

Lior Wehrli
Mindstorms Admin Framework
Semester Project SA-2004-05
Winter Semester 2003/2004
Tutor: Philipp Blum
Supervisor:
Prof. Dr. Lothar Thiele
13.2.2004

25

 II

Contents

1 Introduction ..1
1.1 Task Description ... 1
1.2 Approach... 2
1.3 Overview ... 2

2 Specifications...4
2.1 LEGO Mindstorms Admin Console System Specifications 4
2.2 The BTnode .. 5
2.3 The LEGO Mindstorms Robotic Invention System................................ 5
2.4 The Proof-of-Concept.. 6
2.5 Summary... 6

3 System Architecture ..8
3.1 Distribution of Functionalities .. 8
3.2 Communication Path... 9
3.3 Interfaces .. 10
3.4 Summary... 11

4 Implementation ..12
4.1 BTnode Controller ... 12
4.2 Console Application .. 14
4.3 Summary... 16

5 Results ..18
5.1 Example of Use... 18
5.2 Stability Issues .. 20
5.3 Open Issues.. 20
5.4 Summary... 20

6 Conclusions ...22
6.1 Overall Conclusions .. 22
6.2 Approach... 22
6.3 Outlook.. 23

7 References..24
Appendix A: HOWTOs ..25

Installation & Configuration HOWTO... 25
Program Control HOWTO ... 26
Module Connection HOWTO .. 29

Appendix B: Console Command Reference31
I. General commands .. 31
II. RCX Program Handling .. 32
III. RCX Information Retrieval .. 33
IV. RCX Direct Control ... 34
V. Module Handling... 35

 III

 IV

1 Introduction
This chapter is a general introduction to the semester project on the Mindstorms Admin

Framework. The following sections describe the task assigned to this project and the approach
taken to fulfil the task. The last section gives an overview over the document itself and
roughly summarizes the contents of the various chapters and sections.

1.1 Task Description

The LEGO Mindstorms Robotics Invention System [1] is currently used in many schools
and institutions to introduce students to the theory of robotics and to related areas. The
conjunction of the well known, simple to use mechanics of LEGO Technics and an
autonomous, programmable control device inside a brick, the RCX, makes this system ideal
for introductory courses [2]. The system allows students to begin with the fun part of
constructing right away, without the usual planning phase needed in real robotics. The degree
of complexity of the physical build up and the design of the controller can vary widely from
trivial to complicated. The controller can be programmed using prefabricated modules in a
simple drag and drop environment or using a full blown programming language to command
the RCX.

Figure 1: Three examples of LEGO Mindstorms robots.

It is desirable to use multiple RCX bricks for complex tasks because the input and output
possibilities of a single RCX are used up very quickly. As soon as the project architecture
features more than three sensors for example, a single RCX brick will not suffice to process
the information flow. If more than one autonomous moving machine is in use, then each has
to carry at least one RCX brick for its control. But if multiple controllers are in use, then the
communication facilities are of great importance since some sort of information sharing is
almost always needed to coordinate the various autonomous parts of the project.

Unfortunately the LEGO Mindstorms Robotic Invention System can only establish
communication between different RCX bricks by using its infra red device. The great flaw of
this mechanism is that direct visible contact is mandatory from one IR device to another. For
many applications this constraint means series of very hard problems as such precise
navigation and adjustments as are then needed can not be expected from the system due to the
relatively fuzzy nature of LEGO mechanics.

The project’s first task is to solve these communication difficulties by implementing a
system which, while making use of the LEGO Mindstorms Robotics Invention System,
enables RCX bricks to communicate with each other regardless of their relative position - as
long as they operate in each others vicinity. It is also desirable to have an interactive
possibility to track information during runtime; hence the second task is the implementation

 25

of a console application that will give students the opportunity to monitor the components and
to steer various program related features on the RCX directly and conveniently from a PC
terminal.

1.2 Approach

The BTnode, an all-purpose Bluetooth device developed at the ETH [3], shall be used to
close the gap that opens between individual RCX bricks by routing the communicated
messages over Bluetooth. A simple infra red transceiver device catches the signals sent by the
RCX brick and forwards them to the BTnode, where the signals are processed and eventually
sent over Bluetooth to the console application which also acts as a server for the BTnode-
clients. Here the messages from the controllers are processed according to predefined or user
defined rules. Commands to RCX bricks are sent via Bluetooth to the BTnodes which in turn
forward them to the RCX using the IR transceiver device. Direct communication between
RCX bricks is emulated by first routing signals to the console application and then forwarding

them to certain BTnodes and on to
the connected RCX.

The PC application acts as a
console towards the users and as a
Bluetooth master device towards the
BTnodes. Using the console, the user
can also send commands to RCX
modules and view the replies to the
commands in a convenient form. The
Bluetooth-side relies on the BlueZ [4]
Bluetooth library which offers a
socket interface to most known
Bluetooth devices on Linux. The
users can implement modules using
any programming language and link
them to the console using regular files
or UNIX named pipes. This enables
users to define their own control and
coordination rules to meet with the
needs of individual projects.

1

t

1

s
t
f
d
m

Figure 2: The PC application communicates with
the connected robots and centralizes their
coordination.
.3 Overview

This section gives a short description and summary of the chapters and sections following
he

.3.1 Specifications
pecifications of the project and defines or explains in four sections

om

introductory chapter of this document. Section names are highlighted.

This chapter lists the s
e of the technical aspects of its components. The first section lists the Specifications of

he Mindstorms Admin Framework as relevant to its users. The section on The BTnode
urther details the functionalities and features of the BTnode device while the next section
oes the same for The LEGO Mindstorms Robotic Invention System. Both sections also
ention some background information on the described systems. The-Proof-of-Concept is

 2

an early implementation of some of the requirements of the project and the basis from which
it started. It is introduced in the section of equal name. Finally the last section formulates a
Summary of the chapter.

1.3.2 System Architecture
etail to discuss the internal architecture of the whole system,

of i

1.3.3 Implementation
epens the discussion of the presented project by detailing the

inte

1.3.4 Results
iscusses the results obtained from the project work. It opens with an

Exa

1.3.5 Conclusions
is document discusses some qualitative conclusions made about the

proj

This chapter goes into some d
ts components and the way the communication is structured. The first section gives an

overview over the break down of the tasks to the involved components by describing the
Distribution of Functionalities. The following section explains how different messages are
handled and routed through the Communication Path. The next section describes the
Interfaces and how they are connected to the system. Again a final section gives a Summary
over the chapter.

The chapter further de
rnal mechanisms of the components. The sections on The BTnode Controller and The

Console Application each describe how the two programs handle their tasks. A Summary
section closes the chapter.

This chapter d
mple of Use which demonstrates how a short usage by a student could look like. The

section on Stability Issues contains a qualitative comparison of the stability of the system and
of the proof-of-concept. The following section lists some Open Issues which were not tackled
during the project or which occurred while the work was done. Again the chapter closes with
a Summary.

The last chapter of th
ect results. The first section lists Overall Conclusions relating to Mindstorms Admin

framework as a whole while the second section discusses the Approach in light of the
finished system. The chapter close with an Outlook on how the system might be further
developed in the future.

 3

2 Specifications
The following chapter lists the specification of the described semester project and for

clarification introduces three components that are of central importance to the project.

2.1 LEGO Mindstorms Admin Console System Specifications

2.1.1 Signals
The RCX firmware is capable of sending and receiving messages of one byte length.

While there are other mechanisms for information sharing, this is the only form suitable for
RCX-to-RCX communication. Because the term “messages” suggests sending of packets of
variable length, or at least packets of several bytes, the term “signals” has been chosen instead
for this feature. This suggests that the type of the message is the message itself and that there
is no further data other then the data needed to specify the type. If the sole data byte sent is
regarded as the signal type then the concept precisely fits the mechanism.

The Mindstorms Admin Framework is capable of distributing the signals sent by an RCX
either to all other RCX bricks or to certain RCX bricks, according to a user given set of rules.
The automatic forwarding of signals to all RCX bricks can be turned on or off by the user and
the user can also independently send signals to an RCX.

2.1.2 RCX Program Management
Using the console, the user can upload compiled NQC [5] programs to any RCX by

specifying the byte code file and the program slot to which the program should be uploaded to.
The user can also start and stop the execution of programs on any RCX or turn an RCX brick
off.

These options enable students to conveniently experiment with control programs once the
physics of a machine is assembled. They can upload and test their code under realistic
conditions and quickly make corrections or adjustments to the behaviour of their construction.
The possibility to upload and control programs without even having to touch a robot, let alone
disassemble it, clearly is a great advantage of the Mindstorms Admin Framework.

