m Institut fiir
' . Technische Informatik und

Eidgendssische Technische Hochschule Ziirich Kommunikationsnetze
Swiss Federal Institute of Technology Zurich

Communications Systems Research Group

Thesis to the Semester Project

Towards Resilience Against Node Failures
In Overlay Multicast Schemes

Simon Heimlicher

Supervision: Kostas Katrinis, Prof. Dr. Bernhard Plattner

Publication: 11th August 2004

Contents

List of Figures iii
Abstract v
Preface vii
1 Introduction 1
1.1 Motivation e 1
2 Background Information 3
2.1 Introduction to Network Protocols, 3
211 Definitions 3
2.1.2 Switching 6
2.1.3 Protocol Stack e 6
214 Routingand Forwarding 8
2.1.5 TCP/IPProtocol Suite e 10
2.1.6 CommunicationModes 11
217 Multicast 13
2.2 Brief History of Internet Multicast, 14
2.3 Motivation for Overlay Multicast 14
2.3.1 Problems of IPv4 Multicasto 15
2.4 Overlay Multicast Primer e e 15
2.4.1 Classification of Overlay Multicast Schemes 16
2.4.2 Overlay Multicast Scheme Example 17
2.5 Aims and Goals of this Semester Project 17
3 Schemes Under Study 19
3.1 Scheme Classes e e 19
3.1.1 Native IPv4 Multicast e 19
3.1.2 Host-Based Overlay Multicast 20
3.1.3 Replicator-Based Overlay Multicast 20
3.2 Protocol Independent Multicast—Sparse Mode (PIM-SM) 21
3.3 Overlay Multicast Protocol (OMCP) ee i 23
3.3.1 Contributions inOMCP 23
3.3.2 Mesh e
3.3.3 OverlayRouting 28
3.3.4 DataDeliveryTree e 28
3.35 GroupDynamicCs 29
3.3.6 FurtherImprovement e 29

CONTENTS
4 Model and Evaluation Method
4.1 Methodology
4.1.1 Metrics
4.1.2 Class-based Assessment . . .
4.1.3 Heuristics
4.1.4 Application Profiles
4.1.5 Weighting
4.2 Simulation Experiments.

4.2.1 Simulation Software

4.2.2 Network Topology

4.2.3 Scenario

4.2.4 Key Parameters of the Scenario

4.2.5 Statistical Evaluation
5 Results

5.1 Application Profile Results
5.1.1 \Variation between Runs
5.2 Discussion
5.2.1 Node failures
5.2.2 Obstacles

6 Conclusion
6.1 Further Research

A Conceptual Formulation
B Review

C OMCP Implementation

C.1 Simulation Parameters
C.1.1 Join, Leave And Death Events
C.1.2 Bootstrap Process
C.1.3 Refresh Mechanism
C.1.4 Routing Protocol
C.1.5 Latency Measurement
C.1.6 Data Source Characteristics .
C.1.7 Mesh Improvement Mechanism
C.1.8 Mesh Repair Mechanism
C.1.9
Excerpts from the OMCP Source Code

C.2

C.2.1 OMCPNode Class i s s s s s s,
C.2.2 Member Record Class Header File

Bibliography

Index

Tree Transient Data Forwarding Characteristics

31
31
31
34
35
35
36
37
37
37
38
40
40

42
42
43
43
48
48

50
50

51

60

61
61
61
62
62
62
63
63
63
63
64
64
64
64

77

81

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10

3.1
3.2
3.3

5.1
5.2
5.3
5.4
5.5
5.6

Ethernet link betweentwo hosts 4
Network connected by switches, 4
Internetwork connected by routers 5
Message traversing the TCP/IP protocol stack 7
Protocol stacks inhostsandrouters mw e 8
Routing tables of asimple topology 9
Unicast communication e e e e e a 12
Broadcast communication e 12
Multicast communication e e e 13
Overlay multicastscheme 18
PIMinter-domain routing e 21
PIM-SM shared tree e e 22
Comparison between PIM-SM source-specific tree anetdhege. 23
Delay samples ofthree hostsaa...... 45
Stretch samples of three hosts e u ... 45
Number of data delivery tree children of fourhosts 47
Current parent hostofthreehosts u 47
Status of six hosts which die during the session 49
Number of packets missed atthreehosts 49

Abstract

Several emerging Internet applications require group comaoation. Multicast a many-
to-many communication service model for ttmeernet Protocol (IP) was proposed fifteen
years ago, but still lacks universal deployment. Consetfyegasearchers have investigated
other solutionspverlay multicasbeing the most prominent among them. In Internet termi-
nology, anoverlayis a virtual network built on the IP substrate. For multidagparticular,

it is usually aspanning tredormed by the hosts belonging to theulticast groupand the IP
unicast links among them.

In the present semester project, a new scheme basbidu@uda [1] has been designed
and evaluated using simulations. The primary design goalnesilience against member
failures. Since packet forwarding is performed by ordingmyup members, member failure
leads to loss of data and consequently to quality degradé&tiothe target application. The
novel features of the present approach compared to Naradavarlay optimization based
on negotiation among neighbors, triggered routing updatefast convergence and forced
route changes through poisoning.

