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Abstract

Topology control in ad-hoc networks tries to lower node energy consump-
tion by reducing transmission power and by confining interference, collisions,
and consequently retransmissions. In contrast to most of the related work,
we assume two intuitive definitions of interference, outgoing and incoming
interference, respectively. In the field of outgoing interference characteris-
tics of minimum interference topologies are studied and a local algorithm is
proposed constructing an interference-optimal spanner of a given network.

Incoming interference is considered by means of one-dimensional net-
works. For a simple topology, referred to as exponential node chain, a scan-
line algorithm is presented. In addition, we propose a greedy algorithm for
a more general network model.

In a third part, we consider incoming interference in cellular networks,
which is formalized introducing the Minimum Membership Set Cover opti-
mization problem. We prove that in polynomial time the optimal solution
of the problem cannot be approximated more closely than with a factor lnn.
On the other hand we present an algorithm exploiting linear programming
relaxation techniques which asymptotically matches the lower bound with
high probability.
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Chapter 1

Introduction

In mobile wireless ad-hoc networks—formed by autonomous devices com-
municating by radio—energy is one of the most critical resources. The main
goal of topology control is to reduce node power consumption in order to
extend network lifetime. Since the energy required to transmit a message
increases at least quadratically with distance, it makes sense to replace a
long link by a sequence of short links. On the one hand, energy can there-
fore be conserved by abandoning energy-expensive long-range connections,
thereby allowing the nodes to reduce their transmission power levels. On the
other hand, reducing transmission power also confines interference, which in
turn lowers node energy consumption by reducing the number of collisions
and consequently packet retransmissions on the media access layer. Drop-
ping communication links however clearly takes place at the cost of network
connectivity: If too many edges are abandoned, connecting paths can grow
unacceptably long or the network can even become completely disconnected.
Topology control can therefore be considered a trade-off between energy con-
servation and interference reduction on the one hand and connectivity on
the other hand.

In contrast to most of the related work done in the field of topology con-
trol algorithms—where the interference issue is seemingly solved by sparse-
ness arguments of the resulting topologies—, we assume an explicit notion of
interference. We thereby focus on two concepts of interference stated in [4].
In the first part of the thesis we focus on a definition of interference, referred
to as outgoing interference, that is based on the natural question, how many
nodes are affected by communication over a certain link. By prohibiting spe-
cific network edges, the potential for communication over high-interference
links can then be confined.

We employ the outgoing interference definition to formulate the trade-
off between energy conservation and network connectivity. In particular
we state certain requirements that need to be met by the resulting topol-
ogy. Among these requirements are connectivity (if two nodes are—possibly
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2 CHAPTER 1. INTRODUCTION

indirectly—connected in the given network, they should also be connected in
the resulting topology) and the spanner property (the shortest path between
any pair of nodes on the resulting topology should be longer at most by a
constant factor than the shortest path connecting the same pair of nodes in
the given network). After stating such requirements, an optimization prob-
lem can be formulated to find the topology meeting the given requirements
with minimum outgoing interference.

For the requirement that the resulting topology should retain connec-
tivity of the given network, we show that all currently proposed topol-
ogy control algorithms—already by having every node connect to its near-
est neighbor—commit a substantial mistake: Although certain proposed
topologies are guaranteed to have low degree yielding a sparse graph, outgo-
ing interference becomes asymptotically incomparable with the interference-
minimal topology. We also show that there exist graphs for which no local
algorithm can approximate the optimum. With respect to the sometimes
desirable requirement that the resulting topology should be planar, we show
that planarity can increase outgoing interference.

Furthermore we propose a distributed local algorithm (LocaLISE) that
computes a provably interference-optimal topology, if we require the result-
ing topology to be a spanner with a given stretch factor.

Our results are not confined to worst-case considerations; we also show
by simulation that on average-case graphs traditional topology control algo-
rithms—in particular the Gabriel Graph and the Relative Neighborhood
Graph—fail to effectively reduce interference. Moreover these constructions
are shown to be outperformed by the LocaLISE algorithm, which therefore
proves to be average-case effective in addition to its worst-case optimality.

We then switch to the second notion of interference defined in [4], referred
to as incoming interference, that is based on the question, how many nodes
affect a particular node by transmitting to their farthest neighbors. Again,
due to the prohibition of specific network edges, the potential for highly
interfered nodes can be confined. Consequently, an optimization problem
can be formulated to find the topology with minimum incoming interference
for the requirement that the resulting topology should retain connectivity
of the given network.

Different from the outgoing interference model, incoming interference—
as shown in [4]—is not of such friendly nature. We therefore turn our atten-
tion to one-dimensional network instances since already such instances can
yield outgoing interference Ω(n).

We first investigate interference-optimal topologies in an ideal one-di-
mensional network, referred to as exponential node chain. It is shown that
incoming interference can be lower-bounded to

√
n in such instances. Fur-

thermore we propose an algorithm (LION) following the scan-line principle,
that asymptotically matches this lower bound. Then a more general model,
referred to as highway model, is assumed, where nodes are arbitrarily dis-
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tributed in one dimension. An attempt to transfer algorithm LION to this
model is presented. However, an example shows that such efforts do not ap-
pear to be successful. A presentation of a greedy algorithm (GLOW) that
appears to be a good heuristic for interference reduction for instances in the
highway model, since it is asymptotically optimal in the case of exponen-
tial node chains, concludes the analysis of incoming interference in ad-hoc
networks.

Based on the insights derived from this investigation, the last part of
the thesis focuses on incoming interference in cellular networks. More pre-
cisely, the interference at the clients caused by the base stations of a cellular
network.

1.1 Related Work

In this section we discuss related work in the field of topology control with
special focus on the issue of interference.

1.1.1 Topology Control

The assumption that nodes are distributed randomly in the plane according
to a uniform probability distribution formed the basis of pioneering work in
the field of topology control [10, 31].

Later proposals adopted constructions originally studied in computa-
tional geometry, such as the Delaunay Triangulation [11], the minimum
spanning tree [28], the Relative Neighborhood Graph [16], or the Gabriel
Graph [29]. Most of these contributions mainly considered energy-efficiency
of paths preserved by the resulting topology, whereas others exploited the
planarity property of the proposed constructions for geometric routing [3,
19].

The Delaunay Triangulation and the minimum spanning tree not being
computable locally and thus not being practicable, a next generation of
topology control algorithms emphasized locality. The CBTC algorithm [34]
was the first construction to focus on several desired properties, in particular
being an energy spanner with bounded degree. This process of developing
local algorithms with more and more properties was continued partly based
on CBTC, partly based on local versions of classic geometric constructions
such as the Delaunay Triangulation [21] or the minimum spanning tree [20].
One of the most recent such results is a locally computable planar distance
(and energy) spanner with constant-bounded node degree [33]. Another
thread of research takes up the average-graph perspective of early work in
the field; [2] for instance shows that the simple algorithm choosing the k
nearest neighbors works surprisingly well on such graphs.

Yet another aspect of topology control is considered by algorithms trying
to form clusters of nodes. Most of these proposals are based on (connected)
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dominating sets [1, 13] and focus on locality and provable properties, such
as [18], which achieves a non-trivial approximation of the minimum dom-
inating set in constant time. Cluster-based constructions are commonly
regarded a variant of topology control in the sense that energy-consuming
tasks can be shared among the members of a cluster.

Topology control having so far mainly been of interest to theoreticians,
first promising steps are being made towards exploiting the benefit of such
techniques also in practical networks [17].

1.1.2 Interference

As mentioned earlier, reducing interference—and its energy-saving effects
on the medium access layer—is one of the main goals of topology control
besides direct energy conservation by restriction of transmission power. As-
tonishingly however, all the above topology control algorithms at the most
implicitly try to reduce interference. Where interference is mentioned as an
issue at all, it is maintained to be confined at a low level as a consequence
to sparseness or low degree of the resulting topology graph.

A notable exception to this is [23] defining an explicit notion of interfer-
ence. Based on this interference model between edges, a time-step routing
model and a concept of congestion is introduced. It is shown that there are
inevitable trade-offs between congestion, power consumption and dilation.
For some node sets, congestion and energy are even shown to be incompat-
ible.

The interference model proposed in [23] is based on current network traf-
fic. The amount and nature of network traffic however is highly dependent
on the chosen application. A layered networking architecture—where topol-
ogy control would take place at a low layer—would therefore be broken by
topology control taking into account traffic information to reduce interfer-
ence. Since usually no a priori information about the traffic in a network
is available, a static model of interference depending solely on a node set is
therefore desirable.

That is where [4] enters the scene, which provides a basis of this the-
sis. It discusses in-depth various possible interference definitions depending
only on a node set. Furthermore, a classification of different models is given
and relations among these models are studied. One of the main differences
among the models considered in [4] is whether they focus on outgoing or in-
coming interference. In addition, an interference-optimal algorithm (GLIT)
is proposed in the outgoing interference model for the requirement that the
resulting topology should retain connectivity of the given network.



Chapter 2

Modeling Interference

Mobile ad-hoc networks are commonly modeled by graphs. A graph G =
(V, E) consists of a set of nodes V ⊂ R2 in the Euclidean plane and a set of
edges E ⊆ V 2. Nodes represent mobile hosts, whereas edges represent links
between nodes. In order to prevent already basic communication between
directly neighboring nodes from becoming unacceptably cumbersome [26], it
is required that a message sent over a link can be acknowledged by sending
a corresponding message over the same link in the opposite direction. In
other words, only undirected edges are considered.

We assume that a node can adjust its transmission power to any value
between zero and its maximum power level. The maximum power levels are
not assumed to be equal for all nodes. An edge (u, v) may exist only if both
incident nodes are capable of sending a message over (u, v), in particular if
the maximum transmission radius of both u and v is at least |u, v|, their
Euclidean distance. A pair of nodes u, v is considered connectable in the
given network if there exists a path connecting u and v provided that all
transmission radii are set to their respective maximum values. The task of
a topology control algorithm is then to compute a subgraph of the given net-
work graph with certain properties, reducing the transmission power levels
and thereby attempting to reduce interference and energy consumption.

In [4] several interference models for this kind of graphs are discussed in
detail. In the following two of them are briefly introduced, since they form
the basis for the next two chapters.

With a chosen transmission radius—for instance to reach a node v—
a node u affects at least all nodes located within the circle centered at u
and with radius |u, v|. D(u, r) denoting the disk centered at node u with
radius r and requiring edge symmetry, the coverage of an (undirected) edge
e = (u, v) is consequently defined to be the cardinality of the set of nodes
covered by the disks induced by u and v:

Cov(e) :=
∣∣{w ∈ V |w is covered by D(u, |u, v|)}∪
{w ∈ V |w is covered by D(v, |v, u|)}∣∣.

