
 Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Andreas Ess, Tobias Gysi

Signal Processing Tasks for RHWOS

Student Thesis SA-2004-11
Winter Term 2003/2004

Tutors:
Herbert Walder and
Matthias Frey

Supervisors:
Prof. Dr. H.-A. Loeliger and
Prof. Dr. L.Thiele

6.2.2004

 Institut für Technische Informatik und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Abstract

In this semester thesis, we present both a VGA driver, as well as two signal processing
tasks (turbo decoder, spectrum analyzer) for the [9]. As these two topics
are mostly independent, the paper is split into two parts.

First, an overview of the VGA driver is given, including a sample application
demonstrating how to use it for other tasks’ purposes. This is mainly thought of as
a reference for the user of the driver, but also contains enough information on the in-
ternals for further development.

Then, as sample tasks for the ’s Reconfigurable Hardware Operating
System (RHWOS), two computationally intensive signal processing applications were
chosen.
First, a spectrum analyzer task is discussed. We focus on the basic building blocks, and
the few steps that yet have to be taken to actually put it to work.
As main part of this thesis, an implementation of a turbo decoder according to the
UMTS specifications is presented. In the respective chapter, we deal with an overview
over the algorithm, considerations when translating it to hardware, and qualitative com-
parisons between ASIC and FPGA implementations.

III

Acknowledgements

It was very instructional to be able to work on such an interdisciplinary semester thesis.
This would not have been possible without the help of a lot of people, who we would
like to acknowledge in this section.

We would like to thank our advisors Herbert Walder and Matthias Frey. Both have
provided valuable information throughout the whole project. They invested much of
their time, and many of their advices helped to make this project what it is.
We also very much appreciate the help of Prof. Loeliger, who came up with the sug-
gestion of implementing a turbo decoder, and thus allowed us to actually tackle this
interdisciplinary project. He took the time on several occasions to explain things to us
and gave useful input to this project.
Thanks to Prof. Thiele for his confidence in this project and providing the infrastruc-
ture at TIK.
Thanks go to Christian Plessl as well, who has provided us with some useful informa-
tion concerning differences between FPGAs and ASICs.
Last but not least, we would also like to thank the other students working in the same
room. They have provided a pleasant and helpful atmosphere, and it was not only
instructional, but also fun to work with them in a team.

V

VI

Contents

1 Introduction 1
1.1 Reconfigurable Hardware Operating System. 1
1.2 XFBoard platform. 1

2 VGA Driver 3
2.1 Introduction. 3
2.2 Features. 3
2.3 Requirements. 3
2.4 Overview . 4
2.5 VGA core . 4
2.6 VGA driver . 5

2.6.1 Line buffer . 6
2.7 Window manager. 6
2.8 Memory manager. 7

2.8.1 Timing diagram. 8
2.9 Internals. 9

2.9.1 VGA driver internals. 9
2.9.2 Window manager internals. 9
2.9.3 Memory manager internals. 10
2.9.4 Timing . 11

2.10 Demo application. 12
2.10.1 Compiling the demo application. 13

2.11 Notes . 13
2.11.1 Microblaze . 13
2.11.2 Font routines. 13

3 Spectrum Analyzer 15
3.1 Introduction. 15
3.2 Features. 15
3.3 Overview . 15
3.4 FFT core. 15
3.5 Root core . 16

3.5.1 Extracting root in Hardware. 17
3.6 Putting it all together. 17
3.7 Limitations . 18
3.8 Further steps. 19

VII

VIII CONTENTS

4 Turbo Decoder 21
4.1 Turbo codes - overview. 21

4.1.1 Turbo encoder. 21
4.1.2 Channel. 22
4.1.3 Turbo decoder. 22

4.2 Implementation. 24
4.2.1 Code in use. 24
4.2.2 Forward-backward algorithm. 24
4.2.3 Interleaver . 28
4.2.4 Memory considerations. 30
4.2.5 Putting it all together. 31

4.3 Testing environment. 32
4.3.1 PC application (encoder). 32
4.3.2 XFBoard (decoder). 33

4.4 Results. 34
4.4.1 Performance - bit errors. 34
4.4.2 Performance - execution time. 35
4.4.3 ASIC . 36

4.5 Further steps. 37
4.6 Running the demo. 40

4.6.1 Software needed. 40
4.6.2 Compiling the demo. 40
4.6.3 Running the demo. 41

5 Conclusion 43

6 CD 45

Chapter 1

Introduction

1.1 Reconfigurable Hardware Operating System

Reconfigurable systems in general have a great potential to not only speed up applica-
tions, but also save chip area. On top of that, the system can be made more flexible.
To give a quick example, there exist many versions of turbo decoders. A native ASIC
implementation needs support for each standard built in, whereas a reconfigurable ver-
sion can easily specialize on one decoder type. A different version can then be easily
obtained by reconfiguring the FPGA.

Thus, a good system would run on a reasonably small FPGA, and dynamically
load tasks on demand from some sort of external memory. This asks for some sort of
hardware operating system that manages the scheduling of resources.

1.2 XFBoard platform

This semester thesis was done in the scope of the X-Forces project, which is supposed
to show the possibilities and limits of such a reconfigurable hardware operating system.

In [9], a demonstration board was developed specifically for this project. Figure1-
1 shows an abstract overview over the board. The core is formed by two FPGAs. On
top, there’s the C-FPGA (CPU), which handles resources and tasks for the R-FPGA
(reconfigurable). A possible application now can run large parts of the code on the
C-FPGA, and swap out data-flow intensive parts directly to hardware in order to dra-
matically speed up calculations.

This thesis concentrates on the R-FPGA part of the system. It was necessary to
develop a means for the tasks to output their information on the screen, thus the VGA
driver.
The RHWOS is currently being developed in [10] and [12]. As it is not completely
ready yet, the spectrum analyzer and turbo decoder tasks are currently running entirely
on the R-FPGA.

1

2 CHAPTER 1. INTRODUCTION

Virtex-II
C-FPGA

Virtex-II
R-FPGA

SDRAM Left
16M X 16

SDRAM Right
16M X 16

SRAM Left
1M X 32

SRAM Right
1M X 32

SDRAM
16M X 32

SRAM
1M X 32

FlashRAM
4M X 32 BootPROM

Ethernet
PHY

Ethernet
PHY

Audio
CoDec

Video
DAC

8-LED Bar

2 LEDs
2 Switches

2 LEDs
2 Switches

JTAG
6 Pin Header

JTAG
6 Pin Header

VGA Out
15 Pin D-SUB HD

VGA Out
15 Pin D-SUB HD

Ethernet
RJ-45

E
th

er
ne

t
R

J-
45

PS
/2

6
Pi

n
M

in
iD

IN

PS
/2

6
Pi

n
M

in
iD

IN

R
S-232

9 Pin D
-SU

B

RS-232
9 Pin D-SUB

RS-232
9 Pin D-SUB

A
ud

io
 I

n
1

3.
5m

m
 m

on
o

Ja
ck

A
ud

io
 I

n
0

3.
5m

m
 m

on
o

Ja
ck

Audio Out
3.5mm mono Jack

Expansion Slot
36 Pin Header

Expansion Slot
40 Pin Header

Data Signals
Configuration Signals

Figure 1-1: XFBoard - Scheme

Chapter 2

VGA Driver

2.1 Introduction

As part of the RHWOS project [14], the first task was to design an appropriate VGA
driver for the R-FPGA part of the system.
A hardware based multi-window approach was chosen. The main reason for this was to
take the burden of implementing a windowing system from the RHWOS. Furthermore,
this facilitates the handling of windows for the tasks themselves. A task can access its
part of the screen without worrying about the window position or other tasks.

The VGA driver was also used later in the course of our project to display the output
of the turbo decoder sample application.

2.2 Features

• 640 · 480 px standard VGA resolution at a refresh rate of60 Hz

– adjustable by recompilation

• 16 bit color depth

• up to4 independent windows

– separate video RAM area for each task

– freely moveable and sizeable

– double-buffering capability

• memory independent test picture

2.3 Requirements

• Assumes 50 MHz clock for monitor timing

• 1 BlockRAM for temporary line buffer

• 405 out of14′336 slices (2%)

3

4 CHAPTER 2. VGA DRIVER

• 323 out of28′672 slice flip flops (1%)

• 710 out of28′672 input LUTs (2%)

• 1 DCM (optional, for different resolutions)

2.4 Overview

As seen in picture2-1, the VGA core is partitioned into three parts:

• the VGA driver is the actual interface to the DAC

• the window manager translates screen coordinates into the respective window’s
memory addresses

• the memory manager handles concurrent accesses to the video memory

Application

Monitor SRAM

VGADriver Window Manager Memory Manager

vgacore.vhd
vgadriver.vhd winmgr.vhd memmgr.vhd

Figure 2-1: VGA core - scheme

These three parts are linked together in a top file (vgacore.vhd) that provides
the most important signals to the user. None of the input data is registered, that means
window positions, etc. have to be kept as long as they are valid. Changes in position
and size are applied immediately, which can result in an unstable picture for one frame.

The next sections describe the parts and their respective interfaces in detail.

2.5 VGA core

The VGA core, found invgacore.vhd , is the interface to the tasks and handles the
internal connections between the three units stated above. Signals provided to the user
are described below in the pertaining sections.

