
Ins titut fü r
Tec hnis c he Informatik und

K ommunikations netze

Marco Kuster

Firmware for Reconfigurable Hard-
ware OS Platform

Student Thesis SA-2004-09
October 2003 to December 2003

Supervisor: Herbert Walder
Co-Supervisor: Ch. Plessl, M. Dyer
Professor: Prof. Dr. L.Thiele

Contents

1 Introduction 1
1.1 Reconfigurable Hardware Operatin System 1
1.2 XFBoard Platform . 1
1.3 Conceptual formulation . 2

2 Protocols 3
2.1 Introduction . 3
2.2 Hardware environment . 3

2.2.1 General information . 4
2.2.2 Receive Diagram Example 4
2.2.3 Layers . 4

2.3 Ethernet . 4
2.4 IP . 6
2.5 ICMP . 7
2.6 ARP . 8
2.7 UDP . 9

2.7.1 Checksum calculation . 10
2.8 Examples of a RX and TX buffer 12

3 Concept XFBoard PC Suite 13
3.1 Overview . 13

3.1.1 Purpose . 13
3.1.2 Ideas and basic principles 13

3.2 Main menu or start screen . 14
3.3 Modules and module interface . 15

4 Network Codec 16
4.1 General Information . 16

4.1.1 Included Files . 16
4.2 Functions . 16
4.3 Structures & Variables . 19

4.3.1 More details about structures & variables 21
4.4 How to use & code snippets . 22

4.4.1 Program flow . 26
4.5 XF Boardloader . 27

4.5.1 Functions . 27
4.5.2 Code . 27
4.5.3 Flow Diagram . 30

II

5 PC Programs 31
5.1 Visual UDP . 31
5.2 XFBoardloader . 32

6 Measurements 33

Bibliography 34

III

IV

Chapter 1

Introduction

1.1 Reconfigurable Hardware Operatin System

Reconfigurable systems have a great potential to speed up applications because
of performing calculations in hardware. Thus an increase of performance linked
with the flexibility of a software system make reconfigurable systems very inter-
esting. One important prediction, of course, is the amazingly fast development
of the speed and size of FPGA’s.
The main goal of reconfigurable systems is to use small FPGA’s and load code
and programs on demand from an external memory and the dynamic adminis-
tration of resources. Furthermore an increase of reusability and extensibility of
hardware systems is aimed.

1.2 XFBoard Platform

These reasons have lead to a project called X-Forces at the Computer Engineer-
ing Lab of the Federal Institute of Technology and ended in a prototype board
as a base for a Reconfigurable Hardware Operating System (RHWOS).
What are the goals of this project?
The project is supposed to show the possibilities and present limits of such
RHWOS and to collect experiences in how much overhead they have. The re-
configuration of the used FPGA’s shall get as fast as possible because of the
wish creating a highly flexible and efficient system. Of course acquire knowledge
about hard- and software debugging of these complex systems is another very
important thing to shorten the development cycle.
Picture 1.1 on page 2 shows an abstract overview of such a RHWOS platform.

The idea is that a CPU (C-FPGA) is administrating the resources and the
tasks running on a second FPGA, called R-FPGA. The components (Cn in
the picture) are I/O devices, memory and other subsystems. Actually the tasks
don’t run only on the R-FPGA but on the CPU too. All the administration and
flow steering is running on the CPU while the calculations (i.e. video decoding
algorithms) are executed on the R-FPGA.

1

2 Introduction

Cn

Cn

CnCn

Cn

Cn

CPU
(C-FPGA)

FPGA
(R-FPGA)

Figure 1.1: RWHOS platform

1.3 Conceptual formulation

One of the first steps when possessing such a prototype board is to implement
something like a bootloader for making your life easier. When evaluating the
most important parts of a minimal running OS, the network capabilities have a
very high priority.
Main goals of this student thesis were:
1. Evaluate already existing cores (hardware) and libraries (software) from
Xilinx
2. Create a concept for a PC administration software called XFBoard PC Suite
3. Implement network functionality on the FPGA and test programs on PC
side written in C respectively Visual C++ with MFC
4. Write an easy-to-use program for the PC to configure the R-FPGA via
ethernet

Chapter 2

Protocols

2.1 Introduction

Programming a network transceiver does not mean only being experienced in
a programming language like C, Assembler or VHDL, but also having detailed
knowledge of the different protocols respectively the build up of the different
layers.
For more detailed information about the different protocols go to page www.faqs.org/faqs/
where all RFC’s are available.

2.2 Hardware environment

The firmware based on the hardware environment of the XFBoard, see [1] for
further information. Picture 2.1 on page 3 gives an overview of the network
environment of the XFBoard. My work was implementing the network stuff,
thus there is only the network physical scheme showed.

Intel LXT970A
Ethernet

RESETB
TRSTE
MDDIS
MDIO
MDC
FDE
CFG[2]
MF[5]
COL
CRS

RXD[5]
RX_CLK
RX_DV
RX_ER

TX_EN
TXD[5]
TX_CLK

C-FPGA
VirtexII

GPIO2xD<0>
GPIO2xD<1>
GPIO2xD<2>
GPIO2xD<3>
GPIO2xD<4>
GPIO2xD<5>

GPIO2xD<6,7>
GPIO2xD<8>..<12>

PHYCOLxS
PHYCRSxS

PHYRxD<0>..<4>
PHYRXCLKxD

PHYDVxS
PHYRXERxS

PHYTXxE
PHYTxD<0>..<4>

PHYTXCLKxC

PHYTPOP
TPON

TPIP
TPIN

transmission line

Figure 2.1: Physical Scheme

3

http://www.faqs.org/faqs/

4 Protocols

2.2.1 General information

Pay attention to the fact that the transmit and receive buffer need to be
filled/read in big-endian order!
All byte offsets in the pictures in this chapter are relative to the beginning of
the TX respectively RX buffer!

2.2.2 Receive Diagram Example

The Intel LXT970A Ethernet receives the bytes in little-endian order. Notice
that first the lower nibble and after the higher nibble arrives. (picture 2.2 on
page 4)

RX_CLK

RX_DV

RX_D[0:4] Low N High N Low N High N Low N High N Low N High N

1 byte 1 byte 1 byte 1 byte

Figure 2.2: Receive Diagram Example

2.2.3 Layers

A short overview of the different protocols and their build up in five layers. This
model does not correspond to the OSI layer model, but a simpler form of it. The
figure 2.3 on page 5 should be easy to understand without any accompanying
text explanations.