2.1.3 External Components
Distributed solutions to complex problems usually call for some sort of coordination

between the components engaged in the solution. Such coordination often is central and
always is specific to the approach taken to handle the problem. The console is an ideal place
to implement such central coordination mechanisms. But the needs of future student projects
can not be foreseen; neither should they be limited by predefined algorithms.

For those reasons the Mindstorms Admin Framework offers the possibility to redirect
some information to external modules and likewise to allow external modules to control
certain RCX bricks. The requirements to such modules are very low; all that is needed is a
program that runs on the same OS as the console and that communicates over UNIX files
using the same text interface as the user is when he or she works with the console.

The user specifies which information is to be forwarded to which modules and which
modules have the permission to send commands to which RCX bricks. Allowing the user to
indicate module-specific permissions enables the simultaneous use of several modules even if
some are not to be trusted. Making use of the flexibility of UNIX files opens the power of

 4

many programming languages, compiled or interpreted, for the user’s utilisation according to
his or her needs and preferences.

2.2 The BTnode

The BTnode is an autonomous wireless communication and computing platform based on
a Bluetooth radio and a micro controller. It serves as a demonstration platform for research in
mobile and ad hoc connected networks (MANETs) and distributed sensor networks. The
BTnode has been jointly developed by the Computer Engineering and Networks Laboratory
(TIK) and the Research Group for Distributed Systems at ETH Zurich.

The micro controller has access to the Bluetooth
device as well as to different interfaces. It is controlled
by a C program which is implemented and compiled
on a PC using the AVR GNU cross-compiler. The
executable code can then be uploaded to the memory
of the BTnode from where it will be executed by the
micro controller. An extensive API allows the user to
take full control over all the resources of the BTnode.

Because of the numerous connector interfaces it is
possible to connect various external devices such as
the infra-red device used for this project or one
interface can be used for debug purposes and to
display trace information.

The possibility to communicate over Bluetooth
a
w
a

2

c
s
a

p
s
s
a
T
r
d

c
u
t
e
s
c
f

Figure 3: The BTnode

nd the ease of use of the BTnode make it a perfect choice for application in combination
ith RCX bricks. It can also easily be plugged to the internal batteries of an RCX, so that no

dditional power supply is needed.

.3 The LEGO Mindstorms Robotic Invention System

The LEGO Mindstorms Robotic Invention System is a revolutionary product that lets
ustomers build their own robots from scratch and according to their own ideas. The kit of
everal hundred parts - first published by the LEGO Corporation in 1998 – includes sensors
nd motors that can be connected to the central component: the RCX.

The RCX is a single brick holding a micro controller, input and output connectors and a
ower supply in form of six AA batteries. Three input interfaces can connect to the supplied
ensors. Touch sensors and light sensors are
hipped with the kit but temperature sensors
nd rotation sensors are also available.
hree output interfaces can be connected to

egular LEGO motors to control their
irection and rotation speed.

A separate infra red transmitter device
an be connected to a PC. This device is
sed to send control programs from a PC to
he RCX. The user can then start the
xecution of one of up to five programs
tored in one RCX brick. A control program
an be created with proprietary, user
riendly software shipped together with the

Figure 4: The RCX brick is the heart of the
LEGO Mindstorms Robotic Invention System
 5

LEGO Mindstorms Robotic Invention System.
It is also possible to use some other, non proprietary software to implement more complex

controller programs. Since the introduction of the product, several free source projects have
developed different alternatives to LEGO’s in-house software solution. Some of those
alternatives include new firmware to exchange the standard firmware while others only offer
new ways to implement control programs which are compatible to the original firmware.

One of the most widely used alternatives is the Not Quite C compiler (NQC), developed
by Dave Baum. NQC's syntax is very similar to the C programming language but the
compiled code can be executed by the standard firmware that is distributed by LEGO. This
concept is ideal for students who can be expected to learn a simple programming language but
who do not have the time to install and tune a tailored firmware operating system. With NQC
anybody can quickly write the desired controller, even if it includes complex mechanisms,
while still relying on the stability of the original firmware.

2.4 The Proof-of-Concept

The Proof-Of-Concept is a preliminary implementation of some of the specifications of
the Mindstorms Admin Framework done by Philipp Blum of the Computer Engineering and
Networks Laboratory of the ETH Zurich. It includes a controller program for BTnodes and an
IR transmitter device assembled specifically to catch the IR signals produced by the RCX.

The BTnode controller program is based on the standard controller of the BTnode and can
be compiled to either one of two execution modes: master or slave. Each BTnode’s IR device
is attached to an RCX’s IR device. When started, the BTnodes will form a Bluetooth piconet
where the node running as master will be the master node.

In slave mode the program will wait for RCX messages sent over IR and send them to the
BTnode running in master mode. It will also forward messages received from the BTnode
acting as master to the RCX. In master mode the BTnode distributes all incoming messages,
coming from the own RCX brick or from slave nodes, to the slave nodes connected to it.

When applied in student projects the Proof-Of-Concept showed that the ability to
communicate between RCX bricks is an important improvement to the original system. The
possibility to exchange information and to coordinate the components of the student projects
greatly improved the number of solvable tasks.

However, many new problems also showed up. The most important was the unreliability
of the Proof-Of-Concept: The BTnodes would often crash or messages would go lost.
Students were especially frustrated over the shier impossibility to perform a demonstration of
their work without that the system would crash once or twice in an unpredictable manner.
Naturally, the students wished for an improvement of the reliability.

The students also wished for a possibility to keep track of the information flow in the
network of RCX and to inspect the states of the RCX during program run-time while
experimenting with the robots. The requests led to the establishment of Mindstorms Admin
Framework semester project.

2.5 Summary

In this chapter we have discussed the basic specification to the Mindstorms Admin
Console as listed in the project requirements and as implemented in the final version. The
signalling mechanism is based on the existing messaging mechanism of the RCX and allows
control programs of RCX bricks to send single bytes to their piers. The distribution is in the
hands of the console application and its policy can be specified by the user. The possibility to
upload and control RCX programs greatly eases testing and debugging of robots by giving the

 6

user tools to do so without having to modify the construction itself. Last but not least the
interface to external modules enables students to implement their own central coordination
mechanisms.

 The reader has also been introduced to the most important physical components that the
Mindstorms Admin Framework uses. The BTnode is a Bluetooth device developed at the
ETH Zurich for experimental applications and is here used to wirelessly connect RCX bricks
with a master Bluetooth device. The LEGO Mindstorms Robotic Invention System is a
product of the LEGO Corporation that is widely used for introductory courses in robotics and
related fields. The Proof-Of-Concept is a simple implementation of the signalling mechanism
for RCX bricks using only BTnodes and simple IR transmitters.

 7

3 System Architecture
This chapter discusses the general architecture of the Mindstorms Admin Console

framework. The following sections each explain an aspect of the systems structure.

3.1 Distribution of Functionalities

There are three types of devices used in the Mindstorms Admin Console: RCX bricks,
BTnodes and PCs. Each of the devices works autonomously and each is responsible for
certain functionalities as detailed in the following subsections.

3.1.1 The RCX Brick
The RCX brick is the platform for the control program that steers a robot or a similar

autonomous machine. The controller is not executed directly by a micro processor but is
interpreted by a virtual machine. This virtual machine hides the RCX’s hardware, manages
the uploaded programs and offers features such as error recovery, or multitasking [6].

The controlling program reads the sensory inputs of the RCX and processes internal
information. It decides on the behaviour of the machine by manipulating the direction and
power level of the attached motors and it sends and receives signals to and from other RCX
bricks or the console.

There is no modification to the RCX itself in the Mindstorms Admin Framework. Users
can rely on the features and documentation of the RCX as supplied by the LEGO Corporation
or by other sources building on top of the RCX. Students can safely ignore the Mindstorms
Admin Framework when implementing controllers for RCX bricks in their projects.

3.1.2 The BTnode
The BTnode has the tasks of hooking an RCX into the registry of the console and of

translating the messages and commands sent from the RCX to the console or vice versa to the
appropriate protocol. The registration into the console’s registry implies that the console’s
Bluetooth device first has to be found and a connection to it has to be established. Translating
messages and commands implies that the BTnode control program parses the input from the
RCX and extracts the essential information that is to be forwarded to the console and that data
coming in from the console has to be coded according to the RCX communication protocol.