2.6. VGA DRIVER 5

The VGA core needs one of Virtex2’s BlockRAMs for local buffering. This is
needed to burst lines from RAM into a local buffer, from where the actual drawing
takes place.

Note: Using a DCM, these bursts could be made faster, such that less time is used
by the VGA driver to access memory.
A DCM requires a buffered clock input using IBUFG. This, however, means that no
other part of the design can directly access the original clock pad—instead, everything
must work on the buffered clock that is also fed to the VGA core. It’s thus needed to
instantiate an IBUFG at the top level and provide the rest of the design with its output.

Signal Meaning

CLKxCI 50 MHz clock signal
RSTxRI Reset signal

Table 2-1: General signals

2.6 VGA driver

The VGA driver,vgadriver.vhd , has two concurrent processes: the first one buffers
an entire line from memory into a FIFO at a clock period of20 ns, the second one does
the actual VGA drawing at25 MHz from this buffer.

Monitor timing is done according to [13]. A pixel clock of 25 MHz yields a screen
refresh rate of60 Hz at640 · 480 px. Higher resolutions or rates are possible. How-
ever, these would not only reduce the available memory bandwidth for applications but
would also require an additional DCM to accommodate to the necessary pixel clock.
Still, this is possible by adjusting the constants at the beginning of the file, in addition
to clocking the processVGACLKxCI_P with an appropriate DCM.

To implement the FIFO buffer, one of the Virtex2’s own BlockRAMs is used. A
buffer size of512 pixels (16 bit, thus1′024 bytes) is used. While this can’t hold an
entire line, drawing is started early enough to prevent buffer overflow.

Signal Meaning

RxD Red signal (8 bit)
GxD Green signal (8 bit)
BxD Blue signal (8 bit)
PCLK Pixel clock for RAMDAC
HSYNCB Horizontal sync
VSYNCB Vertical sync

Table 2-2: Output signals to video DAC

6 CHAPTER 2. VGA DRIVER

Signal Meaning

VGABlack Set high for black screen
VGATest Set high for test picture

Table 2-3: VGA driver, input signals

2.6.1 Line buffer

The FIFO used for buffering lines was generated from an asynchronous FIFO using
Xilinx’s CoreGen [19]. The file linebuffer.xco holds all necessary information.
In order to compile it, one has to select the option “Regenerate core” in the Xilinx
Project Navigator. Also, “View VHDL Function Model” might be necessary to get it
working.

Please refer to section2.10on page12 for detailed information on how to compile
a test project with the VGA driver.

2.7 Window manager

The window manager,winmgr.vhd , receives screen coordinates from the VGA driver
and then translates these to the appropriate memory addresses. A standard background
color is used for pixels not covered by windows.

For each window (W1x . . .W4x), the input signals stated in table2-4are provided.
These are not registered and must thus be kept active throughout their life cycle.

Signal Meaning

W1xX X coordinate of window(0 . . . 639)
W1xY Y coordinate of window(0 . . . 479)
W1xW Width of window(0 . . . 639)
W1xH Height of window(0 . . . 479)
W1xMemPage1 Base address of first buffer (20 bit)
W1xMemPage2 Base address of second buffer (20 bit)
W1xBID Buffer to display (0 = first buffer)
W1xValid Set high to show window

Table 2-4: Per-window signals

Two buffers can be defined by the user, with the signalW1xBID selecting which
area to draw from. This can be used to implement double buffering: while one buffer
is displayed, the other is updated with new information. As soon as this data is ready,
the buffers are exchanged by flipping theW1xBID signal.

Besides the signals defined for all windows, there’s two global signals, as seen in
table2-5.

2.8. MEMORY MANAGER 7

First, the background color will fill the entire space not covered by windows. For test-
ing purposes, a switch has been implemented which bypasses the memory manager
and uses a single fill color for all windows instead.

Signal Meaning

WxBG Background color (16 bit RGB)
WxTest Replaces contents of windows by a single color

Table 2-5: General signals

The background color is given as a16 bit value, given in5 − 6 − 5 representation,
as seen in table2-6.

R R R R R G G G G G G B B B B B
15 0

Table 2-6: RGB representation in a 16 bit word

2.8 Memory manager

The memory manager,memmgr.vhd , provides the actual interface to write image data
into. The SRAM [1] on the left side of the R-FPGA is used as video memory.

Since the SRAM is not dual-port, a simple access management was implemented.
General rule is that the window manager has highest priority and can suspend any other
accesses to the memory. This ultimately means that at any given point in time, a task
might have to wait for a period of a whole line to be fetched into the VGA driver’s
buffer.

This, and the possibility to have the VGA core itself run at a higher clock rate, led
to the implementation of an asynchronous protocol for accessing the SRAM. As a side
effect, the task doesn’t have to worry about access timing for SRAM.
In section2.8.1, read and write waveforms for accessing the memory manager are
given.

Table2-7gives per-window signals for reading and writing data from/to the SRAM.

Note: read data is registered - i.e. as soon asW1xACKis set, the memory manager
can continue serving other requests, while the data inW1xDataOut will stay valid.

Finally, the memory manager’s output pins have to be connected to the left SRAM
bank of the using the signals from table2-8.

8 CHAPTER 2. VGA DRIVER

Signal Meaning

W1xAddr Address of memory (20 bit)
W1xDataIn Data to be written (16 bit RGB)
W1xDataOut Read data (registered) (16 bit RGB)
W1xREn Read enable
W1xWEn Write enable
W1xACK Asynchronous ack

Table 2-7: Per-window signals for memory manager

Signal Meaning

Addr Address in SRAM
Data Data
A19B Inverted MSb of address
WEn Write enable

Table 2-8: Connections to SRAM

2.8.1 Timing diagram

Example write waveform

Figure 2-2: Write wave form

The write wave form seen in2-2 was generated by the behavioural simulation of
the demo program given in section2.10.
To write, address and data have to be valid at the timeW1xWEnis set to1. Writing is
finished as soon asW1xACK is set to1. To actually finish the write process,W1xWEn
has to be taken down again. This cancelsW1xACK and makes the memory manager
ready for new data.

The reading process is analogous to writing.

2.9. INTERNALS 9

2.9 Internals

2.9.1 VGA driver internals

The VGA driver continously feeds the DAC with the necessary information to draw the
screen. It can be switched off withVGABlack . The signalVGATest draws a test
picture.
By default, the picture is read from memory, buffered locally and then drawn to the
screen.

The interface of the VGA driver can be splitted into three parts: control interface,
connections to the window manager and outputs to the video DAC. The window man-
ager is controlled by the two signalsPixelX andPixelY . Corresponding pixels are
returned with a delay of4 cycles. Then, the pixel value can be read fromPixelData .

The screen resolution is determined by the constants invgadriver.vhd . Tim-
ing data for several resolutions can be found in [13].

Table2-9describes the different clocks and their use.

Clock Use

RAMCLKxCI Used for communication with the memory man-
ager

VGACLKxCI 50 MHz main clock of the driver
OurClk 25 MHz used for VGA output side, equivalent to

the pixel clockPCLK

Table 2-9: VGA driver clocks

The following processes are found in the VGA driver:

• ReadReg and ReadMemless fill the line buffer if necessary. The delay of the
memory manager has to be taken into account. This is done using the counter
FIFOWaiting .

• The pairVGACLKxCI andOurClk are responsible for generatingOurClk
for HSYNC, HCount and also for the read operation from the linebuffer.

• VCounter increments VCount after each horizontal synchronization signal

• VSyncB produces the vertical synchronization signal.

• Blitter is the main process. It either writes theFIFOOut to the output or gener-
ates the test picture.

2.9.2 Window manager internals

The window manager handles the translation of screen coordinates to memory ad-
dresses.

10 CHAPTER 2. VGA DRIVER

Instead of doing actual calculations for every pixel, a state machine is used to keep
track of the current memory address for each window. Table2-10describes the states
and their meanings.

State Meaning

SSCAN The current pixel is outside all windows
SWAIT Waiting for the memory manager to fulfill a request
SDRAW The current pixel is inside the window denoted by the signal user

Table 2-10: Window manager states

The four most important signals are theinW1 . . .inW4 signals, which check for
every pixel coordinate whether it falls inside a window. If this condition becomes true
in SSCAN mode, reading from memory for the respective window is started.

For each of window, there is a 20 bit registerWxAddr holding the current address.
Upon starting screen redraw, these signals are reset to the respective base addresses
WxMemPage1or WxMemPage2, depending on theWxBID flag.
Additionally, the registerMemAddr holds the current memory address. As soon as
a window is entered, this is set to the respectiveWxAddr . Inside a line,MemAddr
can then just be incremented. Upon leaving the window’s canvas,MemAddr is stored
back again in the respectiveWxAddr register, so that drawing can be resumed in the
next line at the correct address.

The data output to the VGA driver is determined by the flaginWindow . If it is
set to1, data from the memory manager is redirected, otherwise, the background color
is fed to the VGA driver.
Note that the memory manager returns its data a few clocks later than requested, so the
current pixel coordinates are not used to yield this decision. Instead,inWindow is
set high after the firstSDRAWstate and taken down2 cycles after returning toSSCAN
state.