Simulation experiments have shown that in case of abrupeé faitlre, packet loss is
unacceptably high for typical multicast applications. Wibrwarding entities as unreliable
as personal computerl;-level multi-pathrouting, which allows for graceful degradation
on single path failure, appears to be a valuable solution.

vi

Preface

This work started in October 2003 and culminated with thesithat hand in July 2004. The original
specification of the subject was:
Overlay Multicast SimulationProblems in the deployment of network layer multicast haethe
research community to alternative group communicationtsmis. One of them is application layer

multicast, where data is routed via an application layerlaydo the group members. The goal of this
thesis is to model and implement a generic simulation fraonkfor such overlays.

This problem was then refined in the conceptual formulatimth the title “Evaluation of Routing
Schemes for Group Communication in Packet Switched NesWorke formulation of the problem to
be addressed was:

What is the most efficient multicast service for wide depoyrin the existing Internétamong the
existing alternatives?

The procedure to achieve this goal was planned to followetlsesps: 1. Studying of related work. 2. Se-
lection of a representative set of multicast schemes to pdéustudy. 3. Discussion of the evaluation
parameters and creation of application profiles. 4. Stugltfie use of the OMNeT" simulator. 5. Im-
plementation of the chosen protocols in the OMNeTenvironment and measurement of the variables
of interest. 6. Processing of the results and derivatioronthisions.

After the first three steps, we were planning to compare twarlay multicast schemes with 1Pv4
multicast. However, in the process of implementing the txarlay multicast scheme, we noticed that
it was infeasible to implement the other two in the limitethei frame of a semester project. Thus, we
decided to focus on the implementation of the first overlajticast protocol and then compare it with an
existing implementation of the IPv4 multicast scheme. mtocess of the implementation, we came up
with a few improvements over the original design. The sirtialaexperiments with our scheme yielded
very interesting results and we are currently in the procégautting the outcome of our work into a
manuscript that we plan to submit for publication in the rfegure.

It is our perception that the audience of semester thesesumlly a very limited set of people: the
supervisor and maybe some fellow students or the parentsedduthor. Most theses assume a decent
knowledge in the subject area and this makes them a frusiregad for people from other fields. Having
this in mind, we tried to keep our introduction to network foapls and overlay multicast schemes
comprehensible to the broad audience. Readers with dibardeground are encouraged to start their
journey through this text with Chapter 2 on page 3 and thenirna® with the introduction on the next
page. This approach should make the remaining chaptersenfmgable.

Welcome to the world of overlay multicast!

Simon Heimlicher and Kostas Katrinis
11th August 2004.

1The complete document can be found in Appendix A.
2We use the terninternetwith a capital ‘I’ when we talk about the global internetwozkmmonly referred to as “the
Internet” that evolved frodRPAnNnetdeveloped by thAdvanced Research Projects Agency (ARR&)e USA in the 1960s[2].

Vii

viii

Chapter 1

Introduction

The growth rate of the Internet during the last decade has §gectacular. One of the key characteristics
that enabled the transformation from an internetwork ugadst exclusively by military and educational
institutes to the omnipresent global Internet of today & shmplicity of its underlying protocol suite,
TCP/IP. At its core lies thénternet Protocol (IP),which does very little, but does it extremely well:
it delivers short messages from a source machine A acrosstalinediate networks to a destination
machine B.

As the Internet evolved, so did the expectations of its uaedsthe demands of the services running
over it. Emerging applications like audio/video streamamgl conferencing, distributed computing and
database replication require data-intensive communoicaimong large and heterogeneous groups of
hosts.

With the advent of broadband Internet access to the homeo# and more people, the audience
for such data-intensive applications grows rapidly. Thsibapproach of replicating data packets at
the source and delivering every single copy separatelyris exgpensive in terms of network resources.
Since the connections to the end systems are getting fdsiesimilar pace as the servers and backbone
networks, at some point in time, this will no longer be febesilsing only unicast communication.

Clearly, a more intelligent distribution scheme is needed.

Multicast is a service model for the distribution of data from one seur a group of end systems.
Even though it has been proposed fifteen years ago and toaengtaévery router has built-in support
for multicast forwarding, providers of rich content anduedadded services still do not rely on it due to
incomplete deployment.

In this chapter, we will give an overview of the currently gaile network layer multicast protocols
and their limitations and show where overlay multicast sob®come into play.

For readers not familiar with networking protocols and ricakt, it is suggested to first read
Chapter 2 on page 3.

