USAGE!!! --> Argument -d wrong\n";
exit;
}
ARGUMENT -i

HHHHSHSHH SR RHY
if ($args{i}) {
$IP = $args{il};
printf ("++ IP address: %s\n", $IP);
}
else {
print "WRONG USAGE!!! --> Argument -i wrong\n";
exit;

}

ARGUMENT -n
HHHHSHSH B HA RS
if ($args{n}) {

$PfadNetflowToText = $args{nl};
printf ("++ path to the program \’netflow_to_text\’: %s\n",
$PfadNetflowToText);
}
else {
print "WRONG USAGE!!! --> Argument -n wrong\n";
exit;
}
ARGUMENT -s

HHHBARBHHBARHHEH
if ($args{s}) {
$PfadIrcsniffer = $args{sl};
printf ("++ path to the program \’ircsniffer.pl\’: ¥%s\n", <«
$PfadIrcsniffer);
}
else {
print "WRONG USAGE!!! --> Argument -s wrong\n";
exit;

}

80

82

84

86

88

90

92

94

96

98

100

102

104

108

110

112

114

116

118

120

122

124

126

128

130

132

134

136

138

140

B.4 compare_dumps_to_flows.pl 89

ARGUMENT -t
HA#AAARRRRRRRRH
if ($args{t}) {
$TcpdumpDateil = $args{tl};
printf ("++ tcpdump file 1: %s\n", $TcpdumpDateil);
}
else {
print "WRONG USAGE!!! --> Argument -t wrong\n";
exit;

}

ARGUMENT -u
HHHHHHHBRAHHHEH
if ($args{u}) {
$TcpdumpDatei2 = $args{u};
printf ("++ tcpdump file 2: %s\n", $TcpdumpDatei2);
}
else {
print "WRONG USAGE!!! --> Argument -u wrong\n";
exit;

}

HHHHHHHH A A BB S GGG BB R B BB S S S BB BB BB BB BB S S GG SRR R BB RS S S S BB BB BB BB BB SRS Y
initialisation
HHHHHHHHH A BB E S S G BB R BB B S B H BB BB BB BB BB S GGG BB R R RS S S S S B BB BB BB BB RS SS Y

@ListeNetflowDateien = ();
@ListeNetflowDateien = getFilesToProcessInFolder ($PfadNetflowDaten);
$AnzahlNetflowDateien = scalar(@ListeNetflowDateien);

$Protokoll = nn,
$SourcelIP = ",
$DestinationIP = nn,
$SourcePort = ",
$DestinationPort = ""
$AnzahlBytes =
$AnzahlPakete =
$AnfangsZeit =
$AnfangsZeitMSEK
$AnfangsZeitSEK =
$EndZeit =
$EndZeitMSEK =
$EndZeitSEK =
$Dauer =
$DauerMSEK

o

seconds.milliseconds

[=lelelNeNeNeNeNeo e

seconds.milliseconds

seconds.milliseconds

[elelelNeNeNeNeNeNe NN

!!'! don’t forget to change accordingly !!!
$Date = "21.04.2004";

$FormattedTime = "";
$Time = 0;

$Connection = "y
%ConnectionsToClient = O
%ConnectionsToServer = O
@ArrayConnectionsToClient = ();
@ArrayConnectionsToServer = ();
$IndexConnectionsToClient = 0;
$IndexConnectionsToServer = 0;

142

144

146

148

150

158

160

162

164

166

170

172

174

176

178

180

182

184

186

188

190

192

194

196

90 CHAPTER B. Source Code

%ConnectionsToClient?2 = ();
%ConnectionsToServer?2 = O3
@ArrayConnectionsToClient2 = ();
@ArrayConnectionsToServer2 = ();
$IndexConnectionsToClient2 = 0;
$IndexConnectionsToServer2 = 0;

grep expressions:

we are only interested in flows and packets

from a certain IP (193.110.95.1)

and port (6661)

$GrepAusdruckl = "°[1" . $IP . "[J1.x[Je661[]1°";
print "++ Grep-Ausdruck 1: ", $GrepAusdruckl, "\n";
$GrepAusdruck2 = ">" . $IpP . "',

print "++ Grep-Ausdruck 2: ", $GrepAusdruck2, "\n";

$TcpdumpDateien [0] $TcpdumpDateil;
$TcpdumpDateien[1] = $TcpdumpDatei2;

HHBHHHBARHBRBHBARH B AR R B AR B HBRB R B AR A B R R B AR AR AR B H AR AR BAR BB RS HBRRBH AR H RS

read netflow data and filter with grep:
every new connection is put into a hash
accordingly to the ’direction’

HHEAHHBARHBRAHBARHBAARBEABHBRAHBARHBRARBARH B AR R HBA BB BARHBARSHBRR BB AR H RS

for ($i = 0; $i < $AnzahlNetflowDateien; $i++) {

$AktuelleZeit = getLokaleZeit ();

$NetflowDataFileName = $ListeNetflowDateien[$i];
printf ("++ \n++ %-38s wird analysiert (Begin: ¥%s)\n", <
$NetflowDataFileName , $AktuelleZeit);

open (NETFLOW, "$PfadNetflowToText/netflow_to_text -D -f
$PfadNetflowDaten/$NetflowDataFileName | grep -E $GrepAusdruckl [|" <
) or die "Fehler im Durchgang: $!\n";

while (defined($NetflowAusgabe = <NETFLOW>)) {

getEintraegeZeile ($§NetflowAusgabe);

$Connection = $SourceIP . " " . $SourcePort . " " . $DestinationIP «
" " _ $DestinationPort;

consider only flows between 16:00 and 17:00

21.04.2004 16:00:00 = 1082556000

21.04.2004 17:00:00 = 1082559600

!!! don’t forget to change accordingly !!!

if (($EndZeit >= 1082556000) && ($AnfangsZeit < 1082559600)) {

if ($AnfangsZeit < 1082556000) {
include overlapping flow in a linear way
$AnzahlPakete = $AnzahlPakete * (($EndZeit - 1082556000) / («
$EndZeit - $AnfangsZeit));
$AnzahlBytes = $AnzahlBytes * (($EndZeit - 1082556000) / («
$EndZeit - $AnfangsZeit));
}
elsif ($EndZeit > 1082559600) {
include overlapping flow in a linear way