5
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In other words the coverage Cov(e) represents the number of network nodes
affected by nodes u and v communicating with their transmission powers
chosen such that they exactly reach each other (cf. Figure 2.1). This is also
referred to as the environment of e.

Figure 2.1: Nodes covered by a communication link.

The edge level interference defined so far, also referred to as outgoing
interference in [4], since interference is counted at the causing edge, is now
extended to a graph interference measure as the maximum coverage occur-
ring in a graph:

Definition 1. The outgoing interference of a graph G=(V,E) is defined as

Iout(G) := max
e∈E

Cov(e).

On the other hand, each node u features a value ru defined as the dis-
tance from u to its farthest neighbor. Based on this, [4] introduces an alter-
native interference measure also referred to as incoming interference since
interference is counted at the interfered node:

Definition 2. The incoming interference of a graph G=(V,E) is defined as

Iin(G) := max
v∈V

|{u|v ∈ D(u, ru)}|.

In other words the interference Iin represents the maximum number of
disks induced by the maximum transition ranges of the nodes covering a
particular network node. Iin of a node is analogously defined as the number
of disks covering that node.

Since interference reduction per se would be senseless (if all nodes simply
set their transmission power to zero, interference will be reduced to a mini-
mum), the formulation of additional requirements to be met by a resulting
topology is necessary. A resulting topology can for instance be required

- to maintain connectivity of the given communication graph (if a pair of
nodes is connectable in the given network, it should also be connected
in the resulting topology graph),
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- to be a spanner of the underlying graph (the shortest path connecting
a pair of nodes u, v on the resulting topology is longer by a constant
factor only than the shortest path between u and v on the given net-
work), or

- to be planar (no two edges in the resulting graph intersect).

Finding a resulting topology which meets one or a combination of such
requirements with minimum interference constitutes an optimization prob-
lem.





Chapter 3

Outgoing Interference

In this chapter we consider the outgoing interference model Iout defined in
Chapter 2. For this model [4] describes an algorithm, referred to as GLIT,
that results in an optimum interference topology given the requirement for
maintaining connectivity of the given graph. In the following we first dis-
cuss some properties of such an interference-optimal topology in the Iout

model. Afterwards two algorithms are described that yield interference-
optimal topologies with the additional requirement of being a spanner of
the given network.

3.1 Interference-Optimal Topologies

In [4] It is shown that an optimum interference topology does not always
contain the Minimum Spanning Tree (MST) of the given network. Moreover
a worst-case example was presented that yields interference Iout ∈ Ω(n),
where n denotes the number of nodes in the networks, in case of the MST,
whereas an interference-optimal topology results in constant interference.
Thus, a topology containing the MST is not always optimal. Using the
same example as the one introduced in [4] (see Figure 3.1) we are however
able to derive a much stronger conclusion than the one stated above.

To the best of our knowledge, all currently known topology control al-
gorithms as described in Section 1.1 have in common that every node es-
tablishes a (symmetric) connection to at least its nearest neighbor. In other
words all these topologies contain the Nearest Neighbor Forest constructed
on the given network. In the following we show that by including the Near-
est Neighbor Forest as a subgraph, the interference of a resulting topology
can become incomparably bad with respect to a topology with optimum
interference.

Theorem 1. No currently proposed topology control algorithm—required to
maintain connectivity of the given network—is guaranteed to yield a non-
trivial interference approximation of the optimum solution. In particular,

9



10 CHAPTER 3. OUTGOING INTERFERENCE

interference of any proposed topology is Ω(n) times larger than the inter-
ference of the optimum connected topology, where n is the total number of
network nodes.

Proof. Figure 3.1 depicts an extension of the exponential node chain (see
[4]. In addition to a horizontal exponential node chain, each of these nodes
hi has a corresponding node vi vertically displaced by a little more than hi’s
distance to its left neighbor. Denoting this vertical distance di, di > 2i−1

holds. These additional nodes form a second (diagonal) exponential line.
Between two of these diagonal nodes vi−1 and vi, an additional helper node
ti is placed such that |hi, ti| > |hi, vi|.

The Nearest Neighbor Forest for this given network (with the additional
assumption that each node’s transmission radius can be chosen sufficiently
large) is shown in Figure 3.2. Roughly one third of all nodes being part
of the horizontally connected exponential chain, interference of any topol-
ogy containing the Nearest Neighbor Forest amounts to at least Ω(n). An
interference-optimal topology, however, would connect the nodes as depicted
in Figure 3.3 with constant interference.

hi

vi

di

ti

vi−1

Figure 3.1: Two exponential node chains.

Figure 3.2: The Nearest Neighbor
Forest yields interference Ω(n).

Figure 3.3: Optimal tree with con-
stant interference.
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In other words, already by having each node connect to the nearest neigh-
bor, a topology control algorithm makes an “irrevocable” error. Moreover,
it commits an asymptotically worst possible error, since the interference in
any network cannot become larger than n.

Since roughly one third of all nodes are part of the horizontal exponential
node chain in Figure 3.1, the observation stated in Theorem 1 would also
hold for an average interference measure, averaging interference over all
edges.

The following theorem even shows that for connectivity-preserving topolo-
gies no local algorithm can approximate optimum interference for every given
network.

Theorem 2. For the requirement of maintaining connectivity of the given
network, there exists a class of graphs for which there is no local algorithm
that approximates optimum interference.

Proof. In Figure 3.4 the maximum transmission radius of a node is |u, v|. Let
n be the number of nodes in the graph. Then the shaded area contains Ω(n)
evenly distributed nodes which can be connected with constant interference.
For each such node i the inequalities |i, v| < |u, v| and |u, i| > |u, v| hold. It
follows that edge (u, v) has Ω(n) interference, since it covers all nodes in the
shaded area. In addition there is a chain of nodes (dashed path) connecting
node u with node v indirectly through the nodes located in the shaded area.
The nodes in the chain are located in such a way that it is possible to connect
them with constant interference. For such a graph O(1) interference can be
achieved by connecting u to the rest of the graph through the chain of nodes
and not directly through edge (u, v), which would cause Ω(n) interference.

A local algorithm at node u has to decide if it can drop edge (u, v) or
not. This is only possible if u knows about the existence of an alternative
path from u to v in order to maintain connectivity. By elongating the chain
sufficiently, the local algorithm can thus be forced to include edge (u, v),
pushing up interference to O(n) whereas the optimum is Ω(1).

In addition to the properties shown above, we now prove that an opti-
mum interference topology features also bounded degree. This requirement
is often desired in order to save resources at the nodes.

Theorem 3. Algorithm GLIT resulting in an interference-optimal topology
for any given network has bounded degree at most 12.

Proof. Assume a network consisting of three interconnected nodes {u, v, w}.
Since GLIT follows the lines of Kruskal’s MST algorithm [6] with attributed
edge weight Cov(e) for an edge e, we know that the algorithm discards the
edge with maximum coverage. We therefore prove that two adjacent edges
in an optimum interference topology enclose an angle greater than 2π/13,
from which the theorem follows. Without loss of generality, we assume |u, v|
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Figure 3.4: Worst case graph for
which no local algorithm can ap-
proximate optimum interference.

w

u v
β

Figure 3.5: The interfering area of
(u,w) is within that of (u, v) and
thus Cov(u,w)≤Cov(u, v).

to be greater than |v, w|. In order for the edge (u,w) to be discarded in
an optimum interference topology, it is required that Cov(u,w) ≥ Cov(u, v)
holds. Figure 3.5 depicts a case where the environment of (u,w) is entirely
inside the one of (u, v) and thus by definition Cov(u,w) cannot be greater
than Cov(u, v). Consequently, we can lower-bound the angle β in Figure 3.5
such that the environment of (u,w) is not entirely within that of (u, v). In
case of |u, v| = |v, w| it can be seen that |u, w| ≤ |u, v|/2 is required, in order
to make Cov(u,w) ≥ Cov(u, v) possible. Setting |u,w| = |u, v|/2 it follows
that

sin
β

2
=

|u,w|
2

|u, v| =
1
4
,

and consequently β ≥ 2 · sin−1(1/4) > 2π/13.

Additionally, it can be shown that the upper bound is tight, since there
exist network instances that yield node degree 12 in an interference-optimal
topology. As mentioned in Section 2, another popular requirement for topol-
ogy control algorithms besides bounded degree is planarity of the resulting
topology. This is often desired, because numerous well-understood routing
algorithms exist that are only applicable to planar graphs. But topology
control algorithms enforcing planarity are not optimal in terms of interfer-
ence:

Theorem 4. There exist graphs on which interference-optimal topologies—
required to maintain connectivity—are not planar.

Proof. In Figure 3.6 the maximum transmission radius of a node is |a, b|.
All eligible edges are depicted together with the coverage area for edges
whose incident nodes are both in {a, b, c, d}. The indicated weight of an
edge e corresponds to its coverage Cov(e). V and W represent sets of 3
and 4 nodes, respectively. The nodes in set V and W , respectively, can
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be connected among themselves with interference 3. A topology control
algorithm can only reduce interference by removing all edges with maximum
interference (here (a, c) and (b, c)) from the graph. Thereafter, no further
edge can be removed without breaking connectivity, since the graph without
(a, c) and (b, c) is a tree. Thus the resulting tree is interference-optimal and
non-planar, since both edges (a, b) and (c, d) must remain in the resulting
topology.

V

9

4 nodes

3 nodes

4

8

5

3

2

d

b

c u

9

8
a

W

Figure 3.6: Node set whose interference-optimal topology is not planar.

3.2 Low-Interference Topologies

In this section we present two algorithms that explicitly reduce outgoing
interference of a given network. They both compute an interference-optimal
topology maintaining connectivity of the given network with the additional
requirement of being a spanner of the network. Whereas the first span-
ner algorithm assumes global knowledge of the network, the second can be
computed locally.

3.2.1 Low-Interference Spanners

The algorithm GLIT as defined in [4] optimizes interference for the require-
ment that the resulting topology has to maintain connectivity. In addition
to connectivity it is often desired that the resulting topology should be a
spanner of the given network. A formal definition of a t-spanner follows:

Definition 3 (t-Spanner). A t-spanner of a graph G = (V, E) is a subgraph
G′ = (V, E′) such that for each pair (u, v) of nodes |p∗G′(u, v)| ≤ t · |p∗G(u, v)|,
where |p∗G′(u, v)| and |p∗G(u, v)| denote the length of the shortest path between
u and v in G′ and G, respectively.
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In this section we consider Euclidean spanners, that is, the length of a
path is defined as the sum of the Euclidean lengths of all its edges. With
slight modifications our results are however also extendable to hop spanners,
where the length of a path corresponds to the number of its edges.