The BTnode control program is an indivisible part of the Mindstorms Admin Framework
and should never be modified by the user. On first usage of a new BTnode the program has to
be uploaded to memory but after that the BTnode is ready to work autonomously. The close
connection between a BTnode and the RCX it is attached to forms a new abstract entity from
the console application’s perspective; a BTnode/RCX pair acting as a seemingly monolithic
unit.

3.1.3 The Console Application
The console application is the centre of command for the user. It is a Linux terminal

program that reads text commands from the user and displays information received from the
RCX bricks. The console application also controls the Bluetooth device that acts as the master
of the piconet formed by the BTnodes. It maintains connections to the BTnodes, schedules
outgoing messages and analyses incoming messages. It also forwards formatted information
to the connected modules as defined by the user and decides on execution or blocking of

 8

commands coming from modules according to the permissions of the modules. It thereby
hides communication related details from the user and the modules so that they can focus on
the steering of the RCX bricks.

All functionalities of the console application are designed for reliability. If for example a
connection to a BTnode is lost for some reason then the console application notifies the user
and all modules related to the RCX. It then closes the connection and cleans up all messages
scheduled to be sent to the respective RCX brick.

3.2 Communication Path

Let us follow the path of a packet of data that is sent from an RCX brick to the console
application in order to demonstrate how the data is modified and where. A message sent from
the RCX’s IR transmitter will be caught by the BTnode’s IR device. If the message is an
expected reply to a previous command or if the message is a signal spontaneously sent by the
program running on the RCX, then
the BTnode will forward the
message data to the console
application.

3.2.1 BTnode-side Processing
The LEGO Mindstorms Robotic

Invention System uses a proprietary
packet protocol for communication
with RCX bricks. However, the
connection between a BTnode and
the terminal application is a
Bluetooth L2CAP connection. This
means that the communication is
fault free, that the packet sequence is
preserved and that the packet borders
can also be preserved. Therefore
there is no need for the packet
handling features of the RCX
communication protocol with its
flow control mechanisms. In fact,
there is no need for any of the
features of the RCX communication
protocol.

For that reasons the Mindstorms
Admin Framework handles all RCX
communication specific formatting
on the level closest to the RCX; in
the BTnode controller program.
There the RCX packets are parsed
and the essential data is extracted
and forwarded to the console applicati
BTnode in the other direction are like
before they are passed on to the RCX.

Figure 5: The Communication Path. Displayed are the
devices involved in the flow of information and the
technologies used for their communication.
on using the L2CAP protocol. Messages passing the
wise encoded according to the RCX packet protocol

 9

3.2.2 Console Application-side Processing
In the console application incoming messages first are separated into two groups: replies

to previously sent commands and signals sent by RCX bricks. Replies will be checked for
error messages while signals will be handled according to the forwarding policy. Error
messages will result in a notification of the user and in the deletion of all messaged scheduled
to be sent next to the respective RCX. Replies indicating successful completion of commands
will trigger the sending of a message that is scheduled to be sent next and may also result in
the notification of the user if the reply indicates the completion of a series of commands
which in sequence form one logical user action.

The mechanism for sending commands to an RCX is rather straight forward: the
command has to be expressed in RCX byte code and sent via the Bluetooth L2CAP layer to
the BTnode handling the RCX. The console application will add a short header to the message
to instruct the BTnode to forward the command to the RCX and to indicate how long the
expected reply to the message will be.

3.2.3 Example: Inquiring the Battery Power
As an example, let us look at the proceedings following a user’s inquiry of the battery

power of an RCX brick. The console application first creates the appropriate RCX message.
The expected reply to this message is a two-byte message (the current voltage of the batteries).
The header of the message will be the message type (forward-to-RCX) and the size of the
expected reply data (2 bytes). Because of the Bluetooth L2CAP layer can preserve packet
boundaries there is not need for any additional information.

When the BTnode receives the message it first inspects the message type. In the case of
this example it translates the message data to the RCX protocol and forwards it to the RCX.
The reply of the RCX brick is expected to carry 2 data bytes. Those are in turn forwarded to
the console device once the BTnode receives them.

3.3 Interfaces

From the user’s perspective, the Mindstorms Admin Framework has two interfaces
defined: the user interface of the console application and its module interface. Both are in fact
two gateways to one and the same interface but the two gateways underlie different rules of
what is allowed and what not.

The user interface is a simple command line interface, as known from many applications
throughout the UNIX world. The user types the commands and their parameters and the
console application reacts accordingly. All information coming from the RCX or the modules
is simply written out to the command line. The user has the permission to use all commands
and to steer any RCX and he or she can also set the permissions for the modules. Additionally
the user can also use some general commands which affect the console application itself, such
as the broadcast command which switches the signal broadcasting mechanism on or off.

The module interface works in almost the same way as the user interface. The differences
are that some commands, such as the run command, are only accepted by the console
application if the module has the right to steer the RCX to which the command is to be sent to.
Other commands, such as the exit command, are always blocked by the console because
they also affect other modules and the console session itself. Module interfaces also do not
show all information but rather only those related to RCX bricks for which the user has given
them permission.

The module interface uses the functionality of UNIX files to allow the attaching of new
modules at runtime. For each module two files, one for each direction of communication,
must be used because UNIX files do not allow duplex communication. It is worth noting that

 10

UNIX files do not necessarily have to be regular files. Most modules will probably make use
of named pipes to connect to the console application.

3.4 Summary

The functionality of the Mindstorms Admin Framework is distributed among three
devices. The RCX is the controller of the constructed robot or machine; it hosts the control
program which processes the sensor inputs and steers the motor outputs. The BTnode is the
connecting link between the RCX and the console application. It is responsible for the
registration of the RCX and for translating the messages sent between the RCX and the
console. Each one RCX and one BTnode form a BTnode/RCX pair. The console application
maintains the connections to BTnode/RCX pairs and hides communication related details
from the user and the modules.

The central device of the communication path is the BTnode. It encodes and decodes
packets from and to the RCX packet protocol. The connection between a BTnode and the
console application uses the L2CAP Bluetooth layer and relies on it to ensure a fault free
communication. The console application decides on the next message to send based on the
incoming reply packets. Signal packets are handled according to the signalling policy. The
user is notified if commands could not be executed.

The console has two, very similar, interfaces. The user interface has permission to use all
commands of the console on all RCX bricks and all modules. The module interface has only
permissions to see and steer those RCX bricks which the user has allowed it to. The module
interface uses UNIX files, two for each module.

 11

4 Implementation
The next two sections discuss the important issues of the implementation. For each of the

two devices that were programmed a section explains some of the algorithms and data
structures that were used.

4.1 BTnode Controller

The implementation of the BTnode control program consists of two areas. The first area
handles the establishment and maintenance of a connection to the console application while

the second area handles the actual
communications between the RCX on one side
and the console application on the other.

4.1.1 Connection Management
Upon start-up the BTnode will

automatically go into the connection
initialisation mode in which it will try to find
an appropriate Bluetooth device to act as its
master and to establish a stable connection to it.

The BTnode (logically acting as the client)
will try to find the Bluetooth device of the
console application (logically acting as the
server) by initiating a Bluetooth inquiry. Then
it will try to connect to PSM 185 of the device
named ‘Mindstorms-Server’ (see figure 6), if
such a device exists. If the establishment of a
connection succeeds the BTnode (now in
Bluetooth master mode) will signal it is ready
to make a role switch to slave mode and the
server will automatically try to go to master
mode. A simple handshake mechanism,
triggered by the server, will then ensure that
both peers really belong together.

Making a role switch is important because
the Bluetooth device initiating the connection
is the master by default and the device
connected to is the slave by default. However
Bluetooth slave devices seem to ignore
inquiries so that any further searches by other
BTnodes after the first connection has been
established would not find the device
representing the server.

The BTnode will close the connection and
restart the connection initialisation mechanism
Figure 6: A schema of the connection
initialisation mechanism.
if the procedure fails at some point. It will

 12

inquire for Bluetooth devices several times, each time for a longer interval, but eventually it
will stop inquiring after about a minute if no master node was found and issue a buzz beep on
the

n which it only acts in
resp

te loss of connection to the master node and return to the connection
initialisation mode.

4.1

eady represents a big improvement in terms of reliability compared to the Proof-of-
Con

ured
that

ed to ensure that the RCX does not mistake the
message for an echo of the last sent message.

