
Institut für
Technische Informatik und
KommunikationsnetzeCommuni
ations Systems Resear
h Group

Thesis to the Semester Project

Towards Resilience Against Node Failures
in Overlay Multicast Schemes

Simon Heimlicher

Supervision: Kostas Katrinis, Prof. Dr. Bernhard Plattner

Publication: 11th August 2004

Contents

List of Figures iii

Abstract v

Preface vii

1 Introduction 1
1.1 Motivation 1

2 Background Information 3
2.1 Introduction to Network Protocols 3

2.1.1 Definitions .. 3
2.1.2 Switching .. 6
2.1.3 Protocol Stack .. . 6
2.1.4 Routing and Forwarding 8
2.1.5 TCP/IP Protocol Suite 10
2.1.6 Communication Modes 11
2.1.7 Multicast .. 13

2.2 Brief History of Internet Multicast 14
2.3 Motivation for Overlay Multicast 14

2.3.1 Problems of IPv4 Multicast 15
2.4 Overlay Multicast Primer 15

2.4.1 Classification of Overlay Multicast Schemes 16
2.4.2 Overlay Multicast Scheme Example 17

2.5 Aims and Goals of this Semester Project 17

3 Schemes Under Study 19
3.1 Scheme Classes 19

3.1.1 Native IPv4 Multicast 19
3.1.2 Host-Based Overlay Multicast 20
3.1.3 Replicator-Based Overlay Multicast 20

3.2 Protocol Independent Multicast—Sparse Mode (PIM-SM) 21
3.3 Overlay Multicast Protocol (OMCP) 23

3.3.1 Contributions in OMCP 23
3.3.2 Mesh . 23
3.3.3 Overlay Routing .. . 28
3.3.4 Data Delivery Tree 28
3.3.5 Group Dynamics .. 29
3.3.6 Further Improvement 29

ii

CONTENTS iii

4 Model and Evaluation Method 31
4.1 Methodology 31

4.1.1 Metrics .31
4.1.2 Class-based Assessment 34
4.1.3 Heuristics .. . 35
4.1.4 Application Profiles 35
4.1.5 Weighting .. 36

4.2 Simulation Experiments 37
4.2.1 Simulation Software 37
4.2.2 Network Topology .. . 37
4.2.3 Scenario .. 38
4.2.4 Key Parameters of the Scenario 40
4.2.5 Statistical Evaluation 40

5 Results 42
5.1 Application Profile Results 42

5.1.1 Variation between Runs 43
5.2 Discussion 43

5.2.1 Node failures .. . 48
5.2.2 Obstacles .. 48

6 Conclusion 50
6.1 Further Research 50

A Conceptual Formulation 51

B Review 60

C OMCP Implementation 61
C.1 Simulation Parameters 61

C.1.1 Join, Leave And Death Events 61
C.1.2 Bootstrap Process 62
C.1.3 Refresh Mechanism .. . 62
C.1.4 Routing Protocol 62
C.1.5 Latency Measurement 63
C.1.6 Data Source Characteristics 63
C.1.7 Mesh Improvement Mechanism 63
C.1.8 Mesh Repair Mechanism 63
C.1.9 Tree Transient Data Forwarding Characteristics 64

C.2 Excerpts from the OMCP Source Code 64
C.2.1 OMCP Node Class .64
C.2.2 Member Record Class Header File 64

Bibliography 77

Index 81

List of Figures

2.1 Ethernet link between two hosts 4
2.2 Network connected by switches 4
2.3 Internetwork connected by routers 5
2.4 Message traversing the TCP/IP protocol stack 7
2.5 Protocol stacks in hosts and routers 8
2.6 Routing tables of a simple topology 9
2.7 Unicast communication 12
2.8 Broadcast communication 12
2.9 Multicast communication 13
2.10 Overlay multicast scheme 18

3.1 PIM inter-domain routing 21
3.2 PIM-SM shared tree 22
3.3 Comparison between PIM-SM source-specific tree and shared tree. 23

5.1 Delay samples of three hosts 45
5.2 Stretch samples of three hosts 45
5.3 Number of data delivery tree children of four hosts 47
5.4 Current parent host of three hosts 47
5.5 Status of six hosts which die during the session 49
5.6 Number of packets missed at three hosts 49

iv

Abstract

Several emerging Internet applications require group communication. Multicast, a many-
to-many communication service model for theInternet Protocol (IP), was proposed fifteen
years ago, but still lacks universal deployment. Consequently, researchers have investigated
other solutions,overlay multicastbeing the most prominent among them. In Internet termi-
nology, anoverlay is a virtual network built on the IP substrate. For multicastin particular,
it is usually aspanning treeformed by the hosts belonging to themulticast groupand the IP
unicast links among them.

In the present semester project, a new scheme based onNarada [1] has been designed
and evaluated using simulations. The primary design goal was resilience against member
failures. Since packet forwarding is performed by ordinarygroup members, member failure
leads to loss of data and consequently to quality degradation for the target application. The
novel features of the present approach compared to Narada are overlay optimization based
on negotiation among neighbors, triggered routing updatesfor fast convergence and forced
route changes through poisoning.

Simulation experiments have shown that in case of abrupt node failure, packet loss is
unacceptably high for typical multicast applications. With forwarding entities as unreliable
as personal computers,IP-level multi-pathrouting, which allows for graceful degradation
on single path failure, appears to be a valuable solution.

v

vi

Preface

This work started in October 2003 and culminated with the thesis at hand in July 2004. The original
specification of the subject was:

Overlay Multicast Simulation:Problems in the deployment of network layer multicast have led the
research community to alternative group communication solutions. One of them is application layer
multicast, where data is routed via an application layer overlay to the group members. The goal of this
thesis is to model and implement a generic simulation framework for such overlays.

This problem was then refined in the conceptual formulation1 with the title “Evaluation of Routing
Schemes for Group Communication in Packet Switched Networks.” The formulation of the problem to
be addressed was:

What is the most efficient multicast service for wide deployment in the existing Internet2 among the
existing alternatives?

The procedure to achieve this goal was planned to follow these steps: 1. Studying of related work. 2. Se-
lection of a representative set of multicast schemes to put under study. 3. Discussion of the evaluation
parameters and creation of application profiles. 4. Studying the use of the OMNeT++ simulator. 5. Im-
plementation of the chosen protocols in the OMNeT++ environment and measurement of the variables
of interest. 6. Processing of the results and derivation of conclusions.

After the first three steps, we were planning to compare two overlay multicast schemes with IPv4
multicast. However, in the process of implementing the firstoverlay multicast scheme, we noticed that
it was infeasible to implement the other two in the limited time frame of a semester project. Thus, we
decided to focus on the implementation of the first overlay multicast protocol and then compare it with an
existing implementation of the IPv4 multicast scheme. In the process of the implementation, we came up
with a few improvements over the original design. The simulation experiments with our scheme yielded
very interesting results and we are currently in the processof putting the outcome of our work into a
manuscript that we plan to submit for publication in the nearfuture.

It is our perception that the audience of semester theses is usually a very limited set of people: the
supervisor and maybe some fellow students or the parents of the author. Most theses assume a decent
knowledge in the subject area and this makes them a frustrating read for people from other fields. Having
this in mind, we tried to keep our introduction to network protocols and overlay multicast schemes
comprehensible to the broad audience. Readers with diversebackground are encouraged to start their
journey through this text with Chapter 2 on page 3 and then continue with the introduction on the next
page. This approach should make the remaining chapters moreenjoyable.

Welcome to the world of overlay multicast!

Simon Heimlicher and Kostas Katrinis
11th August 2004.

1The complete document can be found in Appendix A.
2We use the termInternet with a capital ‘I’ when we talk about the global internetworkcommonly referred to as “the

Internet” that evolved fromARPAnet, developed by theAdvanced Research Projects Agency (ARPA)in the USA in the 1960s[2].

vii

viii

Chapter 1

Introduction

The growth rate of the Internet during the last decade has been spectacular. One of the key characteristics
that enabled the transformation from an internetwork used almost exclusively by military and educational
institutes to the omnipresent global Internet of today is the simplicity of its underlying protocol suite,
TCP/IP. At its core lies theInternet Protocol (IP),which does very little, but does it extremely well:
it delivers short messages from a source machine A across allintermediate networks to a destination
machine B.

As the Internet evolved, so did the expectations of its usersand the demands of the services running
over it. Emerging applications like audio/video streamingand conferencing, distributed computing and
database replication require data-intensive communication among large and heterogeneous groups of
hosts.

With the advent of broadband Internet access to the homes of more and more people, the audience
for such data-intensive applications grows rapidly. The basic approach of replicating data packets at
the source and delivering every single copy separately is very expensive in terms of network resources.
Since the connections to the end systems are getting faster at a similar pace as the servers and backbone
networks, at some point in time, this will no longer be feasible using only unicast communication.

Clearly, a more intelligent distribution scheme is needed.

Multicast is a service model for the distribution of data from one source to a group of end systems.
Even though it has been proposed fifteen years ago and today almost every router has built-in support
for multicast forwarding, providers of rich content and value-added services still do not rely on it due to
incomplete deployment.

In this chapter, we will give an overview of the currently available network layer multicast protocols
and their limitations and show where overlay multicast schemes come into play.

For readers not familiar with networking protocols and multicast, it is suggested to first read
Chapter 2 on page 3.

1.1 Motivation

The core network protocol of today’s Internet,IPv4 [3], offers native support for a many-to-many service
model termedmulticast. Unfortunately, this extension to the TCP/IP protocol suite dating back to 1988
has never been adopted by its target audience, the Internet service providers. To make matters worse, sev-
eral IPv4 multicast protocols exist currently. The most popular are in chronological order of occurence:
Distance Vector Multicast Routing Protocol (DVMRP) [4], Multicast Open Shortest Path First (MO-
SPF) [5], Core Based Trees (CBT) [6], [7], [8]andProtocol Independent Multicast (PIM) [9], [10].
The next version of the IP protocol,IPv6 [11], is currently being deployed Internet-wide. This protocol
version will provide much more sophisticated multicast services from the beginning. While IPv4 mul-
ticast limits the maximal number of simultaneously active groups to about220, the address range IPv6

1

2 CHAPTER 1. INTRODUCTION

reserves for multicast (about2112 addresses) should be large enough for the next few decades.
Researchers have investigated other approaches in the meantime. Since increasingly deployed peer-

to-peer file sharing protocols like Gnutella [12] and BitTorrent [13] are already quite efficient even though
they run in the application layer on end systems, it appears feasible to also implement multicast services
in this manner. At the time of writing, however, no protocol suite for application layer multicast has been
adopted by the IETF [14] or any other standards committee.

A considerable amount of work has been done by researchers toanalyze different approaches to the
multicast problem, but a lot of questions remain unanswered. The question addressed by this thesis is:

What is themost efficientmulticast service
for wide deployment in the existing Internet among the existing alternatives?

Our approach towards answering this question was in brief: Based on a set of requirement profiles of
typical multicast applications, we rated qualitatively most of the currently publicly available application
layer multicast protocols. We decided to useNarada[1], also known asEnd System Multicast (ESM)as
the basis for our simulation. We implemented Narada in theOMNeT++ [15] discrete event system simu-
lator. For the generation of the Internet-like simulation topologies, we usedGT-ITM [16]. We simulated
a multicast application in an Internet-like topology. Finally, we weighted the results of the simulation
experiments according to our profiles and drew conclusions about the suitability of our approach for a
number of multicast applications.

The present thesis is structured as follows. In Chapter 2, wewill present the basic concepts of net-
work protocols, IPv4 multicast and introduce overlay multicast. Chapter 3 provides an overview of the
multicast schemes we have considered and descriptions of the protocols we have put under study. Subse-
quently, in Chapter 4, we specify our evaluation methodology and the simulated network topology. We
discuss the results of the simulation experiments in Chapter 5 and assess the performance of our scheme
for various applications. We conclude in Chapter 6.

Appendix A contains the complete initial conceptual formulation. In Appendix B, we review the
goals of the project we reached and those we haven’t achieved. Appendix C provides an explanation
of the parameters of our OMCP implementation and excerpts from the C++ source code used for the
simulation in the OMNeT++ environment.

Chapter 2

Background Information

This chapter introduces the fundamental terms and conceptswe are going to touch in the thesis. We first
give a very brief overview of network protocols and the concept of multicast communication. In Section
2.2, we outline the history of multicast in the Internet. Themotivation for our work is given in Section
2.3. We conclude the chapter with a primer on the core subject—Overlay Multicast—in Section 2.4.

2.1 Introduction to Network Protocols

A thorough introduction to computer networks is beyond the scope of this text. Nevertheless, we will
try to explain the essential characteristics of network protocols in this section. A broad overview of the
technologies used at the various network layers is given in [17]. A system-oriented discussion of the
important concepts of computer networks can be found in [18]. To keep this section brief enough, we
will take the liberty of skipping concepts that are not of prime importance to the context. The footnotes
give additional information where we omit important details.

This section is organized as follows. First, we give an overview of the concepts of computer networks,
then we explain the terms relevant to the thesis in more detail.

2.1.1 Definitions

First of all, we need to give some definitions of basic components of networks we will refer to in the
future.

Network The general termnetworkrefers to any means which allows two or more computers to com-
municate with each other.

Protocol When people communicate with each other, they use a languagewhich allows them to process
the acoustic waves received by their ears or the symbols seenby their eyes. To understand each other,
computers need to use a common language, too. Since we assumethat computers don’t have any intuition
in the sense that they are unable to read between the lines, computers can only communicate using a very
strict kind of language. Such languages are calledprotocols.

When discussing computer networks, a distinction between the following classes of devices is often
made based on their purpose.

Host A hostor end systemis either a personal computer or a server. On an abstract level, we may also
call a host anode.

3

4 CHAPTER 2. BACKGROUND INFORMATION1 2A l i c e B o bE t h e r n e t l i n k
Figure 2.1: An Ethernet link between hosts 1 and 2.1

2

A l i c e

B o bS w i t c h 1 S w i t c h 2 S w i t c h 3
Figure 2.2: A simple network connected by three switches.

Link The basic building blocks for networks arelinks. A link is an abstract word for the physical
medium that carries the signals between devices. This may bea cable or a wireless connection. The
most common medium is copper wire.Ethernet is the most popular link techonology for home and
office networks. Ethernet uses copper wire or glass fibre or, in the wireless case, no medium at all. To
simplify the discussion, we will assume wired networks in this section. In Figure 2.1, a simple link
between the computers of Alice and Bob is shown.

Switch Switches are active hardware devices which connect hosts toeach other. The resulting network
is called asubnetwork. Figure 2.2 is an example of how several hosts may be connectedto each other
using switches. The delivery of data is performed by the switches entirely transparent to the end systems
and without a perceiveble delay.1 In contrast to routers, which will be discussed next, a switch can only
handle messages to hosts which are directly connected to it or another directly connected switch, i.e.,
hosts in the same network.

The cloud symbol in Figure 2.2 denotes any kind of network andis commonly used to depict the
Internet. It just interconnects all systems which have a connection to it.

Router Routersare active hardware devices which interconnect two or more independent networks. A
network of networks is termed aninternetwork.Routers are able to connect networks of different kind.

1A hub is a passive network device which has the same purpose as a switch. The difference between a hub and a switch is,
that a hub only supports communication between two ports at atime. All data which are received on one port are sent out on all
other ports. In contrast, a switch withn ports supports up ton

2
concurrent connections at full speed in both directions. When a

switch first receives a message from a host with the physical address A, addressed at the host with physical address B, it sends
this message on all interfaces except the one where the message came from (exactly like a hub). The switch takes note of the
destination port and the corresponding physical address. In the future, when the switch receives a message to an addressit has
already seen, it transmits it only to the corresponding port.

2.1. INTRODUCTION TO NETWORK PROTOCOLS 5

C o m p a n y
U n i v e r s i t y

A D S LP r o v i d e r

2

1 R o u t e r A R o u t e r B
R o u t e r C

A l i c e

B o b
Figure 2.3: A simple internetwork comprised of the three networks “ADSLProvider”, “Company” and
“University” and connected by three routers. Thus, Alice and Bob can communicate with each other,
even though they are connected to different networks.

Therefore, they are usually a lot more sophisticated than switches. A very simple internetwork is shown
in Figure 2.3. Note that this internetwork contains a loop. Routers are able to cope with this situation.
Communication between Alice and Bob normally runs over router A. But if the physical link between
router A and router C fails, the routers will adapt to the situation quickly and future messages will be
sent via router B and router C.

When an application, e.g. an e-mail client, sends a message to the e-mail server running on another host,
the message passes the following facilities before it is actually transmitted on the link:

Network Protocol Stack This is usually a part of the operating system software. It knows how to
communicate with other computers which have the same protocol stack built in. In the Internet, the
TCP/IP [3], [19] protocol stack is used.

Network Interface Driver The piece of software which translates the messages into commands that
are understood by the network hardware is called network interface driver. It is situated below the device-
independent network protocol stack and above the hardware responsible for network communication.

Network Interface This part of the computer hardware that transforms the data to be sent into electrical
or electro-magnetical signals when transmitting and restores the data from these signals when receiving.
Most network interfaces today are able to send and receive atthe same time.

We will next discuss the concepts pertaining to the current thesis in more detail.

6 CHAPTER 2. BACKGROUND INFORMATION

2.1.2 Switching

Historically, the process of preparing the path of a messagethrough the network is calledswitching.
Networks can roughly be divided into two classes by the switching strategy they use. Until the 1950s,
most networks werecircuit-switched. This means, that a physical path between sender and receiver is set
up for and dedicated to the connection before two hosts communicate with each other—very similar to
how telephone operators in the early days established the telephone connection on request of the caller.
Once this has been accomplished, the sender may inject messages into the connection at will and no other
entity can use the physical lines involved in this connection. After all data have been sent, the connection
is torn down explicitly. No congestion can occur and all bytes of the message arrive in sequence. Circuit
switching is used in telephone networks2.

In contrast to the telephone network, current computer networks deliver data in the following way:
The sender cuts the message into small pieces calledpacketsand prepares them for transmission by
prepending a header indicating the destination address to every piece. The network infrastructure then
routes these packets along potentially disjoint paths through the network to the receiver, which reassem-
bles them to the original message. This type of network is called packet-switched [20],because it op-
erates on individual packets. With packet switching, thereis no need to set up the path for a message
beforehand. Instead, the first packet can be sent off as soon as it becomes available. But at no point in the
transmission is it guaranteed that the network does have enough free resources to deliver the message. If
too many messages are injected into the network, congestionoccurs and packets need to be buffered or
even dropped at the bottleneck. Usually this happens at a router whose input buffer is full.

Since packet-switched networks make far better use of the network resources available and allow
for greater throughput, today’s computer networks are usually packet-switched. In this text, we always
assume packet-switched networks.

2.1.3 Protocol Stack

There are a lot of analogies between human and computer communication. In a simple transmission of
a message from Alice to Bob, several distinct steps can be distinguished: At the beginning, Alice’s brain
translates her thought into words, for example, “Hello Bob”. Then, it sends an electrical signal to the
vocal cords which orders them to generate the sound of these words. This sound wave is carried to Bob by
the physical medium, the air. His eardrums translate this mechanical wave back into an electrical signal,
which can then be processed by his brain and the original thought Alice had in mind is restored. Note
that the actual message is transformed from a thought into a mechanical wave in a few steps, transmitted
over the air, and then transformed back in similar steps intoa thought.

Similar transformations are applied to messages sent over anetwork by theprotocol stack3. As the
name implies, we can think of it as a stack of protocols. The stages which a message passes when it is
transformed are calledlayersor levels.