Algorithm LISE is a topology control algorithm that constructs a t-
spanner with optimum interference. LISE starts with a graph GLISE =
(V, ELISE) where ELISE is initially the empty set. It processes all eligible
edges of the given network G = (V, E) in descending order of their coverage.
For each edge (u, v) ∈ E not already in ELISE , LISE computes a shortest
path from u to v in GLISE provided that the Euclidean length of this path
is less than or equal to t |u, v|. As long as no such path exists, the algorithm
keeps inserting all unprocessed eligible edges with minimum coverage into
ELISE .

To prove the interference optimality of GLISE , we introduce an addi-
tional lemma, which shows that GLISE contains all eligible edges whose
coverage is less than I(GLISE).

Lemma 5. The graph GLISE = (V, ELISE) constructed by LISE from a
given network G = (V, E) contains all edges e in E whose coverage Cov(e)
is less than I(GLISE).

Proof. We assume for the sake of contradiction that there exists an edge e in
E with Cov(e) < I(GLISE) which is not contained in ELISE . Consequently,
LISE never takes an edge with coverage Cov(e) in line 7, since the algorithm
would insert all edges with Cov(e) into ELISE in line 8 instantly (thus also
e). There exists however an edge f in ELISE with Cov(f) = I(GLISE)
eventually taken in line 7. Therefore the inequality Cov(e) < Cov(f) holds.
At the time the algorithm takes f in line 7, all edges taken in line 5 must
have had coverage greater than or equal to Cov(f), since the maximum of
an ordered set can only be greater than or equal to the minimum of the same
set. Hence e has never been taken in line 5 and therefore has never been
removed from E in line 10. Consequently, e is still in E when f is taken as
the edge with minimum coverage in E. Thus it holds that Cov(f) ≤ Cov(e)
which leads to a contradiction.

With Lemma 5 we are ready to prove that the resulting topology con-
structed by LISE is an interference-optimal t-spanner.

Theorem 6. The graph GLISE = (V, ELISE) constructed by LISE from a
given network G = (V, E) is an interference-optimal t-spanner of G.

Proof. To show that GLISE meets the spanner property, it is sufficient to
prove that for each edge (u, v) ∈ E there exists a path in GLISE with length
not greater than t |u, v|. This holds, since for a shortest path p∗(u, v) in G
a path p′(u, v) in GLISE with |p′| ≤ t |p| can be constructed by substituting
each edge on p with the corresponding spanner path in GLISE . For edges in
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Low Interference Spanner Establisher (LISE)
Input: V , a set of nodes v, each of which having attributed a maximum

transmission radius rmax
v

1: E = all eligible edges (u, v) (rmax
u ≥ |u, v| and rmax

v ≥ |u, v|) (∗ unpro-
cessed edges ∗)

2: ELISE = ∅
3: GLISE = (V, ELISE)
4: while E 6= ∅ do
5: e = (u, v) ∈ E with maximum coverage
6: while |p∗(u, v) in GLISE | > t |u, v| do
7: f = edge ∈ E with minimum coverage
8: move all edges ∈ E with coverage Cov(f) to ELISE

9: end while
10: E = E \ {e}
11: end while
Output: Graph GLISE

E which also occur in ELISE the spanner property is trivially true. On the
other hand an edge (u, v) can only be in E but not in ELISE if a path from
u to v in GLISE with length not greater than t |u, v| exists (see if-condition
in line 6). Thus GLISE is a t-spanner of G.

Interference optimality of LISE can be proved by contradiction. We
therefor assume, that GLISE is not an interference-optimal t-spanner. Let
G∗ = (V, E∗) be an interference-optimal t-spanner for G. Since GLISE is
not optimal, it follows that I(GLISE) > I(G∗). Thus all edges in E∗ have
coverage strictly less than I(GLISE). From Lemma 5 follows that E∗ is
a nontrivial subset of ELISE . Let T be the set of edges in ELISE with
coverage I(GLISE) and G̃ = (V, Ẽ) the graph with Ẽ = ELISE \ T . G̃ is a
t-spanner, since E∗ is still a subset of Ẽ, and I(G̃) ≤ I(GLISE) − 1 holds.
Because T is eventually inserted into ELISE in line 8, there exists an edge
(u, v) ∈ E that was taken in line 5 and for which no path p(u, v) exists in
G̃ with |p| ≤ t |u, v|. Thus G̃ is no t-spanner (and therefore also G∗), which
contradicts the assumption that G∗ is an interference-optimal t-spanner.

As regards the running time of LISE, it computes for each edge at most
one shortest path. This holds, since multiple shortest path computations
for the same edge in line 6 cause at least as many edges to be inserted into
ELISE in line 8 without computing shortest paths for them. Since finding a
shortest alternative path for an edge requires O(n2) time and as the network
contains at most the same amount of edges, the overall running time of LISE
is as well polynomial in the number of network nodes.

In contrast to the problem of finding a connected topology with opti-
mum interference, the problem of finding an interference-optimal t-spanner
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is locally solvable. The reason for this is that finding an interference-optimal
path p(u, v) for an edge (u, v) with |p| ≤ t |u, v| can be restricted to a certain
neighborhood of (u, v).

In the following we describe a local algorithm similar to LISE that is
executed at all eligible edges of the given network. In reality, algorithm
LocaLISE (Local LISE) is executed for each edge by one of its incident
nodes (for instance the one with the higher identifier). The description of
LocaLISE assumes the point of view of an edge e = (u, v). The algorithm
consists of three main steps:

1) Collect ( t
2)-neighborhood,

2) compute minimum interference path for e, and

3) inform all edges on that path to remain in the resulting topology.

In the first step, e gains knowledge of its ( t
2)-neighborhood. For a Euclidean

spanner, the k-neighborhood of e is defined as all edges that can be reached
(or more precisely at least one of their incident nodes) over a path p starting
at u or v, respectively, with |p| ≤ k |e|. Knowledge of the ( t

2)-neighborhood
at all edges can be achieved by local flooding.

During the second step a minimum-interference path p from u to v with
|p| ≤ t |e| is computed. LocaLISE starts with a graph GLL = (V,ELL)
consisting of all nodes in the ( t

2)-neighborhood and an initially empty edge
set. It inserts edges consecutively into ELL—in ascending order according
to their coverage—, until a shortest path p∗(u, v) is found in GLL with
|p∗| ≤ t |e|.

In the third step, e informs all edges on the path found in the second step
to remain in the resulting topology. The resulting topology then consists
of all edges receiving a corresponding message. In the following we show
that it is sufficient for e to limit the search for an interference-optimal path
p(u, v) meeting the spanner property to the ( t

2)-neighborhood of e.

Lemma 7. Given an edge e = (u, v), no path p from u to v with |p| ≤ t |e|
contains an edge which is not in the ( t

2)-neighborhood of e.

Proof. For the sake of contradiction we assume that a path p from u to v with
|p| ≤ t |e| containing at least one edge (w, x) not in the ( t

2)-neighborhood
of e. Without loss of generality we further assume that, traversing p from
u to v, we visit w before x. Since (w, x) is not in the ( t

2)-neighborhood, by
definition, no path from u to w with length less than or equal to ( t

2)|e| exists
(the same holds for any path from v to x). Consequently, the inequality |p| >
t |e|+ |(w, x)| holds, which contradicts the assumption that |p| ≤ t |e|.

With Lemma 7 we are now able to prove that the topology constructed
by LocaLISE is a t-spanner with optimum interference.
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LocaLISE
1: collect ( t

2)-neighborhood GN = (VN , EN ) of G = (V, E)

2: E = ∅
3: G′ = (VN , E′)
4: repeat
5: f = edge ∈ EN with minimum coverage
6: move all edges ∈ EN with coverage Cov(f) to E′

7: p = shortestPath(u− v) in G′

8: until |p| ≤ t |u, v|
9: inform all edges on p to remain in the resulting topology.

Note: GLL = (V, ELL) consists of all edges eventually informed to re-
main in the resulting topology.

Theorem 8. The graph GLL = (V, ELL) constructed by LocaLISE from a
given network G = (V,E) is an interference-optimal t-spanner of G.

Proof. The spanner property of LocaLISE can be proven similar to the first
part of the proof of Theorem 6, where LISE is shown to be a t-spanner.

To show interference optimality, it is sufficient to prove that the spanner
path constructed for any edge e = (u, v) ∈ G by LocaLISE is interference-
optimal, where interference of a path is defined as the maximum interference
of an edge on that path. The reason for this is that only edges that lie on
one of these paths remain in the resulting topology; non-optimality of GLL

would therefore imply non-optimality of at least one of these spanner paths.
In the following we look at the algorithm executed by e = (u, v). In line 6
edges in E are consecutively inserted into E′, starting with E′ = ∅, until a
spanner path p from u to v is found in line 8. Since LocaLISE inserts the
edges into E′ in ascending order according to their coverage and p is the first
path meeting the spanner property, p is an interference-optimal t-spanner
path from u to v in the ( t

2)-neighborhood. From Lemma 7 we know that the
( t
2)-neighborhood of e contains all spanner paths from u to v and therefore

also the interference-optimal one. Thus it is not possible that LocaLISE
does not see the global interference-optimal t-spanner path due to its local
knowledge about G. Consequently, p is the global interference-optimal t-
spanner path of e.

3.3 Average-Case Interference

In this section we consider interference of topology control algorithms on
average-case graphs, that is on graphs with randomly placed nodes.
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In particular networks were constructed by placing nodes randomly and
uniformly on a square field of size 20 by 20 units and subsequently computing
for each node set the Unit Disk Graph—defined such that an edge exists if
and only if its Euclidean length is at most one unit. The resulting Unit Disk
Graphs were then employed as input networks for topology control. Since
node density is a fundamental property of networks with randomly placed
nodes, the networks were generated over a spectrum of node densities.

3.3.1 Connectivity-Preserving Topologies

To evaluate connectivity-preserving topologies on average-case graphs, two
well-known topology control algorithms are considered, in particular the
Gabriel Graph [9] and the Relative Neighborhood Graph [32]. The inter-
ference-reducing effect of these two constructions is considered by compari-
son with the interference value of the given Unit Disk Graph network on the
one hand and with the interference-optimal connectivity-preserving topol-
ogy on the other hand. The interference-optimal topology was constructed
by means of the GLIT algorithm presented in [4].