4.1

coming bytes and continue in the same state when
the

nd finally one binary state separating parsing of data
byte

 reply message will be. This information is passed as the second
byte

RCX (if one is connected) to indicate a failure.
If a master has been found the BTnode will issue an upwards tune beep on the RCX (if

one is connected) to indicate success and will go into a passive state, i
onse to either RCX side signals or to incoming Bluetooth packets.
If the connection to the master is closed during passive mode, the BTnode will ensure a

clean shutdown of the respective channel, issue a downwards tune beep on the RCX (if one is
connected) to indica

.2 BTnode-to-RCX Communication
The original Proof-of-Concept, on which the implementation of the BTnode controller is

based, uses the SUART (Universal Asynchronous Receiver-Transmitter with software
controller) to communicate with the infra-red interface of the RCX. A short check indicated
that this interface misreads incoming bits in a much too high rate of over 10% bit errors. This
was assumed to occur because the bit scanning of the SUART interface is done in software
and is therefore relatively slow in comparison to the bit transmission rate. The assumption
proved true: when instead the UART interface with its hardware scanning was used, the bit
error rate dropped to almost 0%. The change of the infra red communication from SUART to
UART alr

cept.
A second major change to the RCX communication was the complete rework of the RCX

input parser and changes to the RCX-encoder. In the Proof-of-Concept the parser was correct,
but it was not capable of handling anything else than signal messages. The redesign ens

 the BTnode can forward any message type from the RCX to the console application.
Sending messages to the RCX is rather trivial: a constant preamble of three bytes is sent,

then the data bytes with their negation bytes immediately following. The BTnode also
remembers the first byte of the last sent message and compares this value with the first byte of
the next message. If the values are the same - i.e. the message type of the two messages is the
same - the third bit (the 0x08 bit) will be flipp

.3 RCX-to-BTnode Communication
The parser for the input from the RCX brick on the other hand is a little bit more complex

because neither SUART nor UART can identify package borders of RCX messages. The
parser has to be implemented as some sort of an abstract state machine (ASM) so that it can
retain its state after parsing one group of in

next group of bytes has been detected.
As implemented during this project the parser is not an ASM in its strict definition

because it has multiple states at the same time: one state separating message header parsing
from message body parsing, one separating parsing of echo from parsing of replies and
parsing of RCX triggered messages a

s from parsing of negation bytes.
The implemented parser is capable of handling any message, as long as it knows how

long the message is supposed to be. Because the BTnode should not be aware of the meaning
of the message it forwards it can also not know how long the reply to the message will be. For
this reason the messages incoming from the console that should be forwarded to the RCX
always indicate how long the

 of the message header.

 13

The parser has the option to ignore incoming messages or to forward them to the server if
one is known. By default it will always forward messages. But the server can also request that
the reply to a message will be ignored by setting second byte in the header to zero.

Whatever the current policy is, the parser always has to be aware of the current state of
the communications because it has to be able to detect the start of the next message even if it
ignored the last one. This is however rather trivial because the header sequence is designed to
be unique and the parser thus can always reset its state to expect an incoming message header

quence. Thus it can be guaranteed that
afte

is capable of maintaining package borders. The only information needed
besi

h a Pong message. Note that the Ping can be initiated by the either
the

onnection has
been silent for some time.

Handshake messages are used during the connection initialisation phase. This
e subsection on Connection Management.

RCX pairs acting as clients,
it ha

stop-current-program, select-program, and run-selected-program.
 has to schedule the messages that are waiting to be sent to

clie

the socket interface of the BlueZ
Blu

 data
stru

lient for some time
then a a number of ping messages will be sent. If the client still does not reply the application

and ignore all bytes not complying to the expected se
r scanning of a header sequence the parsers states are always synchronized with the RCX.

4.1.4 Console Communication Management
Once the communication channel to a master device has been established, everything else

about this aspect is very simple. There is no need for package management since the
Bluetooth protocol

des the package data itself is the type of the message (forward-to-RCX, ping or handshake
message) encoded in the first byte and the length of the reply expected from the RCX encoded
in the second byte.

Forward-to-RCX messages will be forwarded to the RCX essentially unmodified. The
length of the expected reply can be indicated in the second byte. If this value is zero the parser
will ignore the reply. This functionality has been explained in the last subsection.

Ping messages are sent by the server to verify that the BTnode is still responding. The
BTnode always replies wit

user (by calling the command ping) or by the server. The latter occurs when the server
suspects the connection to the BTnode to have died because it detects that the c

functionality has been discussed in th

4.2 Console Application

The console application is the most crucial part in the Mindstorms Admin Framework. It
has to coordinate the communication to and between the BTnode/

s to break down complex commands, issued by the user or by modules, into sequences of
messages. The command to run a program, for example, is translated into three commands:

The console application then
nts and it has to manage the connected modules and their individual permissions.

4.2.1 Client Management
The first thing that the console application will do is use
etooth library to open a L2CAP PSM for listening. It will then enter the main loop where

it will make a blocking call to the select() function, waiting for new clients to connect or
for the user to enter commands on the standard input stream.

When a new client connects, the application will register it by allocating a wrapper
cture to handle the client. This data structure will be marked unready until the handshake

message is received. Next the handshake is initiated by send the LEGO_MASTER message to
the BTnode. The console application then returns to the main loop.

In the main loop, the clients will be checked every few seconds to verify that the
connections are still open. If no messages have been received from the c

 14

will assume that the connection broke down and close it. The user and all modules which are
allo

 the command should be applied. After the parsing

wed to see information regarding the client will receive a notification.

4.2.2 Command Handling
When a module or the user issues a command in form of a line of text then the text will

first be parsed. The first word in the text is always the command and the following items are
parameters. The first parameter has a special significance since for many commands it
indicates the client or the module on which
completed successfully, the application will check if the command is valid, i.e. if it is
implemented. If the issuer is a module, then the next check will verify if the command is valid
for modules or only for the user interface.

Figure 7: Overview of the implementation of the console application. Internal data structures are
labelled in bold font, mechanisms in italics. The arrows indicate flow of information. The figure
shows four actions. Blue: The user initiates a simple command which is translated into a single
message (1a) and sent directly to the client (1b). Red: A module issues a complex command
which is translated into a sequence of messages (2a). The messages then are added to the
message queue (2b). Violet: A reply from an RCX (3a) is handled by the first message in the
queue
tr

 (3b) and a feedback message is relayed to the user and a module (3c). Black: A module
ies to issue a command for which it has no permission (4a). No messages are generated.
 will inspect
the

 command for example is translated in a straight forward
man

After it has been verified that the command is valid for the issuer the application will

check if the command acts on a BTnode/RCX pair or on modules and if it does it
first parameter to check if the parameter specifies a connected client or module or if it is

the code word all which indicates that all valid clients or modules are to be targeted in which
case a copies of the command will be issued; one for each valid node or module.

Once it is sure that the command is an allowed command for the issuer and that the target
of the command exist the actual command will be translated into one or several messages and
the messages passed on to the message scheduler. This mechanism varies a lot from one
command to another. The beep

ner into one message while the translation of the upload command includes the loading

 15

of a byte code file, its parsing and packing into ten or more messages, depending on the
complexity of the program.

A sequence of messages will often be constructed in a manner in which one message
evaluates the reply of the proceeding message and terminates the sequence with a notification
if an error occurred. Because the console application runs in only one process there is no

nces mix or overlap so that a message can always assume
that

 they have been added. The command execution has the possibility to either add a
mes

agments of message sequences remain in the queue after one of the
mes

lient to which the
queue is associated.

not send data nor report an error the scheduler will assume
that

dule Management

d with the first
perm

nsole application relies on the stability of the modules.
Interactive modules that need to receive information as well as steer RCX bricks will

unicate with the console application; one for input and one for
ngly advised to use pipes instead of regular files since those are better

suited for the purpose.

or the extraction of the essential

possibility that two message seque
 the preceding message is also the preceding message of the sequence if the sequence

indeed has a preceding message.

4.2.3 Message Scheduling
Message scheduling is implemented with one message queue per client. This is a FIFO

(first in first out) data structure that ensures that the messages will be processed in the same
order as

sage in the queue regardless of its state or to try to send a message directly. In the latter
case the scheduler will actually send the message only if the queue is empty. If there are
already messages waiting to be sent then the scheduler will add the message at the end of the
queue.

When replies to messages arrive at the console the scheduler will give the first message in
the queue the opportunity to inspect the reply and to report an error if the reply indicates that
something went wrong. If so, then all messages waiting in the queue will be removed to
guarantee that no fr

sages of the sequence failed. The first message of the queue can then send data (usually
itself) to the client and it can display information which will automatically be shown to the
user and to all modules that are allowed to see information regarding the c

In case that the message does
 the message is just a “reply-consumer”, marking the end of a message sequence. The

scheduler will therefore send the message next in the queue, if there is one.