2Today, however, even telephone networks are mostly packet-switched. It is possible to unite the advantages of both types
with virtual circuits: A logical connection is set up between two end points and the necessary resources are allocated for the
duration of the connection.X.25 is a popular example for this kind of network. It supports permanent virtual circuits which
are an alternative for leased lines. TheAsynchronous Transfer Mode (ATM)network standard was developed to allow the
multiplexing of thousands of telephone connections into one optical fibre link. It uses packet-switching to accomplishthis and
a major part of the Internet backbone consists of ATM links. In Switzerland, only the last mile from the phone jack to the first
device of the telephone network is analog, the interconnection network is completely digital.Digital Subscriber Line (DSL)
and its siblingsADSL, HDSLetc. make use of this fact.

3There exist several reference models for protocol stacks. The most popular model, at least for educational purposes, isthe
OSI Reference Model [21], [22], developed in 1983 by the International Organization for Standardization. OSI is an acronym
for Open System Interconnection, and this model defines a networking framework for implementing services and protocolsin
seven layers. The Internet, however, uses theTCP/IPprotocol stack. We will use a combination of both models because we
think it is confusing to talk about two different models in anintroductory text.

2.1. INTRODUCTION TO NETWORK PROTOCOLS 7

Figure 2.4: A simplified example of a message traversing the TCP/IP protocol stack.

A simplified example of what this looks like in the TCP/IP protocol stack is shown in Figure 2.4.
Note that the TCP/IP reference model actually consists of four layers since it has only one layer below the
network layer. The layer numbering shown in the figure, however, is the most common among network
operators and network gear manufacturers and is often used in the literature, for example in the book by
Tanenbaum [17].

Corresponding layers in different machines run the same protocol and communicate with each other.
They cannot exchange messages directly, though. Instead, the message to send is passed to the lower
layer which will further process it. It can thus be said that the lower layer provides a service to the upper
layer. In the above example, theapplication layer cannot send the user’s request for a web page to
the application layer running on the web server directly. Itcan, however, instruct thetransport layer
to deliver the message to the transport level at the destination host. The transport layer itself does not
actually transmit the message, though. Instead, it cuts themessage into packets and hands these down to
thenetwork layer,which is responsible to do its best at delivering those packets to the destination. From
the network layer, the message is again passed to the lower layer, thedata link layer, which controls the
access to the link, corrects bit errors, etc. It converts themessage including all headers, error correction
codes etc., into a sequence of bits, which is then translatedinto voltages by thephysical layer. The
physical medium—thechannel—then carries the signal to the remote host.

Whenever a message is passed from an upper protocol layer to the one below, the upper layer first
adds aprotocol header4 to the message. The lower layer then operates on the longer message including
the header of the upper layer. Once the message has reached the lowest layer, it is transmitted to the
destination machine. This machine then reverses the process: Every layer first reads the information in
the header added by its peer at the sender, acts accordingly and strips the header off before passing the
remainder of the message to the upper layer.

Whether a layer is implemented in physical or software depends on the device type. In an end system,
e.g., on a personal computer or a web server, only the physical layer is implemented in physical. Data
link, network and transport layers are provided by the operating system software. The application level
protocol is running in the application program, e.g., the web browser or the e-mail client.

In the context of multicasting, we will mostly talk about thenetwork layer protocol IP or application
level protocols.

4Depending on the data link layer protocol, this layer may additionally append a trailer.

8 CHAPTER 2. BACKGROUND INFORMATION

Figure 2.5: A simplified example of the protocol stack traversals of a message from host 1 to host 2 via
routers A and B.

2.1.4 Routing and Forwarding

Routing is a joint venture of all routers in the network with the goal of distributing the information
necessary to deliver packets to any destination host in the network. The path which a packet follows is
called aroute. The routing information is stored in therouting tableof every router.Forwarding is a
much simpler process. It just means to correctly guide packets through the network using the information
in the routing table. To forward, only a subset of the data of the routing table is necessary and this subset
is often called aforwarding tablein this context. The forwarding table is established by the routing
process or manually set up by the network operator.

In routers, the message is only passed from the physical to the data link and then to the network layer.
In the network layer, the router examines the network layer destination address, looks up thenext hopof
the route and passes the message back to the data link layer with the instructions to send it to this host.

When a packet arrives, the router looks up the route to the destination in its routing table and sends
the message on the correct interface into the next network. The machines along the route are also termed
hops.Routing tables contain information about thecostof a route. The cost is an indication of how good
a route is in the perception of the router. A very basic routing algorithm might just count the number of
hops it takes to the destination and use this number as cost. When deciding which route it should store
in the routing table, it would take the route with the least number of hops. This is calledshortest path
routing. In Figure 2.6, an example routing topology of a TCP/IP internetwork is shown. The cost of the
links is shown initalics beside every link. The routing table of router A is printed below. The destination
addresses refer to the networks. For instance, “10.1.0.0/16”, denotes the network with address 10.1.0.0
and a netmask of 16 bits. The latter means that the network part is defined by the first 16 bits. The rest
of the address is the host address. The IP addressing scheme is further explained in the next section.

Destination Next Hop Interface Cost

10.1.0.0/16 10.1.0.1 I01 0
10.2.0.0/16 10.3.0.1 I03 4
10.3.0.0/16 10.3.0.1 I03 1

If, however, the link between router A and router C fails, therouting tables have to adopt to the new
situation. The modified routing tables are also shown in the figure. Routes that have changed are shown
in italics in the modified routing table of router A:

2.1. INTRODUCTION TO NETWORK PROTOCOLS 9

Routing Table of Router C

All links up

Destination Next Hop Interface Cost

10.1.0.0/16 10.1.0.3 I01 1

10.2.0.0/16 10.2.0.3 I02 3

10.3.0.0/16 10.3.0.3 I03 0

Link Router A – Router C down

Destination Next Hop Interface Cost

10.1.0.0/16 10.2.0.3 I02 8

10.2.0.0/16 10.2.0.3 I02 3

10.3.0.0/16 10.3.0.3 I03 0

Routing Table of Router B

All links up

Destination Next Hop Interface Cost

10.1.0.0/16 10.3.0.2 I03 4

10.2.0.0/16 10.2.0.2 I02 0

10.3.0.0/16 10.3.0.2 I03 3

Link Router A – Router C down

Destination Next Hop Interface Cost

10.1.0.0/16 10.1.0.2 I01 5

10.2.0.0/16 10.2.0.2 I02 0

10.3.0.0/16 10.3.0.2 I03 3

Routing Table of Router A

All links up

Destination Next Hop Interface Cost

10.1.0.0/16 10.1.0.1 I01 0

10.2.0.0/16 10.3.0.1 I03 4

10.3.0.0/16 10.3.0.1 I03 1

Link Router A – Router C down

Destination Next Hop Interface Cost

10.1.0.0/16 10.1.0.1 I01 0

10.2.0.0/16 10.2.0.1 I02 5

10.3.0.0/16 10.2.0.1 I02 8

I 0 31 0 . 3 . 0 . 3
C o m p a n y1 0 . 2 . 0 . 0 / 1 6

U n i v e r s i t y1 0 . 3 . 0 . 0 / 1 6

A D S L P r o v i d e r1 0 . 1 . 0 . 0 / 1 6 R o u t e r A R o u t e r B
R o u t e r C

A l i c e1 0 . 1 . 1 7 . 2 2

B o b1 0 . 3 . 1 8 7 . 22

1 I 0 11 0 . 1 . 0 . 1 I 0 21 0 . 1 . 0 . 2I 0 31 0 . 1 . 0 . 3
I 0 11 0 . 2 . 0 . l I 0 21 0 . 2 . 0 . 2I 0 31 0 . 2 . 0 . 3I 0 11 0 . 3 . 0 . 1 I 0 21 0 . 3 . 0 . 251 3

Figure 2.6: A simplified example of routing. When all links are up, messages between Alice and Bob
are sent via Router A and Router C. When a link failure betweenrouter A and C occurs, the routing
tables change accordingly and traffic is forced to take the long route via router B. The modified routes
are shown in bold type.

10 CHAPTER 2. BACKGROUND INFORMATION

Destination Next Hop Interface Cost

10.1.0.0/16 10.1.0.1 I01 0
10.2.0.0/16 10.2.0.1 I02 5
10.3.0.0/16 10.2.0.1 I02 8

Note, that even though on paper this routing table update looks very straightforward, it is a big challenge
in practice. There are many intricacies hidden in distributed algorithms. How some of them can be
tackled with is shown in Section 3.3.

2.1.5 TCP/IP Protocol Suite

The protocol stack run by all computers connected to the Internet is calledTCP/IP [3], [19] TCP/IP
denotes a whole protocol family. To give an overview, we follow a message traversing the TCP/IP stack
and refer again to Figure 2.4.

In the application layer, we see the actual message: The sender requests a web page via the HTTP
protocol. The application layer hands this message down to the transport layer, which is running TCP.
TCP cuts it into suitably large packets and prepends its header. The header indicates, which application
layer protocol has sent the message to allow the receiver to handle the message correctly. In TCP, this
demultiplexing key is termed aport. The current fragment number and the total number of fragments
is indicated as well to allow the receiver to reassemble the packets correctly, even if they don’t arrive in
order5. The message is then passed down to the IP layer, where the IP address of source and destination
host is added.

Below the network layer, in the data link and physical layers, a variety of protocols can be used. For
home, campus and office networks,Ethernetis the most popular protocol below TCP/IP. It can handle a
wide range of physical media, e.g. the IEEE 802.3 standard defines Ethernet on electrical wires or optical
fibres and IEEE 802.11 defines Ethernet for wireless devices.

We will now describe the essential protocols of the suite in more detail.

Network Layer The most important protocol of the TCP/IP suite is the network layer protocolIP.
IP is an acronym forInternet protocol.The current version is IPv4, but the next version, IPv6 [11],is
already being deployed. All that IP provides is the deliveryof small messages calleddatagramsfrom
one host to another. This simplistic approach is largely responsible for the enormous adaptability of IP
to various underlying network technologies. However, the IP protocol only offers abest-effortservice,
which means that it doesn’t provide any guarantees about availability or performance of service.

Hosts communicating to each other via TCP/IP need an IP address. In the currently deployed version
of IP, version 4, addresses are 32 bit integer numbers. Conceptually, an IP address consists of two
parts6. The first part (higher order bits) forms thenetwork addressand determines to which of the
many networks connected by the Internet it belongs. The restof the address is calledhost addressand
determines to which of the hosts in the network it refers to. Where the network part ends and the host part
begins is therefore also part of the addressing informationand usually given in a bit mask callednetmask.
This distinction is essential to allow routers to efficiently guide packets in large internetworks since it
allows hierarchical routing. Routers outside a network need only know whether the destination host is
somewhere inside the network. The delivery to the final recipient is then the responsibility of the routers
inside this network. We again refer to Figure 2.6 for an example. When routing a message from host 1
to host 2, router A applies the netmask with a bitwise AND to the destination address. The resulting IP
address is then 10.3.0.0 and the router looks up the route forthis so-calledprefix. Appearently, router C

5Flow, congestion and other control data is also included, but not shown in the figure for simplicity.
6Actually, there are three parts:Network, subnetworkandhostpart. But we treat the network and subnetwork part as one to

make the discussion more understandable.

2.1. INTRODUCTION TO NETWORK PROTOCOLS 11

with address 10.3.0.1 is responsible for all addresses in this network (10.3.0.1–10.3.255.255). Therefore,
router A sends the message out on Interface I03. Router C thenroutes the message either directly to the
subnetwork of host 2 or to the next network, depending on whatis hidden inside the cloud.

Transport Layer Right above IP, one of the transport layer protocols, e.g.,TCPor UDP,do their duty.
TCP meansTransmission Control Protocoland provides a reliable stream of data between two end points
connected by a network running the IP protocol. UDP stands for User Datagram Protocoland provides
a very slim message delivery service which in essence makes IP datagrams accessible to applications.
Consequently, UDP is not more reliable a service than IP.

Application Layer The protocols in the application layer7 provide the interface between the applica-
tions and the TCP/IP stack. The most popular areHTTP, which is used by theWorld Wide Weband
SMTP, which is responsible for the delivery of e-mails.

2.1.6 Communication Modes

Similar to communication among human beings who have the ability to either speak to a crowd, talk with
a group or whisper into each other’s ears, computers adapt their modes of communication to their needs
as well.

There are mainly three communication modes:Unicast, broadcastandmulticast.While unicast and
broadcast communication is used heavily in today’s computer networks, multicast is not in very wide
use, at least not between geographically dispersed computers. We will give possible reasons for this fact
in Section 2.3.

Please note that unicast communication may be uni- or bi-directional whereas broadcast and multicast
communication is always uni-directional.

Unicast Unicast is the standard mode: One host sends a message to a single designated host. The
sender puts the address of the receiver into the destinationfield of the message header and the network
delivers the message.

An example is shown in Figure 2.7: Host 1 sends a unicast message to host 2. This message goes
from the sending host 3 via a switch to router A, then router D and router C. From there, it can directly
reach host 2 via the subnetwork, passing 2 switches.

Broadcast In this mode, data is emitted from one host to all other hosts.In this context, the set of
all hosts is constrained by physical or logical limits. For example, if a host connected to a switch sends
a broadcast message, only hosts connected via switches willreceive it. If a router is connected to the
switch, the router will receive the message, but not forwardit to avoid a misbehaving host to flood the
whole network. Broadcast communication is for example usedwhen host 1 needs to send a message
to host 2 in the same network, but doesn’t know the physical address of 2. The protocol responsible to
resolve this dilemma is calledaddress resolution protocol (ARP)and runs in the data link layer. It works
like this: ARP sends a broadcast message asking “Who has thisIP address?” Host 2 receives this request
and sends a reply with its physical address. Host 1 now can address host 2 directly and all subsequent
communication is unicast. Figure 2.8 shows a situation where in all three subnetworks one node is
sending a broadcast message. All nodes in the same broadcastdomain receive it, but routers ignore
brodcasts to ensure that one misbehaving host cannot flood the whole Internet with useless broadcast
messages.

7In contrast to the TCP/IP protocol stack, the OSI model divides the application layer into three distinct layers:session,
presentationandapplicationlayer.

12 CHAPTER 2. BACKGROUND INFORMATION

1
2

R o u t e r A R o u t e r D R o u t e r C
R o u t e r B

Figure 2.7: Unicast communication from host 1 to host 2

B

AA C C
C C CA A A

B B B BBB

R o u t e r A R o u t e r D R o u t e r C
R o u t e r B

Figure 2.8: Broadcast communication is confined to the broadcast domain, i.e., subnetworks A, B and
C. The routers ignore broadcast messages.

2.1. INTRODUCTION TO NETWORK PROTOCOLS 13

G 4

S G 8
G 6 G 7G 1 G 2 G 3 G 5

R o u t e r A R o u t e r B R o u t e r C
R o u t e r D

Figure 2.9: Multicast communication from the mulitcast source hostS to all subscribers, denoted by
G1..8.

2.1.7 Multicast

The idea behind multicast is to let the network deliver messages destined at a group of hosts instead of
sending a separate copy of the message to each and every receiver. Multicast communication seems to
be situated between unicast and broadcast. For multicast communication, a set of participating hosts
needs to be defined. This set is called amulticast group.When a member of this group sends, it is the
source,and all other members arereceiversor subscribers. Every multicast group needs to be assigned
its owngroup addressfrom the IP multicast class D network with the address range 224.0.0.0 through
239.255.255.255 as defined in [23].

In a packet-switched network with network layer support formulticast, the multicast delivery from
one host to all other hosts of the group works in the followingmanner: The source sets the destination
address of the message to the group address and inserts the message into the network. The network in-
frastructure, i.e., the routers, then forwards the messagetowards the receivers and replicates it as needed.
With network layer support for multicast, the actual delivery is completely transparent to all group mem-
bers. In Figure 2.9, it is shown, how a multicast message fromthe source hostS is delivered to the group
members denoted byG1..8. The source host sends the message to its default gateway, router A, and the
latter then handles the delivery8. A copy is sent to routers C and D, which replicate it and send copies to
all group members in their network.

The multicast service can be implemented above the network layer as well, though, and such schemes
are the subject of this thesis. Multicast protocols runningabove the network layer are calledapplication-
layer or overlay multicast protocolsand are introduced in Section 2.4.

8Nodes on the same subnetwork receive the multicast message via link layer multicast addressing, but this is beyond the
scope of this text.

14 CHAPTER 2. BACKGROUND INFORMATION

2.2 Brief History of Internet Multicast

Multicast adddressing was defined in the IP protocol from thebeginning as a separate address range.
In its early days, multicast was confined tolocal area networks (LANs),i.e., networks consisting of
end systems and hubs using Ethernet orToken Ringtechnology. Those schemes inherently supported
multicast since all packets were available to all hosts on a network. However, extended LANs connected
through active devices like switches, and internetworks connected by routers were unable to deliver
multicast packets.

Several proposals were published, e.g. [24], but the multicast era started only when Steve E. Deer-
ing introduced multicast extensions to the existing unicast routing infrastructure in the proceedings of
the ACM SIGCOMM ’88 conference [25], and in more detail in December 1991 in his Ph.D. thesis
“Multicast Routing in a Datagram Internetwork” [26].

Deering’s work resulted in the first global multicast network, the MBone, [27], [28], a set of
multicast-capable networks connected through IP tunnels.The routing protocol wasDistance Vector
Multicast Routing Protocol (DVMRP) [4].In March 1992, the MBone was comprising about 20 hosts.
In an experiment, these machines successfully received a multicast audio stream from a meeting of the
Internet Engineering Task Force (IETF) [14].DVMRP assumes that most or all hosts on a multicast-
enabled network wish to receive multicast traffic, thus it isconsidered adense modeprotocol. While this
may have been at least partially true for the MBone, this assumption doesn’t hold for today’s multicast
groups.

In large networks connected by routers supporting multicast in hardware, the problems of dense mode
multicast need to be addressed. Currently, the most widely deployedsparse modeprotocol according to
[29] is Protocol Independent Multicast (PIM-SM) [9].But even with later versions of PIM, a lot of IPv4-
inherent problems remained unsolved and new challenges were introduced. The most critical open issue
is the allocation of multicast addresses. IPv4 only offers aflat address space for multicast which doesn’t
give any hints as to where a multicast source or its subscribers are located. Another serious problem is
the openness of the approach. With the current popularity ofDistributed Denial of Service (DDOS) [30]
attacks, the total lack of access control from traditional IPv4 multicast schemes poses a threat to all hosts
in a multicast-enabled network.

The problems of address allocation and access control were recently addressed by schemes dedicated
to single-source multicast applications. Protocols of this type includeExpress [31]andSource Specific
Multicast (SSM) [32].

There are a lot of other open issues and some of them will be discussed in the next section.

2.3 Motivation for Overlay Multicast

First of all we would like to address the question why we even think about implementing multicast
services in the application layer, if they exist in the network layer as part of IPv4. Or in other words:
Why did IPv4 multicast fail in that is has not been deployed Internet-wide?

There exist several lines of reasoning. One popular explanation is with the chicken and egg problem:
The Internet service providers (ISPs) didn’t deploy multicast—the egg—because nobody seemed to want
to use it. The potential users—the chicken—didn’t use it because it hadn’t been deployed wide enough.

There are philosophical objections as well. The implementation of multicast services in the network
layer violates a widely accepted design paradigm summarized in the paperEnd-To-End Arguments In
System Design[33]. Applied to multicast, it says in essence:

Since multicast services cannot be provided completely without support of the application
layer, they should only be implemented at a lower layer if thegain in performance is so large
that it justifies the additional cost of more complexity in the lower layer.

Another general network design paradigm is not in favour of the network layer either:

2.4. OVERLAY MULTICAST PRIMER 15

No service should be implemented in a particular layer unless this layer can completely and
reliably implement the whole functionality.

