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Abstract
Embedded systems like an IPAQ handheld keep getting more
complex from release to release. In the last updates they are
augmented with improved video and audio playback capabilities. As
a consequence the computation demand on the device is massively
increased and the main CPU needs to be supplemented by a
video-decoder ASIC.

Alternatively to such an ASIC a dynamically reconfigurable
Field-Programmable Gate Array (FPGA) could be used. An FPGA
is reconfigurable while the rest of a running system is unaffected.
The device provides an flexible and powerful architecture for
implementing computation intensive applications. Including an
FPGA it is even possible to update an handheld with a forthcoming
video-codec at a later date.

In this theses I show an implementation approach of an het-
erogeneous systems consisting of an IPAQ and an FPGA-based
hardware extension. As a mathematical foundation I have used the
Kahn Process Network which is very suitable for parallelism and
reusability in signal processing and media applications.

I explain in the text the steps it tooks to design and imple-
ment the current execution unit for Kahn hardware tasks, to
upload new configurations to the extension board, to reconfigure the
system triggered by an software event from the IPAQ and finally to
implement an application and run it in the framework.
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Preamble

This text is the report of my master thesis which I have done at the Computer En-
gineering and Networks Laboratory of the ETH Zürich. In this memorandum the
theoretical and practical work during the last 6 month is documented. The back-
ground idea when writing this report was a reusability of my work in further thesis.

Chapter 1 of this report offers an insight into the motivation and a brief overview
of the thesis topics. The goals which should be finally achieved are mentioned at the
end of this chapter.

A comparison of our approach using a Kahn Process Network for modelling hard-
ware task with related works and working systems is done in Chapter 2.

The Kahn Process Network is the used model of computation which is introduced in
chapter 3. A short introduction to other possible models is done in this chapter too.
Finally there is a brief comparison between different dataflow languages at the end
of this chapter.

A «Big Picture» of the architecture, i.e. the implemented system and the used com-
ponents is given in chapter 4.

Chapter 5 explains the detailed implementation of the environment and running
system. Most of the concepts and implementation know-how are documented here.

Some sample cores for the Kahn Task Execution Framework have been implemen-
tated and their performance is elaborated in Chapter 6.

The status of this thesis and possible future works are described in Chapter 7.

Finally the appendix gives several additional background information to the system
development.
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1
Introduction

1.1 Introduction and Motivation

Communication embedded systems, which occasionally have a high computation
demand (e.g. for audio-/video processing, cryptography or DSP), are heterogeneous
devices. They are traditionally equipped with a instruction set processor (ISP) and
a set of hard-wired ASICs such as an mpeg2-decoder. Alternatively these ASICs
could be replaced by a single Field-Programmable Gate Array (FPGA).

FPGA-based designs become popular because of their reconfigurable capabil-
ity and short design-time which the old design style, like ASICs cannot offer.
Instead of using FPGAs simply as ASICs replacements, treating these reconfig-
urable devices as a dynamic resource provides an even more flexible and powerful
approach for implementing computation intensive applications. Furthermore, some
of the newer FPGAs provide partial reconfiguration where only one part of the
FPGA is reconfigured while the rest remains unaffected and operating. Such a
system is comparable to a multi-processor architecture, which executes different
processes truly in parallel.

It is now quite common for the design of embedded applications to use a model of
computation to provide the programmer with the possibility to check the correct-
ness of the application in terms of functionality and timing. Kahn process networks
(KPNs) are a popular modeling technique for media- and signal-processing appli-
cations. A KPN makes parallelism and communication in an application explicit
and thus are very suitable for architectures which can exploit parallelism such
as FPGAs. Furthermore, KPNs have a straightforward, unambiguous semantics
and they are fully compositional. Therefor, KPNs facilitate the reuse of application
models, which is becoming increasingly important for reducing the design time of
new products and services.
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Chapter 1: Introduction

In a FPGA-based system with partial and dynamic reconfiguration it is possi-
ble to execute some arbitrarily large applications on a smaller device by splitting
them up into smaller pieces and using time-multiplexing. This idea has recently
been addressed by [28],[21] and [30]. But these implementations use either a static
scenario, where the specified design is compiled by an off-line tool-flow, or they do
not rely on a specific model of computation.

This work targets an implementation of a reconfigurable system with KPN as
the underlying model of computation. The envisioned system should be able, in
contrast to existing implementation, to

• parse the abstract KPN description of the application at runtime,

• execute the pre-compiled processes of the application using dynamic reconfig-
uration and to

• remain the properties of the KPNs.

1.1.1 Kahn Process Networks

P5

P4

P3

P2P1

Figure 1-1
An example of a KPN

A KPN is represented as a collection of cooperating processes that communicate
via streams of data (see figure 1-1). The processes can be executed in parallel but
internally they are assumed to be sequential. The communication to the fifos is done
by blocking reads and non-blocking writes. The model therefor implies unbounded
fifos. An important restriction of a Kahn process is that it can not test an input
queue on the availability of data without blocking. With this restriction, the output
sequence generated by the KPN is deterministic and independent of the execution
order (schedule) of the processes.

KPNs assume unbounded fifos. However, there exist classes of KPNs, which can be
executed with a finite amount of memory. One idea, described in [3] and [13], is to
use blocking writes to full fifos and a data-driven scheduling. A new problem arises
with this approach. One has to find the proper initial sizes for the fifos for an efficient
execution of the KPN. If some fifos are chosen too small, the execution of the KPN
will end in an artificial deadlock. Since the amount of memory required for fifos
cannot be decided analytically, a scheduler must provide the means to dynamically
increase channel capacity where needed.
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1.1.2 Runtime Environment

Figure 1-2
Envisioned Runtime System

Figure 1-2 shows an overview of the runtime environment. It consists of two parts:

Virtual Machine: The Virtual Machine is an interpreter for the description of the
process network. It can load and unload applications. Furthermore it controls
the underlying FPGA operating system.

FPGA OS: The FPGA Operating System has mainly three tasks:

• Allocation of memory for the channels.

• Scheduling of the KPN.

• Loading of task binaries.

• (Re-)configuration of the FPGA.

1.1.3 FPGA internals

To execute a Kahn Process Network on a FPGA, there is needed a well partitioned
framework, which:

• provides a task slot with a defined interface for the Kahn Processes,

• maps the in- and output ports of the processes to the right memory locations,

• handles the communication with the scheduler and

• provides a mechanism to save and load the context of the processes.
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Chapter 1: Introduction

1.2 Thesis Assignment

The follow section includes the assignments for this master thesis:

1.2.1 General Motivation

Embedded systems – like «handhelds» and «mobile phones» – are usually hetroge-
nous systems. In the last years the demand for high computation capabilities are
still rising (e.g. for audio- or video processing, image compression or cryptography).
Traditionally these requirement are fullfilled with an integrated ASIC. Over the
past years, many custom computing machines have been presented that achieve
high performance by coupling general-purpose CPUs with field-programmable logic.
In the area of portable or smart reconfigurable devices performance, power effi-
ciency and flexibility are the key requirements. Flexibility is required in order to
distribute new applications and services on multiple heterogeneous platforms. As
a consequence we need to support reconfigurability and to reduce the device de-
pendence. There is a trade-off between flexibility and performance, since they are
conflicting criteria.

Flexibility is achieved by virtualizing hard- and software components which could
be done on different levels.
Following a model-based design approach, an application is explicitly specified by
a directed graph where the nodes are tasks, which represent computations and the
arcs represent communication. The tasks are arbitrary subprograms and are speci-
fied in a conventional programming language such as C or VHDL, but the interac-
tion between tasks is defined by a precise semantics. We call the language defining
this interaction the coordination language.

Examples of coordination languages are process networks or synchronous dataflow
(SDF) graphs. In model-based design models of computation are frequently used to
specify applications.

Abstraction Level Languages Elements
Coordination & Communication Process Networks, SDF Network Graphs, Tasks
Function of Tasks VHDL, C Instructions, Gates

Table 1-1: Two Levels of Abstraction for an Application

A language can be either interpreted or compiled. Our approach is to virtualize and
interpret only the coordination language while the tasks function is compiled. There-
fore, an application is specified in two parts.

The first one describes the coordination, i.e. the communication and the synchro-
nization between tasks. The second part is the set of pre-compiled tasks, e.g. in the
form of complete configuration bitstreams for FPGAs.

Our target architecture is a reconfigurable embedded node, including a CPU (IPAQ)
and reconfigurable logic (BTNODEFPGA). We use the Kahn Process Network as a
coordination language and the task a implemented in VHDL and Verilog.
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1.2. Thesis Assignment

Problem Task (german)

1. Erstellen Sie in den ersten zwei Wochen zusammen mit Ihrem Betreuer einen
realistischen Zeitplan, welcher Meilensteine festlegt.

2. Arbeiten Sie sich in die Grundlagen von FPGAs und VHDL ein und machen Sie
sich mit der Entwicklungsumgebung vertraut. Implementieren Sie als Übung
eine einfache Testschaltung.

3. Lesen Sie sich in die Thematik von KPNs und Scheduling von KPNs ein.

4. Erstellen Sie ein Konzept für ein FPGA-KPN-Framework. Definieren und
dokumentieren Sie genau die Schnittstellen zwischen den einzelnen Kompo-
nenten.

5. Erstellen Sie einen Proof of Concept mit dem zur Verfügung stehendem FPGA
Modul. Als erste Implementierung sollte ein einfaches Design angestrebt wer-
den, mit nur einem Taskslot und ohne partielles Rekoniguieren.

6. Implementieren Sie eine kleine Demoanwendung, mit welcher Sie das Funk-
tionieren des Frameworks vorzeigen können.

7. Dokumentieren Sie Ihre Arbeit sorgfältig mit einem Vortrag, einer kleinen
Demonstration, sowie mit einem Schlussbericht.

Durchführung der Diplomarbeit

Allgemeines

• Der Verlauf des Projektes Diplomarbeit soll laufend anhand des Projektplanes
und der Meilensteine evaluiert werden. Unvorhergesehene Probleme beim
eingeschlagenen Lösungsweg können Änderungen am Projektplan erforder-
lich machen. Diese sollen dokumentiert werden.

• Sie verfügen über PC’s mit Linux/Windows für Softwareentwicklung und Test.
Falls damit Probleme auftauchen wenden Sie sich an Ihren Betreuer.

• Stellen Sie Ihr Projekt zu Beginn der Diplomarbeit in einem Kurzvortrag vor
und präsentieren Sie die erarbeiteten Resultate am Schluss im Rahmen des
Institutskolloquiums Ende Semester.

• Besprechen Sie Ihr Vorgehen regelmässig mit Ihren Betreuern.

Abgabe

• Geben Sie zwei unterschriebene Exemplare des Berichtes spätestens am 30.
April 2004 dem betreuenden Assistenten oder seinen Stellvertreter ab. Diese
Aufgabenstellung soll vorne im Bericht eingefügt werden.

• Räumen Sie Ihre Rechnerkonten soweit auf, dass nur noch die relevanten
Source- und Objectfiles, Konfigurationsfiles, benötigten Directorystrukturen
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usw. bestehen bleiben. Der Programmcode sowie die Filestruktur soll ausre-
ichen dokumentiert sein. Eine spätere Anschlussarbeit soll auf dem hinter-
lassenen Stand aufbauen können.
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2
Related Work

2.1 Overview – Approaches to Virtualize Hardware

During the implementation of the Kahn Process Network execution framework an
«introduction and survey of hardware virtualization» was written by C. Plessl [25] –
a Ph.D. student of the Institute of Computer Engineering and Networks Laboratory.
The paper covers many aspects of this «related work» chapter for completeness we
like to resume the most important considerations.

The paper presents an introduction to the different methods of hardware virtual-
ization on reconfigurable devices. The approaches can be classified in the following
groups: temporal partitioning, virtualized execution and virtual machine.

A temporal partitioning splits an application into smaller parts, so that they can
be mapped on a reconfigurable device with insufficient hardware capacity. The
splitted parts are scheduled and executed sequentially.

Virtual execution allows a certain level of device-independence. An application is
mapped to a programming model. This model defines some atomic units of
computation — the tasks, which are «compiled» for a determined device family.
An application is described by a collection of such tasks and their interactions
(communication channels). Several tasks may run concurrently on the same
device and the execution is handled by a scheduling algorithm in most of the
cases.

The abstraction of a virtual machine achieves an even higher level of device-
independence as the approach of virtual execution. Instead of mapping an ap-
plication to a specific architecture, the application is mapped to an abstract
computing architecture. For execution this abstract architecture has to be
remapped or interpreted in analogy to the Java virtual machine.
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The disadvantage of totally virtualizing an FPGA is the overhead and performance
loss, arisen from the virtualization on the level of gates and interconnections. The
Kahn Process Network execution framework is a member of the temporal partition-
ing and virtual execution group and so we like to compare our approach and imple-
mentation with papers and implementations of these groups.

2.2 Coordination Languages

Application models in embedded systems often use a coordination language which
are semantically well-defined and usually more restricted than a high level lan-
guage. An advantage of such a coordination language is, that they often allow a
formal analysis of system properties (absence of deadlocks, maximum throughput
or optimal scheduling).
In the majority of the cases coordination languages are used in combination with
implementation languages. Large applications are splitted in smaller tasks – the
computation objects. The interaction between these tasks is modelled using the co-
ordination language. The functionality of the tasks is defined in an implementation
language like C or VHDL.
The idea of this approach is to decompose an application into communication chan-
nels and tasks which may run concurrently – as an example – on a reconfigurable
architecture. The tasks are implemented by conventional synthesis and design im-
plementation tools. The communication channels are implemented by the frame-
work using buffers, I/O ports and so on.

2.3 Comparable Approaches to our Design

Compaan & Laura Streaming applications are often written as a sequential pro-
gram for example in C or MATLAB. They are quickly written and well under-
stood but difficult to map to hardware devices or multi-chip systems. In the
approach of the Leiden University [18] and [37] a two-step compilation flow
will be executed. This flow transforms sequential programs to a parallel sys-
tem which is easier to map on hardware.
The Campaan tool-chain is a compiler which transforms a sequential MAT-
LAB code automatically to a parallel application model – to a Kahn Process
Network as presented in chapter 3.2.
Laura transforms the platform independent KPN to a network of virtual pro-
cessors. This network is mapped with a library of IP cores to a network of
synthesizable processors written in a HDL (like VHDL, Verilog or SystemC).
A transformation of three applications (e.g. a 2D-DCT) to an FPGA imple-
mentation (without reconfiguration) was done in [37]. Both the coordination
language and the function of the tasks are compiled into one piece of pro-
gram. Further the program is mapped to a relative huge FPGA, a Xilinx
VIRTEXTM II -6000.
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SCORE The SCORE [9] model developed by Caspi et al. provides both a speci-
fication model and a virtualized execution model for streaming applications.
SCORE bases on a formally defined compute model.

Lee’s Synchronous Dataflow (SDF) [20] has had a heavy influence to SCORE.
Lee’s SDFis restricted to static rates and static flow graphs, suitable for sys-
tems modelled completely at compile-time. Later work on the SDF-model such
as Buck’s Boolean-Controlled Dataflow [8], supports some dynamic program-
ming constructs, but still with a compile-time focus. SCORE expands on these
models to handle more dynamic characteristics such as a dynamic flow rates
and graph evolution, as well as variable hardware resource availabilities.

An application in SCORE is defined as a graph of computation nodes that are
connected by unbounded FIFOs. The function of the tasks is defined in a RTL
language with a C-like notation.

So far there is no physical device which directly implements a SCORE appli-
cation model, thus SCORE has been evaluated by simulation only.

The Embedded Machine The use of pre-compiled tasks and an interpreted coor-
dination language has been presented for control-flow applications on a CPU
based embedded machine by Henzinger et al. in [14]. For reconfigurable sys-
tems on FPGAs this is a new field of research.

Reconfigurable HW operating systems Reconfigurable hardware operating
systems (OS) use reconfigurable devices as dynamic resources which are
managed at runtime. These approaches introduce tasks or threads as basic
units of computation – similar as a software operation system – and provides
various communication and synchronisation mechanisms.

An user interaction or the runtime system itself places and schedules tasks
on the reconfigurable device in so called task slots (multiple slots allowing a
multitasking system). Such an operating system provides a «minimal» pro-
gramming model although being less restrictive than coordination languages.

The Problems to be solved in such a OS are: (a) dynamic creation of multiple
tasks in reconfigurable hardware, (b) run-time re-locatable tasks, (c) dynamic
partial reconfiguration of individual task slots without affecting other running
HW tasks, (d) broken interconnection networks in multi-tasking FPGAs and
finally (e) needed reconfiguration time for task switches.

Functional prototypes that demonstrate multitasking on todays FPGA tech-
nologies were described in IMECs T-ReCS [21] [23] and of TIK,
ETH Zürich [28] [27].

The mentioned related work has contributed to our goal of developing and imple-
menting a dynamic reconfigurable run-time system. While one group uses a specific
coordination language as a model of computation, but only in a static scenario with-
out reconfiguration, another group is working towards a general operation system,
which does not investigate a specific model for the optimised execution of streaming
based applications.
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Our proposed system investigates both the dynamic reconfigurability and a specific
coordination language for streaming application.
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3
Model of Computation

3.1 Dataflow Languages

Stephen Edwards gives in his book [11] an introduction to dataflow languages:

Dataflow languages describe systems of procedural processes that run con-
currently and communicate through queues. Although clumsy for general
applications, dataflow languages are a perfect fit for signal-processing algo-
rithms, which use vast quantities of arithmetic derived form linear system
theory to decode, compress, of filter data streams that represent periodic sys-
tems of continuously-changing values such as sound or video.
Dataflow semantics are natural for expressing the block diagrams typically
used to describe signal-processing algorithms, and their regularity makes
dataflow implementations very efficient because otherwise costly runtime
scheduling decisions can be made at compile time, even in systems containing
multiple sampling rates.

3.2 Kahn Process Networks - KPN

Gilles Kahn has developed in 1974 a simple language for parallel processing with a
theoretical basis for dataflow computation.
A system in Kahns language is a set of sequential processes running concurrently
and communicate through FIFO queues which are single sender and single receiver
communication channels. A process that tries to read from an empty queue waits
until data is available and cannot ask whether data is available before reading.
Kahn showed these restrictions make these systems deterministic. That is, the se-
quence of messages that pass through each queue does not depend on the speed of
the processes or the order in which they execute.
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Kahn Process Network are important for dataflow computation theory because of
their deterministic concurrency, but their scheduling overhead makes them imprac-
tical. Because it can do nearly anything when it is running, a Kahn network de-
mands a flexible compile-time analysis and permit schedulers with less overhead.

3.2.1 Determinism

All Kahn systems have the same result regardless of the decisions made by a sched-
uler because they are deterministic. This is because in KPN the interprocess com-
munication is restricted to single direction FIFO queues which have a blocking read
semantics.

The proof of determinism will be explained in the following: The sequence of data
values which each process writes to its output ports is only a function of the sequence
of data values arriving on its input ports. Mainly, the state of each process is only
affected by the sequence of values it reads, and not on their arrival time.

As a thought a Kahn task executes in two phases:

1. In the first phase local variables are observed and changed and the values are
written out to the output queues. During this phase the other processes don’t
influence the running process. As a consequence of this no shared variables
exist, no other process can read or write local variables of the running task.
The data output of a process is completely determined by the task state at the
beginning of the phase and the state of the process at the end of the mentioned
phase.

2. New data items are read in the second phase. The items are or aren’t available
when the process asserts a read operation, but in the Kahn model the tasks
aren’t allowed to communicate if they like to read new data or if the like to
wait until a new data are available.

In the Kahn Process Network a FIFO – each FIFO – is exactly read and written by
two processes.

3.2.2 Execution

There is always a correct schedule for the KPN. A challenge for the execution is to
limit the needed memory consumption. Because non compile-time schedule can be
done – the processes are allowed to communicate freely at runtime – a Kahn Process
Network needs a dynamic scheduler. Generally, it is difficult to control the produced
and received data tokens. There are two traditional approaches to dynamic dataflow
scheduling. As a drawback they cause an unnecessary increase of data tokens.

A data-driven scheduling runs all processes that have enough data available. Un-
fortunately, this policy can produce tokens faster than they are consumed.

The data-driven system in figure 3-1 has the following problem: The processes in
both loops run constantly under a data-driven policy, but nothing regulates the rel-
ative rates of the two loops. The output tokens are consumed by the «merge» node at

12



3.2. Kahn Process Networks - KPN

Figure 3-1
A system that fails under data-
driven scheduling (after Parks
[24, p.36]). The system gener-
ates an increasing sequence of
integers which could be divided
by two or three (i.e. 0, 2, 3, 4,
6, 8, 9, 10, . . . ). The series is
build by merging two streams
that are multiple of two and
three. The merge operation is
done at the «merge node» which
orders to two sequences. Any
duplicates are rejected.

different rates. Thus, tokens will accumulate indefinitely on one of the two queues
leading into the merge node.

Figure 3-2
A system that fails under
demand-driven scheduling (af-
ter Parks [24, p.42]) The system
generates two sequences: One
print statement shows all in-
tegers which could be divided
by three, the other statement
all other numbers. The loop on
the left hand side generates an
increasing sequence starting at
zero. «mod 3» is the modulo op-
erator.

Demand-driven scheduling takes an opposite approach but suffers from the same
problems. A process waiting for a token on one of its inputs prompts the scheduler to
run the system in figure 3-2. This latter system fails because both print statements
demand tokens at the same rate, yet the «mod 3» block produces them at different
rates, causing tokens to accumulate without bound on one of the queues leading to
a printing process.

Tom Parks solved in his Ph.D. thesis [24] the bounded memory scheduling problem
for a KPN by providing a scheduler that executes a system with bounded buffers if
possible. He proposes to start the execution of the network with a small capacity
size of each FIFO buffer. If during the execution phase the program has a deadlock
because of a buffer overflow, the capacity of the smallest full buffer will be increased
and the system continues. Often the dynamic scheduler contains a adaptable esti-
mation function for the initial FIFO sizes.
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3.2.3 The features of a Kahn Process Network

As a recapitulation we list the main features of a KPN:

• deterministic generation of data output
• token production is independent of the schedule
• blocking reads
• blocking writes (extension of Tom Parks)
• only one process has access to the FIFO (reading or writing)
• unidirectional FIFOs between processes
• no shared variables at all
• parallelism / communication
• the communication of a processes is internally sequential
◦ process does exclusively a reading or writing operation (mutex)

• 3 states of processes:
◦ the process can be enabled (also running or activated named)
◦ blocked by a blocking read
◦ blocked by a blocking write

• Kahn processes never terminate (endlessly execution)
• focus of KPN:
◦ streaming application (i.e. audio, video)
◦ dataflow oriented problems

3.3 Alternative Models of Computation

In this section we like to give an overview of alternative models of computation,
more precisely we limit this overview to alternative dataflow languages.

Figure 3-3
Overview of the different
dataflow languages
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3.3.1 Synchronous Dataflow - SDF

Synchronous Data Flow (SDF) is a dataflow language in which each process (called
actor) produces and consumes a fixed number of tokens per firing. This behaviour
makes an SDF communication patterns independent of the data values and al-
lows to analyse the systems completely at compile-time. As a drawback this be-
haviour limits what the language can describe, SDF is capable describing most
signal-processing algorithms, even those containing multiple sampling rates.

For practical reasons, SDF’s compile-time scheduling and expressiveness makes this
language a choice for many signal-processing algorithms and DSP implementations.

Like a Kahn process, an SDF actor has a fixed collection of input and output ports.
Each port on an SDF actor is marked with the number of tokens it produces and
consumes when the actor is fired.

Lee and Messerschmitt developed SDF at the University of California, Berkeley [20]
starting in the late 1980s. For solving schedules with loops in the SDF Graph so-
lution are shown in [4]. More information is also available at the webpage of the
ptolemy project [26].

3.3.2 Binary Data Flow - BDF

Token flow model, that extends Synchronous Dataflow Languagegraphs by extending
actors with token flow that is not known at compile time. Regular actors are simply
a special case of a more general actor, which is called a Boolean-controlled dataflow
(BDF) actor. The conditions for graphs consisting of such BDF actors to possess well-
defined cycles, a bounded-length periodic schedule, and a schedule that requires
bounded memory.

A regular dataflow actor has the property that the number of tokens produced on,
or consumed from each arc is fixed and known at “compile time”. Boolean-controlled
dataflow (BDF) actors contain the regular dataflow actors as a subset, but in ad-
dition, the number of tokens produced or consumed on an arc is permitted to be a
two-valued function of the value of a control token.

The behaviour of a conditional input for an actor is determined by a second input
for the same actor; this second input always consumes exactly one token, the control
token, on each execution. The behaviour of a conditional output for an actor may be
determined either by an input (as for conditional inputs) or by an output.

Given this definition for actors, the Kahn condition [17] is satisfied, so that all data
streams produced by the execution of BDF actors are determinate, regardless of the
order in which the actors are executed

3.3.3 Dynamic Data Flow - DDF

The predictable control flow of SDF allows for efficient scheduling, but limits the
range of applications. To support broader applications, the DDF domain uses dy-
namic (run-time) scheduling. For long runs, involving many iterations, this is more
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expensive than the static scheduling that is possible with SDF. But in exchange
for this additional cost, we get a model of computation that is multi-functional as
conventional programming languages. Supported are conditionals, data-dependent
iteration, and true recursion.

Although the DDF is, in principle, a fully general programming environment, it is
nonetheless better suited to some applications than others. Some signal processing
applications with a limited amount of run-time control are a good match. Examples
include systems with multiple modes of operation, such as modems (often implement
multiple standards), signal coding algorithms (range of compression schemes), and
asynchronous signal processing applications like sample-rate conversion.

3.4 Differences between KPN and SDF

As short comparison between the KPN and the SDF is done in the tabular 3-1.

KPN SDF

processes ←→ nodes
model contains explicitly ←→ sometimes a SDF is modelled

internal states without internal states
variable rates of tokens ←→ fixed token rate at Input & Output

flexible model ←→ limited model
branches in general ←→ no branches at all

data-driven branches ←→ no branches
dynamic scheduling ←→ static scheduling

scheduling is done at compile-time
ideal scheduling:

• memory, runtime and switches
• answer: exist a schedule at all?

not definable: ←→ predictable with analysis methods
• if a deadlock occurs (from schedule algorithms)
• memory requirements
not known internals of a task ←→ "known" internals

(not known how much abstract view
data has to be handled) read and write known

how often
which amount of data

Table 3-1: Comparison between the two models of computation: KPN and SDF
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3.5 Why we use KPN for FPGA designs

reconfigurable computation Our systems is a reconfigurable system – the func-
tionality of the FPGA could be changed at runtime. To not loose the connec-
tivity with other connected devices in the system (CPLD, FLASH, IPAQ and
SRAM) we need an – always present – communication framework.

One possibility is to do a partial reconfiguration of the FPGA, another is to
integrate the mentioned framework in each FPGA configuration.

The reconfiguration is triggered by a OS (Hardware OS, Software OS).

The FPGA could be integrated as a dynamical usable computation node.

• partial reconfiguration of FPGA
• OS
• dynamical useable

programming of embedded system Programming of an embedded system is
complex. A good programming model and style reduce the time-to-market and
the error rate of the implementation.

Such a model should offer the following features:

• rapid prototyping
• analysis of the embedded system
• compositional
• component IP based design
• «drag’n’drop» of already written or fabricated processes, easy takeover,

only communication channels to define
• already established model

KPN on cpu already done The Kahn Process Network is already elaborated for
software designs. The following items are the motivation to translate this con-
cept to an FPGA design:

• execution of complex functions
• segmentation of tasks to run the set on much smaller execution unit
• parallel execution (true parallelism)
• partial reconfiguration
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4
Architecture

4.1 Overview

Section 4.2 covers a summary over the system hardware. A first view on the Kahn
Process Networkexecution framework – the «Slotmanager» is given in sec. 4.3. The
tasks need to be loaded into the system by a loading process before the system exe-
cution starts. This loading procedure with the aid of a IPAQ is illustrated in section
4.4. The reconfiguration process 4.5 and a brief tool-flow for reconfiguration will
close this chapter.

4.2 Hardware

4.2.1 BTNodeFPGA

At the Institute of Computer Engineering and Networks Laboratory (TIK) at ETH
Zürich a small mobile sensornode has been developed - the BTNODE [7]. This node
contains a microcontroller, a flash and a Bluetooth R© module. The main application
of the microcontoller is to handle the Bluetooth module and the flash memory with
their operation modes and timings. Additionally, a part of the Bluetooth protocol
stack and some service functions are implemented on the microcontroller.

For many applications it is a fact that the BTNODE lacks of computing power.

The goal of the diploma thesis of Peter Fercher [12] was to develop an FPGA exten-
sion board for the BTNODE – The BTNODEFPGA extension. It provides more com-
puting power to the BTNODE for digital signal processing applications or streaming
algorithms with the aid of an FPGA.

The BTNODEFPGA board contains the following elements (and their behaviour):
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Figure 4-1
For the execution of a Kahn Process Network in reality we use an environment consisting of an IPAQ
and an FPGA system:
The IPAQ contains the graph dependencies and the scheduling algorithms for the KPN. The tasks are
executed either on the IPAQ (Software Task) or on the FPGA (Hardware Task). The communication
between the IPAQ and the FPGA is done by a memory mapped region in the IPAQ using the FPGA as
a «SRAM Extension». In the current design a task can only be replaced with a complete slotmanager
environment containing the new task.
The reconfiguration bitstreams must be stored in FLASH memory via the FPGA and the CPLD. The
reconfiguration process is initiated finally at the CPLD which transfers the new bitstream from FLASH
to the FPGA. The SRAM is used for task communication (FIFOs) because this memory keeps the values
during reconfiguration.

Figure 4-2
BTNODEFPGA: Overview of the
computation extension board for the
BTNODE.
On the top the Spartan II FPGA, on the
bottom the Coolrunner CPLD. The ad-
ditional memories - flash and SRAM
- are non-visible at the backside of the
PCB.
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• FPGA: Xilinx SPARTANTM II XC2S200, 200k gates, Package PQ208, Speed
Grade -5, the FPGA contains SRAM based structures, Documentation at [33]

Usually, an FPGA consumes more power than an additional microcontroller
but there are many advantages for sensor nodes:

- computation power: current FPGAs reach nearly the computation power
of ASICs for data-path oriented applications.

- flexibility: in contrast to ASIC an FPGA is reconfigurable. By using partial
reconfiguration it is possible to change only a part of the FPGA configura-
tion.

- multifunctionality: an FPGA can be used for a multitude of applications.
There exist a lot of commercial or free IP-Cores which can be included
into a custom design. Applications could be digital filters, en- or decoder,
cryptography or even a complete CPU implementation.

- parallelism : multiple algorithms or applications could be executed con-
currently.

Power estimations are done in the Diploma Thesis of Fercher [12].

• CPLD: Xilinx CoolrunnerTM XPLA3 XCR3384XL, 384 Macrocells, Package
TQ144, Speed Grade -12, Documentation at [32]

A CPLD device saves his configuration in a non-volatile memory and doesn’t
need to be reconfigured at startup sequence.

• FLASH: AMD 29LV801, AM29LV801B-70EC, 8 MBit, 16 x 64 kByte sectors,
70 ns, 200 nA ultra-low-power mode, Documentation at [1]

Flash memory is a non-volatile memory and stores in the design of the
BTNODEFPGA the configuration bitstreams of an FPGA.

• SRAM AMIC LP62S16256, LP62S16256EV-55LLT, 4 MBit, 256k x 16 Bit data
words, Documentation at [2]

The external SRAM cell is a volatile memory. The advantage of this cell is
that the values are kept during reconfiguration versus the values stored in
BlockRAM memory on the FPGA.

4.2.2 IPAQ

• IPAQ: The used IPAQ is a model of the h3970 series from HP [15], containing
an Intel XScale processor [16] running at 400 MHz. As an operation system we
run Windows CE 4.2 .NET Edition [22].

• IPAQ to BTNodeFPGA Bridge: PCB developed by Matthias Dyer at TIK,
ETH Zürich. The bridge allows a physical connection between the IPAQs ex-
pansion slot and the BTNODEFPGA board.
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Figure 4-3
BTNODEFPGA: electronic
parts on the front side.
On the left the Coolrun-
ner CPLD, on the right the
Spartan-II FPGA. On the
backside of the PCB are the
FLASH and the SRAM. The
clock oscillator is replaced by
a 18.432 MHz variant which
allows much better serial
communication.