4.2.4 Mo
Modules each have a wrapper structure very similar to the structures used for clients. The

most important differences are that there are two types of module connections, input and
output and that the application must store information regarding the permissions of the
modules.

The type of the connection is set when the internal data structure is create
ission defining command. Subsequent permission setting commands on the same

connection have to be of the same type. Unlike the management of the clients there is no
check for reaction of connections to the modules since this is not possible for unidirectional
communication. The co

have to use two files, to comm
output. It is also stro

4.3 Summary

The implementation of the BTnode comprises three main areas. The connection
management searches and establishes a connection to the master Bluetooth device. A role
switch is needed because the master device would otherwise not be visible to further
searching BTnodes. Communication with the RCX is established using a simple infra red
transmitter device. The RCX packet parser is responsible f

 16

data

e console application manages the connections to BTnode/RCX pairs (clients) and to
modules and it translates commands into sequences of messages which are scheduled to
guarantee that no sequences overlap. Message replies are checked for indications of errors.
Modules interact with the console application using one-way connections in form of UNIX
files.

 of an RCX message. Before being forwarded to the RCX brick the messages coming
from the console application have to be encoded according to the RCX packet protocol. The
communication with the console application uses the L2CAP Bluetooth layer because of its
reliability which greatly simplifies the work of the BTnode.

Th

 17

5 Results
This chapter discusses the results achieved by showing how a short session could look

like. The second section lists some results related to the stability and reliability of the
Mindstorms Admin Framework. Issues that have not been handled follow up in the third
section.

5.1 Example of Use

To demonstrate the use of the Mindstorms Admin Framework an example application is
given in the following.

First the console application is started:

[wehrlil@pc-3631 mindstorms_admin_framework]$./console
Mindstorms Admin Console at Bluetooth device [fe:d6] entering main
loop..
[fe:d6] >

After connecting two BTnodes to RCX bricks the console application detects the clients.

The first is assigned to the number 4, the second to the number 5. To allow the user to identify
the two RCX bricks the console commands them to emit a short tune. Thus the user knows
that the RCX beeping first is the one with the number 4 and the second the number 5.

[fe:d6] > (4) > NEW NODE [4d:14]
[fe:d6] > (4) > NEW NODE BEEPING
[fe:d6] > (5) > NEW NODE [4d:1f]
[fe:d6] > (5) > NEW NODE BEEPING

To check if the BTnodes really work properly, the user first sends pings to all connected

clients. The command ping all does just that:

[fe:d6] > ping all
[fe:d6] > (4) > PONG
[fe:d6] > (5) > PONG

Both devices answer correctly with a PONG message. The numbers in braces indicate to
which RCX the following information relates. Next, the user wants to upload a short test
program to both RCX bricks. The byte code of the program is stored in the file test.rcx. The
program should reside in the slot number 3 of the RCX.

[fe:d6] > upload all test.rcx 3
[fe:d6] > (5) > UPLOAD 3
[fe:d6] > (4) > UPLOAD 3

The user wants to execute the uploaded programs. The command run, followed by the

RCX bricks and the program slot number lets the RCX stop the currently running programs,
change to the program slot number, and run the program.

[fe:d6] > run all 3
[fe:d6] > (5) > STOP ALL TASKS
[fe:d6] > (4) > STOP ALL TASKS

 18

[fe:d6] > (5) > SET PROGRAM 3
[fe:d6] > (4) > SET PROGRAM 3
[fe:d6] > (5) > RUNNING PROGRAM 3
[fe:d6] > (4) > RUNNING PROGRAM 3

The program test.rcx waits for incoming signals and reacts to them by playing tunes and
by sending back a signal. The number of the sent signal is the one received less one. Because
the automatic broadcasting of signals is on by default, the signals received will be routed to
the other RCX brick. A ping pong effect results in which the numbers of the signals decrease
after each step. The user starts the mechanism by sending the signal 5 to the RCX with the
number 5.

[fe:d6] > signal 5 5
[fe:d6] > (5) > SIGNAL 4
[fe:d6] > (5) > SIGNAL 4 REROUTED TO NODE 4
[fe:d6] > (4) > SIGNAL 3
[fe:d6] > (4) > SIGNAL 3 REROUTED TO NODE 5
[fe:d6] > (5) > SIGNAL 2
[fe:d6] > (5) > SIGNAL 2 REROUTED TO NODE 4
[fe:d6] > (4) > SIGNAL 1
[fe:d6] > (4) > SIGNAL 1 REROUTED TO NODE 5

By sending the signal 5 to both RCX bricks, the user can make the bricks “play ping pong

with two balls”:

[fe:d6] > signal all 4
[fe:d6] > (5) > SIGNAL 3
[fe:d6] > (5) > SIGNAL 3 REROUTED TO NODE 4
[fe:d6] > (4) > SIGNAL 3
[fe:d6] > (4) > SIGNAL 3 REROUTED TO NODE 5
[fe:d6] > (5) > SIGNAL 2
[fe:d6] > (5) > SIGNAL 2 REROUTED TO NODE 4
[fe:d6] > (4) > SIGNAL 2
[fe:d6] > (4) > SIGNAL 2 REROUTED TO NODE 5
[fe:d6] > (5) > SIGNAL 1
[fe:d6] > (5) > SIGNAL 1 REROUTED TO NODE 4
[fe:d6] > (4) > SIGNAL 1
[fe:d6] > (4) > SIGNAL 1 REROUTED TO NODE 5

Finally the user stops the running program. He or she also wants to know the power of the

batteries.

[fe:d6] > stop all
[fe:d6] > (5) > STOP
[fe:d6] > (4) > STOP
[fe:d6] > battery all
[fe:d6] > (5) > BATTERY: 6795mV
[fe:d6] > (4) > BATTERY: 6682mV

Because the battery power is low, the user decides to end the session. All connections are

automatically closed before the console application terminates.

[fe:d6] > exit
[fe:d6] > (5) > CLOSE (USER)
[fe:d6] > (4) > CLOSE (USER)
[fe:d6] > bye bye!
[wehrlil@pc-3631 mindstorms_admin_framework]$

 19

5.2 Stability Issues

Improvement of stability was the primary objective for the Mindstorms Admin
Framework project. Particularly the BTnode controller program and the use of the BTnode IR
device in the Proof-of-Concept were to be improved. But the console application too should
run reliable even if the BTnodes are unreliable. The following statements base on experiences
made with the Mindstorms Admin Framework during the project work itself.

• The connection between the BTnode and the RCX has been greatly

improved by the move of the IR device from SUART to UART. Where the
communication was unreliable and faulty in the Proof-of-Concept the final
set-up of the Mindstorms Admin Framework is reliable to the extent that
not a single transmission error was observed after the modification.

• In the Proof-of-Concept the BTnode has the annoying habit of regularly
loosing connections in an unpredictable manner. This behaviour
disappeared completely after some errors in the controller were corrected.

• The console application runs absolutely reliable. It has been tested to
maintain connections to multiple BTnode/RCX pairs over long time periods.
Wrong user inputs are caught and handled correctly.

• Extensive usage of the connections does not cause malfunctions.
• The upload command sometimes causes the BTnode to crash. The same

error appears also in other BTnode applications. It is most probably caused
by a bug in the BTnode API.

The Mindstorms Admin Framework allows the user to forget about the details of the

communication between the RCX bricks. Instead users can concentrate on the more important
issues of their work. The problem with the program upload is acceptable since uploading is
not a task that is usually performed during run-time.

5.3 Open Issues

 During the project duration some tasks remained unfinished because of lack of time or
because they where not deemed as important as others. The most important of those issues are
the following:

• A graphical display of the RCX bricks and the messages they send to each
other was not implemented because the console proved to be very clear and
sufficient in its presentation of information.

• Not all RCX commands can be used by the console application. While
clearly not all commands make sense in this context there are some which
could be useful for some exotic applications.

• Some problems with the BTnode could not be solved. It seems that a bug in
API is causing the BTnode to crash on some occasions.

5.4 Summary

In this chapter the reader first was shown how a simple session on the console application,
using two connected RCX/BTnode pairs, could look like. This sample included the upload of
a program, its execution and termination as well as communication with the RCX program
using signals. The broadcasting functionality was also demonstrated.

 20

The stability issues listed clearly testify to the reliability of the Mindstorms Admin
Framework. It allows users to focus on the main aspects of their work instead of fussing with
the communications.