One very important function that is lacking from IPv4 multicast is address management: How are mul-
ticast addresses assigned and by what means are potential clients informed about the available multicast
services? A third paradigm is more specific to the network layer:

The network layer should not contain any state information.

While unicast routing has been successfully implemented inIPv4 and is doing an impressive job in
routing across a subset of the several thousandAutonomous Systems (ASs)9 comprising the Internet,
the same is obviously not true for multicast. With IPv4 multicast, any router needs to potentially keep
membership information ofall hosts which are directly connected to it or to a dependent router. This
limits the scalability when groups are dispersed among several ASs and consist of thousands of members.

While the above arguments may seem rather esoteric, there are a lot of tangible and technical prob-
lems with IPv4 multicast as well. We will summarize the most prevalent in the next section.

2.3.1 Problems of IPv4 Multicast

Accounting For Internet service providers and backbone owners, multicast opens a lot of difficult ques-
tions: How is the transferred data accounted for? Who pays the consumption of the precious resources
of the routers used for multicast routing and group state information?

Interdomain Routing If a multicast group spans multiple autonomous systems, another problem
arises: Since there are multiple protocols available and some ASs even offer no multicast at all, static IP
tunnels need to be set up to interconnect disjoint multicastzones. This problem has lately been mitigated
by the introduction of interdomain multicast routing protocols. However, a long-term solution has yet to
be found.

Deployment Model For IPv4 multicast to fulfill its purpose, all, or close to all, hosts should be con-
nected to the same multicast domain. This makes the deployment an “all or nothing” decision, and most
providers went for nothing.

Access Control What’s more, for the streaming of copyrighted material, formulti-party games,
database replication and distributed computing, IPv4 multicast often cannot be used because it provides
neither authenticity nor confidentiality. Of course, the data might be encrypted at the application layer
and then distributed via network layer multicast. But this would no longer be transparent to the applica-
tion.

In order to work around all these problems at once, considerable effort has been put into the development
of new multicast schemes at the application layer. Accounting, encryption, authentication—virtually all
features lacking from IPv4 multicast can be provided with application layer multicast. Of course, this
comes at a price. How steep this price is we will try to at leastpartially assess with our simulation
experiments in Chapter 4.

2.4 Overlay Multicast Primer

As the term overlay implies, we are talking about a virtual network topology laid out on top of the
underlying physical network. The termapplication layer multicastdenotes a subset of schemes which are

9An autonomous system is a network or internetwork that is under the administrative control of a single entity. The term
routing domainis often used when talking about routing between ASs which isthen calledinterdomain routing.

16 CHAPTER 2. BACKGROUND INFORMATION

running in the application layer. However, the two terms areused interchangeably because all application
layer schemes inherently use an overlay network.

This virtual network can conceptually be divided into two structures: A redundant control topology
termedmeshand a spanning tree calleddata delivery tree. Common to all schemes is also that they
need a central entity to bootstrap the protocol. This important machine is often calledrendez-vous point
(RP).However, this is no different in IPv4 multicast. The bootstrap information in this case is the group
address, the distribution of which is a non-trivial problemfor which a satisfactory solution has not been
proposed yet. In overlay multicast schemes, the bootstrap information may also be offered by another
out-of-band entity, e.g. a web site where interested recipients need to click on a link or copy and paste an
address.

Routing in the application layer seems to be inherently lessefficient. This becomes evident when
we take into account the overhead experienced by packets travelling through the complete protocol stack
at every node. In addition, whenever a tree is used for data distribution, all nodes with more than one
child will transmit a separate copy of every data packet to every child, resulting in a manifold increase
of upstream usage. Since the upstream bandwidth of current modem and broadband connections is
usually small in comparison with the ever increasing downstream capacity, this increased stress is a
major problem of overlay multicast schemes and needs to be minimized at any rate. The motivation
behind overlay multiast schemes is not to improve the performance over native IPv4 protocols but to
provide comparable performance without network infrastructure support.

2.4.1 Classification of Overlay Multicast Schemes

There exist several different classes of overlay multicastschemes. A widely accepted classification
divides them into two main classes:Host-basedandreplicator-based.

Host-Based Host-based multicastuses only end systems to build a distribution overlay. Everynode of
the overlay acts potentially as a router and as a data source or sink at the same time. This is in contrast to
IPv4 multicast, where the whole multicast routing algorithm is running on dedicated routers, completely
transparent to the end systems.

Replicator-Based Replicator-basedmulticast needs infrastructure support in the form of dedicated
hosts capable of running the multicast routing protocol to forward and replicate the data packets dissem-
inated by the source host. From the point of view of end systems, this approach is very similar to native
network layer multicast.

The overlay network on which the multicast routing algorithm constructs the data delivery tree may
be established in several ways and allows to further classify the schemes according to [34].

Tree-First The most intuitive approach is calledtree-first approach. Every new node requests a list of
members from the rendez-vous point and subsqequently asks these members to be added to their list of
children. Once a node has found its parent, it tries to evaluate other nodes and if it finds one with better
properties, it becomes its child. At the same time, it collects a list of members in its vicinity. These
redundant nodes form the mesh and are substituted for the parent in case this host fails or the tree is
partitioned.

Schemes applying this procedure are most useful for applications where high bandwidth is more
important than low latency. Protocols using this approach are Yoid [35] andHMTP [36].

Mesh-First Doing the same steps the other way around works as well and this procedure is called
mesh-first approach.With this method, every node first selects a subset of the end-to-end links to form a
redundant mesh connecting all end systems either among eachother, or with one or several replicators,

2.5. AIMS AND GOALS OF THIS SEMESTER PROJECT 17

depending on the scheme. Using a subset of these links, a treestructure is then dynamically created to
deliver the data packets.

Protocols of this class are efficient for small multicast groups, but do not scale well beyond a few
tens of hosts. The most popular scheme of this class isNarada [1].

Implicit Performing both steps at the same time is also possible and iscalledimplicit approach.Here,
the nodes are usually arranged in clusters and the optimization works towards putting the nearest neigh-
bors in the same cluster, while respecting upper and lower bounds of cluster size.

The advantage of this approach is its flexibility and scalability. NICE [37], CAN-Multicast [38]and
Scribe [39]are popular representatives of this class.

2.4.2 Overlay Multicast Scheme Example

In Figure 2.10, an example of an overlay network is shown. Thethick grey denote end-to-end connections
which form part of the overlay network. These logical connections do not correspond to the physical links
of the underlying network. Rather, they are virtual connections between end systems. In this example,
hostS is the multicast source and all hosts marked withG1..8 are subscribers.

In the leftmost network, the two group membersG1 andG2 can be reached by the sourceS using
direct overlay links because they are in the same physical network. The receivers in the bottom network
are connected to the source via the overlay link fromS to G4, which passes routersA andD. FromG4,
data packets are delivered to hostsG3 andG5 via direct overlay links. The hosts in the rightmost network
are attached to hostG4 via an overlay link passing routersD andC. From hostG8, data is delivered to
hostsG6 andG7.

Note that in this example the physical link from routerD to hostG4 is used twice for every data
packet. The physical link from hostG4 to its switch is even passed by four copies of the same packet.
This inefficiency is unavoidable because the overlay network is constructed without information about
the physical topology. The overlay routing algorithm can measure certain properties of links, e.g. the
roundtrip time of a packet, but it cannot determine the exacttopology. Thus, every overlay network is
inherently less efficient than the underlying physical network.

2.5 Aims and Goals of this Semester Project

The subject of the conceptual formulation for this semesterproject is

One approach to provide multicast services is application layer multicast, where data is routed
via an application layer overlay to the group members. The goal of this thesis is to model and
implement a generic simulation framework for such overlays.

The complete document can be found in Appendix A. The question to be addressed is

What is the most efficient multicast service for wide deployment in the existing Internet among
the existing alternatives?

The procedure should follow these steps:

1. Study of related work.

2. Selection of a representative set of multicast schemes toput under study.

3. Discussion of the evaluation parameters and creation of application profiles.

4. Study the use of the OMNeT++ simulator.

5. Implementation of the chosen protocols in the OMNeT++ environment and measurement of the
variables of interest.

18 CHAPTER 2. BACKGROUND INFORMATION

G 4

S G 8
G 6 G 7G 1 G 2 G 3 G 5

R o u t e r A R o u t e r B R o u t e r C
R o u t e r D

Figure 2.10: Overlay multicast scheme. Here, the multicast forwarding is performed by ordinary end
systems denoted byG1..8. Note, that some of the physical links are used several timesin contrast to the
example in Figure 2.9 where the multicast delivery is handled by the routers.

6. Processing of the results and derivation of conclusions.

To what extent these goals were achieved is discussed in Appendix B.

In the next chapter, we will present the schemes we considered for the evaluation and present our overlay
multicast protocol.

Chapter 3

Schemes Under Study

This chapter discusses our selection of schemes to evaluateand a description of our custom overlay
multicast protocol.

3.1 Scheme Classes

3.1.1 Native IPv4 Multicast

We have analyzed the most popular multicast protocols for IPv4. We rated them qualitatively against the
following criteria: Current deployment status, flexibility and suitability for future Internet-wide deploy-
ment.

DVMRP The first multicast protocol proposed for TCP/IP networks in1988 was theDistance Vector
Multicast Routing Protocol (DVMRP) [4]. It is a multicast extension to the unicast distance vector
routing protocolRouting Information Protocol (RIP) [40], [41],but it builds its own multicast routing
table based on which it constructs areverse path forwardingtree. When DVMRP was developed, it
was assumed that almost everybody in a network would want to subscribe to a multicast group and it is
accordingly termed adense modeprotocol. Data destined at multicast groups are sent to the designated
DVMRP routers of all subnetworks in a DVMRP-enabled domain.If there are no multicast subscribers
in a certain subnetwork, its designated router may ask its upstream router to be pruned from the tree.
Both routers store this information for a few minutes and then a new prune message needs to be sent by
the downstream router. This costs potentially a lot of memory in routers which are connected to many
networks with no subscribers. Obviously, this approach does not scale well. Additionally, the maximal
diameter of a DVMRP multicast group is limited to 32 links. Toremedy this limitation, a hierarchical
model was proposed in 1995 [42] to increase the scalability,but it was not blessed with long standing
success.

DVMRP failed our examination because it is depending on one particular unicast routing protocol
and does not appear to be scalable enough for the Internet of today.

MOSPF The unicast routing protocol that mainly replaced RIP was the link-state routing protocol
Open Shortest Path First (OSPF) [43], [44].Based on this, theMulticast Open Shortest Path First
(MOSPF) [5] scheme was proposed in 1994. For multicast, the link-state updates are extended by
group membership information. This allows all routers in a routing domain to draw a complete, up-to-
date image of the topology and group membership. When a multicast data packet arrives at a router,
this device computes a shortest-pathsource-specific treerooted at the subnetwork of the sender. If
this calculation shows that the router forms part of this tree, it forwards the packet accordingly. The
computation of the shortest-path using Dijkstra’s algorithm, however, is computationally involved and

19

20 CHAPTER 3. SCHEMES UNDER STUDY

the distribution of the link-state packets relies on a reliable broadcasting mechanism calledflooding,
which is not scalable for wide area networks like the Internet.

MOSPF thus failed also because it relies on a specific unicastrouting protocol and due to strong
concerns regarding its scalability.

PIM We have chosenProtocol Independent Multicast (PIM) [9], [10].as a representative protocol for
IPv4-based multicast. PIM offers high flexibility as it provides two different modes of operation: For
sessions with high node density, it may be run in dense mode (PIM-DM), whereas if density is low, it
can be run insparse mode(PIM-SM). PIM-DM uses ashared tree,i.e., the data delivery tree is rooted
at one router and is the same for all source hosts. PIM-SM starts with a shared tree as well but has the
ability to switch to a source-specific tree later on if this seems useful.

PIM appears to be the most widely-deployed IPv4 multicast protocol, according to for example [29].
To make the comparison as fair as possible, we considered only PIM-SM, because most overlay multicast
schemes are targeted at sparse groups. Unfortunately, we did not have enough time to run simulation
experiments with this protocol, but it will be discussed in detail in Section 3.2.

CBT Focused on scalability from the very beginning was the schemeCore Based Trees (CBT) [6], [7],
asparse modeprotocol. It uses the same root node termedcorefor all sources and uses a more complex
algorithm to construct a shared tree than PIM-SM.

CBT version 1 did not have much success, the incompatible version 2 is not widely deployed either
and version 3 is currently an expired Internet-draft [8]. CBT was thus disregarded because of lacking
deployment.

3.1.2 Host-Based Overlay Multicast

In this area, we have looked atYoid [35] andEnd System Multicast (ESM)[1].

ESM The routing protocol of the ESM scheme,Narada,is quite sophisticated and seems to make good
use of the processing power offered in today’s end systems. We decided to take this scheme as a basis
and design and implement a custom architecture for our measurements. For easier reference, we will call
our schemeOverlay Multicast Protocolor OMCP . It will be specified in detail in Section 3.3 on page
23.

Yoid This scheme is host-based in its basic mode, but its performance may be enhanced by the in-
stallation of dedicated replicators at critical points in the Internet. Yoid uses a tree-first approach with
clustering. A new member gets a number of currently active group members and asks the most suit-
able to be its parent. Since Yoid is not specifically designedto support classical multicast applications
like streaming but also employs caching for file transfers, we decided to use the more generally-scoped
Narada.

3.1.3 Replicator-Based Overlay Multicast

We evaluatedALMI [45], OMNI [46], Overcast [47],andScattercast [48].Our qualitative examination
of the above protocols led us to choose OMNI. ALMI uses a completely centralized approach, which
sets it very far apart from the distributed nature of the other two candidates. The application-specific
extensions of Overcast and Scattercast made the comparisonwith network layer multicast appear ques-
tionable. The goal of OMNI, on the other hand, is a minimal latency distribution tree using dedicated
replicator nodes.

3.2. PROTOCOL INDEPENDENT MULTICAST—SPARSE MODE (PIM-SM) 21L e g e n d I G M P c o n n e c t i o nP I M c o n n e c t i o nI n t e r d o m a i n l i n k
P I M D o m a i nP I MR o u t e r P I MR o u t e rP I MB o o t s t r a pR o u t e r P I MB o r d e rR o u t e r

P I M D o m a i nP I MB o r d e rR o u t e r
N o n $ P I M $ e n a b l e dD o m a i nB o r d e rR o u t e rP I MR o u t e r

P I M D o m a i nP I MB o r d e rR o u t e r
B o r d e rR o u t e rH o s t

H o s t
H o s t

Figure 3.1: Example internetwork topology to show how PIM operates across non-PIM-enabled do-
mains

3.2 Protocol Independent Multicast—Sparse Mode (PIM-SM)

PIM-SM version 1 is described in RFC 2362, published in June 1998 [9]. The most recent develop-
ment was the submission of the latest PIM-SM version 2 specification to the IESG in April 2004 for
consideration as a proposed standard.

All mentioned IPv4 multicast protocols rely on theInternet Group Management Protocol (IGMP)
[49] to manage communication between end systems and their localmulticast router. Hosts can join and
leave groups by sending their router anIGMP Joinor anIGMP Leavemessage, respectively. All hosts
which have registered their membership in a group with a certain group address are then forwarded all
packets destined to this address by the router.

PIM conceptually divides networks into PIM domains, i.e., areas with PIM support, and all other
areas without support for PIM. Thus, the task of PIM is on the one hand to distribute data within PIM
domains and on the other hand to provide for unicast connections using interdomain routing to connect
these islands. An example of this architecture is shown in Figure 3.1.

The first IPv4 multicast protocol, DVMRP, assumed that all hosts in a network were group members
and constructed a tree comprising all hosts. It then pruned branches where no group members were
available. PIM-SM uses the opposite concept: It assumes, that no group members exist. Therefore,
group subscribers need to send anexplicit join packet to the rendez-vous point in order to start receiving
data sent to the group. Group members need to check periodically whether they receive data. It is this
explicit join model that makes PIM-SM so much more scalable than dense mode multicast protocols like
DVMRP and MOSPF.

Another important difference is that PIM-SM uses a single tree to distribute data to all PIM routers
with active group members. This tree is rooted at a well-defined machine calledrendez-vous point (RP).
This is in contrast to thesource-specific treemodel used by DVMRP where a source-specific tree is
maintained for every group member that has sent some data recently. This increases the scalability
tremendously. But using a single tree is not necessarily optimal for all sources in terms of latency, as we

22 CHAPTER 3. SCHEMES UNDER STUDY

R e n d e z �v o u sP o i n t S o u r c eP I MR o u t e r

R e c e i v e rP I MR o u t e r
P I MR o u t e r R e c e i v e rP I MR o u t e rR e c e i v e r P I MR o u t e rR e c e i v e r R e c e i v e r

Figure 3.2: PIM-SM shared tree. The shared tree is always available in PM-SM. The multicast source
sends the data to the rendez-vous point, and from there, the delivery is performed along the same tree,
independent of the source host. Note that all data packets from the source cross the rendez-vous point.
(Border routers are omitted in the figure for simplicity.)

will see later in an example. The selection of an optimal rendez-vous point is an NP-complete problem
and is in all practical implementations approximated usingheuristics.

All PIM routers who need to receive data for a certain group register their group membership at the
rendez-vous point of this group. A rendez-vous point may serve several groups and every group of a
particular domain uses only one RP. Information about RPs isdistributed bybootstrap routerswithin a
PIM domain. Every physical network needs at least one PIM router. This machine constantly collects
information about rendez-vous points. PIM domains are connected viamulticast boundary routerswhich
serve as gateways and transmit information about rendez-vous points to the PIM domain at the other
end. Every PIM router with active subscribers periodicallysends a PIM Join data unit to the rendez-vous
point to indicate that it still needs the packets for this group. The join process in a PIM domain works as
follows:

1. The joining host sends an IGMP Join message to the designated router of its subnetwork.

2. The designated router searches its records about rendez-vous points for the responsible RP. Obvi-
ously, for this to be successful, the router needs to have received this information from a bootstrap
router beforehand.

3. Multicast data packets sent from the source to the rendez-vous point are replicated at the RP and
forwarded to all PIM domains with active group members. The border routers of these domains
then forward data along the distribution tree to all PIM routers inside the domain which have sent a
PIM Join message recently enough.

To put away with the inefficiency of a shared tree, PIM-SM establishes a source-specific tree once the
data rate of a source exceeds a certain threshold. A comparison between a shared tree (dashed lines)
and the corresponding source-specific tree is shown in Figure 3.2. The process that leads to such a tree
is complex and beyond the scope of this text. It is remarkable, however, that this tree is established as
soft state, which means that it is destroyed if the forwarding state has not been renewed during a given

3.3. OVERLAY MULTICAST PROTOCOL (OMCP) 23

R e n d e z �v o u sP o i n t S o u r c eP I MR o u t e r

R e c e i v e rP I MR o u t e r
P I MR o u t e r R e c e i v e rP I MR o u t e rR e c e i v e r P I MR o u t e rR e c e i v e r R e c e i v e r

Figure 3.3: PIM-SM source-specific tree. Such a tree is only establishedonce the data rate of a source
has exceeded a certain threshold. Note that this tree doesnot involve the rendez-vous point. The shared
tree is drawn with dashed lines for comparison. (Border routers are omitted in the figure for simplicity.)

timeout interval. This simplifies the protocol, but can leadto a high amount of control traffic, especially
if large networks are involved, because receivers will try to keep their trees established even if no data
are sent for an arbitrary period of time.

3.3 Overlay Multicast Protocol (OMCP)

In this section, we will describe Narada and point out what wehave done differently in our custom pro-
tocol termedOMCPfor easier reference. The scheme currently works towards minimizing the perceived
overlay latency, but other metrics could also be used as longas they are attainable by end systems.