2.3 Ethernet

The lowest level protocol you will get in contact with is the ethernet protocol
(see IEEE 802.3 for details). See picture 2.4 on page 5 for the exact size of the
several parts.
The destination and the source address are MAC addresses, which is short for
Media Access Control address, a hardware address that uniquely identifies each
node of a network. An example for a MAC address is 00:01:02:90:F1:97. This
address is worldwide unique and is built of the maufactures code. Further infor-
mation about the ethernet standard you will find on page grouper.ieee.org/groups/802/3/
from IEEE.

Fields

Destination Address (6 bytes): MAC address of the destination node or NIC.

Source Address (6 bytes): MAC address of the source node or NIC.

http://grouper.ieee.org/groups/802/3/

2.3 Ethernet 5

P
hy

si
ca

l
La

ye
r

D
at

aL
in

k
La

ye
r

N
et

w
or

k
La

ye
r

Tr
an

sp
or

t
La

ye
r

A
pp

lic
at

io
n

La
ye

r

transmission line

hardware control

ICMP IP IGMP

TCP UDP

FTP WWWTelnet

ARP BootP

Figure 2.3: Network Layers

Type/Length Field (2 bytes): in the network codec it is only used as a type
field. Value 0x0600 indicates that the field is a type field and is the standard
value for an ethernet packet. Value 0x0806 indicates that the packet is of type
ARP.

6 6 2 0 - 1500 4

Des
tin

ati
on

Add
res

s
Sou

rce

Add
res

s
Ty

pe
/

Le
ng

th Data
CRC

size in bytes

0 6 12 14byte offset

Figure 2.4: Ethernet protocol

6 Protocols

2.4 IP

This section shows the basic build up of an IP packet header

Fields

Version (4 bit): Used version of the IP protocol, mostly 4.
HLEN (4 bit): Length of the header in DWORD’s.
Service Type (8 bit): Priority of a packet and way of transmission (Type of Ser-
vice).
Total Length (16 bit): Total Length of the whole IP packet.
Identification (16 bit): A value of the sender which helps to identificate the several
fragments of a packet (This field is not used in the network codec of the XF Board).
Flags (3 bit): Actually only two of the three bit’s are used. They refer to the frag-
mentation of the packet (This field is not used in the network codec of the XF Board).
Fragment Offset (13 bit): Byte offset to the beginning of the data of a packet.
Time To Live (8 bit): Live counter of a packet. Will be decreased every time a
packet is passing a router. If 0, packet will terminated.
Protocol (8 bit): Describes the type of the packet. 1=ICMP, 2=IGMP, 3=GGP,
6=TCP, 8=EGP, 17=UDP
Header Checksum (16 bit): Checksum over the IP header to guarantee the au-
thenticity of the packet.
Source IP Address (32 bit): IP address of the sender.
Destination IP Address (32 bit): IP address of the destination.
Options (variable): IP options, if needed at all (This field is not used in the network
codec of the XF Board).
Padding (n*8 bit): If options are used and they don’t finish at a DWORD border.

16 32

Des
tin

ati
on

Add
res

s
Sou

rce

Add
res

s

size in bit

IP header = 20 bytes

32

Hea
de

r

Che
ck

su
m

8

Prot
oc

ol

8

Tim
e T

o L
ive

13

Frag
men

t O
ffs

et

3

Flag
s

16

Ide
nti

fic
ati

on

16

To
tal

 Le
ng

th

8

Serv
ice

 Ty
pe

4

HLE
N

4

Vers
ion

14 15 16 18 20 22 23 24 26 30 34byte offset

Figure 2.5: IP protocol

2.5 ICMP 7

2.5 ICMP

ICMP is short for Internet Control Message Protocol and as the name implies
it is only for control functions used and not for data transport.

Fields

Type (8 bit): Identifies the message. Look up the meanings of the different values
directly in the [2]RFC 792, because only the Echo Request and the Echo Reply are
important for us.
Values: 0=Echo Reply, 3=Destination unreachable, 4=Source Quench, 5=Redirect,
8=Echo Request, 9=Router Advertisement, 10=Router Solicitation, 11=Time Exceeded,
12=Parameter Problem, 13=Timestamp, 14=Timestamp reply, 15=Information Re-
quest, 16=Information Reply, 17=Address Mask Request, 18=Address Mask Reply
Code (8 bit): Acts as a sub-code of the type field. The values are all listed, but only
the value 0 will be used when doing a ’ping’.
Values: 0=Net unreachable, 1=Host unreachable, 2=Protocol unreachable, 3=Port
unreachable, 4=Fragmentation needed and don’t fragment was set, 5=Source route
failed, 6=Destination network unknown, 7=Destination host unknown, 8=Source host
isolated, 9=Communication with destination network is administratively prohibited,
10=Communication with destination host is administratively prohibited, 11=Destina-
tion network unreachable for Type of Service, 12=Destination host unreachable for
Type of Service
Checksum (16 bit): Checksum of the whole ICMP packet.

size in bit

Che
ck

su
m

8

Cod
e

8

Ty
pe

16

34byte offset 35 36 38

Figure 2.6: ICMP protocol

8 Protocols

Header IP Packet Attachment

IP Header

IP Packet

Type Code

ICMP packet

20 bytes 4 bytes

1 bytes

transmission medium: ethernet

ICMP data

Checksum
1 bytes 2 bytes

Figure 2.7: ICMP encapsulation

2.6 ARP

The description of the fields and lengths are only valid for ethernet and IP pro-
tocol as we use. For any other combinations values may change.

Fields

Hardware Address Space (16 bit): The type of hardware address, 0x0001 stands
for ethernet addresses.
Protocol Address Space (16 bit): The type of protocol address, 0x0800 stands for
IP addresses.
Length of Hardware Address (8 bit): Number of bytes of the physical address
(=6 bytes for MAC addresses).
Length of Protocol Address (8 bit): Number of bytes of the protocol address (=4
bytes for IP addresses).
Command (16 bit): Code which specifies the ARP message: ARP REQUEST=1
(question), ARP REPLY=2 (answer)
Sender Hardware Address (48 bit): Physical address of the sender.
Sender Protocol Address (32 bit): Protocol address of the sender.
Target Hardware Address (48 bit): Physical address of the target.
Target Protocol Address (32 bit): Protocol address of the target.