198

202

204

206

208

210

212

214

216

218

220

222

224

226

228

230

232

234

236

B.4 compare_dumps_to_flows.pl

91

$AnzahlPakete = $AnzahlPakete * ((1082559600 - $AnfangsZeit) / (<«

$EndZeit - $AnfangsZeit));

$AnzahlBytes = $AnzahlBytes * ((1082559600 - $AnfangsZeit) / («
$EndZeit - $AnfangsZeit));
}
if ($SourcePort == 6661) {
if (exists $ConnectionsToClient{$Connection}) {
$ArrayConnectionsToClient [$ConnectionsToClient{$Connection «
}1[4] += $AnzahlPakete;
$ArrayConnectionsToClient [$ConnectionsToClient{$Connection «
}1[6] += $AnzahlBytes;
}
else {
$ConnectionsToClient{$Connection} = $IndexConnectionsToClient;
$ArrayConnectionsToClient [$IndexConnectionsToClient] [0] =
$SourcelP;
$ArrayConnectionsToClient [$IndexConnectionsToClient] [1] =
$SourcePort;
$ArrayConnectionsToClient [$IndexConnectionsToClient] [2] =
$DestinationIP;
$ArrayConnectionsToClient [$IndexConnectionsToClient] [3] = <«
$DestinationPort;
$ArrayConnectionsToClient [$IndexConnectionsToClient] [4] = <«
$AnzahlPakete;
$ArrayConnectionsToClient [$IndexConnectionsToClient] [56] = <«
$Connection;
$ArrayConnectionsToClient [$IndexConnectionsToClient] [6] =
$AnzahlBytes;
$IndexConnectionsToClient ++;
#print "++ ", $Connection, "\n";
}
}
else {

if (exists $ConnectionsToServer{$Connection}) {
$ArrayConnectionsToServer [$§ConnectionsToServer{$Connection «
}1[4] += $AnzahlPakete;
$ArrayConnectionsToServer [$§ConnectionsToServer{$Connection «
}1[6]1 += $AnzahlBytes;

}
else {
$ConnectionsToServer{$Connection} = $IndexConnectionsToServer;
$ArrayConnectionsToServer [$IndexConnectionsToServer] [0] =
$SourcelP;
$ArrayConnectionsToServer [$IndexConnectionsToServer] [1] = <«
$SourcePort;
$ArrayConnectionsToServer [$§IndexConnectionsToServer] [2] = <«
$DestinationIP;
$ArrayConnectionsToServer [$§IndexConnectionsToServer] [3] =
$DestinationPort;
$ArrayConnectionsToServer [$IndexConnectionsToServer] [4] =
$AnzahlPakete;
$ArrayConnectionsToServer [$§IndexConnectionsToServer] [6] = «
$Connection;
$ArrayConnectionsToServer [$IndexConnectionsToServer] [6] = <«
$AnzahlBytes;
$IndexConnectionsToServer++;
#print "++ ", $Connection, "\n";
}
}

240

242

244

246

248

250

252

254

256

260

262

264

266

270

272

274

276

278

280

282

284

286

92 CHAPTER B. Source Code

close (NETFLOW) ;

}

print "++ \n";

print "++ IndexConnectionsToClient: ", $IndexConnectionsToClient, "\n";
print "++ IndexConnectionsToServer: ", $IndexConnectionsToServer, "\n";

print "++ \n";

HHBHHHBARHBRAH B AR A B AR B AR B HBRBHBARH B R R B AR A B AR R H AR AR BAR BB AR B AR B HERHH RS

read from tcpdump files and filter packets:
every new connection is put into a hash
accordingly to the ’direction’

HHBHHHBARHBRARBARARBAARBEARHBAARBARHBRARBAAHBRARHBAAHBARBBARSHBRABBEAH B RS

for ($i = 0; $i < 2; $i++) {

$TcpdumpDatei = $TcpdumpDateien[$i];

print "Tcpdumpdatei: ", $TcpdumpDatei,"\n";
open (DUMP, "$PfadIrcsniffer/ircsniffer.pl -r $TcpdumpDatei port 6661 | <«

grep -E $GrepAusdruck2 |") or die "Fehler im Durchgang: $!\n";
#open(DUMP, "/large2/analyses/tools/tcpdump -lnx -s 1500 -r <«
$TcpdumpDatei port 6661 | grep -E $GrepAusdruck2 |") or die "Fehler «
im Durchgang: $!\n";
while (defined($SnifferAusgabe = <DUMP>)) {

getEintraegeZeile2 ($SnifferAusgabe);

$Connection = $SourceIP . " " . $SourcePort . " " . $DestinationIP .
" " _ $DestinationPort;
#print "Connection: ", $Connection,"\n";

consider only flows between 16:00 and 17:00
21.04.2004 16:00:00 = 1082556000
21.04.2004 17:00:00 = 1082559600
'l don’t forget to change accordingly !!!
(($Time >= 1082556000) && ($Time < 1082559600)) {

‘l—h####

if ($SourcePort==6661) {
if (exists $ConnectionsToClient2{$Connectionl}) {
$ArrayConnectionsToClient2[$ConnectionsToClient2{$Connection «
31041 += 1;
$ArrayConnectionsToClient2[$ConnectionsToClient2{$Connection «
}1[6] += $AnzahlBytes;

}
else {
$ConnectionsToClient2{$Connection} = $IndexConnectionsToClient2 «
$ArrayConnectionsToClient2 [$IndexConnectionsToClient2] [0] =
$SourcelP;
$ArrayConnectionsToClient2[$IndexConnectionsToClient2][1] = <«
$SourcePort;
$ArrayConnectionsToClient2[$IndexConnectionsToClient2][2] =
$DestinationIP;
$ArrayConnectionsToClient2[$IndexConnectionsToClient2][3] = <«
$DestinationPort;
$ArrayConnectionsToClient2[$IndexConnectionsToClient2][4] = 1;
$ArrayConnectionsToClient2[$IndexConnectionsToClient2][5] = <«
$Connection;
$ArrayConnectionsToClient2[$IndexConnectionsToClient2][6] = <
$AnzahlBytes;

$IndexConnectionsToClient2++;