Figure 3.7 shows the interference mean values over 1000 networks for each
simulated network density. While the resulting interference curves behave
similarly for very low network densities, they fall into three groups with
increasing density: At a density of roughly 5 network nodes per unit disk the
interference-optimal curve stagnates and remains at a value of approximately
11.5. On the other hand the interference curve of the Unit Disk Graph
without topology control rises almost linearly. Between these two extremes
the Gabriel Graph and Relative Neighborhood Graph values increase clearly
more slowly than the Unit Disk Graph curve, but show significantly higher
values than the interference-optimal topology.

The simulation results show that the edge reduction performed by the
Gabriel Graph and Relative Neighborhood Graph constructions reduce in-
terference of the given network; this effect is clearer with the Relative Neigh-
borhood Graph due to its stricter edge inclusion criterion and consequently
its being a subgraph of the Gabriel Graph. However, the interference val-
ues of these two constructions are considerably higher than the results of
the interference-optimal connectivity-preserving topology. Furthermore, al-
though (unless in special cases) the Relative Neighborhood Graph has degree
at most 6, it is not even clear whether with increasing network density the
respective interference curve remains around the maximum value found so
far or whether it would increase further for densities beyond the simulated
spectrum. It can therefore be concluded that also for average-case graphs
sparseness does not imply low interference.
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Figure 3.7: Interference val-
ues of the Unit Disk Graph
without topology control (dot-
ted), the Gabriel Graph (dash-
dotted), the Relative Neighbor-
hood Graph (dashed), and the
interference-optimal connectivity-
preserving topology (solid).
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Figure 3.8: Interference values
of LISE for stretch factors 2
(dotted), 4 (dash-dot-dotted), 6
(dash-dotted), 8 (dashed), and
10 (solid). Interference val-
ues of the Relative Neighbor-
hood Graph (upper gray) and
interference-optimal connectivity-
preserving topology (lower gray)
are plotted for reference.

3.3.2 Low Interference Spanners

Going beyond connectivity-preserving topologies, we consider in this section
spanners, that is topologies guaranteeing that the shortest paths on the
resulting topology are only by a constant factor longer than on the given
network (cf. Section 3.2.1).

Figure 3.8 depicts simulation results—in particular the mean interfer-
ence values over 100 networks at each simulated network density—of the
topology constructed by the LISE algorithm introduced in Section 3.2.1 for
different stretch factors t. The simulation results show that by increasing the
requested stretch factor it is possible to achieve interference values close to
the optimum interference values caused by connectivity-preserving topolo-
gies as described in the previous section. Moreover, even with a low stretch
factor of 2, LISE does not perform worse than the Relative Neighborhood
Graph, which is not a spanner. In summary, the simulation results show
that the LocaLISE algorithm performs well with respect to interference also
on average-case graphs. An illustration of the simulation graphs is provided
in Figure 3.9.
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Figure 3.9: The Unit Disk Graph G (top left, interference 50), the Relative
Neighborhood Graph of G (top right, interference 25), GLL computed by
LocaLISE with stretch factor 2 (bottom left, interference 23) and 10 (bottom
right, interference 12) at a network density of 20 nodes per unit disk on a
square field of 10 units side length. Note that, for instance in the western
region of the graph, LocaLISE—depending on the chosen stretch factor—
omits high-interference “bridge” edges if alternative spanning paths exist.
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3.4 Conclusion

Based on the work presented in [4], we focus on the characteristics of
interference-optimal topologies in the outgoing interference model. In par-
ticular we first show that such a topology cannot be computed locally and
that even the inclusion of the Nearest Neighbor Forest in the resulting graph
results in unnecessary high interference. Further we prove that an optimum
interference topology in fact has bounded degree but does not lead to planar
graphs.

In addition, we propose provenly interference-minimal connectivity-pre-
serving and spanner constructions. A locally computable version of the
interference-minimal spanner construction can even be considered practica-
ble, since it is shown to significantly outperform previously suggested topol-
ogy control algorithms also on average-case graphs.





Chapter 4

Incoming Interference

In this chapter we consider the incoming interference model introduced in
Definition 2 of Chapter 2. In fact, [4] does not present Iin to be the only in-
coming interference model. Also an edge-based incoming interference model
is described, referred to as Ie

in. Given a graph G = (V, E) the interference
Ie
in of a node v in V is defined to be the number of edges in E covering v

with their environments. This is exactly the inverse definition of Iout. In
the following we show the relation between Iin and Ie

in.
We therefor consider a graph with Ie

in = x. Let u be a node with Ie
in(u) =

x. That is, there are x edges whose environments cover u. The cardinality
of the set S of adjacent nodes to these edges is then at most 2x because
each edge contributes at most two disjoint nodes to S. Since only nodes in
S are candidates to contribute to Iin(u), we derive Iin(u) ≤ 2x.

On the other hand, we consider a graph with Iin = y. Let u be a node
with Iin(u) = y. By definition u is covered by y disks. Since we claim y to
be the interference of the graph, each node corresponding to one of the y
disks has at most y incident edges—[4] shows that the degree of a node is
a lower bound for its Iin value. Since only edges incident to one of these y
nodes need to be considered for Ie

in of the graph, we obtain Ie
in ≤ y2.

Summing up the above presented results we derive the following relation
for the Iin and the Ie

in interference models:
√

Ie
in ≤ Iin ≤ 2Ie

in.

Thanks to the above relation we do not need to consider both models in
this chapter, since results for one of them are also applicable for the other.
In the following we therefore restrict ourselves to the Iin model. The reason
is that Iin is the more natural model, since interference is obviously caused
by sending nodes and not through imaginary edges.

The Iin model is however, other than the Iout interference model defined
in Chapter 2 and covered in Chapter 3, not of such friendly nature. This
can be seen from the Minimum Interference Broadcast problem presented

23
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in [4], which is optimally solvable in the Iout model but turns out to be
NP-complete in Iin.

Based on the observation in [4] that already one-dimensional network
instances yield optimum interference Ω(n) in the Iout model, we turn our
attention to topologies in one dimension. Additionally, we again require the
resulting topology to maintain connectivity of the given network. A topology
graph meeting this requirement can therefore consist of a tree of the given
network, since additional edges might unnecessarily increase interference.
Thus we focus on trees maintaining connectivity of the given network with
least possible interference.

4.1 Exponential Node Chains

Let an exponential node chain be a one-dimensional configuration of n nodes
where the distance between two nodes vi and vi+1 is 2i and node v1 is the
leftmost node of the chain. Furthermore, we assume the maximum trans-
mission radius of each node is sufficiently large in order to connect to every
other node in the chain. In the Iout interference model exponential node
chains inherently yield interference Ω(n) [4]. Figure 4.1 depicts an exponen-
tial node chain consisting of 5 linearly connected nodes, where ”connecting
linearly” means that node vi is connected to node vi+1 for all i = 1, ..., n− 1
in the resulting topology. In addition to the disk D(vi, rvi) for each node vi,
Figure 4.1 depicts their interference values Iin(vi). Since all but the disk of
the rightmost node cover v1, interference at the latter is in Ω(n) and thus
also Iin is in Ω(n). However, other than in the Iout model, linear connec-
tion in exponential node chains does not result in an interference-optimal
topology in the Iin interference model.

Due to the construction of an exponential node chain, only nodes con-
necting to at least one node to their right increase v1’s interference. Conse-
quently, a hub of an exponential node chain is defined as follows:

Definition 4. Given a connected topology for an exponential node chain C.
A node u is defined to be a hub in C if and only if there exists an edge (u, v)
with v being a node to the right of u in C.

Algorithm LION constructs a topology for an exponential node chain
that does not yield interference Ω(n). The algorithm starts with a graph G =
(V, ELION ), where V is the set of nodes in the chain and ELION is initially
the empty set. Following the scan-line principle, it processes all nodes in
the order of their occurrences from left to right. Initially, the leftmost node
is set to be the current hub h. Then for each node vi LION inserts an edge
(h, vi) into ELION . This is repeated until Iin increases due to the addition
of such an edge, node vi becomes the current hub and subsequent nodes are
connected to vi as long as interference does not increase.
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Figure 4.1: Linearly connecting an
exponential node chain results in
interference Θ(n) at the leftmost
node.
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Figure 4.2: Exponential node
chain in a logarithmic scale. The
topology is obtained by applying
LION. Only hubs (hollow points)
interfere with the leftmost node.

Figure 4.2 depicts the resulting topology if LION is applied to an ex-
ponential node chain. The exponential node chain is thereby depicted in a
logarithmic scale1. In order to clarify the resulting topology and to prevent
overlapping edges, they are depicted as arcs. In addition, Figure 4.2 also
shows the individual interference values at each node.

Theorem 9. Given an exponential node chain consisting of n nodes, ap-
plying algorithm LION to this chain results in a connected topology with
interference Iin ∈ O(

√
n).

Proof. The resulting topology obtained by application of LION shows a clear
structure (see Figure 4.2). Each hub, not taking into account the first two, is
connected to one more node to its right than its predecessor hub to the left.
This follows from the fact that if the current topology leads to interference
Iin = I at the determination of a new hub, this hub can be connected to
I − 2 nodes to its right until Iin is again increased by one. Therefore the
minimum number of nodes n needed in an exponential node chain such that
interference Iin = I is obtained, when LION is applied, is

n =
I−2∑

i=1

i + 2 =
1
2
I2 − 3

2
I + 3.

By solving for interference Iin = I and n ≥ 2 in the above equation, we
consequently obtain

Iin =
⌊√

8n− 15 + 3
2

⌋
∈ O

(√
n
)
.

This is an intriguing result since it can be shown that
√

n is a lower
bound for Iin in exponential node chains.

1Another way to look at it is as if the exponential node chain was viewed through a
pair of glasses with logarithmic cut.
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Low Interference on Exponential No Chains (LION)
Input: V , a set of nodes vs forming an exponential node chain
1: ELION = ∅
2: GLION = (V, ELION )
3: h = v1 (∗ current hub ∗)
4: Icur = 1 (∗ current interference ∗)
5: for i = 2 to n do
6: ELION = ELION ∪ {(h, vi)}
7: if Iin > Icur then
8: h = vi

9: Icur = Iin

10: end if
11: end for
Output: Graph GLION

Theorem 10.
√

n is a lower bound for the incoming interference Iin in an
exponential node chain consisting of n nodes.