2.7 UDP 9

32 32size in bit 48

Ta
rge

t P
rot

oc
ol

Add
res

s

48

Ta
rge

t H
ard

ware

Add
res

s

168

Sen
de

r H
ard

ware

Add
res

s

8

Com
man

d

16

Prot
oc

ol
Add

res
s L

en
gth

16

Hard
ware

 Add
res

s L
en

gth

Prot
oc

ol
Add

res
s S

pa
ce

Hard
ware

 Add
res

s S
pa

ce

Sen
de

r P
rot

oc
ol

Add
res

s

14byte offset 16 18 19 20 22 28 32 38 42

Figure 2.8: ARP protocol

Header ARP Packet Attachment

28 bytes (for ethernet and IP only)

transmission medium: ethernet

ARP Data

Figure 2.9: ARP encapsulation

2.7 UDP

The format of the UDP packet is quite simple and easy to understand. The
UDP packets are the base for sending data from a PC to the XFBoard. TCP
is more popular in the internet because it is much more secure referred to the
packet loss. UDP has no packet control mechanism, but on the other side it
is faster than TCP. After reflecting these facts we decided to implement UDP,
because there is no need to send packets over a couple of routers, but only a
back-to-back solution.

Fields

Source Port (16 bit): Port from which the packet was sent.
Destination Port (16 bit): Port to which the packet is sent.
Datagram Length (16 bit): The length of the whole packet, header & data.
Checksum (16 bit): Checksum over a pseudo header, the right header and the data.
Data (up to 65’527 bytes): User data.

10 Protocols

size in bit 0 - 65'527 bytes16161616

Data
gra

m Le
ng

th

Des
tin

ati
on

 P
ort

Sou
rce

 P
ort

Che
ck

su
m

Data

34byte offset 36 38 40 42

Figure 2.10: UDP protocol

The next picture 2.11 on page 10 shows the encapsulation of a UDP packet

Header IP Packet Attachment

IP Header UDP Header UDP Data

IP Packet

UDP Header UDP Data

UDP Datagram

Application Data

User defined structure

20 bytes 8 bytes up to 65'527 bytes

8 bytes

transmission medium: ethernet

Figure 2.11: UDP encapsulation

2.7.1 Checksum calculation

Something special about the checksum calculation of a UDP packet is, that
you don’t have to calculate it over the whole packet but first insert a pseudo
header as well at the beginning of the packet and calculate then the checksum
over pseudo header, header and data. After the calculation remove the pseudo

2.7 UDP 11

header and send only the header and the data!
Picture 2.12 on page 11 shows the build up of the pseudo header.

Zero

Des
tin

ati
on

 IP

ad
dre

ss
Prot

oc
ol

UDP le
ng

th

size in bit 3232

Sou
rce

 IP

ad
dre

ss

0 4 8 9 10

8 8 16

12

Figure 2.12: UDP pseudoheader

12 Protocols

2.8 Examples of a RX and TX buffer

These two pictures are thought to show a developer how the transmit (TX) and
receive (RX) buffer have to filled in.

RX buffer
- the software monitors the receive Status bit (’S’ in the control byte) until it is
set to ’1’ by Ethernet Lite
- once the Status is set to ’1’, the software reads the entire receive data out of
the dual port memory
- the software writes a ’0’ to the receive Status bit enabling the Ethernet Lite
to resume receive processing
TX buffer

- the software stores the transmit data in the dual port memory starting at
address offset ’0x0’
- the software writes the length data in the dual port memory at address offset
’0x1FF4’ and offset ’0x1FF8’
- the software writes a ’1’ to the Status bit (bit 7 at address offset ’0x1FFC’)
- the software monitors the Status bit and waits until it is set to ’0’ by the
Ethernet Lite before initiating another transmit

’Software’ in the text above means the network codec described in chapter 4

Figure 2.13: RX buffer example

Figure 2.14: TX buffer example

Chapter 3

Concept XFBoard PC Suite

3.1 Overview

3.1.1 Purpose

Administration and installation tool for the XFBoard, executed on a PC which
is connected to the XFBoard.

3.1.2 Ideas and basic principles

1. Use and handling have to be as simple as possible with the necessary func-
tionality.
2. Modular structure - new parts can easily added to the already existing main
part.
3. Programmed in Visual C++ with MFC.

13

14 Concept XFBoard PC Suite

3.2 Main menu or start screen

- PC Suite

test text test text test text test text test text test text test text test text
test text test text test text test text test text test text test text test text
test text test text test text test text test text test text test text test text
test text test text test text test text test text test text test text test text
test text test text test text test text test text test text test text test text
test text test text test text test text test text test text test text test text
test text test text test text test text test text test text test text test text
test text test text test text test text

Begin testbench...

Figure 3.1: PC Suite main menu

The main menu is divided into two parts:
Left: Some kind of Icon- or Buttonview list to see all the different possibilities
and modules at a glance.
Right: When an Icon/Button is pressed on the left side, all information and
settings for this module will showed on the right side. A button is the link
to a dialog of the module where the user can execute testbenches, download
bitstreams, control FIFO buffers, memory dumps and many more.

3.3 Modules and module interface 15

3.3 Modules and module interface

User - Interface
=> Main menu / GUI main module

module interface

M M MM . . . modules

general functions which
are a base of the modules F F

Figure 3.2: Vertical structure of the PC Suite

As showed in picture 3.2 on page 15 there is a module interface layer below
the GUI layer. The purpose of this layer is to feature an interface between the
modules and the main program/GUI. The bottom layer is built of functions and
objects which can be used of all the different modules so that every function
only once has to be written.
For the implementation there are two possibilities:
1. The several modules are realised as dll’s
- modules are copied in a directory of the main program, recognised when start-
ing next time the main program and added to the Iconview automatically
- thus the modules have to be dialog based windows and a certain specification
for the graphical user interface of these dialogs must exist

2. All object/classes and the whole framework are already realised and ready
to be enhanced and added
- the code of a new module only has to inserted at the right place
- proper naming conventions and specifications of the interfaces have to be given
- whenever a module is added, a completely new compilation of the whole project
is necessary
- the GUI is for all the modules exactly the same

Chapter 4

Network Codec

4.1 General Information

The following functions described in this documentation provide some basic
network functionality such as Ping Reply, ARP Reply, ARP Request and sending
UDP packets. This short documentation shows how they work and how they
can be used.

4.1.1 Included Files

These files need to be copied in your data directory of your Xilinx Project Studio
project:

network.c, network.h, network_functions.c, arp.c

Perhaps you want to have an example file for using the network code, so copy
then the

system.c

file in your directory too.