288

290

292

294

296

298

300

302

304

306

308

310

312

314

316

318

320

322

324

326

328

330

332

334

B.4 compare_dumps_to_flows.pl 93

#print "++ ", $Connection, "\n";
}
}
else {
if (exists $ConnectionsToServer2{$Connection}) {
$ArrayConnectionsToServer2 [$ConnectionsToServer2{$Connection «
}104] += 1;
$ArrayConnectionsToServer2 [$ConnectionsToServer2{$Connection «
}1[6]1 += $AnzahlBytes;
¥
else {
$ConnectionsToServer2{$Connection} = $IndexConnectionsToServer2 «
$ArrayConnectionsToServer2[$IndexConnectionsToServer2] [0] =
$SourcelP;
$ArrayConnectionsToServer2[$IndexConnectionsToServer2][1] = «
$SourcePort;
$ArrayConnectionsToServer2[$IndexConnectionsToServer2][2] = <
$DestinationIP;
$ArrayConnectionsToServer2[$IndexConnectionsToServer2][3] =
$DestinationPort;
$ArrayConnectionsToServer2[$IndexConnectionsToServer2] [4] = 1;
$ArrayConnectionsToServer2[$IndexConnectionsToServer2][5] = <
$Connection;
$ArrayConnectionsToServer2[$IndexConnectionsToServer2][6] = <«
$AnzahlBytes;
$IndexConnectionsToServer2++;
#print "++ ", $Connection, "\n";

}
¥
close (DUMP) ;
}

print "++ \n";
print "++ IndexConnectionsToClient2: ", $IndexConnectionsToClient2, "\n";

n

print "++ IndexConnectionsToServer2: , $IndexConnectionsToServer2, "\n";
print "++ \n";
print "++ \n";

HARRBHARARRHHBHBRBHARARBRARARRBHARARBRARAR BB AAR AR BHARA SR BHBR SRR HAR AR RS
compare the netflow data to the tcpdump data
and print them out
HAHRBHARARBHARARARAARARBRARARRBHRRRABRARARBRARRARBHARA AR HHRRR BB RAR AR RS

$zf = 0.0;
$ProzentSummeToClient = 0.0;
$ProzentSummeToServer = 0.0;

print "++ Connections to client:\n";
for ($i = 0; $i < $IndexConnectionsToClient2; $i++) {
$Connection = $ArrayConnectionsToClient2[$i][5];

if (exists $ConnectionsToClient{$Connection}) {
printf ("++ %45s %9d %10.1f %14d ’%15.1f %10.2f\n", $Connection, <«
$ArrayConnectionsToClient2[$ConnectionsToClient2{$Connection «
}1[4], $ArrayConnectionsToClient [$ConnectionsToClient{$Connection «
}1[4], $ArrayConnectionsToClient2[$ConnectionsToClient2{ «
$Connection}t] [6], $ArrayConnectionsToClient [$ConnectionsToClient{ «
$Connection}] [6], ($ArrayConnectionsToClient [$ConnectionsToClient «

336

338

340

342

344

346

348

352

354

356

358

360

362

364

366

368

370

372

374

376

94 CHAPTER B. Source Code

{$Connection}] [4]/$ArrayConnectionsToClient2[«
$ConnectionsToClient2{$Connection}] [4]));

$ProzentSummeToClient += ($ArrayConnectionsToClient[«
$ConnectionsToClient{$Connection}] [4]/$ArrayConnectionsToClient2[«
$ConnectionsToClient2{$Connection}] [4]);

}
else {
packets not found in netflow data
printf ("++ %45s %94 %10.1f %14d ’%15.1f %10.2f\n", $Conmnection, <«
$ArrayConnectionsToClient2 [$ConnectionsToClient2{$Connection «—
}1[4], $zf, $ArrayConnectionsToClient2[$ConnectionsToClient2{ «
$Connection}t] [6]1, $zf, $zf);
}

}

print "++ \n";

print "++ Connections to server:\n";

for ($i = 0; $i < $IndexConnectionsToServer2; $i++) {
$Connection = $ArrayConnectionsToServer2[$i] [5];

if (exists $ConnectionsToServer{$Connection}) {

printf ("++ %45s %9d %10.1f %14d %15.1f %10.2f\n", $Connection, <«
$ArrayConnectionsToServer2[$ConnectionsToServer2{$Connection «
}1[4], $ArrayConnectionsToServer [$ConnectionsToServer{$Connection «
}1[4]1, $ArrayConnectionsToServer2[$ConnectionsToServer2{ «
$Connection}] [6], $ArrayConnectionsToServer [$ConnectionsToServer{
$Connection}] [6], ($ArrayConnectionsToServer [$ConnectionsToServer
{$Connection}] [4]/$ArrayConnectionsToServer2[«
$ConnectionsToServer2{$Connection}] [4]));

$ProzentSummeToServer += ($ArrayConnectionsToServer[«
$ConnectionsToServer{$Connection}] [4]/$ArrayConnectionsToServer2[«
$ConnectionsToServer2{$Connection}] [4]) ;

}
else {
packets not found in netflow data
printf ("++ %45s %9d %10.1f %14d %15.1f %10.2f\n", $Connection, <«
$ArrayConnectionsToServer2[$ConnectionsToServer2{$Connection «
}1[4], $zf, $ArrayConnectionsToServer2[$ConnectionsToServer2{ «—
$Connection}] [6], $zf, $zf);
}
}
print out: ’packet-found-rate’ (not ’packet-loss-rate’!)
print "++ Average: packets to client: ", 100 * ($ProzentSummeToClient/ «
$IndexConnectionsToClient2), "\n";
print "++ Average: packets to server: ", 100 * ($ProzentSummeToServer/ «
$IndexConnectionsToServer2), "\n";

HHBHHHBARHBRBHBARH B AR R B AR B HBRB R B AR AR AR R B ERHHBRBH AR B HRAR BB AR BB B R AR B RS
SUBROUTTINES
HHBAHHBARHBRBHBAR A B AR B ERBHBAB R B AR HBAA R B AR A B BRRH AR AR BAR BB AR B AR B R AR AR RS

call: getLokaleZeit ();

sub getLokaleZeit {
my ($Se, $Mi, $St, $Ta, $Mo, $Ja) = (localtime)[0,1,2,3,4,5];
$Mo = $Mo + 1;
$Ja = $Ja + 1900;