Proof. In order to prove the theorem, we state two properties for Iin in an
exponential node chain C. First, it holds that Iin is at least the number of
hubs in C, since the leftmost node is interfered by exactly all hubs (property
1). On the other hand, Iin is greater than the maximum degree of the
resulting topology, since [4] shows that the maximum degree of a graph is a
lower bound for Iin (property 2). We assume for the sake of contradiction
that there exists a connected graph that yields interference less than

√
n. In

other words, the degree of any node is required to be at most
√

n − 2, and
the number of hubs must not exceed

√
n− 1. Let H denote the set of hubs

in the graph and S the nodes in the graph that are not hubs. By definition,
each node in the graph is either in H or in S and therefore |H| + |S| = n
holds. Due to property 1, it follows that |H| ≤ √

n − 1. Without loss of
generality we assume that the hubs are linearly connected among themselves
in order to guarantee connectivity of the graph. Consequently, with property
2, each hub can connect to at most

√
n− 4 nodes in S (the leftmost and the

rightmost hub, respectively, to
√

n − 3). By the definition of a hub, nodes
in S are only connected to hubs and not among themselves. Therefore we
obtain

|S| ≤ (√
n− 1

) (√
n− 4

)
+ 2.

Consequently, |H|+ |S| results in n−4
√

n+5, which is less than n for n ≥ 2
and thus leads to a contradiction.

From Theorem 9 and 10 it follows that algorithm LION is asymptotically
optimal in terms of interference in exponential node chains.
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4.2 Highway

In this section we assume a more general network model than in Section 4.1.
We still consider a one-dimensional scenario, but now the n nodes are ar-
bitrarily distributed. This model is also referred to as the highway model
because network instances can be seen as a bird’s-eye view of a highway
with nodes representing cars. Figure 4.3 depicts an example network in the
model presented above with linearly connected nodes.

Figure 4.3: Example of a network in the highway model, where nodes are
connected linearly.

4.2.1 Searching for Chains

Based on the results in Section 4.1, we propose a generalization of algorithm
LION for the highway model. If we assume the nodes of a highway instance
to be linearly connected, high interference at a node u requires many nodes
to cover u. However, with increasing distance to u the nodes also need
increasing distances to their next neighbors in the highway instance in order
to interfere with u. This leads to an exponential characteristic of these nodes,
since the edges that account for the interference at u form a fragmented
exponential node chain.

Definition 5. Let u be a node of an instance of a highway and let all nodes
be connected linearly. Then Γl(u) is the set of edges to the left of u that
cause one of the incident nodes to account for Iin(u). For edges to the right
of u, Γr(u) is defined accordingly.

Figure 4.4 depicts an example of a highway. Edges in Γl(u), in Γr(u)
respectively, are depicted by dashed lines and the corresponding nodes in-
terfering u by hollow points. One can see that Γr(u) defines an exponential
node chain, if each section not in Γr(u) (e.g. the edge (vl, vr)) was contracted
to one virtual node (e.g. v′). Consequently, we can replace all edges in Γr(u)
by edges obtained by applying algorithm LION to the virtual exponential
node chain in order to reduce Iin(u). But the edges between virtual nodes
obtained by the algorithm need to be translated into edges between real
nodes. Therefore all edges (v′, w′) where v′ and w′ are not direct neighbors
in the exponential node chain must be replaced by (vl, wr) (this also applies
to Γl(u) with interchanged indices).

Different from Section 4.1 not all nodes are incident to an edge in Γl(u)∪
Γr(u), and the application of LION to these chains may yield a negative
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u vl vr

Figure 4.4: Γl(u) and Γr(u) (dashed lines) and the corresponding nodes
(hollow points) interfering with node u.

impact on them. We consider the fragmented exponential node chain Γr(u)
and a node v. If v is further right than the rightmost node w incident to
an edge in Γr(u), Iin(v) increases by at most one due to applying LION
to Γr(u). This follows from the fact that only w is able to interfere with
new nodes to its right. On the other hand, if v is inside the fragmented
exponential node chain, its interference also increases by at most one. The
reason for this is that v is additionally covered only by its closest hub to the
left. At last, if v is to the left of u, Iin(v) increases by up to Ω(

√
n), where

n denotes the number of nodes in the chain. This follows from the fact that
the resulting topology consists of Ω(

√
n) hubs that interfere with v, because

they may establish long-range edges.
An algorithm that constructs a low-interference topology for a given

highway instance can be derived by applying the procedure discussed above
for a node u to each node in the network. The nodes are thereby processed
in descending order according to their initial interference caused by linear
connection. But it has to be made sure that edges inserted to decrease inter-
ference at a particular node are not removed when dealing with subsequent
nodes.

. . .

. . .. . .. . . . . .2k,1 22k,2k 22k 23k 2k2−k 2k2

k21 3

Figure 4.5: Worst-case example, where linear connection yields Iin ∈ O(k),
whereas applying LION to each of the k exponential node chains (triangles)
results in interference Ω

(√
k3

)
.

However, Figure 4.5 depicts a highway instance, where linear connection
results in lower interference than applying algorithm LION to all existing
exponential node chains. The example consists of k successively arranged
exponential node chains diagramed as triangles. Each of these chains is set
up by k + 2 nodes, where consecutive chains share the leftmost and the
rightmost node, respectively. Below each triangle the distance between the
first two and the last two nodes of a chain is depicted. If the nodes are con-
nected linearly, we obtain Iin in O(k)—and consequently in O(

√
n), since

n = k(k + 1) + 1. This follows from the fact that the maximum interference
within one of the exponential node chains is in O(k) (see Section 4.1) and
that the nodes of a chain interfere only with the penultimate node of the
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exponential node chain to its left, since the latter has exactly the same dis-
tance between its last two nodes as the former has between its first two. If
LION is applied to the k exponential node chains in Figure 4.5, each indi-
vidual chain yields interference Ω

(√
k
)
—and consequently the same number

of hubs. Since almost all hubs produced by the algorithm are incident to an
edge spanning at least one node, they all interfere with the leftmost node
v of the example. As there are k exponential node chains, each of them
containing Ω

(√
k
)

hubs, v shows interference Ω
(√

k3
)
. Consequently, naive

approaches that try to reduce overall interference by reducing the interfer-
ence of individual exponential node chains do not appear to be successful.

4.3 Greedy on Highway

In this section we present a greedy algorithm, referred to as GLOW, that
is well suited to minimize Iin in the highway model. Before describing the
algorithm, we introduce the interference sequence σ of a graph:

Definition 6. Given a graph G = (V, E), then σ(G) is the sequence of
interference values Iin(v), with v ∈ V , in decreasing order.

Additionally, comparison operators on two interference sequences are
defined in terms of the lexicographic order.

Algorithm GLOW starts with a graph GGLOW = (V, EGLOW ) where V
is a set of nodes in a highway instance and EGLOW an initially empty edge
set. In addition all edges of the complete graph induced by V are in the set
E2. While GGLOW is not connected, GLOW adds an edge in E to EGLOW

in each step. Therefore, for each edge e ∈ E that does not yield cycles in
GGLOW , the interference sequence σ(G′) with G′ = (V,EGLOW ∪ {e}) is
computed. The algorithm then inserts the edge which yields minimum σ
into EGLOW . If there are multiple edges that result in the same interference
sequence, the one with minimal Euclidean length is chosen. In other words,
GLOW tries to increase the interference values of a node in each step as
little as possible.

The running time of the algorithm GLOW is O
(
n5

)
. This follows from

the fact that the while loop in Line 4 is repeated exactly n − 1 times—the
resulting topology is a tree—, and that for all of the O

(
n2

)
edges in E the

algorithm has to compute the interference of a graph consisting of n nodes,
which takes time O

(
n2

)
.

Due to local minima, the algorithm does not always lead to an optimal
solution. Figure 4.6 depicts two connection strategies for an instance of
the highway model. In the upper part the resulting topology is depicted if

2If the nodes in V are considered to feature a maximum transmission radius, E consists
of all edges (u, v), with u and v in V , respectively, that satisfy rmax

u ≥ |u, v| and rmax
v ≥

|u, v|.
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42 4 4 243
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Figure 4.6: Example of a highway, where GLOW results in Iin = 5 (upper
line), whereas an interference-minimal topology yields Iin = 4 (lower line).

GLOW is applied to the instance. It can be seen that the algorithm connects
the nodes linearly, which leads to interference Iin = 5. On the other hand,
in the lower part of Figure 4.6 an interference-optimal topology is depicted
that only yields Iin = 4. However, if GLOW is applied to an exponential
node chain presented in Section 4.1, it produces exactly the same topology
as algorithm LION, which we have shown to be asymptotically optimal
for exponential node chains. GLOW is also applicable to two-dimensional
problem instances and appears to result in low-interference topologies for
practical networks.

Greedy Low Interference On Highway (GLOW)
Input: V , a set of n nodes distributed in one dimension
1: E = all eligible edges (u, v) (u and v in V )
2: EGLOW = ∅
3: GGLOW = (V, EGLOW )
4: while GGLOW is not connected do
5: σmin = n, ..., n (n times)
6: emin = null
7: for all e = (u, v) ∈ E do
8: if u and v are in the same component of GGLOW then
9: E = E \ {e}

10: else
11: G′ = (V, EGLOW ∪ {e})
12: if σ(G′) < σmin or (σ(G′) = σmin and |e| < |emin|) then
13: σmin = σ(G′)
14: emin = e
15: end if
16: end if
17: end for
18: EGLOW = EGLOW ∪ {emin}
19: E = E \ {emin}
20: end while
Output: Graph GGLOW
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4.4 Conclusion

The incoming interference model defined in Chapter 2 is studied on the
basis of one-dimensional networks. In the first part of the chapter an ideal
topology, referred to as exponential node chain, is considered. We show
that

√
n is a lower bound for Iin in such a network. This lower bound is

shown to be asymptotically matched by a scan-line algorithm. In the second
part the more general highway model is assumed, where nodes are arbitrarily
distributed in one dimension. An attempt to transfer the algorithm from the
first part of the chapter is shown. Then an example is presented that shows
that such efforts do not appear to be successful. Finally, we propose a greedy
algorithm that appears to be a good heuristic for interference reduction for
instances in the highway model, since it is asymptotically optimal in the
case of exponential node chains.

Besides the presented results within this chapter, there are still open
questions to be answered in the field of incoming interference. Continuing
problems that surfaced while we were concerned with this field include:

- Is GLIT a O(
√

n)-approximation algorithm for Iin?

- Is there a network instance yielding optimum interference greater than
O(
√

n)?

- How well does GLOW approximate Iin?

- Is there a local algorithm that approximates optimum interference?

- Are there any algorithms, based on clusters in order to elect hubs,
which result in low-interference topologies?





Chapter 5

Minimum Membership Set
Cover

Based on the studies in the field of incoming interference introduced in
Chapter 2 and tackled in Chapter 4, minimizing Iin is considered in another
important problem domain in this chapter, namely in the field of cellular
networks.

5.1 Introduction

Cellular networks are heterogeneous networks consisting of two different
types of nodes: base stations and clients. The base stations—acting as
servers—are interconnected by an external fixed backbone network; clients
are connected via radio links to base stations. The totality of the base sta-
tions forms the infrastructure for distributed applications running on the
clients, the most prominent of which probably being mobile telephony. Cel-
lular networks can however more broadly be considered a type of infrastruc-
ture for distributed tasks in general.