4.2 Functions

List of functions and their use

void Init()
Initialises the IP and MAC address of the XF Board and some other used variables.
Furthermore the mode of the ethernet chip will be set (i.e. 10Mbit full-duplex mode).

void PacketAnalyser()
Does what you expect of its name, analysing a packet of which type it is. Following
types can be determined: ARP, ICMP, IGMP, GGP, TCP, EGP, UDP, DHCP. But
only for ARP, ICMP and UDP exist methods to process the according packets. Fortu-
nately you don’t have to care about any ARP or ping replies, just focus on processing
the UDP data stored in the ReceivedUDPData struct.

void PingReply(Xuint32* ptrICMPPacket)
Sends back a ping reply to an incoming ping request. The argument pointer points at

16

4.2 Functions 17

the first byte of the ICMP header.

UDP functions

void RecvUDP(Xuint32* ptrUDPPacket)
Expects a pointer to the beginning of the IP Header. It reads then out the important
information of the UDP packet and writes them in a struct called ReceivedUDPPacket-
Info and for further use in other programs ReceivedUDPData. All structs are described
in another section.

Xboolean UDPReply(Xuint16 DestinationPort, Xuint32* ptrDataBuffer)
Expects that the board already has received a UDP packet and sends back a UDP
packet to the destination which informations about are found in the ReceivedPacket-
Info struct.

Xboolean SendUDPTo(Xuint8 bytDestinationIP[4], Xuint8 bytDestination-
MAC[6], Xuint16 intDestinationPort, Xuint8* ptrDataBuffer, Xuint16 DataL-
ength)
Sends a UDP packet IP, MAC address and the wished port.
lngDestinationAddress[4] array of bytes which holds IP address, bytDestinationMAC[6]
array of bytes representing the MAC address, DestinationPort to which port has the
data to be sent, ptrDataBuffer a byte-pointer to the data you want to send, Buffer-
Length length of the data buffer. The function returns XTRUE if it succeeds to send
the data, XFALSE if it fails.

Xboolean SendUDP(Xuint8 bytDestinationIP[4], Xuint16 intDestination-
Port, Xuint8* ptrDataBuffer, Xuint16 DataLength)
The third of these UDP sending functions is thought to make life easier for applica-
tions. It’s the same function as SendUDPTo() but you don’t have to know the MAC
address of the destination. Resolving the MAC address will be executed by an ARP
request mechanism and then saved in an ARP table. (array ARPTable)

ARP functions

Unfortunately the SendARPRequest() and the UpdateARPTable() functions
couldn’t be tested enough, their still in evaluation mode. Thus you should prefer
SendUDPTo() and UDPReply() to the SendUDP() function, which needs the
ARP Request mechanism.

void ARPReply(Xuint32* ptrARPData)
Replies an ARP request. Normally you won’t get in contact with this function because
it has no use for other applications or drivers. For completeness: ptrARPData has to
be a pointer to the received ARP data buffer and the function will then process the
data and send back the answer.

void SendARPRequest(Xuint8* IPAddress)
When an application uses SendUDP() and the destination has no entry in the ARP
table, SendUDP() will call SendARPRequest() first before sending. Because of the
non-blocking feature a flag is set (bolAwaitingARPReply = XTRUE) and the function
is left to wait for an ARP reply or to process some other packets first.

void UpdateARPTable(Xuint32* ptrAddress)
After arriving and detecting an ARP reply, UpdateARPTable() is called to extract all
information out of the buffer which ptrAddress points to.

Checksum calculations

18 Network Codec

IP Checksum definition: The IP checksum is the 16 bit 1’s complement of
the 1’s complement sum of all 16 bit words in the header (or even of the whole
packet for UDP). The 1’s complement sum is done by summing the numbers
and adding the carry (or carries) to the result.
As shown in RFC 1071, the checksum calculation is done in the following way:
1. Adjacent octets to be checksummed are paired to form 16-bit integers, and
the 1’s complement sum of these 16-bit integers is formed.
2. To generate a checksum, the checksum field itself is cleared, the 16-bit 1’s
complement sum is computed over the octets concerned, and the 1’s comple-
ment of this sum is placed in the checksum field.
3. To check a checksum, the 1’s complement sum is computed over the same
set of octets, including the checksum field. If the result is all 1 bits (-0 in 1’s
complement arithmetic), the check succeeds.

Example
Packet
00 00 5E 00 FA CE A9 B8 00 00
(00 00 at the end is the checksum field)
Form the 16-bit words
0000 5E00 FACE A9B8
Calculate 2’s complement sum
0000 + 5E00 + FACE + A9B8 = 0002 0286 (store the sum in a 32-bit word)
Add the carries (0002) to get the 16-bit 1’s complement sum
0286 + 002 = 0288
Calculate 1’s complement of the 1’s complement sum
0288 = FD77
We send the packet including the checksum FD 77
01 00 F2 03 F4 F5 F6 F7 FD 77
At the receiving
0000 + 5E00 + FACE + A9B8 + FD77 = 0002 FFFD
FFFD + 0002 = FFFF → which checks OK

Xuint16 calc chksum(Xuint8* buf, int len) and
Xuint16 calc checksum32(Xuint32* buf, Xuint16 len)
Actually identical functions, the only difference is the buffer pointer. It is needed only
as supporting act. The calculation of the IP header checksum is the job these functions
have to do, returning a 16bit value of the checksum.

Xuint16 calc UDPchecksum(Xuint32* buf, Xuint16* PseudoHeader, Xuint16
DataLength)
The checksum calculation of a UDP packet is more special, because we need additional
information, the pseudo header. Thus there is a third argument to give the function.

Ethernet chip settings

The following six functions are used for setting the right values of the ethernet
chip on the board, i.e. speed or duplex mode. Read the datasheet of the Intel
LXT970A for further informations on these values and the different registers.

void WriteMDIO(Xuint8 argReg, Xuint16 argValue)
Writes the value argValue into the argument register argValue.

Xuint16 ReadMDIO(Xuint8 reg)
Reads out the argument register and returns the value as a short.

void DoMDIOClk()

4.3 Structures & Variables 19

Creates one clock period on the MDC (clock line), basically used after a SetMDIO()
call.

void SetMDIO(Xboolean bit)
Writes a ’high’ (=XTRUE) or a ’low’ (=XFALSE) out on the MDIO (data line).

void SetEthernetMode()
Calls all needed functions to set the 10Mbit full duplex mode. Called from the Init()
function.

void SetAutoNegotiationMode()
Calls all needed functions to set the auto-negotiation mode. The auto-negotiation
mode choose the right speed and all other values by communicating and exchanging
’skills’ with the other NIC (in the back-to-back installation). Called from the Init()
function.