Figure 4-4
BTNODEFPGA - Bridge: Con-
nection to IPAQ
The bridge and the cable
connects the SRAM inter-
face of the IPAQ expansion
port to the IO pins of the
BTNODEFPGA board.
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4.2.3 Behaviour of the BTNODEFPGA board

In the figures 4-1, 4-3 and 4-5 the setup of the IPAQ, BTNODEFPGA and the con-
nectors are shown. In this section we list the behaviour of the components, the ad-
vantages and some drawbacks for the KPNexecution framework.

• Power Supply (BAT): Power Input (2 pin molex). Used with a power supply
adjusted to 6 Volts and a capacitor in parallel to have current peaks under
control during reconfiguration.

• Clock (CLK): Two of the boards use a clock oscillator of 18.432 MHz (160 over-
clocking of a 115’200 baud serial clock), another two boards have a 10 MHz
clock. A drawback in the design is that three of the four available clock pins of
the FPGA can’t be used without modifying (patching) the board.

• Reset (RST): Reset button connected to the CPLD. A reset button at the FPGA
is missing so that in the most cases the reset signal from the button has to
be routed through the CPLD to the FPGA by one wire of the «CPLD↔FPGA
bus». The reset button is not debounced so a configurable pull-up resistor at
the input pin of the CPLD is necessary.

• FPGA Mode Jumpers (FPGA MODE): The FPGA can be configured in differ-
ent modes (parallel, serial, JTAG). The shown configurations in figure 4-5 are
used in the design of the KPNexecution framework.

• JTAG Chain Jumpers (JTAG CHAIN): By setting the jumpers (fig. 4-5) the
boundary scan includes the CPLD and the FPGA.

• CPLD and FPGA Leds (CPLD LEDS, FPGA LEDS): The meanings of the
Leds and their assignment is described in the scheme.

• IPAQ Connection (FPGA I/O): To keep the IPAQ extension board bridge design
easy the pin order has to be fixed with the FPGA pinout. Unfortunately the
internal clock of the IPAQ is not available - using the SRAM interface modus
it is possible to generate in the FPGA an inbound internal clock. The pin order
of the IPAQ interface is on the right side of fig. 4-5.

• Serial Interface (CTRL IF): Control Interface usually connected to the
BTNODEnow used as a serial interface (RS-232) to a host PC (10 pin molex).
Only two data pins are used for the RX and the TX of the serial protocol, the
others stay unconnected. A level shifter transforms the serial signal level from
12 to 3.3 Volts which is the level of the BTNODEFPGA board.

To communicate with a PC a crossed RS232 cable (null modem cable) is neces-
sary.

• A drawback in test and development cycle are the missing test points (pins)
in the communication channel between FPGA and CPLD. As a solution the
«UC/SERIAL»-interface could be used with a 10 pin molex connector.
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Figure 4-5
BTNodeFPGA: Additional Documentation and KPNExecution Framework Specifics. On the top the in-
terface to RS232, on the bottom the interface to the IPAQ is shown. The table on the left side shows the
meanings of the status leds.24
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4.3 Slotmanager

The Kahn Process Network execution framework on the FPGA is called «slot-
manager» and contains multiple sub elements as shown in figure 4-6.

Figure 4-6
Slotmanager: Overview of the slotmanager design. The task is blue-coloured in both representations of
the slotmanager. The boxes represent subparts of the manager, the connected circles one or several FSM.
The names of the subparts item are the same as given for the VHDL entities.
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slotmanager_state: Contains the main FSM of the Slotmanger and regulates the
slot state: Configuration, Run, Block, Load Task Internal States, Save Task
Internal States, Task Switch.

The Configuration-state initialises and reloads values for a register structure
which manages the bounded FIFOs on the external SRAM. This structures are
located in the address_register and lut_address_fsm sub parts.

cpucommunication: The cpucommunication part consists of the communication
interface to the IPAQ and is able to fetch and analyse the command proto-
col. The functionality related to this communication protocol is also included
in this part — PortID to FifoID “virtualising”, the configuration mechanism
for the SRAM FIFO structures, additional BlockRAM for sharing data items
between the FPGA and the IPAQ and BlockRAM for state saving.

lut_address_fsm: FSM for automatically addressing the SRAM look-up-table
(LUT) for the used FIFOs in the configuration phase. The memory address
will be generated with the PortID which is translated to a FifoID and finally
to the external SRAM memory address.

address_register: Register which saves and computes t the information about the
FIFO address and states in the external SRAM for each port.

The register file stores the information as follows.

• empty or full state

• next reading address in the FIFO

• next writing address in the FIFO

• basis address of the FIFO

• size of the FIFO needed for implementing the «wrap around» for FIFO
structures.

task_wrapper: Wrapper which integrates the task in the framework. The wrapper
includes some functional structures to save and restore internal task states
too.
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4.4 Upload of new bitstreams

Figure 4-7
Upload of new bitstreams - Configuration flow:
Before the slotmanager and the tasks start their execution, the tasks have to be downloaded to the
BTNODEFPGA board. An initial configuration – the Loader – is configured at startup time.

1. At power-up sequence an initial bitstream is loaded from the FLASH memory
to the FPGA. This configuration bitstream contains a Loader for the FPGA de-
vice which implements an upload communication protocol between the FPGA
and the CPLD. The new FPGA configuration are streamed out by the IPAQ
and feed-through to the CPLD.

I. As a alternative way to the previous method, a configuration bitstream can be
transfered from a PC to the CPLD by sending the data with a RS-232 protocol.

2. The CPLD includes a configuration which handles the FLASH program proce-
dure. The bitstream – arriving from FPGA or RS-232 – are transfered to the
memory device.

3. The IPAQ, the Loader, the Slotmanager or a PC via RS-232 can send a re-
configuration command to the CPLD. As a consequence of this instruction a
reconfiguration with a new Slotmanager containing a new task will be exe-
cuted.

4. Mapping control-flow graphs to hardware devices is very challenging. In our
design we do the KPN graph interpretation in software on the IPAQ device.
Thus, at the beginning of each new execution phase this information has to be
exchanged.
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5. The runtime information – blocking states – of a task has to be feed-back to
the IPAQ device. Follow-up actions will happen.

4.5 Reconfiguration of the FPGA

Figure 4-8
Slotmanager: Reconfiguration
of the FPGA
The Loader or the Slotmanager
could initiate a reconfiguration
procedure at the CPLD. The re-
configure command allows an
address relocation to sixteen
predefined FLASH addresses –
one out of five bitstreams is se-
lected and transfered to the re-
configuration port of the FPGA.

With the current implementation it is even possible, that the Slotmanager deactivates
itself by initiating a reconfiguration of the FPGA. The system is self-reconfigurable.

4.5.1 Reconfiguration Toolflow

1. Generate Task: Use VHDL Task Template and write an user task for the KPN.

2. If necessary or wished use the insertion toolflow for the scan chain, a mecha-
nism which allows to load and store internal states of Kahn tasks.

3. Connect the user task with the task wrapper of to the slotmanager. Keep cau-
tion on the reset polarity and the reset pin configuration (feed-through from
CPLD in the current design).

4. activate “set unused pins to: float” in the ISE FPGA implementation flow – to
don’t affecting the other devices at the FLASH address and data bus.

5. Synthesis, Translate, Map, Place & Route, Generate Bit File
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6. Modify the Bit File with bistreambuilder.pl to obtain a programmable form.

7. Upload the modified bitstream to the IPAQ with the Microsoft Active Sync
Tool. Default Directory is the folder «bitstreams».

8. Run the IPAQ Program «DataStreamWriter.exe» and select the new bitstream.
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5
Detailed Implementation

5.1 Overview

In this section we explain the implementation details of our realisation of the «slot-
manger» and Kahn Process Network execution framework:

At the beginning we introduce in section 5.2 several concepts which are fundamental
and given by the restrictions of the model of computation or by the hardware device
constraints. The «slotmanager» and its implementation in VHDL is described in sec-
tion 5.3. A Task initially needs to be loaded into the Flash memory. The design of
the «loader» includes an FPGA design and a CPLD design (sections 5.4 and 5.5). A
mechanism to store and reload internal states of a Task needed for reconfiguration
is figured in section 5.6. Handshaking between the devices and acquisition of asyn-
chronous data is explained in section 5.7. Our Kahn Task Template is proposed in
5.8. The Windows CE DataStreamer program is explained in 5.9. Before a new Task
and bitstream could be saved into the Flash and could be used for reconfiguration,
it is necessary to run a tool-flow chain explained in section 5.10.

5.2 Concepts

5.2.1 Implementation of the FIFOs in SRAM

In the Kahn Process Network the communication between tasks is realised by using
unbounded circular buffers — named FIFOs in the following sections.

In our execution framework unbounded FIFOs aren’t feasible so we implemented
bounded FIFOs for the «slotmanager». Bounded FIFOs have only a limited mem-
ory space with a «wrap-around» mechanism at the upper memory space boundary.
The FIFO items are stored in the external SRAM device so that the values will be
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saved during the FPGA is reconfigured. To account for the complete data loss during
configuration we use the lowest part of the SRAM as a Look-Up-Table to store the
FIFO parameters (size, read and write addresses) as shown in the figure 5-1. The
LUT entries are loaded during the task initialisation phase from the lower SRAM
address into a register file in the slotmanager. The LUT values are modified during
task execution and stored back when a task switch occurs.

Figure 5-1
SRAM:
Implementation of the FIFO:
The lower 1024 words (256 x
4 x 16 bits) of the SRAM con-
tain a Look-Up-Table for the
FIFO configurations. The con-
figuration consists of the base
address (shifted by 2 bits, so
that only at each fourth address
a new FIFO could be started),
the size of the FIFO (maximum
are 15 bits, max. 1 MBit), the
last reading and writing ad-
dress relative to the base ad-
dress . All addresses need a cal-
culation, because the address
space of SRAM is 18 bits but a
SRAM data word is only able to
hold 16 bits. The size, reading
and writing FIFO address are
relative addresses.

5.2.2 FLASH Configuration

A bitstream for the Xilinx SPARTANTM II FPGA has a size of 165 kBytes — gen-
erated by the ISE toolflow with the default configuration. To save this bitstream in
the Flash memory we need at least 3 x 64 kByte slots. Using the Flash in 64 kBytes
[1, p.10] sectors has several advantages:

Each sectors could be erased or reprogrammed without affecting the others and
there is a possibility to store and configure several configurations. The first three
sectors should contain the default configuration of the FPGA at startup sequence
which implements the Loader.

If all 16 sectors of the Flash are used 5 bitstreams could be stored exactly. The
proposed storing scheme is listed in table 5-1.

5.2.3 Internal Clock Generation

The IPAQ extension port has no clock interface or clock pin for the internal IPAQ
clock (MEMCLK) at all. For in and out data transfer we connect to the programmable
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bitstream used sectors
select for bitstream storage

0 0 1 2
1 1 2 3
2 2 3 4
3 3 4 5
4 4 5 6
5 5 6 7
6 6 7 8
7 7 8 9

bitstream used sectors
select for bitstream storage

8 8 9 10
9 9 10 11
A 10 11 12
B 11 12 13
C 12 13 14
D 13 14 15
E 14 15 0
F 15 0 1

Table 5-1: Bitstream storing scheme for Flash memory. Our recommendation is to store the
initial (Loader) bitstream at address 0, the first custom task in a bitstream at 3, . . . and the
fourth task bitstream starts at the C sector.

Figure 5-2
Flash: Storing scheme for
FPGA configuration bit-
streams. The memory could
store up to 5 bitstreams. The
sector (F) with the highest ad-
dresses (F0000h) is empty at
all.
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asynchronous SRAM interface modus of the XScale — included in the memory man-
ager — and use a direct mapped memory region with our «expansion slot bridge».
The behaviour of the SRAM interface is as expected: data addresses will be valid at
the falling clock edge, data words at the rising clock edge. In figure 5-3 the timing
constraints are shown — the minimal timings are listed in IPAQ clock cycles.

MEMCLK

CS[0]

MA[25:0]

WE

MD[31:0]

T0 T1 T2 T3 T4

H�������������������������������������������������L

HHHHHHHHHHHHHHH�LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL�HHHHHHHHHHHHHHHHHHH

UUUUUUUUUUU�VVVVVVVVVVVVVVVVVVVVVVVVVV�VVVVVVVVVVVVVVVVVV�VVVVVVVVVVVVVVVVVVVVVVVVVV�UUUUUUUUUUUADDR 0 ADDR 1 ADDR 2

HHHHHHHHHHHHHHHHHHHHHHH�LLLLLLLLLL�HHHHHH�LLLLLLLLL�HHHHHHH�LLLLLLLLLL�HHHHHHHHHHHHHHHHHHHHHHH

tCESaaaaaaaP tDSWHaaaaaaaaaaaPtDHaaaP
tASWaaaP

UUUUUUUUUUUUUUUUUUU�VVVVVVVVVVVVVVVVVV�VVVVVVVVVVVVVVVVVV�VVVVVVVVVVVVVVVVVV�UUUUUUUUUUUUUUUUUUUDATA 0 DATA 1 DATA 2

Required clock cycles between transitions:
tCES: 2 MEMCLKs tDSWH: 4 MEMCLKs

tDH: 1 MEMCLK tASW: 1 MEMCLK

Figure 5-3
Waveforms of the IPAQ extension interface in SRAM mode.

We have measured several output waves of the IPAQ expansion port interface with
a logic analyser (measurement results in fig. 5-4). We recognise that the ChipSe-
lectEnable (nCS) wave is 128 ns low in reality. The falling edge of the WriteEnable
(nWE) signal triggers 10 ns later.

The IPAQ is master of the SRAM interface. To determine a write or read command
we have to sample the waveform with the BTNODEFPGA board clock. For a write
operation, the data are valid 4 MEMCLKbefore ChipSelectEnable (nCS) rises. Even,
if we use double-edged triggered flip-flops at 18.432 MHz we will certainly miss a
data word.

400 MHz

2 ∗ 18.432 MHz
∼= 11 ≥ 4(!)

Only one clock pin of the Xilinx SPARTANTM II on the BTNODEFPGA board is
connected to a clock source (the oscillator) but non of the other specialised clock pins
are connected to the I/O pins of the board — these pins have low slews, low delays
and are optimised to connect to the 4 internal clock nets.
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FPGAClkxC

FPGAChipSelectxE

FPGAWriteEnablexE
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10 nsaaaaaaaaaaaaaaaP

128 nsaaaaaaaaaaaaaaaaaaaaaaaaaaaaP
400 nsaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaP

Figure 5-4
IPAQ extension port waveforms, the FPGA clock and the timing data relative to this clock on the
BTNODEFPGA board.

As a solution of this dilemma we «generate» an internal clock signal composed of
the three input enable signals: nCS (named CPUCSelectxE in the design), nWE
(CPUWritexE ) and nOE (CPUOutputxE ). We use three normal I/O pins as «clock
input» and build with the aid of some logic and a dedicated clock buffer an internal
clock (fig. 5-5).

Valid data words on IPAQs tristate data bus are loaded to flip-flops triggered by this
generated clock signal. The address is fetched at the falling edge, the data at the
rising edge — as expected from a SRAM device.

The information if the clock pulse originates from a «write» or «read» command will
be stored in an additional 1-bit register.

The fetching process of a sample measurement is shown in figure 5-6.
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Figure 5-5
Internal Clock Generation in the FPGA: CPUCSelectxE , CPUWritexE and ChipSelectE are enable
signal from the IPAQ and connected via the «bridge» to the FPGA IO Pins (at the bottom of figure 4-5).
The internal clock is generated by the following logic function:

(CPUWritexEBI + CPUCSelectxEBI ) • (CPUOutputxEBI + CPUCSelectxEBI )

Finally, the generated clock is asserted to a dedicated clock net (one of four availables).

5.3 Slotmanager

The «slotmanager» is the execution framework for the KPN tasks. The frameworks
includes mechanisms to load and execute different tasks, the managing of the exter-
nal devices (CPLD, Flash, SRAM) and some structures which enables the reconfig-
uration process of the task slot.

As seen in figure 5-7 the slotmanager is divided in multiple parts:

slotmanager_state sec. 5.3.1 includes the main FSM of the slotmanager

lut_address_fsm sec. 5.3.2 an managing unit for the LUT stored in SRAM

address_register sec. 5.3.3 a FIFO implementation for bounded memory

cpucommunication sec. 5.3.4 the communication with the IPAQ and finally the

task_wrapper sec. 5.3.5 the task itself.
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Figure 5-6
FPGA - Waveforms of fetching an IPAQ data word
InternalClk is generated by the formula of figure 5-5. In reality, we measure that both signal
WriteEnable and OutputEnable are changing their levels several times at a write or read command. By
analysing also the level of the ChipSelect we can make a distinction between these different transitions.
In the sample wave the InternalClk signal is triggered by a write command. This information is kept
in the variable IsWrite at the falling edge. The new data word is latched at the rising edge.

Figure 5-7
Slotmanager - Overview of Slot-
manager, the sub parts and
their implementation are de-
scribed in the following sec-
tions.
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5.3.1 slotmanager_state

The part slotmanager_state includes the main and the configuration Final State
Machine of the «slotmanager» — brief it is the heart of the running system.

The main FSM contains the slotmanager state and is described in figure 5-8, the
configuration FSM is needed after reconfiguration and shown in figure 5-9.
VHDL ENTITY FOR SLOTMANAGER_STATE

entity slotmanager_state is
port (

ClkxCI : in s td_ l og i c ; −− clock
RstxRBI : in s td_ l og i c ; −− reset (active low)
−−————————————————————————-
−−SLOT STATE
−−————————————————————————-
SlotManagerStatexSO : out SlotManagerState ; −− state of the main FSM
ConfigSlotManagerStatexSO : out ConfigSlotManagerState ; −− state of the config FSM
LutAddressFSMxSI : in LUTAddressFSMState ; −− addresses for SRAM LUT
BLOCKINGxSI : in s td_ log i c_vec tor ( ( NUMBER_OF_PORTS_PER_PROCESS∗2)−1 downto 0 ) ;
PortIDxDO : out PortIDType ; −− generated PortIDs for “fillup”
−−————————————————————————-
−−READ / WRITE and ACKS
−−————————————————————————-
PortReadxSI : in s td_ l og i c ; −− read action (ReadToken)
PortWritexSI : in s td_ l og i c ; −−write action (WriteToken)
PortReadWriteAckxEI : in s td_ l og i c ; −− acknowledge of Token action
−−————————————————————————-
−−TRIGGER SIGNALS
−−————————————————————————-
−− start all
RunNowxEI : in s td_ l og i c ; −− start main FSM
−− cpu to fpga communication done / new
CommFPGAConfigDonexEI : in s td_ l og i c ; −− communication done
CommFPGANewConfigxEI : in s td_ l og i c ; −− new bitstream (!) asserted
−− generated output trigger signals
GetAddrNowxEO : out s td_ l og i c ; −− enable: LUT addresses
FetchCPUDataxEO : out s td_ l og i c ; −− enable: comm. to CPU
−− shift state
ContextSwitchxSO : out s td_ l og i c ; −− context switch enable
ContextSwitchDonexSI : in s td_ l og i c −− context switch done

) ;
end slotmanager_state ;

Listing 5-1
Slotmanager State Entity
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Figure 5-8
Slotmanager - FSM:
This FSM is the main final state machine of the «slotmanager». The FSM stays in the init-state till a ex-
plicit RunNow is asserted from the CPU Communication Interface. In the config-state the configuration
FSM (fig. 5-9) will be started and the main FSM waits till this process has finalised. A check will be
done if the active task of the slotmanager has completed a cycle (config→ load→ activated→ block→
save → config) without being replaced. If this condition is true the task will be loaded a first time and
the internal states will be reseted in the reset-state, otherwise the internal states will be loaded from
state saving memory in the load-state. When the slotmanager is in the activated-state the task is run-
ning and produces read or write operations which will typically be acknowledged. Otherwise the task
is in block-state and can be replaced by another task. To store the internal states of the task, the inter-
nal states are «shifted out» in the save-state. Finally the config-state is reached. Now another task could
be loaded if available else the task is blocked endlessly.
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Figure 5-9
Slotmanager - Configuration FSM:
The configuration FSM stays in CommunicationNotReady-state until the CommFPGAConfigDone ar-
rives from the CPU Communication Interface. This signal indicates that a new configuration has been
loaded (reconfiguration done) and the communication between the IPAQ and the FPGA — graph depen-
dencies in the KPNnetwork — has been done. The FPGAConfig signal is triggered by the main FSM (fig.
5-8) and always asserted after the CommFPGAConfigDone chronologically. The FPGAConfig causes the
FSM to switch from idle-state to a cycle with several states:
If the translation map (PortID → FifoID) is set up in the PortToFifoWritten-state, in the following five
states the register field will be automatically filled for each PortID with their values as described in sec-
tion 5.3.3. The addresses are generated in the address_lut_fsm and triggered by the following five states:
AddressRegisterBaseWritten, AddressRegisterFifoWritten, AddressRegisterReadWritten, AddressReg-
isterWriteWritten and AddressRegisterWritten. The cycle will end if for all registers with their corre-
sponding PortIDs are initalised.40
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5.3.2 lut_address_fsm

The purpose of this part is to generate the LUT addresses for the lowest part of the
SRAM from asserted FifoIDs and an internal FSM. The FSM loops in a cycle for the
following states: Idle → BaseAddr → FifoHigh → ReadAddr → WriteAddr → Idle.
The first FSM transition needs a trigger by the GetAddrNowxEI signal.

VHDL ENTITY FOR LUT_ADDRESS_FSM

entity lut_address_fsm is
port (

ClkxCI : in s td_ l og i c ; −− clock
RstxRBI : in s td_ l og i c ; −− reset (active low)
−− trigger signal
GetAddrNowxEI : in s td_ l og i c ; −− enable the address FSM
−−FIFO IN –> ADDRESS OUT
FifoIDxDI : in s td_ log i c_vec tor (7 downto 0 ) ; −− selects the FIFO
LutAddressAddrxDO : out s td_ log i c_vec tor (17 downto 0 ) ; −− address of SRAM
−−LUT ADDRESS FSM STATE OUT
LutAddressFSMxSO : out LUTAddressFSMState −− address FSM state
) ;

end lut_address_fsm ;

Listing 5-2
Entity for the LUT Address FSM

Depending on the FSM state the following SRAM Addresses are generated (i.e. if
FifoIDxDI is 200 (=C8h), in the four following cycles the SRAM addresses 801, 802,
803 and 804 will be generated):

LUTBaseAddrRegxD <= FifoIDxDI & "00" ;
LUTFifoHighRegxD <= FifoIDxDI & "01" ;
LUTReadAddrRegxD <= FifoIDxDI & "10" ;
LUTWriteAddrRegxD <= FifoIDxDI & "11" ;

Listing 5-3
Generation of LUT Address for the FIFOs
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5.3.3 address_register

In short, the part address_register of the «slotmanager» is a large register field. This
registers contain all FIFO managing data, which are loaded in an initalise process
from the lowest part of the SRAM — the Look-Up-Table (LUT) as proposed in fig.
5-1. As a recapitulation the FIFO in SRAM is arranged in the following way:

IV data word:
1-bit flag for «empty FIFO»
15-bit next writing address

III data word:
1-bit flag for «full FIFO»
15-bit next reading address

II data word:
1-bit flag not used
15-bit size of FIFO

I data word:
16-bit base address

Primarily, the base address of the FIFO is loaded. Because data words in SRAM
are 16-bit wide but the addresses of the memory cell are 18-bit, we shift the loaded
binary address by 2. With this setup only, each fourth address could be the basic
address of a new FIFO (details in figure 5-10 on page 44).

The FIFO size, the next reading or writing address are stored in relative values to
the base address in the LUT. When these words are loaded to the address_register,
they are converted to absolute values according to the base address.

A FIFO could have a maximal size of 215 — with the maximal sized FIFOs, the
external SRAM cell has only a space for 8 FIFO allocations.

The reading address contains the next read address in the FIFO, the writing address
the next write address respectively.

If the highest FIFO address is reached by a reading or writing operation, a «wrap-
around» of the address will happen: A comparator of the reading (comparator
WrapAroundReadxS ) or writing (WrapAroundWritexS ) address with the highest
FIFO address signals a flag when the highest address occurs. As a consequence the
address counter is reseted to the lower boundary value of the FIFO.

The number a parallel register fields is proportional to the number of available and
permitted ports-per-task.

The constant NUMBER_OF_PORTS_PER_PROCESSimplies this value. In the current
and tested implementation the available ports is set to 8. The internal register are
build by a VHDL generate statement, so that the allowed ports-per-task could be
changed easily if wished or necessary (caution: augmenting this value will massively
increase the area overhead of the slotmanager).
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At runtime the PortID acts as a switch in the register field and selects the accurate
register entries and values.

A schematic of the «Address Generation Unit» is given in figure 5-10. A VHDL code
snipplets of the unit is given in the listing 5-4.
VHDL ENTITY FOR ADDRESS_REGISTER

entity address_register is
generic (

NUMBER_OF_PORTS_PER_PROCESS: natural := 8
) ;

port (
ClkxCI : in s td_ l og i c ; −− clock
RstxRBI : in s td_ l og i c ; −− reset (active low)
−− data transfer
DataInxD : in s td_ log i c_vec tor (15 downto 0 ) ; −−SRAM DATA BUS
DataOutxD : out s td_ log i c_vec tor (15 downto 0 ) ; −−SRAM DATA BUS
AddressOutxD : out s td_ log i c_vec tor (17 downto 0 ) ; −−SRAM ADDR BUS
−− port id switch
PortIDxDI : in PortIDType ; −−PortID switch
−−FSM
SlotManagerStatexSI : in SlotManagerState ; −−Load, Store, ReadToken, WriteToken
LutAddressFSMxSI : in LUTAddressFSMState ; −− BaseAddr, FifoHigh, ReadAddr,

WriteAddr

−−Empty Full Flags
BLOCKINGxSO : out s td_ log i c_vec tor (NUMBER_OF_PORTS_PER_PROCESS∗2)−1 downto 0 ) ;

−− one of all PORTs is in
blocking state

EmptyFullFIFOxSO : out s td_ l og i c −− current PORT is in blocking state
) ;

end address_register ;

architecture r t l of address_register is
type BaseAddrRegType is array −− base addresses

(NUMBER_OF_PORTS_PER_PROCESS−1 downto 0) of s td_ log i c_vec tor (17 downto 0 ) ;
type FIFOHighRegType is array −−FIFO upper boundaries

(NUMBER_OF_PORTS_PER_PROCESS−1 downto 0) of s td_ log i c_vec tor (17 downto 0 ) ;
type ReadAddrRegType is array −− next reading addresses

(NUMBER_OF_PORTS_PER_PROCESS−1 downto 0) of s td_ log i c_vec tor (17 downto 0 ) ;
type WriteAddrRegType is array −− next writing addresses

(NUMBER_OF_PORTS_PER_PROCESS−1 downto 0) of s td_ log i c_vec tor (17 downto 0 ) ;
type FullOrEmptyRegType is array −− FIFO full or empty infor-

mation
(NUMBER_OF_PORTS_PER_PROCESS−1 downto 0) of s td_ log i c_vec tor (1 downto 0 ) ;

type StdLogicArrayType is array −− generated comarison ar-
ray

(NUMBER_OF_PORTS_PER_PROCESS−1 downto 0) of s td_ l og i c ;

. . .

Listing 5-4
Entity – Address Register

In the Kahn Process Network the FIFO (or any manager) must not know about the
fill level of the unit. In the adapted model of Parks a FIFO still doesn’t know the fill
level, but a task will be in blocking read or blocking write state, if one of the FIFOs
run at full capacity or a underflow occurs. In our design we have implemented such
an behaviour of the task with a Final State Machine as shown in figure 5-11.
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5.3. Slotmanager

Figure 5-11
Address Generation Unit - FSM:
A task reads (READ_TOKEN) or writes (WRITE_TOKEN) FIFO items until a FIFO overflows or un-
derflows. This exception occurs when the read address is equivalent to the write address and signalled
by the EMPTY_FULL flag.
If that «exception» occurs either one additional item could be read/written or the FIFO is blocked.
When the task is blocked, the blocking signal is asserted and spread over the «slotmanager». Usually,
this effects a reconfiguration of the task slot.

5.3.4 cpucommunication

The cpucommunication part arrange the communication between the «slotmanager»
and the IPAQ.

An internal clock is generated as proposed in section 5.2.3 and a enhanced FSM
fetches the data words from the IPAQ tristate data bus and switches several internal
enable signals.
VHDL ENTITY FOR CPUCOMMUNICATION

entity cpucommunication is
port (

ClkxCI : in s td_ l og i c ; −− clock
InternalClkxCO : out s td_ l og i c ; −− internal generated clock
RstxRBI : in s td_ l og i c ; −− reset (active low)

−−CPU Communication (Interface to IPAQ)
CPUDataxZD : inout s td_ log i c_vec tor (15 downto 0 ) ; −− tristate data bus
CPUAddrxDI : in s td_ log i c_vec tor (3 downto 0 ) ; −− address bus
CPUCSelectxEBI : in s td_ l og i c ; −− chip select
CPUWritexEBI : in s td_ l og i c ; −−write enable
CPUOutputxEBI : in s td_ l og i c ; −− output enable
CPUIntrxSO : out s td_ log i c ; −− interrupt to IPAQ

−−Enable Fetch Data From CPU
FetchCPUDataxEI : in s td_ l og i c ; −− enables fetching of cpu data

−−Signaling to slotmanager_state: Config (CPU to FPGA) is DONE
CommFPGAConfigDonexEO : out s td_ l og i c ; −− configuration is done
CommFPGANewConfigxEO : out s td_ l og i c ; −− new configuration in pipeline

−−SRAM Connections
SRAMAddrxDO : out s td_ log i c_vec tor (17 downto 0 ) ; −−SRAM addresses
SRAMDataInxDI : in s td_ log i c_vec tor (16 downto 1 ) ; −−SRAM data in
SRAMDataOutxDO : out s td_ log i c_vec tor (16 downto 1 ) ; −−SRAM data in
SRAMReadxEO : out s td_ l og i c ; −−SRAM read enable
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SRAMWritexEO : out s td_ log i c ; −−SRAM write enable

−−State Shift BRAM Connections
−−Serial In / Out Interface
StateBRAMSerialRAMxEI : in s td_ log i c ; −−BRAM enable
StateBRAMSerialRAMWritexEI : in s td_ l og i c ; −−BRAM write enable
StateBRAMSerialAddrxDI : in s td_ log i c_vec tor (11 downto 0 ) ; −−BRAM address
StateBRAMSerialDataInxDI : in s td_ l og i c ; −−BRAM data in (1 bit)
StateBRAMSerialDataOutxDO : out s td_ l og i c ; −−BRAM data out (1 bit)

−−Testsignals (for Modelsim)
StateBRAMReadxTEO : out s td_ l og i c ; −−State BRAM read enable
StateBRAMWritexTEO : out s td_ l og i c ; −−State BRAM write enable

−−Transformation Port ID –> Fifo ID implemented in Distributed RAM
TransformPortIDxDI : in PortIDType ; −−Port ID
TransformFifoIDxDO : out s td_ log i c_vec tor (7 downto 0 ) ; −−FIFO ID
TransformIsReadxSO : out s td_ l og i c ; −− operation is read
TransformIsWritexSO : out s td_ l og i c ; −− operation is write

−−Task Blocking Information
BLOCKINGxSI : in s td_ log i c_vec tor (15 downto 0) −− contains a ’1’ when BLOCKING
) ;

end cpucommunication ;

Listing 5-5
CPU Communication Entitiy
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CPU DATA OUTPUT ON THE TRISTATE BUS

−− applying signals on the tristate bus (CPU bus)
CPUDataxZD <= CPUDataOutxD when CPUOutputxEBI = ’0 ’ and CPUAddrxDI = DATA_REGelse

BLOCKINGxSI when CPUOutputxEBI = ’0 ’ and CPUAddrxDI = BLOCKING_REGelse
( others => ’Z ’ ) ;

Listing 5-6
CPU Output Data

5.3.4.1 Port to FIFO

In the Kahn Process Network the tasks communicate to each other via FIFOs
which connect task in- and outputs. We call this in- and outputs Ports to ab-
stract the data-flow direction. A Port of a specific task can be either an Input
or a Output but not both. For practical reasons we enumerate the Ports with a
PortID which is in the current implementation a natural number between 0 and
7 (NUMBER_OF_PORTS_PER_PROCESS).

In a graphical representation of the KPN the FIFOs are often not named or enumer-
ated but for our application, we need to count and enumerate them with a FifoID
— a number between 0 and 255.

In the current design we offer 8 PortID but 256 FIFOs that can be used. As a con-
sequence we need a structure which enables the mapping from «virtual» to «real»
IDs.

The part PorttoFIFO offers such a mechanism which maps the «virtual» PortIDs to
«real» FifoID using a Look-Up-Table. This table is implemented in a dual-ported
distributed SRAM structure (built with LUT4 Elements of the CLBs).