1.1 Motivation

The core network protocol of today’s InterniRyv4 [3], offers native support for a many-to-many service
model termednulticast Unfortunately, this extension to the TCP/IP protocol esgiaiting back to 1988
has never been adopted by its target audience, the Intemvétesproviders. To make matters worse, sev-
eral IPv4 multicast protocols exist currently. The mostydapare in chronological order of occurence:
Distance Vector Multicast Routing Protocol (DVMRP) [4], Maoast Open Shortest Path First (MO-
SPF) [5], Core Based Trees (CBT) [6], [7], [8Jand Protocol Independent Multicast (PIM) [9], [10].
The next version of the IP protocdRv6 [11], is currently being deployed Internet-wide. This ol
version will provide much more sophisticated multicasivims from the beginning. While IPv4 mul-
ticast limits the maximal number of simultaneously activeups to abouf?’, the address range IPv6

2 CHAPTER 1. INTRODUCTION

reserves for multicast (abot'? addresses) should be large enough for the next few decades.

Researchers have investigated other approaches in théimeagince increasingly deployed peer-
to-peer file sharing protocols like Gnutella [12] and BitEort [13] are already quite efficient even though
they run in the application layer on end systems, it appessilile to also implement multicast services
in this manner. At the time of writing, however, no protocoits for application layer multicast has been
adopted by the IETF [14] or any other standards committee.

A considerable amount of work has been done by researcharetpze different approaches to the
multicast problem, but a lot of questions remain unansweréeé question addressed by this thesis is:

What is themost efficientmulticast service
for wide deployment in the existing Internet among the @xgsalternatives?

Our approach towards answering this question was in briakell on a set of requirement profiles of
typical multicast applications, we rated qualitatively shof the currently publicly available application
layer multicast protocols. We decided to Wéarada[l], also known a€nd System Multicast (ESM}¥
the basis for our simulation. We implemented Narada ifQMNe T [15] discrete event system simu-
lator. For the generation of the Internet-like simulatiopdlogies, we use@T-ITM [16]. We simulated

a multicast application in an Internet-like topology. Hipawe weighted the results of the simulation
experiments according to our profiles and drew conclusitaaitathe suitability of our approach for a
number of multicast applications.

The present thesis is structured as follows. In Chapter 2willepresent the basic concepts of net-
work protocols, IPv4 multicast and introduce overlay noal§t. Chapter 3 provides an overview of the
multicast schemes we have considered and descriptions pfdtocols we have put under study. Subse-
quently, in Chapter 4, we specify our evaluation methodplagd the simulated network topology. We
discuss the results of the simulation experiments in Cind&péad assess the performance of our scheme
for various applications. We conclude in Chapter 6.

Appendix A contains the complete initial conceptual foratidn. In Appendix B, we review the
goals of the project we reached and those we haven't achie&pdendix C provides an explanation
of the parameters of our OMCP implementation and excerpta the C"* source code used for the
simulation in the OMNeT™ environment.

Chapter 2

Background Information

This chapter introduces the fundamental terms and coneaptse going to touch in the thesis. We first
give a very brief overview of network protocols and the cgiad multicast communication. In Section
2.2, we outline the history of multicast in the Internet. Thetivation for our work is given in Section
2.3. We conclude the chapter with a primer on the core subj@aterlay Multicast—in Section 2.4.

2.1 Introduction to Network Protocols

A thorough introduction to computer networks is beyond tbepg of this text. Nevertheless, we will
try to explain the essential characteristics of networkqarols in this section. A broad overview of the
technologies used at the various network layers is giverl 7. [A system-oriented discussion of the
important concepts of computer networks can be found in. [I8]keep this section brief enough, we
will take the liberty of skipping concepts that are not ofnpei importance to the context. The footnotes
give additional information where we omit important detail

This section is organized as follows. First, we give an oeevnof the concepts of computer networks,
then we explain the terms relevant to the thesis in moreldetai

2.1.1 Definitions

First of all, we need to give some definitions of basic compimef networks we will refer to in the
future.

Network The general termetworkrefers to any means which allows two or more computers to com-
municate with each other.

Protocol When people communicate with each other, they use a langutaigh allows them to process
the acoustic waves received by their ears or the symbolstsetheir eyes. To understand each other,
computers need to use a common language, too. Since we amtroemputers don’t have any intuition
in the sense that they are unable to read between the limaputers can only communicate using a very
strict kind of language. Such languages are cgliedocols.

When discussing computer networks, a distinction betwéenfdllowing classes of devices is often
made based on their purpose.

Host A hostor end systenis either a personal computer or a server. On an abstrad vexenay also
call a host anode.

4 CHAPTER 2. BACKGROUND INFORMATION

1]+ 2]

. Ethernet link
Alice Bob

Figure 2.1: An Ethernet link between hosts 1 and 2.

L] X—2X—2 1]

Switch 1 Switch 2 Switch 3

2 Bob

Figure 2.2: A simple network connected by three switches.

Link The basic building blocks for networks aliaks. A link is an abstract word for the physical
medium that carries the signals between devices. This maydadble or a wireless connection. The
most common medium is copper wiréthernetis the most popular link techonology for home and
office networks. Ethernet uses copper wire or glass fibrendhe wireless case, no medium at all. To
simplify the discussion, we will assume wired networks irs thection. In Figure 2.1, a simple link
between the computers of Alice and Bob is shown.