4.3 Structures & Variables

To get an overview of the common used variables and typedefined structures,
here is the complete network.h file, including the comments and after the listing
some hopefully useful explanations.

network.h
#ifndef NETWORK
#define NETWORK

#include ”xuartlite l .h”
#include ”xgpio l .h”
#include ”xbasic types .h”
#include ”xio .h”
#include ”xparameters.h”

//different modes
//#define BENCHMARK
#define NORMALUDP
//#define DEBUGMODE

#define TXBASEADDRXPAROPBETHERNETLITE0BASEADDR
#define RXBASEADDRXPAROPBETHERNETLITE0BASEADDR+0x2000
//address of receive flag
#define RXCTLADDRXPAROPBETHERNETLITE0BASEADDR+0x3FFC

#define TXLENADDRTXBASEADDR+0x1FF4
#define TXLENADDRHIGHERTXBASEADDR+0x1FF4
//address of transmit flag
#define TXCTLADDRTXBASEADDR+0x1FFC

#define XFBoard CommandPort 0x22B8 //not used yet
#define XFBoard DataPort 0x22B9 //not used yet
#define XFBoard UDPPort 0x22 //Port 34 is free
#define PCSOURCEPORT 0xF0CE //Port 61646

typedef struct {
Xboolean bolARPRequest; // i f a request has been detected
Xboolean bolARPReply; //true i f board has to reply
Xboolean bolDHCPPacket;

20 Network Codec

Xboolean bolDHCPReply; //true i f board has to reply
Xboolean bolICMPPacket;
Xboolean bolICMPReply; //true i f board has to reply
Xboolean bolUDPPacket;

} PacketDecisionStruct ;

typedef struct {
Xuint8 bytMACAddress[6] ; //for saving the source address
Xuint8 bytIPHeader[20] ; //for saving the IP header
Xuint8 bytIPAddress [4] ; //address of source

} XPacketInfo ; //header of a packet

typedef struct {
Xboolean bolDataAvailable ; //XTRUE i f data is stored
Xuint16 intSourcePort ;
Xuint32 ∗ptrData;
Xuint16 intDataLength; //only the length of the data
Xuint16 volatile intDestinationPort ;

} XPacketData; //holds data of UDP packets

typedef struct {
Xboolean bolDataAvailable ;
Xuint16 intSourcePort ;
Xuint8 ∗ptrData;
Xuint16 intDataLength;
Xuint16 volatile intDestinationPort ;

} XPacketData8; //same struct as above
//but with byte pointer to data

typedef struct {
Xuint8 bytProtocolAddress [4] ;
Xuint8 bytHardwareAddress[6] ;

} ARPEntry; //a MAC address for the IP address

//−−−−−−−−−−−−−−−−−
//general variables
//−−−−−−−−−−−−−−−−−
// 32bit pointers to the receive & transmit buffers
// ptrRXDest−> Ethernet destination address
// ptrRXSource−> Ethernet source address
// ptrRXType−> Type field , 0x0800=ethernet packet , 0x0806=ARP packet
// ptrRXData−> Data, normally begin of IP header
extern Xuint32 ∗ptrRXDest, ∗ptrRXSource, ∗ptrRXType, ∗ptrRXData;
extern Xuint32 ∗ptrTXDest, ∗ptrTXSource, ∗ptrTXType, ∗ptrTXData;
extern Xuint8 MACBoardAddress[6] ; //the board ’s own MAC address
extern Xuint8 IPBoardAddress [4] ; //the board ’s own IP address
extern Xuint8 BenchBuf[264]; //only for benchmarks
extern Xuint32 ∗ptrBenchBuf; //only for benchmarks
extern Xuint32 volatile ∗rxflag ; //pointer to receive flag
extern ARPEntry ARPTable[5] ; //the XFBoard’s own ARP table
extern Xuint8 bytNumberOfARPEntries;
extern Xboolean bolAwaitingARPReply; //indicates whether the board

//is waiting for a reply
extern Xboolean bolAwaitingICMPReply;
// for storing a packet while waiting for an ARP reply
extern XPacketInfo QueuePacketInfo;
extern XPacketData8 QueuePacketData;
extern Xuint8 tempBuffer[1400];
// different packet storing structures
extern XPacketInfo ReceivedPacketInfo ;
extern PacketDecisionStruct DecisionInfo ;
extern XPacketData ReceivedUDPData;

4.3 Structures & Variables 21

//functions
extern void Init () ;
extern void PacketAnalyser() ;
extern void PingReply(Xuint32∗ ptrICMPPacket) ;

extern void ARPReply(Xuint32∗ ptrARPData) ;
extern void SendARPRequest(Xuint8∗ IPAddress) ;
extern void UpdateARPTable(Xuint32∗ ptrAddress) ;

extern Xuint16 calc chksum(Xuint8∗ buf , int len) ;
extern Xuint16 calc checksum32(Xuint32∗ buf , Xuint16 len) ;
extern Xuint16 calc UDPchecksum(Xuint32∗ buf , Xuint16∗ PseudoHeader, Xuint16

DataLength) ;

extern void RecvUDP(Xuint32∗ ptrUDPPacket) ;
extern Xboolean UDPReply(Xuint16 DestinationPort , Xuint32∗ ptrDataBuffer) ;
extern Xboolean SendUDPTo(Xuint8 bytDestinationIP[4] , Xuint8 bytDestinationMAC[6] ,

Xuint16 intDestinationPort , Xuint8∗ ptrDataBuffer , Xuint16 DataLength) ;
extern Xboolean SendUDP(Xuint8 bytDestinationIP[4] , Xuint16 intDestinationPort ,

Xuint8∗ ptrDataBuffer , Xuint16 DataLength) ;

extern void WriteMDIO(Xuint8 argReg, Xuint16 argValue) ;
extern Xuint16 ReadMDIO(Xuint8 reg) ;
extern void DoMDIOClk() ;
extern void SetMDIO(Xboolean bit) ;
extern void SetEthernetMode() ;
extern void SetAutoNegotiationMode() ;

#endif

4.3.1 More details about structures & variables

PacketDecisionStruct is used to store whether you would prefer to let Pack-
etAnalyser() reply the ARP and ICMP requests automatically or not. Default
is XTRUE for all booleans.
XPacketInfo contains all the header information of the arrived and already
processed packet.
XPacketData is useful if you have a program which is based on the support
of UDP sending/receiving.
ARPTable[5] is the board own 5-entry ARP table.
MACBoardAddress[6] is the array which is filled with the default address in
the Init() function.
IPBoardAddress[4] is the array of the board’s IP address, initialised in Init()
too.
QueuePacketInfo & QueuePacketData are only used when SendUDP()
wants to send a packet to an unknown destination. Then it will send first an
ARP request and saves in the meantime the values into these ’Queue’ structs.