Since communication over the wireless links takes place in a shared
medium, interference can occur at a client if it is within transmission range
of more than one base station. In order to prevent such collisions, coordina-
tion among the conflicting base stations is required. Commonly this problem
is solved by segmenting the available frequency spectrum into channels to
be assigned to the base stations in such a way as to prevent interference,
in particular such that no two base stations with overlapping transmission
range use the same channel.

In this chapter we assume a different approach to interference reduction.
The basis of our analysis is formed by the observation that interference ef-
fects occurring at a client depend on the number of base stations by whose
transmission ranges it is covered. In particular for solutions using frequency
division multiplexing as described above, the number of base stations cov-

33



34 CHAPTER 5. MINIMUM MEMBERSHIP SET COVER

c

Figure 5.1: If the base stations (hollow points) are assigned identical trans-
mission power levels (dashed circles), client c experiences high interference,
since it is covered by all base stations. Interference can be reduced by assign-
ing appropriate power values (solid circles), such that all clients are covered
by at most two base stations.

ering a client is a lower bound for the number of channels required to avoid
conflicts; a reduction in the required number of channels, in turn, can be
exploited to broaden the frequency segments and consequently to increase
communication bandwidth. On the other hand, also with systems using
code division multiplexing, the coding overhead can be reduced if only a
small number of base stations cover a client.

The transmission range of a base station—and consequently the cov-
erage properties of the clients—depends on its position, obstacles hinder-
ing the propagation of electromagnetic waves, such as walls, buildings, or
mountains, and the base station transmission power. Since due to legal
or architectural constraints the former two factors are generally difficult to
control, we assume a scenario in which the base station positions are fixed,
each base station can however adjust its transmission power. The problem
of minimizing interference then consists in assigning every base station a
transmission power level such that the number of base stations covering any
node is minimal (cf. Figure 5.1). At the same time however, it has to be
guaranteed that every client is covered by at least one base station in order
to maintain availability of the network.

In our analysis we formalize this task as a combinatorial optimization
problem. For this purpose we model the transmission range of a base station
having chosen a specific transmission power level as a set containing exactly
all clients covered thereby. The totality of transmission ranges selectable
by all base stations is consequently modeled as a collection of client sets.
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More formally, this yields the Minimum Membership Set Cover (MMSC)
problem: Given a set of elements U (modeling clients) and a collection S
of subsets of U (transmission ranges), choose a solution S′ ⊆ S such that
every element occurs in at least one set in S′ (maintain network availability)
and that the membership M(e, S′) of any element e with respect to S′ is
minimal, where M(e, S′) is defined as the number of sets in S′ in which e
occurs (interference).

Having defined this formalization, we show in this chapter—by reduction
from the related Minimum Set Cover problem—that the MMSC problem is
NP -complete and that no polynomial time algorithm exists with approxima-
tion ratio less than lnn unless NP ⊂ TIME(nO(log log n)). We additionally
present a probabilistic algorithm based on linear programming relaxation
asymptotically matching this lower bound, particularly yielding an approx-
imation ratio in O(log n) with high probability. Furthermore we study how
the presented algorithm performs on practical network instances.

5.2 Related Work

Interference issues in cellular networks have been studied since the early
1980s in the context of frequency division multiplexing: The available net-
work frequency spectrum is divided into narrow channels assigned to cells
in a way to avoid interference conflicts. In particular two types of conflicts
can occur, adjacent cells using the same channel (cochannel interference)
and insufficient frequency distance between channels used within the same
cell (adjacent channel interference). Maximizing the reuse of channels re-
specting these conflicts was generally studied by means of the combinatorial
problem of conflict graph coloring using a minimum number of colors. The
settings in which this problem was considered are numerous and include
hexagon graphs, geometric intersection graphs (such as unit disk graphs),
and planar graphs, but also (non-geometric) general graphs. In addition
both static and dynamic (or on-line) approaches were studied [25]. The fact
that channel separation constraints can depend on the distance of cells in
the conflict graph was studied by means of graph labeling [12]. The prob-
lem of frequency assignment is tackled in a different way in [7] exploiting
the observation that in every region of an area covered by the communi-
cation network it is sufficient that exactly one base station with a unique
channel can be heard. As mentioned, all these studied models try to avoid
interference conflicts occurring when using frequency division multiplexing.
In contrast, the problem described in this chapter assumes a different ap-
proach in aiming at interference reduction by having the base stations choose
suitable transmission power levels.

The problem of reducing interference is formalized in a combinatorial op-
timization problem named Minimum Membership Set Cover. As suggested
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by its name, at first sight its formulation resembles closely the long-known
and well-studied Minimum Set Cover (MSC) problem, where the number
of sets chosen to cover the given elements is to be minimized [14]. That the
MMSC and the MSC problems are however of different nature can be con-
cluded from the following observation: For any MSC instance consisting of n
elements, a greedy algorithm approximates the optimal solution with an ap-
proximation ratio at most H(n) ≤ lnn + 1 [14], which has later been shown
to be tight up to lower order terms unless NP ⊂ TIME(nO(log log n)) [8, 22].
For the MMSC problem in contrast, there exist instances where the same
greedy algorithm fails to achieve any nontrivial approximation of the opti-
mal solution.

5.3 Minimum Membership Set Cover

As described in the introduction, the problem considered in this chapter is to
assign to each base station a transmission power level such that interference
is minimized while all clients are covered. For our analysis we formalize this
problem by introducing a combinatorial optimization problem referred to
as Minimum Membership Set Cover. In particular, clients are modeled as
elements and the transmission range of a base station given a certain power
level is represented as the set of thereby covered elements. In the following,
we first define the membership of an element given a collection of sets:

Definition 7 (Membership). Let U be a finite set of elements and S be
a collection of subsets of U . Then the membership M(e, S) of an element e
is defined as |{T | e ∈ T, T ∈ S}|.

Informally speaking, MMSC is identical to the MSC problem apart from
the minimization function. Where MSC minimizes the total number of sets,
MMSC tries to minimize element membership. Particularly, MMSC can be
defined as follows:

Definition 8 (Minimum Membership Set Cover). Let U be a finite set
of elements with |U | = n. Furthermore let S = {S1, . . . , Sm} be a collection
of subsets of U such that

⋃m
i=1 Si = U . Then Minimum Membership Set

Cover (MMSC) is the problem of covering all elements in U with a subset
S′ ⊆ S such that maxe∈U M(e, S′) is minimal.

5.4 Problem Complexity

In this section we address the complexity of the Minimum Membership Set
Cover problem. We show that MMSC is NP -complete and therefore no
polynomial time algorithm exists that solves MMSC unless P = NP .

Theorem 11. MMSC is NP-complete.
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Proof. We will prove that MMSC is NP -complete by reducing MSC to
MMSC. Consider an MSC instance (U, S) consisting of a finite set of el-
ements U and a collection S of subsets of U . The objective is to choose
a subset S′ with minimum cardinality from S such that the union of the
chosen subsets of U contains all elements in U .

We now define a set Ũ by adding a new element e to U , construct a new
collection of sets S̃ by inserting e into all sets in S, and consider (Ũ , S̃) as
an instance of MMSC. Since element e is in every set in S̃, it follows that
e is an element with maximum membership in the solution S′ of MMSC.
Moreover, the membership of e in S′ is equal to the number of sets in the
solution. Therefore MMSC minimizes the number of sets in the solution by
minimizing the membership of e. Consequently we obtain the solution for
MSC of the instance (U, S) by solving MMSC for the instance (Ũ , S̃) and
extracting element e from all sets in the solution.

We have shown a reduction from MSC to MMSC, and therefore the
latter is NP -hard. Since solutions for the decision problem of MMSC are
verifiable in polynomial time, it is in NP , and consequently the MMSC
decision problem is also NP -complete.

Now that we have proved MMSC to be NP -complete and therefore not
to be optimally computable within polynomial time unless P = NP , the
question arises, how closely MMSC can be approximated by a polynomial
time algorithm. This is partly answered with the following lower bound.

Theorem 12. There exists no polynomial time approximation algorithm
for the MMSC problem with an approximation ratio less than ln n unless
NP ⊂ TIME(nO(log log n)).

Proof. The reduction from MSC to MMSC in the proof of Theorem 11 is
approximation-preserving, that is, it implies that any lower bound for MSC
also holds for MMSC. In [8] it is shown that lnn is a lower bound for the
approximation ratio of MSC unless NP ⊂ TIME(nO(log log n)). Thus, lnn is
also a lower bound for the approximation ratio of MMSC.

5.5 Approximating MMSC by LP Relaxation

In the previous section a lower bound of lnn for the approximability of the
MMSC problem by means of polynomial time approximation algorithms
has been established. In this section we show how to obtain a O(log n)-
approximation with high probability1 using LP relaxation techniques. For
an introduction to linear programming see for instance [5].

1Throughout the chapter, an event E occurring “with high probability” stands for
Pr[E] = 1−O

(
1
n

)
.
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5.5.1 LP Formulation of MMSC

We first derive the integer linear program which describes the MMSC prob-
lem and then formulate the linear program that relaxes the integrality con-
straints.

Let S′ ⊆ S denote a subset of the collection S. To each Si ∈ S we assign
a variable xi ∈ {0, 1} such that xi = 1 ⇔ Si ∈ S′. For S′ to be a set cover,
it is required that for each element ui ∈ U , at least one set Sj with ui ∈ Sj

is in S′. Therefore, S′ is a set cover of U if and only if for all i = 1, ..., n it
holds that

∑
Sj :ui∈Sj

xj ≥ 1. For S′ to be minimal in the number of sets that
cover a particular element, we need a second set of constraints. Let z be
the maximum membership over all elements caused by the sets in S′. Then
for all i = 1, ..., n it follows that

∑
Sj :ui∈Sj

xj ≤ z. The MMSC problem can
consequently be formulated as the integer program IPMMSC:

minimize z

subject to
∑

Sj :ui∈Sj

xj ≥ 1 i = 1, ..., n

∑

Sj :ui∈Sj

xj ≤ z i = 1, ..., n

xj ∈ {0, 1} j = 1, ..., m

By relaxing the constraints xj ∈ {0, 1} to x′j ≥ 0, we obtain the following
linear program LPMMSC:

minimize z

subject to
∑

Sj :ui∈Sj

x′j ≥ 1 i = 1, ..., n

∑

Sj :ui∈Sj

x′j ≤ z i = 1, ..., n

x′j ≥ 0 j = 1, ..., m

The integer program IPMMSC yields the optimal solution z∗ for an MMSC
problem. The derived linear program LPMMSC therefore obtains a fractional
solution z′ with z′ ≤ z∗, since we allow the variables x′j to be in [0,1].