3.3.1 Contributions in OMCP

There are a number of differences between OMCP and Narada. Wewill explain them in detail in the
description in the next sections, but here is a list of the most notable contributions:

• Negotiated improvement of the mesh overlay structure.

• Route poisoning to control the data delivery tree.

• Triggered routing updates for faster routing convergence.

• Faster incorporation of fresh members into the data delivery tree.

• More accurate measurement of link latency.

3.3.2 Mesh

Since Narada is a mesh-first approach, its performance is governed mainly by the quality of the mesh. A
sophisticated mesh setup and improvement strategy is thus vital to the success of the whole scheme. The

24 CHAPTER 3. SCHEMES UNDER STUDY

mesh improvement should be based on the metric which is most critical for the application because the
data delivery tree can at most perform as good as the mesh.

Mesh Establishment And Maintenance

The evolution of the mesh is not described in the Narada paper. In OMCP, nodes strive very fast towards
their minimal degree and then become more selective about which links they add. It is therefore wise not
to choose too high a minimal degree parameter, i.e., no greater than about five, to avoid adding lots of
underperforming links which will be dropped later. Here is ashort breakdown of how a multicast group
evolves:

1. A node decides to initiate a group and makes the group address available to other potential mem-
bers. A well-defined rendez-vous point could be put into service and keep track of active groups
and provide a partial list of active members. Or there might be a web page, where groups and
members can be registered and retrieved by new users.

2. To join the mesh, a node sends anAddMeshLinkmessage to one or more active group members.
The recipients will then decide based on their current number of mesh links if they can take one
more mesh link. If yes, they send an affirmative reply and the mesh link is established. If not, a list
of active members is sent back and the node chooses another member.

As soon as a node has established the first mesh link, it startsexchanging the following messages with
its mesh neighbors:

• Refresh messages:These contain a list of all known group members and a sequencenumber for
every member. If a node stops receiving refresh messages with increasing sequence number from
a certain member, it assumes either the member to be dead or the mesh to be partitioned and starts
the probing mechanism (see below).

• Routing updates:With these packets, mesh neighbors exchange their completerouting tables. The
route entries contain the next hop address, the associated latency and the complete path to the
destination. Routing updates are sent periodically. Additionally, an update is triggered whenever
changes to the routing table occur and no RoutingUpdate is scheduled within a very short time-
frame.

• Pings: Similar to ICMP echo requests1, these messages request an echo message and are used to
measure the latency of links. Depending on the application,those packets might be enlarged using
padding to get more accurate measurements, e.g. for downloads of large files. Periodically, every
member sends Pings to every member to make sure it has recent enough latency measurements.

• Routing update requests:Similar to Pings, this kind of message asks the receiver to reply with its
complete routing table. The sender then uses this information to calculate if a mesh link should be
added.

Mesh Performance Measurement

Only on the basis of recent and accurate latency measurements is it possible to improve the mesh con-
stantly and to reliably find better links. In the specification of Narada, it is just mentioned that members
periodically probe each other to measure the unicast latency.

Narada uses the same kind of messages for the measurement of unicast links and to check if a member
is dead and requires the receiver to respond to these messages with its complete routing table. Since the
size of the routing table may vary depending on the age of a node and the number of members in the

1Internet Control Message Protocol (ICMP)is a companion protocol to IP and is used for the communication between
routers and end systems.Echo Requestmessages are mostly used to check if a host is running or to measure the roundtrip
delay.

3.3. OVERLAY MULTICAST PROTOCOL (OMCP) 25

group, affecting directly the processing time at the receiver as well as the transmission time of the reply,
we introduced three different packet types. Ping packets are used to measure the performance and may
be of arbitrary length. It might be advisable to adapt the length of the Ping messages to the length of data
messages. The second packet type is calledProbeand is used solely to determine if a member is dead.
The third kind is termedRoutingRequestand asks the receiver to send back its complete routing table.

We developed the following measurement mechanism for OMCP:Whenever a node is informed
about a new member, it waits for a random time bounded by a parameter value and then sends the first
Ping message to the new member. This random delay is essential to avoid that members which have
just come online are flooded with Pings by all current group members. In steady-state, every node sends
Pings to group members periodically. In Narada, the target is selected randomly. We think that this can
be dangerous because the law of great numbers does not necessarily apply for groups with a few dozens
of members. A node might send Pings unevenly distributed over all group members and thus never get
latency information about potentially very fast links.

Our approach calculates the interval between two Pings to the same host,Tping, with respect to a
time parameterTpingTarget as follows:

Tping =
TpingTarget

N
,

whereN is the number of group members that the host is aware of.

EveryTping seconds, an OMCP node does the following: It searches for themember record that has the
oldest Ping time stamp, sends a Ping to this member and updates the Ping time stamp in the member
record.

Under steady-state conditions, this approach guarantees,that a Ping message is sent to every group
member in an interval ofTpingTarget. Thus, the latency measurement of no link grows older than
TpingTarget and all group members are sent Pings in equal intervals.

The links to mesh neighbors are evaluated more frequently. This allows to detect almost immediately
when a mesh link goes down and to replace it.

Mesh Improvement

The Narada paper gives a description of the procedure to evaluate if a new link should be added or a
current one be dropped. The scheduling algorithm for the evaluation, however, is not specified. So we
came up with the following approach in OMCP: Every node alternates between evaluating its current
mesh links and checking out new links. If it decides to add or drop a mesh link, it subsequently waits for
some time before running the next evaluation cycle to allow the routing to converge. For similar reasons,
a fresh link is granted a grace period, during which it cannotbe dropped.

Mesh Reduction Based on its own routing table and the stored routing tables of all known members,
every node periodically calculates a value calledconsensus costfor every mesh link. The consensus cost
of a link indicates, what the cost is of dropping this link in the view of the hosts at both ends. First, the
nodes at both ends count, how many of their routes use the other host as first hop. This number is the cost
from their point of view. The consensus cost is defined as the maximum of both these numbers. How
this value is computed in OMCP is described later in this section.

It is not clearly defined whether Narada evaluates all links or only links with certain characteristics.
In our protocol, we evaluate links with the following properties:

• The link is active.

26 CHAPTER 3. SCHEMES UNDER STUDY

• The link is not in use by the data delivery tree.

• The grace period of the link is over.

• The latency measurement and the stored routing table of the member at the other end are recent
enough.

• The link latency is greater than a minimum parameter.

As specified in Narada, member A calculates the consensus cost to mesh neighbor B as follows: It counts
the number of routes in its routing table that use B as first hopand stores this value. It then calculates the
cost of dropping the link from member B’s point of view using its stored routing tables in the member
record and stores this value as well. The consensus cost is obtained as the maximum of both costs.

After the consensus costs have been calculated, the lowest cost link is dropped if and only if the cost
is below the currentcost threshold.This value depends on the number of mesh links the node has and
on the node’s perception of group size. How the cost threshold is computed is not defined in the Narada
paper, though. We developed the following calculus: We denote the current number of mesh links with
M . Let Mmin be a parameter for the minimal andMmax for the maximal number of mesh neighbors.
We define the ranger as

r := Mmax − Mmin

and the positionp as

p :=
M − Mmin

r
.

Let Mtarget be the optimal position betweenMmin andMmax. The number of group members in the
perception of the current node is denoted byN . Since the maximal cost equalsN − 1, we made the cost
thresholdcthreshold depend on this variable. It is defined as

cthreshold = p ∗ (1 − Mtarget) ∗ (N − 1).

Furthermore, links which have a very low relative latency, for example, less than one tenth of the average
latency of all mesh links, are never dropped.

To avoid loss of data packets, we added the following negotiation method: Mesh neighbors ask their
peer if they may drop the link between them. Permission to drop the link is granted only under the
following conditions:

• The number of mesh links is greater than the minimal degree parameter.

• The link is not in use by the data delivery tree.

To avoid packet loss when links are dropped, Narada requiresnodes to continue sending data packets via
dropped links for a transient time. We went one step further and added a function which actively vacates
mesh links. This function is called when a mesh link should bedropped.

Vacating Mesh Links Whenever a mesh link needs to be dropped, in our approach, thenode which
wants to drop the link first vacates it as follows: It sends theother end aVacateMeshLinkmessage,
poisons all its routes which contain the other node and sendsa RoutingUpdate to all its neighbors im-
mediately. The node at the far end does the same. After some time, both nodes check if they still have
routes using the link and if not, they ask their peer if it is ready to drop the link as well. If not, they wait
again. After a maximal wait time, if the link could not be dropped, it is re-enabled because appearently
the situation has changed and the link now appears to be necessary for the mesh.

3.3. OVERLAY MULTICAST PROTOCOL (OMCP) 27

Mesh Enhancement To evaluate if a mesh link to another member should be added, an OMCP node
first sends the candidate aRoutingRequestmessage. This asks the recipient to reply with its complete
routing table. Based on its own routing table and the one of the candidate, the node then calculate a value
calledutility, which indicates to what extent the addition of this link would reduce the latencies to all
group members. As specified in the ESM paper, to compute the utility of adding a link to member B,
node A does the following: For all group members, it calculates the new latencyLnew if the link were
added. IfLnew is less than the current latencyLcurrent, it increases the utility valueu as follows:

u′ = u +
Lcurrent − Lnew

Lcurrent

,

u = u′.

The link is only added, if the utility is greater than the current utility threshold. This threshold is not
specified for Narada, it is only said that the value is a function of the degree of both members and the
group size and that the link might also be added if the currentoverlay delay is very high and the new
latency to the candidate would be very low. We used an approach based on the same variables as defined
for dropping mesh links. The utility thresholduthreshold is thus:

uthreshold = p ∗ (1 − t) ∗ (N − 1).

If the new link would reduce the latency to the candidate below a very low threshold, for example,
lower than one tenth of the average latency of all mesh links,it is added regardless of its utility. The
reasoning behind this is: If more links with minimal latencyare part of the mesh, links with high latency
will be dropped earlier and this leads to a mesh with lower overall latency.

Repair

Nodes can detect when group members die or the mesh is partitioned via the refresh mechanism. All
mesh neighbors are required to periodically exchange theirknowledge about other group members in
Refreshmessages which consist of pairs of member addresses and sequence numbers. If a node stops
receiving increasing sequence numbers from a group member,it sets its status toStaleMemberand puts
its member record into thestale queueQstale. Periodically, the node checks if there are members in the
stale queue. If there are any, it pops the first entry and sendsa number ofProbepackets to the concerned
node. If it responds, its status is reset toFreshMember.If, however, no replies are received, the member
is declared aZombieMember.Should a Refresh message about a member with ZombieStatus arrive, it
will be ignored. After some time, when the information aboutthe disappearance of this member has
spread over the mesh, all records pertaining to it are removed.

The scheduling is the same as in Narada: The above procedure is run periodically and is repeated until
all members which have been in the stale queue longer than some period of time have been processed
and with probabilityPcontinue = |Qstale|

N
, one more stale member is probed.

In Narada, it is said that all mesh neighbors jointly determine if a node has failed and only then
propagate this information through the mesh. However, how this propagation works, is not clear. One
possibility would be via refresh messages, for example by resetting the sequence number to an invalid
value.

Since preliminary tests showed that it is vital for the reliable delivery of the data packets to distribute
the information about a node failure fast, our approach is more aggressive: As soon as a single mesh
neighbor has sent a number of probes to the node and not received an answer, it perceives it to be dead. It
sends anObituarymessage to all its mesh neighbors. A member which receives anObituary about a node
checks its record of this node. If it is said to be an active member, it sets its status to ZombieMember and
forwards the Obituary to all mesh neighbors except the one where it came from. If, however, it doesn’t
have a member record of the appearently dead node or if its record indicates that this node is not in the

28 CHAPTER 3. SCHEMES UNDER STUDY

active state, it ignores the Obituary entirely. This ensures that an Obituary concerning a particular host is
forwarded at most once by any node and thus obituaries die after some time.

3.3.3 Overlay Routing

Like Narada, we run a distance vector routing protocol with path information on top of the mesh in
OMCP. Mesh neighbors periodically exchange their completerouting tables. Additionally, as described
in Section 3.3.2, nodes may ask for the routing table of a member that is not currently a mesh neighbor
when it is considering the addition of a link.

For better control of the addtition and especially the replacement of routes, we introduce a poisoning
mechanism. This allows a node to poison its routes to force itself to replace them. Additionally, through
poisoned routing entries in RoutingUpdate messages, members can advise each other to drop routes
which they consider invalid or which use mesh links they wantto drop.

To allow for faster convergence, OMCP disseminates atriggeredRoutingUpdate whenever a route’s
next hop changes, when a route is poisoned or when a mesh link is vacated. To avoid oscillation and
too much routing information traffic, we use the following mechanism: If the routing table has been
modified, no RoutingUpdate is sent immediately. Instead, a self message is scheduled to be received
after a short period of time, e.g. 500ms. Only when this message is received, the RoutingUpdate will be
sent. If, however, another routing change occurs, the node first checks if there is a self message scheduled
already. If this is the case, it just waits because this message will cause the RoutingUpdate to be sent
soon enough. With this algorithm, a minimal interval between updates is guaranteed.

3.3.4 Data Delivery Tree

Data is sent over a tree-like structure which is dynamicallyestablished for every group member as soon as
it starts sending data. To be able to distinguish data packets, we use a sequence number mechanism. For
greater fault tolerance, every node maintains a list oftree parentsandtree childrenand relies upon this
information in addition to its routing table when sending orforwarding data packets. This information
enables nodes to recognize and accept data packets from former parents and send or forward to former
children during a transient period. Additionally, fresh members or members which for some other reason
have incomplete routing tables are also sent and forwarded packets. This allows fresh group members to
participate in the delivery tree even though they do not havea complete routing table yet.

Sending Data Packets

The source sends the data packet to all its mesh neighbors which have at least one of the following
properties:

• The stored routing table of the neighbor indicates that it can reach the sender in one hop.

• A copy of the neighbor’s routing table is not yet available orit indicates, that the neighbor doesn’t
currently have a route to the source.

Forwarding Data Packets

The list of parents is used to decide if a data packet receivedshould be forwarded. The decision process
works as follows:

• The packet is dropped immediately if

– The sender is not a mesh neighbor.

– The packet is destined at a group which the node is not a memberof.

• The packet is considered valid if and only if at least one of the following conditions holds:

3.3. OVERLAY MULTICAST PROTOCOL (OMCP) 29

– The sender of the packet is the node’s next hop to the source orthe source itself. This is the
base case for reverse path multicast. If the sender is not yetin the parents list, it is added now.

– The node doesn’t have a route to the source of the packet. If the sender is not yet in the parents
list, it is added now.

– The sender has been the node’s parent until recently and the transient accept period is not over
yet.

• If the sequence number is greater than the last, the node consumes the packet and forwards copies
to all neighbors for which any of the following applies:

– The stored routing table of the neighbor indicates that the node is its next hop to the source.

– The neighbor has been a child of the node until recently and the transient forward period is not
over yet.

– A copy of the neighbor’s routing table is not yet available orit indicates that the neighbor
doesn’t currently have a route to the source.

3.3.5 Group Dynamics

Multicast schemes based solely on end systems are inherently more prone to node failures than router- or
replicator-based environments. Since not only failures ormisconfiguration but also intentional behaviour
of users may cause nodes to disappear, appropriate counter measures need to be put in place to handle
situations like member leave, service degradation and—most challenging—sudden node failure.

Member Leave

A member leave should not lead to any data packet loss since itcan occur arbitrarily frequently. As
described in the Narada paper, a node will forward data packets for a period of time after it has quit. A
member wishing to leave the group first poisons all its routesand thus will only advertise unreasonably
high costs causing its mesh neighbors to look for other routes. In addition to this measure, leaving OMCP
nodes will ask their neighbors to vacate their mesh links, asdescribed in Section 3.3.2.

But with end users operating the routing entities, it is not guaranteed that a leaving user will allow
its computer to forward long enough, especially if they leftbecause they were not satisfied with the
performance of the service or because they need the bandwidth for something else.

The method used by Narada to detect node failures is based on the refresh mechanism and described
in Section 3.3.2. In OMCP, members may detect a mesh link failure much faster when a Ping message
they sent to a neighbor is not returned.

3.3.6 Further Improvement

Due to time constraints, we were unable to implement all the features we had in mind. Some of the more
interesting ones are the following:

Multi-Path Routing During preliminary tests, we noticed that almost all data packet loss was caused
by abrupt node failure. A multi-path routing scheme should handle such situations much better. Members
would accumulate at least one backup route to every mesh neighbor. It can easily be shown, that even
with this primitive multi-path scheme it would be possible to handle node failures without any packet
loss after the failure has been detected as long as each member failure is detected before another member
fails.

30 CHAPTER 3. SCHEMES UNDER STUDY

Use All Control Traffic to Measure Mesh Performance As mentioned before, the active monitoring
of the state of mesh links is critical to the performance of the data delivery tree. Therefore, we propose
using Refresh and RoutingUpdate packets to measure the roundtrip delay of mesh links. Since these
messages need a non-negligible time of processing at the receiver, they should be time stamped first
when entering and second when leaving the OMCP application.The sender could then get an accurate
measurement by subtracting this processing time from the perceived roundtrip time.

Harvest Topological Information of the Underlying Network In addition to the experimental de-
duction of the structure of the physical network, nodes might use their network address and netmask to
recognize members on the same subnet. Additional information could be gained using freely available
services likeDNS reverse lookupor whois lookup.Furhermore, it might prove to be helpful to use a
strategy similar to the UNIX traceroute utility in order to reveal more of the physical substrate on top
of which the overlay topology is running. This approach would allow to make use of network layer
information for multicast without causing any additional memory in routers to be wasted.

Accumulate Control Messages In contrast to the experiments conducted by the developers of Narada,
we assumed that node failures were quite common and therefore used much shorter intervals between
control messages. It makes no sense, however, to for instance send one RoutingUpdate message followed
immediately by a Refresh message, since the conveyed information could just as well be put into one
packet. What’s more, Pings could be replaced by data packetsduring periods of high data rates with a
bit in the data packet which indicates to the receiver that itshould immediately send a Ping reply to the
sender.

In the next chapter, we will present the specification of the application profiles we developed for the
simulation experiments and specify the parameters to be measured as well as the heuristics we will use
for the evaluation.

Chapter 4

Model and Evaluation Method

To compare several multicast schemes in a way that is at the same time fair and reproducible as well
as meaningful for practical applications is a daunting task. We decided to rate the different approaches
with respect to four application profiles. In this chapter, we introduce first the constituting criteria, i.e.,
metrics and heuristics, and then the profiles. Due to our limited time budget, we could only implement
and evaluate our own overlay multicast scheme. We term this schemeOMCPfor easier reference.

4.1 Methodology

In order to allow for a comprehensible comparison, we decided to base our evaluation on measurements
of key performance characteristics. The success of a certain protocol in terms of popularity, however,
does not depend solely on hard facts. Therefore, we also include heuristic criteria in our evaluation to
account for differences in complexity of the implementation and other characteristics.

4.1.1 Metrics

While our simulation framework allows to measure several metrics, we focus on the following three:
stress, stretch and delay. All metrics may vary over the course of a session, i.e., a period of time where
the data source is sending constantly. Hence, we mainly use averages over time and over all receivers for
the evaluation.

Notation

We will use the following notation.

Number of physical links on unicast routes among group members nlinks

Duration of the session in seconds Ss

Duration of the session in packets Sp

Unicast delay from hosti to hostj in seconds di,j

Multicast delay from hosti to hostj in seconds Di,j

Number of copies of a packet carried by the link between hostsi andj Ni,j

Arithmetic mean of realisationsXk of a random variableX X̄ := 1

n

∑

k Xk

Statistical variance of realisationsXk of a random variableX X̃ := VARk[Xk]

When we talk about the value of a metricM for a particular data packet, we denote this by a superscript:
Mk.