The graph resolution, enumerating of the PortID and FifoIDs is done in the IPAQ
hand-held and afterwards loaded in the slotmanager for each initiated task. The
Look-Up-Table is built as shown in figure 5-12.

The distributed dual-ported RAM offers two separate address ports, one for read
and another for write operations. The address ports are completely asynchronous.
We use the write port for writing the LUTs from the IPAQ interface (internally gen-
erated clock boundary) and the read port for the task execution (task clock bound-
ary).

The WriteEnable enables a synchronous write operation of the RAM block words.
The enable signal is controlled by the CPU communication protocol and a FSM.
VHDL ENTITY FOR PORTTOFIFO

entity p o r t t o f i f o is
port (

ClkxCI : in s td_ l og i c ; −− clock
WritexEI : in s td_ l og i c −−write enable of the “RAM”
ReadAddressxDI : in s td_ log i c_vec tor (3 downto 0 ) ; −− read address in
WriteAddressxDI : in s td_ log i c_vec tor (3 downto 0 ) ; −−write address in
DataInxDI : in s td_ log i c_vec tor (10 downto 0 ) ; −− data in
DataOutOnexDO : out s td_ log i c_vec tor (10 downto 0 ) ; −− not connected
DataOutTwoxDO : out s td_ log i c_vec tor (10 downto 0 ) ; −− data out
) ;

end p o r t t o f i f o ;
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Figure 5-12
PortID to FifoID Translation Table -
For each PortID the Translation Table
contains a row composed of the follow-
ing entries:
The tenth bit of each row (MSB) is the
normal or special FIFO flag. This flag
contains the information if a FIFO is lo-
cated in the external SRAM cell or the
internal BlockRAM. The flag is on high
level ’1’ if the FIFO is implemented in
the BlockRAM, ’0’ otherwise. The idea
behind this implementation is that such
a BlockRAM-FIFO could be the in- or
output of a driver task (i.e. an audio
task).
One of the 28 = 256 available FifoIDs is
mapped to the bits 9 downto 2.
The bits 1 and 0 signal that for the
mapped FifoID, data items only could
be read or written respectively. In the
KPN model and the implemented frame-
work a port can only read or write to a
FIFO exclusively.

Listing 5-7
CPU Communication: Port to FIFO

5.3.4.2 StateBRAM

The StateBRAM is an instance of a dual ported Xilinx SPARTANTM II BlockRAM.
In this case the two clock boundaries occurs again — the first is the internally gen-
erated CPU clock, the second the BTNODEFPGA task clock.

We use the BRAM as an asynchronous communication channel between these two
clocks with the advantages that address and data ports of the instantiated element
are parameterisable. We need a 16-bit data bus for the CPU communication at the
internal clock side and a 1-bit data bus for task switching at the task side (serially
shifting out the state bits of a task).

The ram and write enables of the StateBRAM can be asserted by specific CPU com-
mands.

In the design only one BRAM is allocated for the StateBRAM which offers to store
the task states of 4096 x 1 bits. To fetch this data at the CPU communication side
255 x 16 bits are necessarily.
VHDL ENTITY FOR STATEBRAM

entity statebram is
port (
−−Serial Part for Task Interface (1 bit in/out)
SerialClkxCI : in s td_ l og i c ; −− serial ram clock
SerialRAMxEI : in s td_ l og i c ; −− serial ram enable
SerialRAMWritexEI : in s td_ l og i c ; −− serial ram write enable
SerialAddrxDI : in s td_ log i c_vec tor (11 downto 0 ) ; −− serial ram addr
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SerialDataInxDI : in s td_ l og i c ; −− serial data in
SerialDataOutxDO : out s td_ l og i c ; −− serial data out

−−Parallel Part for CPU Interface (16 bit in/out)
ParallelClkxCI : in s td_ l og i c ; −− parallel ram clock
ParallelRAMxEI : in s td_ l og i c ; −− parallel ram enable
ParallelRAMWritexEI : in s td_ l og i c ; −− parallel ram write enable
ParallelAddrxDI : in s td_ log i c_vec tor (7 downto 0 ) ; −− parallel ram addr
ParallelDataInxDI : in s td_ log i c_vec tor (15 downto 0 ) ; −− parallel data in
ParallelDataOutxDO : out s td_ log i c_vec tor (15 downto 0) −− parallel data out
) ;

end statebram ;

Listing 5-8
CPU Communication: StateBRAM

5.3.4.3 BRAM for Driver Tasks

Driver Task like an audio task are slots which needs the FIFO items directly on
the FPGA. To respect such an application NUMBER_OF_FIFO_BRAMBlockRAMs are
instantiated which offers a bounded easy accessible SRAM space. The BRAM can be
read and written by the CPU directly by using the communication protocol.
VHDL ENTITY FOR BRAM

entity bram is
generic (

NUMBER_OF_FIFO_BRAM: natural := 8 −− number of blockrams
) ;

port (
ClkxCI : in s td_ l og i c ; −− bram clock
RAMxEI : in s td_ l og i c ; −− bram enable
RAMWritexEI : in s td_ l og i c ; −− bram write enable
AddrxDI : in s td_ log i c_vec tor (10 downto 0 ) ; −− bram addr
DataInxDI : in s td_ log i c_vec tor (15 downto 0 ) ; −− bram data in
DataOutxDO : out s td_ log i c_vec tor (15 downto 0) −− bram data out
) ;

end bram ;

Listing 5-9
CPU Communication: BRAM
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5.3.4.4 CPU Protocol

During execution of slotmanager the following commands (tab. 5-2) are available on
the CPU data bus.

Command Subcommand Encoding

1111’1100’0000’0000

5432’1098’7654’3210

Not used 000-’----’----’----

Read / Write State BRAM 001-’NNNN’NNNN’----

Read 0010’NNNN’NNNN’----

Write 0011’NNNN’NNNN’----

Read / Write SRAM 010-’NNNN’NNNN’--AA

Read 0100’NNNN’NNNN’--AA

Write 0101’NNNN’NNNN’--AA

Read / Write BRAM 011-’NNNN’NNNN’--AA

Read 0110’NNNN’NNNN’--AA

Write 0111’NNNN’NNNN’--AA

Configure normal fifo ports 011-’PPPP’FFFF’FFFF

Read 0110’PPPP’FFFF’FFFF

Write 0111’PPPP’FFFF’FFFF

Configure special fifo ports 101-’PPPP’FFFF’FFFF

Read 1010’PPPP’FFFF’FFFF

Write 1011’PPPP’FFFF’FFFF

Transfer Command 110-’----’----’----

StateBRAM Write Enable 110-’-1--’----’---1

StateBRAM Write Disable 110-’-1--’----’---0

StateBRAM Read Enable 110-’--1-’----’---1

StateBRAM Read Disable 110-’--1-’----’---0

BRAM Write Enable 110-’---1’----’---1

BRAM Write Disable 110-’---1’----’---0

BRAM Read Enable 110-’----’1---’---1

BRAM Read Disable 110-’----’1---’---0

FPGA Config Flag Enable 110-’----’-1--’---1

FPGA Config Flag Disable 110-’----’-1--’---0

FPGA New Bitstream Flag Enable 1 110-’----’--1-’---1

FPGA New Bitstream Flag Disable 1 110-’----’--1-’---0

Not used 111-’----’----’----

Table 5-2: Communication IPAQ to FPGA KPN: Command Words to manage and handle
the KPN execution framework on the FPGA. The capitals symbolise these data bits:
N: Number of Words
A: MSBs of the SRAM Address (Bit 18 and Bit 17)
P: PortID
F: FifoID

1 not implemented until now
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5.3.5 task_wrapper

The task_wrapper connects a user Task with the slotmanager. The communication
between the task and the framework is done by read and write operation as proposed
in the KPN implementation of Parks [24].

Two signal wires are routed directly to 2 leds of the BTNODEFPGA and can be used
for flagging computation phases to the user. An overview of the wrapper is given in
figure 5-35 on 80.

In the modul exists additional logic for automatically load and store internal states.
Brief — a detailed view is in section 5.6 — we shift the internal states serial in and
out; an analogy is a linear shift register. In our implementation we use a BRAM
as a storage, the ContextSwitch for FSM communication and the task_chainer for
automation of this shifting process.
VHDL ENTITY FOR TASK_WRAPPER

entity task_wrapper is
port (

ClkxCI : in s td_ l og i c ; −− clock
RstxRBI : in s td_ l og i c ; −− reset (active low)
−−——————————————
−−Task to FIFO Communication
−−——————————————
PortIDxDO : out PortIDType ; −−Port ID
PortReadxSO : out s td_ l og i c ; −−Likes to Read from Port
PortWritexSO : out s td_ l og i c ; −−Likes to Write to Port
PortReadWriteAckxEI : in s td_ l og i c ; −−Ackn. Read / Write
PortDataInxDI : in s td_ log i c_vec tor (15 downto 0 ) ; −−Data In
PortDataOutxDO : out s td_ log i c_vec tor (15 downto 0 ) ; −−Data Out
−−——————————————
−−Context Switch
−−——————————————
ContextSwitchxSI : in s td_ l og i c ; −− do context switch
ContextSwitchDonexSO : out s td_ l og i c ; −− context switch done
−−——————————————
−−Flip-Flop Enable
−−——————————————
FlipFlopxEI : in s td_ l og i c ; −−General FlipFlop Enable
−−——————————————
−−StateBRAM
−−——————————————
StateBRAMSerialRAMxEO : out s td_ l og i c ; −−StateBRAM Enable
StateBRAMSerialRAMWritexEO : out s td_ l og i c ; −−StateBRAM Write Enable
StateBRAMSerialAddrxDO : out s td_ log i c_vec tor (11 downto 0 ) ; −−StateBRAM Address
StateBRAMSerialDataInxDI : in s td_ l og i c ; −−StateBRAM Data in (1bit)
StateBRAMSerialDataOutxDO : out s td_ l og i c ; −−StateBRAM Data out (1bit)
−−——————————————
−−CUSTOM LED
−−——————————————
CustomLed2xSO : out s td_ l og i c ; −−LED 2 of BTNodeFPGA
CustomLed3xSO : out s td_ l og i c −−LED 3 of BTNodeFPGA

) ;

Listing 5-10
Task Wrapper

The idea behind the module task_chainer is, that we have implemented a script
which is able to insert a «scan-chain» automatically. The length of the chain could
be saved in a variable.
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In the execution framework the «reach-end-of-chain» of the shifting process has to be
signalised to the slotmanager. This is done by a counter and a comperator-function
which is generated in VHDL ( std_match(counter,chain_length) ). The natural value
of chain_length could be inserted from the script.
VHDL CODE OF TASK_CHAINER

entity task_chainer is
generic (

CHAIN_LENGTH : s td_ log i c_vec tor (11 downto 0) := X"FFF" −− length of the chain
) ;

port (
ClkxCI : in s td_ l og i c −− clock
RstxRBI : in s td_ l og i c ; −− reset (active low)
−− counter value
CounterxDO : out s td_ log i c_vec tor (11 downto 0 ) ; −− used as StateBRAM address
CounterxEI : in s td_ log i c ; −− enable counter
−− all shifted
AllShiftedxEO : out s td_ l og i c ) ; −− all states shifted

end task_chainer ;

architecture r t l of task_chainer is

signal CountxDP : s td_ log i c_vec tor (11 downto 0) := X"000" ;
signal AllShiftedxE : s td_ l og i c ;

begin −− rtl

AllShiftedxEO <= AllShiftedxE ;
CounterxDO <= COUNTxDP;

−− purpose: Flagging with aid of counter
−− type : sequential
−− inputs : ClkxCI, RstxRBI, StateBRAMLengthChainxD
−− outputs: StateBRAMAllShiftedxE
flaggingCounter : process (ClkxCI , RstxRBI )
begin −− process flaggingCounter

i f RstxRBI = ’0 ’ then −− asynchronous reset (active low)
CountxDP <= ( others => ’ 0 ’ ) ;

els i f ClkxCI ’event and ClkxCI = ’1 ’ then −− rising clock edge
i f CounterxEI = ’1 ’ then

CountxDP <= CountxDP + 1;
els i f AllShiftedxE = ’1 ’ then

CountxDP <= ( others => ’ 0 ’ ) ;
else

CountxDP <= CountxDP ;
end i f ;

end i f ;
end process flaggingCounter ;

−− purpose: flags when counter reaches chain length (SCRIPT!)
−− type : combinational
−− inputs : CountxDP, StateBRAMLengthChainxD
−− outputs: StateBRAMAllShiftedxE
f lagging : process (CountxDP )
begin −− process flagging

AllShiftedxE <= ’ 0 ’ ;
i f std_match (CountxDP , CHAIN_LENGTH) then

AllShiftedxE <= ’ 1 ’ ;
end i f ;

end process f lagging ;

end r t l ;

Listing 5-11
Task Chainer: A mechanism to determine to end of the shifting process automatically.
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5.3.6 Synthesis & Routing Data

Figure 5-13
Slotmanager Design : Project
View in the ISE

Data-sheet of the FPGA (Slotmanager) after Synthesis with Xilinx XST and fitting
process with Xilinx FIT .

� slotmanager
- CPUWritexEBI

• buffer_type = ibuf
• clock_signal = yes

- CPUOutputxEBI

• buffer_type = ibuf
• clock_signal = yes

- InternalClkxC

• clock_signal = yes

� address_register
- NUMBER_OF_PORTS_PER_PROCESS

= 8

� cpucommunication
- FetchFSM

• States : 10
• Transitions : 28
• Input : 12
• Output : 9
• Clock : InternalClkxC
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� bram
- NUMBER_OF_FIFO_BRAM = 1

� porttofifo
- INSTANCES

• 11 x RAM16X1D

� lut_address_fsm
- AddressFSM

• States : 5
• Transitions : 6
• Input : 1
• Output : 5

� slotmanager_state
- SlotManagerFSM

• States : 9
• Transitions : 20
• Input : 8
• Output : 9

- ConfigSlotManagerFSM

• States : 8
• Transitions : 19
• Input : 4
• Output : 7

� task_chainer
- CHAIN_LENGTH =

<u>000000001111

Overview of the used elements, CLBs and timings:

� Elements
- Register:

9x1-bit, 16x2-bit, 1x3-bit, 2x8-
bit, 1x10-bit, 1x16-bit and
33x18-bit

- Comparator:
1x8bit and 3x18-bit compara-
tors equal

- Adders:
1x8-bit and 3x18-bit

- Subtractors:
1x18-bit

- Counters:
1x8-bit and 1x12-bit

- MUXs:
648

- Flip-Flops:
736

- Tristates:
2x16-bit and 1x18-bit tristate
buffer

- Clock Buffers:
2

- RAMs:
11xRAM16X1D,
1xRAMB4_S16 and
1xRAMB4_S1_S16

- I/O Pins:
83 ( + 1 Clock Pin)

� CLBs
- Slice flip-flops:

720 / 4707 (15%)
- Used 4-LUTs:

1074 / 4704 (22%)
- Occupied Slices:

838 / 2352 (35%)
- Bonded IOB:

83 / 140 (59%)
- IOB flip-flops:

16 / 140
- GCLKs:

2 / 4 (50%)
- GCLKIOBs:

1 / 4 (25%)

� Clocks
- ClkxCI

• Max. Period: 42.8 ns
• Fanout: 373
• Net Skew: 0.489 ns
• Max Delay: 0.759 ns
• Logic Levels: 18

- InternalClkxC

• Max. Period: 23.3 ns
• Fanout: 62
• Net Skew: 0.493 ns
• Max Delay: 0.763 ns
• Logic Levels: 1
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5.4 Loader on FPGA

5.4.1 System Overview

In addition to the FPGA configuration for the KPNexecution framework there exists
a special configuration of the FPGA device at the moment – the «Loader». This con-
figuration acts as a glue-logic for the loading setup between the IPAQ, the CPLD
and the FLASH device.

The loader consists of two parts: A CPU part which is able to communicate with the
IPAQ over the I/O interface, and a SERIAL part which includes an RS-232 interface.
The RS-232 interface was thought for stand-alone execution of the Slotmanager and
as a debug interface.
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Figure 5-14
Loader on FPGA - DataFlow:
On the left hand side of the fig-
ure the CPU interface, on the
right hand side the interface to
the CPLD is shown. The Loader
is subdivided into 2 functional
parts a CPU and a SERIAL
communication part.
Serial Data is fed through the
CPLD to the RS-232 core; the
data here are evaluated by a
FSM and the data words trans-
ferred back to the CPLD.
For communication with the
IPAQ the internal clock is gen-
erated as described in section
5.2.3. A data word on the tris-
tate bus CPUDataxZD will be
fetched if the CPUAddrxDI has
the value ’0’ and the internal
clock triggers a rising clock
edge.

Figure 5-15
Loader on FPGA - ControlFlow:
The Loader will assert the
«Status Register» to the
CPUDataxZD bus if the address
wires CPUAddrxDI builds the
value “F”. Some flags of the
«Status Register» are connected
to the Leds for visual signalling
to a user.
The loader consists of two FSM.
One for the CPU part and an-
other for the SERIAL part. The
FSM is explained more precise
in sec. 5.4.3 on page 58 and
5.4.4 on page 62.
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5.4.2 Commands (Serial and CPU Protocol)

Synchronisation Word Encoding

COMM_COMMAND_1 C h
COMM_COMMAND_2 A h
COMM_COMMAND_3 F h
COMM_COMMAND_4 E h
COMM_COMMAND_5 A h
COMM_COMMAND_6 F h

Table 5-3: Communication To FPGA:
Synchronisation words which are used in a preamble before the effective commando word or
bitstream will be transferred.

Commando Word for FSM transitions Encoding

COMM_COMMAND_DUMMY 0 h
COMM_COMMAND_RESET 1 h
COMM_COMMAND_MANUFACTURER_ID1 2 h
COMM_COMMAND_DEVICE_ID1 3 h
COMM_COMMAND_SECTOR_PROT_VERIFY1 4 h
COMM_COMMAND_PROGRAM 5 h
COMM_COMMAND_UNLOCK_BYPASS1 6 h
COMM_COMMAND_UNLOCK_BYPASS_PROG1 7 h
COMM_COMMAND_UNLOCK_BYPASS_RESET1 8 h
COMM_COMMAND_CHIP_ERASE 9 h
COMM_COMMAND_SECTOR_ERASE A h
COMM_COMMAND_ERASE_SUSPEND1 B h
COMM_COMMAND_ERASE_RESUME1 C h
COMM_COMMAND_READ_BACK3 D h
COMM_COMMAND_SLAVE_PARALLEL E h
COMM_COMMAND_INTERRUPT2 F h

Table 5-4: Communication to FPGA and CPLD - Command Words:
The commands triggers the FPGA and CPLD FSM and handles finally the FLASH Memory.
COMM_COMMAND_RESET until COMM_COMMAND_ERASE_RESUME are the com-
mands offered by the internally included FSM of the FLASH.
COMM_COMMAND_READ_BACK could be used when a read-back port is foreseen.
COMM_COMMAND_SLAVE_PARALLEL enables the Slave Parallel Interface of the Spar-
tan II to reconfigure the FPGA Configuration. COMM_COMMAND_INTERRUPT will gen-
erate an Interrupt at the CPU Interface.

1 not activated (commented out)
2 not implemented until now
3 not implemented until now - feedback channel not available
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Select Sector Commando Word Encoding Starting Address End Address

0 COMM_SECTOR_0 0 h 00000 h 28C44 h
1 COMM_SECTOR_1 1 h 10000 h 38C44 h
2 COMM_SECTOR_2 2 h 20000 h 48C44 h
3 COMM_SECTOR_3 3 h 30000 h 58C44 h
4 COMM_SECTOR_4 4 h 40000 h 68C44 h
5 COMM_SECTOR_5 5 h 50000 h 78C44 h
6 COMM_SECTOR_6 6 h 60000 h 88C44 h
7 COMM_SECTOR_7 7 h 70000 h 98C44 h
8 COMM_SECTOR_8 8 h 80000 h A8C44 h
9 COMM_SECTOR_9 9 h 90000 h B8C44 h
10 COMM_SECTOR_10 A h A0000 h C8C44 h
11 COMM_SECTOR_11 B h B0000 h D8C44 h
12 COMM_SECTOR_12 C h C0000 h E8C44 h
13 COMM_SECTOR_13 D h D0000 h F8C44 h
14 COMM_SECTOR_14 E h E0000 h 08C44 h
15 COMM_SECTOR_15 F h F0000 h 18C44 h

Table 5-5: Communication to CPLD and FPGA - Select Sectors:
The sector «information» included in a command word enables an address relocation in the
CPLD. As proposed in the table 5-1 on page 33 this scheme is also used for storing multiple
bitstreams on the FLASH.

5.4.3 Loader - 8 Bit Transfer Implementation

The data bus at the IPAQ expansion port has a width of 16-bit. To transfer a new bit-
stream from the IPAQ to the FLASH memory in 16-bit chunks, we have to transfer
these data words over a data bus from the FPGA to the CPLD.

Normally, a data transfer from one to another device requires a (minimal) hand-
shaking or a flagging — like a DataReady or a DataAcknowledge signal. Unfor-
tunately, there are only 16 connections between the FPGA and the CPLD on the
BTNODEFPGA board and there is no possibility to use another communication
channel to the CPLD without affecting the other devices. As a solution we use only
8-bits as a data bus, the other 8-bits are used for inter-device control flow.

During the implementation phase of our system there were some problems with
the complex inter-chip communication. To be sure that the communication from the
IPAQ via the self-made bridge and the FPGA to the CPLD is working, we use an
1 Byte data transfer mode. After assertion of a command and control sequence to
the FPGA only the higher 8-bits of the IPAQ data bus interface is used for bitstream
transfer; the lower 8-bits contain dummy words (the same values as the higher bits).

With this method we have created a «tunnel mode» which allows us to write the new
bitstream from the IPAQ application directly to the CPLD and the FLASH memory
without any data conversion.
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An advantage of this transfer mode is the lax timing. There is plenty of time for the
Flash to finish its writing procedure before a new data word arrives at the input.

5.4.3.1 Communication Protocol

The FPGA acts as a «sender», the CPLD as a «receiver» of the byte stream. The
timing diagram for the sender implementation is figured in 5-17. A detailed imple-
mentation of the receiver in the CPLD is given in section 5.5 on page 66.

5.4.3.2 Synthesis & Routing Data

In the following the implementation data of the FPGA (Loader) after Synthesis with
Xilinx XST and fitting process with Xilinx FIT are listed.
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Figure 5-16
Loader on FPGA: FSM for the CPU Protocol (8 Bit)
The FSM waits in the Idle-state until a 16 bit data word from the IPAQ arrives on CPUDataxZD which
contains the synchronisation sequence “CAFE” (tab. 5-3). If such a word arrives the automata switches to
the COMPhase1234-state. The next data word on the IPAQ↔ FPGA bus should contain two additional
synchronisation half-bytes “AF”, the execution command for the CPLD (tab. 5-4) and the selected sector
if necessary (tab. 5-5). If such a command arrives the FSM will transfer the command and the sector
information to the CPLD.
If the command is COMM_COMMAND_PROGRAM, a transition to the COMPhase5678-state will be done,
otherwise to the Idle-state. In the COMPhase5678- and COMLengthPhase1234-state the length of the
bitstream is fetched from the FPGA, internal counters are reseted and a communication session to the
CPLD is initiated. FetchData and FetchData2 are called BitStreamLength times until the complete
bitstream is transferred to the CPLD and the FLASH memory.
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InternalClkxC

DataHighxS

DataHighAckxA

DataLowxS

DataLowAckxA

BUSxS<7:0>
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Figure 5-17
Data Transfer Protocol
InternalClkxC is the generated clock in the FPGA and only internally used. DataHighxS and
DataLowxS are the communication flags which are transfered from the FPGA to the CPLD device.
The communication channel from the CPLD to the FPGA (DataHighAckxA and DataLowAckxA ) are
not used in this setup.

� fpga_flash_loader
- CPUWritexEBI

• buffer_type = ibuf
• clock_signal = yes

- CPUOutputxEBI

• buffer_type = ibuf
• clock_signal = yes

- InternalClkxC

• clock_signal = yes
- FSM FetchFsmCPUxDP

• States : 6
• Transitions : 12
• Inputs : 6
• Outputs : 6
• Encoding : one-hot

- FSM FetchFsmSERIALxDP

• States : 12
• Transitions : 38
• Inputs : 9
• Outputs : 14
• Encoding : one-hot

� rs232core
- CONSTANTS

• Clockfreq = 18432000
• Baudrate = 115200

- FSM senderstate

• States : 2
• Transitions : 2
• Inputs : 2
• Outputs : 2
• Encoding : one-hot

- FSM receiverstate

• States : 5
• Transitions : 10
• Inputs : 3
• Outputs : 5
• Encoding : one-hot

- shiftreg

• WIDTH = 10
- counter

• WIDTH = 13

� Elements
- Registers:

2x1-bit, 2x4-bit, 1x8-bit, 1x10-
bit, 4x13-bit, 2x16-bit and 2x32-
bit

- Comparator:
4x32-bit comparators greater-
equal

- Subtractors:
1x4-bit and 4x13-bit

- Counters:
2x32-bit

- MUXs:
25x2-to-1 multiplexer

- Flip-Flops:
227

- Clock Buf :
2

- Tristates:
1x16-bit tristate buffer

- IOs:
44 ( + 1 Clock Pin)

� CLBs
- Slice flip-flops:

208 / 4707 ( 4%)
- Used 4-LUTs:

507 / 4704 (10%)
- Occupied Slices:

267 / 2352 (11%)
- Bonded IOBs:

44 / 140 (50%)
- IOB flip-flops:

19 / 140
- GCLKs:

2 / 4 (50%)
- GCLKIOBs:

1 / 4 (25%)
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� Clocks
- ClkxCI

• Max. Period: 26.6 ns
• Fanout: 91
• Net Skew: 0.163 ns
• Max Delay: 0.763 ns

- InternalClkxC

• Max. Period: 13.8 ns
• Fanout: 53
• Net Skew: 0.169 ns
• Max Delay: 0.763 ns

� Timings
- Max. Pin Delay: 9.527 ns

5.4.4 Loader - 16 Bit Transfer Implementation

This implementation was the primary implementation of the data transfer between
IPAQ, FPGA and CPLD.

The throughput to the Flash memory is doubled versus the last proposed transfer
mode: Now, the IPAQ data stream consists of 2 Bytes bitstream data consequently.
The new bitstream has a preamble for the synchronisation with the FSMs, a bit-
stream length and the – raw but snipped – bitstream configuration data. There is
no need to insert dummy bytes.

The lack of bus wires between the FPGA and the CPLD for a 16-bit data transfer
still exists. As a solution we transfer the IPAQ data word from the FPGA to the
CPLD in two 8-bit values with the aid of a four phases handshaking protocol. A four
phase handshaking protocol allows asynchronous and reliable data transfers (see
also section 5.7 on page 76).

The implementation idea is a partial asynchronous data transfer. The «receiver» on
the CPLD is a Moore automata and therefore synchronous with the board clock. The
«sender» is implemented as a Mealy automata — the state transition and output
data depend also on the inputs between clock edges. The corresponding Final State
Machines are shown in these figures: The Moore automata of the Loader on FPGA is
explained in two parts. Figure 5-18 contains the FSM for the CPU communication,
figure 5-21 for the SERIAL communication. The «sender» state machine is sketched
in figure 5-19.

The handshaking protocol is implemented with four command lines between the
devices: DataHighxS and DataLowxS signal new and valid data words (8-bit) on the
data bus BUSxDto the CPLD. The receiving of these words are acknowledged with
the DataHighAckxA and DataLowAckxA signals. The timing diagram is shown in
figure 5-20.
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Figure 5-18
Loader on FPGA: FSM for the CPU Protocol (16 Bit)
The FSM waits in the Idle-state until a 16 bit data word from the IPAQ arrives on CPUDataxZD which
contains the synchronisation sequence “CAFE”. If such a word arrives the automata switches to the
COMPhase1234-state. The next data word should contain two additional synchronisation half-bytes
“AF”, the execution command for the CPLD and the selected sector if necessary. If such a command
arrives the FSM will transfer the command and the sector information to the CPLD.
If the command is COMM_COMMAND_PROGRAM, a transition to the COMPhase5678-state will be done,
otherwise to the Idle-state. In the COMPhase5678- and COMLengthPhase1234-state the length of the
bitstream is fetched from the FPGA, internal counters are reseted and a communication session to the
CPLD is initiated.
The Mealy «sender» FSM will be activated if the FSM reaches the FetchData-state. The bitstream data
items will be received BitStreamLength /2 times and – controlled by the «sender» FSM – transferred
to the CPLD.
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Figure 5-19
Loader on FPGA: Mealy au-
tomata for data sender
This Mealy automata controls
the data transfer from the
FPGA to the CPLD device. In
the initial Idle-state there is
no valid data word at the
data bus and the two con-
trol signals are on low level
’0’. If the Mealy FSM is en-
abled by the CPU FSM with the
MealyFSMCPUxEtransition the
automata switchs to the Com-
munication-state. The output of
this state depends on the ac-
knowledge signals and as a last
transition — DataLowAckxA =
’1’ — the automata resets itself
back to the Idle-state.

InternalClkxC

DataHighxS

DataHighAckxA

DataLowxS

DataLowAckxA

BUSxS<7:0>
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Figure 5-20
Transfer Protocol
Transfer of two 8-bit values in only one InternalClk high phase with the aid of a four phase handshak-
ing protocol. The transferred bytes are symbolised by D0 . . . D5.
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Figure 5-21
Loader on FPGA: FSM for the SERIAL Protocol
Analogically to the FSM receiving the IPAQ data the SERIAL FSM receives data from the implemented
RS-232 interface. Different to the CPU FSM (as explained in fig. 5-18) is that the transmitted serial data
are 8-bit; therefore all FSM states need a “second” state, the FSM is clocked by the board oscillator and
the Mealy FSM is not needed for the communication. All control signals are generated by Moore states.

65



Chapter 5: Detailed Implementation

5.5 CPLD Design

A CPLD device keeps its functionality at loss of power because the configuration
will be stored in internal EEPROM. Usually, CPLD are used as «glue-logic» between
multiple hardware devices. In contrast to the SRAM based Xilinx FPGAs they can’t
be reconfigured at runtime.

This behaviour is very useful for a reconfigurable design: The CPLD contains a Final
State Machine which handles the FLASH, the FPGA communication protocol and
— as the main application — the reconfiguration process of the FPGA. Doing a re-
configuration causes an information loss of all internal states in the FPGA (flip-flop,
BlockRAM etc.), so it isn’t feasible to do the rewriting without a second «controlling
device».

5.5.1 Application of the CPLD

We use the CPLD for initiating the «slave parallel» reconfiguration mode of the
Xilinx SPARTANTM II device, generating addresses and transferring the data from
the Flash memory and controlling the end of the reconfiguration process and finally
the startup process.

The communication protocol between the FPGA and the CPLD is kept simple. The
16-bit bus between the devices is splitted in a 8-bit data bus and a 6-bit for control
flow (1 reset, 1 new command, 4 data transfer) and 2-bit feed-through wires for the
RS-232 interface.

• New Command: A new command (fig. 5-22-a) is initiated by a high
FpgaCpldCommandxS signal level. At the same time the command data word
is asserted to the FpgaCpldBUSxD .

• Data Transfer: The data transfer — for program a new bitstream into the
Flash — is implemented as a unidirectional transfer from FPGA to CPLD.

After we assert the new command, the data words are transferred by a «push-
ing protocol» using the FpgaCpldDataHigh and FpgaCpldDataLow signal
(fig. 5-22-b). The data are transferred in the first phase (FpgaCpldDataHigh
is high), in the second phase they are used for state transitions in the CPLD
FSM.

In the second implementation of the loader (see also sec. 5.4.4) a 16-bit data
word of the IPAQ is transferred in 2 x 8-bit values per InternalClk cycle.
In this mode the CPLD part is strictly synchronous (Moore FSM), but the
FPGA part of the implementation has asynchronous transitions (Mealy FSM).
To handle this asynchronous data transfer a 4 phase handshaking protocol is
implemented. Additional to the FpgaCpldDataHigh and FpgaCpldDataLow
signals two acknowledge wires – «ACKs» – FpgaCpldDataHighAck and
FpgaCpldDataLowAck are used for transitions.

• RS-232 Transfer: To use the BTNODEFPGA board without having a IPAQ or
to have a «fall-back mode» for debugging, the loader implementation contains
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a RS-232 mode. Because the IPAQ bridge is still connected in the debug mode,
the FPGA I/O pins are all taken.