2.9.3 Memory manager internals

The memory manager abstracts from the actual SRAM, and handles concurrent ac-
cesses by both the tasks and the window manager. In any case, the window manager
has highest priority.

There’s four different states, seen in2-11.

State Meaning
SIDLE Idle state, waiting for a request
SWAIT Address set, waiting for SRAM
SACCESS Actual access. If reading, store read data in register
SWRITE Write data to actual address

Table 2-11: Memory manager states

2.9. INTERNALS 11

Accesses to the SRAM by the tasks are handled in form of a simple Request-
Acknowledge protocol. This is because in every state, when the window manager
issues an request, other accesses have to be suspended in order to ensure a stable pic-
ture. This means that in the worst case, a task has to wait for an entire line to be bursted
from SRAM before its own request can be fulfilled.

The signaluser indicates the current user of the SRAM. Depending on this, the
registerRAddr holds the address currently fed to the SRAM.

Timing of reading and writing is done according to [1], assuming a50 MHz clock.

2.9.4 Timing

Since both window manager and memory manager are states machines waiting for a
request from outside, timing is slightly tricky. It takes a few clocks for a pixel request
from the VGA driver to be served. But as a pixel has to be served every two cycles (as-
suming the ’s standard50 MHz clock), this process has to be pipelined.
The resulting timing diagram can be seen in figure2-3.

1

2

5

4
3

6

Figure 2-3: VGA internal timing - overview

Here is a rundown of what is happening in the above wave form:

1. When drawing of a line is started,FIFOWaiting is decremented.

2. One cycle afterFIFOWaiting reaches0, the writing to the buffer is started.

3. Meanwhile,PixelX is incremented, and upon reaching the 4th pixel (in this
example), theinW1 flag is set.

4. The window manager changes from scanning into drawing state, passing on re-
quests to the memory manager.

5. The memory manager delivers the data read withSACCESS.

6. Data is written on rising clock edge into the FIFO.

12 CHAPTER 2. VGA DRIVER

2.10 Demo application

In order to demonstrate the usage of the VGA core, we compiled a small demo applica-
tion that writes a pattern into video memory, and displays a test picture upon pressing
the ’s switch.

The following code framgment shows the part that is used to write the pattern to
video memory using the memory manager.

-- This example state machine writes stripes into the video memory
-- WAddr ... address to write to
-- WData ... data to be written
-- W1xWEn ... write enable signal
-- State ... current state
reg : process (CLKIN_IBUFG, RSTxRI)
begin

if RSTxRI = ’1’ then
State <= SADDR;
WAddr <= (others => ’1’);

elsif CLKIN_IBUFG’event and CLKIN_IBUFG = ’1’ then
State <= nextState;
WAddr <= nextWAddr;

end if ;
end process ;

memless : process (State, WAddr, W1xACK)
begin

nextWAddr <= WAddr;
nextState <= State;
W1xWEn <= ’0’;

-- Combinatorial calculation of data based on address
if WAddr(0) = ’0’ then

WData <= (others => ’0’);
else

WData(3 downto 0) <= WAddr(3 downto 0);
WData(14 downto 4) <= (others => ’0’);

end if ;
WData(15) <= WAddr(19);

case State is
when SADDR =>

-- 1st step: if ACK is down again, mem manager
-- is ready to receive new data: set write enable
if W1xACK = ’0’ then

W1xWEn <= ’1’;
nextState <= SWAIT;

end if ;

when SWAIT =>
-- 2nd step: wait for ACK
W1xWEn <= ’1’;

if W1xACK = ’1’ then
-- ACK received, take down request
-- increment address
nextState <= SADDR;
nextWAddr <= WAddr + 1;
W1xWEn <= ’0’;

end if ;

when others =>
nextState <= SWAIT;

end case ;
end process ;

2.11. NOTES 13

2.10.1 Compiling the demo application

The demo application described above can be found on the accompanying CD, see
chapter6 on page45.

Open the corresponding filevgademo.vhd in the Xilinx Project Navigator, and
select “Generate programming file”.

2.11 Notes

For simplicity’s sake, this implementation of the VGA core uses a lot of signals, in-
stead of providing an interface that would allow the user to pick a window and then use
some control information to set the required datum.

Furthermore, the possibility is provided to clock the memory accesses at a higher
speed, thus increasing the possible throughput. This was removed because of timing
problems.

On the feature side, overlapping windows are not supported yet. This change should
not be too difficult, but was left off due to the fact that it is not that important.

2.11.1 Microblaze

In [15], a few routines were developed for the Microblaze soft processor that allow
access to the VGA driver’s most important signals. These routines were used in both
the spectrum analyzer and turbo decoder task for displaying their respective output.

2.11.2 Font routines

The following routines can be used to write out text or numbers inside a window. A6·8
font is provided, but other fonts can be defined. All of these routines take advantage of
the pixel writing routines developed in [15].

The common parameters to all these functions are the base pointer of the window,
the color of the font, as well as the x, y position to plot the character(s) at. In order to
correctly calculate the address inside the window, the width has to be specified as well.

void f_putc(Xuint32 baseptr, Xuint16 color, Xuint16 x,
Xuint16 y, Xuint16 wdt, char c);

Prints a single character.

Xuint16 f_puts(Xuint32 baseptr, Xuint16 color, Xuint16 x,
Xuint16 y, Xuint16 wdt, char * s);

Prints out an entire string and returns the x position directly following the strings.

Xuint16 f_putnum(Xuint32 baseptr, Xuint16 color, Xuint16 x,
Xuint16 y, Xuint16 wdt, Xuint32 num, Xuint8 base);

Prints out the numbernum in the correspondingbase . Returns x position directly
following the printed number.

void f_printf(Xuint32 baseptr, Xuint16 color, Xuint16 x,
Xuint16 y, Xuint16 wdt, const char * ctrl1, ...);

14 CHAPTER 2. VGA DRIVER

Writes out a formatted string, with the same basic arguments inside the format
strings as the ANSI C function printf.

Chapter 3

Spectrum Analyzer

3.1 Introduction

As a first signal processing task for the RHWOS, a spectrum analyzer was imple-
mented. It reads an audio signal from the audio driver and displays the corresponding
spectrum on the screen. In the following sections, the general layout of this task is
described.

3.2 Features

• 44.1 kHz, mono audio input

• 16 bit resolution

• 1′024 point FFT

• Output using VGA driver (32 bars displayed on-screen)

3.3 Overview

The spectrum analyzer is partitioned into3 hardware parts and control software running
on an instance of the Microblaze soft processor.

• wrapper for the audio driver

• FFT core

• root core

• Microblaze with control software and graphics output

3.4 FFT core

To perform the Fourier transfomation, a Xilinx core is used. Therefore, it was only
necessary to study the interface and develop a suitable wrapper. The wrapper, seen in
figure3-1, reads data from an input FIFO, calculates the FFT and writes the result to an

15

16 CHAPTER 3. SPECTRUM ANALYZER

output FIFO. Both FIFOs have to provide enough space for1′024 values. As the FFT
calculates a complex number with imaginary and real parts of16 bits each, the output
has to be32 bits wide.

Configure FFT

Xilinx FFT Core
fifoin buffifo

fftwrapper.vhd

Figure 3-1: FFT wrapper

Table3-1describes the signals to control the wrapper.

Signal Meaning

go Start calculation. A full input FIFO expected.
finished Set if data in output FIFO is ready.
busy Set while core is calculating.
idle Set when core is idle.
rerror Core could not read enough data. Triggergo to

return to idle state.
werror Write error occured. Triggergo to return to idle

state.

Table 3-1: Control interface for FFT wrapper

The wrapper is found infftwrapper.vhd . There, it is possible to change core
options, e.g. the size of the FFT and scaling options. For more details, refer to the
Xilinx core documentation [20].

3.5 Root core

The output of the FFT core consists of1′024 complex values. As the spectrum of a real
signal is symmetric, only the first512 values need to be processed by the root core, as
seen in figure3-2. It calculates the absolute value by squaring both imaginary und real
part, sum them up and subsequently extracting the root from this number. Last, tuples
of 32 values are taken and averaged together to form a total of32 output values. These

3.6. PUTTING IT ALL TOGETHER 17

are the values that actually will be displayed.

rootwrapper.vhd

muladd.vhd root.vhd

real2 + imag2

buffifo fifoout

sqrt average

Figure 3-2: Root wrapper

The interface given in3-2 is very similar to the one of the FFT core.

Signal Meaning

go Start calculation. A full input FIFO is expected.
finished Set if data in output FIFO is ready.
idle Set if core is idle.
rerror Core could not read enough data. Triggergo to

return to idle state.
werror Write error occured. Triggergo to return to idle

state.

Table 3-2: Control interface for root wrapper

The main challenge of this part was the extraction of roots. As there was no already
running core available, this was implemented by hand. The squaring of imaginary and
real part is done using two Virtex2 block multipliers. The number of values to be
averaged is adaptable by a constant. The depth of the output FIFO then has to be
changed accordingly.

3.5.1 Extracting root in Hardware

The root algorithm calculates one bit per cycle, starting from the MSb.
At the beginning, the result is set to zero and the current bit to the MSb. Then, the
algorithm checks if the square of the current result with current bit set is smaller than
the input. If this is the case, the new result value is the old one with set current bit. This
process is now repeated, decrementing the current bit until it reaches the LSb. The
result is the integer root of the input.