378

380

382

384

386

388

390

392

394

396

398

400

402

404

406

408

410

412

414

416

418

420

422

424

426

428

430

432

B.4 compare_dumps_to_flows.pl

95

if ($Ta
$Ta =

< 10) {
"0" . $Ta;
¥
if ($Mo
$Mo =

< 10) {
non $M0;

‘H~v

($st
$st =

< 10) {
llo" $St;

‘H~w

($Mi
$Mi =

< 10) {

|lo|| $Mi;
}
i

($Se
$Se =

< 10) {
"0" . $Se;
}

Format:

my $LokaleZeit =
$Se) ;

return $LokaleZeit;

call:
sub epochseconds2dmyhms {

"TAG.MONAT.JAHR STUNDEN:MINUTEN: SEKUNDEN"
sprintf ("%s.%s.%s %s:%s:%s", $Ta,

$Mo ,

epochseconds2dmyhms ($zeit_in_sekunden) ;

$Ja, $St, $Mi,

(Funktionsuebergabewert an localtime() muss in Sekunden sein!)

#($Sekunden, $Minuten, $Stunden, $Tag, $Monat, $Jahr,
$isdst) = localtime($LogStartZeitSEK) ;

#$Monat = $Monat + 1;

#$Jahr = $Jahr + 1900;

#print "TIME " $Tag . "." $Monat "." . $Jahr . "

" $Minuten "o $Sekunden "\n";
my ($ZeitSEK) = @_;
my ($Sekunden, $Minuten, $Stunden, $Tag, $Monat, $Jahr,

$isdst) = localtime($ZeitSEK);
$isdst = $isdst;
$yday $yday;
$wday $wday;
$Jahr $Jahr + 1900;
$Monat = $Monat + 1;

< 10) {
non $Tag;

if ($Tag
$Tag =

}

if ($Monat < 10) {
$Monat = "O" $Monat ;

¥

if ($Stunden < 10) {
$Stunden = "O" $Stunden;

}

if ($Minuten < 10) {

$Minuten = "O" $Minuten;
}
if ($Sekunden < 10) {
$Sekunden = "O" $Sekunden;
¥

Format:
my $ZeitFormatiert =

nen

$Tag Lo
$Minuten . ":

"TAG.MONAT.JAHR STUNDEN:MINUTEN:SEKUNDEN"
$Monat
" . $Sekunden;

$Jahr

$wday ,

$yday, <

" . $Stunden «

$wday, $yday,

"o $Stunden «

434

436

438

440

442

444

446

448

450

452

454

456

458

460

462

464

468

470

472

474

476

478

482

484

486

488

490

492

494

96

CHAPTER B. Source Code

call:

dmyhms2epochseconds ("01.12.2003 23:59:13");

sub dmyhms2epochseconds {

E

$Mi
$Ho

$Mo
$Ye

EEEEEE

@TempA
@DateA
QTimeA

$Secon
$Minut
$Hour
$Day
$Month
$Year

my $Ep
$Y

#print
#print

return

call:
sub getL
my (3N

$Second =

$Day =

($StringDMYHM) = @_;

nute =

ur =

nth =
ar =

O O O O OO

rray = split(/\s+/, $StringDMYHM);
rray = split (/\./, $TempArrayl[0]);
rray = split(/:/, $TempArray([1]);

d
e

sprintf ("%u", $TimeArray[2]);

sprintf ("%u", $TimeArray[1]);

= sprintf ("%u", $TimeArray[0]);

sprintf ("%u", $DateArray[0]);

sprintf ("%u", ($DateArray[1] - 1));

= sprintf ("%u", ($DateArray[2] - 1900));

ochSeconds = timelocal($Second, $Minute, $Hour, $Day, $Month, <«
ear) ;

"Input dmyhm: ", $StringDMYHM, "\n";
"Output dmyhm: ", $EpochSeconds, "\n";

$EpochSeconds;

getLogTime ($netflow_data_file_name);
ogTime {
etflowDatenDateiname) = @Q_;

my $TempString = $NetflowDatenDateiname;
my $LogZeit = "";

test
if ($T

for ’.dat.bz2’
empString =~ /\.dat\.bz2/) {

$TempString =~ s/\.dat\.bz2/\.0/;
$TempString = substr($TempString, -12, 12);

$LogZeit = $TempString;
$LogZeit = sprintf("%.1f", $LogZeit);

}

elsif ($TempString =" /\.dat\.ixt/) {
$TempString =" s/\.dat\.ixt/\.0/;
$TempString = substr($TempString, -12, 12);
$LogZeit = $TempString;
$LogZeit = sprintf("%.1f", $LogZeit);

}

elsif ($TempString =~ /\.dat/) {
$TempString =" s/\.dat/\.0/;
$TempString = substr($TempString, -12, 12);
$LogZeit = $TempString;
$LogZeit = sprintf("%.1f", $LogZeit);

}

else {

496

498

502

504

506

508

510

512

514

518

520

522

524

526

528

530

532

536

538

540

542

544

552

554

556

B.4 compare_dumps_to_flows.pl 97

print "Fehler in Erzeugung \’LogZeit\’\n";
}

return $LogZeit;
}

call: getEintraegeZeile($zeile);
sub getEintraegeZeile {
my ($Zeile) = @_;

@EintraegeZeile = split (/\s+/, $Zeile);

if ($EintraegeZeile[2] eq "pr") {
$Protokoll = $EintraegeZeile[1];
}
else {
print "split: ERROR!!!\n";
exit;

}

if ($EintraegeZeile[4] eq "si") {
$SourcelP = $EintraegeZeile [3];

¥

else {
print "split: ERROR!!!\n";
exit;

}

if ($EintraegeZeile[6] eq "di") {
$DestinationIP = $EintraegeZeile [5];
¥
else {
print "split: ERROR!!!\n";
exit;

}

if ($EintraegeZeile[8] eq "sp") {
$SourcePort = $EintraegeZeile[7];

}
else {
print "split: ERROR!!!\n";
exit;
}
if ($EintraegeZeile[10] eq "dp") {
$DestinationPort = $EintraegeZeile [9];
}
else {
print "split: ERROR!!!\n";
exit;
}
if ($EintraegeZeile[12] eq "le") {
$AnzahlBytes = $EintraegeZeile[11];
$AnzahlBytes = sprintf("%.1f", $AnzahlBytes);
}
else {
print "split: ERROR!!!\n";
exit;