5.5.2 Algorithm and Analysis

We will now present a O(log n)-approximation algorithm, referred to as
AMMSC, for the MMSC problem. Given an MMSC instance (U, S), the
algorithm first solves the linear program LPMMSC corresponding to (U, S).
In a second step, AMMSC performs randomized rounding (see [27]) on a
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feasible solution vector x′ for LPMMSC, in order to derive a vector x with
xi ∈ {0, 1}. Finally it is ensured that x is a feasible solution for IPMMSC

and consequently a set cover.

Algorithm AMMSC

Input: an MMSC instance (U, S)
1: compute solution vector x′ to the linear program LPMMSC corresponding

to (U, S)
2: pi := min{1, x′i · log n}
3: xi :=

{
1 with probability pi

0 otherwise
4: for all ui ∈ U do
5: if

∑
Sj :ui∈Sj

xj = 0 then
6: set xj = 1 for any j such that ui ∈ Sj

7: end if
8: end for

Output: MMSC solution S′ corresponding to x

For the analysis of AMMSC the following two mathematical facts are
required. Their proofs are omitted and can be found in mathematical text
books.

Fact 1. (Means Inequality) Let A ⊂ R+ be a set of positive real numbers.
The product of the values in A can be upper-bounded by replacing each factor
with the arithmetic mean of the elements of A:

∏

x∈A
x ≤

(∑
x∈A x

|A|
)|A|

.

Fact 2. For all n, t, such that n ≥ 1 and |t| ≤ n,

et

(
1− t2

n

)
≤

(
1 +

t

n

)n

≤ et.

We prove AMMSC to be a O(log n)-approximation algorithm for IPMMSC

in several steps. We first show that the membership of an element in U after
the randomized rounding step of AMMSC is bounded with high probability.

Lemma 13. The membership of an element ui after Line 3 of AMMSC is at
most 2e log n · z∗ with high probability.

Proof. The optimal solution of LPMMSC leads to fractional values x′j and
does not admit a straightforward choice of the sets Sj . Using randomized
rounding, AMMSC converts the fractional solution to an integral solution S′.
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In Line 3, a set Sj is chosen to be in S′ with probability x′j · log n. Thus,
the expected membership of an element ui is

E[M(ui, S
′)] =

∑

Sj :ui∈Sj

x′j · log n ≤ log n · z′. (5.1)

The last inequality follows directly from the second set of constraints of
LPMMSC. Since z′ ≤ z∗, it follows that the expected membership for ui

is at most log n · z∗. Now we need to ensure that, with high probability,
ui is not covered too often. Since randomized rounding can be modeled
as Poisson trials, we are able to use a Chernoff bound [24]. Let Yi be a
random variable denoting the membership of ui with expected value µ =
E[M(ui, S

′)]. Applying the Chernoff bound we derive

Pr [Yi ≥ (1 + δ)µ] <

(
eδ

(1 + δ)(1+δ)

)µ

.

Choosing δ ≥ 2e− 1, the right hand side of the inequality simplifies to
(

eδ

(1 + δ)(1+δ)

)µ

≤
(

eδ

(2e)(1+δ)

)µ

<

(
eδ

(2e)δ

)µ

= 2−δµ. (5.2)

Since the above Chernoff bound corresponds to the upper tail of the prob-
ability distribution of Yi and as µ is at most log n · z∗, it follows that

Pr [Yi ≥ (1 + δ) log n · z∗] ≤ Pr [Yi ≥ (1 + δ) µ] .

But for this inequality to hold, only (1+δ)µ ≤ c log n ·z∗ for some constant c
is required. Thus, by setting (1+δ)µ = c log n·z∗ and using Inequality (5.1),
we obtain

δµ ≥ (c− 1) log n · z∗. (5.3)

Using Inequalities (5.2) and (5.3) we can then bound the probability that
the membership of ui is greater than c log n · z∗ as follows:

Pr [Yi ≥ c log n · z∗] < 2−δµ ≤ 2−(c−1) log n·z∗ =
1

n(c−1)z∗ . (5.4)

In order to compute c, we again consider the equation (1+ δ)µ = c log n · z∗.
Solving for δ, we derive

δ =
c log n · z∗

µ
− 1.

As a requirement for Inequality (5.2) we demand δ to be greater or equal to
2e− 1. Furthermore, the right hand side of the inequality is minimal if µ is
maximal. Thus, using Inequality (5.1) we obtain

c log n · z∗
log n · z∗ − 1 ≥ 2e− 1
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or c ≥ 2e. Taking everything together and using z∗ ≥ 1 it follows that

Pr [Yi ≥ 2e log n · z∗] <
1

n(2e−1)z∗ ∈ O
(

1
n4

)
.

Now we are ready to show that after randomized rounding all elements
have membership at most 2e log n · z∗ with high probability.

Lemma 14. The membership of all elements in U after Line 3 of AMMSC

is at most 2e log n · z∗ with high probability.

Proof. Let Ei be the event that the membership of element ui after Line
3 of AMMSC is greater than 2e log n · z∗. Then, the probability that the
membership for all elements in U is less than 2e log n · z∗ equals

Pr[
n∧

i=1

Ei ].

We know from Lemma 13 that the probability Pr[Ei] is less than 1/n(2e−1)z∗ .
Since the events are clearly not independent, we cannot apply the product
rule. However, it was shown in [30] that

Pr[
n∧

i=1

Ei ] ≥
n∏

i=1

Pr[ Ei ]. (5.5)

We can make use of this bound, since IPMMSC features the positive corre-
lation property assumed in [30]. Consequently, setting α = (2e − 1)z∗ and
using Inequality (5.5), it follows that

Pr[
n∧

i=1

Ei ] ≥
(

1− 1
nα

)n

≥
(

1− 1
nα

) nα−1

nα−1− 1
n

≥ e
− 1

nα−1− 1
n > 1− 1

nα−1 − 1
n

.

For the third inequality we use Fact 2 with t = −1, which leads to the
inequality

e−1 ≤ (1− 1/n)n−1.

The last inequality is derived through Taylor series expansion of the left
hand term. Consequently, using α = (2e− 1)z∗ and z∗ ≥ 1 we obtain

Pr[
n∧

i=1

Ei ] = 1−O
(

1
n3

)
.
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Since AMMSC uses randomized rounding, we do not always derive a fea-
sible solution for IPMMSC after Line 3 of the algorithm. That is, there exist
elements in U that are not covered by a set in S′. But we can show in the
following lemma that each single element is covered with high probability.

Lemma 15. After Line 3 of AMMSC, an element ui in U is covered with
high probability.

Proof. For convenience we define Ci to be the set {Sj | ui ∈ Sj}. From
LPMMSC we know that

∑
Sj∈Ci

x′j ≥ 1. Thus, it follows that

∑

Sj∈Ci

pj ≥ log n. (5.6)

Let qi be the probability that an element ui is contained in none of the sets
in S′ obtained by randomized rounding, that is, qi = Pr [M(ui, S

′) = 0].
Consequently, we have

qi =
∏

Sj∈Ci

(1− pj) ≤
(

1−
∑

Sj∈Ci
pj

|Ci|

)|Ci|

≤ e
−∑

Sj∈Ci
pj ≤ e− log n =

1
n

.

The first inequality follows from Fact 1, the second inequality follows from
Fact 2, and the third step is derived from Inequality (5.6).

In Lines 4 to 8 of AMMSC it is ensured that the final solution S′ is a
set cover. This is achieved by consecutively including sets in S′, until all
elements are covered. In the following we show that the additional maximum
membership increase caused thereby is bounded with high probability.

Lemma 16. In Lines 4 to 8 of AMMSC, the maximum membership in U is
increased by at most O(log n) with high probability.

Proof. In order to bound the number of sets added in the considered part
of the algorithm, again a Chernoff bound is employed. Let Z be a random
variable denoting the number of uncovered elements after Line 3 of AMMSC.
From Lemma 15 we know that an element is uncovered after randomized
rounding with probability less than 1/n. Then, the expected value µ for Z
is less than 1. Using a similar analysis as in Lemma 13, we obtain

Pr [Z ≥ c] < 2−c+1,

where c ≥ 2e is required. Setting c = log n + 2e, it follows that

Pr [Z ≥ log n + 2e] <
2

n · 4e
∈ O

(
1
n

)
.
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The proof is concluded by the observation that each additional set added
in the second step of AMMSC increases the maximum membership in U by
at most one. Since only O(log n) elements have to be covered with high
probability and as it is sufficient to add one set per element, the lemma
follows.2

Now we are ready to prove that AMMSC yields a O(log n)-approximation
for IPMMSC and consequently also for MMSC.

Theorem 17. Given an MMSC instance consisting of m sets and n el-
ements, AMMSC computes a O(log n)-approximation with high probability.
The running time of AMMSC is polynomial in m · n.

Proof. The approximation factor in the theorem directly follows from Lem-
mas 14 and 16. The running time result is a consequence to the existence
of algorithms solving linear programs in time polynomial in the program
size [15] and to the fact that LPMMSC can be described using −1, 0, and 1
as coefficients only.

5.5.3 Alternative Algorithm

In an alternative version of the algorithm, the values x′ obtained by solving
LPMMSC can be directly employed as probabilities for randomized rounding
(without the additional factor of log n). In this case randomized rounding
is repeated for all sets containing elements not yet covered until resulting
in a set cover. With similar arguments as for AMMSC, it can be shown that
this modified algorithm achieves the same approximation factor and that it
terminates after repeating randomized rounding at most log n times, both
with high probability.

5.6 Practical Networks

Whereas the previous section showed that AMMSC approximates the optimal
solution up to a factor in O(log n), this section discusses practical networks.
In particular, the algorithms AMMSC and ÃMMSC—the alternative algorithm
described in Section 5.5.3—are considered. Since the approximation perfor-
mance of algorithms is studied, we denote by the membership of a solution
the minimization function value—that is the maximum membership over all
clients—of the corresponding MMSC solution.

The studied algorithms were executed on instances generated by plac-
ing base stations and clients randomly according to a uniform distribution

2Since in the above Chernoff bound µ is at most a constant, a more careful analysis
would yield that the maximum membership in U is increased—with high probability—by
O(log n/ log log n) only. This improvement has however no impact on the main result of
this chapter.
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on a square field with side length 5 units. Adaptable transmission power
values were modeled by attributing to each base station circles with radii
0.25, 0.5, 0.75, and 1 unit; each such circle then contributes one set contain-
ing all covered clients to the problem instance thereafter presented to the
algorithms.