Switch Switches are active hardware devices which connect hos&ctoother. The resulting network
is called asubnetwork. Figure 2.2 is an example of how several hosts may be connexteatch other
using switches. The delivery of data is performed by thecdweis entirely transparent to the end systems
and without a perceiveble delayln contrast to routers, which will be discussed next, a witan only
handle messages to hosts which are directly connected taaitaher directly connected switch, i.e.,
hosts in the same network.

The cloud symbol in Figure 2.2 denotes any kind of network isncommonly used to depict the
Internet. It just interconnects all systems which have aiection to it.

Router Routersare active hardware devices which interconnect two or natependent networks. A
network of networks is termed anternetwork.Routers are able to connect networks of different kind.

A hubis a passive network device which has the same purpose asch sivie difference between a hub and a switch is,
that a hub only supports communication between two portsiatea All data which are received on one port are sent outlon al
other ports. In contrast, a switch withports supports up t§ concurrent connections at full speed in both directionseé
switch first receives a message from a host with the physéthiess A, addressed at the host with physical address Bidsse
this message on all interfaces except the one where the geesame from (exactly like a hub). The switch takes note of the
destination port and the corresponding physical addressel future, when the switch receives a message to an adthass
already seen, it transmits it only to the corresponding.port

2.1. INTRODUCTION TO NETWORK PROTOCOLS 5

Router A Router B

Provider

Router C

Bob

Figure 2.3: A simple internetwork comprised of the three networks “AP&ivider”, “Company” and
“University” and connected by three routers. Thus, AlicedaBob can communicate with each other,
even though they are connected to different networks.

Therefore, they are usually a lot more sophisticated thattlses. A very simple internetwork is shown
in Figure 2.3. Note that this internetwork contains a looputers are able to cope with this situation.
Communication between Alice and Bob normally runs overepét. But if the physical link between
router A and router C fails, the routers will adapt to theatiion quickly and future messages will be
sent via router B and router C.

When an application, e.g. an e-malil client, sends a messafe £-mail server running on another host,
the message passes the following facilities before it isadlgt transmitted on the link:

Network Protocol Stack This is usually a part of the operating system software. tvks how to
communicate with other computers which have the same mbg&iack built in. In the Internet, the
TCP/IP [3], [19] protocol stack is used.

Network Interface Driver The piece of software which translates the messages intonemais that
are understood by the network hardware is called netwoekfaxte driver. It is situated below the device-
independent network protocol stack and above the hardweaponsible for network communication.

Network Interface This part of the computer hardware that transforms the ddia sent into electrical
or electro-magnetical signals when transmitting and restthe data from these signals when receiving.
Most network interfaces today are able to send and receihe aame time.

We will next discuss the concepts pertaining to the curteesis in more detail.

6 CHAPTER 2. BACKGROUND INFORMATION

2.1.2 Switching

Historically, the process of preparing the path of a messhgrigh the network is callegwitching.
Networks can roughly be divided into two classes by the $witg strategy they use. Until the 1950s,
most networks wereircuit-switched This means, that a physical path between sender and retsedet
up for and dedicated to the connection before two hosts canoate with each other—very similar to
how telephone operators in the early days established ldyghtene connection on request of the caller.
Once this has been accomplished, the sender may inject gesssdéo the connection at will and no other
entity can use the physical lines involved in this connectifter all data have been sent, the connection
is torn down explicitly. No congestion can occur and all Bytéthe message arrive in sequence. Circuit
switching is used in telephone netwotks

In contrast to the telephone network, current computer osdsvdeliver data in the following way:
The sender cuts the message into small pieces cpleketsand prepares them for transmission by
prepending a header indicating the destination addresgety piece. The network infrastructure then
routes these packets along potentially disjoint pathautjindhe network to the receiver, which reassem-
bles them to the original message. This type of network iedaacket-switched [20]pecause it op-
erates on individual packets. With packet switching, theneo need to set up the path for a message
beforehand. Instead, the first packet can be sent off as sdbhecomes available. But at no point in the
transmission is it guaranteed that the network does havagérfoee resources to deliver the message. If
too many messages are injected into the network, congesticurs and packets need to be buffered or
even dropped at the bottleneck. Usually this happens attarratnose input buffer is full.

Since packet-switched networks make far better use of theonke resources available and allow
for greater throughput, today’s computer networks are liyspacket-switched. In this text, we always
assume packet-switched networks.

2.1.3 Protocol Stack

There are a lot of analogies between human and computer coiwation. In a simple transmission of
a message from Alice to Bob, several distinct steps can lieglisshed: At the beginning, Alice’s brain
translates her thought into words, for example, “Hello Bolbhen, it sends an electrical signal to the
vocal cords which orders them to generate the sound of theskswT his sound wave is carried to Bob by
the physical medium, the air. His eardrums translate thishaeical wave back into an electrical signal,
which can then be processed by his brain and the originagtitofdlice had in mind is restored. Note
that the actual message is transformed from a thought intechamical wave in a few steps, transmitted
over the air, and then transformed back in similar stepsarttwught.

Similar transformations are applied to messages sent ovetvaork by theprotocol stack. As the
name implies, we can think of it as a stack of protocols. Thgesd which a message passes when it is
transformed are callddyersor levels.