31

32 CHAPTER 4. MODEL AND EVALUATION METHOD

Stress

This metric is defined as the number of identical copies of a particular data packet carried by a single
physical link. For the data packet with sequence numberk on the link between two devices (routers or
end systems)i andj, stress is defined as

Nk
i,j.

Specifically, we are interested in the average stress of a particular link l between devicesi andj over an
entire session:

N̄l :=
1

Sp

Sp
∑

k=1

Nk
i,j ,

and accordingly its variance among all links

Ñ := VAR
l

N̄l

For the evalutation, we use the mean of the average stress of all links

N̄ :=
1

nlinks

nlinks
∑

l=1

N̄l.

During the setup phase or in transient conditions, stress may be very large. This is especially true for
protocols which have some or all neighbors transmit data packets to hosts that have indicated that they
have lost their parent. Thus, another indicative property is the maximal stress that has occured on any
link from sourcei to any subscriberj due to any data packet with sequence numberk, as given by

max
k

max
j, j 6=i

Nk
i,j.

Delay

This is the overlay data delivery delay from the source hosti to a receiverj. Again, we are mostly
interested in the the mean of the average delay to every receiver:

D̄ :=
1

n

n
∑

j=1, j 6=i

D̄i,j,

and the variance among all subscribers
VAR

j
[D̄i,j].

Stretch

This metric measures the delay overhead incurred by overlaymulticast compared to the respective unicast
delay. The mean stretch factor for hostj, when hosti is the source, is denoted by

K̄i,j :=
D̄i,j

d̄i,j

.

In an optimal multicast scheme, the latency from any source to any subscriber is equal to the unicast
latency, resulting in a stretch factor of one. While this is theoretically possible to achieve with a network
layer multicast scheme, it is practically impossible with application layer multicast. We are mostly
interested in the mean of the average stretch factor over allhosts

K̄ :=
1

n

n
∑

j=1, j 6=i

K̄i,j,

4.1. METHODOLOGY 33

Fault Tolerance

Most network layer multicast schemes do not focus on fault tolerance, as the reliability of the forwarding
devices is usually sufficient. This is not the case with ordinary personal computers. Since most overlay
multicast protocols are designed to run on such devices, their robustness against incidents like abrupt
node failure and changes in network level routes plays an important role. Unfortunately, robustness
is very difficult to measure. Because our time was limited, wedecided to run all measurements in a
setting where no network level route changes occur. All routes are computed before the simulation starts
according to a shortest path algorithm and are static over the simulation run. To at least estimate the fault
tolerance, we performed simulation experiments without node failures and again with a certain node
failure probability. This is not a strict reliability measurement, but still can give a basic indication about
the robustness of our scheme.

Further metrics

Due to time constraints, we could not perform all measurements we had planned. Here is a brief overview
of what other metrics we deem important.

Efficiency Multicast protocols force routers or end systems to keep a considerable amount of state
information about group membership etc. Further, they cause a considerable amount of additional control
traffic. Both these quantities can be measured and compared in both classes of multicast protocols.

Packet Loss It is not necessarily the objective of a multicast protocol to guarantee reliable delivery of
data packets. But in any case, packet loss should be avoided at all costs. For instance most streaming
applications do not tolerate packet retransmissions. Packet loss is easily measurable. In our scheme, no
packet loss occurs under the assumptions we made, but as soonas hosts fail, a nonnegligible number of
packets is lost.

To assess the performance of a scheme in terms of packet loss,a similiar approach as proposed in the
next section for the assessment of service interruptions might prove useful. A percentile-based evaluation
[50] could also be used.

Setup Time The time delay between initiating the join process and the reception of the first multicast
data packet may vary from less than a second to several tens ofseconds among the discussed schemes.
Thus, it is an important factor when a multicast protocol is evaluated.

Hold Time This is the period of time during which a former group member is supposed to continue
forwarding packets to its neighbors. While this is zero in all mentioned network layer schemes, it can be
up to a few dozens of seconds for application level protocols.

Jitter This is a metric that is mostly relevant for media streaming applications. It is an indicator of how
constant the interarrival time of data packets is during thesession as perceived by the receivers. There
are several different definitions for jitter. One of the moreintuitive definitions is the following: For a
given hostj, jitter of packets received from sourcei is defined as

Ji,j := VAR
k

[Dk],

assuming that no packets are lost and that the packets arrivein sequence. To compare the performance of
multicast schemes based on jitter, statistical methods like percentile measurement are required. Another
possibility is proposed in the next section.

Further information on jitter and other metrics relevant for multicast services is provided in [51],
[52], [53] and [54].

34 CHAPTER 4. MODEL AND EVALUATION METHOD

Fairness The variance of the arrival times of data packets among the multicast group is a metric for
the fairness of a multicast scheme. This is crucial for real-time applications like stock market tickers and
online bidding platforms. It is defined as the maximum of the differences of the arrival time at the first
and the last receiver of a data packetk:

max
j

Dk
i,j − min

j
Dk

i,j.

Of particular importance is the maximum of the above value because it determines if a delay-critical
application can be run with a given multicast scheme or not. It is given by

max
k

(

max
j

Dk
i,j − min

j
Dk

i,j

)

.

In the next section, a method for the assessment of service interruptions is given. Such an approach
seems to be indicated to evaluate fairness as well.

Service Interruptions Any interruption of the reception of data packets hurts the performance of the
multicast network. But depending on the application, different kinds of interruptions have very dissimilar
impacts on the quality degradation perceived by the application. Hence, this property is crucial when
deciding if a certain scheme is suitable for a particular application.

In the case of messaging, it doesn’t hurt the performance, ifevery twentieth packet is lost, because
this service by definition only uses very little bandwidth and lost packets can be retransmitted quickly.
Download, in contrast, uses all available bandwidth, and thus, in the same network, packet loss would
probably be higher and download performance would be degraded noticeably.

On the other hand, if it happens that the service is completely unavailable for a period of one minute
every ten minutes, this only lowers the download bandwidth by ten percent, but can render instant deliv-
ery of messages infeasible.

Measuring this property is a difficult undertaking. It needsto be defined, by what a service interrup-
tion is constituted to distinguish it from the metric packetloss. One possibility is to use a 95th-percentile
scheme, but this neglects the duration of the longest five percent of interruptions. In the next section, a
more accurate assessment scheme is presented.

4.1.2 Class-based Assessment

One of the main concerns about percentile-based measurement [50] is that it offers no insight about
how bad the worst results were. For instance, if a multicast-based messaging scheme guarantees that 95
percent of all packets arrive within ten seconds, it mattersif the other five percent arrive within twelve
seconds or one minute. We propose to use several classes which are assigned different penalty factors.
According to the number of occurrences and the penalty factor, a single value can then be calculated that
accurately represents the suitability of a scheme for the requirements of an application.

We will use the metric service interruption as an example. First of all, we need to define a few time
periods with a corresponding penalty factor. LetSs denote the duration of the session in seconds. The
penalty factor indicates, how often an interruption of a certain length may occur within a time period
before the service quality becomes inacceptable. The number of occurences which render the service
quality zero divided by the duration of the session,Ss, is the penalty factor.

However, the penalty factor for interruptions above the upper bound for the acceptable interruption
duration, isnot divided bySs. This becomes more clear with an example. Let us consider an instant
messaging service where service interruptions of 1 second or less do no harm, outages of less than ten
seconds may happen three times per 100-seconds of a session and it must be guaranteed that all messages
arrive within ten seconds. For such an application, the penalty factors are:

4.1. METHODOLOGY 35

Duration [s] Penalty Factor

d0 = 1 p0 = 0
d1 = 10 p1 = 100

3
· 1

Ss

d2 = 20 p2 = 1
d3 = 20 p3 = 2
d4 = 50 p4 = 5

According to this scheme, the service quality would then be calculated as follows. Letn0..4 denote
the number of occurrences of outages of the corresponding duration. The quality of the service is then
defined as

Q := 1 −

4
∑

i=0

pi · ni .

If Q is equal to one, this incicates that the longest service interruptions were no longer than one second.
WhenQ is 1

3
, this indicates that on average once per one hundred secondsof the session, an interruption

of less than ten seconds occured. A value ofQ = 0, however, indicates that at least one interruption has
been longer than the allowed ten seconds or that more than three interruptions of between one and ten
seconds have occured per hundred seconds of the session.

All negative values ofQ correspond to an inacceptable service quality, either because an interruption
of more than ten seconds has occured, or because too many interruptions of between one and ten seconds
have happened. But even if the quality factor is negative, results are still meaningful and comparable
among multicast schemes.

4.1.3 Heuristics

One of the key limitations of IPv4 multicast schemes is theirlimited scalability, even though—or perhaps
because—they are quite simple. We give a rating for simplicity and scalability for both replicators (if
applicable) and end systems.

Simplicity

We estimated, how easy it is to implement a protocol in hardware where memory is limited or in software
where the processing of network packets is mostly limited interms of speed.

Scalability

We analyzed the schemes for properties which limit scalability. We take into account, how much state
information is necessary as well as what kind of processing has to be done to set up and improve the
network (if applicable).

4.1.4 Application Profiles

Different multicast-based applications have different requirements in terms of quality of service. While
it may do no harm to a audio streaming service if the delay fromthe source to the receiver is 500ms, such
a delay can make another application, for example video conferencing, infeasible. This does not hurt
when we consider software distribution or data backup services: If the multicast scheme offers a high
average throughput over the course of an hour, this may work very well, even though the protocol might
interrupt the service every five minutes for a few seconds to optimize the overlay topology.

Alas, we think that a fair comparison of different approaches to multicast communication is not
feasible if only the requirements of one application are considered. Based on recent research papers and
commercial multicast services, we came up with the following four application profiles. The quality of

36 CHAPTER 4. MODEL AND EVALUATION METHOD

service offered by our multicast scheme is compared to the needs of these applications. The results are
given in the next chapter.

Streaming

Streaming is by far the most popular applications associated with multicast services. The media to be
streamed might be a live broadcast of a conference or an on-demand broadcast of a university lecture.
We assume that there is only one source, but a great number of receivers. The most important factor is
stress. Stretch and delay are not as important because thereis no interaction in this service. Another
crucial property is jitter, but we did not have time to measure it and thus will not take it into account.

Messaging

With messaging, we mean collaborative work where several people send messages to all other group
members, similar to instant messaging. Key criteria are lowdelay and stretch and high fault tolerance
because such services are often used when people are far apart and possibly communicating via wireless
networks. For purposes like stock market tickers, delay is crucial as well because if a message arrives
too late, this might directly result in loss of money. Stressis not critical because the transmitted amount
of data is assumed to be very small.

Download

More and more computer software and media is distributed over the Internet. Download is the classical
example for replicator-based multicast. The infrastructure to allow huge amounts of data to be down-
loaded simultaneously by people around the world is alreadyoffered by Akamai(EdgeSuite)[55] and
other companies. Download services can also be implementedusing host-based multicast in a fashion
similar to peer-to-peer file sharing [12], [13]. What matters here is bandwidth, i.e., low stress. Since we
assume the data transfer to take longer than a few seconds, delay and stretch are not important at all.

Conferencing

A video conference of a group of people, dispersed around theglobe, is probably the most demanding
application for a multicast scheme. In contrast to streaming, all subscribers may also act as data sources.
It has been shown in [51] that delays of more than 200ms renderinteraction almost infeasible. Hence,
low stretch and low delay are of vital importance for this service. Jitter should be very low as well.
Since the distances among the group members are assumed to belong, network outages need to be taken
into account and high fault tolerance is necessary. The required bandwidth is large because every group
member needs to receive a video stream from every other member. Thus, a scheme with low stress is
more likely to provide enough netto throughput.

4.1.5 Weighting

Based on the above discussion of the application profiles, weset up an evaluation procedure as follows.
The goal is to get a rating between zero and ten for every scheme with every application profile. Since
our heuristic estimations are not as reliable as results of simulation experiments, we weighted them only
with a factor of three, while measured metrics are weighted with seven:

7 ·
∑

metrics

+ 3 ·
∑

heuristics

.

The weighting of the metrics and heuristics is laid out in a way that ensures that an ideal scheme gets
a total of one point for the metrics as well as the heuristics.Actually, it was planned to take the results

4.2. SIMULATION EXPERIMENTS 37

of the network layer multicast protocol PIM as benchmark, but we did not have time to implement and
test this protocol. Therefore, we use an ideal value of one for both the average stress,N̄ideal, and stretch,
K̄ideal. The ideal value for the average overlay delay,D̄ideal, is the average of the unicast delay,d̄.

To get the weighted value of, for instance, stretch for an application profile where stretch is weighted
with a factor of 0.7, the following equation is used:

K̄weighted = 0.7 ·
K̄ideal

K̄OMCP

.

The weighting of the metrics and heuristics for all application profiles is given in Table 4.1.

Table 4.1: Application profile weights of metrics and heuristics

Application Messaging Download Streaming Conferencing
Delay Stress Stress Delay

Key factors (Reliability) (Jitter) Stress
(Jitter)

Metrics
Stress 1 0.8 0.3
Delay 0.7 0.5
Stretch 0.3 0.2 0.2

Heuristics
Simplicity 0.2 0.4 0.3 0.1
Scalability 0.8 0.6 0.7 0.9

4.2 Simulation Experiments

In this section, we specify the experiments we performed with our overlay multicast scheme, OMCP.
The results and discussion are given in the next chapter.

4.2.1 Simulation Software

We based the implementation of our overlay multicast schemeon theDiscrete Event Simulator OM-
NeT++. We have chosen this software over the standard,NS 2 [56], for the following reasons: OM-
NeT++ appears to be easier to learn and provides a cleaner interface to the programmer. Additionally, it
is constantly improving and has a supportive user community.

4.2.2 Network Topology

The simulation experiments are based on theTransit-Stub Domainmodel, an abstract representation of
today’s Internet created using the topology generatorGT-ITM [57] of the Georgia Institute of Technology,
available at [16].

We assume that there is no other traffic on the network. To accomodate for this assumption, we
added an artificial queueing delay in every router. Thus, thequeue sizes of the routers vary over time
and influence end-to-end delays. All other properties of thenetwork are constant over the course of a
simulation run.

For our small-scale evaluation, we used only one topology. For a statistically sound evaluation, one
would have to run the same experiments with many different topologies until the means of all measure-
ments stabilize.

38 CHAPTER 4. MODEL AND EVALUATION METHOD

Backbone Network

The topology consists of 38 routers. The network comprises 12 stub domains and 6 transit domains. All
18 domains have an average of 3 interior routers. All routershave the same constant queueing delay,
i.e., the time they require to process a packet is assumed to be constant and is the same for all routers.
The links of the backbone have a bit error rate of zero. The delays of the links are distributed randomly,
as well as the per-link capacity. They are chosen by GT-TIM ina way that ensures that packets to
destinations in the same domain will take a route entirely within the domain.

The queueing delay was determined by evaluating the roundtrip times of three UDP packets sent to
every router along the routes from the network of the ETH Zurich to the following hosts:

Switzerland www.bluewin.ch [195.186.6.80] and www.nine.ch [193.17.85.38]
USA www.berkeley.edu [169.229.131.109], www.apple.com [17.112.8.11] and www.lycos.com

[213.140.50.210]
China www.shanghai.com [210.177.1.110]
Japan www.jal.co.jp [210.174.170.135]

This delivered the following results: The average number ofhops per route was around 17 and the av-
erage roundtrip time was about 105ms. The roundtrip time incurred by one hop was 10ms on average.
Thus, the queueing delay of a router seems to be approximately 5ms.

However, the average length of a path in our topology is only six hops, which corresponds rather to
the European part of the Internet. To make the topology more similar to a a multicast group with some
members in other parts of the world, we set a higher queueing delay of 10ms.

For comparison: The one-year average roundtrip time of pingpackets sent from the ETH Zurich to
the web server of the Massachusetts Institute of Technologyin the USA is 96.5ms, which is equivalent to
a unicast delay of 48.25ms. This value is quite constant overthe course of a day. The average of twenty
ping packets sent every five minues is always below 100ms.

The delay incurred by the physical link does not play an important role in our topology. It is
0.10294ms on average with a standard deviation of 0.047310.

End Systems

Every end system is connected to exactly one interior routerof a stub domain and there are no two end
systems connected to the same domain. The access links have abandwidth of 1MBit/s and an error rate
of zero. The delays are distributed randomly. The multicastgroup consists of one source host and 10
subscribers.

4.2.3 Scenario

For the evaluation of OMCP according to the application profiles, we used a very optimistic setting where
no nodes fail. Further, we have run many different scenarioswhere nodes fail with a certain probability
and within certain time intervals. We give a few informal results of such settings in the next chapter.
In this section, we will first describe the most important parameters and then specify the scenario we
used for the evaluation. All parameters of the simulation which are not discussed here are explained in
Appendix C.

4.2. SIMULATION EXPERIMENTS 39

Activity of the End Systems

The end systems calculate the following points in time at thebeginning of a simulation run according to
a uniform distribution:

Join Probability Pjoin Probability, that a node will join the group.
Parameter:d_join_probability.

Join Time Tjoin Time when a node begins to accept packets from other nodes andinitiates the
bootstrap process.
Interval: [t_join_time_begin, t_join_time_end].

Leave Probability Pleave Probability, that a node will leave the group.
Parameter:d_leave_probability.

Leave TimeTleave Time when a node initiates the leave routine and informs its neighbors about
its intention to leave the group. Interval: [t_leave_time_begin, t_leave_time_end].

Death Probability Pdeath Probability, that a node will die.
Parameter:d_suicide_probability.

Death Time Tdeath Time when a node fails entirely. It immediately stops sending and processing
any packets.
Interval: [t_suicide_time_begin, t_suicide_time_end].

The source host additionally takes the following three parameters.
Data Start Time TdataStart Time when the source host begins to send data.

Parameter:t_data_start
Data Stop TimeTdataStop Time when the source host stops sending data.

Parameter:t_data_end.
Data Interval TdataInterval Time between two data packets sent by the source host.

Parameter:t_data_interval.

Session

A session is the period of time when the data source is sendingdata packets. From the subscriber’s
point of view, this is an unsuitable definition and we use a more precise one. There are three parameters
governing when a seesion begins and ends in the notion of end systems. During a session, all nodes are
expected to receive all data packets, otherwise packet lossoccurs. Packets lost before or after the session
are not counted.

Setup DelayDsetup Period of time during which a node is assumed to be in the process of joining
the multicast group and thus is not expected to receive data packets.
Parameter:t_data_setup

Propagation DelayDpropagation Delay between source and subscriber. This parameter is usedto
calculate the sequence number of the first packet which should be received by a subscriber.
Parameter:t_data_propagate

Packet loss is accounted using sequence numbers. The sourcenumbers all data packets, starting at one.

Session Start

There are two cases which need to be distinguished. In the first case, the subscriber has joined the group at
leastDsetup seconds beforeTdataStart and the first data packets are expected atTdataStart +Dpropagation.
Thus, the first expected sequence number in this case is 1.

40 CHAPTER 4. MODEL AND EVALUATION METHOD

In the other case, however, the first data packets are expected atTjoin + Dsetup + Dpropagation. The
first expected sequence number is the first packet sent by the source afterTjoin+Dsetup and is calculated
as follows:

Tjoin + Dsetup − TdataStart

TdataInterval

Session End

Again, there are two cases to be distinguished. If the subscriber stays in the group for at leastDpropagation

seconds after the source has stopped sending, data packets are expected untilTdataStop + Dpropagation

and the last expected sequence number is

TdataStop − Dpropagation − TdataStart

TdataInterval

.