As a communication channel we use the «UC»-interface of the CPLD and feed
the serial signal wires through the device to the inter-device bus. The RS-232
doesn’t influence the CPLD behaviour. The data transfer is displayed in the
fig. 5-23.

ClkxCI

CommandxSI

DataHighxSI

DataLowxSI

BUSxD<7:0>
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5-22-a Command Transfer
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5-22-b Flash Data Transfer

Figure 5-22
CPLD Commands: Command & Data Transfer

ClkxCI

Rs232TXxDI

Rs232RXxDO
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0 1 0 0 1

Figure 5-23
RS-232 data transfer through the CPLD:
The interface is only feed through to the inter-device bus and to the FPGA. The RS-232 data do not
influence the CPLD. As shown in the figure, the serial clock is quite different from the clock oscillator
(0.115 MHz versus 18.432 MHz).
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5.5.2 Final States Machine
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Figure 5-24
CPLD - FSM as used in the 8-bit mode.
The FSM stays in the initial Idle-state until the Flash memory on the board is in the ready state. After-
wards, the commands of the FPGA (IPAQ) or the host computer connected via RS-233 are interpreted.
The FSM is listen to the inter-chip communication until a new command and sector is applied in the
FetchCommand-state. The new command is analysed in the AnalyzeCommand-state which consists of
a jump table.
The ChipHardReset-state and the ChipSoftReset-state reset the internal Flash Final State Machine to
its initial – reading – state. The complete Flash is erased in the ChipErase-state: The Flash memory al-
ways needs an erasing procedure — setting all bits to the high level ’1’ — before the memory can be pro-
grammed by discharging the desired bits to low level ’0’. Erasing is also possible in sectors of 64 kBytes.
This mode is performed in the SectorErase-state. The programming procedure will be done in the Pro-
gramFlash-state – exactly, in 20 sub states looped for bitstream-length times (i.e. 166’980 times). The
addresses of the Flash – with the stored bitstream – are selected by the «selected sector» command. The
SlaveParallel-state initiates the reconfiguration process of the FPGA. One of the available bitstreams
in the Flash memory is selected and loaded via the slave parallel mode.
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5.5.3 Synthesis & Routing Data

Data-sheet of the CPLD after Synthesis with Xilinx XST and fitting process Xilinx
FIT . The implementation data include the Sector Erase functionality of the FSM.
All asynchronous inputs are directly connected to a synchroniser as proposed in
section 5.7.

� Statemachine FlashFSM
• States: 70
• Transition: 86 FIXME
• Inputs: 29 FIXME
• Outputs: 31 FIXME
• Encoding: Gray Encoding
• Register: T flip-flops

� Tristates
• FlashAddr:

20-bit tristate buffer
• FlashData:

8-bit tristate buffer

� Elements
• ROM (Sector):

16x40-bit ROM (Sector Select)
• Register:

2x4-bit, 7-bit, 2x20-bit
• Comparator:

2x20-bit comparators
• Counters:

4-bit, 8-bit, 2x20-bit and 29-bit
• Flip-Flops:

200
• IO:

61 ( + 1 Clock Pin)

� Macrocell
• used:

202 / 384 (53%)
• product terms:

711 / 1344 (53%)
• registers used:

122 / 384 (32%)
• pins used:

62 / 114 (55%)
• inputs used:

642 / 960 (67%)

� Timings
• Min. Clock Period:

38.400 ns
• Max. Clock Frequency:

26.042 MHz
• Clock to Setup:

38.400 ns
• Pad to Pad Delay:

12.000 ns
• Setup to Clock at the Pad:

3.000 ns
• Clk Pad to Output Pad Delay:

45.800 ns
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5.6 Scan Chain

This section describes an idea and implementation of saving the internal states of
an user task. Similar in concept to the flip-flop scan chains for VLSI designs, the de-
veloped technique includes all or a specified selection of the flip-flops in serial chain
at FPGA logic level. The scan chain can be inserted after design implementation
(post-synthesis) and is in that case independent from users knowledge about the
execution environment.

5.6.1 Introduction

A main problem to be solved when a task switch occurs is to retain information of
the running task. The current state should be fetched and saved for a restore at the
next instantiation.

There are several approaches to address this problem:

1. The «cheapest» solution of this problem can be used if the function of the task
doesn’t depend on the last internal states or just from the initial state. In this
case the internal states of the process don’t need to be saved and no further
actions are needed.

2. One possible solution is that the designer knows the execution environment
of the user task and explicitly uses a memory structure like a FIFO, a Block-
RAM or an external memory cell for state saving and reloading. When a task
switch occurs, the task stores to this memory in the «destructor». When the
task is reloaded in the execution environment the states are reloaded by the
«constructor». Figure 5-25 sketches such a environment.

Figure 5-25
User Task saves his internal state ex-
plicitly to an external memory cell (i.e.
FIFO or BlockRAM)

3. Another solution, is the implementation of a «scan chain» adapted from an
idea for circuit verification in VLSI designs. The implementation of a scan
chain builds a large linear shift register containing all (or selected) task flip-
flops and adds a second operation mode - the shift mode - besides the first
operational mode.

The execution environment needs a memory for state saving as mentioned in
the previous solution but in this proposal the scan chain can be inserted in the
net-list after synthesis. The designer of the task doesn’t have to know about
the existence of such a state saving functionality.
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A further advantage is that the memory cells could adaptively be instantiated
depending on the length of the scan chain and that the shift duration can be
recognised by the chain generation process.

4. Usually, a FPGA contains — like every VLSI chip — a test verification struc-
ture (like a built in self test (BIST) or scan chain) but for user application they
are deactivated or not available. As an alternative some devices allow to read
back the actual configuration via JTAG interface. Such a bit-stream contains
initial values of LUTs, contents of flip-flops or internal RAM structures and is
available at Xilinx SPARTANTM II [34] or at Xilinx VIRTEXTM [35] devices. A
drawback of this method is, that the read-back needs a special configuration in
the design flow and that the internal states only could be analysed and stored
on a computer, not in a execution environment on the FPGA.

5. Another «read back function» is the instantiation a component which allows
an access to the internal configuration access port on FPGA. Such an element
exists on the Xilinx VIRTEXTM II devices (Element: ICAP_VIRTEX2). With
the ICAP element it is possible to fetch the states of selected FPGA elements
as done in [5].

We have chosen to implement a scan chain cause of the following advantages:

The task designer doesn’t need to know about the state saving functionality; the
states can be saved directly in the task execution environment (i.e. to a BlockRAM)
by a FSM and no further processing on a host computer is needed. The interface is
kept very easy as we will see in the next sections. The memory size and the duration
of the whole task switch can be determined by a scan chain generation script.

In section 5.6.2 the original idea of the scan chain in VLSI designs is presented.
A proposed paper and the differences in our design is written in section 5.6.3. The
implementation of the scan chain in the Xilinx SPARTANTM II FPGA is shown in
section 5.6.4.

5.6.2 Scan Chain in VLSI designs

In VLSI designs the common approach is to simulate the design at multiple levels for
validating the hardware design (behavioural model written in a high level language,
behavioural simulation of a HDL, post-synthesis simulation) because there is a very
high observability and controllability. Observability refers to the ability to access all
internal state of the circuit; controllability is the ability to modify the run-time state
of the circuit.

After fabricating the design as a chip the mentioned advantages will be lost if no
specialised test structures are foreseen (design for testability). In the ideal case the
hardware execution should provide approximately the same level of observability
and controllability as a software simulator. Two essential methods are known:

• Built In Self Test (BIST): Test structure which tests a part of the chip itself (at
startup sequence or during running state) and signals the result of this test to
the system (normally used for memory cells)
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• Scan Chain: Test structure which connects all flip-flops instances of a chip
as 1 bit linear shift register for production failure (ATPG, stuck-at-tests) and
functional tests (observability and controllability of internal states)

These capabilities should be provided automatically by the design tools:

For scan chain insertion the used flip-flops are replaced by their scan-able coun-
terpart ((2:1 MUX in front of D-input) and assembled into N chains, where N is
typically 2 <= N <= 64). ATPG vectors are automatically generated by improved
tools able to interpret synthesised net-lists and to produce sequences of test vectors
which should trigger each wire and element at least one time at low level another
time at high level.

5.6.3 Scan Chain in FPGAs and Related Work

The idea of using the well-known scan chain from VLSI hardware designs to in-
crease FPGAs observability and controllability has been investigated by Wheeler et
al. in [29]:

Further the benefits and area/speed costs of a scan chain in FPGA designs are listed
in the paper of Wheeler et al:

1. The FPGA does not require any special capabilities to implement design-level
scan - it can be added to any user design in any FPGA.

2. The amount of data scanned out of the circuit is much smaller and easier to
manipulate than for configuration read-back bit-streams, since scan bit-stream
contains only the desired circuit state information.

3. Determining the position of signal values in the scan bit-stream is straightfor-
ward since it is easy to determine the order in which the memory elements are
arranged in the scan chain.

4. Scan allows the state of the circuit to be set to known values.

5. Scan Chain insertion can be done automatically by script.

The biggest downside to scan is the large area and speed penalty it causes. Scan
chains in VLSI designs requires an area overhead of 5-30%. The area overhead of a
scan chain in FPGA designs costs additional 66-130% in area overhead on average.
Adding scan logic reduces the speed of circuit by 20% on average.

Different from the proposed approach from Wheeler [29] we use the scan chain not
to increase the observability or controllability, but we use the instrument of a scan
chain for shift in and out the state of some flip-flops. The overhead of the chain could
be reduced by only selecting the necessary flip-flops (i.e. special name given (like
SaveStateFSMxDP)). For writing the user task we prefer VHDL or Verilog which
are compatible with our tool-flow in contrast to the used JHDL [6] in the Wheelers
paper.
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5.6.4 Scan Chain Implementation

The «scan chain» is 1-bit-wide Linear Shift Register (LSR) wiring the memory ele-
ments such as flip-flops, so that the state bits contained in these elements exit the
circuit serially through the Scan Out pin whenever the Scan Enable control signal is
asserted. New state data for the FPGA enters the circuit serially on the Scan In pin.
When Scan Enable is deasserted, the circuit returns to normal operation.

5.6.4.1 Design Primitives

FPGA flip-flops can be inserted into a scan chain by simply attaching a multiplexor
(MUX) before the data input of the FF and a MUX (or logic gates) in front of the
Enable pins.

Figure 5-26
Modifying a FlipFlop for scan:
Adding two MUX in front of the
Data Input and the FlipFlop En-
able.

The Scan In signal in the figure 5-26 is the Scan Out from the previous FF in the
scan chain. The Scan Out becomes the Scan In for the next storage cell in the chain.
Thus when the signal Scan Enable is asserted, the memories in the circuit form a
single-bit-wide shift register; when Scan Enable is deasserted the circuit resumes
normal operation. While Scan Enable is asserted, the FF must be enabled and allow
its bit to be shifted out. The multiplexor and the constant true value in front of the
Enable input serve this purpose.

In the worst case the area overhead for replacing the normal flip-flops with this
scan-able FF is two MUXes (in the Xilinx SPARTANTM II architecture implemented
with a 2-LUT and a 3-LUT). In many real world instances, the two MUX can be in-
cluded in the (empty) LUT in front of a FF or can be merged with the combinational
logic for Data Input.

5.6.5 Tool Flow

The scan chain generation is done with a tool-chain consisting of several scripts: The
Xilinx synthesis tool (XST) generates a compressed net-list format usually called
NGC. To modify this net-list we need to transform it to EDIF (ngc2edif ), which is
also the output of Synplicity Synplify. Afterwards we transform the EDIF net-list to
an XML format for tree parsing (DOM - Tree) and modify the tree with elaborated
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Figure 5-27
Concept: Scan chain with two connected
scan-able flip flops.

Figure 5-28
Concept: In the scan mode some flip-
flops are directly connected (Output Q
–> Input D), any combinational logic is
missing. Often the sequence (i.e. counter)
is another than in non-scan operation
but the order doesn’t matter in this
mode.
In the User Task three additional pins
are added: two Inputs Scan In and Scan
Enable and one Output Scan Out.

Figure 5-29
Realisation of the scan chain with a Xil-
inx SPARTANTM II LUT2 and a LUT3
element.
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tools Edif2XML . Modify_improved replaces all flip flops by a version with a «en-
able» which is a requirement for the following scan chain insertion; the chain is in-
serted by Modify_ScanChain . The modified net-list needs to be back-transformed
from the XML format to EDIF XML2Edif for the following translation step.

Figure 5-30
Tool-flow: Insertion of a ScanChain in
an already synthesised design.

5.6.6 Conclusions

The proposed and implemented scan chains allow to store internal states of a task in
an execution environment without special FPGA elements. The routing and speed
overhead is not neglectable but any other method (without the explicit saving) has
similar drawbacks.

5.7 Acquisition of Asynchronous Data - Handshak-
ing

5.7.1 Acquisition of a single input signal

The final state machines of an implementation needs stable input signal during the
setupTime of the state transitions. To avoid illegal states – brief glitching – of the
FSM all asynchronous input signals need a synchroniser! The «synchroniser» should
consist of one additional flip-flop at least. We use always a stage of 2 flip-flops as
proposed in [19].

We underestimate this design rule and as a consequence we had several weeks to
debug the CPLD design of the «Loader» (the FlashReady signal of the FLASH device
was totally asynchronous to the CPLD clock).
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5.7.2 Acquisition of vectored input signals

Multiple chip designs normally have problems with acquiring vectored data because
of the data is changing in the first device during the setup time of the flip-flops in
a second device [19]. One solution for data transfer between clock boundaries is to
use a handshake protocol.

Handshaking excludes inconsistent data words from ever being admitted into the
receiving circuit. The main idea is to avoid sampling the input while it might be
changing. Instead, the updating and the sampling of the data vector get coordinated
by observing a handshake protocol (with multiple FSMs) that involves both the pro-
ducing and the consuming subsystems.

Full handshaking is essentially symmetrical and requires two control lines, termed
request REQand acknowledge ACK.

In the application design of the BTNODEFPGA a handshaking protocol with four-
phases (return-to-zero (RZ)) is used for the communication between FPGA and
CPLD. The reason for using such a handshaking protocol is the construct and gen-
eration of the «internally clock» from IPAQs WriteEnable, OutputEnable and
ChipSelect signals. In the worst case the data (commands and bitstream data)
in the InternalClk -Domain in the FPGA will be changing during the setupTime
of the FSM in the CPLD.

As a solution a REQ- ACKprotocol completed with two synchroniser is implemented
in the FPGA as well as in the CPLD. The suggestion from the lecture script [19] is
implemented, as can be seen in the figures 5-31, 5-32 and 5-33

5.7.3 Metastability at Clock Boundaries

Data sheets describe the logic behaviour of bistable such as flip-flops by the way of a
truth table. The desired data retention of flip-flops is essentially obtained from cross-
coupling two inverting amplifiers. In between the two stable equilibrium points that
reflect the binary state ’0’ and ’1’ respectively, there necessarily exists a third and
unstable equilibrium point. Marginal triggering implies bringing a bistable close to
that point and leaving it to recover. The bistable is then said to hand in an evanes-
cent metastable state as shown in figure 5-34

Solution: As a cooking receipt a design with two flip-flops in series will stop the
metastability in most of the cases.
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Figure 5-31
Handshaking over Clock Boundaries
In the upper part the two final state machines are shown handling the handshaking protocol with their
REQs and ACKs and the enable strobes of the receiving flip-flops. The bits of the data vector could be
received without timing-driven changes, because the data word is valid for three clock periods at least.

Figure 5-32
Handshaking over Clock Boundaries: Protocol
In the upper part the clock boundary of the producer, in the lower part the clock boundary of the con-
sumer with their rising clock edges are shown. The small circle represents the point of time when the
high logic level is recognised by the other device. In this four-phased scheme the transferred data are
valid only in the light grey shadowed regions.
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4

Bus Synchronization

Obvious approach is to use single signal
synchronizers on each bit
WRONG!
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SIG[0]

CLK

CLK

SIG[1]
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Handshaking is the Answer
Need a single point of synchronization for the
entire bus
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ACK

REQ

Hand
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FSM
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FSM
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DQDQ

2SIG
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CLK1 CLK2
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Handshaking Rules

Sender outputs data and THEN asserts REQ
Receiver latches data and THEN asserts ACK
Sender deasserts REQ, will not reassert it
until ACK deasserts
Receiver sees REQ deasserted, deasserts ACK
when ready to continue

CLK

SIG[1:0]

ACK

REQ

Alternate Handshaking Scheme
Previous example is known as 4-phase
handshaking
2-phase (or edge based) handshaking is also
suitable

$ Sender outputs data and THEN changes state of
REQ, will not change state of REQ again until after
ACK changes state.

$ Receiver latches data.  Once receiver is ready for
more it changes state of ACK.

2-phase requires one bit of state be kept on
each side of transaction.  Used when FFs are
inexpensive and reliable reset is available.

Figure 5-33
Handshaking over Clock Boundaries:
Synchronisation Howto
Action and Event Diagram

Figure 5-34
Metastability Wave in CMOS
Technology and their resolution
in time to the known logic level
0 or 1. SIG* is the logic level be-
fore the first flip-flop, the META
signal is in-between the to flip-
flops and SIG is the output sig-
nal after the synchroniser.
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5.8 Kahn Task Template

The figure 5-35 and the listing 5-12 show the Task Template in VHDL. Custom-
Led2xSO and CustomLed3xSO can be used.

Figure 5-35
Task Template: Structural
Overview
The upper part of the entity
has to be implemented by the
user. The lower part (enable all
flip-flops and scan chain) could
be generated automatically
by a Perl-script or explicitly
programmed by the user.
The signals CustomLed2xSO
and CustomLed3xSO are direct
connected with the FPGA-Leds
2 and 3 of the BTNODEFPGA -
Board and can be used to sig-
nal some status information to
the user.

entity task is
port (

ClkxCI : in s td_ l og i c ; −−Clock
RstxRBI : in s td_ l og i c ; −−Reset
PortIDxDO : out PortIDType ; −−Port ID
PortReadxSO : out s td_ l og i c ; −−Request: Read from Port
PortWritexSO : out s td_ l og i c ; −−Request: Write to Port
PortReadWriteAckxEI : in s td_ l og i c ; −−Ack: Read / Write Req
PortDataInxDI : in s td_ log i c_vec tor (15 downto 0 ) ; −−Data In
PortDataOutxDO : out s td_ log i c_vec tor (15 downto 0 ) ; −−Data Out
ScanChainInxDI : in s td_ l og i c ; −−Scan Chain In
ScanChainOutxDO : out s td_ l og i c ; −−Scan Chain Out
ScanChainxEI : in s td_ l og i c ; −−Scan Chain Enable
FlipFlopxEI : in s td_ l og i c ; −−General FlipFlop Enable
CustomLed2xSO : out s td_ l og i c ; −−Custom LED for Task
CustomLed3xSO : out s td_ l og i c −−Custom LED for Task

) ;
end task ;

Listing 5-12
Task Entity of the VHDL Task Template

5.9 IPAQ Program

The IPAQ tool is a Windows CE program written in C++ and running in the com-
mand line modus offered by the shell. The program is the counterpart to the FPGA
Loader on the BTNODEFPGA — it acts as a «Data Streamer».

The «Data Streamer» reads modified and stored bitstreams on the IPAQ file system
and writes them in 16-bit data chunks to the extension bus. The bitstreams are read
in the Streamer with a “looped” file read function until the end-of-file occurs.
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A graphical user interface for the Streamer is not implemented so far.

The IPAQ data streamer uses a library («UserSpace Driver» developed at TIK) for
communicate to the FPGA via the connected extension port.

The mentioned driver maps the expansion port (data and control flow) to a memory
mapped region in the main memory and offers reading and writing function from
and to this sector. The «block transfer mode» of the interface allows to transfer mul-
tiple data items with one command. Consequently, the throughput is much higher
than calling the writing procedure in a loop multiple times.

For debugging reasons we use the more lax timing by calling the write function in a
loop in the «Data Streamer» application.

A deeper and more detailed insight in the program is given in the doxygen output
in the appendix section B.

5.10 Toolflow

5.10.1 Bitstream Generation

1. Create a new Task: Kahn Process Networkare normally used for data streaming
applications and our framework is optimised for such tasks. The first step is to
design a new task with such a behaviour.

2. Translate the design idea to a hardware description language. Available and
used languages are VHDL or Verilog. Use the VHDL Task Template (sec. 5.8)
as the top entity of the task or as a data wrapper for data transfers.

3. The scan chain can be inserted by a separate toolflow as described in section
5.6.5. Before the chain could be inserted, a netlist has to be generated by Xilinx
XST .

4. If the task has rather hard area or timing constraints, compile the stand-alone
task with Synplicity Synplify Pro as described in section 6.4.

5. Connect the user task with the task wrapper of to the slotmanager. Keep cau-
tion on the reset polarity and the reset pin configuration – the reset button is
feed-through from CPLD in the current design.

For insert the task in the framework, the following methods are possible:

• Integrate the adapted VHDL Task Template in the Project Navigator.

• A Verilog File with the same connectivity as the VHDL template could be
inserted in the Project Navigator.

• Integration of a EDIF netlist: The task as a EDIF netlist will be integrated
in the ISE flow, but the netlist will not appear in the Project Navigator.
For the integration with the current tools, it is necessary that the EDIF
netlist is located in the same directory as the Project file (.npl ). The EDIF
netlist will be integrated in the translate-step.
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6. Activate the option set unused pins to: float in the ISE FPGA imple-
mentation flow:

In the properties of Generate Programming File there is a «tab» with
Configuration Options . The last but one option Unused IOB Pins
change the option from Pull Down to float .

This is necessary to donŠt affect the FLASH address and data bus by unused
FPGA pins.

7. Run the implementation flow for FPGA configurations: Synthesis, Translate,
Map, Place & Route, Generate Bit File

8. The bitstream can be uploaded to the BTNODEFPGA board by the JTAG
boundary-scan interface of Xilinx Impact , but usually we like to reconfigure
the BTNODEFPGA board by the IPAQ.

9. Modify the generated bitstream (.bit file) with bistreambuilder.pl to obtain a
programmable form for our framework with and on the IPAQ. The operation
modes of the program is explained in the appendix C.1 on page 148.

10. Upload the modified bitstream to the IPAQ with the Microsoft Active Sync
Tool. The default directory for the Windows CE program and new bitstreams
is the folder «bitstreams».

11. The Windows CE Program «DataStreamWriter.exe» can read and stream-out
modified bitstreams. In the current implementation the names of the bit-
streams are hard-coded as could be seen in sec. B — a GUI for our Streamer
on the IPAQ would be nice.

5.10.2 Modifying of Bitstream

In brief, a short overview how a FPGA configuration bitstream is modified.
Original Bitstream Modified Bitstream

. . . . . . . .

. . . . . . . . CA FE AF 5x Additional Synchronisation Word

. . . . . . . . xx xx xx xx Length of Bitstream ( Bytes )
FF FF FF FF FF FF FF FF Synchronisation Word 1
AA 99 55 66 AA 99 55 66 Synchronisation Word 2

00 00 00 00 Additional Synchronization Word
30 00 80 01 30 00 80 01 First Real Data
. . . . . . . . . . . . . . . .
30 00 00 01 30 00 00 01 Write To CRC
xx xx xx xx xx xx xx xx CRC Value
. . . . . . . . . . . . . . . .
30 00 80 01 30 00 80 01 Write next 4 Bytes to CMD Register
00 00 00 05 00 00 00 05 Begin Start−Up Sequence
. . . . . . . . . . . . . . . .
30 00 00 01 30 00 00 01 Final Write To CRC
xx xx xx xx xx xx xx xx Final CRC Value
00 00 00 00 00 00 00 00 16 zero Bytes for Slave Paral le l
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

Listing 5-13
Modified Bitstreams
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6.1 Possible Applications

In generally, Kahn Process Network are well suited for streaming and signal process-
ing applications. Examples of these classes are audio- and video processing opera-
tions (like encoding, decoding or applying of filters), cryptography (like symetrical
encryption of a data stream) or dataflow operations in generally (like packing or
subdividing of a datastream into packets).

Our platform with the implemented «Kahn Hardware Task» execution unit is proper
for high performance computation task which will calculate the all-up function
faster in hardware than in software. As an example we would like give an short
overview of the AES encryption:

Data will be encrypted in several computation «rounds» which mostly con-
sists of several multiplications and feed-backs of the current «states». General
Purpose Processors usally have one or two multiplication units with several
cycles of latency in the most cases.

By implementing AES in hardware several hardware multiplier could be in-
stanciated in parallel. The state feed-back could be implemented by a feed-
back path. If in the hardware implementation is piplelined in each clock cycle
a new data token could be encrypted.

Other examples in the class «faster in hardware» would be:

• symetrical encryption: DES, AES

• check-sums: CRC32, MD5

• image processing: filters like erosion, dilution

Additionally, there exist a plenty of applications having computation steps which
could be runned in parallel – and therefore also faster executed on a FPGA.
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• bit-pattern matching (image processing, processing of internet data streams)

• filters (FIR-Filter, gauss filter for vision)

Figure 6-1
Application: Cipher encoding in HW

Figure 6-2
Application: Pattern recognition in Mobile NetFlow Data
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Figure 6-3
Application: Pattern recognition on scanned or photographed images
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6.2 Example Cores inclusive Performance

6.2.1 AES Core - encoding and decoding

Design http://www.opencores.org/cores/aes_core/
http://www.asics.ws

Author Rudolf Usselmann, rudi@asics.ws

Language
of Design Verilog
of Wrapper VHDL

Testbench included with reasonable test vectors

Docu included with overview, block schema, timing diagrams

Table 6-1: AES Core Datas

6.2.1.1 Behaviour

This implementation is with a 128 bit key expansion module only.

AES

The AES cipher core consists of a key expansion module, an initial permutation
module, a round permutation module and a final permutation module. The round
permutation module will loop internally to perform 10 iteration (for 128 bit keys).

Inverse AES

The AES inverse cipher core consists of a key expansion module, a key reversal
buffer, an initial permutation module, a round permutation module and a final per-
mutation module.
The key reversal buffer first stores keys for all rounds and then presents them in
reverse order to the inverse cipher rounds.
The round permutation module will loop internally to perform 10 iteration (for 128
bit keys).

6.2.1.2 Throughput

The forward cipher block can perform a complete encrypt sequence in 12 clock cycles
(10 cycles for the 10 rounds, plus one cycle for initial key expansion, and one cycle
for the output stage).
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The inverse cipher block can perform a complete decrypt sequence in 12 cycles 10
cycles for the 10 rounds, plus one cycle for initial key loading, and one cycle for the
output stage).

The inverse cipher, however, requires that the key is loaded before decryption can be
performed. This is because it uses the last expanded key first and the first expanded
key last. Once the key has been loaded, the expanded versions are generated and
stored in an internal buffer.

Additional 8 cylces (128Bit
16Bit ) are necessary cause of input and output datawidth of the

Wrapper.

12 Cycles (AES) + 2 ∗ 8 Cyles (Input,Output) = 28 Cylces

With a used clock of 18.432 MHz:

18.432.000 Hz ∗ 2 Bytes/28 = 1.316.000 MByte/s

Communication-Overhead: Communication / Algorithm

16 Cylces/12 Cycles = 4/3 = 1.333(!)

6.2.1.3 Encoder

synthesis done with Synplify Pro
Frequency , Slack :
=================

Requested Estimated Requested Estimated
Starting Clock Frequency Frequency Period Period Slack
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
slotmanager|ClkxCI 19.0 MHz 34.4 MHz 52.632 29.069 23.563
InternalClk 19.0 MHz 33.7 MHz 52.632 29.712 22.919
============================================================================

Elements
========

Register b i t s not including I / Os : 1338 (38%)

Internal t r i−state buffer usage summary
BUFTs + BUFEs: 256 of 1728 (14%)

RAM/ROM usage summary
Dual Port Rams (RAM16X1D_1 ) : 10
32x1 ROMs (ROM32X1) : 488
Block Rams : 12 of 14 ( 86%)

Global Clock Buffers : 2 of 4 (50%)

Mapping Summary:
Total LUTs: 3321 (96%)
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map done with Xilinx map
Logic Ut i l i za t i on :

Number of S l i ce Flip Flops : 1 ,338 out of 4 ,704 28%
Number of 4 input LUTs: 2 ,251 out of 4 ,704 47%

Logic Distr ibution :
Number of occupied Sl i ces : 2 ,026 out of 2 ,352 86%
Number of S l i ces containing only related l o g i c : 2 ,026 out of 2 ,026 100%
Number of S l i ces containing unrelated l o g i c : 0 out of 2 ,026 0%

Total Number 4 input LUTs: 3 ,288 out of 4 ,704 69%
Number used as l o g i c : 2 ,251
Number used as a route−thru : 41
Number used for Dual Port RAMs: 20
(Two LUTs used per Dual Port RAM)
Number used as 16x1 ROMs: 976

Number of bonded IOBs : 83 out of 140 59%
Number of Tbufs : 256 out of 2 ,464 10%
Number of Block RAMs: 14 out of 14 100%
Number of GCLKs: 2 out of 4 50%
Number of GCLKIOBs: 1 out of 4 25%

Total equivalent gate count for design : 290 ,454
Additional JTAG gate count for IOBs : 4 ,032

place and route done with Xilinx par
Device u t i l i z a t i o n summary :

Number of External GCLKIOBs 1 out of 4 25%
Number of External IOBs 83 out of 140 59%

Number of LOCed External IOBs 83 out of 83 100%

Number of BLOCKRAMs 14 out of 14 100%
Number of SLICEs 2026 out of 2352 86%

Number of GCLKs 2 out of 4 50%
Number of TBUFs 256 out of 2464 10%

+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−−+
| Clock Net | Resource | Fanout |Net Skew( ns )|Max Delay ( ns )|
+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−−+
| ClkxCI_c | Global | 783 | 0.512 | 0.774 |
+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−−+
|cpucommunication_1 / | | | | |
| internalc lkxc | Global | 52 | 0.501 | 0.763 |
+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−−+

The NUMBER OF SIGNALS NOT COMPLETELY ROUTED for this design i s : 0

The AVERAGE CONNECTION DELAY for this design i s : 2.966
The MAXIMUM PIN DELAY IS : 10.397
The AVERAGE CONNECTION DELAY on the 10 WORST NETS i s : 8.761

List ing Pin Delays by value : ( nsec )

d < 2.00 < d < 4.00 < d < 6.00 < d < 8.00 < d < 11.00 d >= 11.00
−−−−−−−−− −−−−−−−−− −−−−−−−−− −−−−−−−−− −−−−−−−−− −−−−−−−−−

5088 6474 3193 858 87 0

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Constraint | Requested | Actual | Logic

| | | Levels
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

NET " ClkxCI_ibuf /IBUFG" PERIOD = 54.253 | 54.253ns | 36.119ns | 10
nS HIGH 50.000000 % | | |

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
NET "CPUOutputxEBI" PERIOD = 400 nS LO | N/A | N/A | N/A
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W 120 nS | | |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

NET "CPUWritexEBI" PERIOD = 400 nS LOW | N/A | N/A | N/A
120 nS | | |

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
TS_ClkxCI = PERIOD TIMEGRP " ClkxCI " 52.6 | N/A | N/A | N/A
32 nS HIGH 50.000000 % | | |

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
OFFSET = OUT 52.632 nS AFTER COMP "ClkxC | 52.632ns | 34.226ns | 14
I " | | |

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
OFFSET = IN 52.632 nS BEFORE COMP "ClkxC | 52.632ns | 13.173ns | 2
I " | | |

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

6.2.1.4 Decoder

synthesis done with Synplify Pro
Frequency , Slack :
=================

Requested Estimated Requested Estimated
Starting Clock Frequency Frequency Period Period Slack
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
slotmanager|ClkxCI 19.0 MHz 33.3 MHz 52.632 30.043 22.588
InternalClk 19.0 MHz 35.6 MHz 52.632 28.104 24.527
============================================================================

Elements
========
I /O Register b i t s : 0
Register b i t s not including I / Os : 1475 (42%)

Internal t r i−state buffer usage summary
BUFTs + BUFEs: 256 of 1728 (14%)

RAM/ROM usage summary
Dual Port Rams (RAM16X1D) : 128
Dual Port Rams (RAM16X1D_1 ) : 10
32x1 ROMs (ROM32X1) : 488
Block Rams : 12 of 12 (100%)

Global Clock Buffers : 2 of 4 (50%)

Mapping Summary:
Total LUTs: 3947 (114%)

map done with Xilinx map
Logic Ut i l i za t i on :

Number of S l i ce Flip Flops : 1 ,475 out of 4 ,704 31%
Number of 4 input LUTs: 2 ,626 out of 4 ,704 55%