2Today, however, even telephone networks are mostly panidéshed. It is possible to unite the advantages of bothstype
with virtual circuits: A logical connection is set up between two end points and guessary resources are allocated for the
duration of the connectionX.25is a popular example for this kind of network. It supportsnpanent virtual circuits which
are an alternative for leased lines. Thesynchronous Transfer Mode (ATMgtwork standard was developed to allow the
multiplexing of thousands of telephone connections inte optical fibre link. It uses packet-switching to accomptisis and
a major part of the Internet backbone consists of ATM linksSWitzerland, only the last mile from the phone jack to thstfir
device of the telephone network is analog, the intercommectetwork is completely digitalDigital Subscriber Line (DSL)
and its siblingsADSL, HDSLetc. make use of this fact.

There exist several reference models for protocol stacks.rffost popular model, at least for educational purposéiseis
OSI Reference Model [21], [22Heveloped in 1983 by the International Organization f@an8ardization. OSl is an acronym
for Open System Interconnection, and this model definesvaonking framework for implementing services and protodols
seven layers. The Internet, however, usesT@®/IP protocol stack. We will use a combination of both models bseave
think it is confusing to talk about two different models iniatroductory text.

2.1. INTRODUCTION TO NETWORK PROTOCOLS 7

5. Applicati
pplication | GET http://www.ee.ethz.ch HTTP/1.1 |

HTTP :
4' Transport SourcePort: 32769 FragmentNo.: 1 GEEx- SourcePort: 32769 FragmentNo.: 2 h
TCP DestinationPort: 80 TotalFragments: 2 A DestinationPort: 80 TotalFragments: 2 et
l 1 (T

] } }

3' Network SourcelP: 192.168.17.54 Checksum: | Sourcé 0.0 1 GEE- SourcelP: 192.168.17.54 Checksum: | Sourcé] 0.:2

TP [DestIP: 192.168.33.48 9A 8B 7TFDE | Desti ts: 2 % DestIP: 192.168.33.48 EDCI1 17F5 | Desti ts:2 [-

—— |

2. DataLink < .

. SourceHwAddr: aa:bb:cc:11:22:33 | Sourc sum: | Source 0.0 1 Sourcel
Ethernet |START DestHwAddr: 99:88:77:ff:ce:dd Desllgg} DE Destiégltsﬂ ‘ GE’E%’-@G ‘STOP |START Destn\g

1. Physical ‘T\
Ethernet !

Figure 2.4: A simplified example of a message traversing the TCP/IP pobtsiack.

A simplified example of what this looks like in the TCP/IP mobl stack is shown in Figure 2.4.
Note that the TCP/IP reference model actually consistswflyers since it has only one layer below the
network layer. The layer numbering shown in the figure, h@uee the most common among network
operators and network gear manufacturers and is often ngbd literature, for example in the book by
Tanenbaum [17].

Corresponding layers in different machines run the sam@goband communicate with each other.
They cannot exchange messages directly, though. Insteadnéssage to send is passed to the lower
layer which will further process it. It can thus be said tteg kower layer provides a service to the upper
layer. In the above example, tlaplication layer cannot send the user’s request for a web page to
the application layer running on the web server directlycan, however, instruct thieansport layer
to deliver the message to the transport level at the destimabst. The transport layer itself does not
actually transmit the message, though. Instead, it cutsyssage into packets and hands these down to
thenetwork layer,which is responsible to do its best at delivering those piadkethe destination. From
the network layer, the message is again passed to the loyesr thedata link layer, which controls the
access to the link, corrects bit errors, etc. It convertakssage including all headers, error correction
codes etc., into a sequence of bits, which is then translatedvoltages by thehysical layer. The
physical medium—thehannel-then carries the signal to the remote host.

Whenever a message is passed from an upper protocol layee tme below, the upper layer first
adds gprotocol headet to the message. The lower layer then operates on the longsage including
the header of the upper layer. Once the message has reaehkedvdst layer, it is transmitted to the
destination machine. This machine then reverses the @ogs®ry layer first reads the information in
the header added by its peer at the sender, acts accordmg)istigps the header off before passing the
remainder of the message to the upper layer.

Whether a layer is implemented in physical or software ddp@m the device type. In an end system,
e.g., on a personal computer or a web server, only the phyaiga is implemented in physical. Data
link, network and transport layers are provided by the djpegasystem software. The application level
protocol is running in the application program, e.g., théweowser or the e-mail client.

In the context of multicasting, we will mostly talk about thetwork layer protocol IP or application
level protocols.

“Depending on the data link layer protocol, this layer mayitmtehlly append a trailer.