}

558

560

564

566

568

570

572

574

576

580

582

584

586

588

600

602

604

606

608

610

612

614

616

618

98 CHAPTER B. Source Code

if ($EintraegeZeile[14] eq "pk") {
$AnzahlPakete = $EintraegeZeile[13];
$AnzahlPakete = sprintf("J).1f", $AnzahlPakete);

}

else {
print "split: ERROR!!!\n";
exit;

}

if ($EintraegeZeile[16] eq "st") {
$AnfangsZeit = $EintraegeZeile[15]; # seconds.milliseconds
$AnfangsZeit = sprintf("),.4f", $AnfangsZeit);
$AnfangsZeitMSEK = 1000 * $AnfangsZeit;

$AnfangsZeitMSEK sprintf ("%.1£f", $AnfangsZeitMSEK);

$AnfangsZeitSEK = $AnfangsZeitMSEK / 1000;

}
else {
print "split: ERROR!!!\n";
exit;
}
if ($EintraegeZeile[18] eq "en") {
$EndZeit = $EintraegeZeile[17]; # seconds.milliseconds
$EndZeit = sprintf ("%.4f", $EndZeit);
$EndZeitMSEK = 1000 * $EndZeit;

$EndZeitMSEK sprintf ("%.1f", $EndZeitMSEK);

$EndZeitSEK = $EndZeitMSEK / 1000;

}

else {
print "split: ERROR!!!\n";
exit;

}

if ($EintraegeZeile [20] eq "du") {
$Dauer = $EintraegeZeile[19]; # seconds.milliseconds
$Dauer = sprintf ("%.4f", $Dauer);
#$DauerMSEK = 1000 * $Dauer;
$DauerMSEK = $EndZeitMSEK - $AnfangsZeitMSEK;
$DauerMSEK = sprintf("%.1f", $DauerMSEK);

}

else {
print "split: ERROR!!!\n";
exit;

}

}

call: getFilesToProcessInFolder ($directory);
sub getFilesToProcessInFolder {
($PathToNetflowData) = @_;

$TempFile = nun,

$TempString = "";

$LogZeit = 0.0;

@FilesToProcess;

$DateAndTime = "";

EEEEEE

620

622

624

626

628

630

632

634

636

638

640

642

644

646

648

650

652

654

656

658

660

662

664

666

668

670

672

674

676

678

B.4 compare_dumps_to_flows.pl

99

$Counter91
$Counter93
@Min91;
@Min93;
@Max91;
@Max93;
@TempStrings2;

[
o o

EEEEEEE

#$MinTime = sprintf ("%.1£f", $MinTime);
#$MaxTime = sprintf ("%.1£f", $MaxTime);

#print "MinTime: ", $MinTime, "\n";

#print "MaxTime: ", $MaxTime, "\n";

get all files from directory
see Perl cookbook
print "++ Suche nach Netflow-Dateien:\n++ \n";

$f = 0;

opendir (DIR, $PathToNetflowData) or die "Konnte Verzeichnis
$PathToNetflowData nicht oeffnen: $!\n";

while (defined($TempFile = readdir (DIR))) {

$TempString = $TempFile;

consider only ’*.dat’ files

if ($TempString =~ /\.dat/) {
$LogZeit = getLogTime ($TempFile);
$FilesToProcess[$f] = $TempFile;
$f = $f + 1;
printf ("++ %-38s gefunden", $TempFile);
print " --> Netflow-Datei";
print " --> hinzugefuegt (im Bereich)\n";
$DateAndTime = epochseconds2dmyhms ($LogZeit);
print "++ Log-Startzeitpunkt: ", $LogZeit, " = ", $DateAndTime,

++ \n";

@TempStrings2 = split(/_/, $TempFile);
$TempStrings2[-2] = sprintf ("%d", $TempStrings2[-2]1);

if ($TempString =~ /19991_/) {
$Counter91 = $Counter9l + 1;
#print "91: ", $TempStrings2[-2], "\n";
if ($Counter91l == 1) {
$Min91 [0] = $TempStrings2[-2];
$Min91 [1] = $LogZeit;
$Min91 [2] = $DateAndTime;
$Max91 [0] = $TempStrings2[-2];
$Max91[1] = $LogZeit;
$Max91[2] = $DateAndTime;
} else {
if ($TempStrings2[-2] < $Min91[0]) {
$Min91 [0] = $TempStrings2[-2];
$Min91 [1] $LogZeit;
$Min91 [2] $DateAndTime;

}

if ($TempStrings2[-2] > $Max91[0]) {
$Max91 [0] = $TempStrings2[-2];
$Max91 [1] $LogZeit;

$Max91 [2] $DateAndTime;

"\n <«

680

682

684

686

688

690

692

694

696

698

700

702

704

706

708

710

712

714

716

718

720

722

724

726

728

730

732

734

736

100 CHAPTER B. Source Code

H H H R H OH **

**

}
if ($TempString =~ /19993_/) {
$Counter93 = $Counter93 + 1;
#print "93: ", $TempStrings2[-2], "\n";
if ($Counter93 == 1) {
$Min93 [0] = $TempStrings2[-2];
$Min93 [1] = $LogZeit;
$Min93 [2] = $DateAndTime;
$Max93 [0] = $TempStrings2[-2];
$Max93 [1] = $LogZeit;
$Max93[2] = $DateAndTime;
} else {
if ($TempStrings2[-2] < $Min93[0]) {
$Min93 [0] = $TempStrings2[-2];
$Min93[1] = $LogZeit;
$Min93 [2] = $DateAndTime;
}
if ($TempStrings2[-2] > $Max93[0]) {
$Max93 [0] = $TempStrings2[-2];
$Max93[1] = $LogZeit;
$Max93 [2] = $DateAndTime;
}
}
}
} else {
#print "\n";
}
}
closedir (DIR);

print "++ \n";
$AnzahlNetflowDateien = $f;

#print "Min91: ", $Min91[0], "\n";
#print "Max91: ", $Max91[0], "\n";