Logic Distr ibution :
Number of occupied S l i ces : 2 ,350 out of 2 ,352 99%
Number of S l i ces containing only related l o g i c : 2 ,341 out of 2 ,350 99%
Number of S l i ces containing unrelated l o g i c : 9 out of 2 ,350 1%

Total Number 4 input LUTs: 3 ,919 out of 4 ,704 83%
Number used as l o g i c : 2 ,626
Number used as a route−thru : 41
Number used for Dual Port RAMs: 276
(Two LUTs used per Dual Port RAM)
Number used as 16x1 ROMs: 976

Number of bonded IOBs : 83 out of 140 59%
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Number of Tbufs : 256 out of 2 ,464 10%
Number of Block RAMs: 14 out of 14 100%
Number of GCLKs: 2 out of 4 50%
Number of GCLKIOBs: 1 out of 4 25%

Total equivalent gate count for design : 310 ,178
Additional JTAG gate count for IOBs : 4 ,032

place and route done with Xilinx par
Device u t i l i z a t i o n summary :

Number of External GCLKIOBs 1 out of 4 25%
Number of External IOBs 83 out of 140 59%

Number of LOCed External IOBs 83 out of 83 100%

Number of BLOCKRAMs 14 out of 14 100%
Number of SLICEs 2350 out of 2352 99%

Number of GCLKs 2 out of 4 50%
Number of TBUFs 256 out of 2464 10%

+−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−−+
| Clock Net | Resource | Fanout |Net Skew( ns )|Max Delay ( ns )|
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−−+
|cpucommunication_1 / inter | | | | |
| nalclkxc | Global | 51 | 0.501 | 0.763 |
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−−+
| ClkxCI_c | Global | 904 | 0.507 | 0.769 |
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−−+

The NUMBER OF SIGNALS NOT COMPLETELY ROUTED for this design i s : 0

The AVERAGE CONNECTION DELAY for this design i s : 3.127
The MAXIMUM PIN DELAY IS : 10.488
The AVERAGE CONNECTION DELAY on the 10 WORST NETS i s : 9.339

List ing Pin Delays by value : ( nsec )

d < 2.00 < d < 4.00 < d < 6.00 < d < 8.00 < d < 11.00 d >= 11.00
−−−−−−−−− −−−−−−−−− −−−−−−−−− −−−−−−−−− −−−−−−−−− −−−−−−−−−

4944 8154 4521 868 91 0

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Constraint | Requested | Actual | Logic

| | | Levels
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

NET " ClkxCI_ibuf /IBUFG" PERIOD = 54.253 | 54.253ns | 39.304ns | 9
nS HIGH 50.000000 % | | |

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
NET "CPUOutputxEBI" PERIOD = 400 nS LO | N/A | N/A | N/A
W 120 nS | | |

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
NET "CPUWritexEBI" PERIOD = 400 nS LOW | N/A | N/A | N/A

120 nS | | |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

TS_ClkxCI = PERIOD TIMEGRP " ClkxCI " 52.6 | N/A | N/A | N/A
32 nS HIGH 50.000000 % | | |

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
OFFSET = OUT 52.632 nS AFTER COMP "ClkxC | 52.632ns | 38.859ns | 8
I " | | |

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
OFFSET = IN 52.632 nS BEFORE COMP "ClkxC | 52.632ns | 13.790ns | 2
I " | | |

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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6.2.1.5 Encoder: Implementaition results of available synthesis tools

1 2 3 4 5 6

Logic Utilization:
- Number of Slice Flip Flops: 1,338 28% 1,457 out of 4,704
- Number of 4 input LUTs: 2,251 47% 4,923 104% out of 4,704
Logic Distribution:
- Number of occupied Slices: 2,026 86% 2,818 119% out of 2,352
- Number of Slices cont. only related logic: 2,026 100% 2,776 98% out of 2,026
- Number of Slices cont. unrelated logic: 0 0% 41 1% out of 2,026
Total Number 4 input LUTs: 3,288 69% 4,974 105% out of 4,704
- Number used as logic: 2,251 4,923
- Number used as a route-thru: 41 31
- Number used for Dual Port RAMs: 20 20
- (Two LUTs used per Dual Port RAM)
- Number used as 16x1 ROMs: 976
Number of bonded IOBs: 83 59% 83 59% out of 140
- IOB Flip Flops: 16
Number of Tbufs: 256 10% 18 1% out of 2,464
Number of Block RAMs: 14 100% 14 100% out of 14
Number of GCLKs: 2 50% 2 50% out of 4
Number of GCLKIOBs: 1 25% 1 25% out of 4

Clock 34.4 MHz 25.2 MHz
Clock (Internal Generated Clock (IPAQ)) 33.7 MHz ? MHz
Minimum input arrival time before clock ? ? 8.7 ns
Maximum output required time after clock 23.7 ns 40.6 ns
Maximum combinational path delay: ? ? 17.0 ns

1 & 2: Synthesis Tool A (1 are absolute, 2 relative values)
3 & 4: Synthesis Tool B (3 are absolute, 4 relative values)
5 & 6: FPGA device specific

Table 6-2: Results after synthesis with available synthesis tools and after place & route
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6.2.2 DES Core - only encoding

Encoding with DES (64 Bit)

Design http://www.yordas.demon.co.uk/crypto/

Author Chris Eilbeck, chris@yordas.demon.co.uk

Language
of Design VHDL
of Wrapper VHDL

Testbench adapted with reasonable test vectors

Docu Brief Description with some numbers
(implementation done on an older Xilinx FPGA)

Table 6-3: DES Core Datas

6.2.2.1 Behaviour

Implementaion of a DES Core (an encoder using the ECB mode) in VHDL.

2 Versions:

1. pipelined without Xilinx Elements (pipelined-des)

2. pipelined with Xilinx Elements used (optimised-des)

6.2.2.2 Throughput

1 Cylce (DES) + 2 ∗ 4 Cycles (Input,Output) = 9 Cycles

With a used clock of 18.432 MHz:

18.432.000 Hz ∗ 2 Bytes/9 = 4.096.000 MByte/s

Communication-Overhead: Communication / Algorithm

8 Cylces/1 Cycles = 8/1 = 8(!)
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6.2.2.3 Pipelined Version

synthesis done with Synplify Pro
Frequency , Slack :
=================

Requested Estimated Requested Estimated
Starting Clock Frequency Frequency Period Period Slack
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
slotmanager|ClkxCI 19.0 MHz 33.5 MHz 52.632 29.876 22.755
InternalClk 19.0 MHz 34.1 MHz 52.632 29.366 23.266
============================================================================

Elements :
=========

I /O Register b i t s : 0
Register b i t s not including I / Os : 1265 (36%)

RAM/ROM usage summary
Dual Port Rams (RAM16X1D_1 ) : 10
32x1 ROMs (ROM32X1) : 928
Block Rams : 12 of 12 (100%)

Global Clock Buffers : 2 of 4 (50%)

Mapping Summary:
Total LUTs: 3974 (114%)

map done with Xilinx map
Logic Ut i l i za t i on :

Number of S l i ce Flip Flops : 1 ,265 out of 4 ,704 26%
Number of 4 input LUTs: 2 ,033 out of 4 ,704 43%

Logic Distr ibution :
Number of occupied S l i ces : 2 ,335 out of 2 ,352 99%
Number of S l i ces containing only related l o g i c : 2 ,335 out of 2 ,335 100%
Number of S l i ces containing unrelated l o g i c : 0 out of 2 ,335 0%

Total Number 4 input LUTs: 3 ,950 out of 4 ,704 83%
Number used as l o g i c : 2 ,033
Number used as a route−thru : 41
Number used for Dual Port RAMs: 20
(Two LUTs used per Dual Port RAM)
Number used as 16x1 ROMs: 1 ,856

Number of bonded IOBs : 83 out of 140 59%
Number of Block RAMs: 14 out of 14 100%
Number of GCLKs: 2 out of 4 50%
Number of GCLKIOBs: 1 out of 4 25%

Total equivalent gate count for design : 316 ,866
Additional JTAG gate count for IOBs : 4 ,032

place and route done with Xilinx par
Device u t i l i z a t i o n summary :

Number of External GCLKIOBs 1 out of 4 25%
Number of External IOBs 83 out of 140 59%

Number of LOCed External IOBs 83 out of 83 100%

Number of BLOCKRAMs 14 out of 14 100%
Number of SLICEs 2335 out of 2352 99%

Number of GCLKs 2 out of 4 50%

+−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−−+
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| Clock Net | Resource | Fanout |Net Skew( ns )|Max Delay ( ns )|
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−−+
| ClkxCI_c | Global | 693 | 0.501 | 0.763 |
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−−+
|cpucommunication_1 / inter | | | | |
| nalclkxc | Global | 50 | 0.500 | 0.762 |
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−−+

The NUMBER OF SIGNALS NOT COMPLETELY ROUTED for this design i s : 0

The AVERAGE CONNECTION DELAY for this design i s : 3.027
The MAXIMUM PIN DELAY IS : 10.620
The AVERAGE CONNECTION DELAY on the 10 WORST NETS i s : 9.384

List ing Pin Delays by value : ( nsec )

d < 2.00 < d < 4.00 < d < 6.00 < d < 8.00 < d < 11.00 d >= 11.00
−−−−−−−−− −−−−−−−−− −−−−−−−−− −−−−−−−−− −−−−−−−−− −−−−−−−−−

5101 8065 3995 611 119 0

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Constraint | Requested | Actual | Logic

| | | Levels
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

NET " ClkxCI_ibuf /IBUFG" PERIOD = 54.253 | 54.253ns | 44.573ns | 9
nS HIGH 50.000000 % | | |

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
NET "CPUOutputxEBI" PERIOD = 400 nS LO | N/A | N/A | N/A
W 120 nS | | |

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
NET "CPUWritexEBI" PERIOD = 400 nS LOW | N/A | N/A | N/A

120 nS | | |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

TS_ClkxCI = PERIOD TIMEGRP " ClkxCI " 52.6 | N/A | N/A | N/A
32 nS HIGH 50.000000 % | | |

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
OFFSET = OUT 52.632 nS AFTER COMP "ClkxC | 52.632ns | 37.585ns | 9
I " | | |

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
OFFSET = IN 52.632 nS BEFORE COMP "ClkxC | 52.632ns | 14.237ns | 2
I " | | |

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

6.2.2.4 Pipelined and Optimized Version with XILINX instances

synthesis done by Synplify Pro
Frequency , Slack :
=================

Requested Estimated Requested Estimated
Starting Clock Frequency Frequency Period Period Slack
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
slotmanager|ClkxCI 19.0 MHz 34.8 MHz 52.632 28.729 23.903
InternalClk 19.0 MHz 37.2 MHz 52.632 26.847 25.785
============================================================================

Elements :
=========

I /O Register b i t s : 0
Register b i t s not including I / Os : 1312 (37%)

RAM/ROM usage summary
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Dual Port Rams (RAM16X1D_1 ) : 10
32x1 ROMs (ROM32X1) : 1024

Global Clock Buffers : 2 of 4 (50%)

Mapping Summary:
Total LUTs: 4209 (121%)

mapping done by Xilinx map
Logic Ut i l i za t i on :

Number of S l i ce Flip Flops : 1 ,312 out of 4 ,704 27%
Number of 4 input LUTs: 1 ,991 out of 4 ,704 42%

Logic Distr ibution :
Number of occupied S l i ces : 2 ,350 out of 2 ,352 99%
Number of S l i ces containing only related l o g i c : 1 ,252 out of 2 ,350 53%
Number of S l i ces containing unrelated l o g i c : 1 ,098 out of 2 ,350 46%

Total Number 4 input LUTs: 4 ,281 out of 4 ,704 91%
Number used as l o g i c : 1 ,991
Number used as a route−thru : 222
Number used for Dual Port RAMs: 20
(Two LUTs used per Dual Port RAM)
Number used as 16x1 ROMs: 2 ,048

Number of bonded IOBs : 83 out of 140 59%
Number of Block RAMs: 2 out of 14 14%
Number of GCLKs: 2 out of 4 50%
Number of GCLKIOBs: 1 out of 4 25%

Total equivalent gate count for design : 128 ,344
Additional JTAG gate count for IOBs : 4 ,032

place and route done with Xilinx par
Device u t i l i z a t i o n summary :

Number of External GCLKIOBs 1 out of 4 25%
Number of External IOBs 83 out of 140 59%

Number of LOCed External IOBs 83 out of 83 100%

Number of BLOCKRAMs 2 out of 14 14%
Number of SLICEs 2350 out of 2352 99%

Number of GCLKs 2 out of 4 50%

+−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−−+
| Clock Net | Resource | Fanout |Net Skew( ns )|Max Delay ( ns )|
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−−+
| ClkxCI_c | Global | 1216 | 0.512 | 0.782 |
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−−+
|cpucommunication_1 / inter | | | | |
| nalclkxc | Global | 63 | 0.497 | 0.761 |
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−−+

The NUMBER OF SIGNALS NOT COMPLETELY ROUTED for this design i s : 0

The AVERAGE CONNECTION DELAY for this design i s : 2.688
The MAXIMUM PIN DELAY IS : 7.928
The AVERAGE CONNECTION DELAY on the 10 WORST NETS i s : 7.074

List ing Pin Delays by value : ( nsec )

d < 1.00 < d < 2.00 < d < 3.00 < d < 4.00 < d < 8.00 d >= 8.00
−−−−−−−−− −−−−−−−−− −−−−−−−−− −−−−−−−−− −−−−−−−−− −−−−−−−−−

2551 4476 6218 4277 3674 0

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Constraint | Requested | Actual | Logic
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| | | Levels
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

NET " ClkxCI_ibuf /IBUFG" PERIOD = 54.253 | 54.253ns | 40.167ns | 9
nS HIGH 50.000000 % | | |

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
NET "CPUOutputxEBI" PERIOD = 400 nS LO | N/A | N/A | N/A
W 120 nS | | |

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
NET "CPUWritexEBI" PERIOD = 400 nS LOW | N/A | N/A | N/A

120 nS | | |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

TS_ClkxCI = PERIOD TIMEGRP " ClkxCI " 52.6 | N/A | N/A | N/A
32 nS HIGH 50.000000 % | | |

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
OFFSET = OUT 52.632 nS AFTER COMP "ClkxC | 52.632ns | 35.164ns | 8
I " | | |

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
OFFSET = IN 52.632 nS BEFORE COMP "ClkxC | 52.632ns | 15.301ns | 2
I " | | |

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

6.2.3 CRC32 Core

CRC32 Checksum

Design http://www.xilinx.com/bvdocs/appnotes/xapp209.pdf
ftp://ftp.xilinx.com/pub/applications/xapp/xapp209.zip

Author Chris Borrelli, Xilinx,

Language
of Design Verilog
of Wrapper VHDL
of Script Perl (Generates Polynomial Coeffients)

Testbench none (correct implementation?)

Docu XAPP:
* Introduction to CRC
* Polynoms (sample, standard polynoms)
* LFSR
* Block Diagrams
* Explanation of perl script
* Timing Diagrams

Table 6-4: CRC32 Core Datas

6.2.3.1 Behaviour

Script can produce a lot of different versions. Only 2 versions are used/wrapped:

2 Versions:
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6.2. Example Cores inclusive Performance

1. CRC16_8

2. CRC_CCIT_8

Wrapper
Internal Clock-Multiplyer (Clk2X) is used, cause the input datawidth is only 8 Bit,
and 16 Bits are available from the KPN Wrapper. Using internally the doubled
clock frequency the two bits could be used in one external cycle....

Phases:

Input Length of Datastream (wish to receive CRC32)

Input Data

Output After <Length> Cycles the CRC32 value is written to the output

6.2.3.2 Throughput

0Cylces (CRC) + 1 Cycles (Input) = 1 Cycle

• CRC is computed parallel to data input

• 1 Cycle is used for length of data acquisition

• 1 Cycle is used for data output

With a used clock of 18.432 MHz:

18.432.000 Hz ∗ 2 Bytes/1 = 18.432.000 MByte/s

Communication-Overhead: Communication / Algorithm

1 Cylces/1 Cycles = 1 = 1(!)

6.2.3.3 CRC16_8

synthesis done with Xilinx xst
Frequency , Slack :
=================

Timing Summary:
−−−−−−−−−−−−−−−
Speed Grade : −5

Minimum period : 66.862ns (Maximum Frequency : 14.956MHz)
Minimum input arr iva l time before c lock : 8.736ns
Maximum output required time af ter c lock : 40.568ns
Maximum combinational path delay : 17.013ns

Elements :
=========

Macro S t a t i s t i c s :
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# Registers : 68
# 1−b i t reg i s ter : 9
# 10−b i t reg i s ter : 1
# 16−b i t reg i s ter : 4
# 18−b i t reg i s ter : 33
# 2−b i t reg i s ter : 16
# 3−b i t reg i s ter : 1
# 8−b i t reg i s ter : 4
# Counters : 2
# 12−b i t up counter : 1
# 8−b i t up counter : 1
# Multiplexers : 30
# 1−b i t 8−to−1 multiplexer : 2
# 18−b i t 8−to−1 multiplexer : 4
# 2−b i t 8−to−1 multiplexer : 1
# 2−to−1 multiplexer : 23
# Tristates : 3
# 16−b i t t r i s t a t e buffer : 2
# 18−b i t t r i s t a t e buffer : 1
# Adders / Subtractors : 6
# 16−b i t adder : 1
# 18−b i t adder : 3
# 18−b i t subtractor : 1
# 8−b i t adder : 1
# Comparators : 5
# 16−b i t comparator less : 1
# 18−b i t comparator equal : 3
# 8−b i t comparator equal : 1
# Xors : 4
# 1−b i t xor3 : 1
# 1−b i t xor7 : 1
# 1−b i t xor8 : 1
# 1−b i t xor9 : 1

Number of S l i ces : 710 out of 2352 30%
Number of S l i ce Flip Flops : 793 out of 4704 16%
Number of 4 input LUTs: 1199 out of 4704 25%
Number of bonded IOBs : 84 out of 144 58%
Number of TBUFs: 18 out of 2352 0%
Number of BRAMs: 2 out of 14 14%
Number of GCLKs: 3 out of 4 75%

map done with Xilinx map
Logic Ut i l i za t i on :

Number of S l i ce Flip Flops : 777 out of 4 ,704 16%
Number of 4 input LUTs: 1 ,143 out of 4 ,704 24%

Logic Distr ibution :
Number of occupied S l i ces : 885 out of 2 ,352 37%
Number of S l i ces containing only related l o g i c : 885 out of 885 100%
Number of S l i ces containing unrelated l o g i c : 0 out of 885 0%

Total Number 4 input LUTs: 1 ,205 out of 4 ,704 25%
Number used as l o g i c : 1 ,143
Number used as a route−thru : 42
Number used for Dual Port RAMs: 20
(Two LUTs used per Dual Port RAM)

Number of bonded IOBs : 83 out of 140 59%
IOB Flip Flops : 16

Number of Tbufs : 18 out of 2 ,464 1%
Number of Block RAMs: 2 out of 14 14%
Number of GCLKs: 3 out of 4 75%
Number of GCLKIOBs: 1 out of 4 25%
Number of DLLs : 1 out of 4 25%

place and route done with Xilinx par
Device u t i l i z a t i o n summary :
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Number of External GCLKIOBs 1 out of 4 25%
Number of External IOBs 83 out of 140 59%

Number of LOCed External IOBs 83 out of 83 100%

Number of BLOCKRAMs 2 out of 14 14%
Number of SLICEs 885 out of 2352 37%

Number of DLLs 1 out of 4 25%
Number of GCLKs 3 out of 4 75%
Number of TBUFs 18 out of 2464 1%

+−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−−+
| Clock Net | Resource | Fanout |Net Skew( ns )|Max Delay ( ns )|
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−−+
|cpucommunication_1_Inter | | | | |
| nalClkxCO | Global | 62 | 0.493 | 0.794 |
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−−+
|task_wrapper_1_task_1_cr | | | | |
| c16_8_wrapper_1_Clk2xC | Global | 33 | 0.117 | 0.759 |
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−−+
| ClkxCI_IBUFG | Local | 371 | 1.823 | 5.423 |
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−−+

The NUMBER OF SIGNALS NOT COMPLETELY ROUTED for this design i s : 0

The AVERAGE CONNECTION DELAY for this design i s : 2.480
The MAXIMUM PIN DELAY IS : 10.901
The AVERAGE CONNECTION DELAY on the 10 WORST NETS i s : 7.536

List ing Pin Delays by value : ( nsec )

d < 2.00 < d < 4.00 < d < 6.00 < d < 8.00 < d < 11.00 d >= 11.00
−−−−−−−−− −−−−−−−−− −−−−−−−−− −−−−−−−−− −−−−−−−−− −−−−−−−−−

3156 2124 822 275 47 0

6.2.3.4 CRC_CCIT_8

synthesis done with Xilinx xst
Frequency , Slack :
=================

Timing Summary:
−−−−−−−−−−−−−−−
Speed Grade : −5

Minimum period : 66.862ns (Maximum Frequency : 14.956MHz)
Minimum input arr iva l time before c lock : 8.736ns
Maximum output required time af ter c lock : 40.568ns
Maximum combinational path delay : 17.013ns

Elements :
=========

Macro S t a t i s t i c s :
# Registers : 68
# 1−b i t reg i s ter : 9
# 10−b i t reg i s ter : 1
# 16−b i t reg i s ter : 4
# 18−b i t reg i s ter : 33
# 2−b i t reg i s ter : 16
# 3−b i t reg i s ter : 1
# 8−b i t reg i s ter : 4
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# Counters : 2
# 12−b i t up counter : 1
# 8−b i t up counter : 1
# Multiplexers : 30
# 1−b i t 8−to−1 multiplexer : 2
# 18−b i t 8−to−1 multiplexer : 4
# 2−b i t 8−to−1 multiplexer : 1
# 2−to−1 multiplexer : 23
# Tristates : 3
# 16−b i t t r i s t a t e buffer : 2
# 18−b i t t r i s t a t e buffer : 1
# Adders / Subtractors : 6
# 16−b i t adder : 1
# 18−b i t adder : 3
# 18−b i t subtractor : 1
# 8−b i t adder : 1
# Comparators : 5
# 16−b i t comparator less : 1
# 18−b i t comparator equal : 3
# 8−b i t comparator equal : 1
# Xors : 4
# 1−b i t xor3 : 1
# 1−b i t xor7 : 1
# 1−b i t xor8 : 1
# 1−b i t xor9 : 1

Cell Usage :
# BELS : 1697
# GND : 3
# LUT1 : 46
# LUT2 : 110
# LUT3 : 506
# LUT4 : 526
# MUXCY : 154
# MUXF5 : 167
# MUXF6 : 76
# VCC : 1
# XORCY : 108
# FlipFlops / Latches : 793
# FDC : 96
# FDC_1 : 1
# FDCE : 670
# FDCPE : 20
# FDP : 6
# RAMS : 13
# RAM16X1D : 11
# RAMB4_S16 : 1
# RAMB4_S1_S16 : 1
# Tri−States : 18
# BUFT : 18
# Clock Buffers : 3
# BUFG : 3
# IO Buffers : 84
# IBUF : 11
# IBUFG : 1
# IOBUF : 32
# OBUF : 40
# DLLs : 1
# CLKDLL : 1

Number of S l i ces : 710 out of 2352 30%
Number of S l i ce Flip Flops : 793 out of 4704 16%
Number of 4 input LUTs: 1199 out of 4704 25%
Number of bonded IOBs : 84 out of 144 58%
Number of TBUFs: 18 out of 2352 0%
Number of BRAMs: 2 out of 14 14%
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Number of GCLKs: 3 out of 4 75%

map done with Xilinx map
Logic Ut i l i za t i on :

Number of S l i ce Flip Flops : 777 out of 4 ,704 16%
Number of 4 input LUTs: 1 ,141 out of 4 ,704 24%

Logic Distr ibution :
Number of occupied S l i ces : 884 out of 2 ,352 37%
Number of S l i ces containing only related l o g i c : 884 out of 884 100%
Number of S l i ces containing unrelated l o g i c : 0 out of 884 0%

Total Number 4 input LUTs: 1 ,203 out of 4 ,704 25%
Number used as l o g i c : 1 ,141
Number used as a route−thru : 42
Number used for Dual Port RAMs: 20
(Two LUTs used per Dual Port RAM)

Number of bonded IOBs : 83 out of 140 59%
IOB Flip Flops : 16

Number of Tbufs : 18 out of 2 ,464 1%
Number of Block RAMs: 2 out of 14 14%
Number of GCLKs: 3 out of 4 75%
Number of GCLKIOBs: 1 out of 4 25%
Number of DLLs : 1 out of 4 25%

Total equivalent gate count for design : 55 ,900
Additional JTAG gate count for IOBs : 4 ,032

place and route done with Xilinx par
Device u t i l i z a t i o n summary :

Number of External GCLKIOBs 1 out of 4 25%
Number of External IOBs 83 out of 140 59%

Number of LOCed External IOBs 83 out of 83 100%

Number of BLOCKRAMs 2 out of 14 14%
Number of SLICEs 884 out of 2352 37%

Number of DLLs 1 out of 4 25%
Number of GCLKs 3 out of 4 75%
Number of TBUFs 18 out of 2464 1%

+−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−−+
| Clock Net | Resource | Fanout |Net Skew( ns )|Max Delay ( ns )|
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−−+
|cpucommunication_1_Inter | | | | |
| nalClkxCO | Global | 62 | 0.493 | 0.793 |
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−−+
|task_wrapper_1_task_1_cr | | | | |
|c_ccit_8_wrapper_1_Clk2x | | | | |
| C | Global | 36 | 0.107 | 0.763 |
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−−+
| ClkxCI_IBUFG | Local | 371 | 2.357 | 6.367 |
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−−−−+

The NUMBER OF SIGNALS NOT COMPLETELY ROUTED for this design i s : 0

The AVERAGE CONNECTION DELAY for this design i s : 2.557
The MAXIMUM PIN DELAY IS : 10.385
The AVERAGE CONNECTION DELAY on the 10 WORST NETS i s : 7.473

List ing Pin Delays by value : ( nsec )

d < 2.00 < d < 4.00 < d < 6.00 < d < 8.00 < d < 11.00 d >= 11.00
−−−−−−−−− −−−−−−−−− −−−−−−−−− −−−−−−−−− −−−−−−−−− −−−−−−−−−

3118 2164 813 210 118 0
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6.3 Performances

6.3.1 Reconfiguration-Performance

Clock 18 MHz max. 50 MHza

Loader (FPGA): used slices 267 / 2352 11 %
Reconfiguration times:
ERASING of FLASH 11 s
FPGA→ FLASH 7.8 s min. 1.6 sb

FLASH→ FPGA 9 ms
Table 6-5: Performance of the Loader and for Reconfiguration

amaximum configuration clock of the FPGA is specified with 50 MHz
bminimal configuration time of FLASH memory is: 166980 * 0.9 µs – bitstream length * physical

program delay

6.3.2 Slotmanagager-Performance

Clock 18.432 MHz
Slotmanager: used slices 838 / 2352 35 %
Slotmanager: used flip-flops 736
Slot size: in available slices 1514 / 2352 65 %
Slot size: in available BRAMs 12 / 14 85 %

Table 6-6: Performance of Slotmanger on BTNODEFPGA-Board

6.3.3 ScanChain-Performance

Clock 18.432 MHz
Maximal Length 4.096 Items
Scan Mode Duration (n items) n clock cycles

Table 6-7: Performance of the Scan Chain

6.3.4 Cores-Performance

• Reconfiguration Time

• Initalize

• Performances of the Cores
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6.4. Synthesis Tutorial for the Demo Tasks

Clock 18.432 MHz
AES (encryption)
• Throughput 1.316 MB/s
• Cylcles per Token 12 cycles
• Communication-Overhead 16 cycles
AES (decryption)
• Throughput 1.316 MB/s
• Cylcles per Token 12 cycles
• Communication-Overhead 16 cycles
DES (encryption - pipelined)
• Throughput 4.096 MB/s
• Cylcles per Token 12 cycles
• Communication-Overhead 16 cycles
CRC32 (Checksum)
• Throughput 18.432 MB/s
• Cylcles per Token 1 cycles
• Communication-Overhead 1 cycles

Table 6-8: Performance of Example Cores for Slotmanger

6.4 Synthesis Tutorial for the Demo Tasks

How to synthesize a (big) core inluding the slot and task manager for the Spartan
II XCS-200 device:

1. Start Xilinx ISE, build new project and add hardware description (VHDL, Ver-
ilog) and constraint (UCF) files.

2. Synthesise with the synthesis tool (Xilinx XST or Synplicity Synplify Pro). If
the core is rather big or uses 14 of 14 BlockRAMs, in the later processing prob-
lems will occour (i.e. in the mapping step). For this reason we are doing the syn-
thesis for a smaller device (xc2s150), which is approximately the same (same
chip process, internals, but only 12 BlockRAMS and ....)

3. Change the Device in Project Properties from xc2s200 to xc2s150 (right mouse
ckick on the the first item in the Source Window)

4. Synthesise the design with this chip constraints

5. If synthesis succeds, save the ISE Project and close the project.

6. Use an editor to modify the Xilinx ISE Project File (.npl): Replace the line
DEVICE xc2s150 to DEVICE xc2s200

7. Reopen the ISE Project file in ISE

8. Use the Implement Design switch or manually select Translate, Map, Place
and Route
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7
Status and Future Work

7.1 Status of the Project Tasks

System At first we give a short digest of the current system status:

• Our mobile handheld is extended with a computation node based on a FPGA
board.

• A reconfiguration of the extension – activated from a user program on the
IPAQ – is well-working.

• The «Slotmanager» is our proof-of-concept for the execution of a Kahn Task on
such a computation node.

IPAQ We have developed a Windows CE program which acts as «reconfigurator»,
i.e. the program allows a user or a user program to (a) erase the FLASH to clean-up
all bitstreams, (b) program a new bitstream to the FLASH, (c) activate the reconfig-
uration mode of the FPGA and configure the device with a bitstream, (d) do these
steps for multiple bitstreams and sectors in the FLASH (up to 5 full-bitstreams can
be stored in the memory).

IPAQ→ FPGA The communication interface between IPAQ and our framework
is working and has been well tested. Two different communication protocols are
implemented (Slotmanager and Loader), but only the Loader protocol is integrated
in a software environment and tested.

A «virtual machine» and a «scheduler» are needed to integrate the Slotmanager
protocol in a IPAQ application. A first approach has been done in a parallel semester
term project.

105



Chapter 7: Status and Future Work

An improvement of the communication bottleneck (IPAQ → FPGA) could be
achieved by using the «PC Card» mode of the expansion slot instead of the used
«asynchronous SRAM» interface.

FPGA Two FPGA designs are developed - the «Loader» and the «Slotmanager».

The CPU Interface (i.e. IPAQ part) of the Loader has been tested and is full func-
tional working. The serial part of the Loader simulates accurately but is not tested
(s.a. Tools→ Streamer).

The Slotmanager has been simulated and partially tested on our platform but the
final tests and a debugging phase have not taking place until now.

FPGA → CPLD We have implemented two communication protocols between
the FPGA and the CPLD as described in sections 5.4.3 and 5.4.4.

The 8 bit mode is debugged and working, the 16 bit mode needs some fixes (after the
insertion of synchroniser as described in section 5.7.1 the design should work!).

CPLD The FLASH command «SECTOR ERASE» is included in a branch of the
CPLD design. With this additional states fitting problems occurs which should be
resolved by using a Synplicity Synplify Pro synthesis and an improved area/timing
driven fit process.

CPLD → FLASH An improved programming process is proposed in the follow-
ing section 7.2.1.

Reconfiguration Implementation works as designed. No improvements are
outstanding.

Cores 5 functional cores are adapted (wrapped) to run as a Kahn process. AES,
DES and CRC32 are open-source cores and explained in section 6.2. The adpcm-core
was developed by Matthias Dyer and illustrated in his master thesis. The md5 core
is erroneous and no further used.

Tools
Streamer/Listener This Perl program for sending and receiving data over

a serial RS-232 connection has been tested to work well between 2 PCs.
Problems (too long «high phases» between the data words) are encoun-
tered by using the streamer with the FPGA board, the two designs (rs-
232 core on FPGA and software serial streamer) seem not work together.
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7.1.1 Survey: Actual State of Project Tasks

A tabularly survey of the actual state:

Tasks Status
Windows CE Program
DataStreamWriter 7
Cores of Kahn Tasks
AES 6
DES 6
CRC32 6
ADPCM 6
MD5 3
Slotmanager
CPU Protocol 3
AGU (Address Generation Unit) 6
Saving of Task States 4-6
Loader
CPU Protocol 7
Serial Protocol 5
IPAQ Streamer 7
IPAQ / CPLD Communication 7
FLASH ERASE 7
FLASH PROGRAM 7
Reconfiguration of FPGA 7
Reconf. initated from IPAQ 7
Flash Simulation Model 3

Table 7-1: Survey: Actual state of Project Tasks

1. Idea
2. Concept Done
3. Behavioural Implementation in VHDL
4. Tested Behavioural Implementation (Modelsim)
5. Synthesised
6. Place & Route Done
7. Working on or with BTNODEFPGA-Board

107



Chapter 7: Status and Future Work

7.2 Future Work

Ideas In this section we like to give an overview for future work:

• Extend the «one-kahn-task-slot-system» to a multiple task slot system.