In the other case, data packets are expected untilTleave and the last expected sequence number is

Tleave − Dpropagation − TdataStart

TdataInterval

In both cases, we allow all packets which are sent during the lastDpropagation seconds to get lost.

4.2.4 Key Parameters of the Scenario

In the following table, all parameters described above are defined for the scenario we used for the evalu-
ation. Note, that the parameterd_suicide_probability is equal to zero and thus, hosts never fail.

Parameter Value

t_join_time_begin [s] 0
t_join_time_end [s] 100
d_join_probability 1
t_leave_time_begin [s] 600
t_leave_time_end [s] 700
d_leave_probability 0.5
t_suicide_time_begin [s] 100
t_suicide_time_end [s] 700
d_suicide_probability 0
t_data_start [s] 100
t_data_end [s] 500
t_data_interval [s] 0.1
t_data_setup [s] 50
t_data_propagate [s] 0.5

4.2.5 Statistical Evaluation

As mentioned, we did only use one topology which was randomlygenerated. To ensure a statistically
sound evaluation of OMCP within this topology, we have run the simulation with the same parameters
repeatedly until the mean of all measurements stabilized.

4.2. SIMULATION EXPERIMENTS 41

In order to estimate the stability of the values, we derived asimple yet effective procedure. We will
explain it for an example metric we callX.
Run the simulation for a few timesk, k ∈ [1,∞), and then do the following:

1. Calculate the mean ofX, X̄k, of all k performed runs.

2. Calculate an error indicatorEX using the difference of̄Xk, the mean of all runs, and̄Xk−1, the
mean of all runs except the most recent, as follows:

EX :=
|X̄k − X̄k−1|

X̄k

.

3. (a) If Ex is less than a suitable maximal value:

i. Calculate the error indicator for the other metrics untileither

A. The error indicators of all metrics have been calculated:End.

B. An error indicator is greater than acceptable: Continue with nextk runs.

(b) Else: Continue with nextk runs.

The results of the simulation experiments are summarized inthe next chapter.

Chapter 5

Results

In the first section, we present the results of the measurements of the three metrics stress, delay and stretch
and rate our overlay multicast scheme according to the application profiles specified in the previous
chapter. In the second section of this chapter, we will discuss the obstacles we encountered during the
evaluation.

5.1 Application Profile Results

The key results of the simulation experiments are given in Table 5.1. In the column labelled “Ideal”,
estimations about the ideal values that could be achieved are given. In the next column, the unweighted
results of OMCP are shown. In the column labelled “Index”, the quotient of the ideal value and the value
of OMCP is given. This is the initial value that is then weighted according to the application profiles. The
weighted values are given in the application profile columns. The number of runs we have performed is
400.

We have measured the following three metrics. A more detailed discussion of them can be found in
the previous chapter.

Stress This metric measures the efficiency of the overlay multicastprotocol. Stress is measured on
every physical link and is defined as the average number of identical copies of a data packet that travelled
this link during a session. The value given in the table is theaverage over all physical link. For all links
that are used for data delivery, stress is 1 in the optimal case, and zero for all other links. An overlay
multicast protocol inherently has a higher overall stress factor if there are nodes which transmit data
packets to more than one other host.

Delay This is the average of the end-to-end delay from the source toevery receiver. The ideal value is
an estimation based on the measured unicast delay.

Stretch This metric measures the overhead incurred by the overlay multicast protocol in terms of la-
tency. It is the average ratio of overlay data delivery delayand unicast delay from the source to every
receiver.

42

5.2. DISCUSSION 43

Table 5.1: Results of the simulation experiments.

Application Ideal OMCP Index Messaging Download Streaming Conferencing

Metrics
Stress 1.0 1.5896 0.62909 0.6291 0.5033 0.1887
Delay [ms] 61.886 89.339 0.6927 0.4849 0.3464
Stretch 1.0 1.4330 0.69784 0.2094 0.1396 0.1396

Heuristics
Simplicity 1.0 0.4 0.4 0.08 0.16 0.12 0.04
Scalability 1.0 0.3 0.3 0.24 0.18 0.21 0.27

Rating 10 5.82 5.42 5.49 5.65

5.1.1 Variation between Runs

The measured values of the means of stress, delay and stretchvaried considerably between runs. As
explained in the previous chapter, we used an error indicator to decide when we had accumulated enough
run results. In Table 5.2, we give an example of how this errorindicator varies for different numbers of
runs.

Table 5.2: Error indicator after different numbers of runs

Runs 1 11 21 31 205

Stress 1 0 0 0 0
Delay 0 0 0 0 0
Stretch 0.18446 0.0059306 0.0038655 0.0018952 0.00053782

5.2 Discussion

The simulation experiments and the evaluation based on the application profiles indicate that our overlay
multicast protocol is rather a general-purpose protocol. What can be seen is that it is better suited for
applications where delay matters, especially messaging and also conferencing. When raw throughput
matters, OMCP is a little bit less suitable.

The stress factor is lower than what we had expected. The average of the maximum of all runs is
5.6315, the average of the mean is 1.5896 and the standard deviation among all physical links is 0.39696
on average. This means that about 66 percent of all links havea stress factor of between 1 and 2.

The average stretch factor of 1.4330 is also quite good. Thismeans that the delay when using the data
delivery tree of OMCP is less than 50 percent higher than whena direct unicast connection was used.
The maximal stretch value, however, is 5.6315, which reveals that there are hosts which have almost a
500 percent increase of the delay. Fortunately, the standard deviation is only 0.68799 and thus almost 66
percent of all receivers have a stretch factor of 2 or less.

What was said about stretch applies to delay as well because these two metrics are related. The
maximal delay was 222.56ms and the average was 89.339ms. With a standard deviation of 35.082,
most receivers have a delay below 125ms. Thus, videoconferencing should be feasible with almost all
receivers. For comparison we give the unicast delays as well. The average unicast delay is 61.886ms and

44 CHAPTER 5. RESULTS

the maximum is 89.929ms. This indicates, that video conferencing should be possible with all receivers
if a better multicast scheme is used.

What bears repeating is that we did not assume node failures.Some qualitative results of scenarios
where this kind of incident is allowed to happen will be discussed in Section 5.2.1.

In addition to the very compact results in Table 5.1, we will present a few plots of a session. The source
host has address 0 and we will focus on three of the more interesting subscribers, which are hosts 1, 9
and 10. Data transmission starts at 100 seconds and ends at 700 seconds.

Delay Samples

In OMCP, the unicast delay among all hosts is periodically measured usingPing packets. Additionally,
we measure the overlay delay from the source to the receiversby timestamping the packets at the source
host and evaluating this timestamp at the subscriber. Results of the latter measurements are shown in
Figure 5.1 over the course of a session. We eliminated all hosts from the plot for which the delay was
constant to make the figure more readable. Only after 275 seconds is the topology stable. An indication
that the mesh improvement mechanism of OMCP works is that thedelay is monotonically nonincreasing.

Stretch Samples

By taking the quotient of the measured overlay delay and the measured unicast delay, stretch can be
calculated easily. This quotient is shown in Figure 5.2 for the same run and the same hosts as the delay
samples. These two plots only make sense together. Obviously, the stretch of host 1 increases at around
130 seconds, then goes down twice, while during the same timeperiod, the delay of this host decreases
in three steps to about one half of the initial value.

This can be explained by the fact that the stretch factor is calculated as the ratio of the overlay
delay and the unicast delay. Both these values are measured quantities and the measurements are subject
to queueing delays at six routers on average. Since all unicast delays are measured about every nine
seconds, it can happen that the measured value of the unicastdelay decreases and thus, stretch increases.
Host 10 experiences the same kind of stretch variability later in the session.

5.2. DISCUSSION 45

Figure 5.1: Delay samples of the three hosts. All other delays were constant during the session. It can
be seen, that it takes about 275 seconds from the time where the first node comes online until the overlay
topology becomes stable. This plot shows that no change thatincresases the delay occurs and thus the
optimization seems to work.

 30

 40

 50

 60

 70

 80

 90

 100 200 300 400 500 600 700 800

Time [s]

Delay Samples host[10]
Delay Samples host[9]
Delay Samples host[1]

Figure 5.2: Stretch samples of three hosts. This plot makes only sense when compared to the delay plot
above. Interestingly, stretch increases in the curves of hosts 1 and 10, even though the delay decreases at
the same time. This is caused by the fact that the unicast delay which as a direct influence on the stretch
factor is measured byPing packets and if they are delayed in the queue of a router, the measurements
vary.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 100 200 300 400 500 600 700 800

Time [s]

Stretch Samples host[10]
Stretch Samples host[9]
Stretch Samples host[1]

46 CHAPTER 5. RESULTS

Data Delivery Tree

Every host maintains aparents listof hosts which he receives data packets from and achildren list of
hosts he sends or forwards data packets to. Figure 5.3 shows the number of children of four hosts. Host
0 is the data source and therefore has the most children.

In Figure 5.4, the current tree parent for the same hosts is shown. (The source is omitted because
it does not have a parent for obvious reasons.) It can be seen that all nodes eventually become direct
children of the source host 0. At first, host 9 switches its parent from 6 to the source. Thus, it becomes
more attractive for hosts 1 and 10. Host 10 also is at first a child of host 6, but after host 9 has become a
direct child of the source, host 10 becomes a child of 9. Afterabout 275 seconds, it then determines that
it is best to be a direct child of the source and switches to 0. Host 1 first switches from its parent 3 to 6,
but about one second later switches to host 9. About ten seconds later, it also notices that it is best to be
a direct child of the source and switches to 0.

5.2. DISCUSSION 47

Figure 5.3: Number of data delivery tree children of four hosts. All hosts except leaves have children. In
this plot, it is indicated, how many children a hosts has overthe course of a session. The source, host 0,
accumulates the most children, because the algorithm strives to minimize the delay between the source
and all receivers. Because the number of receivers is rathersmall, most of them have one child.

 0

 1

 2

 3

 4

 5

 6

 7

 100 200 300 400 500 600 700 800

Time [s]

Tree Children host[0]
Tree Children host[1]
Tree Children host[9]

Tree Children host[10]

Figure 5.4: Current parent host of three hosts. (Source is omitted.) Allhosts eventually become direct
children of the source. First of all, host 9 leaves its parent, host 6, and becomes a child of the source.
Then, host 10 determines, that host 9 has a better connectionto the source and becomes its child. Host
1 switches from its initial parent, host 3, first to host 6 and then to host 9. But both, hosts 1 and 10, have
become direct children of the source after 275 seconds.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 100 200 300 400 500 600 700 800

Time [s]

Current Tree Parent host[10]
Current Tree Parent host[9]
Current Tree Parent host[1]

48 CHAPTER 5. RESULTS

5.2.1 Node failures

In order to provide some insight in the behaviour of OMCP in the case of node failures, we will now
present some plots of such a scenario. The parameters are thesame as specfified in the previous chapter,
except that the paramterd_suicide_probability now has the value0.5. The source host, however,
cannot die. Addionally, thet_data_interval now has the value 1, which means that the source only
emits one packet per second.

In Figure 5.5, the status of all nodes which die during the session is shown. All nodes start in the
initial status2. When they start the joining procedure, their state is1. Once a host has joined the mesh, its
status becomes0. When it leaves the group, it switches its status to−1, but continues to forward packets
for some time. If, however, a node dies abrubtly, its status becomes−2 and it stops processing packets
immediately.

It comes as no surprise that node failures lead to packet loss. Since the source host sends one packet
per second, the duration of the offline status of a host can directly be determined from the plot in Figure
5.6. Host 6 misses packets twice, first when host 1 dies, and then again when host 4 stops operating. All
hosts which are not shown in this plot do not miss any data packets. The packet loss is only detected
when a host receives the first packet after a down time. Therefore, the death of a host and the resulting
indication of packets loss do not coincide exactly.

Whenever a nodes dies which had children, they perceive packet loss. This happens first to hosts 6
and 10 because their parent, host 9, dies. Later, when node 1 dies, host 6 misses packets again. When
nodes 4 and 8 die at about 440 seconds, hosts 5 and, once more, host 6 miss packets.

5.2.2 Obstacles

We were unable to perform all the simulation experiments we had planned due to the very limited time-
frame of a semester project. For this reason, we only have results of one specific topology with one
particular set of parameters. We suspect that the performance of our scheme could be improved consid-
erably with the appropriate parameters. The parameters we have used in our simulation runs were mere
estimations of reasonable initial values.

Missing Information There is currently no freely accessible data about the reliability of Internet back-
bone routers and links. Internet service providers (ISPs) would be the natural source of such information,
but it is just as natural for them to be unwilling to “admit” that their network infrastructure is not infalli-
ble.

Topological Limitations Due to time constraints we could only evaluate one network topology. Thus,
our results are far from representative. What’s more, the topology we used is much too small to deliver
results that can be applied to the Internet.

5.2. DISCUSSION 49

Figure 5.5: Status of six hosts which die during the session. Statuses2 and1 indicate that the node has
not yet joined or is in the process of joining, respectively.Status0 indicates a fully operational group
member. Statuses−1 and−2 indicate a leaving and a dead host, respectively.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500 600 700 800

Time [s]

Node Status host[1]
Node Status host[2]
Node Status host[4]
Node Status host[7]
Node Status host[8]
Node Status host[9]

Figure 5.6: Number of packets missed at three hosts. As indicated by the above plot, four hosts die.
When host 9 dies att = 303s, both host 6 and 10 miss 16 packets. Caused by the death of node1,
host 6 misses packets again att = 312s. At aboutt = 440s, when both node 4 and 8 die, hosts 5
and—again—host 6 miss packets.

 0

 10

 20

 30

 40

 50

 0 100 200 300 400 500 600 700 800

Time [s]

Data Packets Missed host[5]
Data Packets Missed host[6]

Data Packets Missed host[10]

Chapter 6

Conclusion

We designed an overlay multicast scheme based onNarada,and implemented it in the network simulator
OMNeT++. With this simulator, we have conducted a sufficient number of runs to be able to gather
statistically sound values for stretch, delay and stress ofone topology and with one set of parameters.

A lot of work could not be done because our time budget was verylimited. The behaviour of our
scheme under conditions where nodes, routers or links fail,could not be analyzed. However, from a few
test runs, it appears that our scheme isnot suitable for scenarios where node failures are likely because
packet loss in this kind of event is too high for most multicast applications, even for fault-tolerant ones
like media streaming.

6.1 Further Research

One of the key problems of our scheme is its missing resilience against node failures. As a possible
counter measure, we suggest multi-path routing. Additionally, it would be necessary to add a mechanism
which allows to immediately detect when a nodes loses its parent in the data delivery tree.

Instead of flooding the network with dedicated probe packetsto measure the performance of links,
ordinary control packets could be used for this purpose. This would allow a more continuous monitoring
of the performance of the underlying network at no additional cost.

The current version of our scheme uses a lot of very small control packets. This could be avoided
by simply concatenating the payload of these packets into bigger “summary” packets. Furthermore, data
packets could be used to deliver control information as well.

With the extensions sketched above, our scheme might be better suited for real world scenarios. It
would be very interesting to analyze, how resilient it is against the kinds of failures that occur in the
Internet in a large-scale evaluation.

50

Appendix A

Conceptual Formulation

On pages 52 to 59, the complete conceptual formulation is given. A review of the project goals reached
and not reached follows in appendix B on page 60.

51

52 APPENDIX A. CONCEPTUAL FORMULATION

53

54 APPENDIX A. CONCEPTUAL FORMULATION

55

56 APPENDIX A. CONCEPTUAL FORMULATION

57

58 APPENDIX A. CONCEPTUAL FORMULATION

59

Appendix B

Review

From the initial plan, to implement two overlay multicast schemes and compare them to a native multicast
scheme, about one third—the implementation and evaluationof one overlay multicast scheme—was
achieved. However, the performance of this custom scheme appears to be far better compared to the
original scheme it has been derived from.

The lessons to be learnt in this kind of semester project are:

1. Effectively find and study related work.

2. Develop sound criteria to classify related work and existing solutions and select the most represen-
tative of them.

3. Design a procedure to perform a fair, reproducible and comprehensive comparison of a set of solu-
tions.

4. Usage of a network simulator.

5. Implementation of a distributed algorithm, i.e. a multicast protocol running on several nodes.

6. Select parameters of interest and develop the facilitiesto measure them accurately.

7. Process huge amounts of data and derive statistically sound conclusions if possible.

Even though only one protocol could be implemented and tested, the above—and a lot more—has been
learnt thoroughly.

One of the key learnings is the importance of implementation. Or in the words of somebody who
obviously has learnt this lesson long ago:

We reject: kings, presidents, and voting.
We believe in: rough consensus and running code.

Dave Clark, IETF

60

Appendix C

OMCP Implementation

In this chapter we will first specify all simulation parameters of our overlay multicast scheme OMCP and
then present a few excerpts from the source code of the implementation in OMNeT++.

C.1 Simulation Parameters

There are a great number of parameters governing the performance of OMCP. With most of them, there
is a trade-off between efficiency and speed as well as resilience against node failures. In general, to make
the protocol faster and more adaptable to changes in the scenario, more control traffic is necessary.

The numerical values of the parameters in the following listwere determined by hand and are in no
way proven to be sound by simulation experiments.

The first character of a parameter name indicates its type.

• t_... are time parameters and can be specified either in seconds or with the OMNeT++ time
notation as follows:ns for nanoseconds,us for microseconds,ms for milliseconds,s for seconds,
m for minutes,h for hours andd for days.

• d_... are double parameters, mostly probabilities.

• n_... are integer parameters, mostly numbers of items.

C.1.1 Join, Leave And Death Events

• t_duration = 1000s: Duration of one simulation run.

• double_join_probability = 1.0: Probability that a node will join the group.

• t_join_time_begin = 10,

• t_join_time_end = 100: Beginning and end of the interval within which a node that has deter-
mined that it will join the group sends its initial join request to the other group members. The exact
join time is calculated randomly according to a uniform distribution.

• double_leave_probability = 0.5: Probability that a node will leave the group at some point in
time.

• t_leave_time_begin = 600,

61

62 APPENDIX C. OMCP IMPLEMENTATION

• t_leave_time_end = 700: Beginning and end of the interval within which a node that has deter-
mined that it will leave the group starts the leave procedure. The exact leave time is calculated
randomly according to a uniform distribution.

• double_suicide_probability = 0.0: Probability that a node will fail abruptly at some point in
time.

• t_suicide_time_begin = 100,

• t_suicide_time_end = 700: Beginning and end of the interval within which a node that has
determined that it will suffer of an abrubt node failure dies. The exact death time is calculated
randomly according to a uniform distribution.

• bool_alive = true: With this parameter, a node can be defined to be dead from the beginning by
setting it equal tofalse.

C.1.2 Bootstrap Process

• n_bootstrap_nodes_known = 3: Number of other group members a node knows when bootstrap-
ping the protocol. They are chosen randomly according to a uniform distribution from all valid
group member addresses. This set might contain nodes which join only after this node or which are
already dead or which will never be alive.

• n_bootstrap_nodes = 2: Number of nodes that will actually be contacted in the bootstrap pro-
cess. They are chosen randomly according to a uniform distribution from the above set of candi-
dates.

• t_bootstrap_timeout = 10s: Time to wait for successful connection with the group before
restarting the bootstrap process with a new selection from the candidates set.

C.1.3 Refresh Mechanism

• t_refresh_interval = 500ms: Interval between dissemination of refresh messages.

• n_refresh_size = 100: Maximal number of nodes contained in a refresh message.

• t_refresh_timeout = 2s: Time to wait for the next refresh message of a mesh neighbor before
sending probe messages to check its status.