3.6 Putting it all together

The three components audio, FFT and root are put together in one top file. The single
components are connected by FIFOs. Figure3-3gives an overview over the data flow.

The control interfaces are connected to the Microblaze core. Furthermore,top.vhd
introduces logic for the Microblaze to read from the output FIFO. The following code
fragment shows the code for one transformation.

18 CHAPTER 3. SPECTRUM ANALYZER

system.vhd

top.vhd

AudioWrapper

FFTWrapper

RootWrapper

Microblaze

Audio Signal VGA Signal

fifoin

fifoout
buffifo

fftwrapper.vhd

audiotop.vhd

rootwrapper.vhd

Figure 3-3: Spectrum analyzer - data flow

// wait till input fifo full
while (!(XGpio_mGetDataReg(XPAR_SPEC_CONT_BASEADDR) & FFT_IN_FULL));

// start fft
XGpio_mSetDataReg(XPAR_SPEC_CONT_BASEADDR, FFT_GO);
XGpio_mSetDataReg(XPAR_SPEC_CONT_BASEADDR, 0);

// wait till fft is finished
while (!(XGpio_mGetDataReg(XPAR_SPEC_CONT_BASEADDR) & FFT_FIN));

// start root
XGpio_mSetDataReg(XPAR_SPEC_CONT_BASEADDR, ROOT_GO);
XGpio_mSetDataReg(XPAR_SPEC_CONT_BASEADDR, 0);

// wait till root is finished
while (!(XGpio_mGetDataReg(XPAR_SPEC_CONT_BASEADDR) & ROOT_FIN));

// read 32 values from output FIFO to Microblaze
for (i=0; i<32; i++) {

rd_clk = rd_clk ^ 1;

// read in next value by toggling rd_clk
XGpio_mSetDataReg(XPAR_SPEC_CONT_BASEADDR, rd_clk);
// value is scaled by shift left 12, not yet optimal value!
bars[curbar][i] = XGpio_mGetDataReg(XPAR_SPEC_IN_BASEADDR) >> 12;

// avoid bar overflow
if (bars[curbar][i] > 64) {

bars[curbar][i] = 64;
}

}

drawBars(0, bars[curbar^1], bars[curbar]);
curbar ^= 1;

3.7 Limitations

Both FFT and root wrapper have been thoroughly simulated and tested. When feeding
them with a square wave, the output seems correct.
However, when trying to feed the system with the audio driver’s output, nothing hap-
pens. There seems to be some very low signal (presumably noise), but we did not

3.8. FURTHER STEPS 19

manage to receive the actual signal fed to the audio input.

3.8 Further steps

To actually get this task working, the audio wrapper has to be revised. As soon as this
is working, only the software part should need some adaptation concerning the scaling
of the bars.
Other than that, we are confident that the system works.

20 CHAPTER 3. SPECTRUM ANALYZER

Chapter 4

Turbo Decoder

The Virtex2 FPGA chip [16] used on the XFBoard offers a very good basis for signal
processing applications, since the V3000 version used for the R-FPGA has96 onboard
18x18 bit multipliers. Using these multipliers in parallel, a great deal of concurrency
can be achieved, improving performance significantly in dataflow-oriented applica-
tions.
In our case, some parts of the system use up to18 multipliers in parallel, which resulted
in almost the same performance as the corresponding PC application, even at the mod-
est clock rate of50 MHz.

In the scope of this project, a turbo decoder according to the UMTS specifications
was implemented.

4.1 Turbo codes - overview

Turbo codes were introduced in 1993 by Berrou, Glavieux and Thitimajshima [3].
The turbo codes considered in this project are based on 2 parallel concatenated con-
volutional codes. The upper encoder is fed directly with the input sequence, while the
second encoder receives an interleaved version of the same information sequence.

4.1.1 Turbo encoder

Figure4-1 shows the encoder suggested by the UMTS specifications. It adds redun-
dancy to the input signal, such that the decoder can infer on the original signal despite
noise introduced by the channel.
The basic idea is to split the input into blocks of lengthK, and transmit multiple bits
per single input bit over the channel. Whilex[k] is the same as the data input to the
encoder,z[k] is formed by a convolutional encoder working directly on the input se-
quence. Additionally, each block of the input is permuted by an interleaver, and then
fed to another convolutional encoder to formz′[k].

One of the main design issues for a linear code is to maximize the hamming weight.
This is roughly the same as maximizing the weight of the minimum-weight codeword.
On one hand, recursive codes are used for this, on the other, an interleaver.

21

22 CHAPTER 4. TURBO DECODER

x[k]

z[k]

z'[k]

u[k]

Figure 4-1: Turbo encoder according to UMTS specifications

The interleaver permutes the bits inside a block, and then feeds the second encoder
with this interleaved block. This ensures that two successive input bits will never be
next to each other in the interleaved version.

Moreover, by using an interleaver, extrinsic information and observations of the
two decoders are only weakly correlated. Thus, they can both be used for decoding.
For further details, please refer to [11].

4.1.2 Channel

Figure4-2 shows an overview of the entire sender-receiver system. Input datax[k] is
fed in blocks to the encoder. As described in the previous section, this will yield two
additional bitsz[k] andz′[k].
Using a modulator,0 bits are mapped on to+1, 1 bits on to−1. This data is then
sent over an additive white Gaussian noise (AWGN) channel. As a result, the receiver
will see bitsyx[k], yz[k] andyz′ [k]. Channel estimation is applied in order to gain
probabilities whether the received information is more likely a0 bit or a1 bit.
The decoder can use this channel information to form an estimate for the original sent
bit, P (x[k]|yx[.], yz[.], yz′ [.]).

4.1.3 Turbo decoder

The turbo decoder can be represented as a factor graph, as seen in figure4-31. The
algorithm implemented in hardware is very similar to the sum-product algorithm—
introduced in [6]— running on this factor graph.
The two decoders basically run in parallel, seperated by the interleaver that exchanges

1The quantitiesX1,k, X2,k andX3,k correspond to the channel estimates foryx[k], yz [k] andyz′ [k],
respectively.

4.1. TURBO CODES - OVERVIEW 23

Encoder
u[.]

x[.]

z[.]

P (yx[k]| x[k])

P (yz[k]| z[k])

P (yz
′[k]| z[k])z′[.]

P
(x

[k
]|

y
x
[.
],

y
z
[.
],

y
z

′
[.
])

C
h
an

n
el

E
st

im
at

e

T
u
rb

o
D

ec
o
d
er

N (0, σ2)

Figure 4-2: Sender-receiver system with AWGN channel

the extrinsic information between the two. Equal gates are used to combine input in-
formation (from the received data) with this extrinsic information.

Each box in the factor graph corresponds to a trellis section. Based upon the en-
coder, the trellis can be constructed.

In order to maximize the a-posteriori probability of each information bit, the forward-
backward algorithm is used inside each single decoder. Then, the newly gained infor-
mation is exchanged with the other decoder.

After several iterations, a stable state is reached. A hard-decision is then made by
comparingP (x[k] = +1|yx[k], yz[k], yz′ [k]) againstP (x[k] = −1|yx[k], yz[k], yz′ [k]).

X1,k−1

=

X1,k

=

X1,k+1

=

· · ·

X2,k−1 X2,k X2,k+1

· · ·

“random” connections

· · ·

X3,k−1 X3,k X3,k+1

· · ·

Figure 4-3: Turbo decoder - Factor graph

24 CHAPTER 4. TURBO DECODER

4.2 Implementation

The implementation of the turbo decoder presented here was a three-step process.
First, a software version, written in C, was written to evaluate the design later to
be translated to hardware. This mainly covered the analysis of sections with large
amounts of dataflow. These are prone to a hardware-based implementation. At this
point, floating-point arithmetic was used.
Next, the C code was adapted to use fixed-point arithmetic, as would be the case in
hardware as well. This step was useful in order to analyze the behaviour of the algo-
rithm with less arithmetic precision.
In the final step, the most time-consuming parts—both interleaver and the forward-
backward algorithm—were translated to hardware. Only the control flow between de-
coding iterations was left to a C program running on the Microblaze [18] soft processor.

4.2.1 Code in use

The turbo code used for this project was constructed according to the UMTS specifi-
cations [4]. A rate-1/3 code with a block length ofK = 4′900 was chosen. Besides
nicely fitting a 70x70 black and white picture for our testing environment, a higher
block length also provides better performance.

4.2.2 Forward-backward algorithm

While the factor graph seen in4-3 suggests a parallel execution of both decoders, a
serial approach was chosen for several reasons:

• The software version inherently had to work in a serial fashion. The plan was to
derive the hardware version directly from it.

• Even though enough arithmetic units were available in hardware, early analysis
showed that memory would be the main bottleneck. This is further explained in
section4.5on page37.

• A single instance of the forward-backward algorithm almost fills an entire task
slot of the RHWOS. Thus, chip area (as restricted by the RHWOS) was not
sufficient to run both decoders at the same time.

Linearized form

Instead of running the two decoders in parallel, the information flow was changed to:

• Run decoder 1 onyx[.] andyz[.]

• Interleave its extrinsic information, send it to decoder 2

• Run decoder 2 onyx′ [.] andyz′ [.]