22 Network Codec

4.4 How to use & code snippets

After all the useful theory now a short example how to use the ’library’ and an
overview of the program flow for a better understanding of the operation mode.
There are two example system.c files placed in this document to show how to
integrate functions or programs in the program flow. The PacketAnalyser()
function responds to ARP and ICMP requests, you only have to care about the
UDP packets stored in the ReceivedUDPData struct.

Normal version
There are three different modes to choose among: a normal mode, the debug
mode and a benchmark mode.
Normal mode: just sends back the received UDP packet.
Debug mode: sends back the received UDP packet and prints out some packet
info.
Benchmark mode: After receiving one UDP packet, sending UDP packets to
origin breakless.

system.c
#include ”network.h”
#include ”xuartlite l .h”
#include ”xgpio l .h”
#include ”xbasic types .h”
#include ”xio .h”
#include ”xparameters.h”

//−−
// A system.c f i l e to show how to handle the network functions
// contained in the other c−f i l e s .
//
// Last updatet: 1.12.03
//
// Author: Marco Kuster
// Reason: Student Thesis − Firmware HWOS
//−−

//Xboolean bolBenchmarkStop;

// system is set to ’normal ’ mode
#ifdef NORMALUDP
//−−−
// function main
//−−−
int main(){

Xuint32 i , j ;
Xuint8 IPAddress[4] ,MACAddress[6] , UDPData[20] ;
Xuint16 UDPDataLength;

xil printf (”\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n
\r\n”) ;

xil printf (”Ethernet Package XFBoard ready . . .\ r\n”) ;
xil printf (”>\r\n”) ;

// init ia l i se network environment
Init () ;

4.4 How to use & code snippets 23

//to this address we want to send a UDP
IPAddress[0] = 0xA9; IPAddress[1] = 0xFE; IPAddress[2] = 0x2D; IPAddress[3] = 0

x31;
MACAddress[0] = 0x00; MACAddress[1] = 0x01; MACAddress[2] = 0x02; MACAddress

[3] = 0x90;
MACAddress[4] = 0xF1; MACAddress[5] = 0x97;

strcpy(UDPData, ”Hello world!\n”) ;

// polling mode
while(1) {

//do nothing when nothing arrives
while(∗rxflag==0);

//analyse the new packet
PacketAnalyser() ;

//an example what to do with the extracted UDP packet data
i f (ReceivedUDPData.bolDataAvailable ==XTRUE) {

//
// do now whatever you would like to do with your data
//

UDPReply(ReceivedUDPData. intSourcePort , ReceivedUDPData.ptrData) ;

#ifdef DEBUGMODE
xil printf (”\r\n UDP: Sourceport=”) ;
xil printf (” %X” , ReceivedUDPData. intSourcePort) ;
xil printf (” UDP: Destport=”) ;
xil printf (” %X” , ReceivedUDPData. intDestinationPort) ;
xil printf (” UDP: Length=”) ;
xil printf (” %X” , ReceivedUDPData.intDataLength) ;
xil printf (” Data=”) ;
for (i=0;i<ReceivedUDPData.intDataLength; i++) {

xil printf (”%c” , ∗(ReceivedUDPData.ptrData+i)) ;
}

#endif

//data processed
ReceivedUDPData.bolDataAvailable = XFALSE;

}
// new data can be read out now
∗rxflag=0;

}

return 0;
}//end of main()
//−−−

#endif

// the benchmark mode is chosen
#ifdef BENCHMARK

int main() {

Xuint32 i , lngCounter;
Xboolean bolBenchmarkModeEnabled;

24 Network Codec

Xuint8 BenchBuf[58] ;
Xuint32 ∗ptrBenchBuf;

BenchBuf[58] = ”abcdefghijklmnopqrstvwabcdefghijklmnopqrstvwabcdefghijklm”;
∗ptrBenchBuf = (Xuint32∗)BenchBuf;

for (i=0;i<58;i++) {
∗(ptrBenchBuf+i) = BenchBuf[i] ;

}

//flag=(Xuint32∗)(RXCTLADDR) ; //flag set when packet arrived
//∗flag=0;

xil printf (”\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n
\r\n”) ;

xil printf (”Ethernet Package XFBoard ready . . .\ r\n”) ;
xil printf (”In benchmark mode\r\n”) ;
xil printf (”>\r\n”) ;

// init ia l i se network environment
Init () ;

while (!ReceivedUDPData.bolDataAvailable) {
while(∗rxflag==0);
//xil printf (”Packet received . . .\ r\n”) ;
PacketAnalyser() ;
∗rxflag=0;

}

//send UDP packets without breaks
while(1) {

SendUDP(ReceivedPacketInfo .bytIPAddress, ReceivedUDPData. intSourcePort ,
ReceivedUDPData.ptrData, ReceivedUDPData.intDataLength) ;

}

return 0;
}//end of main()
//−−−

#endif

Minimal version
The second system listing is a minimal version. The places where you have to
put your code or functions in are marked with a comment /**** ... ****.

system-minimal.c
#include ”network.h”
#include ”xuartlite l .h”
#include ”xgpio l .h”
#include ”xbasic types .h”
#include ”xio .h”
#include ”xparameters.h”

//−−
// A system.c f i l e with network functionality and minimal code
//
// Last updatet: 10.12.03
//
// Author: Marco Kuster

4.4 How to use & code snippets 25

// Reason: Student Thesis − Firmware HWOS
//−−

//−−−
// function main
//−−−
int main(){

//Xuint32 i , j ;
Xuint8 IPAddress[4] ,MACAddress[6] , UDPData[20] ;
Xuint16 UDPDataLength;

xil printf (”\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n
\r\n”) ;

xil printf (”Ethernet Package XFBoard ready . . .\ r\n”) ;
xil printf (”>\r\n”) ;

// init ia l i se network environment
Init () ;

//to this address we want to send a UDP
//∗∗∗∗ f i l l in here your own addresses and data ∗∗∗∗

IPAddress[0] = 0xA9; IPAddress[1] = 0xFE; IPAddress[2] = 0x2D; IPAddress[3] = 0
x31;

MACAddress[0] = 0x00; MACAddress[1] = 0x01; MACAddress[2] = 0x02; MACAddress
[3] = 0x90;