C.1.4 Routing Protocol

• t_routing_latency_initial = 1s: Initial latency of newly detected routes which have not been
evaluated using ping packets yet.

• t_routing_update_interval = 2s: Interval between dissemination of routing update messages.

• t_routing_update_delay = 200ms: Minimal time between triggered routing updates.

• t_routing_lifespan = 15s: Lifespan of routing information.

• t_routing_poison = 100s: Poison to add to routes which have expired or which pass notably
dead nodes.

• n_routing_update_size = 50: Maximal number of route entries in a routing update packet.

• n_routing_update_path_size = 20: Maximal length of a path in a routing update packet.

C.1. SIMULATION PARAMETERS 63

C.1.5 Latency Measurement

• t_initial_ping_delay = 2s: Timeframe within which a ping is sent to a newly detected group
member. The exact point of time is calculated randomly to avoid flooding this new member with
pings.

• t_ping_interval = 5s: Interval between evaluating a link.

• t_ping_timeout = 1s: Timeout of a ping packet.

C.1.6 Data Source Characteristics

• adr_t_data_source = 0: Address of the data source.

• t_data_start = 100s: Time at which the data source starts to send data packets.

• t_data_interval = 10ms: Interval between data packets.

• n_data_max = 1000000: Maximal number of data packets to send.

C.1.7 Mesh Improvement Mechanism

• n_mesh_neighbors_min = 4: Absolute minimal number of mesh links a node should have.

• n_mesh_neighbors_max = 6: Maximal number of mesh links a node should have.

• t_mesh_eval_interval = 5s: Interval between evaluating the mesh.

• t_mesh_eval_wait = 10s: Time to wait before re-evaluating the mesh after a link has been added
or dropped.

• t_mesh_link_graceperiod = 10s: Minimal time to wait before considering dropping a fresh link.

• t_mesh_link_vacation_timeout = 10s: Time to wait before potentially dropping a mesh link
after the announcment that it should be vacated.

• t_mesh_link_drop_timeout = 60s: Time to wait before re-enabling a mesh link after the an-
nouncement that it should be vacated.

• d_mesh_eval_target = 0.5: Target area in the range between minimal and maximal numberof
mesh links.

• d_mesh_eval_utility_min = 0.5: Minimal utility of a link to be added.

• d_mesh_eval_cost_max = 5.0: Maximal cost of a link to be dropped.

• d_mesh_eval_current_latency_min = 0.002: Minimal latency of a link to be dropped.

• d_mesh_eval_current_latency_divider = 10: Divider to calculate the minimal latency of a
link to be dropped.

• t_member_info_lifespan = 10s: Lifespan of information about group members which is rele-
vant for dropping links.

C.1.8 Mesh Repair Mechanism

• t_repair_interval = 5s: Interval between running the mesh repair process.

• t_stale_max = 30s: Time to wait before a stale nodes becomes a zombie node.

• t_zombie_timeout = 60s: Time to wait before eliminating the member record of a zombie node.

• t_probe_timeout = 500ms: Timeout of a probe packet.

• n_probes = 2: Number of probes to send to stale nodes.

64 APPENDIX C. OMCP IMPLEMENTATION

C.1.9 Tree Transient Data Forwarding Characteristics

• t_tree_branch_transient_send = 30s: Time to continue forwarding data packets to former tree
children.

• t_tree_branch_transient_receive = 60s: Time to accept data packets from a former tree par-
ent.

C.2 Excerpts from the OMCP Source Code

C.2.1 OMCP Node Class

C.2.2 Member Record Class Header File

This is the header file of the member records of OMCP nodes. Every OMCP node keeps such a member
record for all currently online group members. It is used to store information about the status of a
member, about the overlay link to it and about its routing table. The latter is used to improve the mesh
as well as for the construction of the data delivery tree.

// File name: MemberRecord.h

/∗ Models record of a group member. According to the specification
∗ of Narada, the record must contain the address , the last sequence
∗ number seen by this address and the timestamp of the last seq.
∗ number. In OMC, there are a few other things to be kept in a
∗ member record.
∗/

10 #ifndef MEMBERRECORD_DECL
#define MEMBERRECORD_DECL

#include < vector>
#include "csimul .h"
#include " esmdefinitions .h"
#include " routingTable .h"
#include "RefreshTimeout_m.h"
#include "ZombieTimeout_m.h"
#include "ProbeTimeout_m.h"

20 #include "PingTimeout_m.h"
#include "RoutingRequestTimeout_m.h"
#include "MeshLinkVacationTimeout_m.h"
#include "MeshLinkDropTimeout_m.h"

using namespacestd;

class MemberRecord
{

// member fields
30 private :

int memberAddress;
int status ;

/∗ Mesh dynamics
∗/

C.2. EXCERPTS FROM THE OMCP SOURCE CODE 65

// Status of this mesh link
int meshLinkStatus;
MeshLinkVacationTimeout∗ meshLinkVacationTimeoutPtr;
MeshLinkDropTimeout∗ meshLinkDropTimeoutPtr;

40 // Timestamp when adding a mesh link to this node
// was last evaluated
simtime_t meshLinkEvaluatedTimestamp;
// Timestamp when the measured latency was last updated
simtime_t latencyTimestamp;
// Timestamp when this node was added to the mesh.
// If zero , then there currently exists no link to it
simtime_t meshLinkAddedTimestamp;
// Timestamp when this node was dropped from the mesh
// If zero , then there never was a link .

50 simtime_t meshLinkDroppedTimestamp;

// Timestamp when this node was added to the tree as a child .
// If zero , then there currently exists no link to it
simtime_t treeChildAddedTimestamp;
// Timestamp when this node was dropped from the tree .
// If zero , then there never was a link .
simtime_t treeChildDroppedTimestamp;

// Timestamp when this node was added to the tree as a parent .
60 // If zero , then there currently exists no link to it

simtime_t treeParentAddedTimestamp;
// Timestamp when this node was dropped from the tree .
// If zero , then there never was a link .
simtime_t treeParentDroppedTimestamp;

double linkUtility ;
int linkCost ;

/∗ Tree
70 ∗/

// Timestamp when this node was added to the tree .
// If zero , then there currently exists no branch to it
simtime_t treeBranchAddedTimestamp;
// Timestamp when this node was dropped from the mesh
// If zero , then there never was a branch.
simtime_t treeBranchDroppedTimestamp;

/∗ Refresh
∗/

80 // Sequence number sent in last refresh message
int lastRefreshSeqNumber;

RefreshTimeout∗ refreshTimeoutPtr ;

/∗ Routing
∗/

// Pointer to track RoutingRequestTimeout message
RoutingRequestTimeout∗ routingRequestTimeoutPtr;
// Member’s routing table from RoutingUpdate messages

90 // Used for construction of the data delivery tree
RoutingTable routingTable ;

66 APPENDIX C. OMCP IMPLEMENTATION

// Sequence number sent in last routing update message
int lastRoutingSeqNumber;
// Timestamp when routing information of this node was last updated
simtime_t routingTimestamp;

/∗ Probing
∗/

// Sequence number∗sent∗ in last probe reply to this member
100 int lastSentProbeSeqNumber;

// Sequence number∗received∗ in last probe reply from this member
int lastReceivedProbeSeqNumber;
// Pointer to track ProbeTimeout message
ProbeTimeout∗ probeTimeoutPtr;
// Counter to track how many probes have been sent to this member
int probeCount;
// Timestamp when last probe to this node was sent
simtime_t probeTimestamp;

110 ZombieTimeout∗ zombieTimeoutPtr;

/∗ Pinging
∗/

// Pointer to track PingTimeout message
PingTimeout∗ pingTimeoutPtr;
// Sequence number∗sent∗ in last ping reply to this member
int lastSentPingSeqNumber;
// Sequence number∗received∗ in last ping reply from this member
int lastReceivedPingSeqNumber;

120 // Timestamp when last ping to this node was sent
simtime_t pingTimestamp;
// Latency local node to this member (from probe cycle)
simtime_t latency ;

// Member’s routing table from PingReply messages
// Used for evaluation of utility of adding a mesh link
// and cost of dropping a mesh link
RoutingTable meshRoutingTable;

130 // Refresh cycle timestamp
simtime_t refreshTimestamp;

public :

// constructor
MemberRecord(int ,int ,simtime_t ,simtime_t) ;

// destructor
~MemberRecord();

140
// operator =
void operator=(const MemberRecord &);

/∗ access methods
∗/

int getAddress()const;

C.2. EXCERPTS FROM THE OMCP SOURCE CODE 67

int getStatus ()const;
150 void setStatus (int) ;

int getMeshLinkStatus()const;
void setMeshLinkStatus(int) ;

MeshLinkVacationTimeout∗ getMeshLinkVacationTimeoutPtr()const;
void setMeshLinkVacationTimeoutPtr(MeshLinkVacationTimeout∗);
MeshLinkDropTimeout∗ getMeshLinkDropTimeoutPtr()const;
void setMeshLinkDropTimeoutPtr(MeshLinkDropTimeout∗);

160 simtime_t getMeshLinkEvaluatedTimestamp()const;
void setMeshLinkEvaluatedTimestamp(simtime_t);

simtime_t getMeshLinkAddedTimestamp()const;
void setMeshLinkAddedTimestamp(simtime_t);

simtime_t getMeshLinkDroppedTimestamp()const;
void setMeshLinkDroppedTimestamp(simtime_t);

simtime_t getTreeChildAddedTimestamp()const;
170 void setTreeChildAddedTimestamp(simtime_t);

simtime_t getTreeChildDroppedTimestamp()const;
void setTreeChildDroppedTimestamp(simtime_t);

simtime_t getTreeParentAddedTimestamp()const;
void setTreeParentAddedTimestamp(simtime_t);

simtime_t getTreeParentDroppedTimestamp()const;
void setTreeParentDroppedTimestamp(simtime_t);

180
int getRefreshSeqNum()const;
void setRefreshSeqNum(int);

int getRoutingSeqNum()const;
void setRoutingSeqNum(int);

int getSentPingSeqNum()const;
int getNextSentPingSeqNum();
void setSentPingSeqNum(int);

190
int getReceivedPingSeqNum()const;
int getNextReceivedPingSeqNum();
void setReceivedPingSeqNum(int);

int getSentProbeSeqNum()const;
int getNextSentProbeSeqNum();
void setSentProbeSeqNum(int);

int getReceivedProbeSeqNum()const;
200 int getNextReceivedProbeSeqNum();

void setReceivedProbeSeqNum(int);

simtime_t getRefreshTimestamp()const;

68 APPENDIX C. OMCP IMPLEMENTATION

void setRefreshTimestamp(simtime_t) ;

adr_t getNextHop()const;
void setNextHop(adr_t) ;

int getNumberOfMeshRoutes()const;
210 int getNumberOfMeshRoutesTo(adr_t);

RouteEntry∗ getMeshRoute(int) const;
RouteEntry∗ getMeshRouteTo(adr_t)const;
adr_t getMeshNextHop(adr_t);
adr_t getMeshHop(adr_t,int) ;
simtime_t getMeshLatency(adr_t) ;
void addMeshRoute(adr_t, adr_t , simtime_t , simtime_t) ;
void addMeshRoute(adr_t dest , adr_t next ,

simtime_t lat , simtime_t , vector<adr_t >:: iterator path ,
int length) ;

220 void addMeshRoute(RouteEntry∗);
void setMeshRoute(adr_t , adr_t , simtime_t , simtime_t) ;
void clearMeshRoutes() ;

int getNumberOfMemberRoutes()const;
int getNumberOfMemberRoutesTo(adr_t);
RouteEntry∗ getMemberRouteEntry(int) const;
RouteEntry∗ lookupMemberRouteEntry(adr_t);
adr_t getMemberNextHop(adr_t);
adr_t getMemberHop(adr_t,int) ;

230 simtime_t getMemberLatency(adr_t);
void addMemberRoute(adr_t, adr_t , simtime_t , simtime_t) ;
void addMemberRoute(adr_t dest, adr_t next ,

simtime_t lat , simtime_t , vector<adr_t >:: iterator path ,
int length) ;

void addMemberRoute(RouteEntry∗);
void setMemberRoute(adr_t, adr_t , simtime_t , simtime_t) ;
void clearMemberRoutes();

ZombieTimeout∗ getZombieTimeoutPtr()const;
240 void setZombieTimeoutPtr(ZombieTimeout∗);

RefreshTimeout∗ getRefreshTimeoutPtr ()const;
void setRefreshTimeoutPtr (RefreshTimeout∗);

ProbeTimeout∗ getProbeTimeoutPtr()const;
void setProbeTimeoutPtr(ProbeTimeout∗);

PingTimeout∗ getPingTimeoutPtr()const;
void setPingTimeoutPtr (PingTimeout∗);

250
RoutingRequestTimeout∗ getRoutingRequestTimeoutPtr()const;
void setRoutingRequestTimeoutPtr(RoutingRequestTimeout∗);

int getProbeCount()const;
void setProbeCount(int) ;
void incrementProbeCount(int) ;
void incrementProbeCount();

simtime_t getProbeTimestamp()const;

C.2. EXCERPTS FROM THE OMCP SOURCE CODE 69

260 void setProbeTimestamp(simtime_t) ;

simtime_t getPingTimestamp()const;
void setPingTimestamp(simtime_t) ;

simtime_t getRoutingTimestamp()const;
void setRoutingTimestamp(simtime_t) ;

simtime_t getLatencyTimestamp()const;
void setLatencyTimestamp(simtime_t) ;

270
simtime_t getLatency ()const;
void setLatency (simtime_t) ;

double getLinkUtility () const;
void setLinkUtility (double);

int getLinkCost() const;
void setLinkCost(int) ;

280 // CAUTION:
// This enum has to be kept in sync with the enum memberStatus
// of class ESMNode in file esmnode.h
enummemberStatus {freshMember,staleMember,probedMember,

zombieMember};
// CAUTION:
// This enum has to be kept in sync with the enum meshLinkStatus
// of class ESMNode in file esmnode.h
enummeshLinkStatus {unusedLink, activeLink , forsakenLink};

290
};

#endif

OMCP Node Routing Update Handler Method

This is one of the about 100 methods of the OMCP node class. It handles RoutingUpdate packets which
contain the conplete routing table of another group member.OMCP uses path information in order to
avoid routing loops. Additionally, routes may be poisoned to indicate that they are either scheduled to be
torn down or they are already considered to be down.

// File name: OMCNode.cc

// [...]

/∗ Handles received routing update messages
∗ 1. Check, if a member record for the sender exists and if a
∗ mesh link to the sender is active . If not , ignore the packet .
∗ 2. Check, if the sequence number in the packet is greater than
∗ the routing sequence number stored in the member record. If not ,

10 ∗ ignore the packet .
∗ 3. Update the routingTimestamp in the member record of the sender.
∗ 4. Process route after route in the packet as follows :

70 APPENDIX C. OMCP IMPLEMENTATION

∗ 4.1. Put the whole routing table contained in the packet intoour
∗ member record of the sender.
∗ 4.2. Check, if the advertised path contains our address . If yes ,
∗ ignore the entry .
∗ 4.3. Calcualte the effective latency to the destination :
∗ newLatency = (latency advertised by sender)+(latency to sender)
∗ − If the sender is −− according to the current routing

20 ∗ table −− our next hop to the destination :
∗ Replace our current route with the route from the packet
∗ − If the sender is not currently our next hop, but newLatency
∗ is less than our current latency to the destination : Replace
∗ our current route with the route from the packet
∗ − Else ignore the route .
∗/

void ESMNode::routingUpdateHandler(RoutingUpdate∗ ru)
{

30 adr_t senderAddr = ru−>getSrc();

// Get the member record
MemberRecord∗ sender = locateGroupMemberRecord(senderAddr);
// Check if the pointer appears reasonable
if (sender == NULL) {

return ;
}
else {

int senderStatus = sender−>getStatus() ;
40 int senderLinkStatus = sender−>getMeshLinkStatus();

if (senderStatus != freshMember){
return ;

}
if (senderLinkStatus == forsakenLink){

return ;
}
bool fromMeshNeighbour =false;
if (meshNeighbourExists(senderAddr)) {

// Sender is mesh neighbor.
50 fromMeshNeighbour =true;

}
else {

// Sender is not mesh neighbor and probably
// wants to evaluate adding a mesh link to us

}

// Check if the sequence number is greater than the last
int seqNum =static_cast<int >(ru−>getSeqNum());
if (seqNum > sender−>getRoutingSeqNum()) {

60 // Update routing sequence number
sender−>setRoutingSeqNum(seqNum);

/∗ Process routing update
∗/

// Current routing table in the member record of the sender

// Clear the routing table in the member record

C.2. EXCERPTS FROM THE OMCP SOURCE CODE 71

// We will add all routes anew as we process the
70 // routing update

sender−>clearMemberRoutes();

// Get the length of the paths to be able to demux them
int maxPathLength =static_cast<int >(ru−>getPathLength());

// Get the latency from local node to sender of this
// RoutingUpdate.
// We look in the MemberRecord for this because we measure the
// latency with pings and then write the latency into the

80 // MemberRecord in method "pingReplyHandler()"
simtime_t senderLatency = sender−>getLatency();
if (senderLatency < 0) {

// Something went wrong. Should never happen.
senderLatency = t_routing_latency_initial_M ;

}

// Number of entries in this RoutingUpdate
unsigned int numEntries = ru−>getNumEntries();

90 /∗ Check if the mesh link to the sender is active .
∗ If its status is forsakenLink , then check if it uses
∗ us as next hop for any route .
∗ If yes , then we need to reschedule the VacationTimeout
∗ because we wait until all routes have left this link .
∗/

bool forsakenLinkStillUsed =false;

/∗ Check if we received one or more poisoned routes we
∗ believed were good. If yes , we send out routing updates

100 ∗ in at most t_routing_update_delay_M seconds.
∗/

bool sendUpdatesImmediately =false;

// Go through all vectors in RoutingUpdate
// simultaneously with index i
for (unsigned int i = 0; i < numEntries; i++){

// Get the destination address of this route
adr_t destAddr =static_cast<adr_t>(ru−>getDestination(i)) ;

110 /∗
∗ RoutingUpdate conventions:
∗ − The very first entry is always of the form
∗ Destination = <senderAddress> NextHop = <senderAddress>
∗ Latency = 0;
∗ − The following entries have different destinations than
∗ <senderAddress>.
∗ − The end of valid entries is reached if an entry to
∗ destination <senderAddress> appears.
∗/

120
if (i > 0 && destAddr == senderAddr) {

// This route must be invalid . Quit processing this packet
break;

}

72 APPENDIX C. OMCP IMPLEMENTATION

else {

/∗ Valid route
∗/

130 // Update the routing information timestamp
// of the sender
sender−>setRoutingTimestamp(simTime());

adr_t nextHop =static_cast<adr_t>(ru−>getNextHop(i));
simtime_t lat = static_cast<simtime_t>(ru−>getLatency(i)) ;

/∗ Copy the path into a vector and check if it contains
∗ our address . If yes , ignore the entire entry and go
∗ to the next .

140 ∗/
bool pathContainsUs =false;
// Get the beginning of the path in the array
int base = maxPathLength∗ i ;
// Set the index in the path for this record to the first hop
int pathIndex = base;
// Count the number of valid hops in the path
int pathLength = 0;
vector<adr_t> pathVector ;
pathVector . clear () ;

150 // Set the first hop in the path to
// the sender of this packet
pathVector .push_back(senderAddr);
pathLength++;
for (int hop = 0; hop < maxPathLength; hop ++) {

pathIndex = base + hop;
adr_t hopAddr = ru−>getPath(pathIndex);
// Check if this is a valid hop address
if (hopAddr ==this−>localAddress_M){

// Set variable to not incorporate this route into our
160 // routing table . But we still need the whole path

// to put it in the member record of the sender.
pathContainsUs =true ;
pathVector .push_back(hopAddr);
pathLength++;

}
else if(hopAddr != ROUTING_NO_HOP){

pathVector .push_back(hopAddr);
pathLength++;

}
170 else{

break;
}

}

/∗ Update routing tables
∗
∗ − If this RoutingUpdate was sent by a mesh neigbhbour:
∗ Add the routes to our routing table if they seem useful .
∗ − Else only add them to the MemberRecord of the sender.