The section on open issues shows up how the framework could be extended in the future.
While there are no pressing issues, there are some features which could still be added, notably
the support of some RCX commands not yet implemented.

 21

6 Conclusions
The following chapter closes this document by listing some conclusions of the project

work. The first section lists the conclusions related to the project as a whole, while the second
section focuses on the evaluation of the approach.

6.1 Overall Conclusions

The Mindstorms Admin Framework is great tool for anyone working with multiple RCX
bricks. The framework allows for completely new application areas to be explored with the
LEGO Mindstorms Robotics Invention System. In many tasks, where before the Mindstorms
robots seemed inappropriate or insufficient, the Mindstorms Admin Framework can be used
to produce elegant solutions with ease.

The constraints of communication in the original LEGO Mindstorms system are
overcome; the RCX bricks do no longer need to be arranged in a sight contact. Instead they
can be arranged in any position or they can move freely, while still maintaining reliable
communications.

The User does not have to take care of technical details. Instead, he can concentrate on
the construction and controlling of the robots. The console interface allows the user to take
full control over all RCX bricks connected and to monitor the communicated signals. He can
inquire, amongst others, the internal state of the RCX, the voltage of its batteries or the value
of the attached sensors. This is even possible while a program is running on the RCX.

Defining a central coordination for the RCX bricks is easy; any programming language
can be used to implement a controller program, which is then connected to the module
interface. A strict permission system ensures that no module can see or access robots without
explicit permission from the user.

6.2 Approach

When looking back on the design decisions taken at the start of the project, it gets clear
that those where appropriate and in the end resulted in a very good product. The decision to
leave the LEGO Mindstorms Robotic Invention System as intact as possible simplifies the
work with the final product tremendously; the user can apply well-known and ripe
technologies instead of having to learn a completely new system.

The use of a Client/Server architecture and of the BTnode as intermediary between RCX
bricks and the console application simplified the whole work because of the clear distribution
of tasks amongst the different components. The resulting system is easy to understand and its
dynamics can be interpreted in a straight forward manner.

Using NQC programs has many advantages to: the byte code files are simple and easy to
parse. The programs are powerful in their many ways to solve problems while at the same
time being compatible to the original RCX firmware. The programming language NQC is
easy to learn because of its syntactical proximity to C, one of the best known programming
languages.

While a different approach could have been taken to give the user even more control over
the RCX (for example by using a different firmware/OS), it is very doubtable if the results
would have surpassed the Mindstorms Admin Framework in terms of user friendliness. User

 22

friendliness, however, was a key requirement of the project. Thus the approach taken for the
Mindstorms Admin Framework can be said to be fully justified.

6.3 Outlook

Although the Mindstorms Admin Framework is a complete system with powerful features,
there still are some features that could be extended or added. Future work could comprise
some of the following tasks:

• Extending the set of commands of the console application to include some
yet unsupported RCX commands for inquiring the state of an RCX brick or
of the attached sensors.

• Allowing the upload of firmware updates. This seems a rather simple task
since the upload of firmware works very similar to the upload of programs.

• Modifying the BTnode controller program to allow a peer-to-peer
connection between BTnodes. The design of robot communication in a
peer-to-peer network could be of some interest.

Zurich, February 23, 2004

Lior Wehrli
wehrlil@student.ethz.ch

 23

7 References

[1] LEGO Corporation, LEGO Robotics Invention System. http://mindstorms.lego.com

[2] ETH Zürich, Institut für Technische Informatik und Kommunikationsnetze,
Studentenprojekte mit LEGO Mindstorms Robotic Invention System.
http://www.tik.ee.ethz.ch/mindstorms/

[3] The BTnode Project, BTnodes – A Distributed Environment for Prototyping Ad Hoc
Networks. http://btnode.ethz.ch

[4] BlueZ, Official Linux Bluetooth protocol stack. http://www.bluez.org/

[5] David Baum, Not Quite C. http://bricxcc.sourceforge.net/nqc/

[6] Kekoa Proudfoot, RCX internals. http://graphics.stanford.edu/~kekoa/rcx

 24

http://mindstorms.lego.com/
http://www.tik.ee.ethz.ch/mindstorms/
http://btnode.ethz.ch/
http://www.bluez.org/
http://bricxcc.sourceforge.net/nqc/
http://graphics.stanford.edu/~kekoa/rcx

Appendix A: HOWTOs

Installation & Configuration HOWTO

This HOWTO describes how to install and configure the Mindstorms Admin Framework.

Requirements
To install and use the Mindstorms Admin Framework you need a distribution of the

Mindstorms Admin Framework and a working installation of the BlueZ Bluetooth protocol
stack. This is the standard Bluetooth protocol stack for Linux since as of kernel 2.4, so if you
have a recent Linux distribution, you probably already have this installed. This software was
written with bluez-libs 2.3 and bluez-utils 2.2. If you do not have an installation of BlueZ or if
you want to get the newest versions, you may download the current distribution from
http://www.bluez.org.

Configuring the Bluetooth device
Make sure a Bluetooth device is connected to the computer, for example over USB if you

use a USB dongle. Then run hciconfig to get a listing of the connected devices. Notice:
Depending on the configuration of your system, you may have to be root to use that command.
If you have to be root but you do not know how do get root, ask your administrator for help.
The console should now display some general information on the connected Bluetooth
devices. This should look more or less like that:

[root@pc-3631]# hciconfig
hci0: Type: USB
 BD Address: 00:60:57:18:FE:D6 ACL MTU: 192:8 SCO MTU: 64:8
 UP RUNNING PSCAN ISCAN
 RX bytes:99 acl:0 sco:0 events:13 errors:0
 TX bytes:296 acl:0 sco:0 commands:12 errors:0

If instead you get something like that

[root@pc-3631]# hciconfig
hci0: Type: USB
 BD Address: 00:00:00:00:00:00 ACL MTU: 0:0 SCO MTU: 0:0
 DOWN
 RX bytes:0 acl:0 sco:0 events:0 errors:0
 TX bytes:0 acl:0 sco:0 commands:0 errors:0

.. then the Bluetooth device was not found. It often helps to remove the device and plug it

in again. If that still did not help, you can run hcid to let the kernel search for devices. If your
system still can not find the device you will have to refer to the BlueZ documentation on
http://www.bluez.org/documentation.html for help.

You now have to configure the Bluetooth device according to the needs of the
Mindstorms Admin Console. Type the following commands:

hciconfig hci0 lm MASTER,ACCEPT
hciconfig hci0 name 'Mindstorms-Server'

 25

Setting up the BTnode
You should now connect an IR-device to each BTnode. Use the UART (J4) connector.

The IR transceiver has only one connector, so there should be no problem there. Fix the IR-
transceiver directly on the IR-
interface of the RCX brick. You
may want to use a LEGO
construction for that or a rubber.

The power supply for the
BTnode must be connected to J9.
If you use the batteries of the
RCX, you should disconnect the
BTnode when you do not work
with it. Unlike the RCX, the
BTnode will not shut itself off
by itself after some time. The
batteries of the RCX will be
drained quickly, if you leave the
BTnode connected to them
longer than necessary.

The blinking of the innermost LED indicates that the BTnode is running correctly. If any
other LEDs blink the BTnode has crashed and you should press the reset button.

Starting the Console Application
Now you are ready to run the console application. Unpack the Mindstorms Admin

Framework distribution to a directory of your choice and enter that directory. Then type

console

If you have not connected the BTnodes to their power supply, you can do so now. After a

short wile, the BTnodes should have found the console application and you are ready to start
your work with the Mindstorms Admin Framework.

Program Control HOWTO

This HOWTO describes how to upload, run and communicate with programs on RCX
bricks.

The first thing you have to do is to run the console application in the directory in to which
you have installed the Mindstorms Admin Framework.

[wehrlil@pc-3631 mindstorms_admin_framework]$./console
Mindstorms Admin Console at Bluetooth device [fe:d6] entering main
loop..
[fe:d6] >

If the console application does not display the same line as above or the address displayed

is [00:00], then you should close the console application (type exit) and follow the
instructions of the Installation and Configuration HOWTO.

Now make sure that the BTnodes are connected to their power supplies and that the RCX
bricks are turned on. The BTnodes should find the Bluetooth device of the console application
within a minute. If they do not , you have to press the reset button of the BTnodes.

 26

[fe:d6] > (4) > NEW NODE [4d:14]
[fe:d6] > (5) > NEW NODE [4d:1f]
[fe:d6] > (4) > NEW NODE BEEPING
[fe:d6] > (5) > NEW NODE BEEPING

The BTnodes have now signed themselves in to the console application. To check if the

nodes are still responding you can use the ping all command.