• Deinterleave its extrinsic information, send it to decoder 1

4.2. IMPLEMENTATION 25

Decoder 1 Decoder 2Interleaver

Interleaver-1

P(yz[k]|z[k]) P(yx[k]|x[k]) P(yz'[k]|z'[k])P(yx'[k]|x'[k])

Figure 4-4: Internal flow of turbo decoder

Note that the received data only coversyx[.], yz[.] and yz′ [.]. The factor graph
representation elegantly provides decoder 2 with an interleaved version ofyx[.] on the
fly. In this implementation,yx′ [.] was explicitly derived fromyx[.] before starting the
actual iterations. This is depicted in4-4.

With the control flow between the two decoders resolved, the next step was to
actually implement the decoder internals, i.e. the forward-backward algorithm.

Numerical considerations

Generally, literature suggests two approaches: the preferred implementation uses a log-
likelihood approach, implicitly allowing for numbers of very different magnitude to be
represented in a smaller interval. This lends itself very well to a fixed-point, hardware
based representation. This is discussed in [8].
The difficulty of this approach is the log-likelihood arithmetic, which is not that intu-
itive and easy to implement in hardware—approximations are suggested e.g. in [11].

Thus, an implementation using messages based on probabilities was chosen. This
simplified the calculations inside the trellis a lot, as only standard multiplications and
additions were needed.
However, there is an inherent loss of information when trying to represent real numbers
as fixed-point numbers— preferably with few bits. Not only the integer representation
of channel estimates, extrinsic information and internal signals proofs to be problem-
atic.
The state metricsµf (s) andµb(s) converge quickly to0 within a single iteration, and
make the decoder implementation very prone to numerical underflows. To resolve this
problem, two measures were taken:

• Scaling. After each section of the trellis, state metrics were rescaled such that
for each section, the maximum state metric would equal the maximum number
of the fixed-point representation. This scaling doesn’t affect the actual output of

26 CHAPTER 4. TURBO DECODER

the forward-backward algorithm, [6].

• Introduce a minimum number . Still with scaling, numbers with a magnitude
several times smaller than the current maximumµf (s) could wrongfully be as-
sumed to be0. It is thus suggested to have a lower bound for the numbers. While
this introduces additional numerical errors to the calculation, it will prevent un-
derflows. It is important to prevent these, as they would rendering the whole
calculation completely unuseable.

These measures were slightly simplified for the hardware version:
After the actual calculation for a trellis section, scaling is done by bit-shifting the result
to the left until the most significant bit of one message is set.
Instead of bounding all calculations by introducing extra comparators, logic was saved
by simply fixing the lowest input bit of all multipliers to1.

Additionally, by setting the SNR of the channel estimation smaller than the one
suggested by the channel’s actual SNR, one basically “trusts” the calculation less. This
can compensate for numerical errors as well.

Data-flow analysis

The exact application of the forward-backward algorithm is described in [6]. Here, a
small example for calculating a single state metric is given. This is then used to point
out ways to introduce parallelism into the calculation.

Figure4-5shows a trellis section corresponding to one input-bitx[k]. State metrics
for a states are designated asµf (s), branch metrics for a branchb asµ(b).
For a branchb, lst(b) and rst(b) define the left and right state, respectively.

Consider the states on the right side of figure4-5, i.e. statess ∈ S[k]. As an exam-
ple, the new state metric for the states111 is calculated.

Branches are designated with two numbers: the first one representing the value of
the original information bitx[k], the second forz[k]. Latter can be inferred from the
encoder: depending on the state and information bitx[k], the decoder’s outputz[k] will
differ. This is used to gain more confidence inside the trellis: not all combinations of
1’s and0’s can be used.
There are two branches leading tos111: the first one,b0, associated withyx[k] = +1
andyz[k] = +1; the second one,b1, with yx[k] = −1 andyz[k] = −1.
µf (s111) can now be calculated as follows:

µf (s111) = µf (lst(b0)) · µ(b0) + µf (lst(b1)) · µ(b1)

The branch metricsµ(b0) andµ(b1) combine the channel estimates foryx[k], yz[k]
and the extrinsic information gained from the other decoder, here calledP (x[k] = +1)
andP (x[k] = −1), respectively.

The extrinsic information, as well as the channel estimates foryx[k], are derived
from the same information bit. Thus, they are first combined by an equal gate, here
denoted as equ(+1) and equ(−1).

4.2. IMPLEMENTATION 27

Figure 4-5: Section of a trellis

equ(+1) =
P (yx[k]|x[k] = +1)P (x[k] = +1)

P (yx[k]|x[k] = +1)P (x[k] = +1) + P (yx[k]|x[k] = −1)P (x[k] = −1)

equ(−1) =
P (yx[k]|x[k] = −1)P (x[k] = −1)

P (yx[k]|x[k] = +1)P (x[k] = +1) + P (yx[k]|x[k] = −1)P (x[k] = −1)

Note that the denominator is only for scaling purposes—it is omitted in the hard-
ware version.
Furthermore, the result of the equal gate has to be computed only once for each section
of the trellis.

Now, the branch metrics can be calculated as:

µ(b0) = P (yz[k]|z[k] = +1) · equ(+1)

µ(b1) = P (yz[k]|z[k] = −1) · equ(−1)

Seeing that there are8 states for eachS[k], the above already suggests an obvious
point to introduce parallelism. Basically, for a givenS[k], all µf (s) with s ∈ S[k] can
be calculated in parallel.
Since it is advisable to have only one multiplication per cycle, the calculation is done
in three cycles, as seen in table4-1. A peak parallelism of18 multiplications at the
same time is reached.

28 CHAPTER 4. TURBO DECODER

SFCALC1 Calculate result of equal gate (2 multiplications).
For each branchb, multiply the channel estimate
of yz[k] with corresponding state metric lst(b) (16
multiplications)

SFCALC2 Multiply previous temporary results with equal
gate (16 multiplications)

SFCALC3 Infer µf (s) by adding together previous tempo-
rary results

Table 4-1: States of calculation

For the multiplications, the Virtex2’s on-board 18x18 bit multipliers were used.
As the actual data was only8 bit wide, advantage was taken of the higher precision in
intermediate calculation steps. This means that after the first calculation step,16 bit
numbers were used, the final result being32 bit. Because of this, scaling only had to
be applied at the very end of a trellis section.

4.2.3 Interleaver

Original implementation

The software implementation of the interleaver works exactly as the algorithm de-
scribed in the UMTS specifications [4]. This yields a permutation array of sizeK,
where each entry contains the new position of the corresponding interleaved bit.

Less memory

Because of its memory usage, it is not feasible to implement this algorithm in hardware.
Therefore, an adapted version, which calculates the offsets on the fly, was written. This
is only possible due to the fact that the forward-backward algorithm only accesses the
data sequentially.

To reach sufficient speed and at the same time, minimize the use of resources, the
calculations performed per step were limited to simple additions. The rest of the cal-
culations were kept in pre-calculated tables.
The result is code that uses less than300 constants and20 variables. This is an im-
provement of more than a factor of10, compared to the original memory usage. The
main idea of the modified algorithm is that on each row, a specific row increment mod-
ulo (P − 1) has to be added.

C implementation

This section deals with the adapted version of the interleaver. For simplicity’s sake,
the backward iteration is not discussed - it can be obtained by mirroring the following
program code.

The following defines a function which stores the interleaved version ofdatasrc
in datadest .

void interleave(int *datasrc, int *datadest)

4.2. IMPLEMENTATION 29

First, some constants are defined.s is an array with the standard permutation for
one row.

int s[P] = {
0, 5, 35, 215, ... , 91, 49, 48, 42, 6, 41

};

Another array holds the increment for each row. This guarantees that each row is
permuted differently.

int row_inc[ROWS] = {
1, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,
53, 59, 61, 67, 71, 73, 79

};

Each row has its own offset which is added to the permutation value. Therefore, all
offset values between0 and4′899 are generated.

int row_offset[ROWS] = {
4750, 2250, 3500, 1000, 0, 500, 1250, 1750, 3000, 4500,
2500, 2000, 3250, 4250, 750, 250, 4000, 1500, 3750, 2750

};

Actual code:
// current value for each row
int row[ROWS];

// variables
int j, i;
int count;

// init
for (j=0; j<ROWS; j++)

row[j] = 0;
count = 0;

// iterating through matrix

// for all columns calcualte next value in row
for (i=0; i<COLS; i++) {

// for all rows calc val
for (j=0; j<ROWS; j++) {

if ((count < K) && (s[row[j]] + row_offset[j] < K)) {
// if we’re not yet finished (count < K)
// and the result is valid then permute

// s[row[j]] + row_offset[j]
// is now the interleaved value of count
datadest[count] = datasrc[s[row[j]] + row_offset[j]];

// further value written inc counter
count++;

}

// calculate row permutation for next column
row[j] = row[j] + row_inc[j];

// perform modulo operation
if (row[j] >= (P-1))

row[j] -= (P-1);
}

}
}

Hardware version

The hardware version is the adaptation of this improved C code to VHDL.

30 CHAPTER 4. TURBO DECODER

The interleaver allows to read and write the data in both forward and backward di-
rection, in either sequential or interleaved order.