As shown in the previous section, the approximation factor of the algo-
rithms depends on the number of clients. For this reason the simulations
were carried out over a range of client densities. Since the membership value
that is obtained by solving LPMMSC lies below the optimal solution and thus
the gap between the algorithm result and the solution of the linear program
is an upper bound for the obtained approximation ratio, the LPMMSC result
z′ is also considered.

For a base-station density of 2 base stations per unit disk, Figure 5.2(a)
shows the mean membership values over 200 networks—for each simulated
client density—for the results computed by AMMSC, ÃMMSC, and the values
obtained by solving LPMMSC. The results depict that for this relatively low
base-station density all measured values are comparable and increase with
growing client density. In contrast, for a higher base-station density of 5 base
stations per unit disk (cf. Figure 5.2(b)), a gap opens between the AMMSC

and LPMMSC results. Whereas the ratio between these two result series
rises sharply for low client densities, its increase diminishes for higher client
densities, which corresponds to the O(log n) approximation factor described
in the theoretical analysis. Additionally, it can be observed that ÃMMSC

performs significantly better than AMMSC. The reason for this effect lies in
the fact thatAMMSC multiplies the x′ values resulting from LPMMSC with the
factor log n to obtain the probabilities employed for randomized rounding,
whereas this multiplication is not performed by ÃMMSC. The approximation
gap becomes even wider for higher base-station densities, such as 10 base
stations per unit disk (Figure 5.2(c)). Our simulations showed however that
beyond this base-station density no significant changes in the membership
results can be observed.

The increasing gap between the simulated algorithms and the LPMMSC

solution with growing base-station density can be explained by the follow-
ing observation: For low base-station densities—where problem instances
contain a small number of sets—a relatively large number of clients are cov-
ered by only one set, which consequently will have to be chosen in both
the LPMMSC and the algorithm solutions; for high base-station densities, in
contrast, the solution weights x′ computed by LPMMSC can be distributed
more evenly among the relatively high number of available sets, and the
potential of “committing an error” during randomized rounding increases.

In summary, the simulations show that the considered algorithms ap-
proximate the optimal solution well on practical networks. Comparing
AMMSC and ÃMMSC, it can be observed that, in practice, the latter al-
gorithm performs even better than the former.
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Figure 5.2: Mean values of the membership results obtained by AMMSC

(dotted), ÃMMSC (dashed), and the LPMMSC solution with 2 (a), 5 (b), and
10 (c) base stations per unit disk.
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5.7 Greedy Approaches

For the Minimum Set Cover problem there exists a simple greedy algorithm
that approximates the optimal solution with approximation ratio at most
H(n) ≤ ln n + 1, which asymptotically matches the lower bound for the
problem. The question arises if there is also a greedy algorithm for MMSC
that yields an O(log n) approximation ratio as AMMSC.

We first consider the greedy criterion used in the well-known greedy
algorithm for MSC introduced in [14], referred to as GreedyMSC . That is, we
obtain the solution set S′ by successively choosing a set Si in the ith step of
the algorithm that maximizes |Si \

⋃i−1
j=1 Sj |. In other words, we choose a set

in S which covers the biggest number of elements in Unot already covered.
Figure 5.3 depicts an instance of the MMSC problem with the points in
the upper, the lower line, respectively, representing sets of elements with
depicted cardinalities. It is obvious that the top and the bottom disks form
an optimal solution for MMSC with M(u, S′) = 2. Applying GreedyMSC

to this instance however yields membership k for element u, where k is the
number of disks in the chain. The reason is that GreedyMSC chooses all
disks in the chain starting from right to left. This follows from the fact that
in each step there exists a disk in the chain that covers exactly one element
more than the top and the bottom disk, respectively. As the number of
elements n in Figure 5.3is 3 · 2k + 2, we derive

k = log (n− 2)− log 3 ∈ Ω(log n),

and consequently we can lower-bound the approximation ratio of GreedyMSC

to Ω(log n).
The second approach towards a good greedy criterion is inspired by the

greedy algorithm presented in Section 4.3. We there make a choice in each
step of the algorithm based on the comparison of lexicographically ordered
interference values of the nodes. We can apply the same idea to MMSC.
For each disk still eligible in the current step—a disk is said to be eligible if
there are uncovered elements within the disk area—we compute the mem-
bership of all elements based on the assumption that this and all previously
chosen disks represent a solution of the problem. We then choose the disk
which minimizes the lexicographic order of these memberships. The greedy
algorithm using this criterion is referred to as GreedyMMSC . However, this
greedy algorithm also yields M(u, S′) ∈ Ω(log n) for the instance depicted
in Figure 5.3 since it also chooses all disks in the chain instead of the top
and the bottom ones. Consequently, GreedyMMSC results in the same lower
bound for the approximation ratio as GreedyMSC , namely Ω(log n).

It can be seen that the instance in Figure 5.3 is in some way bad for the
greedy criteria presented so far because of the element distribution. Let a cell
denote an area in the Euclidean plane where all interior points are covered
by the same disks (see Figure 5.3). Consequently, the elements represented
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Figure 5.3: Instance of the
geometric MMSC problem that
yields M(u, S′) ∈ Ω(log n) for
GreedyMSC .

u

k disks

Figure 5.4: Instance of the geo-
metric MMSC problem that yields
M(u, S′) ∈ Ω(n) for GreedyArea.

by one of the element sets in Figure 5.3 are all in the same cell. This insight
leads to the conjecture that it is useful to derive some kind of normal form
for a given instance. An obvious normalization seem to be the replacement
of all elements in a cell by only one element, since multiple elements in one
cell experience always the same membership. In other words, the normal
form only distinguishes occupied cells form unoccupied ones. Applying this
normalization step to the instance in Figure 5.3 before executing one of the
former two greedy algorithms we obtain an optimal solution for this MMSC
instance.

In addition to the general MMSC problem there also exists a geometric
version of the problem. In contrast to the general problem, in the geometric
version the elements of U are considered to be point in the Euclidean plane
and the sets in S are restricted to sets of elements covered by a disk of radius
r and centered at a point p. Thereby the radii r of the individual disks do
not have to be equal and the points p of the centers are not restricted to
be in U . In the following we present three different greedy criteria for the
geometric MMSC problem and give lower bounds for their approximation
ratios.

The greedy criteria discussed so far do not use any geometric argument
and are consequently not only applicable to geometric instances of MMSC.
The last criterion we present within the scope of this section takes such
a geometric argument into account, namely the size of the uncovered area
of a disk. In each step the greedy algorithm, referred to as GreedyArea,
therefore chooses the disk whose area not already covered by any chosen
disk is maximal. Ties are broken arbitrarily. The algorithm comes to a halt
when all elements in U are covered by at least one disk. This criterion is
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in some sense intuitive since the disks successively chosen by the algorithm
spread over the whole plane and thus try to reduce the overlap of different
disks to a minimum. For good-natured problems GreedyArea actually results
in good solutions. However Figure 5.4 depicts a worst-case example since the
membership of the solution amounts to Ω(n) in case of GreedyArea, whereas
an optimal solution yields only constant membership. This follows from
the fact that the algorithm alternatingly chooses disks from the upper and
from the lower chain. Consequently, roughly k/2 of the disks in the lower
chain are in the solution S′ in the end, which leads to M(u, S′) ≈ k/2 for
GreedyArea. However, if we choose all disks from the upper chain and only
one from the bottom chain in order to cover node u, we obtain constant
interference. Since k = n− 1, we can lower-bound the approximation ratio
of GreedyArea to Ω(n).

5.8 Conclusion

Interference reduction in cellular networks is studied in this chapter by
means of formalization with the Minimum Membership Set Cover problem.
To the best of our knowledge this combinatorial optimization problem has
not been studied before. We show using approximation-preserving reduction
from the Minimum Set Cover problem that MMSC is not only NP-hard, but
also that no polynomial-time algorithm can approximate the optimal solu-
tion more closely than up to a factor lnn unless NP ⊂ TIME(nO(log log n)).
In a second part this lower bound is shown to be asymptotically matched
by a randomized algorithm making use of linear programming relaxation
techniques. The third part of the chapter discusses the behavior of the algo-
rithm on practical networks. In particular, it shows that the algorithm can
be modified to perform well not only in theory but also in practice. Finally,
we present two greedy criteria for the general MMSC problem and one for
the geometric version of the problem.

Besides the presented results in this chapter, there still exist open ques-
tions in the domain of cellular networks in terms of optimizing incoming
interference at the clients. Continuing problems that emerged while we
were involved with this field include:

- Does a simple greedy algorithm with approximation ratio O(log n)
exist for the general MMSC problem?

- Is there a constant-factor approximation algorithm for the geometric
version of the problem?

- Are there any good topology control algorithms for the related Max-
imum Set Cover problem, where each base station should serve ap-
proximately the same number of clients?
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Conclusion

Interference reduction in the field of ad-hoc networks is an important aspect
of topology control that has been culpably missed out when addressing the
issue in the past. Only quite recently [23] and above all [4] addressed the
topic, paying it the attention it really deserves.

In this thesis we continue on this path by providing a detailed discussion
of minimum interference topologies in the range of the outgoing and the
incoming interference model, respectively, introduced in [4]. In the domain
of outgoing interference it is shown that currently proposed topology control
algorithms do not in the first place focus on reducing interference. We fur-
ther present an algorithm (LocaLISE) that results in an interference-minimal
topology being a spanner of the given network. Additionally, multiple prop-
erties of an interference-minimal topology are shown, such as non-planarity,
bounded degree, and that it cannot be computed locally.

Incoming interference is considered by means of studying network in-
stances in one dimension. We therefor consider a topology referred to as
exponential node chain. An algorithm (LION)is proposed, following the
scan-line principle, that yields incoming interference O(

√
n) in such a chain

and is shown to be asymptotically tight. We then turn our attention towards
the more general highway model by describing a generalized version of the
above algorithm. However, an instance can be constructed which shows that
this does not lead to success. Yet, a greedy algorithm (GLOW) is presented
that asymptotically matches the lower bound for exponential node chains
and appears to result in low-interference topologies for practical networks.

In the last part of the thesis incoming interference is considered in terms
of cellular networks, or strictly speaking, the incoming interference at the
clients caused by the base stations of the network. This can be formalized
with the Minimum Membership Set Cover problem, which is shown to be
NP-hard. A randomized algorithm (AMMSC) is proposed that yields an ap-
proximation ratio in O(log n) with high probability, which is shown to be
asymptotically tight. In addition, a modified version of the algorithm is

49
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shown to perform well also in practice. Finally, we present three greedy
strategies for the MMSC problem and give lower bounds for their approxi-
mation ratios.
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