8 CHAPTER 2. BACKGROUND INFORMATION

| | |
i Host 1 i i Host 2 i
| | | 3
| | |
| Appliation » | Application ‘1
w N o N B N |
i Transport i : Router A i i Router B i i Transport i
— —] B 1
| Network | | Network | | ~Network | | Network “
| | N . _ | |
| DataLink | | DataLink ' | DataLink '@ ' DataLink ‘ }
1 || e | S | i || 1
i Physical | | Physical || | Physical | | Physical ‘ 1
I ,,,,, J :,I ,,,,,, I,J ‘\,I ,,,,,, I,JI L ,,,,, I ,,,,, }
Channel Channel Channel

Figure 2.5: A simplified example of the protocol stack traversals of asags from host 1 to host 2 via
routers A and B.

2.1.4 Routing and Forwarding

Routingis a joint venture of all routers in the network with the godldistributing the information
necessary to deliver packets to any destination host ingheank. The path which a packet follows is
called aroute. The routing information is stored in theuting tableof every router.Forwardingis a
much simpler process. It just means to correctly guide gadckeough the network using the information
in the routing table. To forward, only a subset of the datdefrbuting table is necessary and this subset
is often called dorwarding tablein this context. The forwarding table is established by thating
process or manually set up by the network operator.

In routers, the message is only passed from the physicateta link and then to the network layer.
In the network layer, the router examines the network laystidation address, looks up thext hopof
the route and passes the message back to the data link lapehwinstructions to send it to this host.

When a packet arrives, the router looks up the route to théndéisn in its routing table and sends
the message on the correct interface into the next netwdr&.nfachines along the route are also termed
hops.Routing tables contain information about testof a route. The cost is an indication of how good
a route is in the perception of the router. A very basic rguaigorithm might just count the number of
hops it takes to the destination and use this number as cdstn\deciding which route it should store
in the routing table, it would take the route with the leastniver of hops. This is calleghortest path
routing. In Figure 2.6, an example routing topology of a TieRternetwork is shown. The cost of the
links is shown intalics beside every link. The routing table of router A is printedblae The destination
addresses refer to the networks. For instance, “10.1®.0dknotes the network with address 10.1.0.0
and a netmask of 16 bits. The latter means that the netwotkspdefined by the first 16 bits. The rest
of the address is the host address. The IP addressing schéunthér explained in the next section.

Destination| Next Hop | Interface| Cost
10.1.0.0/16] 10.1.0.1 101 0
10.2.0.0/16| 10.3.0.1 103 4
10.3.0.0/16] 10.3.0.1 103 1

If, however, the link between router A and router C fails, tbating tables have to adopt to the new
situation. The modified routing tables are also shown in theréi. Routes that have changed are shown
in italics in the modified routing table of router A:

2.1. INTRODUCTION TO NETWORK PROTOCOLS

Routing Table of Router A

All links up

Destination Next Hop Interface Cost
10.1.0.0/16 10.1.0.1 101 0
10.2.0.0/16 10.3.0.1 103 4
10.3.0.0/16 10.3.0.1 103 1

Link Router A — Router C down
Destination ~ Next Hop Interface Cost

10.1.0.0/16 10.1.0.1 101 0
10.2.0.0/16 10.2.0.1 102 5
10.3.0.0/16 10.2.0.1 102 8

Routing Table of Router B

All links up

Destination Next Hop Interface Cost
10.1.0.0/16 10.3.0.2 103 4
10.2.0.0/16 10.2.0.2 102 0
10.3.0.0/16 10.3.0.2 103 3

Link Router A — Router C down
Destination ~ Next Hop Interface Cost

10.1.0.0/16 10.1.0.2 101 5
10.2.0.0/16 10.2.0.2 102 0
10.3.0.0/16 10.3.0.2 103 3

Router A

Router B

Alice

10.1.17.22

ADSL Provider
10.1.0.0/16

Company
10.2.0.0/16

University
10.3.0.0/16

Bob

10.3.187.2

Routing Table of Router C

All links up

Destination Next Hop Interface Cost
10.1.0.0/16 10.1.0.3 101 1
10.2.0.0/16 10.2.0.3 102 3
10.3.0.0/16 10.3.0.3 103 0

Link Router A — Router C down
Destination ~ Next Hop Interface Cost

10.1.0.0/16 10.2.0.3 102 8
10.2.0.0/16 10.2.0.3 102 3
10.3.0.0/16 10.3.0.3 103 0

Figure 2.6: A simplified example of routing. When all links are up, messdgetween Alice and Bob
are sent via Router A and Router C. When a link failure betweater A and C occurs, the routing
tables change accordingly and traffic is forced to take thglooute via router B. The modified routes
are shown in bold type.

10 CHAPTER 2. BACKGROUND INFORMATION

Destination| Next Hop | Interface| Cost

10.1.0.0/16| 10.1.0.1 101 0
10.2.0.0/16| 10.2.0.1 102 5
10.3.0.0/16| 10.2.0.1 102 8

Note, that even though on paper this routing table updatesloery straightforward, it is a big challenge
in practice. There are many intricacies hidden in disteduélgorithms. How some of them can be
tackled with is shown in Section 3.3.

2.1.5 TCP/IP Protocol Suite

The protocol stack run by all computers connected to theneteis calledTCP/IP [3], [19] TCP/IP
denotes a whole protocol family. To give an overview, wedalla message traversing the TCP/IP stack
and refer again to Figure 2.4.