An operation in interleaved mode normally takes2 cycles, in special cases up to4.
For further information, please refer to the accompanying CD, described in chapter6
on page45.

Adaptation to different blocksizes

It is possible to adapt the interleaver to different block sizesK with just a few changes
in the code. Respective constants forK, P , etc. can be found in [4]. To simplify the
adaptation, a software to calculate the constant arrays introduced above was developed.
This is described in section6 on page45.
When changingK, it is also advisable to change the size of the BlockRAM used for
the extrinsic information. This has to be done using the Xilinx CoreGenerator.

4.2.4 Memory considerations

Memory wise, the offers three possibilities for a task to store its data in:

• BlockRAM. Found on the Virtex2 chip, this memory is fast, but very limited—a
total of1′728 Kbits is available on the chip. The RHWOS will offer a maximum
of 576 Kbits, i.e.72 KB, to a task.

• SRAM. A total of 4 MB is available,2 MB on either left and right side of the
chip. Former is used for the VGA core, latter is still free.

• SDRAM. A total of 64 MB is available, but wasn’t considered due to the more
complicated access and refresh control.

Note that SRAM and SDRAM is abstracted from using a basic memory manager
that is later to be replaced by the actual RHWOS’ memory manager.

The data to be stored by the turbo decoder is

• Extrinsic information. 4900 · 2 · 8 bits
For each original information, bothP (x[k] = +1) andP (x[k] = −1) has to be
stored.

• Channel estimates.4903 · 4 · 2 · 8 bits
This is used for storing the valuesP (yx[k]|x[k] = +1), P (yx[k]|x[k] = −1),
and the corresponding estimates foryz[.], yz′ [.], yx′ [.].

• State metrics.4904 · 8 · 2 · 8 bits
Used to storeµf (s), µb(s). For every section of the trellis, there’s8 states, and
two seperate memory areas are used for the forward and backward iteration.

This amounts to total a memory usage of127′488 bytes. In section4.5on page37,
a way to drastically reduce this figure is presented.

We opted for the extrinsic information to be stored in BlockRAM, which also sim-
plified the interleaver. Other data is stored in SRAM, including space to store the ex-
trinsic information for both decoders—this is of interest in the last iteration when the

4.2. IMPLEMENTATION 31

extrinsic information of both decoders has to be combined for a hard-decision. This is
currently done in software.

4.2.5 Putting it all together

The forward-backward algorithm, described infb.vhd , as well as the interleaver,
given ininterleaver.vhd , form the main part of the decoder system. From a hard-
ware point of view, these are complemented by the memory manager (memmanager.vhd),
a basic memory interface (basicmem.vhd), as well as a top file (top.vhd) putting
everything together.

Controlling the decoder

To control the turbo decoder, the top file provides the interface shown in4-2.

Signal Meaning

fb_interleaved Switches the forward-backward algorithm to in-
terleaved mode, i.e. data used isyx′ [.] andyz′ [.],
and the interleaved extrinsic information. Thus,
this is basically switching between the two de-
coders.

fb_start Start a forward-backward iteration
fb_done Indicates the end of an iteration
int_init Initialize extrinsic information within interleaver

to 0.5
int_rst Reset interleaver to start at first information bit

again
int_tomem Write extrinsic information to memory, storage lo-

cation depends onio_interleaved
int_done Acknowledges interleaver operations
io_write Write flag
io_interleaved Interleaved flag. When not set, data is read/written

in sequential, otherwise in interleaved order
io_dataclk Data clock, data is transmitted on falling and ris-

ing clock edge
io_priors Reads extrinsic information from memory, infor-

mation from both decoders is transmitted in one
32 bit value

io_xz Write or read channel estimates foryx[k] and
yz[k] to memory, signal depends onio_write
andio_interleaved flags

io_done Set if input/output operation is finished
input 32 bit input bus, used for write operations
output 32 bit output bus, used for read operations

Table 4-2: Controlling signals

32 CHAPTER 4. TURBO DECODER

To transmit data between the Microblaze and the decoder, a 32 bit wide interface
is used. As the Microblaze is the slower part, it generates the data clock. To maximize
performance, data is sent at rising and falling clock edge.

Memory manager

The memory manager is used for accessing the channel estimatesP (yx[k]|x[k] = +1),
. . . and the state metricsµf (s) andµb(s). It abstracts from the actual memory by re-
quiring another entity that gives access to data according to an address and a request
line.

Since the forward-backward algorithm accesses the data sequentially (either in for-
ward or backward direction), the control signals were limited to a reset, step and ac-
knowledge signal. The memory manager will then translate these to memory addresses
(basis addresses are defined as constants at the beginning of the architecture), redirect
the request to the basic memory interface, and pass on the acknowledge to the forward-
backward algorithm as soon as the data is read or written.

Note that especially the basic memory interface is platform dependent, and when
porting the program to another system using the Virtex2 FPGA, this has to be changed
accordingly.

4.3 Testing environment

To test our implementation, we opted for an environment as seen in figure4-6. The
general idea was to simulate a noisy channel on the PC by adding random Gaussian
noise to the encoded data and to send this noisy data over Ethernet to the
to be decoded.

Noise

Sender Encoder Decoder Sink

PC XFBoard

Ethernet

Figure 4-6: Testing environment

Note that the signal never leaves the digital domain. This would not be the case in
an actual scenario. The testing application adds digital noise and sends the noisy signal
to the decoder. In an actual application, a quantizer of some form would receive the
analog information and then feed the decoder with digital input.

4.3.1 PC application (encoder)

On the PC side, a simple Windows application was programmed that allows the user
to:

4.3. TESTING ENVIRONMENT 33

• load a70 · 70 pixel black and white bitmap

• encode it

• add variable Gaussian noise to it

• send it over Ethernet to the

The modulator maps bits0 and1 onto+1 and−1, respectively. These modulated
bits are then transmitted by an AWGN channel.
In order to simulate the noisy channel, similar to the one that would effect a real trans-
mitted signal, the encoded data is represented as an 8 bit integer in the range of−2.5
to 2.5.
This is then affected by additive white Gaussian noise with selectable variance. We
opted to use the Mersenne Twister [7] for this task, as this reportedly outperforms the
random generators found in standard libraries.

The distorted data is then sent to the via Ethernet. The original and
uncorrupted information sequence is also transmitted for measurement purposes.

Figure 4-7: Encoder application

4.3.2 XFBoard (decoder)

The Microblaze part of the system receives the noisy, encoded bit-sequence from the
PC application. Next, channel estimation is applied—this is done using a precalculated
lookup table.
Then, the turbo decoder is set up. First, the estimated data is sent to the decoder to be
stored in memory. Extrinsic information is initialized to a prior value of0.5.

The actual decoding is controlled by the following code segment:
for (it=0; it<8; it++) {

/* Decoder 1 */
startFB(0);
waitForFB();
priorsToMem(0);

/* Decoder 2 */
startFB(1);
waitForFB();
priorsToMem(1);

recvPriors();
drawPic(win);

}

34 CHAPTER 4. TURBO DECODER

Note that after every iteration, the extrinsic information is written to memory by
invoking the functionpriorToMem . This is only necessary as the progress of the
decoder is shown after every iteration, i.e. a hard decision has to be formed. The
function recvPriors reads the extrinsic information from the memory and forms
this hard decision.

Figure 4-8: Testing setup

4.4 Results

4.4.1 Performance - bit errors

This section gives an overview over the performance of both the fixed point algorithm
and the floating point one (figure4-9).

SNR was calculated as

SNR=
Eb

N0

with Eb = Ec

R = 3K+12
K andN0 = PN

W = 2σ2. Latter assumes an AWGN channel
with double-sided power spectral density.

Both graphs were calculated for8 iterations, using the following program fragment:

iterations = 8;
reach = 10000;
i = 0;
errors = blockerrors = 0;
for (;;) {

if ((p = test(sigma, iterations))) {
errors += p;
blockerrors++;

}
i++;

4.4. RESULTS 35

if (i==reach) {
if (blockerrors >= 100)

break ;
else

reach *= 2;
}

}

The routinetest does the generation of the codeword, encoding and decoding.
Then, a hard decision is done after the 8th iteration. The result is then compared to the
original codeword, and the number of mismatches returned.

At least 100 blockerrors had to occur before the simulation was stopped. Also
note that simulation is not stopped immediately, but rather when reaching a multiple of
10′000.2

0 0.5 1 1.5
10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

E
b
/N

0
 [dB]

A
W

G
N

 B
E

R

block error rate (fixed−point computation)
average information−bit error rate (fixed−point computation)
block error rate (floating−point computation)
average information−bit error rate (floating−point computation)

Figure 4-9: BER curve for turbo decoder implementations

The floating point version shows a significant advantage over the fixed point one.
This is discussed in section4.5.

4.4.2 Performance - execution time

Table4-3gives a short overview of the decoding-time used by the different implemen-
tations written in the course of this semester thesis.

2Floating point versions have to be stopped after about300′000 iterations, as time was running out.

36 CHAPTER 4. TURBO DECODER

For testing purposes,10′000 random codewords (=6′125′000 bytes) were gener-
ated and encoded. Then, the respective decoder implementation ran8 iterations on the
encoded codeword.
Please note that these numbers only give a rough idea of the performance—all imple-
mentations can still be optimized.