#print "Min93: ", $Min93[0], "\n";
#print "Max93: ", $Max93[0], "\n";

printf ("++ Anzahl 19991-Dateien: %-10d\n", $Counter9l);
printf ("++ Anzahl 19993-Dateien: %-10d\n", $Counter93);
printf ("++ Anzahl zu verarbeitender Dateien: %-10d\n", <«

$AnzahlNetflowDateien);

if ($Counter91 != $Counter93) {
print "FEHLER!!! --> Anzahl 19991- und 19993-Dateien nicht gleich «
.
exit;
} else {
print "++ --> Anzahl O0K\n";
}
if (($Min91[0] != $Min93[0]1) || ($Max91[0] !'= $Max93[0])) {
print "FEHLER!!! --> Zeitbereich 19991 und 19993 nicht gleich!";
exit;
} else {
print "++ --> Bereiche:\n++ ", $Min93[2], " bis ", $Max91 <«
[2], "\n";
}

return @FilesToProcess;

738

740

742

744

746

748

752

754

756

758

760

762

764

766

768

770

772

B.4 compare_dumps_to_flows.pl

101

call: getEintraegeZeile2($zeile);
sub getEintraegeZeile2 {
my ($Zeile) = @_;

chomp ($Zeile);
@EintraegeZeile = split(/;;;\s*/, $Zeile);

#print $EintraegeZeile[0], "\n";
#print $EintraegeZeile[1], "\n";
#print $EintraegeZeile[2], "\n";
#print $EintraegeZeile[3], "\n";
#print $EintraegeZeile[4], "\n";

$Zeit = $EintraegeZeile [0];

$Zeit = substr($Zeit, 0, 8);

#print "++ Zeit: ", $Zeit, "\n";
$FormattedTime = $Date . " " . $Zeit;

WINTER TIME --> SUMMER TIME

TCPDUMP: UTC!!!

$Time = dmyhms2epochseconds ($FormattedTime) ;

#$Time = dmyhms2epochseconds ($FormattedTime) - 3600;

@TempArray = split(/\./, $EintraegeZeile[1]);

$SourcelIP $TempArray [0] . "." . $TempArray[1] . ".
[2] . "." . $TempArray[3];

$SourcePort = $TempArray [4];

@TempArray = split(/\./, $EintraegeZeile[2]);
$DestinationIP = $TempArray[0] . "." . $TempArray[1]

$TempArray[2] . "." . $TempArrayl[3];
$DestinationPort = $TempArray[4];

$AnzahlBytes = $EintraegeZeile [3];

n

$TempArray <

R

102 CHAPTER B. Source Code

10

12

14

16

18

20

22

24

26

28

Appendix C

Configuration Files

C.1 IRC test server configuration files

To connect two Undernet IRC servers to each other (one server acts as Hub,
the other as Leaf) use the following two (tested) configuration files. For more
detailed explanation of the different “lines” please look at the documentation
of the Undernet IRC server (ircu) which can be found on [20].

C.1.1 Configuration file for the Hub

HHAAHBRHABHABRABRABHABRARRRBRR BB R R RARRR BB R SRS B
!!! Replace with the corresponding values !!!
#
pc-irc-hub.ethz.ch (A.B.C.D)
pc-irc-leaf.ethz.ch (E.F.G.H)
xy.motd
HAARHBRAHBARHHAARHBRBHBAR A B AR BB BABHBAR B R AR A HBRHHH
[M:1linel
M:pc-irc-hub.ethz.ch:A.B.C.D:IRC-Testserver::97

[A:line]
:IRC-Testserver:Administered by xy:Visit Homepage

=

[Y:1lines]

Servers (Hubs)
:90:90:300:1:9000000
Servers (Leafs)
:80:90:300:0:9000000
Clients
:1:90:0:400:160000

<o < H < H

+*

[I:1ines]
allow everyone to connect

103

30

32

34

36

38

40

42

44

46

48

52

54

58

60

62

64

66

68

70

72

10

12

104 CHAPTER C. Configuration Files

[T:lines]
T:1:xy.motd

[U:lines]

[K:lines]

[C:lines]
C:E.F.G.H:irchub:pc-irc-leaf.ethz.ch:4400:80

[H:lines]

[D:1lines]

[0:1lines]

o:*Q@*.ch:irctest:oppy::1

[P:lines]

Clients

P:::C:6667

Servers

P:::5:4400

[Q:1lines]

[F:lines]

F:CRYPT_OPER_PASSWORD:FALSE
F:HIS_SERVERNAME:"pc-irc-hub.ethz.ch"
F:HIS_SERVERINFO:"The IRC-Testserver (Undernet Serversoftware)"
F:HIS_URLSERVERS:"http://www.undernet.org/servers.php"
F:NETWORK:"Testnetwork"
F:URL_CLIENTS:"ftp://ftp.undernet.org/pub/irc/clients"
C.1.2 Configuration file for the Leaf
HAERRHHHHHHHHHHBBBBBBRAR AR AR AR RRARRRRHRR AR #

!!! Replace with the corresponding values !!!

#

pc-irc-hub.ethz.ch (A.B.C.D)

pc-irc-leaf.ethz.ch (E.F.G.H)

xy.motd
HHBAHHBARHBAR BB AR BB BARHBARH B AR A B BARHBRB R B AR HBRRH

[M:1line]

M:pc-irc-leaf.ethz.ch:E.F.G.H:IRC-Testserver::66

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

62

64

66

68

70

72

C.1 IRC test server configuration files

105

[A:linel
:IRC-Testserver:Administered by xy:Visit Homepage

=

[Y:1lines]

Servers (Hubs)
:90:90:300:1:9000000
Servers (Leafs)
:80:90:300:0:9000000
Clients
:1:90:0:400:160000

<o < H < H

**

[I:1ines]
allow everyone to connect
Tik:ok::d

+*

[T:lines]
T:1:xy.motd

[U:1lines]

[K:lines]

=+

[C:lines]
C:A.B.C.D:irchub:pc-irc-hub.ethz.ch:4400:90

[H:lines]

[D:lines]

[0:1lines]
:*Q@*.ch:irctest:oppy::1

o #

[P:1lines]

Clients
:::C:6667

Servers
:::8:4400

UOH U OH H

[Q:1lines]

[F:1lines]

:CRYPT_OPER_PASSWORD : FALSE
:HIS_SERVERNAME:"pc-irc-leaf.ethz.ch"

:HIS_SERVERINFO:"The IRC-Testserver (Undernet Serversoftware)"
:HIS_URLSERVERS:"http://www.undernet.org/servers.php"
:NETWORK:"Testnetwork"
:URL_CLIENTS:"ftp://ftp.undernet.org/pub/irc/clients"

Lo I e e Ble B I -5

106 CHAPTER C. Configuration Files

Bibliography

1]

2]

3]

[10]

[11]

[12]

DDoSVazx.
http://www.tik.ee.ethz.ch/“ddosvax/.