[fe:d6] > ping all
[fe:d6] > (4) > PONG
[fe:d6] > (5) > PONG

If you do not know the address assigned to the RCX bricks you can use the beep

command to let a RCX play a short tune. The first argument of the beep command is the
number the node, the second is the number of the tune to be played.

[fe:d6] > beep 4 1
[fe:d6] > beep 5 2

To get information about the commands at your disposal, use the help command. To get

an explanation on a specific command use help <com>, where <com> is the command.
The next thing to do (usually) is to upload a program to the RCX bricks. The file test.rcx

contains a simple program that can be used to test uploading and signalling.

[fe:d6] > upload all test.rcx 3
[fe:d6] > (5) > UPLOAD 3
[fe:d6] > (4) > UPLOAD 3

The upload command takes three arguments: the RCX bricks’ number, the program file

name and the program slot, to which the program will be uploaded to. Because uploading is a
very bandwidth intensive operation, problems may occur here. If so, do not be discouraged;
try again.

Once the upload has completed successfully, you can run the program as such:

[fe:d6] > run all 3
[fe:d6] > (5) > STOP ALL TASKS
[fe:d6] > (4) > STOP ALL TASKS
[fe:d6] > (5) > SET PROGRAM 3
[fe:d6] > (4) > SET PROGRAM 3
[fe:d6] > (5) > RUNNING PROGRAM 3
[fe:d6] > (4) > RUNNING PROGRAM 3

The run command is executed in three stages, each of which displays a feedback

message on the console. If the console looks like above, then the execution of the program
was started correctly.

The program in test.rcx is very simple: it waits for incoming signals between 1 and 5,
plays a tune melody and sends a signal out. The number of the sent signal is the number of the
received signal minus one. For example, if a signal of number 4 is received, then a signal of
number 3 will be emitted.

In the console application, automatic signal broadcasting is turned on by default. You can
use the broadcast command to switch broadcasting on and off, but for the next step it has to
be turned on.

Use the signal command to send the signal 5 to one of the RCX bricks.

[fe:d6] > signal 5 5

 27

[fe:d6] > (5) > SIGNAL 4
[fe:d6] > (5) > SIGNAL 4 REROUTED TO NODE 4
[fe:d6] > (4) > SIGNAL 3
[fe:d6] > (4) > SIGNAL 3 REROUTED TO NODE 5
[fe:d6] > (5) > SIGNAL 2
[fe:d6] > (5) > SIGNAL 2 REROUTED TO NODE 4
[fe:d6] > (4) > SIGNAL 1
[fe:d6] > (4) > SIGNAL 1 REROUTED TO NODE 5

As you can see, the signal triggered a ping-pong effect: signals are sent from one RCX to

the other until the stepwise decrease of the signal number arrives at signal number 1. The
broadcasting mechanism reroutes each incoming signal from one RCX to the other RCX like
a ping-pong ball going from one player to the other.

You can also do the same “with two ping-pong balls” by sending signals to both RCX
bricks at the same time.

[fe:d6] > signal all 5
[fe:d6] > (5) > SIGNAL 4
[fe:d6] > (5) > SIGNAL 4 REROUTED TO NODE 4
[fe:d6] > (4) > SIGNAL 4
[fe:d6] > (4) > SIGNAL 4 REROUTED TO NODE 5
[fe:d6] > (5) > SIGNAL 3
[fe:d6] > (5) > SIGNAL 3 REROUTED TO NODE 4
[fe:d6] > (4) > SIGNAL 3
[fe:d6] > (4) > SIGNAL 3 REROUTED TO NODE 5
[fe:d6] > (5) > SIGNAL 2
[fe:d6] > (5) > SIGNAL 2 REROUTED TO NODE 4
[fe:d6] > (4) > SIGNAL 2
[fe:d6] > (4) > SIGNAL 2 REROUTED TO NODE 5
[fe:d6] > (5) > SIGNAL 1
[fe:d6] > (5) > SIGNAL 1 REROUTED TO NODE 4
[fe:d6] > (4) > SIGNAL 1
[fe:d6] > (4) > SIGNAL 1 REROUTED TO NODE 5

You can play around with the RCX and the control program. When you had enough, use

the stop command to stop the execution of the program.

[fe:d6] > stop all
[fe:d6] > (5) > STOP
[fe:d6] > (4) > STOP

Do not forget to use the battery command to check on the battery power of the RCX

bricks from time to time. A fully charged pack of batteries has a voltage to 9V and the
minimal voltage required for the RCX to run is approximately 6500 mV.

[fe:d6] > battery all
[fe:d6] > (5) > BATTERY: 6795mV
[fe:d6] > (4) > BATTERY: 7282mV

Finally, to close the console and all connections, use the exit or quit.

[fe:d6] > exit
[fe:d6] > (5) > CLOSE (USER)
[fe:d6] > (4) > CLOSE (USER)
[fe:d6] > bye bye!
[wehrlil@pc-3631 mindstorms_admin_framework]$

 28

Module Connection HOWTO

This HOWTO describes how use the module interface of the Mindstorms Admin
Framework. The file smpl_coord contains a script, written in Perl, that, when executed,
establishes two named pipes. The pipe coord-in is for console-to-module communication, the
pipe coord-out for module-to-console communication.

After running smpl_coord, the connections from the console to the module are established
with the commands route and allow. Both commands take the number assigned to an RCX
brick as first argument and the name of the file or pipe as a second. Nodes thus associated
with files or pipes can be controlled from outside modules. For more information, type the
command help route and help allow.

Execute the module in a separate terminal before connecting it to the console! Otherwise,
the console will block or even terminate, because it tries to write to a pipe without reader. The
module smpl_coord on the other hand is passive, so it will block until messages are sent to it
by the console. Never connect the console to pipes that do not have a reader or a writer.

To close the module manually you have to press Ctrl C, because the script does not check
its standard input. It is strongly advised to use the smpl_coord module as a basis for
development of own coordination modules.

Start the console application, turn one of the RCX bricks on and connect its BTnode to its
power supply. It is assumed, that the RCX brick has the program test.rcx uploaded to slot 3. If
that is not true, follow the instructions of the Program Control HOWTO.

[wehrlil@pc-3631 mindstorms_admin_framework]$./console
Mindstorms Admin Console at Bluetooth device [fe:d6] entering main
loop..
[fe:d6] > (4) > NEW NODE [4d:14]
[fe:d6] > (4) > NODE BEEPING

Next route all incoming information from the RCX device to the pipe coord-in with the

route command and allow external modules using the pipe coord-out to control the RCX by
calling the allow command.

[fe:d6] > route 4 coord-in
[fe:d6] > allow 4 coord-out

The script smpl_coord is a example of how a central coordination module could be

implemented with the Perl script language. Since this module takes care of the broadcasting
of signals, you have to turn off the automatic signal broadcasting mechanism using the
command broadcast.

[fe:d6] > broadcast off
[fe:d6] > BROADCAST OFF

Then run the program in slot 3 (assumed to be test.rcx) and begin the “ping-pong”-

process by sending a signal to the RCX.

[fe:d6] > run 4 3
[fe:d6] > (4) > STOP ALL TASKS
[fe:d6] > (4) > SET PROGRAM 3
[fe:d6] > (4) > RUNNING PROGRAM 3
[fe:d6] > signal 4 5
[fe:d6] > (4) > SIGNAL 4
[fe:d6] > (4) > SIGNAL 2

 29

As you can see, the RCX beeps more then once, indicating that it got more than just the
first signal. That is because the module smpl_coord received the signals sent by the RCX
brick and responded to them by sending back a signal of decreased number. Have a look into
the file smpl_coord to see how this was done.

You can now stop the running program and close the console as described before. This
will also terminate the module, since it tries to read from a pipe without writer.