MACAddress[4] = 0xF1; MACAddress[5] = 0x97;

strcpy(UDPData, ”Hello world!\n”) ;

// polling mode
while(1) {

//do nothing when nothing arrives
while(∗rxflag==0);

//analyse the new packet
PacketAnalyser() ;

//∗∗∗∗ either write your code down here.. ∗∗∗∗

//arrived packet is a UDP packet
i f (ReceivedUDPData.bolDataAvailable ==XTRUE) {

//
// ∗∗∗∗ ..or when processing UDP data , here ∗∗∗∗
//

//just send back the data to the origin
UDPReply(ReceivedUDPData. intSourcePort , ReceivedUDPData.ptrData) ;

//data processed
ReceivedUDPData.bolDataAvailable = XFALSE;

}
// new data can be read out now
∗rxflag=0;

}

return 0;
}//end of main()

26 Network Codec

//−−−

’Where to put my code?’ may be your question after reading the listing. As the
Ethernet Lite Core from Xilinx doesn’t throw interrupts you have to poll the
input queue. Thus you have to wait first for arriving packets. As soon as the
pointer *rxflag is set to 1, the function PacketAnalyser() is called to process
the packet and response to it atuomatically, respectively fill in the UDP packet
structure ReceivedUDPData.
And now it’s your turn to fill in the code! When in benchmark mode in the
system.c listing, the data of the UDP packet is given out on the RS232 interface.

4.4.1 Program flow

The last part of this section consists of a drawing (picture 4.1 on page 26)of the
program flow for better understanding and illustration of the functionality.

schematic overview of the network functionality layer

network
layer

polling
for data

automatic
ARP + ICMP reply

extern
program

RecvUDP()

SendUDP()

polling slope

awaiting ethernet
packets

does it have to be
processed?

data now available
for program

execute code, let the
program do its job ...

is there any
data to send?

sending data

get pointer to data,
do the rest

sending
procedure

no

no

yes

yes

your functions

process it,
write data into a buffer
or reply (ARP, ICMP)

after
replying

Figure 4.1: Functionality Scheme

4.5 XF Boardloader 27

4.5 XF Boardloader

In addition to the basic functions, the code of the bitstream loader is mentioned
and integrated in this chapter as well. The network functions are exactly the
same only the system.c was rewritten and adapted for this special job. More
about the PC program for downloading the bitstream you find in chapter 5.

4.5.1 Functions

List of special functions for the programming of the R-FPGA and their use

Xboolean Prepare2SendFull()

Sets up a download connection over the SelectMap Port from C-FPGA to R-FPGA.

As soon as the function gets the ’Init’ bti from the R-FPGA, the download of a full

configuration bitstream file can be started.

Xboolean Prepare2SendPartial()

Same function as Prepare2SendFull(), but for partial bitstream configuration files.

Xboolean PrepareFinishSequence()

After having sent the last bit the program has to wait for the ’done’ bit returned by

the R-FPGA when setting up all connections was successful.

SendBitstream(Xuint32 *argData, Xuint16 LenData)

Sends LenData bytes to the R-FPGA, the data starts at argData.

void WriteByte(Xuint8 argByte)

Writes one byte to the R-FPGA.

All the other functions in the system.c file, which are used for setting signals on
the SelectMap Port, are self-explaining.

4.5.2 Code

system-xfloader.c
while(1) {

while(∗rxflag==0);

//analyse the new packet
PacketAnalyser() ;

// i f it is a UDP packet , enter the condition
i f (ReceivedUDPData.bolDataAvailable ==XTRUE) {

//is already a download running?
i f (!bolBitstreamToDownload) {

// i f not , continue here
//is it an initial is ing packet for a data transfer to the FPGA?
//compare with ’Full ’
i f (∗(ReceivedUDPData.ptrData) == 0x46&&

∗(ReceivedUDPData.ptrData+1) == 0x75&&
∗(ReceivedUDPData.ptrData+2) == 0x6C&&
∗(ReceivedUDPData.ptrData+3) == 0x6C)
{

28 Network Codec

//=> fu l l configuration
//now we’re ready to init ia l i se the interface to the R−FPGA
i f (Prepare2SendFull()) {

xil printf (”\r\nInit seqence done, R−FPGA is ready to receive
bitstream data\r\n”) ;

}
UDPData[0]=0x46;
UDPData[1]=0x75;
UDPData[2]=0x6C;
UDPData[3]=0x6C;
//send back ’Full ’ to start the download
SendUDPTo(DestIP,DestMAC,61646,UDPData,10) ;

}
//compare with ’Part ’
else i f (∗(ReceivedUDPData.ptrData) == 0x50&&

∗(ReceivedUDPData.ptrData+1) == 0x61&&
∗(ReceivedUDPData.ptrData+2) == 0x72&&
∗(ReceivedUDPData.ptrData+3) == 0x74)
{

//=> partial configuration
//now we’re ready to init ia l i se the interface to the R−FPGA
i f (Prepare2SendPartial()) {

xil printf (”\r\nInit seqence done, R−FPGA is ready to receive
bitstream data\r\n”) ;

}
UDPData[0]=0x50;
UDPData[1]=0x61;
UDPData[2]=0x72;
UDPData[3]=0x74;
//send back ’Part ’ to start the download
SendUDPTo(DestIP,DestMAC,61646,UDPData,10) ;

}
//the f i rst packet has the sequence number ’00 ’
else i f (∗(ReceivedUDPData.ptrData) == 0x00&&

∗(ReceivedUDPData.ptrData+1) == 0x00)
{

//the bitstream download has started
bolBitstreamToDownload =XTRUE;
exseqnum=1;
//write data to the R−FPGA
SendBitstream((ReceivedUDPData.ptrData+2) , (ReceivedUDPData.

intDataLength−2)) ;
xil printf (”Begin to send data . . .\ r\n”) ;

UDPData[0]=0;
UDPData[1]=0;
SendUDPTo(DestIP,DestMAC,61646,UDPData,10) ;

}
}
//it ’ s not an init ia l packet . .
else {

//is it the last packet?
//=> indicated by 0xFFFF value in the sequence number field
i f (∗(ReceivedUDPData.ptrData) == 0xFF && ∗(ReceivedUDPData.ptrData+1)

== 0xFF) {
//write data to the R−FPGA
xil printf (”Last packet sent to FPGA, download finished !\r\n”) ;
bolBitstreamToDownload = XFALSE;
i f (PrepareFinishSequence()) {

//done bit set => send it to PC program
UDPData[0]=0x44;
UDPData[1]=0x4F;