LEO — Link Everything Online.
http://dict.leo.org/.

SWITCH — The Swiss Education and Research Network.
http://www.switch.ch/.

J. Oikarinen and D. Reed. Internet Relay Chat Protocol, RFC 1459.
May 1993.

C. Kalt. Internet Relay Chat: Architecture, RFC 2810. April 2000.

C. Kalt. Internet Relay Chat: Channel Management, RFC 2811. April
2000.

C. Kalt. Internet Relay Chat: Client Protocol, RFC 2812. April 2000.
C. Kalt. Internet Relay Chat: Server Protocol, RFC 2813. April 2000.

IRChelp.org. Internet Relay Chat (IRC) Help, 2003.
http://www.irchelp.org/.

Kai Seidler. Internet Relay Chat — Eine mdglichst kurze Einfiihrung,
2003.
http://irc.fu-berlin.de/einfuehrung.html.

Daniel Stenberg. History of IRC (Internet Relay Chat), September
2002.
http://daniel .haxx.se/irchistory.html.

The Undernet IRC network.
http://www.undernet.org.

107

http://www.tik.ee.ethz.ch/~ddosvax/
http://dict.leo.org/
http://www.switch.ch/
http://www.irchelp.org/
http://irc.fu-berlin.de/einfuehrung.html
http://daniel.haxx.se/irchistory.html
http://www.undernet.org

108 BIBLIOGRAPHY

[13] Jarkko Oikarinen. IRC History by Jarkko Oikarinen.
http://www.irc.org/history_docs/jarkko.html.

[14] Klaus Zeuge, Troy Rollo, Ben Mesander. The Client-To-Client Protocol
(CTCP), 1994.
http://irchelp.org/irchelp/rfc/ctcpspec.html.

[15] Troy Rollo. A description of the DCC' protocol.
http://irchelp.org/irchelp/rfc/dccspec.html.

[16] Undernet User Committee. CTCP and DCC Frequently Asked Ques-
tions, 1997.
http://www.user-com.undernet.org/documents/ctcpdcc.html.

[17] Michael Sandrof. ircIl project.
http://www.eterna.com.au/ircii/.

[18] Khaled Mardam-Bey. mIRC — An Internet Relay Chat program.
http://www.mirc.com.

[19] The Mozilla Organization. Mozilla home page.
http://www.mozilla.org.

[20] Undernet Coder Committee. Undernet Ircd Development.
http://coder-com.undernet.org.

[21] Undernet Coder Committee. Undernet P10 Protocol and Interface
Specification.
http://cvs.undernet.org/viewcvs.py/undernet-ircu/ircu2.10/
doc/p10.html?rev=1.6.

22] EverythingIRC. SearchIRC Network overview, 2003.
http://searchirc.com.

[23] Andreas Gelhausen, netsplit.de. Summary of IRC networks, 2003.
http://irc.netsplit.de/networks/.

[24] T. Dierks, C. Allen. The TLS Protocol, RFC 2246. January 1999.

[25] Steve Gibson. The Strange Tale of the Denial of Service Attacks Against
GRC.COM, May 2001.
http://grc.com/dos/grcdos.htm.

26] Kevin J. Houle (CERT/CC) and George M. Weaver (CERT/CC).
Trends in Denial of Service Attack Technology, October 2001.
http://www.cert.org/archive/pdf/DoS_trends.pdf.

http://www.irc.org/history_docs/jarkko.html
http://irchelp.org/irchelp/rfc/ctcpspec.html
http://irchelp.org/irchelp/rfc/dccspec.html
http://www.user-com.undernet.org/documents/ctcpdcc.html
http://www.eterna.com.au/ircii/
http://www.mirc.com
http://www.mozilla.org
http://coder-com.undernet.org
http://cvs.undernet.org/viewcvs.py/undernet-ircu/ircu2.10/doc/p10.html?rev=1.6
http://cvs.undernet.org/viewcvs.py/undernet-ircu/ircu2.10/doc/p10.html?rev=1.6
http://searchirc.com
http://irc.netsplit.de/networks/
http://grc.com/dos/grcdos.htm
http://www.cert.org/archive/pdf/DoS_trends.pdf

BIBLIOGRAPHY 109

[27] Rocky K. C. Chang. Defending against Flooding-Based Distributed
Denial-of-Service Attacks: A Tutorial. October 2002.

[28] ¢’t 2004, Heft 5. Ferngesteuerte Spam-Armeen. Heise Zeitschriften Ver-
lag GmbH & Co, Februar 2004.

[29] Federal Computer Incident Response Center (FedCIRC). BotNets: De-
tection and Mitigation, February 2003.
http://www.fedcirc.gov/library/documents/botNetsv32.doc.

[30] Ramneek Puri. Bots & Botnet: An Overview, August 2003.
http://www.sans.org/rr/papers/36/1299.pdf.

[31] Trojan list.
http://www.simovits.com/trojans/trojans.html.

[32] “hypnosis”. Analysis of DDoS IRC bots.
http://www.netsys.com/library/papers/ddos-ircbot.txt.

[33] Wong Natepetcharachai and Bo Zhang. DDoS Attack Tools and Inci-
dents.

http://www-scf.usc.edu/ "bozhang/personal/PDFs/ddos.pdf.

[34] David Moore, Geoffrey M. Voelker and Stefan Savage. Inferring
Internet Denial-of-Service Activity, 2001.
http://www.caida.org/outreach/papers/2001/BackScatter/
usenixsecurityO1l.pdf.

[35] Allen Householder (CERT/CC), Art Manion (CERT/CC), Linda Pe-
sante (CERT/CC), George M. Weaver (CERT/CC). Managing the
Threat of Denial-of-Service Attacks, October 2001.
http://www.cert.org/archive/pdf/Managing_DoS.pdf.