[fe:d6] > stop 4
[fe:d6] > (4) > STOP
[fe:d6] > off 4
[fe:d6] > exit
[fe:d6] > (4) > CLOSE (USER)
[fe:d6] > CLOSING MODULE coord-out
[fe:d6] > CLOSING MODULE coord-in
[fe:d6] > bye bye!
[wehrlil@pc-3631 mindstorms_admin_framework]$

The terminal in which you executed the module script should approximately look like that:

[wehrlil@pc-3631 mindstorms_admin_framework]$./smpl_coord
Node 4 has adress [4d:14]
Node 4 sent command STOP with params ALL TASKS
Node 4 sent command SET with params PROGRAM 3
Node 4 sent command RUNNING with params PROGRAM 3
Node 4 sent command STOP
Node 4 sent command CLOSE with params (USER)
[wehrlil@pc-3631 mindstorms_admin_framework]$

 30

Appendix B: Console Command Reference

I. General commands

help
Usage:

help
help <com>

The help command displays information about a command <com> or lists all known
commands on the console.

list
Usage:

list
The list command lists all connected nodes with their addresses and all connected

modules with their associated nodes to the console.

ping
Usage:

ping <node>
ping all

The ping command sends a ping message to a connected BTnode <node> or to all
connected BTnodes, if the argument all is used.

timeout
Usage:

timeout
timeout <secs>

The timeout command sets the timeout value for the message queues to <secs>
seconds, when used with a parameter, or displays the current timeout value. The default value
is 10 seconds. The timeout of the message queues is the amount of time, that the console
application waits for a reply to a sent message before declaring the message as failed.

exit / quit
Usage:

exit
quit

The exit / quit command closes all connections to modules and nodes and terminates
the console application. exit and quit are synonyms.

close
Usage:

close <node>
close <module>
close all

 31

The close command closes the connection to a node <node> or to a module <module>
or to all connected nodes and modules, if the argument all is used. Closing nodes does not
change the permissions of modules associated with the node.

II. RCX Program Handling

upload
Usage:

upload <node> <file> <slot>
upload all <node> <file> <slot>

The upload command uploads a byte code file <file> to a program slot <slot> of the
node <node> or of all connected nodes, if the argument all is used. Uploading is a complex
task and may require more then a single try.

run
Usage:

run <node> <slot>
run all <slot>

The run command executes the program in slot <slot> of the RCX at node <node> or
of all connected RCX bricks, if the argument all is used.

stop
Usage:

stop <node>
stop all

The stop commands stops the execution of the program currently running on the RCX at
node <node> or on all connected RCX bricks, if the argument all is used.

off
Usage:

off <node>
off all

The off command turns off the RCX brick at node <node> or all RCX bricks, if the
argument all is used. There is no reply to this command.

signal
Usage:

signal <node> <sig>
signal all <sig>

The signal command sends the signal <sig> to the RCX brick at node <node> or to all
connected RCX bricks, if the argument all is used. There is no reply to this command.

broadcast
Usage:

broadcast
broadcast <”on”|”off”>

The broadcast commands turns the automatic signal broadcasting mechanism on or off,
when used with a parameter, or displays the broadcasting settings. When automatic signal
broadcasting is on, the console application will automatically broadcast all incoming signals
to all connected RCX bricks other then the signal’s sender.

 32

III. RCX Information Retrieval

battery
Usage:

battery <node>
battery all

The battery command displays the voltage of the batteries of the RCX brick at node
<node> or of all connected RCX bricks, if the argument all is used.

version
Usage:

version <node>
version all

The version command displays the version of the software of the RCX brick at node
<node> or of all connected RCX bricks, if the argument all is used.

datalog
Usage:

datalog <node>
datalog all

The datalog command displays the datalog of the RCX brick at node <node> or of all
connected RCX bricks, if the argument all is used. For further information on the datalog
mechanism refer to the RCX documentation or to the NQC documentation.

get
Usage:

get <node> <res> <num>
get all <res> <num>

The get command displays the value of the instance <num> of resource <res> of the
RCX brick at node <node> or of all connected RCX bricks, if the argument all is used. The
valid resource specifiers and accepted arguments are:

Resource
Number

Resource Description Valid arguments
(<num>)

0 variables 0-31
1 timers 0-3
3 motor state 0-2
8 currently selected program slot 0
9 formatted sensor value 0-2

10 sensor type 0-2
11 sensor mode 0-2
12 sensor raw value 0-2
13 boolean sensor value 0-2
14 minutes since start of RCX 0
15 last received message 0

 33

IV. RCX Direct Control

beep
Usage:

beep <node> <tune>
beep all <tune>

The beep command plays the tune <tune> at the RCX brick at node <node> or at all
connected RCX bricks, if the argument all is used. The valid tunes are:

Tune Number Tune Description

0 Blip
1 Beep Beep
2 Downward Tones
3 Upward Tones
4 Low Buzz
5 Fast Upward Tones

sensor
Usage:

sensor <node> <num> <arg>
sensor all <num> <arg>

The sensor command changes the settings of the sensor number <num> of the RCX
brick at node <node> or of all connected RCX bricks, if the argument all is used. The
argument <arg> specifies the new type and mode of sensor. Setting the sensor type will also
change its mode. The valid Sensor Arguments are:

Argument Description

clear set current value of to 0
Sensor Type Specifying Arguments

unknown no type set, raw mode
touch touch sensor, bool mode

temperature temperature sensor, celsius mode
light light sensor, percent mode

rotation rotation sensor, angle mode
Sensor Mode Specifying Arguments

raw value in 0..1023
bool either 0 or 1
edge sum of boolean transitions
puls sum of boolean transitions divided by two

percent raw value scaled to 0..100
celsius 1/10ths of a degree, -19.8..69.5

fahrenheit 1/10ths of a degree, -3.6..157.1
angle 1/16ths of a rotation

Example: sensor 4 1 light raw clear will set the type of sensor 1 of the RCX

brick at node 4 to type 'light', mode 'raw' and set its current value to 0.

 34

motor
Usage:

motor <node> <motor> <arg>
motor all <motor> <arg>

The motor command changes the power and direction of the motor outputs <motor> of
the RCX brick at node <node> or at all connected RCX bricks, if the argument all is used.
The argument <motor> is a combination of some or all of the characters ‘a’, ’b’ and ‘c’ in
any order. The valid arguments <arg> are:

Argument Description

on turn motors on
off turn motors off

float allow motors to spin freely
fwd set direction to forward
rev set direction to reverse
flip flip direction

1 - 7 set motor power to specified value

Example: motor 4 ac float 4 flip on will set motors A and C of RCX 4 to float

mode, then set their power to 4, then flip their direction and finally turn them on.

V. Module Handling

list
Usage:

list
The list command lists all connected nodes with their addresses and all connected

modules with their associated nodes to the console.

allow
Usage:

allow <node> <mod>
allow all <mod>

The allow command will, if not already existing, establish a connection to the file or
named pipe <mod> and allow commands read from that connection to affect the RCX brick at
node <node> or all RCX bricks if the argument all is used.

route
Usage:

route <node> <mod>
route all <mod>

The route command will, if not already existing, establish a connection to the file or
named pipe <mod> and forward any information regarding the RCX brick at node <node> to
the connection. If the argument all is used, then all information regarding any of the
connected RCX bricks will be forwarded to the connection. For each newly routed node the
connected module will receive a NODE message like the one the console displays when a
new node has been found.

 35

close
Usage:

close <node>
close <module>
close all

The close command closes the connection to a node <node> or to a module <module>
or to all connected nodes and modules, if the argument all is used. Closing nodes does not
change the permissions of modules associated with the node.

 36

	Introduction
	Task Description
	Approach
	Overview
	Specifications
	System Architecture
	Implementation
	Results
	Conclusions

	Specifications
	LEGO Mindstorms Admin Console System Specifications
	Signals
	RCX Program Management
	External Components

	The BTnode
	The LEGO Mindstorms Robotic Invention System
	The Proof-of-Concept
	Summary

	System Architecture
	Distribution of Functionalities
	The RCX Brick
	The BTnode
	The Console Application

	Communication Path
	BTnode-side Processing
	Console Application-side Processing
	Example: Inquiring the Battery Power

	Interfaces
	Summary

	Implementation
	BTnode Controller
	Connection Management
	BTnode-to-RCX Communication
	RCX-to-BTnode Communication
	Console Communication Management

	Console Application
	Client Management
	Command Handling
	Message Scheduling
	Module Management

	Summary

	Results
	Example of Use
	Stability Issues
	Open Issues
	Summary

	Conclusions
	Overall Conclusions
	Approach
	Outlook

	References
	Appendix A: HOWTOs
	Installation & Configuration HOWTO
	Requirements
	Configuring the Bluetooth device
	Setting up the BTnode
	Starting the Console Application

	Program Control HOWTO
	Module Connection HOWTO

	Appendix B: Console Command Reference
	General commands
	help
	list
	ping
	timeout
	exit / quit
	close

	RCX Program Handling
	upload
	run
	stop
	off
	signal
	broadcast

	RCX Information Retrieval
	battery
	version
	datalog
	get

	RCX Direct Control
	beep
	sensor
	motor

	Module Handling
	list
	allow
	route
	close