180 ∗/

C.2. EXCERPTS FROM THE OMCP SOURCE CODE 73

/∗ Copy routing information into the member record of the
∗ sender
∗ At the beginning , we cleared the routing table . Therefore ,
∗ we can now just create a new entry for all routes found.
∗ We won’t add routes which are poisoned , however.
∗/

// Check, if this route has been poisoned , i .e ., its
190 // latency is equal to or greater than t_routing_poison_M

bool poisonedRoute =false;
if (! (lat < t_routing_poison_M)){

poisonedRoute =true ;
}
if (! poisonedRoute){

vector<adr_t >:: iterator pathIter = pathVector .begin () ;
/∗ The first entry in the path vector is the address of
∗ the sender . We only need this in our own routing table .
∗ Therefore , we increment the pathIter once here .

200 ∗ Example: path vector is "3 2 1".
∗ − Our routing table will contain :
∗ dest : 1, next : 3, path length : 3, path : 3 2 1
∗ − The member routing table of sender 3 will contain only:
∗ dest : 1, next : 2, path length : 2, path : 2 1
∗/
pathIter ++;
sender−>addMemberRoute(destAddr, nextHop, lat, simTime(),

pathIter , pathLength− 1) ;
}

210
if (fromMeshNeighbour){

/∗ Update our routing table
∗/

// Ignore routes to us
if (destAddr ==this−>localAddress_M){

continue;
}

220
// Check, if we already have an entry for this destination
RouteEntry∗ re = routes_M.lookupEntry(destAddr) ;
if (re == NULL){

/∗ New destination
∗/

// If the path contains us , ignore the route .
if (pathContainsUs){

230 if (senderLinkStatus == forsakenLink){
// The mesh link to the sender should be vacated , but
// this member is still using us in this route .
// We need to wait some more time.
forsakenLinkStillUsed =true ;

}
continue;

74 APPENDIX C. OMCP IMPLEMENTATION

}

// We won’t add a new route if it is poisoned.
240 simtime_t effectiveLatency = lat + senderLatency;

if (! poisonedRoute){

// Create new route entry in the table
vector<adr_t>:: iterator pathIter = pathVector .begin() ;
routes_M.addRoute(destAddr, senderAddr,

effectiveLatency , simTime() , pathIter , pathLength) ;
}

}
else {

250
/∗ Known destination
∗/

// Calculate the effective latency if we took this route
// with the sender as next hop
simtime_t effectiveLatency = lat + senderLatency;
simtime_t currentLatency = re−>getLatency();
bool updateRoute =false;
// Update the entry if the sender is currently our next
// hop because in this case , the sender is authoritative

260 // about link failures etc .
adr_t currentNextHop = re−>getNextHop();
if (senderAddr == currentNextHop){

// If the path contains us , we need to poison
// this route to avoid a routing loop.
if (pathContainsUs){

routes_M.poisonRouteTo(destAddr, t_routing_poison_M);
continue;

}
else if (poisonedRoute) {

270 // If the route is poisoned:
// 1. Check if we already have poisoned the route in
// our routing table . If not we set the latency to
// our own value of a poisoned route and send
// routing updates to our neighbors immediatley ,
// i .e . set sendUpdatesImmediatley to true
if (ceil (currentLatency) == ceil (t_routing_poison_M)){

// We already know that this route is poisoned.
}
else {

280 routes_M.poisonRouteTo(destAddr,
t_routing_poison_M);

// Set this variable to true to make sure we send
// this information to our neighbors immediately .
sendUpdatesImmediately =true ;
continue;

}
}
else {

updateRoute =true ;
290 // Check if our current route in the routing table is

// poisoned.
// If yes , we send routing updates to our neighbors

C.2. EXCERPTS FROM THE OMCP SOURCE CODE 75

// immediatley , i .e . set sendUpdatesImmediatley to
// true
if (ceil (currentLatency) == ceil (t_routing_poison_M)){

// Set this variable to true to make sure we send
// this information to our neighbors immediately .
sendUpdatesImmediately =true ;

}
300 }

}
// Poison the entry if the old entry is too old
else if (re−>getTimestamp() < simTime()− t_routing_lifespan_M) {

// If the path contains us , go to the next entry .
if (pathContainsUs){

routes_M.poisonRouteTo(destAddr, t_routing_poison_M);
continue;

}
else if (poisonedRoute) {

310 // If the advertised route is poisoned , we set
// the latency to our own value of a poisoned route
routes_M.poisonRouteTo(destAddr, t_routing_poison_M);
continue;

}
else {

// This route seems to be valid and our current route
// has expired .
updateRoute =true ;

320
// Check if our current route in the routing table is
// poisoned.
// If yes , we send routing updates to our neighbors
// immediatley , i .e . set sendUpdatesImmediatley to
// true
if (ceil (currentLatency) == ceil (t_routing_poison_M)){

// Set this variable to true to make sure we send
// this information to our neighbors immediately .
sendUpdatesImmediately =true ;

330 }
}

}
// Change the entry if the new route is better
else if (effectiveLatency < currentLatency) {

// If the path contains us , go to the next entry .
if (pathContainsUs){

continue;
}
else {

340 updateRoute =true ;
// Check if our current route in the routing table is
// poisoned.
// If yes , we send routing updates to our neighbors
// immediatley , i .e . set sendUpdatesImmediatley to
// true
if (ceil (currentLatency) == ceil (t_routing_poison_M)){

// Set this variable to true to make sure we send
// this information to our neighbors immediately .

76 APPENDIX C. OMCP IMPLEMENTATION

sendUpdatesImmediately =true ;
350 }

}
}
// Do the update if necessary
if (updateRoute){

re−>setNextHop(senderAddr);
re−>setLatency(effectiveLatency) ;
re−>setTimestamp(simTime());
vector<adr_t>:: iterator pathIter = pathVector .begin() ;
re−>setPath(pathIter , pathLength) ;

360 }
}

}
}
if (forsakenLinkStillUsed){

// Reschedule VacationTimeout
MeshLinkVacationTimeout∗ vacationTimeout

= sender−>getMeshLinkVacationTimeoutPtr();
if (vacationTimeout != NULL){

// Seems to be a valid timeout pointer
370 delete cancelEvent(vacationTimeout) ;

}
sender−>setMeshLinkVacationTimeoutPtr(NULL);
// Schedule a new timer to check if the link has been vacated
// already
vacationTimeout

= newMeshLinkVacationTimeout(
"Mesh Link Vacation Timeout");

vacationTimeout−>setKind(MeshLinkVacationTimeoutEvent);
vacationTimeout−>setMemberAddress(senderAddr);

380 sender−>setMeshLinkVacationTimeoutPtr(vacationTimeout);
scheduleAt(simTime()+t_mesh_link_vacation_timeout_M,

vacationTimeout) ;
}

}
if (sendUpdatesImmediately){

if (routingUpdateEventMsg−>arrivalTime()
> ceil (simTime() + t_routing_update_delay_M)){

// Cancel the current timer
cancelEvent(routingUpdateEventMsg);

390 // Schedule triggered update
routingUpdateEventMsg

= newcMessage("TriggeredRouting Update Timer");
routingUpdateEventMsg−>setKind(ROUTING_UPDATE_EVENT);
scheduleAt(simTime()

+ t_routing_update_delay_M, routingUpdateEventMsg);
}
else {
}

}
400 }

}
}

// [...]

C.2. EXCERPTS FROM THE OMCP SOURCE CODE 77

Bibliography

[1] Y. Chu, S. G. Rao, S. Seshan, H. Zhang, “A Case for End System Multicast.”Proceedings of the
ACM SIGMETRICS,June 2000.

[2] E. B. Shapiro. “Network Timetable.” IETF RFC 4 (Informational), March 1969.

[3] J. Postel. “Internet Protocol.” IETF RFC 791 (Standard), September 1981.

[4] D. Waitzman, C. Partridge, S. E. Deering. “Distance Vector Multicast Routing Protocol.” IETF
RFC 1075 (Experimental), November 1988.

[5] J. Moy. “Multicast Extensions to OSPF.” IETF RFC 1584 (Proposed Standard), March 1994.

[6] A. Ballardie, P. Francis, J. Crowcroft. Core Based Trees. Proceedings of the ACM SIGCOMM,
September 1993.

[7] A. Ballardie. “Core Based Trees (CBT) Multicast RoutingArchitecture.” IETF RFC 2201
(Experimental), September 1997.

[8] A. Ballardie, B. Cain, Z. Zhang. “Core Based Trees (CBT) Multicast Routing Architecture.” IETF
Internet-draft “draft-ietf-idmr-cbt-spec-v3-01.txt”,August 1998.

[9] D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S. E. Deering, M. Handley, V. Jacobson, C. Liu,
P. Sharma, L. Wei. “Protocol Independent Multicast – SparseMode (PIM-SM): Protocol
Specification.” IETF RFC 2362 (Experimental), June 1998.

[10] B Fenner, M. Handley, H. Holbrook, I. Kouvelas. “Protocol Independent Multicast – Sparse Mode
(PIM-SM): Protocol Specification (Revised).” IETF Internet-draft, February 2004.

[11] S. E. Deering, R. Hinden. “Internet Protocol, Version 6(IPv6) Specification.” IETF RFC 2460
(Draft Standard), December 1998.

[12] J. Frankel, T. Pepper. “Gnutella.”
http://rfc-gnutella.sourceforge.net/

[13] B. Cohen. “BitTorrent.”
http://www.bitconjurer.org/BitTorrent/

[14] “Internet Engineering Task Force (IETF).”
http://www.ietf.org/

[15] András Varga. “OMNeT++– Objective Modular Network Testbed in C++.” Discrete event
simulation system.
http://www.omnetpp.org/

[16] Georgia Institute of Technology/College of Computing. “GT-ITM –Georgia Institute of
Technology Internet Topology Model.” Network topology generator.
http://www.cc.gatech.edu/projects/gtitm/

[17] A. Tanenbaum.Computer Networks.Published by Prentice Hall PTR, 4th edidtion (August 2002),
ISBN: 0130661023.

78

BIBLIOGRAPHY 79

[18] L. Peterson, B Davie.Computer Networks: A Systems Approach.Published by Morgan Kaufmann,
3rd edition (May 2003), ISBN: 155860832X.

[19] J. Postel. “Transmission Control Protocol.” RFC 793 (Standard), September 1981.

[20] L. Kleinrock. “Information Flow in Large Communication Nets.” Ph.D. thesis, Massachusets
Institute of Technology, May 1961.

[21] J. D. Day, H. Zimmermann. “The OSI Reference Model.”Proceedings of the IEEE,December
1983.

[22] International Organization for Standardization. “Open System Interconnection Reference Model.”
ISO/IEC Standard 7498, 1984.

[23] S. E. Deering. “Host Extensions for IP Multicasting.” IETF RFC 1112 (Standard), August 1989.

[24] S. E. Deering, D. R. Cheriton. “Host groups: A multicastextension to the Internet Protocol.”
Proceedings of the ACM/IEEE Data Communications Symposium, September 1985.

[25] S. E. Deering. “Multicast Routing in Internetworks andExtended LANs.”Proceedings of the ACM
SIGCOMM,August 1988.

[26] S. E. Deering. “Multicast Routing in a Datagram Internetwork.” Ph.D. thesis, Stanford University,
Electrical Engineering Department, December 1991.

[27] H. Erikson. “MBONE: The Multicast Backbone.”Communications of the ACM,August 1994.

[28] T. M. Munzner, E. Hoffmann, K. Claffy, B. Fenner. “Visualizing the Global Topology of the
MBone.” Proceedings of the IEEE InfoVis,October 1996.

[29] Y. Sh. Shi. “Design of Overlay Networks for Internet Multicast.” Ph.D. thesis, Washington
University, Sever Institute of Technology, August 2002.

[30] F. Lau, H. Rubin, M. H. Smith, L. Trajovic. “DistributedDenial of Service Attacks.”Proceedings
of the IEEE International Conference on Systems, Man, and Cybernetics,October 2000.

[31] H. Holbrook, D. Cheriton. “IP Multicast Channels: EXPRESS Support for Large-scale Single
Source Applications.”Proceedings of the ACM SIGCOMM,September 1999.

[32] H. Holbrook, B. Cain. “Source Specific Multicast.” IETFInternet-draft, March 2000.

[33] J. H. Saltzer, D. P. Reed, D. D. Clark. “End-To-End Arguments in System Design.”ACM
Transactions on Computer Systems,November 1984.

[34] S. Banerjee, B. Bhattacharjee. “A Comparative Study ofApplication Layer Multicast Protocols.”
University of Maryland, October 2002.

[35] P. Francis. “Yoid: Extending the Multicast Internet Architecture.” White paper, April 2000.
http://www.aciri.org/yoid/

[36] B. Zhang, S. Jamin, L. Zhang. “Host Multicast: A Framework for Delivering Multicast to End
Users.”Proceedings of the IEEE INFOCOM,June 2002.

[37] S. Banerjee, B. Bhattacharjee, C. Kommareddy. “Scalable Application Layer Multicast.”
Proceedings of the ACM SIGCOMM,August 2002.

[38] S. RAtnasamy, P. Francis, M. Handley, R. Karp, S. Shenker. “A Scalable Content-addressable
Network.” Proceedings of the ACM SIGCOMM,August 2001.

[39] M. Castro, P. Druschel, A-M. Kermarrec, A. Rostron. “SCRIBE: A Large-scale and Decentralized
Application-level Multicast Infrastructure.IEEE Journal on Selected Areas in Communications
(JSAC),2002.

[40] C. L. Hedrick. “Routing Information Protocol.” IETF RFC 1058, June 1988.

[41] G. Malkin. “RIP Version 2.” IETF RFC 2453 (Standard), November 1998.

80 BIBLIOGRAPHY

[42] A. S. Thyagarajan, S. E. Deering. “Hierarchical Distance-Vector Multicast Routing for the
MBone.” Proceedings of the ACM SIGCOMM,August 1995.

[43] J. Moy. “OSPF specification.” IETF RFC 1131 (Proposed Standard), October 1989.

[44] J. Moy. “OSPF Version 2.” IETF RFC 2328 (Standard), April 1998.

[45] D. Pendarakis, S. Shi, D. Verma, M. Waldvogel. “ALMI: AnApplication Level Multicast
Architecture.”Proceedings of the USENIX USITS,March 2001.

[46] S. Banerjee, Ch. Kommareddy, K. Kar, B. Bhattacharjee,S. Khuller “Construction of an Efficient
Overlay Multicast Infrastructure for Real-time Applications.” Proceedings of the IEEE
INFOCOM,April 2003.

[47] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek, J. W. O’Toole, Jr. “Overcast: Reliable
Multicasting with an Overlay Network.”Proceedings of the USENIX OSDI 4,October 2000.

[48] Y. D. Chawathe. “Scattercast: An Architecture for Internet Broadcast Distribution as an
Infrastructure Service.” Ph.D. thesis, University of California at Berkeley, December 2000.

[49] B. Cain, S. E. Deering, I. Kouvelas, B. Fenner, A. Thyagarajan. “Internet Group Management
Protocol, Version 3.” IETF RFC 3376 (Proposed Standard), October 2002.

[50] NIST/SEMATECH. “e-Handbook of Statistical Methods.”, July 2004.
http://www.itl.nist.gov/div898/handbook/

[51] I. Busse, B. Deffner, H. Schulzrinne. “Dynamic QoS Control of Multimedia Applications based on
RTP.” Proceedings of the First International Workshop on High Speed Networks and Open
Distributed Platforms,June 1995.

[52] F. Dressler: “A Metric for Numerical Evaluation of the QoS of an Internet Connection.”
Proceedings of 18th International Teletraffic Congress (ITC18),August 2003.

[53] P. Clément, B. Jenkins. “Adapting Test and MeasurementTools to Centralcasting and Broadband
IP Contribution.” Thales Broadcast and Multimedia, 2003.
http://www.broadcastpapers.com/testmeasurement/ThalesAdaptTestMeasTools.pdf

[54] F. Dressler. “How to Measure Reliability and Quality ofIP Multicast Services?”Proceedings of
2001 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing
(PACRIM ’01),August 2001.

[55] Akamai. “EdgeSuite: A Comprehensive Content DeliverySolution for Advanced E-Business.”
http://www.akamai.com/en/html/services/edgesuite.html

[56] University of Southern California/Information Sciences Institute. “The Network Simulator –
NS-2.” Discrete event simulation system.
http://www.isi.edu/nsnam/ns/

[57] K. Calvert, M. Doar, E. W. Zegura. “Modeling Internet Topology.” IEEE Communications
Magazine,June 1997.

Index

application layer, 7
application layer multicast, 15
AS, 15
autonomous system, 15

CBT, 1, 20
channel, 7
circuit-switched, 6
computer

network, 3
cost, 8

data link layer, 7
datagram, 10
dense mode, 14
DVMRP, 1, 19

end system, 3
Express, 14

forwarding, 8
forwarding table, 8

header, 7
hop, 8
host, 3
host address, 10
host part, 10
host-based overlay multicast , 16
HTTP, 11
hub, 4

IGMP
join, 21
leave, 21

implicit overlay multicast , 17
IP, 10
IPv4, 10

multicast
CBT, 1, 20
DVMRP, 1, 19
MOSPF, 1, 19
PIM, 1, 20

IPv6, 10

join, 21

LAN, 14
layer, 6

application layer, 7
data link layer, 7
network layer, 7
physical layer, 7
transport layer, 7

leave, 21
level, 6
local-area network, 14

mesh-first overlay multicast , 16
MOSPF, 1, 19
multicast, 1

dense mode, 14
overlay

host-based, 16
implicit, 17
mesh-first, 16
replicator-based, 16
tree-first, 16

receiver, 13
sparse mode, 14
subscriber, 13

netmask, 10
network, 3

circuit-switched, 6
packet-switched, 6
protocol, 3

network address, 10
network layer, 7
next hop, 8

OMCP, 20
Open Shortest Path First, 19
OSPF, 19
overlay multicast, 15

host-based, 16
implicit, 17
mesh-first, 16

81

82 INDEX

replicator-based, 16
tree-first, 16

packet-switched, 6
physical layer, 7
PIM, 1, 14, 20
PIM-SM, 14
port, 10
protocol, 3

Express, 14
header, 7
HTTP, 11
IP, 10
IPv4, 10
IPv6, 10
layer, 6
level, 6
OMCP, 20
OSPF, 19
PIM, 14
PIM-SM, 14
RIP, 19
SMTP, 11
SSM, 14
stack, 6
TCP/IP, 10

receiver, 13
rendez-vous point, 21
replicator-based overlay multicast , 16
reverse-path forwarding, 19
RIP, 19
route, 8
routing, 8

protocol
OSPF, 19
RIP, 19

shortest path routing, 8
Routing Information Protocol, 19
routing table, 8
RPF, 19

shared tree, 21
shortest path routing, 8
SMTP, 11
source-specific tree, 21
sparse mode, 14
SSM, 14
subnet, 4
subnetwork, 4
subscriber, 13

switching, 6

TCP
port, 10

TCP/IP, 10
transport layer, 7
tree

shared tree, 21
source-specific tree, 21

tree-first overlay multicast , 16