Implementation Platform Time

Floating point AMD 1600XP 19 min
Fixed point AMD 1600XP 64 min
Fixed point 31 min

Table 4-3: Time used for decoding10′000 codewords

With the software version achieving a peak data rate of5.18 KB/s, none of these
implementations are suitable for actual applications.
Still, even at the modest clock rate of50 MHz, the hardware implementation almost
reaches the performance of the significantly higher clocked PC version. In section4.5
on page37, we suggest a few measures to gain enough speed for medium data rates.

4.4.3 ASIC

Without any doubt, a proprietary ASIC solution would be superior in speed, and even
more in area and power consumption. But also FPGAs have their advantages:

• The manufacturing technology used for the Virtex2 FPGAs is0.13µm, current
designs even use0.09µm. This state of the art technology is normally not applied
to ASICSs which are produced in much lower quantities.

• An ASIC—in smaller quantities—is much more expensive than an FPGA. Addi-
tionally, all possible options for varying block lengths and the like already have
to be hard-wired into the chip, which can increase the chip size significantly (as-
suming similar interleaver tables as we used).
For an FPGA, a mere resynthesis can adapt the decoder to another standard,
eliminating the need for parts that allow the selection of different codes.

• In addition to this, with a system as the proposed RHWOS, it would be possible
to share the FPGA area with other processing tasks. This applies when the turbo
decoder does not have to be available at all times, or can decode quickly enough
into a buffer.

• Development of an FPGA system is easier, especially testing.

These points should be considered in the following sections when the weaknesses
of FPGAs are discussed in more detail.

Execution time

Some parts of the FPGA work with optimal performance, e.g. multipliers and Block-
RAM. The rest has quite a reasonable performance. Under the assumption that the
VHDL code of the ASIC and the FPGA are more or less equivalent, the performance
drawback is most likely below a factor of4.

4.5. FURTHER STEPS 37

Other than that, the ASIC offers a lot more freedom concerning memory and multiplier
elements. There are also fewer size restrictions. Therefore, it would be possible to
implement several decoders in parallel, each with its own onboard memory. In terms
of clock rate, the differences are not notable. This holds true especially because of the
more recent manufacturing technology.

Area usage

Normally, it is assumed that only 10% of the FPGA die is used for actual logic, the rest
is consumed by routing. Thus, an ASIC may be about 10 times smaller. But this is a
very rough approxmation, depending on implementation and manufactoring technolgy.
Another important point is the fixed size of an FPGA. As we use only 15% of the chip,
we are certainly far away from an optimal space usage. As mentioned above, the rest
of the chip could be used for other tasks.

Power dissipation

Power dissipation heavily depends on the FPGA technology used. The Virtex2 works
with power consuming SRAM technology, whereas chips based on antifuse technol-
ogy would be by far better. The disadvantage of the latter is that they can be configured
only once, thus they were not suitable for this project.

Xilinx offers the tool XPower which calculates the actual power consumption of a
design. Due to lack of time, we could not test it. But the approximated overall power
consumption of the FPGA may be around1′000 mW, with 500 mW being static power
consumption, independent of the actual configuration of the chip.
Again, an ASIC could be at least 10 times more efficient, probably even more.

4.5 Further steps

The aim of this project was to implement a turbo decoder on an FPGA. As only a
limited amount of time was available, performance was not highest priority.
The following chapter presents some ideas for possible improvements. They can be
organized into three parts: execution time, memory usage and decoding quality.

Memory usage

Currently, the memory usage of the decoder system is not optimal (approximately120
kB are needed). Several steps can be taken to drastically whittle it down.

First, since the channel estimation is normalized to1, only half the information has
to be stored, as the other half can be calculated on the fly.

The same can be applied to the extrinsic information of the decoders when normal-
izing it before sending it to the next decoder.

Also, it would be possible to abandon the space needed for the backward iteration’s
state metrics by calculating the extrinsic information during the backward iteration.
In this implementation, SRAM had to be used anyway, so the simpler alternative of a

38 CHAPTER 4. TURBO DECODER

seperate calculation step for extrinsic information was chosen.

Finally, the current implementation overrides the least significant bit of the data
read in most cases. Thus, if the precision is satisfying,7 bit could be used instead of 8
to represent the data.

Overall, forK = 4′900 and8 bit precision, a memory usage of63′744 bytes would
thus suffice.

Execution time

The two main bottlenecks of the current architecture are memory bandwidth and the
Microblaze soft processor. Also, the forward-backward algorithm has some room for
improvements.

Concerning the Microblaze parts, not much can be done, except moving further
parts to hardware or increasing the clockrate. Because of this, only improvements con-
cerning the hardware part of the system are considered.

One iteration of the forward-backward algorithm takes approximately668′500 cy-
cles3. 637′300 of these are used for accessing memory.
The current memory interface is designed for simplicity rather than speed, taking be-
tween4 and5 cycles per memory access.4 This figure could be reduced to2 cycles,
thus yielding215′600 cycles in total - a speedup of

S =
31′200 + 637′300
31′200 + 215′600

= 2.71

This problem hopefully will be resolved by the further development of the RHWOS
and an accompanying memory manager.

Also, using some sort of cache architecture, one could ensure that the memory is
busy all the time, saving some extra cycles. This turns out to be rather straight-forward,
as the next value to be accessed is known in every step of the algorithm.
Another possible solution to achieve constant usage of memory would be pipelining of
memory loading, calculation and storage.

The weak point of the forward-backward algorithm is the scaling of the state met-
rics. As of now, this is done in a loop that shifts all messages to the left by one bit until
the most significant bit of one message is set.
A parallel version could bring considerable speedup - the current maximum bit can
easily be found by ORing all the current state metrics. From this, the shift count can
be inferred and executed in a single cycle.

Furthermore, calculation of the extrinsic information is done in a seperate step. By
integrating this into the backward iteration, one would not only require less memory for
storing the state metrics, but roughly, another98′000 cycles could be saved, resulting

3Based on simulating the behavioural model in ModelSim. This figure can vary depending on input.
4The reason for this is a very simple request-acknowledge protocol used for communicating with the

memory manager.

4.5. FURTHER STEPS 39

in an overall speedup of5.17.

Summing up, at a clock rate of50 MHz, a run of a single decoder could be opti-
mized to take2.5 ms instead of13.3 ms.

If the entire chip area of the Virtex2 FPGA could be used, and memory usage is op-
timized as described above, internal BlockRAM could be used for all data. Accessing
data there only takes1 clock cycle, yielding a speedup of7.42 compared to the current
version.

Of course, increasing to clock rate can also give a reduction in execution time.
However, this is not advisable due to both increased power dissipation and the timing
constraints given by the external memory.

Numerical improvement

As mentioned above, the implementation presented here is working with fixed point
numbers. This is not optimal for very noisy signals. Floating point arithmetic—or log-
likelihood arithmetic—should yield a significant improvment in such situations. [8]
gives a detailed analysis of the latter.
The current implementation assumes 8 bit per probability. To accomodate for a larger
range, one byte could be splitted into a 5 bit mantissa and 3 bit exponent. Then, each
multiplication needs a parallel addition for the exponents and an additional step to
recombine the result.

RHWOS

At the time of writing, the RHWOS infrastructure was not ready yet. Thus, the turbo
decoder presented here is still a stand-alone version, that has to be adapted slightly to
actually become suitable as a task.
Basically, the idea is to keep the actual decoder hardware on the R-FPGA, whereas the
controlling Microblaze program has to be taken to the C-FPGA part of the system.

Most of these points also apply when porting the decoder to another platform uti-
lizing Virtex2 FPGAs.

Communication Currently, the turbo decoder interfaces to the Microblaze via 3
GPIO registers (input, output and control) that have to be replaced by the standard
task interface (STI).

The controlling program abstracts from these communications via the fileturbo.c .
On the VHDL side,top.vhd is the interface to the turbo decoder - its signals have to
be routed to the STI.

Memory The turbo decoder accesses its data using the memory manager found in
memmanager.vhd , which in turn abstracts from the actual memory (in our applica-
tion, the right SRAM bank of the) using the filebasicmem.vhd .
Addresses are generated bymemmanager.vhd , and at the very beginning of the
architecture part of the file, a base address can be given. As stated above in
the memory section, a total of127′488 bytes are needed.

40 CHAPTER 4. TURBO DECODER

This memory manager has to be connected to the RHWOS’ memory manager,
which handles concurrent accesses by the tasks to the SRAM. The interim solution,
basicmem.vhd assumes the signals seen in table4-4 from the memory manager.

Signal Meaning

Addr 20 bit address for SRAM
DataIn 16 bit data to be written
DataOut 16 bit data read (registered)
TRQ transaction request
ACK acknowledge signal
WEn write enable (high active)

Table 4-4: Ports for memory manager

4.6 Running the demo

4.6.1 Software needed

• Xilinx Project Navigator (ISE). This is used to compile the hardware part of
the system.

• Xilinx Embedded Development Kit (EDK). Used to program the Microblaze
processor in C.

• Microsoft Visual C. Used for the encoder application on the PC side.

4.6.2 Compiling the demo

Please refer to chapter6 on page45 concerning the location of the project files on the
CD.