In the application layer, we see the actual message: Theseaguests a web page via the HTTP
protocol. The application layer hands this message dowhedransport layer, which is running TCP.
TCP cuts it into suitably large packets and prepends itsdreddhe header indicates, which application
layer protocol has sent the message to allow the receivearidlé the message correctly. In TCP, this
demultiplexing key is termed port. The current fragment number and the total number of fragsnent
is indicated as well to allow the receiver to reassemble #ukets correctly, even if they don't arrive in
ordeP. The message is then passed down to the IP layer, where tligli€sa of source and destination
host is added.

Below the network layer, in the data link and physical layargariety of protocols can be used. For
home, campus and office networl&hernetis the most popular protocol below TCP/IP. It can handle a
wide range of physical media, e.g. the IEEE 802.3 standdideteEthernet on electrical wires or optical
fibres and IEEE 802.11 defines Ethernet for wireless devices.

We will now describe the essential protocols of the suite arerdetail.

Network Layer The most important protocol of the TCP/IP suite is the nekwayer protocollP.

IP is an acronym fotnternet protocol. The current version is IPv4, but the next version, IPv6 [14],
already being deployed. All that IP provides is the delivefysmall messages callathtagramsfrom
one host to another. This simplistic approach is largelpaasible for the enormous adaptability of IP
to various underlying network technologies. However, thgilotocol only offers dest-effortservice,
which means that it doesn't provide any guarantees aboiahilsy or performance of service.

Hosts communicating to each other via TCP/IP need an IP ssldie the currently deployed version
of IP, version 4, addresses are 32 bit integer numbers. @uuredly, an IP address consists of two
part€. The first part (higher order bits) forms tmetwork addressind determines to which of the
many networks connected by the Internet it belongs. Theofebte address is calleldost addresaind
determines to which of the hosts in the network it refers thievé the network part ends and the host part
begins is therefore also part of the addressing informati@husually given in a bit mask callegtmask.
This distinction is essential to allow routers to efficignguide packets in large internetworks since it
allows hierarchical routing. Routers outside a networkdneely know whether the destination host is
somewhere inside the network. The delivery to the final fenigs then the responsibility of the routers
inside this network. We again refer to Figure 2.6 for an eXamy/hen routing a message from host 1
to host 2, router A applies the netmask with a bitwise AND ® destination address. The resulting IP
address is then 10.3.0.0 and the router looks up the routaifoso-calledprefix Appearently, router C

SFlow, congestion and other control data is also includetinbtishown in the figure for simplicity.
SActually, there are three partstetwork, subnetworindhostpart. But we treat the network and subnetwork part as one to
make the discussion more understandable.

2.1. INTRODUCTION TO NETWORK PROTOCOLS 11

with address 10.3.0.1 is responsible for all addressessaméiwork (10.3.0.1-10.3.255.255). Therefore,
router A sends the message out on Interface 103. Router Crtludes the message either directly to the
subnetwork of host 2 or to the next network, depending on vehailden inside the cloud.

Transport Layer Right above IP, one of the transport layer protocols, @GR or UDP, do their duty.
TCP meandransmission Control Protocalnd provides a reliable stream of data between two end points
connected by a network running the IP protocol. UDP standb$er Datagram Protocchnd provides

a very slim message delivery service which in essence mé&keésathgrams accessible to applications.
Consequently, UDP is not more reliable a service than IP.

Application Layer The protocols in the application layeprovide the interface between the applica-
tions and the TCP/IP stack. The most popular ldfer'P, which is used by th&Vorld Wide Weland
SMTP, which is responsible for the delivery of e-mails.

2.1.6 Communication Modes

Similar to communication among human beings who have tHiyetoi either speak to a crowd, talk with
a group or whisper into each other’s ears, computers adeptrttodes of communication to their needs
as well.

There are mainly three communication modésicast, broadcasandmulticast. While unicast and
broadcast communication is used heavily in today’s computéwvorks, multicast is not in very wide
use, at least not between geographically dispersed comspifte will give possible reasons for this fact
in Section 2.3.

Please note that unicast communication may be uni- or betional whereas broadcast and multicast
communication is always uni-directional.

Unicast Unicast is the standard mode: One host sends a message wled#signated host. The
sender puts the address of the receiver into the destinfi¢ilohof the message header and the network
delivers the message.

An example is shown in Figure 2.7: Host 1 sends a unicast megsahost 2. This message goes
from the sending host 3 via a switch to router A, then routem eouter C. From there, it can directly
reach host 2 via the subnetwork, passing 2 switches.