[36] James Etherton. Internet Relay Chat — Pros, Cons and Those Pesky
Bots, April 2001.
http://www.giac.org/practical/gsec/James_Etherton_GSEC.pdf.

[37] Thomas Diibendorfer and Arno Wagner. Past and Future Internet Dis-
asters: DDoS attacks, April 2003.
http://www.tik.ee.ethz.ch/“ddosvax/talks/ddos_td.pdf.

[38] Corey Merchant and Joe Stewart. Detecting and Containing IRC-
Controlled Trojans: When Firewalls, AV, and IDS Are Not Enough,
July 2002.
http://www.securityfocus.com/infocus/1605.

http://www.fedcirc.gov/library/documents/botNetsv32.doc
http://www.sans.org/rr/papers/36/1299.pdf
http://www.simovits.com/trojans/trojans.html
http://www.netsys.com/library/papers/ddos-ircbot.txt
http://www-scf.usc.edu/~bozhang/personal/PDFs/ddos.pdf
http://www.caida.org/outreach/papers/2001/BackScatter/usenixsecurity01.pdf
http://www.caida.org/outreach/papers/2001/BackScatter/usenixsecurity01.pdf
http://www.cert.org/archive/pdf/Managing_DoS.pdf
http://www.giac.org/practical/gsec/James_Etherton_GSEC.pdf
http://www.tik.ee.ethz.ch/~ddosvax/talks/ddos_td.pdf
http://www.securityfocus.com/infocus/1605

110 BIBLIOGRAPHY

[39] Posted by “tj”. Dangers in BotNets?, February 2003.
http://www.ndnn.org/blog/archives/2003_02.html.

[40] By “Curve”. Just What Is a Botnet?, 2002.
http://zine.dal.net/previousissues/issue22/botnet.php.

[41] Swatlt.Org. Bots, Drones, Zombies, Worms and other things that go
bump in the night, 2003.
http://swatit.org/bots/.

[42] Swatlt.Org. Gallery of BotNet Observation Screen Captures, 2003.
http://swatit.org/bots/gallery.html.

[43] NetFlow Overview.
http://www.cisco.com/en/US/products/sw/iosswrel/ps1831/
products_configuration_guide_chapter09186a00800ca6cb.html.

[44] Philipp Jardas. Bachelor’s Thesis: P2P Filesharing Systems: Real
World NetFlow Traffic Characterization. February 2004.

[45] tepdump.
http://www.tcpdump.org/.

[46] Ethereal.
http://www.ethereal.com/.

[47] PlanetLab.
http://www.planet-lab.org/.

48] A wery simple bot: HelloBot.
http://www.wholok.com/irc/.

[49] V. Jacobson, R. Braden, D. Borman. TCP FEztensions for High Perfor-
mance, RFC 1323. May 1992.

[50] Project Gutenbery.
http://www.gutenberg.org/.

http://www.ndnn.org/blog/archives/2003_02.html
http://zine.dal.net/previousissues/issue22/botnet.php
http://swatit.org/bots/
http://swatit.org/bots/gallery.html
http://www.cisco.com/en/US/products/sw/iosswrel/ps1831/products_configuration_guide_chapter09186a00800ca6cb.html
http://www.cisco.com/en/US/products/sw/iosswrel/ps1831/products_configuration_guide_chapter09186a00800ca6cb.html
http://www.tcpdump.org/
http://www.ethereal.com/
http://www.planet-lab.org/
http://www.wholok.com/irc/
http://www.gutenberg.org/

	Abstract
	Preface
	Contents
	List of Figures
	List of Tables
	1 Introduction and Problem Description
	1.1 Internet Relay Chat and DDoS
	1.2 The DDoSVax project
	1.2.1 Motivation and objectives

	1.3 Master's Thesis task

	2 Internet Relay Chat Survey
	2.1 Introduction
	2.1.1 History of the IRC protocol

	2.2 Components and architecture
	2.2.1 Servers
	2.2.2 Clients
	2.2.3 Channels

	2.3 Concepts and communication paths
	2.4 Protocol
	2.4.1 Messages
	2.4.2 Client-specific protocols

	2.5 IRC software
	2.5.1 IRC clients
	2.5.2 IRC servers

	2.6 Statistics of IRC networks
	2.7 Problems of the IRC protocol
	2.7.1 Problems due to the architecture of the protocol
	2.7.2 Security considerations

	3 IRC-based DDoS Attack Survey
	3.1 Introduction
	3.2 DoS and DDoS attacks
	3.3 IRC-based DDoS attacks
	3.3.1 IRC bots and botnets
	3.3.2 Host infection and bot control process
	3.3.3 Some known DDoS bots

	4 Monitoring IRC Traffic
	4.1 Flow-level Internet traffic data (Cisco NetFlow)
	4.2 Network configuration
	4.3 Analysis of NetFlow data over time
	4.3.1 Two-day analysis of IRC traffic received and sent by an IRC server

	4.4 Analysis of full IRC network traffic
	4.5 Scenarios
	4.5.1 Scenario I
	4.5.2 Scenario II
	4.5.3 Bot software

	5 IRC Attack Preparation Detection Signatures
	5.1 Ideas for detecting bots
	5.1.1 Outline of a possible botnet detection algorithm using analysing NetFlow data

	5.2 Detection of inactive connections
	5.2.1 Ping and Pong signatures
	5.2.2 The Ping-Pong Algorithm
	5.2.3 Examples of Ping-Pong traffic
	5.2.4 Difficulties and drawbacks

	5.3 Countermeasures

	6 Results and Evaluation of the Algorithm
	6.1 Evaluation of the Ping-Pong algorithm
	6.2 Quality of the NetFlow data used for the evaluation

	7 Summary
	7.1 Conclusions
	7.2 Outlook

	A A Short Chat
	B Source Code
	B.1 chatter.pl
	B.2 slave.pl
	B.3 ircsniffer.pl
	B.4 compare_dumps_to_flows.pl

	C Configuration Files
	C.1 IRC test server configuration files
	C.1.1 Configuration file for the Hub
	C.1.2 Configuration file for the Leaf

	Bibliography