PC application

The PC application used to send packets over Ethernet is Microsoft Visual C project.
Only the actual sending, and the displaying of the picture are platform dependent.
The project file provided together with the source files contains all the dependencies,
so executing the program from inside Visual C will do all the work needed.

XFBoard application

The application is split in both a hardware and a software part. Thus,
compilation differs depending on where changes were applied.

Software Start EDK, and open the fileprojnav\system.xmp . Modifications
to the software part of the application can be applied here, and the finished project
downloaded to the FPGA using the option Download Bitstream.

4.6. RUNNING THE DEMO 41

Hardware This has to be done in two steps:

1. Start ISE, and open the fileprojnav\system.npl . This project connects
the hardware portion of the decoder to the Microblaze architecture. The option
“Generate programming file” will prepare a.bit stream for the Microblaze
architecture

2. Start EDK, open the project filesystem.xmp and select the option “Import
from ProjNav” to import the generated.bit stream, which is located in the
directoryprojnav\system.bit .
The .bmm file can be found inimplementation\system_bd.bmm .

After importing, the software will now work with the updated hardware part of the
system.

IP Addresses

IP addresses are hard coded in both applications. The default IP addresses used cur-
rently are169.254.45.1 for the PC, and169.254.45.2 for . As sending is
only done in one direction, only the address of the can be changed.

• PC.Change the variablem_IPAddressStr in TurboEncoderAppDlg.cpp

• XFBoard. Change the variableIPBoardAddress in network.c

4.6.3 Running the demo

Start EDK, open the filesystem.xmp . Select the option “Download” from the
“Tools” menu to download the bitstream to the .
The application will now poll the Ethernet and wait for the PC side to send an encoded
block (in13 packets). This block is then decoded and the progress of the turbo decoder
shown on screen.

42 CHAPTER 4. TURBO DECODER

Chapter 5

Conclusion

This semester thesis concentrated on the R-FPGA part of the .
Both a device driver for the OS frame, as well as two signal processing tasks were
implemented.

An overview over turbo codes is given, with references to papers concerning the
subject. In the implementation section, issues in bringing the design to hardware are
analyzed. Specifically, the translation to fixed-point arithmetics is described, along
with a few solutions to prevent numerical underflows.

Then, an actual hardware version for the is presented. It’s used in a
testing environment that receives encoded, noisy data from a PC and decodes it. Fi-
nally, some results pertaining execution time and performance are shown.

While the turbo decoder implemented in the scope of this thesis is not useable in a
real-world scenario, measures are suggested that could yield a significant performance
boost. This should be sufficient for medium data rates.
Especially the aspect of using reconfigureable hardware for such a decoder seems
tempting, and in comparison to proprietary ASIC solutions, a few promising aspects
are hinted at.

43

44 CHAPTER 5. CONCLUSION

Chapter 6

CD

This chapter gives a quick overview over the directory structure of the accompanying
CD.

• PresentationsSlides from the two presentations held

• Report Final version of this report, including all pictures

• SpectrumAnalyzerFiles for spectrum analyzer task

• TestProjectsVarious test projects

– MemTestTest for turbo decoder’s memory manager (right SRAM bank)

• TurboDecoder: directory of turbo decoder project, including all PC software

– Software

∗ InterleaverConstantGeneratorGenerates constants for the hardware
version of the interleaver

∗ TurboEncoderApp Windows applications used in our testing envi-
ronment to send an encoded, noisy picture to the .

∗ SNR_FixedPointSNR test for fixed point software implementation of
turbo decoder. Use “make” to compile.

∗ SNR_FloatingPoint SNR test for floating point software implemen-
tation of turbo decoder. Use “make” to compile.

– TurboDecoderTurbo decoder hardware project.

• VGADriver Files for the VGA driver project

– VGADriver Actual VGA driver - files need

– VGADemo Demo as described in section2.10on page12

– VGAMicroblaze Demo for the Microblaze part of the VGA driver

45

46 CHAPTER 6. CD

Bibliography

[1] Alliance Semiconductor.AS7C4096/ AS7C34096, 5V/3.3V 52K x 8 CMOS SRAM,
March 2002, v.1.8.
http://www.alsc.com/pdf/sram.pdf/fa/AS7C34096.pdf

[2] L. Bahl, J. Cocke, F. Jelinek and J. Raviv.Optimal decoding of linear codes for
minimizing symbol error rate, IEEE trans. Inf. Theory, March 1974, pp. 284-287.

[3] C. Berrou, A. Glavieux., and P. Thitimajshima.Near Shannon Limit Error-
Correcting Coding and Decoding: Turbo Codes, IEEE Proc. ICC ’93, Geneva,
Switzerland, May 1993, pp. 1064-1070.

[4] ETSI. Universal Mobile Telecommunications System (UMTS); Multiplexing and
channel coding (FDD) (3GPP TS 25.212 version 3.4.0 Release 1999)

[5] Intersil Corporation.HI1178 Triple 8-bit, 40MSPS, RGB, 3-Channel D/A Con-
verter, 2000.
http://www.intersil.com/design/images/DataSheet.jpg

[6] H.-A. Loeliger. Stochastische Modelle und Signalverarbeitung, Lecture Notes,
ETH Zurich, winter term 2003.

[7] M. Matsumoto and T. Nishimura.Mersenne Twister: A 623-dimensionally
equidistributed uniform pseudorandom number generator, ACM Transactions on
Modeling and Computer Simulation Vol. 8, No. 1, January 1998, pp. 3-30.

[8] G. Montorsi, and S. Benedetto.Design of Fixed-Point Iterative Decoders for Con-
catenated Codes with InterleaversIEEE Journal on selected areas in communi-
cations, vol. 19, no. 5, May 2001, pp. 871-882.

[9] S. Nobs. Student Thesis, Swiss Federal Institute of Technology Zurich (ETH),
Computer Engineering and Networks Laboratory.Prototype Board for Reconfig-
urable OS, July 2003.
http://www.tik.ee.ethz.ch/∼walder/HomePage/SADA/
PrototypeBoardForReconfigurableOS/PBFROS.pdf

[10] S. Nobs. Diploma Thesis, Swiss Federal Institute of Technology Zurich (ETH),
Computer Engineering and Networks Laboratory.Reconfigurable Hardware OS
- Prototype Part "C", 2004.

[11] B. Sklar.A Primer on Turbo Code Concepts, IEEE Communications Magazine,
December 1997, pp. 94-102.

47

48 BIBLIOGRAPHY

[12] S. Steinegger. Diploma Thesis, Swiss Federal Institute of Technology Zurich
(ETH), Computer Engineering and Networks Laboratory.Reconfigurable Hard-
ware OS - Prototype Part “FPGA”, 2004.

[13] VGA timing information, http://www.epanorama.net/documents/pc/vga_timing.html

[14] H. Walder, M. Platzner. Swiss Federal Institute of Technology Zurich (ETH),
Computer Engineering and Networks Laboratory, TIK Report Nr. 168.Reconfig-
urable Hardware OS Prototype, April 2003.
http://www.tik.ee.ethz.ch/∼walder/XFORCES/TIKR168.pdf

[15] S. Wegmann. Diploma Thesis, Swiss Federal Institute of Technology Zurich
(ETH), Computer Engineering and Networks Laboratory.Video Playback Tasks
for RHWOS, 2004.

[16] Xilinx, Inc. Virtex-II Platform FPGAs: Advance Product Specification, 2002.
http://direct.xilinx.com/bvdocs/publications/ds031.pdf

[17] Xilinx, Inc. Virtex-II Platform FPGA User Guide, December 2002.
http://www.xilinx.com/publications/products/v2pro/ug_pdf/ug012.pdf

[18] Xilinx, Inc. MicroBlaze RISC 32-Bit Soft Processor, August 2001.
http://www.xilinx.com/ipcenter/catalog/logicore/docs/
microblaze_risc_32bit_proc_final.pdf

[19] Xilinx, Inc.
http://www.xilinx.com

[20] Xilinx, Inc.
http://www.xilinx.com/ipcenter/catalog/logicore/docs/xfft.pdf

Please note that the URLs noted below the reference entries have been valid at the
time of writing. However, they may have become outdated in the meantime.

6th February 2004

	Introduction
	Reconfigurable Hardware Operating System
	XFBoard platform

	VGA Driver
	Introduction
	Features
	Requirements
	Overview
	VGA core
	VGA driver
	Line buffer

	Window manager
	Memory manager
	Timing diagram

	Internals
	VGA driver internals
	Window manager internals
	Memory manager internals
	Timing

	Demo application
	Compiling the demo application

	Notes
	Microblaze
	Font routines

	Spectrum Analyzer
	Introduction
	Features
	Overview
	FFT core
	Root core
	Extracting root in Hardware

	Putting it all together
	Limitations
	Further steps

	Turbo Decoder
	Turbo codes - overview
	Turbo encoder
	Channel
	Turbo decoder

	Implementation
	Code in use
	Forward-backward algorithm
	Interleaver
	Memory considerations
	Putting it all together

	Testing environment
	PC application (encoder)
	XFBoard (decoder)

	Results
	Performance - bit errors
	Performance - execution time
	ASIC

	Further steps
	Running the demo
	Software needed
	Compiling the demo
	Running the demo

	Conclusion
	CD