• Improve the reconfiguration process with the partial reconfiguration idea
(smaller partial bitstreams, reconfiguration during another task is executed
in another task slot concurrently).

• Integration of the Slotmanger and the Loader in an application («Scheduler»
& «Virtual Machine») running on IPAQs Windows CE.

• Workings in the field of scheduling of bounded Kahn Process Networks
(scheduling and mathematical analysis).

7.2.1 Improved FLASH Programming Procedure

At the moment the FLASH programming procedure needs 4 x 3 states (plus some
additional for control logic) to write a single byte from the CPLD to the non-volatile
memory. The three state for each transfer are: address valid, data valid & write
enable and write enable de-asserted.

These 12 states transitions could be improved in a 4 state scheme as proposed in
the timing diagram 7-1. Keep in mind that each FLASH program procedure needs
a delay of 9 µs at the new-byte-assertion until the internal FSM of the FLASH has
written the data to the memory storage.

A code-snipplet in VHDL for this FSM improvement is listed is 7-14.
Sequential : process (ClkxCI , RstxRI )
begin −− process Sequential

i f RstxRI = ’0 ’ then −− asynchronous reset (active high)
FSMxDP <= stInit ;

els i f ClkxCI ’ event and ClkxCI = ’1 ’ then −− rising clock edge
Clk2xC <= not Clk2xC ;
i f Clk2xC = ’0 ’ then

FSMxDP <= FSMxDN;
else

FlashDataxD <= DataxD ;
end i f ;

end i f ;
end process Sequential ;

Comb: process (FSMxDP)
begin −− process Comb

case FSMxDP) is
when stInit =>
−−

when stWrite =>
−−

end case ;
end process Comb;

Listing 7-14
VHDL for writing to the FLASH
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ClkxCI

Clk2xCI

AddrxD

DataxD

WE*

CS

WE

FlashAddrxD

FlashDataxD

T0 T1 T2 T3 T4
TtttTtttTtttTtttTtttTtttTtttTtttTtttTtttTttt

H���������������������L

LLL�HH�LL�HH�LL�HH�LL�HH�LL�HH�LLL

UUU�VVVVVV�VVVVVV�VVVVVV�VVVVVV�UUUUUUUADDR 0 ADDR 1 ADDR 2 ADDR 3

UUU�VVVVVV�VVVVVV�VVVVVV�VVVVVV�UUUUUUUDATA 0 DATA 1 DATA 2 DATA 3

HHH�LLLLLLLLLLLLLLLLLLLLLLLLLLLLLL�HHHHHHH

HHH�LLLLLLLLLLLLLLLLLLLLLLLLLLLLLL�HHHHHHH

LLL�HH�LL�HH�LL�HH�LL�HH�LL�HHHHHHH

ZZZ�VVVVVV�VVVVVV�VVVVVV�VVVVVV�ZZZZZZZC-ADDR 0 C-ADDR 1 C-ADDR 2 ADDR

ZZZZZZZ�VVVVVV�VVVVVV�VVVVVV�VV�ZZZZZZZC-DATA 0 C-DATA 1 C-DATA 2 DATA

C-ADDR: Address word for triggering the FLASH FSM
C-DATA : Data word for triggering the FLASH FSM

Figure 7-1
Waveforms for writing to the FLASH
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7.2.2 Scan-Chain Script Improvements

In the VHDL synthesis step allocated or instanciated flip-flop will be mapped to
design primitive elements which are available in the Xilinx SPARTANTM II device.
These design primitives will be mapped at least to 12 different configuration for the
flip-flops in the FPGA.

The current implementation of the «scan-chain» insertion script considers only two
possible flip-flop configurations. An improved scheme is listed in the right column of
the table.

7-1-a Implemented Replacement

FlipFlop Replacement FlipFlop
FDC FDCE
FDCE FDCE

7-1-b Improved Replacement

FlipFlop Replacement FlipFlop

FDR FDRE
FDRE FDRE
FDS FDRSE
FDRS FDRSE
FDRSE FDRSE
FD FDCE
FDC FDCE
FDE FDCE
FDCE FDCE
FDP FDCPE
FDPE FDCPE
FDCPE FDCPE

Table 7-2: «scan-able» flip-flop equivalents
FFs and their «scan-able» equivalent which are implemented in the current script. In the
right column an improved replacement scheme is listed.
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A
Appendix

A.1 Development Environment

This section does offer an overview of the software being used to develop the
system. To generate the software and the bitstreams to be downloaded to the
BTNODEFPGA, the following software tools have been used:

Project Navigator / ISE 6.1 The ISE [36] is a tool suite used to synthesize and
implement designs for the Xilinx FPGAs and CPLDs.

We have used this tool suite to implement small designs and also to debug
our designs. The Xilinx XST generates much more output informations in the
Project Navigator at synthesis time that the other synthesis alternatives. The
Project Navigator is a GUI that merges the various command line tools of the
ISE into one front end.

Synplify Pro 7.3.3 Synplicitys Synplify Pro is a synthesis tool which translates
VHDL and Verilog projects to a device (FPGA, CPLD) netlist. The result of
Synplify Pro is in the most cases faster and smaller than the result of the
Xilinx XST synthesis tool. Synplify has a graphical user interface for the visu-
alization of the translated netlist, a timing analyzer and additional improved
tools like the FSM explorer (graph, states, transitions).

HexCmp 2.3 Fairdells HexCmp is a program, which combines together the fea-
tures of a binary file comparison application and a convenient hex editor. Hex-
Cmp was used to compare binary files (bitstreams) with the aid of color high-
lighting and synchronous scrolling in the panels.

In addition to these commercial tool suites, a number of freely available programs
have been used. To modify bitstreams, for the rs-232 streamer and scan-chain in-
sertion Perl has been used. XML and the libxml have been used to insert the scan
chain in the EDIF netlist. The editor of choice was the almighty Emacs.
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A.2 VHDL Coding Guidelines

For VHDL coding we have used the coding guidelines of the Microelectronics Design
Center of ETH Zürich [10]. As a recapitulation we like to give a short overview over
the main rules:

Constant Names

• Use upper-case letters and "_" only (e.g., WIDTH, RAM_DEPTH, LFSR_INIT ).

• Avoid "_" in generics (synthesis attaches generic names to other names with
"_" as delimiter).

Signal Names

• Start with an upper-case letter.

• Have a suffix with syntax "x[CRESDTAZ][IO]?B?" ("[...]" denotes a choice, "?"
means optional).

• The suffix part "[CRESDTAZ]" indicates the class of the signal:

Class Char Example Description

clock C ClkxC clock
reset R RstxRB asynchronous reset
enable E LoadCntxE , StartCtrlxE trigger some synchronous event
control/status S SelInputxS , FullxS static control signals, status signals
data/address D SamplexD , RamAdrxD data and address signals
test T ScanEnxT , RamIsolxT test signals
asynchronous A StrobexA asynchronous signals
three-state Z ExternBusxZ three-state bus signals

Table A-1: Coding Style for VHDL as proposed by the DZ

• The suffix part "[IO]?" indicates input and output signals of an entity (e.g.,
CoeffxDI , FullxSO )

• The suffix part "B?" indicates active low signals.

Variable Names

• Start with a lower-case letter (e.g., temp, i, currentState).

• Have no suffix (as opposed to signal names).

Type Names

• Have a suffix "Type" or a name that implies a type (e.g. stateType, stdLogicAr-
ray).
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FSM Names

• Have a prefix "st" and a name that implies the state(e.g. stErase, stProgram).

File Names

• Have the same name as the contained design unit (possibly with the first or
all letters in lower case).

• Have file suffix ".vhd" or ".vhdl".

A.3 VHDL Error Hotlist

When intensely modelling circuits in VHDL, the following pitfalls are commonly
encountered:

1. default assignments

It must not be possible to go through a VHDL process statement without hav-
ing all signals assigned a defined value. The most secure approach is to make
a default assignment for all signals used at the beginning of the process.

2. reset polarity

Some systems use active high reset signals, others use active low signals. If
you don’t respect the actual reset polarity, you may risk your system stuck in
the reset state. And, no, this is not easily seen in the behaviour of the system!

3. sensitivity list

The sensitivity list is a syntax element of minor relevance for the synthesis
process. It is, however, very important for the simulation tool. The simulation
can only be guaranteed to behave as the synthesized circuit does if attention
is payed on correct sensitivity lists.

4. correct user constraints file (*.ucf )

Having the wrong *.ucf file assigned to the project is fatal: often, no error
message is spawned during the implementation process, but the design might
still not work as the pins are not located as expected.

A.4 Scan Chain

Two additional multiplexer are needed to modify an «operational» flip-flop to its
«scan-able» equivalent as described in section 5.6.4.1.

In the implementation of the scan-chain the multiplexer are realized by two LUT-
Elements of the Xilinx SPARTANTM II . A LUT2 element is added for the multi-
plexer in front of the FF-Enable input (tab. A-1-a) and initalized with the value "E".
The data input of the flip-flop is modified with a LUT3 (tab. A-1-b) in front of the
FF-Data input and contains the value "E2" as a logic function.
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A-1-a LUT2
Signal Port

FlipFlopEnable IO
ScanEnable I1
MuxOutput (D) 0

A-1-b LUT3
Signal Port

DataIn IO
ScanChainIn I1
ScanEnable I2
MuxOutput (CE) 0

Table A-2: LUT Elements ScanChain: Mapping of the Signals to the In- and Outports of the
LUTs Elment of Xilinx SPARTANTM II .

An running example of the «scan-chain» is shown in figure A-1: As a proof-of-concept
a counter is implemented and modified with the scan-chain insertion script. After
increasing the value for a certain time the «scan enable» is asserted and the execu-
tion mode changes from operational to the scan mode. As could be seen in the figure
the states are shifted in on the one side, on the other side the bits are serial shifted
out.
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Figure A-2
Example of a scan chain: A netlist improved with a scan chain and visualised with Synopsys «Design
Vision» GUI.
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A.5 Entities and UCF Files

Writing *.ucf -files could be a very error-prone task: We have modified and updated
the placement and timing constraints for the CPLD and the FPGA. For the sake of
completeness we include the constraint files of these two devices as a reference book.

A.5.1 FPGA: Xilinx SPARTANTM II XC2S200

Figure A-3
Entity:
Xilinx SPARTANTM II XC2S200 for the
BTNODEFPGA board

######## Clock and Reset ########
# clk
NET " ClkxCI " LOC = "P80" ;

# r e s e t switch
# use the button of the CPLD ! ! !

######## LEDS ########

# leds for fpga
NET "FPGALed0xSO" LOC = "P203" ;
NET "FPGALed1xSO" LOC = "P204" ;
NET "FPGALed2xSO" LOC = "P205" ;
NET "FPGALed3xSO" LOC = "P206" ;

######## FPGA <−−> CPLD #########

NET "FpgaCpldBUSxD<0>" LOC="p60" ;
NET "FpgaCpldBUSxD<1>" LOC="p61" ;
NET "FpgaCpldBUSxD<2>" LOC="p62" ;
NET "FpgaCpldBUSxD<3>" LOC="p63" ;
NET "FpgaCpldBUSxD<4>" LOC="p67" ;
NET "FpgaCpldBUSxD<5>" LOC="p68" ;
NET "FpgaCpldBUSxD<6>" LOC="p69" ;
NET "FpgaCpldBUSxD<7>" LOC="p70" ;

NET "RstxRBI" LOC="p71" ;
NET "FpgaCpldCommandxSO" LOC="p73" ;
NET "FpgaCpldDataHighxSO" LOC="p74" ;
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NET "FpgaCpldDataHighAckxAI" LOC="p75" ;
NET "FpgaCpldDataLowxSO" LOC="p81" ;
NET "FpgaCpldDataLowAckxAI" LOC="p82" ;
NET "FpgaCpldRs232RXxDI" LOC="p83" ;
NET "FpgaCpldRs232TXxDO" LOC="p84" ;

############# SRAM ###############

# SRAM addresses
NET "SRAMAddrxDO<0>" LOC = "P14" ;
NET "SRAMAddrxDO<1>" LOC = "P9" ;
NET "SRAMAddrxDO<2>" LOC = "P7" ;
NET "SRAMAddrxDO<3>" LOC = "P5" ;
NET "SRAMAddrxDO<4>" LOC = "P3" ;
NET "SRAMAddrxDO<5>" LOC = "P4" ;
NET "SRAMAddrxDO<6>" LOC = "P6" ;
NET "SRAMAddrxDO<7>" LOC = "P8" ;
NET "SRAMAddrxDO<8>" LOC = "P41" ;
NET "SRAMAddrxDO<9>" LOC = "P42" ;
NET "SRAMAddrxDO<10>" LOC = "P43" ;
NET "SRAMAddrxDO<11>" LOC = "P44" ;
NET "SRAMAddrxDO<12>" LOC = "P45" ;
NET "SRAMAddrxDO<13>" LOC = "P59" ;
NET "SRAMAddrxDO<14>" LOC = "P58" ;
NET "SRAMAddrxDO<15>" LOC = "P57" ;
NET "SRAMAddrxDO<16>" LOC = "P49" ;
NET "SRAMAddrxDO<17>" LOC = "P48" ;

# SRAM status signals
NET "SRAMCExEBO" LOC = "P16" ;
NET "SRAMHBxEBO" LOC = "P15" ;
NET "SRAMLBxEBO" LOC = "P17" ;
NET "SRAMOExEBO" LOC = "P10" ;
NET "SRAMWExEBO" LOC = "P47" ;

# SRAM data
NET "SRAMDataxZD<0>" LOC = "P18" ;
NET "SRAMDataxZD<1>" LOC = "P21" ;
NET "SRAMDataxZD<2>" LOC = "P23" ;
NET "SRAMDataxZD<3>" LOC = "P27" ;
NET "SRAMDataxZD<4>" LOC = "P30" ;
NET "SRAMDataxZD<5>" LOC = "P33" ;
NET "SRAMDataxZD<6>" LOC = "P35" ;
NET "SRAMDataxZD<7>" LOC = "P46" ;
NET "SRAMDataxZD<8>" LOC = "P37" ;
NET "SRAMDataxZD<9>" LOC = "P36" ;
NET "SRAMDataxZD<10>" LOC = "P34" ;
NET "SRAMDataxZD<11>" LOC = "P31" ;
NET "SRAMDataxZD<12>" LOC = "P29" ;
NET "SRAMDataxZD<13>" LOC = "P24" ;
NET "SRAMDataxZD<14>" LOC = "P22" ;
NET "SRAMDataxZD<15>" LOC = "P20" ;

######## FPGA IO ##########

NET "CPUWritexEBI" LOC="p195" ;
NET "CPUWritexEBI" pullup ;

NET "CPUOutputxEBI" LOC="p194" ;
NET "CPUOutputxEBI" pullup ;

NET "CPUCSelectxEBI" LOC="p193" ;
NET "CPUCSelectxEBI" pullup ;

NET "CPUIntrxSO" LOC="p192" ;

NET "CPUAddrxDI<0>" LOC="p191" ; # NET "FPGA_IO<4>" LOC="191";
NET "CPUAddrxDI<1>" LOC="p189" ; # NET "FPGA_IO<5>" LOC="189";
NET "CPUAddrxDI<2>" LOC="p188" ; # NET "FPGA_IO<6>" LOC="188";
NET "CPUAddrxDI<3>" LOC="p187" ; # NET "FPGA_IO<7>" LOC="187";

NET "CPUDataxZD<0>" LOC="p165" ; # NET "FPGA_IO<20>" LOC="p165 " ;
NET "CPUDataxZD<1>" LOC="p162" ; # NET "FPGA_IO<23>" LOC="p162 " ;
NET "CPUDataxZD<2>" LOC="p163" ; # NET "FPGA_IO<22>" LOC="p163 " ;
NET "CPUDataxZD<3>" LOC="p176" ; # NET "FPGA_IO<12>" LOC="p176 " ;
NET "CPUDataxZD<4>" LOC="p178" ; # NET "FPGA_IO<11>" LOC="p178 " ;
NET "CPUDataxZD<5>" LOC="p179" ; # NET "FPGA_IO<10>" LOC="p179 " ;
NET "CPUDataxZD<6>" LOC="p180" ; # NET "FPGA_IO<9>" LOC="p180 " ;
NET "CPUDataxZD<7>" LOC="p181" ; # NET "FPGA_IO<8>" LOC="p181 " ;
NET "CPUDataxZD<8>" LOC="p166" ; # NET "FPGA_IO<19>" LOC="p166 " ;
NET "CPUDataxZD<9>" LOC="p167" ; # NET "FPGA_IO<18>" LOC="p167 " ;
NET "CPUDataxZD<10>" LOC="p164" ; # NET "FPGA_IO<21>" LOC="p164 " ;
NET "CPUDataxZD<11>" LOC="p175" ; # NET "FPGA_IO<13>" LOC="p175 " ;
NET "CPUDataxZD<12>" LOC="p173" ; # NET "FPGA_IO<15>" LOC="p173 " ;
NET "CPUDataxZD<13>" LOC="p174" ; # NET "FPGA_IO<14>" LOC="p174 " ;
NET "CPUDataxZD<14>" LOC="p168" ; # NET "FPGA_IO<17>" LOC="p168 " ;
NET "CPUDataxZD<15>" LOC="p172" ; # NET "FPGA_IO<16>" LOC="p172 " ;

######### FLASH ############
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# FLASH FLAGS
# NET "FlashReadyxE" LOC="p122 " ;
# NET " FlashWritexEB " LOC="p125 " ;
# NET " FlashResetxRB " LOC="p123 " ;
# NET "FlashOutputxEB" LOC="p88 " ;
# NET "FlashChipxEB" LOC="p87 " ;

# FLASH DATA
# NET "FlashDataxZD<0>" LOC="p89 " ;
# NET "FlashDataxZD<1>" LOC="p90 " ;
# NET "FlashDataxZD<2>" LOC="p94 " ;
# NET "FlashDataxZD<3>" LOC="p95 " ;
# NET "FlashDataxZD<4>" LOC="p96 " ;
# NET "FlashDataxZD<5>" LOC="p97 " ;
# NET "FlashDataxZD<6>" LOC="p98 " ;
# NET "FlashDataxZD<7>" LOC="p99 " ;

# FLASH ADDR
# NET "FlashAddrxZD<0>" LOC="p86 " ;
# NET "FlashAddrxZD<1>" LOC="p109 " ;
# NET "FlashAddrxZD<2>" LOC="p110 " ;
# NET "FlashAddrxZD<3>" LOC="p111 " ;
# NET "FlashAddrxZD<4>" LOC="p112 " ;
# NET "FlashAddrxZD<5>" LOC="p113 " ;
# NET "FlashAddrxZD<6>" LOC="p114 " ;
# NET "FlashAddrxZD<7>" LOC="p120 " ;
# NET "FlashAddrxZD<8>" LOC="p127 " ;
# NET "FlashAddrxZD<9>" LOC="p129 " ;
# NET "FlashAddrxZD<10>" LOC="p100 " ;
# NET "FlashAddrxZD<11>" LOC="p132 " ;
# NET "FlashAddrxZD<12>" LOC="p133 " ;
# NET "FlashAddrxZD<13>" LOC="p134 " ;
# NET "FlashAddrxZD<14>" LOC="p136 " ;
# NET "FlashAddrxZD<15>" LOC="p138 " ;
# NET "FlashAddrxZD<16>" LOC="p139 " ;
# NET "FlashAddrxZD<17>" LOC="p102 " ;
# NET "FlashAddrxZD<18>" LOC="p121 " ;
# NET "FlashAddrxZD<19>" LOC="p101 " ;
###########
## TIMINGS ##
###########

NET " ClkxCI " PERIOD = 18432 kHz HIGH 50 %;

NET "CPUWritexEBI" PERIOD = 400 ns LOW 120 ns ;

NET "CPUOutputxEBI" PERIOD = 400 ns LOW 120 ns ;

NET " cpucommunication_1_InternalClkxCO " PERIOD = 400 ns LOW 120 ns ;

Listing A-15
UCF File for the FPGA and ISE 6.1

A.5.2 CPLD: Xilinx CoolrunnerTM XPLA3 XCR3384XL
# clk and r e s e t
NET " ClkxCI " LOC = "P128" ;
NET " ClkxCI " PERIOD = 18.432 MHz;

# r e s e t switch ( button pulls to gnd )
NET "RstxRBI" LOC = "P103" ;
NET "RstxRBI" pullup ;

# leds for cpld
NET "CPLDLedxS0" LOC = "P37" ;
NET "CPLDLedxS1" LOC = "P38" ;
NET "CPLDLedxS2" LOC = "P39" ;
NET "CPLDLedxS3" LOC = "P40" ;

# f lash : FlashDataxZD ( 7 downto 0)
NET "FlashDataxZD<0>" LOC = "P69" ;
NET "FlashDataxZD<1>" LOC = "P68" ;
NET "FlashDataxZD<2>" LOC = "P67" ;
NET "FlashDataxZD<3>" LOC = "P66" ;
NET "FlashDataxZD<4>" LOC = "P65" ;
NET "FlashDataxZD<5>" LOC = "P63" ;
NET "FlashDataxZD<6>" LOC = "P62" ;
NET "FlashDataxZD<7>" LOC = "P61" ;

# f lash : FlashAddrxZD (19 downto 0)
NET "FlashAddrxZD<0>" LOC = "P72" ;
NET "FlashAddrxZD<1>" LOC = "P113" ;
NET "FlashAddrxZD<2>" LOC = "P114" ;
NET "FlashAddrxZD<3>" LOC = "P116" ;
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Figure A-4
Entity:
Xilinx
CoolrunnerTM XPLA3 XCR3384XL
for the BTNODEFPGA board

NET "FlashAddrxZD<4>" LOC = "P117" ;
NET "FlashAddrxZD<5>" LOC = "P118" ;
NET "FlashAddrxZD<6>" LOC = "P119" ;
NET "FlashAddrxZD<7>" LOC = "P120" ;
NET "FlashAddrxZD<8>" LOC = "P136" ;
NET "FlashAddrxZD<9>" LOC = "P137" ;
NET "FlashAddrxZD<10>" LOC = "P60" ;
NET "FlashAddrxZD<11>" LOC = "P138" ;
NET "FlashAddrxZD<12>" LOC = "P139" ;
NET "FlashAddrxZD<13>" LOC = "P140" ;
NET "FlashAddrxZD<14>" LOC = "P141" ;
NET "FlashAddrxZD<15>" LOC = "P142" ;
NET "FlashAddrxZD<16>" LOC = "P143" ;
NET "FlashAddrxZD<17>" LOC = "P55" ;
NET "FlashAddrxZD<18>" LOC = "P122" ;
NET "FlashAddrxZD<19>" LOC = "P56" ;

# f lash contro l s ignals
NET " FlashReadyxEI " LOC = "P132" ;
NET "FlashChipxEBO" LOC = "P71" ;
NET "FlashOutputxEBO" LOC = "P70" ;
NET "FlashRstxRBO" LOC = "P133" ;
NET "FlashWritexEBO" LOC = "P134" ;

# f lash slave para l l e l i n t e r f a c e
NET "FpgaSlaveParProgramxEBO" LOC = "P2" ;
NET " FpgaSlaveParDonexEI " LOC = "P4" ;
NET " FpgaSlaveParInitxEI " LOC = "P1" ;
#NET "FpgaSlaveParBusyxE" LOC = "P7 " ; # not used below 50 MHz
NET "FpgaSlaveParWRxEBO" LOC = "P5" ;
NET "FpgaSlaveParCSxEBO" LOC = "P6" ;

# rs232 i n t e r f a c e ( to Host PC)
NET "Rs232RXxDI" LOC = "P74" ;
NET "Rs232TXxDO" LOC = "P75" ;

# uc i n t e r f a c e ( to BTnode )
# NET "uc<0>" LOC = "P74 " ;
# NET "uc<1>" LOC = "P75 " ;
# NET "uc<2>" LOC = "P77 " ;
# NET "uc<3>" LOC = "P78 " ;
# NET "uc<4>" LOC = "P79 " ;
# NET "uc<5>" LOC = "P80 " ;
# NET "uc<6>" LOC = "P81 " ;
# NET "uc<7>" LOC = "P82 " ;
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# FPGA CPLD BUS (15 downto 0)
NET "FpgaCpldBUSxD<0>" LOC = "P36" ;
NET "FpgaCpldBUSxD<1>" LOC = "P35" ;
NET "FpgaCpldBUSxD<2>" LOC = "P34" ;
NET "FpgaCpldBUSxD<3>" LOC = "P32" ;
NET "FpgaCpldBUSxD<4>" LOC = "P31" ;
NET "FpgaCpldBUSxD<5>" LOC = "P30" ;
NET "FpgaCpldBUSxD<6>" LOC = "P29" ;
NET "FpgaCpldBUSxD<7>" LOC = "P28" ;

NET "FpgaCpldRstxRBO" LOC = "p27" ;
NET "FpgaCpldCommandxSI" LOC = "p26" ;
NET " FpgaCpldDataHighxSI " LOC = "p25" ;
NET "FpgaCpldDataHighAckxAO" LOC = "p23" ;
NET "FpgaCpldDataLowxSI" LOC = "p21" ;
NET "FpgaCpldDataLowAckxAO" LOC = "p20" ;
NET "FpgaCpldRs232RXxDO" LOC = "p19" ;
NET "FpgaCpldRs232TXxDI" LOC = "p18" ;

# NET "FpgaCpldBUSxZD<0>" LOC = "P36 " ;
# NET "FpgaCpldBUSxZD<1>" LOC = "P35 " ;
# NET "FpgaCpldBUSxZD<2>" LOC = "P34 " ;
# NET "FpgaCpldBUSxZD<3>" LOC = "P32 " ;
# NET "FpgaCpldBUSxZD<4>" LOC = "P31 " ;
# NET "FpgaCpldBUSxZD<5>" LOC = "P30 " ;
# NET "FpgaCpldBUSxZD<6>" LOC = "P29 " ;
# NET "FpgaCpldBUSxZD<7>" LOC = "P28 " ;

# NET "FpgaCpldBUSxZD<8>" LOC = "P27 " ;
# NET "FpgaCpldBUSxZD<9>" LOC = "P26 " ;
# NET "FpgaCpldBUSxZD<10>" LOC = "P25 " ;
# NET "FpgaCpldBUSxZD<11>" LOC = "P23 " ;
# NET "FpgaCpldBUSxZD<12>" LOC = "P21 " ;
# NET "FpgaCpldBUSxZD<13>" LOC = "P20 " ;
# NET "FpgaCpldBUSxZD<14>" LOC = "P19 " ;
# NET "FpgaCpldBUSxZD<15>" LOC = "P18 " ;

Listing A-16
UCF File for the CPLD and ISE 6.1
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Contents

1 Data Structure Index 1

2 File Index 1

3 Page Index 1

4 Data Structure Documentation 1

5 File Documentation 2

6 Page Documentation 21

1 Data Structure Index

1.1 Embedded Machine on FPGA - IPAQ Driver and Data Streamer Data Struc-
tures

Here are the data structures with brief descriptions:

CFpga (Functions to access the FPGAModule ) 1

ISTData (Interrupt Service Thread Struct ) 2

2 File Index

2.1 Embedded Machine on FPGA - IPAQ Driver and Data Streamer File List

Here is a list of all documented files with brief descriptions:

DataStreamWriter.cpp (Embedded Machine FPGA Loader (DataStreamWriter) ) 2

EmbeddedMachine.h(Constants for the "Embedded Machine on FPGA" on the IPAQ ) 11

FPGADriver.cpp (Embedded Machine FPGA Communication Driver for Windows CE ) 12

FPGADriver.h (Embedded Machine FPGA Communication Driver for Windows CE ) 20

3 Page Index

3.1 Embedded Machine on FPGA - IPAQ Driver and Data Streamer Related Pages

Here is a list of all related documentation pages:

Todo List 21

4 Data Structure Documentation

4.1 CFpga Class Reference

Collaboration diagram for CFpga:

Embedded Machine on FPGA - IPAQ Driver amd Data Streamer
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4.2 ISTData Struct Reference 2

CFpga

ISTData

mISTData

4.1.1 Detailed Description

The CFpga Class enables an access to the FPGAModule connected to an IPAQ running Windows CE.
The implemented functionality has read and write functions for the memory-mapped expansion pack, an
hardware interrupt handler and runtime functions (constructor, destructor). All functions are implemented
to run in the user-space and can be used by user applications.

Public Member Functions

• int Init (void)
• int DeInit (void)
• int Read(UINT pipe, PUSHORT pBuffer, UINT ucb)
• int Write (UINT pipe, PUSHORT pBuffer, UINT ucb)
• int SlowWrite (UINT pipe, PUSHORT pBuffer, UINT ucb)

4.2 ISTData Struct Reference

4.2.1 Detailed Description

The IST (Interrupt Service Thread) Struct merges parameters and links to thread instances, which are
needed for the interrupt handler at runtime.

Parameters:
hThread : Handle to a ThreadObject (self-reference to the running instance of the IST)

sysIntr : Name of hardware interrupt (for the expansion slot we need SYSINTR_OPT)

hEvent : Handle to a EventObject (event handler links "hardware" interrupt and "software" event)

bAbort : Boolean if this IST instance should be aborted (done atDeInit() or by a second thread)

nPriority : Integer sets the priority of the Windows CE Thread (range 0 - 255, s.a. the priorities listed
in FPGA_IST_PRIORITY)

Data Fields

• HANDLE hThread
• DWORDsysIntr
• HANDLE hEvent
• volatile BOOLbAbort
• int nPriority

5 File Documentation

5.1 DataStreamWriter.cpp File Reference

5.1.1 Detailed Description

Embedded Machine FPGA Loader (DataStreamWriter):

Embedded Machine on FPGA - IPAQ Driver amd Data Streamer

Appendix B: IPAQ Driver and Data Streamer

126



5.1 DataStreamWriter.cpp File Reference 3

This Windows CE program implements a streamer for "FPGA configuration bitstreams". A new bitstream
is created, loaded via a PC and Microsoft ActiveSync to the IPAQ device and streamed out – over the
expansion slot – to the FPGA board (BTNodeFPGA board) afterwards.

Author:
Roman Plessl

Version:
1.7

Date:
2004/04/21

Id
DataStreamWriter.cpp,v 1.7 2004/04/21 18:54:58 rplessl Exp

Defines

• #defineWIN32_LEAN_AND_MEAN
• #defineZONE_ERROR DEBUGZONE(0)
• #defineZONE_WARNING DEBUGZONE(1)
• #defineZONE_FUNC DEBUGZONE(2)

Functions

• int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance, LPTSTR lpCmdLine,
int CmdShow)

Main Program.

5.1.2 Function Documentation

5.1.2.1 int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance, LPTSTR lp-
CmdLine, int CmdShow)

Parameters:
HINSTANCE hInstance : Handle of the currently running instance of the application

HINSTANCE hPrevInstance : Handle of the previously running instance of the same applicaiton. In
the 32-bit API of Windows CE, this parameter is always NULL (because every program runs in
its own address space)

LPTSTR lpCmdLine : command line arguments for the program (in UNICODE)

int CmdShow : declare the style of the main window when the program first starts (i.e. maximized,
minimized and that like)

Returns:
Message wParam : indicates success ’0’ : indicates that the function terminates before entering the
message loop

This main program acts as an Data Streamer to the FPGA board. At the beginning, an instance of the
userspace driver is created and initalized with the accurate values.

Initializing FPGADriver ...
--> suceeded

If the creation and initalize process suceeds a simple application — commandline and char inputs as a user-
interface — appears which allows to choose one of the different operation and streaming modes.
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Writing bitstream in short words
to FPGA device ...

Choice BitStream:
0 - Reseting Flash
1 - Erase Flash
2 - New BitStream
3 - Active SlaveParallel
5 - New BitStream non verbose
6 - New BitStream SELECT (SELECT SECTOR)
7 - Active SlavePar SELECT (SELECT SECTOR)
Q - Break

By select one of this entries a bitstream is read from the filesystem and written to the expansion port.
Afterwards the write procedure the Data Streamser terminates its communication phase and the user-space
driver is deinitalized.