4.5 XF Boardloader 29

UDPData[2]=0x4E;
UDPData[3]=0x45;
xil printf (”send done acknowledge\r\n”) ;
SendUDPTo(DestIP,DestMAC,61646,UDPData,4) ;

}
//break;

}
else {

//write data to the R−FPGA
seqnum=256∗(∗(ReceivedUDPData.ptrData))+(∗(ReceivedUDPData.ptrData

+1)) ;
i f (seqnum!=exseqnum) {

xil printf (”###SEQUENCEERROR### (Expected=%d, Received=%d)\r\
n” ,exseqnum,seqnum) ;

}
SendBitstream(ReceivedUDPData.ptrData+2, ReceivedUDPData.

intDataLength−2);
//xil printf(”\r\n data sent to FPGA\r\n”) ;
//xil printf(”%dth packet sent to FPGA\r\n”,seqnum) ;

//UDP packet was processed , thus send packet with sequence number
//back to source
UDPData[0]=seqnum/256;
UDPData[1]=seqnum%256;
SendUDPTo(DestIP,DestMAC,61646,UDPData,10) ;

}
//increase expected sequence number
exseqnum++;

}

//data processed
ReceivedUDPData.bolDataAvailable = XFALSE;

}
// receive buffer is ready for new data
∗rxflag=0;

}

return 0;
}//end of main()
//−−−

30 Network Codec

4.5.3 Flow Diagram

scheme of the flow of the XF Boardloader, FPGA side

polling slope

awaiting packets,
PacketAnalyser()

is it a UDP packet?

initialise
R-FGPA

send 'ready'
to PC

no

yes

is it the first packet?

Full Configuration/
Partial Configuration

yes

no
is it the last packet?

confirm,
waiting for 'done' bit

yes

no

write data to R-FPGA

Figure 4.2: XF Loader Scheme

Chapter 5

PC Programs

5.1 Visual UDP

Two small Windows based programs were written in Visual C++ with MFC.
The first one - Visual UDP - is able to send UDP packets to any host and list
the answer in a list box. As you can see on the picture it is very simple to use,
therefore you don’t find a lot of text on how to use it. To mention is only, when
you intend to start sending packets in intervals, just set up the interval time
and press then the button ’send’. And obviously to stop, the button stop within
the interval frame.

The code itself is not documented in this manual, because it would be too
much to explain all the MFC functions and their use. Presumed that you are
experienced in programming MFC, it should be no problem to understand the
code, because it is well documented.

Figure 5.1: Screenshot of Visual UDP

31

32 PC Programs

5.2 XFBoardloader

The second program, the XFBoardloader, is as simple to use as it looks. Choose
the bitstream file you want to download on the R-FPGA by pressing the button
’Browse’. To start the download press ’Full Configuration FPGA’ or ’Partial
Configuration FPGA’ depending on what kind of configuration file you have
created and intend to install. Don’t forget to type in the right IP address and
port number of the board before downloading.

Figure 5.2: Screenshot of the XF Boardloader

Chapter 6

Measurements

Over the most important functions and implementations were measurements
made to determine the potential of the transmission.

Environment:
Time measurement program: Ethereal - Network Protocol Analyzer
Mode: 10Mbit full-duplex
Delay : Difference between leaving time of a packet from the PC to the incoming
time of the response packet
Programs used : Visual UDP for sending UDP packets, XFBoardloader for send-
ing a bitstream file to the R-FPGA
Packet sizes: ARP packet = 60 bytes, ping request & reply = 32 bytes, UDP
packet = 50 bytes, data packet for bitstream download = 1302 bytes

What measured Time
ARP replies delays:

1. 351µs
(ARP table empty) 2. 351µs

3. 364µs
Ping replies delays:

1. 405µs
2. 426µs
3. 434µs
4. 547µs
5. 426µs
6. 428µs
7. 417µs
8. 428µs

UDP reflect delays:
1. 399µs
2. 489µs
3. 424µs
4. 420µs
5. 422µs
6. 426µs

33

34 Measurements

. . .
UDP Timer delays:
(interval sending) the values measured were in the same range as the

values from UDP reflect
XFBoardloader
Initialise 51ms

Writing data 1. 23ms
2. 5ms
3. 5.6ms
4. 5.55ms
. . .

Time for whole bitstream 1. 6.09s
download: 2. 6.13s

Bibliography

[1] Nobs Samuel. Prototype board for reconfigurable os. Manual of the proto-
type XFBoard, July 2003.

[2] Postel Jon. RFC 792 - Internet Control Message Protocol, September 1981.

[3] Prosise Jeff. Windows-Programmierung mit MFC. Microsoft Press Red-
mond, 2nd edition, 1999.

[4] Stroustrup Bjarne. Die C++ Programmiersprache. Addison-Wesley, 3rd
edition, 1998.

[5] Jennrich Tischer. Internet intern. Data Becker, 1st edition, 1997.

[6] Xilinx. Embedded System Tools Guide, May 2003.

[7] Xilinx. OPB Ethernet Lite Media Access Controller, November 2002.

[8] Intel. Intel LXT970A, Dual-Speed Fast Ethernet Transceiver, January 2001.

[9] Postel Jon. RFC 791 - Internet Protocol, September 1981.

[10] Plummer David C. RFC 826 - Ethernet Address Resolution Protocol: Or
converting network protocol addresses to 48.bit Ethernet address for trans-
mission on Ethernet hardware, November 1982.

[11] Postel Jon. RFC 768 - User Datagram Protocol, August 1980.

[12] Heinz Carsten. The Listings Package, April 2002.

[13] Irene Hyna Oetiker Tobias, Hubert Partl and Elisabeth Schlegl. The not
so short introduction to Latex, September 2003.

35

	Introduction
	Reconfigurable Hardware Operatin System
	XFBoard Platform
	Conceptual formulation

	Protocols
	Introduction
	Hardware environment
	General information
	Receive Diagram Example
	Layers

	Ethernet
	IP
	ICMP
	ARP
	UDP
	Checksum calculation

	Examples of a RX and TX buffer

	Concept XFBoard PC Suite
	Overview
	Purpose
	Ideas and basic principles

	Main menu or start screen
	Modules and module interface

	Network Codec
	General Information
	Included Files

	Functions
	Structures & Variables
	More details about structures & variables

	How to use & code snippets
	Program flow

	XF Boardloader
	Functions
	Code
	Flow Diagram

	PC Programs
	Visual UDP
	XFBoardloader

	Measurements
	Bibliography