DeInit FPGADriver ...
suceeded!

The program has to be terminated by pressing SPACE + ENTER

Press SPACE ENTER to exit!

114 / / Handle t o t h e FPGADriver
115 CFpga* pMydevice;
116
117 / / Use o f debug o u t p u t t o h o s t
118 DEBUGREGISTER(hInstance);
119
120 / / Th i s t e x t goes t o t h e c o n s o l e window on t h e IPAQ
121 printf( " FPGA Test \ n" );
122 / / Th i s t e x t goes t o t h e debug window on t h e h o s t ( i f connec ted and i n debug mode)
123 DEBUGMSG(ZONE_FUNC, (TEXT(" FPGA Test .\ n" )));
124
125 pMydevice = new CFpga();
126
127
128 printf( " Initializing FPGADriver ... " );
129 if (!pMydevice->Init()){
130 printf( " \ n --> failed !\ n" );
131 return 0;
132 }
133 printf( " \ n --> suceeded !\ n" );
134
135 / * Get da ta from f i l e * /
136
137 FILE * stream;
138 int numread; / / number o f read b y t e s
139
140 / * da ta w id th o f t h e expans ion s l o t i s 16 b i t
141 we read i n two BYTEs and c o n v e r t them t o a
142 16 b i t uns igned s h o r t v a l u e (USHORT)
143
144 CAUTION on b y t e o rde r ( b ig / l i t t l e end ian)
145 * /
146
147 USHORT data[1];
148 BYTE tempdata[2];
149
150 / * Output user−i n f o r m a t i o n s and s t a y i n s w i t c h f u n c t i o n* /
151
152 char * line = " __" ;
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153 char c;
154
155 printf( " Writing bitstream in short words \ n" );
156 printf( " to FPGA device ...\ n" );
157
158 printf( " \ n" );
159
160 printf( " Choice BitStream :\ n " );
161 printf( " 0 - Reseting Flash \ n " );
162 printf( " 1 - Erase Flash \ n " );
163 printf( " 2 - New BitStream \ n " );
164 printf( " 3 - Active SlaveParallel \ n " );
165 printf( " 5 - New BitStream non verbose \ n " );
166 printf( " 6 - New BitStream SELECT \ n " );
167 printf( " 7 - Active SlavePar SELECT \ n " );
168 printf( " Q - Break \ n\ n > " );
169
170 gets (line);
171
172 switch (c = * line)
173 {
174 case ’ 0’ :
175 / * Open f i l e i n b i n a r y mode: * /
176 if ( (stream = fopen( " Bitstreams / reseting . bit " , " rb " )) != NULL )
177 {
178 printf( " open file ( RESET FLASH) \ n" );
179
180 while ( !feof( stream ) )
181 {
182 / / read 2 b y t e s from f i l e < st ream>
183 numread = fread(&(tempdata[0]), sizeof (BYTE), 2, stream );
184
185 if (numread > 0){
186 / / c o n s t r u c t a 16 b i t USHORT from 2 BYTEs
187 / / b ig t o l i t t l e end ian c o n v e r s i o n
188 data[0]=(tempdata[0]<<8) + tempdata[1];
189
190 / / Debug ou t
191 printf( " DATA: %Xh \ n" ,data[0]);
192
193 / / Wr i te t o FPGA:
194 / / Address : 0
195 / / Data : da ta[0 ] (16 b i t USHORT v a l u e)
196 / / S i z e : 1 USHORT
197 pMydevice->Write(DATA_REG,&data[0],1);
198 }
199 }
200 printf( " close file ( RESET FLASH)\ n" );
201 fclose( stream );
202 }
203 else
204 {
205 printf( " Error opening file ( RESET FLASH)\ n" );
206 }
207 break ;
208 case ’ 1’ :
209 / * Open f i l e i n b i n a r y mode: * /
210 if ( (stream = fopen( " Bitstreams / erasing . bit " , " rb " )) != NULL )
211 {
212 printf( " open file ( ERASE CHIP) \ n" );
213
214 while ( !feof( stream ) )
215 {
216 / / read 2 b y t e s from f i l e < st ream>
217 numread = fread(&(tempdata[0]), sizeof (BYTE), 2, stream );
218
219 if (numread > 0){
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220 / / c o n s t r u c t a 16 b i t USHORT from 2 BYTEs
221 / / b ig t o l i t t l e end ian c o n v e r s i o n
222 data[0]=(tempdata[0]<<8) + tempdata[1];
223
224 / / Debug ou t
225 printf( " DATA: %Xh \ n" ,data[0]);
226
227 / / Wr i te t o FPGA:
228 / / Address : 0
229 / / Data : da ta[0 ] (16 b i t USHORT v a l u e)
230 / / S i z e : 1 USHORT
231 pMydevice->Write(DATA_REG,&data[0],1);
232 }
233 }
234 printf( " close file ( ERASE CHIP)\ n" );
235 fclose( stream );
236 }
237 else
238 {
239 printf( " Error opening file ( ERASE CHIP)\ n" );
240 }
241 break ;
242
243 case ’ 2’ :
244 default :
245 / * Open f i l e i n b i n a r y mode: * /
246 if ( (stream = fopen( " Bitstreams / fpga_blinkenlight_mod . bit " , " rb " )) != NULL )
247 {
248 printf( " open file ( NEWBITSTREAM)\ n" );
249
250 UINT counter = 0;
251
252 while ( !feof( stream ) )
253 {
254 / / read 2 b y t e s from f i l e < st ream>
255 numread = fread(&(tempdata[0]), sizeof (BYTE), 2, stream );
256
257 if (numread > 0){
258 / / c o n s t r u c t a 16 b i t USHORT from 2 BYTEs
259 / / b ig t o l i t t l e end ian c o n v e r s i o n
260 data[0]=(tempdata[0]<<8) + tempdata[1];
261
262
263 / / Debug ou t
264 if ((counter % 100) == 0){
265 printf( " DATA: %.4Xh %i \ n" ,data[0], counter);
266 }
267
268 / / Wr i te t o FPGA:
269 / / Address : 0
270 / / Data : da ta[0 ] (16 b i t USHORT v a l u e)
271 / / S i z e : 1 USHORT
272 pMydevice->Write(DATA_REG,&data[0],1);
273
274 counter++;
275 }
276 }
277 printf( " close file ( NEWBITSTREAM)\ n" );
278 fclose( stream );
279 }
280 else
281 {
282 printf( " Error opening file ( NEWBITSTREAM)\ n" );
283 }
284 break ;
285
286 case ’ 3’ :
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287 / * Open f i l e i n b i n a r y mode: * /
288 if ( (stream = fopen( " Bitstreams / slaveparallel_0 . bit " , " rb " )) != NULL )
289 {
290 printf( " open file ( SLAVE PARALLEL)\ n" );
291
292 while ( !feof( stream ) )
293 {
294 / / read 2 b y t e s from f i l e < st ream>
295 numread = fread(&(tempdata[0]), sizeof (BYTE), 2, stream );
296
297 if (numread > 0){
298 / / c o n s t r u c t a 16 b i t USHORT from 2 BYTEs
299 / / b ig t o l i t t l e end ian c o n v e r s i o n
300 data[0]=(tempdata[0]<<8) + tempdata[1];
301
302 / / Debug ou t
303 printf( " DATA: %Xh \ n" ,data[0]);
304
305 / / Wr i te t o FPGA:
306 / / Address : 0
307 / / Data: da ta[0 ] (16 b i t USHORT v a l u e)
308 / / S i z e: 1 USHORT
309 pMydevice->Write(DATA_REG,&data[0],1);
310 }
311 }
312 printf( " close file ( SLAVE PARALLEL)\ n" );
313 fclose( stream );
314 }
315 else
316 {
317 printf( " Error opening file \ n" );
318 }
319 break ;
320 case ’ 5’ :
321
322
323
324
325
326 / * Open f i l e i n b i n a r y mode: * /
327 if ( (stream = fopen( " Bitstreams / fpga_blinkenlight_mod . bit " , " rb " )) != NULL )
328 {
329 printf( " open file ( NEWBITSTREAM)\ n" );
330
331 UINT counter = 0;
332
333 while ( !feof( stream ) )
334 {
335 / / read 2 b y t e s from f i l e < st ream>
336 numread = fread(&(tempdata[0]), sizeof (BYTE), 2, stream );
337
338 if (numread > 0){
339 / / c o n s t r u c t a 16 b i t USHORT from 2 BYTEs
340 / / b ig t o l i t t l e end ian c o n v e r s i o n
341 data[0]=(tempdata[0]<<8) + tempdata[1];
342
343 / / Wr i te t o FPGA:
344 / / Address : 0
345 / / Data : da ta[0 ] (16 b i t USHORT v a l u e)
346 / / S i z e : 1 USHORT
347 pMydevice->Write(DATA_REG,&data[0],1);
348
349 counter++;
350 }
351 }
352 printf( " close file ( NEWBITSTREAM)\ n" );
353 fclose( stream );
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354 }
355 else
356 {
357 printf( " Error opening file ( NEWBITSTREAM)\ n" );
358 }
359 break ;
360
361 case ’ 6’ :
362 printf( " Select Sector : \ n " );
363 printf( " [0]: loader [3]: blinkenlight \ n " );
364 printf( " [6]: flashinglight \ n " );
365 printf( " \ n > " );
366
367 gets (line);
368
369 switch (c = * line)
370 {
371 case ’ 0’ :
372 default :
373 / * Open f i l e i n b i n a r y mode: * /
374 if ( (stream = fopen( " Bitstreams / fpga_flash_loader_mod_0 . bit " , " rb " )) != NULL )
375 {
376 printf( " open file fpga_flash_loader_mod_0 . bit \ n" );
377
378 UINT counter = 0;
379
380 while ( !feof( stream ) )
381 {
382 / / read 2 b y t e s from f i l e < st ream>
383 numread = fread(&(tempdata[0]), sizeof (BYTE), 2, stream );
384
385 if (numread > 0){
386 / / c o n s t r u c t a 16 b i t USHORT from 2 BYTEs
387 / / b ig t o l i t t l e end ian c o n v e r s i o n
388 data[0]=(tempdata[0]<<8) + tempdata[1];
389
390 / / Wr i te t o FPGA:
391 / / Address : 0
392 / / Data : da ta[0 ] (16 b i t USHORT v a l u e)
393 / / S i z e : 1 USHORT
394 pMydevice->Write(DATA_REG,&data[0],1);
395
396 counter++;
397 }
398 }
399 printf( " close file fpga_flash_loader_mod_0 . bit \ n" );
400 fclose( stream );
401 }
402 else
403 {
404 printf( " Error opening file fpga_flash_loader_mod_0 . bit \ n" );
405 }
406 break ;
407 case ’ 3’ :
408 / * Open f i l e i n b i n a r y mode: * /
409 if ( (stream = fopen( " Bitstreams / fpga_blinkenlights_mod_3 . bit " , " rb " )) != NULL )
410 {
411 printf( " open file fpga_blinkenlights_mod_3 . bit \ n" );
412
413 UINT counter = 0;
414
415 while ( !feof( stream ) )
416 {
417 / / read 2 b y t e s from f i l e < st ream>
418 numread = fread(&(tempdata[0]), sizeof (BYTE), 2, stream );
419
420 if (numread > 0){
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421 / / c o n s t r u c t a 16 b i t USHORT from 2 BYTEs
422 / / b ig t o l i t t l e end ian c o n v e r s i o n
423 data[0]=(tempdata[0]<<8) + tempdata[1];
424
425 / / Wr i te t o FPGA:
426 / / Address : 0
427 / / Data : da ta[0 ] (16 b i t USHORT v a l u e)
428 / / S i z e : 1 USHORT
429 pMydevice->Write(DATA_REG,&data[0],1);
430
431 counter++;
432 }
433 }
434 printf( " close file fpga_blinkenlights_mod_3 . bit \ n" );
435 fclose( stream );
436 }
437 else
438 {
439 printf( " Error opening file fpga_blinkenlights_mod_3 . bit \ n" );
440 }
441 break ;
442 case ’ 6’ :
443 / * Open f i l e i n b i n a r y mode: * /
444 if ( (stream = fopen( " Bitstreams / fpga_flashinglights_mod_6 . bit " , " rb " )) != NULL )
445 {
446 printf( " open file fpga_flashinglights_mod_6 . bit \ n" );
447
448 UINT counter = 0;
449
450 while ( !feof( stream ) )
451 {
452 / / read 2 b y t e s from f i l e < st ream>
453 numread = fread(&(tempdata[0]), sizeof (BYTE), 2, stream );
454
455 if (numread > 0){
456 / / c o n s t r u c t a 16 b i t USHORT from 2 BYTEs
457 / / b ig t o l i t t l e end ian c o n v e r s i o n
458 data[0]=(tempdata[0]<<8) + tempdata[1];
459
460 / / Wr i te t o FPGA:
461 / / Address : 0
462 / / Data : da ta[0 ] (16 b i t USHORT v a l u e)
463 / / S i z e : 1 USHORT
464 pMydevice->Write(DATA_REG,&data[0],1);
465
466 counter++;
467 }
468 }
469 printf( " close file fpga_flashinglights_mod_6 . bit \ n" );
470 fclose( stream );
471 }
472 else
473 {
474 printf( " Error opening file fpga_flashinglights_mod_6 . bit \ n" );
475 }
476 break ;
477 }
478 break ;
479
480 case ’ 7’ :
481 printf( " Select Sector : \ n " );
482 printf( " [0- F]\ n " );
483 printf( " \ n > " );
484
485 gets (line);
486
487 switch (c = * line)
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488 {
489 case ’ 0’ :
490 default :
491 / * Open f i l e i n b i n a r y mode: * /
492 if ( (stream = fopen( " Bitstreams / slaveparallel_0 . bit " , " rb " )) != NULL )
493 {
494 printf( " open file ( SLAVE PARALLEL)\ n" );
495
496 while ( !feof( stream ) )
497 {
498 / / read 2 b y t e s from f i l e < st ream>
499 numread = fread(&(tempdata[0]), sizeof (BYTE), 2, stream );
500
501 if (numread > 0){
502 / / c o n s t r u c t a 16 b i t USHORT from 2 BYTEs
503 / / b ig t o l i t t l e end ian c o n v e r s i o n
504 data[0]=(tempdata[0]<<8) + tempdata[1];
505
506 / / Debug ou t
507 printf( " DATA: %Xh \ n" ,data[0]);
508
509 / / Wr i te t o FPGA:
510 / / Address : 0
511 / / Data: da ta[0 ] (16 b i t USHORT v a l u e)
512 / / S i z e: 1 USHORT
513 pMydevice->Write(DATA_REG,&data[0],1);
514 }
515 }
516 printf( " close file ( SLAVE PARALLEL)\ n" );
517 fclose( stream );
518 }
519 else
520 {
521 printf( " Error opening file \ n" );
522 }
523 break ;
524
525 case ’ 3’ :
526 if ( (stream = fopen( " Bitstreams / slaveparallel_3 . bit " , " rb " )) != NULL )
527 {
528 printf( " open file ( SLAVE PARALLEL)\ n" );
529 while ( !feof( stream ) )
530 {
531 numread = fread(&(tempdata[0]), sizeof (BYTE), 2, stream );
532 if (numread > 0){
533 data[0]=(tempdata[0]<<8) + tempdata[1];
534 printf( " DATA: %Xh \ n" ,data[0]);
535 pMydevice->Write(DATA_REG,&data[0],1);
536 }
537 }
538 printf( " close file ( SLAVE PARALLEL)\ n" );
539 fclose( stream );
540 }
541 else
542 {
543 printf( " Error opening file \ n" );
544 }
545 break ;
546
547 case ’ 6’ :
548 if ( (stream = fopen( " Bitstreams / slaveparallel_6 . bit " , " rb " )) != NULL )
549 {
550 printf( " open file ( SLAVE PARALLEL)\ n" );
551 while ( !feof( stream ) )
552 {
553 numread = fread(&(tempdata[0]), sizeof (BYTE), 2, stream );
554 if (numread > 0){
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555 data[0]=(tempdata[0]<<8) + tempdata[1];
556 printf( " DATA: %Xh \ n" ,data[0]);
557 pMydevice->Write(DATA_REG,&data[0],1);
558 }
559 }
560 printf( " close file ( SLAVE PARALLEL)\ n" );
561 fclose( stream );
562 }
563 else
564 {
565 printf( " Error opening file \ n" );
566 }
567 break ;
568 }
569 break ;
570
571 case ’ ’ :
572 case ’ Q’ :
573 case ’ q’ :
574 break ;
575 }
576
577 printf( " writing done ! \ n" );
578
579 / * READ S t a t u s R e g i s t e r o f t h e FPGA Framework
580 imp lemented bu t no t t e s t e d . . . .
581 * /
582
583 / / pMydevice−>Read( STATUS_REG,& data [ 0 ] , 1 ) ;
584 / / p r i n t f ( " DATA: %Xh \ n" , da ta [ 0 ] ) ;
585
586
587 printf( " DeInit FPGADriver ... " );
588 if (!pMydevice->DeInit()){
589 printf( " failed !\ n" );
590 return 0;
591 }
592 printf( " suceeded !\ n" );
593
594 delete pMydevice;
595 pMydevice = NULL;
596
597 printf( " Press SPACE ENTER to exit !\ n" );
598 while (getchar()!=32);
599
600 return 1;
601 }

5.2 EmbeddedMachine.h File Reference

5.2.1 Detailed Description

Constants for the "Embedded Machine on FPGA" project for software on IPAQ

Author:
Roman Plessl

Version:
1.5

Date:
2004/04/21

$Id $
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Defines

• #defineDATA_REG0
Data Register in FPGA.

• #defineBLOCKING_REG4
Blocking Register in FPGA.

• #defineSTATUS_REG15
Status Register in FPGA.

5.2.2 Define Documentation

5.2.2.1 #define BLOCKING_REG 4
Status Register in FPGA is mapped to the Address 4 (equals 4 in HEX). The Address is switched by internal
FPGA Addresses and the wires connected to the FPGA Pins (CPUAddrxDI)

5.2.2.2 #define DATA_REG 0
Data Register in FPGA is mapped to the Address 0 (equals 0 in HEX). The Address is switched by internal
FPGA Addresses and the wires connected to the FPGA Pins (CPUAddrxDI)

5.2.2.3 #define STATUS_REG 15
Status Register in FPGA is mapped to the Address 15 (equals F in HEX). The Address is switched by
internal FPGA Addresses and the wires connected to the FPGA Pins (CPUAddrxDI)

5.3 FPGADriver.cpp File Reference

5.3.1 Detailed Description

Source for the FPGADriver.dll. This DLL is loaded by user apps to access the FPGAModule, which is
memory-mapped to the MCS4 region of the expansion pack.
Driver was initially designed as a Windows CE Stream Device Driver, which could be automatically loaded
upon expansion pack insertion. However, due to debugging reasons and simpler handling, the driver now
can only be loaded by a user apps in user space.

Author:
Matthias Dyer
Roman Plessl

Version:
1.9

Date:
2004/04/21

Todo
Interruptenable as parameter e.g. in constructor

Id
FPGADriver.cpp,v 1.9 2004/04/21 18:54:58 rplessl Exp

Defines

• #defineWIN32_LEAN_AND_MEAN
Exclude rarely-used stuff from Windows headers.

• #defineDTAG TEXT ("FPGADrv: ")
Debug zone support.

• #defineZONE_ERRORDEBUGZONE(0)
Debug zone constant.
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• #defineZONE_WARNINGDEBUGZONE(1)
Debug zone constant.

• #defineZONE_FUNCDEBUGZONE(2)
Debug zone constant.

• #defineZONE_INIT DEBUGZONE(3)
Debug zone constant.

• #defineZONE_DRVCALLSDEBUGZONE(4)
Debug zone constant.

• #defineFPGA_IO_BASE0x10000000
FPGA_IO_BASE: Base Address in IPAQ Address Space.

• #defineFPGA_IO_SPACE64
FPGA_IO_SPACE: Size of Space.

• #defineFPGA_IST_PRIORITY152
FPGA_IST_PRIORITY: Interrupt Service Thread Priority.

• #defineFPGA_INT_ENABLE1
FPGA_INT_ENABLE : Switch (Enable, Disable) of Interrupt.

• #defineSLOW_FACTOR100
slowing parameter

Functions

• DWORDFPGA_IST(void ∗dat)
Interrupt Service Thread Function.

• BOOL APIENTRY DllMain (HANDLE hModule, DWORD ul_reason_for_call, LPVOID lp-
Reserved)

DllMain - only used for logging here.

• CFpga()
Constructor.

• int Init ()
Init.

• int DeInit ()
DeInit.

• int Read(UINT pipe, PUSHORT pBuffer, UINT ucb)
Read.

• int Write (UINT pipe, PUSHORT pBuffer, UINT ucb)
Write.

• int SlowWrite(UINT pipe, PUSHORT pBuffer, UINT ucb)
SlowWrite.

• void Slower(void)
Slower.

• void ReadStatusReg(void)
Read Status Reg.

5.3.2 Define Documentation

5.3.2.1 #define DTAG TEXT ("FPGADrv: ")
DTAG : Used as a prefix string for all debug zone messages.

5.3.2.2 #define FPGA_IST_PRIORITY 152
FPGA_IST_PRIORITY is a WinCE Threads Priority
WinCE Threads Priority

• 0 - 96 : real time (above drivers)

• 97 - 152 : WinCE based drivers
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• 153 - 247 : real time (below drivers)

• 248 - 255 : non real time (applications)

more enhanced thread list fromhttp://www.windowsfordevices.com/articles/AT3859908246.html
Real-Time Thread Priorities: CeSetThreadPriority

• 0-19 Open Real Time Above Drivers

• 20 Permedia Vertical Retrace

• 21-98 Open Real Time Above Drivers

• 99 Power management Resume Thread

• 100-108 USB OHCI UHCI, Serial

• 109-129 Irsir1, NDIS, Touch

• 130 KITL

• 131 VMini

• 132 CxPort

• 133-144 Open Device Drivers

• 145 PS2 Keyboard

• 146-147 Open Device Drivers

• 148 IRComm

• 149 Open Device Drivers

• 150 TAPI

• 151-152 Open Device Drivers

• 153-247 Open Real Time Below Drivers

Normal Thread Priorities: SetThreadPriority

• 248 Power Management

• 249 WaveDev, TVIA5000, Mouse, PnP ,Power

• 250 WaveAPI

• 251 Power Manager Battery Thread

• 252-255 Open

5.3.2.3 #define ZONE_DRVCALLS DEBUGZONE(4)
DEBUGZONE(4)
ZONE_DRVCALLS: DRIVER CALLS exception (needed for debugging a DLL (additonal information))

5.3.2.4 #define ZONE_ERROR DEBUGZONE(0)
DEBUGZONE(0)
ZONE_ERROR : ERROR exception (needed for debugging a DLL (additonal information))
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5.3.2.5 #define ZONE_FUNC DEBUGZONE(2)
DEBUGZONE(2)
ZONE_FUNC : FUNCTION exception (needed for debugging a DLL (additonal information))

5.3.2.6 #define ZONE_INIT DEBUGZONE(3)
DEBUGZONE(3)
ZONE_INIT : INIT exception (needed for debugging a DLL (additonal information))

5.3.2.7 #define ZONE_WARNING DEBUGZONE(1)
DEBUGZONE(1)
ZONE_WARNING : WARNING exception (needed for debugging a DLL (additonal information))

5.3.3 Function Documentation

5.3.3.1 CFpga ()
Constuctor of the class CFPGA

277 pFpgaRegs = NULL;
278 return ;
279 }
\end{verbatim}\normalsize
\hypertarget{FPGADriver_8cpp_a16}{
\index{FPGADriver.cpp@{FPGADriver.cpp}!DeInit@{DeInit}}
\index{DeInit@{DeInit}!FPGADriver.cpp@{FPGADriver.cpp}}
\paragraph[DeInit]{\setlength{\rightskip}{0pt plus 5cm} int De\-Init ()}\hfill}
\label{FPGADriver_8cpp_a16}

Deactivate, disable and destroy the Interrupt Service Thread.

\begin{Desc}
\item[Returns:]1 : if success

0 : else \end{Desc}

\footnotesize\begin{lstlisting}[language=C++]347 {
348 DEBUGMSG(ZONE_FUNC, (DTAG TEXT(" DeInit ++\ r \ n" )));
349 if (mISTData.hThread){
350 / / s t o p p i n g t h e IST
351 mISTData.bAbort = TRUE;
352 SetEvent(mISTData.hEvent);
353 InterruptDisable(mISTData.sysIntr);
354 CloseHandle(mISTData.hEvent);
355 CloseHandle(mISTData.hThread);
356 }
357 / / unmap
358 VirtualFree(( void * )pFpgaRegs, FPGA_IO_SPACE, MEM_RELEASE);
359
360 DEBUGMSG(ZONE_FUNC, (DTAG TEXT(" DeInit --\ r \ n" )));
361 return 1;
362 };

5.3.3.2 BOOL APIENTRY DllMain (HANDLE hModule, DWORD ul_reason_for_call, LPVOID
lpReserved)
The DllMain function is an optional entry point into a dynamic-link library (DLL). If the function is used,
it is called by the system when processes and threads are initialized and terminated. DLLMain Initializes a
non-MFC DLL.
We use this function for the debug logging functionality
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Parameters:
hModule : Handle to the DLL module. The value is the base address of the DLL.

ul_reason_for_call : Indicates why the DLL entry-point function is being called.

lpReserved: additional parameters for ul_reason_for_call

Returns:
’true’ : if initialization succeeds (ul_reason_for_call = DLL_PROCESS_ATTACH)
’false’: if initialization fails (ul_reason_for_call = DLL_PROCESS_ATTACH)
NULL : in other configurations

255 switch (ul_reason_for_call)
256 {
257 case DLL_PROCESS_ATTACH:
258 DEBUGREGISTER((HINSTANCE)hModule);
259 DEBUGMSG(ZONE_INIT, (DTAG TEXT(" DLL_PROCESS_ATTACH.\ r \ n" )));
260 break ;
261 case DLL_THREAD_ATTACH:
262 case DLL_THREAD_DETACH:
263 case DLL_PROCESS_DETACH:
264 DEBUGMSG(ZONE_INIT, (DTAG TEXT(" DLL_PROCESS_DETACH.\ r \ n" )));
265 break ;
266 }
267 return TRUE;
268 }

5.3.3.3 DWORD FPGA_IST (void∗ dat)

Parameters:
dat : ISTData∗ struct with priority, event handle and int number

The Interrupt handling of the XScale processor and its processing in Windows CE is shown in the figure.
An hardware interrupt on the expansion port (FPGA board) is usally thrown as an edge triggered impuls,
but the XScale interrupt unit reacts on level transitions. To fix this "double-counting" of the interrupt signals
a T-flipflop between source and destination is used for "translation". An output change on the Q output of
the T-FF needs two interrupt triggers at the D input.
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Figure 1: Interrupt Unit on the IPAQ

(1) symbolises the Hardware Interrupt from the expansion slot
(2) the link between Hardware Interrupt and Software Event
(3) figures a DeInit process of the link created in (2)

191 ISTData * pData=(ISTData * )dat;
192 DEBUGMSG (ZONE_FUNC, (DTAG TEXT(" IST ++\ r \ n" )));
193 if (!CeSetThreadPriority(GetCurrentThread(),pData->nPriority)){
194 DEBUGMSG (ZONE_ERROR, (DTAG TEXT(" IST : Set Priority Error : %d\ r \ n" ),GetLastError()));
195 return -1;
196 }
197 / / connec t " hardware" i n t e r r u p t w i t h " s o f t w a r e" e v e n t
198 / / l i n k c r e a t i o n showed as ( 2 ) i n t h e image
199 if (!InterruptInitialize(pData->sysIntr, pData->hEvent, NULL, 0)){
200 DEBUGMSG (ZONE_ERROR, (DTAG TEXT(" IST : Intr Init Error : %d\ r \ n" ),GetLastError()));
201 return -1;
202 }
203 / / main loop
204 / / pData−>bAbor t i s throwen when Thread i s s topped or k i l l e d ( D e I n i t p r o c e s s)
205 while (!pData->bAbort){
206 / / wa i t f o r t h e i n t e r r u p t e v e n t
207 DEBUGMSG (ZONE_FUNC, (DTAG TEXT(" IST : Waiting for Interrupt ...\ r \ n" )));
208 / / wa i t t i l l i n t e r r u p t e v e n t w i l l appear
209 WaitForSingleObject(pData->hEvent, INFINITE);
210 if (pData->bAbort){
211 / / pData−>bAbor t i s throwen by t h e D e I n i t f u n c t i o n
212 / / a b o r t f u n c t i o n showed as ( 3 ) i n t h e image
213 DEBUGMSG (ZONE_FUNC, (DTAG TEXT(" IST : abort \ r \ n" )));
214 InterruptDone(pData->sysIntr);
215 break ;
216 }
217 / / hand le t h e i n t e r r u p t ==========================
218 DEBUGMSG (ZONE_FUNC, (DTAG TEXT(" IST : Interrupt Event !\ r \ n" )));
219
220 / / < begin> o f use r i n t e r r u p t hand le
221

Embedded Machine on FPGA - IPAQ Driver amd Data Streamer

141



5.3 FPGADriver.cpp File Reference 18

222 / / <end> o f use r i n t e r r u p t hand le
223
224 InterruptDone(pData->sysIntr);
225 } / / end main loop
226 DEBUGMSG (ZONE_FUNC, (DTAG TEXT(" IST --\ r \ n" )));
227 return 0;
228 }

5.3.3.4 int Init ()
Initializes access. Allocates and maps MCS4 region. If needed creates starts Interrupt Service Thread.

Returns:
1 : if success
0 : else

292 DEBUGMSG(ZONE_FUNC, (DTAG TEXT(" Init ++\ r \ n" )));
293 / /
294 if (!IsSleevePresent()){
295 DEBUGMSG (ZONE_INIT | ZONE_FUNC | ZONE_ERROR,
296 (DTAG TEXT( " Init failure . Sleeve not present .\ r \ n" )));
297 SetLastError(ERROR_DEV_NOT_EXIST);
298 return 0; / / F a i l i n i t
299 }
300
301 / / a l l o c a t e and map mcs4 r e g i o n
302 pFpgaRegs = (PULONG)VirtualAlloc(NULL, FPGA_IO_SPACE, MEM_RESERVE, PAGE_NOACCESS);
303 if (pFpgaRegs==NULL){
304 DEBUGMSG (ZONE_INIT | ZONE_FUNC | ZONE_ERROR,
305 (DTAG TEXT( " Init failure ( VirtualAlloc ). Out of memory\ r \ n" )));
306 SetLastError(ERROR_OUTOFMEMORY);
307 return 0; / / F a i l i n i t
308 }
309 if (!VirtualCopy((VOID * )pFpgaRegs,(VOID * )(FPGA_IO_BASE/256), FPGA_IO_SPACE,
310 PAGE_READWRITE | PAGE_NOCACHE | PAGE_PHYSICAL)){
311 DEBUGMSG (ZONE_INIT | ZONE_FUNC | ZONE_ERROR,
312 (DTAG TEXT( " Init failure ( VirtualCopy ).\ r \ n" )));
313 return 0; / / F a i l i n i t
314 }
315
316 / / Power On
317 SleevePower();
318
319 if (FPGA_INT_ENABLE){
320 / / S t a r t i n g IST
321 mISTData.bAbort = FALSE;
322 mISTData.sysIntr = SYSINTR_OPT;
323 mISTData.nPriority = FPGA_IST_PRIORITY;
324 / / C rea te Event Handler
325 mISTData.hEvent = CreateEvent(NULL, FALSE, FALSE, NULL);
326 / / C rea te Thread Handler w i t h t h e f u n c t i o n a l i t y o f FPGA_IST and t h e mISTData pa ramete rs
327 mISTData.hThread = CreateThread(NULL, 0, &FPGA_IST, &mISTData, 0, NULL);
328 if (mISTData.hThread==NULL){
329 DEBUGMSG(ZONE_ERROR, (DTAG TEXT(" Init : Error creating IST .\ r \ n" )));
330 }
331 PPC_SET_INTERRUPT_ENABLED(NULL,TRUE);
332 }
333
334 DEBUGMSG (ZONE_FUNC, (DTAG TEXT(" Init --\ r \ n" )));
335 return 1;
336 };

5.3.3.5 int Read (UINTpipe, PUSHORT pBuffer, UINT ucb)
Read(pipe, &(Buffer[0]), 64) reads 64 short words from the FPGA module at address pipe and stores it in
Buffer.

Embedded Machine on FPGA - IPAQ Driver amd Data Streamer

Appendix B: IPAQ Driver and Data Streamer

142



5.3 FPGADriver.cpp File Reference 19

Parameters:
pipe : address to select memory mapped region (range: 0h - Fh)

pBuffer : array to store the data words read

ucb : number of words (a word is 16 bits)

Returns:
0 : if bad pointer
1 : if success

379 DEBUGMSG(ZONE_FUNC, (DTAG TEXT(" Read++\ r \ n" )));
380 if (IsBadWritePtr(pBuffer,2 * ucb)){
381 DEBUGMSG(ZONE_ERROR, (DTAG TEXT(" Read: Bad Pointer \ r \ n" )));
382 return 0;
383 }
384 for (UINT i=0;i<ucb;i++){
385 pBuffer[i] = (USHORT)(pFpgaRegs[pipe]&0x0000ffff);
386 }
387 DEBUGMSG(ZONE_FUNC, (DTAG TEXT(" Read--\ r \ n" )));
388 return 1;
389 };

5.3.3.6 void ReadStatusReg (void)[inline]
Prints the content of FPGA status register into the shell

477 USHORT ReadData[1];
478
479 Read(STATUS_REG,&ReadData[0],1);
480 printf( " DATA: %Xh \ n" ,ReadData[0]);
481 };

5.3.3.7 void Slower (void) [inline]
Inline directive to delay a process (inline "for" - loop)

463 ULONG SlowingVar = 0;
464 for (UINT i=0;i<SLOW_FACTOR;i++){
465 SlowingVar++;
466 }
467 };

5.3.3.8 int SlowWrite (UINT pipe, PUSHORT pBuffer, UINT ucb)
SlowWrite(pipe, &(Buffer[0]), 64) writes 64 short words from Buffer to the FPGA module. The address
pipe parameter is assigned to 4-bit width external address pins.
The write process is delayed by a factorSLOW_FACTOR(non functional wait loop).

Parameters:
pipe : address to select memory mapped region (range: 0h - Fh)

pBuffer : array that contains the data words for writing

ucb : number of words (a word is 16 bits)

Returns:
0 : if bad pointer
1 : if success

438 ULONG SlowingVar = 0;
439
440 DEBUGMSG(ZONE_FUNC, (DTAG TEXT(" FPGA_Write ++\ r \ n" )));
441 if (IsBadReadPtr(pBuffer,2 * ucb)){
442 DEBUGMSG(ZONE_ERROR, (DTAG TEXT(" Write : Bad Pointer \ r \ n" )));
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443 return 0;
444 }
445 for (UINT i=0;i<ucb;i++){
446 for (UINT i=0;i<SLOW_FACTOR;i++){
447 SlowingVar++;
448 }
449 pFpgaRegs[pipe] = (ULONG)pBuffer[i];
450 }
451 DEBUGMSG(ZONE_FUNC, (DTAG TEXT(" Write --\ r \ n" )));
452 return 1;
453 };

5.3.3.9 int Write (UINT pipe, PUSHORT pBuffer, UINT ucb)
Write(pipe, &(Buffer[0]), 64) writes 64 short words from Buffer to the FPGA module. The address pipe
parameter is assigned to 4-bit width external address pins.

Parameters:
pipe : address to select memory mapped region (range: 0h - Fh)

pBuffer : array that contains the data words for writing

ucb : number of words (a word is 16 bits)

Returns:
0 : if bad pointer (i.e. Buffer Overflow)
1 : if success

407 DEBUGMSG(ZONE_FUNC, (DTAG TEXT(" FPGA_Write ++\ r \ n" )));
408 if (IsBadReadPtr(pBuffer,2 * ucb)){
409 DEBUGMSG(ZONE_ERROR, (DTAG TEXT(" Write : Bad Pointer \ r \ n" )));
410 return 0;
411 }
412 for (UINT i=0;i<ucb;i++){
413 pFpgaRegs[pipe] = (ULONG)pBuffer[i];
414 }
415 DEBUGMSG(ZONE_FUNC, (DTAG TEXT(" Write --\ r \ n" )));
416 return 1;
417 };

5.4 FPGADriver.h File Reference

5.4.1 Detailed Description

Author:
Matthias Dyer
Roman Plessl

Version:
1.7

Date:
2004/04/05

Id
FPGADriver.h,v 1.7 2004/04/21 18:54:58 rplessl Exp

Data Structures

• structISTData
Interrupt Service Thread Struct.

• classCFpga
Functions to access the FPGAModule.
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Defines

• #defineFPGA_API__declspec(dllimport)
export DLL

Typedefs

• typedefISTDataISTData

5.4.2 Define Documentation

5.4.2.1 #define FPGA_API __declspec(dllimport)
The following ifdef block is the standard way of creating macros which make exporting from a DLL
simpler. All files within this DLL are compiled with the FPGADRIVER_EXPORTS symbol defined on
the command line. this symbol should not be defined on any project that uses this DLL. This way any
other project whose source files include this file see FPGA_API functions as being imported from a DLL,
wheras this DLL sees symbols defined with this macro as being exported.

6 Page Documentation

6.1 Todo List

File FPGADriver.cpp Interruptenable as parameter e.g. in constructor
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C
Tools

1. bitstreambuilder.pl on page 148

2. streamer.pl on page 152

3. listener.pl on page 154

4. EdifToXML.pl on page 156

5. XMLToEdif.pl on page 159
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Roman Plessl > bistreambuilder.pl-1.4

NAME
DESCRIPTION
SYNOPSIS

MODIFY BITSTREAM
RESET
ERASING
ERASING SECTOR
ACTIVATE SLAVE PARALLEL MODE

SECTOR MATCHING IN FLASH
AUTHORS
COPYRIGHT
COMPATIBILITY

NAME

bitstreambuilder.pl

DESCRIPTION

The primary idea of this program is the modifcation of XILINX FPGA bitstreams for SPARTAN II devices in such a manner that they
can be stored in a FLASH and used for reconfigure a FPGA afterwards.

A second application field is the generation of command bitstreams for the communication between IPAQ and the BTNodeBoard
(FPGA and CPLD)

bitstreambuilder.pl has the following operating modes:

* modifying of a bitstream generated for XILINX SPARTAN II FPGAs 
* generate command bitstreams for contolling the BTNodeFPGA Board

Version: $Revision: 1.4 $

SYNOPSIS

usage : bitstreambuilder.pl -h|-?|--help prints this help text

        bitstreambuilder.pl -r|--reset <filename>
                                       generates bitfile for reseting
                                       the flash memory

        bitstreambuilder.pl -e|--erase <filename>
                                       generates bitfile for erasing
                                       the flash memory

        bitstreambuilder.pl -r|--erase_sector <filename> <sector>
                                        generates bitfile for erasing
                                        an sector of the flash memory

        bitstreambuilder.pl -m|--modify <filename> <sector>
                                        modifies bitstream for upload
                                        the configuration to FLASH

        bitstreambuilder.pl -s|--slaveparallel <filename> <sector>
                                        generates bitfile for active
                                        the slave parallel mode

MODIFY BITSTREAM

Modifies Bitstream in the following way:

    Original Bitstream   Modified Bitstream

       .. .. .. ..
       .. .. .. ..          CA FE AF 5x        Additional Synchronisation Word
       .. .. .. ..          xx xx xx xx        Length of Bitstream (Bytes)
       FF FF FF FF          FF FF FF FF        Synchronisation Word 1
       AA 99 55 66          AA 99 55 66        Synchronisation Word 2
                            00 00 00 00        Additional Synchronization Word
       30 00 80 01          30 00 80 01        First Real Data
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       .. .. .. ..          .. .. .. ..
       30 00 00 01          30 00 00 01        Write To CRC
       xx xx xx xx          xx xx xx xx        CRC Value
       .. .. .. ..          .. .. .. .. 
       30 00 80 01          30 00 80 01        Write next 4 Bytes to CMD Register
       00 00 00 05          00 00 00 05        Begin Start-Up Sequence
       .. .. .. ..          .. .. .. ..
       30 00 00 01          30 00 00 01        Final Write To CRC
       xx xx xx xx          xx xx xx xx        Final CRC Value
       00 00 00 00          00 00 00 00        16 zero Bytes for Slave Parallel
       00 00 00 00          00 00 00 00 
       00 00 00 00          00 00 00 00 
       00 00 00 00          00 00 00 00

Sector handling:

  SECTOR         COMMAND

    0          CA FE AF 50
    1          CA FE AF 51
    2          CA FE AF 52
    3          CA FE AF 53
    4          CA FE AF 54
    5          CA FE AF 55
    6          CA FE AF 56
    7          CA FE AF 57
    8          CA FE AF 58
    9          CA FE AF 59
    A          CA FE AF 5A
    B          CA FE AF 5B
    C          CA FE AF 5C
    D          CA FE AF 5D
    E          CA FE AF 5E
    F          CA FE AF 5F

Output:

  --> generating fpga .bit file for slave/parallel $BITSTREAM_FILE_MOD ..
    > reading file = $BITSTREAM_FILE

    > writing command words (CA FE AF 5x) [x <-- sector]\n";
    >         stream length (XX XX XX XX)
    >         synchro words (FF FF FF FF)
    >         synchro words (AA 99 55 66)
    >         synchro words (00 00 00 00)

RESET

Output:

   --> generating fpga .bit file for reseting the FLASH ...

     > reseting command words  (CA FE AF 10)
     >            dummy words  (00 00 00 00)

ERASING

Output:

   --> generating fpga .bit file for erasing the FLASH ...\n";

     > erasing command words   (CA FE AF 90)\n";
     >           dummy words   (00 00 00 00)\n";

ERASING SECTOR

Output:

   --> generating fpga .bit file for erasing the FLASH ...\n";

     > erasing command words   (CA FE AF Ax [x <-- sector]\n";
     >           dummy words   (00 00 00 00)\n";

Sector handling:
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 SECTOR          COMMAND
 =========================
    0          CA FE AF A0
    1          CA FE AF A1
    2          CA FE AF A2
    3          CA FE AF A3
    4          CA FE AF A4
    5          CA FE AF A5
    6          CA FE AF A6
    7          CA FE AF A7
    8          CA FE AF A8
    9          CA FE AF A9
    A          CA FE AF AA
    B          CA FE AF AB
    C          CA FE AF AC
    D          CA FE AF AD
    E          CA FE AF AE
    F          CA FE AF AF

ACTIVATE SLAVE PARALLEL MODE

Output:

   --> generating fpga .bit file for activating slave/parallel ...

     > slave parallel command words  (CA FE AF Ex) [x <-- sector]
     >                  dummy words  (00 00 00 00)

Sector handling:

 SECTOR          COMMAND
 =========================
    0          CA FE AF E0
    1          CA FE AF E1
    2          CA FE AF E2
    3          CA FE AF E3
    4          CA FE AF E4
    5          CA FE AF E5
    6          CA FE AF E6
    7          CA FE AF E7
    8          CA FE AF E8
    9          CA FE AF E9
    A          CA FE AF EA
    B          CA FE AF EB
    C          CA FE AF EC
    D          CA FE AF ED
    E          CA FE AF EE
    F          CA FE AF EF

SECTOR MATCHING IN FLASH

A bitstream normally has a size of 164 KB and therefore needs 3 x 64 KB bytes for storage in the FLASH. The following sequence
displays the relation between SECTOR NUMBER and used FLASH SECTORS

   SECTOR      USED FLASH SECTORS
  =========================
     0          0   1   2
     1          1   2   3
     2          2   3   4
     3          3   4   5
     4          4   5   6
     5          5   6   7
     6          6   7   8
     7          7   8   9
     8          8   9  10
     9          9  10  11
     A         10  11  12
     B         11  12  13
     C         12  13  14
     D         13  14  15
     E         14  15   0
     F         15   0   1

AUTHORS

Roman Plessl, rplessl@ee.ethz.ch.

COPYRIGHT

Copyright (C) 2004, Roman Plessl. All rights reserved.

Appendix C: Tools

150



This module is free software; you can redistribute it and/or modify it under the same terms as Perl itself.

COMPATIBILITY

Most of the code in this module has been stable since version $Revision: 1.4 $ Except for items indicated as Experimental, I do not 
expect functional changes which are not fully backwards compatible.

29 March 2004.
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NAME
DESCRIPTION
SYNOPSIS

CONFIGURE SERIAL PORT
baudrate
parity
databits
stopbits
handshake

STREAM BINARY FILE
SEE ALSO
AUTHORS
COPYRIGHT
COMPATIBILITY

NAME

RS232 Streamer

DESCRIPTION

streamer.pl is a small application written in Perl for configuring and using the serial interface (rs232) of a pc using windows.

streamer.pl has the following operating modes:

* configuration of the serial interface (baudrate, data- and controlflow, handshaking)

* streaming a binary file to the serial port

Version: $Revision: 1.13 $

SYNOPSIS

  require 5.003;
  use Win32::SerialPort qw( :STAT 0.19 );

  usage : perl streamer.pl -h|-?|--help            prints this help text

          perl streamer.pl   -c|--config
                            [-b|--baud <baudrate>]
                            [-d|--databits <databits>]
                            [-p|--parity <parity>]
                            [-f|--flowcontrol|--handshake <handshake]
                            [-s|--stopbits <stopbits>]
                                                  generates configuration file

          perl streamer.pl <filename>             uploads <filename> over the
                                                  serial port $PortName

CONFIGURE SERIAL PORT

The default serial outport of streamer.pl is the first serial port called COM1 in the Windows environment. Other COM ports can be used
by changing the variable $PortName in the script.

The configuration is stored in a file called COMx_rs232.cfg.

The following values are allowed to the configuration, defaults are:

    my $baudrate = 9600;
    my $databits = 8;
    my $parity   = "none";
    my $handshake= "none";
    my $stopbits = 1;

baudrate

Any legal value.
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parity

One of the following: ``none'', ``odd'', ``even'', ``mark'', ``space''. If you select anything except ``none'', you will need to set
parity_enable in the script.

databits

An integer from 5 to 8.

stopbits

Legal values are 1, 1.5, and 2. But 1.5 only works with 5 databits, 2 does not work with 5 databits, and other combinations may not
work on all hardware if parity is also used.

handshake

The handshake setting is recommended but no longer required. Select one of the following: ``none'', ``rts'', ``xoff'', ``dtr''.

STREAM BINARY FILE

In this mode the file filename is opened and streamed to the serial port (configurated with the config modus). A simple progress bar
shows the streamed position in the input file (unit 10 KB).

SEE ALSO

Win32::SerialPort - Bill Birthsel Win32 API for serial ports

Win32::CommPort - the low-level API calls which supports the Serial Port module

AUTHORS

Roman Plessl, rplessl@ee.ethz.ch.

COPYRIGHT

Copyright (C) 2004, Roman Plessl. All rights reserved.

This module is free software; you can redistribute it and/or modify it under the same terms as Perl itself.

COMPATIBILITY

Most of the code in this module has been stable since version $Revision: 1.13 $ Except for items indicated as Experimental, I do not 
expect functional changes which are not fully backwards compatible.

03 April 2004.
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NAME
DESCRIPTION
SYNOPSIS

CONFIGURE SERIAL PORT
baudrate
parity
databits
stopbits
handshake

RECEIVE BINARY FILE
SEE ALSO
AUTHORS
COPYRIGHT
COMPATIBILITY

NAME

RS232 Listener

DESCRIPTION

listener.pl is a small application written in Perl for configuring and using the serial interface (rs232) of a pc using windows. listener.pl is
the counterpart to streamer.pl which is a file streamer over the serial port.

lister.pl has the following operating modes:

* configuration of the serial interface (baudrate, data- and controlflow, handshaking)

* receiving of a binary file from the serial port

Version: $Revision: 1.4 $

SYNOPSIS

  require 5.003;
  use Win32::SerialPort qw( :STAT 0.19 );

  usage : perl listener.pl -h|-?|--help            prints this help text

          perl listener.pl   -c|--config
                            [-b|--baud <baudrate>]
                            [-d|--databits <databits>]
                            [-p|--parity <parity>]
                            [-f|--flowcontrol|--handshake <handshake]
                            [-s|--stopbits <stopbits>]
                                                  generates configuration file

          perl listener.pl <filename>             downloads <filename> from the
                                                  serial port $PortName

CONFIGURE SERIAL PORT

The default serial outport of streamer.pl is the first serial port called COM1 in the Windows environment. Other COM ports can be used
by changing the variable $PortName in the script.

The configuration is stored in a file called COMx_rs232.cfg.

The following values are allowed to the configuration, defaults are:

    my $baudrate = 9600;
    my $databits = 8;
    my $parity   = "none";
    my $handshake= "none";
    my $stopbits = 1;

baudrate

Any legal value.
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parity

One of the following: ``none'', ``odd'', ``even'', ``mark'', ``space''. If you select anything except ``none'', you will need to set
parity_enable in the script.

databits

An integer from 5 to 8.

stopbits

Legal values are 1, 1.5, and 2. But 1.5 only works with 5 databits, 2 does not work with 5 databits, and other combinations may not
work on all hardware if parity is also used.

handshake

The handshake setting is recommended but no longer required. Select one of the following: ``none'', ``rts'', ``xoff'', ``dtr''.

RECEIVE BINARY FILE

In this mode the file filename is opened and received from the serial port (configurated with the config modus). A simple progress bar
shows the streamed position at the input file (unit 10 KB).

The input read function is blocking; unfortunately, it seems that in some cases the blocking mechanism not always acts as expected,
so an additional timeout counter is instanciated.

SEE ALSO

Win32::SerialPort - Bill Birthsel Win32 API for serial ports

Win32::CommPort - the low-level API calls which support the Serial Port module

AUTHORS

Roman Plessl, rplessl@ee.ethz.ch.

COPYRIGHT

Copyright (C) 2004, Roman Plessl. All rights reserved.

This module is free software; you can redistribute it and/or modify it under the same terms as Perl itself.

COMPATIBILITY

Most of the code in this module has been stable since version $Revision: 1.4 $. Except for items indicated as Experimental, I do not 
expect functional changes which are not fully backwards compatible.

03 April 2004.
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NAME

EdifToXML.pl

SYNOPSIS

 usage : perl EdifToXML.pl -h|-?|--help
                                        prints this help text

         perl EdifToXML.pl <filename> > <XMLfilename.xml>
                                        transforms the EDIF <filename> netlist
                                        to a XMLed representation

DESCRIPTION

Transforms a EDIF file from harware synthesis (Synplify Pro) to XML for simpler parsing the netlist with known tools.

Afterwards the XML representation is used for parsing (build a DOM tree), modifying and amending additional netlist parts. The reason
for this script is that many XML tools are given to read in and modfiy a XML DOM Tree.

The XML format is only a representation of the EDIF netlist, not further specified and thus not a standard.

XMLToEdif.pl is the counterpart for transforming a modified netlist to the original EDIF representation.

Internals

The following steps are executed:

Fixes of the edif output synthesis tools (XILINX xst)

    # toolflow with xst: vhdl --> ngc --> ngc2edif --> I<fix> -->edif --> edifXML
    if ($text =~ /(Xilinx ngc2edif)/g) {
        $text =~ s/([<])([\d]*?)([>])/&xstfixparantheses($1,$2,$3)/ge;
        $text =~ s/([&])([\d\w]*?)/&xstfixampersand($1,$2)/ge;
        $text =~ s/(ngc2edif)/&xstfixngc2edif($1)/ge;
    }

    sub xstfixparantheses()
      {
          return "(" . $_[1] . ")";
      }
    sub xstfixampersand()
      {
          return "xstfix" . $_[1];
      }
    sub xstfixngc2edif()
      {
          return "generatedbyngc2edif";
      }

Save the Bus-Parenthesis (xx:xx)

 $text =~ s/([\(])([\d]*?:[\d]*?)([\)])/&savebus($1,$2,$3)/ge;

 sub savebus()
   {
       return "__SAVEBUSSTART_" . $_[1] . "_SAVEBUSSTOP__";
   }

Save the Single Bits of a Bus (x)
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 $text =~ s/([\(])([\d]*?)([\)])/&savesignal($1,$2,$3)/ge;

 sub savesignal()
   {
       return "__SAVESIGNALSTART_" . $_[1] . "_SAVESIGNALSTOP__";
   }

Build Stack for Counting ``('' and ``)'' and Tranform EDIF to XML

  $text =~ s/([\)\(])/&tagmaker($1)/ge;

  sub tagmaker()
   {
      if ($_[0] eq '(') {
          $counter++;
          $string = "<" . $counter . ">";
          return $string;
      } else { 
          return "</" . $counter-- . ">";
      }
    }

Restore the Single Bits of a Bus (x)

 $text =~ s/(__SAVESIGNALSTART_)([\d]*?)(_SAVESIGNALSTOP__)/&restoresignal($1,$2,$3)/ge;

 sub restoresignal()
   {
       return "(" . $_[1] . ")";
   }

Restore the Bus-Parenthesis (xx:xx)

 $text =~ s/(__SAVEBUSSTART_)([\d]*?:[\d]*?)(_SAVEBUSSTOP__)/&restorebus($1,$2,$3)/ge;

 sub restorebus()
   {
       return "(" . $_[1] . ")";
   }

Example

Synthesis Output as EDIF netlist:

 (edif aes_enc_wrapper
  (edifVersion 2 0 0)
  (edifLevel 0)
  (keywordMap (keywordLevel 0))
  (status
    (written
      (timeStamp 2004 3 4 11 32 51)
      (author "Synplicity, Inc.")
      (program "Synplify Pro" (version "7.3.3, Build 024R"))
     )
   )
  (library VIRTEX
    (edifLevel 0)
    (technology (numberDefinition ))
    (cell RAMB4_S16 (cellType GENERIC)
    ...

XML representation:

  <edif> aes_enc_wrapper
  <edifVersion> 2 0 0</edifVersion>
  <edifLevel> 0</edifLevel>
  <keywordMap> <keywordLevel> 0</keywordLevel></keywordMap>
  <status>
    <written>
      <timeStamp> 2004 3 4 11 32 51</timeStamp>
      <author> "Synplicity, Inc."</author>
      <program> "Synplify Pro" <version> "7.3.3, Build 024R"</version></program>
     </written>
   </status>
  <library> VIRTEX
    <edifLevel> 0</edifLevel>
    <technology> <numberDefinition> </numberDefinition></technology>
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    <cell> RAMB4_S16 <cellType> GENERIC</cellType>
    ...

SEE ALSO

EDIF - Electronic Design Interchange Format (EDIF): http://www.edif.org/

XML - Extensible Markup Language (XML): http://www.w3.org/XML

LibXML - The XML C parser and toolkit of Gnome: http://www.xmlsoft.org/

XML::LibXML - Perl Binding for libxml2: http://search.cpan.org/dist/XML-LibXML/

AUTHORS

Roman Plessl, rplessl@ee.ethz.ch.

COPYRIGHT

Copyright (C) 2004, Roman Plessl. All rights reserved.

This module is free software; you can redistribute it and/or modify it under the same terms as Perl itself.

COMPATIBILITY

Most of the code in this module has been stable since version 0.01. Except for items indicated as Experimental, I do not expect 
functional changes which are not fully backwards compatible.

08 March 2004.
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NAME
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Internals
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COPYRIGHT
COMPATIBILITY

NAME

XMLToEdif.pl

SYNOPSIS

usage : perl XMLToEdif.pl -h|-?|--help
                                       prints this help text

        perl XMLToEdif.pl <XMLfilename.xml> > <filename.edn>
                                       transforms the XML <XMLfilename.xml>
                                       netlist to a EDIFed representation

DESCRIPTION

Transforms a EDIF netlist represented in a XML format back to the usually used form with parentheses [``('' and ``)''].

The XML format is produced by the counterpart of this script, EdifToXML.pl. The format is only a representation of the EDIF netlist, not
further specified and thus not a standard.

Internals

The following steps are executed:

Transform XML to EDIF

 $text =~ s/([<])([\/]?)([A-Za-z]*)([>])/&paranthesesmaker($1,$2,$3,$4)/ge;

 sub paranthesesmaker()
   {
      if ($_[1] ne '/') {
          my $string = "(" . $_[2];
          return $string;
      } else {
          return ")";
      }
  }

Example

XML representation of the synthesis output:

  <edif> aes_enc_wrapper
  <edifVersion> 2 0 0</edifVersion>
  <edifLevel> 0</edifLevel>
  <keywordMap> <keywordLevel> 0</keywordLevel></keywordMap>
  <status>
    <written>
      <timeStamp> 2004 3 4 11 32 51</timeStamp>
      <author> "Synplicity, Inc."</author>
      <program> "Synplify Pro" <version> "7.3.3, Build 024R"</version></program>
     </written>
   </status>
  <library> VIRTEX
    <edifLevel> 0</edifLevel>
    <technology> <numberDefinition> </numberDefinition></technology>
    <cell> RAMB4_S16 <cellType> GENERIC</cellType>
    ...

Retransformed to the EDIF representation:

 (edif aes_enc_wrapper
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  (edifVersion 2 0 0)
  (edifLevel 0)
  (keywordMap (keywordLevel 0))
  (status
    (written
      (timeStamp 2004 3 4 11 32 51)
      (author "Synplicity, Inc.")
      (program "Synplify Pro" (version "7.3.3, Build 024R"))
     )
   )
  (library VIRTEX
    (edifLevel 0)
    (technology (numberDefinition ))
    (cell RAMB4_S16 (cellType GENERIC)
    ...

SEE ALSO

EDIF - Electronic Design Interchange Format (EDIF): http://www.edif.org/

XML - Extensible Markup Language (XML): http://www.w3.org/XML

LibXML - The XML C parser and toolkit of Gnome: http://www.xmlsoft.org/

XML::LibXML - Perl Binding for libxml2: http://search.cpan.org/dist/XML-LibXML/

AUTHORS

Roman Plessl, rplessl@ee.ethz.ch.

COPYRIGHT

Copyright (C) 2004, Roman Plessl. All rights reserved.

This module is free software; you can redistribute it and/or modify it under the same terms as Perl itself.

COMPATIBILITY

Most of the code in this module has been stable since version 0.01. Except for items indicated as Experimental, I do not expect 
functional changes which are not fully backwards compatible.

08 March 2004.
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CD

cores

designs

fpga_test_designs

cpld_test_blinkenlights

flash

flash_loader

flash_loader_8bit

fpga_demotasks

fpga_test_blinkenlights

memory_test_read_signaling

memory_test_write

tests

agu

cpucommunication

porttofifo

scanchain

together

together_with_coresdocu

applications

doxygen

entry_presentation

final_presentation

report

ideas

merge

Presentation.pdf

Report.pdf

tools

_emacs

bitstreambuilder

ediffparser

rs232writer

scanchainbuilder

Example Cores adapted to the Kahn 
Process Network 

Blinkenlight for the CPLD

The 16 bit loader implementation 
for the FPGA and CPLD

An improved FLASH simulation 
model in VHDL (incl. VITAL timings)

Final Report of this master's thesis

The 8 bit loader implementation for 
the FPGA and CPLD

Loader improved with different 
blinkenlights

Blinkenlights for the FPGA

Testproject to access the SRAM cell

Testproject to write the SRAM cell

Testproject: Address Generation 
Unit

Testproject: IPAQ Communication

Testproject: PortID to FifoID 
conversion

Example: Inserted Scanchain into a 
counter design

The SLOTMANAGER

The SLOTMANAGER improved with 
the sample cores

"Brain - pool" for the report and the 
presentation

The FINAL report

my .emacs file with improved 
settings for the VHDL mode

script for modifying a FPGA 
configuration bitstream

converter which transforms the 
parentheses presentation to a 
XMLed form

RS-232 streamer and listener

script to insert a scan-chain into the 
netlist 

Slides of the final presentation of 
this master's thesis

VHDL design and files

             DEMO.mpg
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Glossary

ASIC Application Specific Integrated Circuits - Intergrated Circuit which is spe-
cialized to run an algorihm or a system at high-speed or low-power.

ATPG Automatically Test Pattern Generation

BIST Build in Self Test

BlockRAM Integrated SRAM cell included on a FPGA chip.

BlockRAM SRAM cell included in Xilinx FPGAs additional to the flip-flops.

BRAM see BlockRAM

C++ C++ is a general purpose computer programming language. It is a static-
type-checking language supporting procedural programming, data abstrac-
tion, object-oriented programming and generic programming.

CLB Configurable Logic Blocks - Each Xilinx SPARTANTM II CLB consists of 2
slices. Each slice contains:

• two 4-input lookup tables (LUTs) which can be used to implement a 4-
input and a 1-output combinational function

• two Carry and Control Logic block for faster arithmetic operations

• two storage elements that can be configured as edge-triggered D flip-flops
or level-sensitive latches.

CPLD Complex Programmable Logic Device - is a reconfigurable device which con-
tains regularly structures of AND-OR-plans and some flip-flops. CPLD are
usually used as «glue-logic» and are built by a technology to keep their con-
figuration.

DFT Design for Testability

doxygen Doxygen is a documentation system for C++, C, Java and many more
programming languages. It can generate an on-line documentation browser (in
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HTML) and/or an off-line reference manual (in LATEX) from a set of documented
source files.

DSP Digital Signal Processor - An programmable processor which is optimised for
calculations in streaming applications.

EDIF Electronic Design Interchange Format [31]

EEPROM Electrically-Erasable Programmable Read-Only Memory, is a non-
volatile storage chip.

FIFO «First-In-First-Out» - Algorithm often used at memory structures or for a
scheduling algorihm. The first item received will also be the first which leaves
the system.

FIFO First In First Out - A storage method that retrieves the item stored for the
longest time. Contrast with LIFO (Last In First Out). Also known as circular
buffer in literature.

FIFO First-In-First-Out - often used for data storage in memory cells or for schedul-
ing algorithms.

FLASH Flash memory is a form of EEPROM that allows multiple memory loca-
tions to be erased or written in one programming operation.

FPGA Field Programmable Gate Arrays - like an ASIC, but the system is recon-
figurable and so usable in multipurpose applications. The drawback versus
ASICs are the power consumption and the lesser density on a device. At the
moment there are only two competitors: Altera and Xilinx.

FSM Final State Machine - Mealy or Moore automata.

glue-logic A simple logic circuit that is used to connect complex logic circuits to-
gether. At the printed circuit board (PCB) level, glue logic may be implemented
with simple glue chips that contain a few gates all the way to programmable
logic devices (see CPLD).

ISE Integrated Software Environment. A software environment provided by Xilinx
to synthesize and implement designs for their configurable logic devices (FP-
GAs, CPLDs). It also includes tools to perform timing analyses and to view the
designs graphically.

JTAG Joint Test Action Group has done a specification for performing boundary-
scan hardware testing at the IC level. In 1990 this specification resulted in
IEEE 1149.1, a standard which has established the details of access to any
chip with a so-called JTAG port.

KPN Kahn Process Networks

LUT Look Up Table used for combinational logic after mapping the net-list to real
devices. LUT-4 (means Look Up Table with 4 input signal and 1 output.)

LUT Look-Up-Table - An array or matrix of values that contains data which is
looked for. In FPGA devices LUTs are used for logic function calculations. In
the «Slotmanager» the lowest part of the external SRAM memory is also named
LUT because of the FIFO control structures which are stored there.
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Mealy Mealy model of a FSM: The next state and the output function of a Mealy
FSM depends on the current state, the state transition function of this state
and the input datas. The automate can be modelled by these equations:

o(k) = g(i(k), s(k))

s(k + 1) = f(i(k), s(k))

g is termed the output function and f transition function. s is the state transi-
tion function.

Moore Moore model of a FSM: The next state of a Moore FSM depends on the cur-
rent state, the transition function and the input data. The output depends only
on the current state but not on the input data. The automate can be modelled
by these equations:

o(k) = g(s(k))

s(k + 1) = f(i(k), s(k))

g is termed the output function and f transition function. s is the state transi-
tion function.

MSB Most Significant Bit - In a byte, every bit has a value based upon the bit’s
position in the byte. The bit which has the largest value is called the most
significant bit.

PCB Printed Circuit Board - interconnects electronic components without discrete
wires.

SDF Synchronous Data Flow as described in section

SDF Synchronous Dataflow Language

stuck-at-test simple test-model for production failures used in VLSI chip designs

Synplify Synplify. A synthesizer for several FPGA and CPLD written by Synplicity.

TIK Institut für Technische Informatik und Kommunikationsnetze
Computer Engineering and Networks Laboratory of the ETH Zürich

transition Event that triggers a FSM to change its state. A FSM description is
basically a combination of states and events plus a state transition table which
ties them all together.

Verilog Verilog - A Hardware Description Language for electronic design and gate
level simulation by Cadence Design Systems.

VHDL VHDL - Very High Speed Integrated Circuit (VHSIC) Hardware Description
Language. A large high-level VLSI design language with Ada-like syntax. The
DoD standard for hardware description, now standardised as IEEE 1076.
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