Broadcast In this mode, data is emitted from one host to all other hobishis context, the set of
all hosts is constrained by physical or logical limits. Frample, if a host connected to a switch sends
a broadcast message, only hosts connected via switcheseugllve it. If a router is connected to the
switch, the router will receive the message, but not forwatd avoid a misbehaving host to flood the
whole network. Broadcast communication is for example ushdn host 1 needs to send a message
to host 2 in the same network, but doesn’'t know the physicdiess$ of 2. The protocol responsible to
resolve this dilemma is calleabdress resolution protocol (ARBhd runs in the data link layer. It works
like this: ARP sends a broadcast message asking “Who ha$thiddress?” Host 2 receives this request
and sends a reply with its physical address. Host 1 now caressithost 2 directly and all subsequent
communication is unicast. Figure 2.8 shows a situation wherall three subnetworks one node is
sending a broadcast message. All nodes in the same broatiraain receive it, but routers ignore
brodcasts to ensure that one misbehaving host cannot fleodttble Internet with useless broadcast
messages.

In contrast to the TCP/IP protocol stack, the OSI model disithe application layer into three distinct layesgssion,
presentatiorandapplicationlayer.

12 CHAPTER 2. BACKGROUND INFORMATION

Router A Router D Router C

Router B

T
SRR

T
x
x
.

Figure 2.7: Unicast communication from host 1 to host 2

Router A Router D Router C

g
o~

Router B

P 5
Pl e N -

e e
o

Figure 2.8: Broadcast communication is confined to the broadcast domain subnetworks A, B and
C. The routers ignore broadcast messages.

2.1. INTRODUCTION TO NETWORK PROTOCOLS 13

S Router A Router B Router C
. P . |
IR A /WA w X .
XK VAV ray Ay XF G
l RouterD/ [
o x| " ek
| \ 94

\»[\’:

Q =

Figure 2.9: Multicast communication from the mulitcast source h8db all subscribers, denoted by
Gi.s.

2.1.7 Multicast

The idea behind multicast is to let the network deliver mgssalestined at a group of hosts instead of
sending a separate copy of the message to each and evereredéulticast communication seems to
be situated between unicast and broadcast. For multicastnomication, a set of participating hosts
needs to be defined. This set is callethalticast group.When a member of this group sends, it is the
source,and all other members areceiversor subscribers. Every multicast group needs to be assigned
its own group addresgrom the IP multicast class D network with the address rarfe@®0.0 through
239.255.255.255 as defined in [23].

In a packet-switched network with network layer supportrfariticast, the multicast delivery from
one host to all other hosts of the group works in the followmngnner: The source sets the destination
address of the message to the group address and insertsshagmeénto the network. The network in-
frastructure, i.e., the routers, then forwards the mestaggrds the receivers and replicates it as needed.
With network layer support for multicast, the actual detivis completely transparent to all group mem-
bers. In Figure 2.9, it is shown, how a multicast message frensource hosis delivered to the group
members denoted b¥/;_s. The source host sends the message to its default gatewiést £g and the
latter then handles the delivéryA copy is sent to routers C and D, which replicate it and sepdes to
all group members in their network.

The multicast service can be implemented above the netwgek bs well, though, and such schemes
are the subject of this thesis. Multicast protocols runmibgve the network layer are callagplication-
layer or overlay multicast protocoland are introduced in Section 2.4.

8Nodes on the same subnetwork receive the multicast messadjiakvlayer multicast addressing, but this is beyond the
scope of this text.

14 CHAPTER 2. BACKGROUND INFORMATION
2.2 Brief History of Internet Multicast

Multicast adddressing was defined in the IP protocol fromkginning as a separate address range.
In its early days, multicast was confined lazal area networks (LANSs);.e., networks consisting of
end systems and hubs using Ethernefaken Ringechnology. Those schemes inherently supported
multicast since all packets were available to all hosts oatevork. However, extended LANs connected
through active devices like switches, and internetworksnected by routers were unable to deliver
multicast packets.

Several proposals were published, e.g. [24], but the nagttiera started only when Steve E. Deer-
ing introduced multicast extensions to the existing uricasting infrastructure in the proceedings of
the ACM SIGCOMM '88 conference [25], and in more detail in Batber 1991 in his Ph.D. thesis
“Multicast Routing in a Datagram Internetwork” [26].

Deering’s work resulted in the first global multicast netiyothe MBone, [27], [28], a set of
multicast-capable networks connected through IP tunné&le routing protocol wa®istance Vector
Multicast Routing Protocol (DVMRP) [4]In March 1992, the MBone was comprising about 20 hosts.
In an experiment, these machines successfully receivedtaasi audio stream from a meeting of the
Internet Engineering Task Force (IETF) [14PVMRP assumes that most or all hosts on a multicast-
enabled network wish to receive multicast traffic, thus dassidered @ense modgprotocol. While this
may have been at least partially true for the MBone, thisragsion doesn’t hold for today’s multicast
groups.

In large networks connected by routers supporting multicdsardware, the problems of dense mode
multicast need to be addressed. Currently, the most widgdlogtedsparse modeprotocol according to
[29] is Protocol Independent Multicast (PIM-SM) [9But even with later versions of PIM, a lot of IPv4-
inherent problems remained unsolved and new challengesinteoduced. The most critical open issue
is the allocation of multicast addresses. IPv4 only offeftateaddress space for multicast which doesn’t
give any hints as to where a multicast source or its subgsriae located. Another serious problem is
the openness of the approach. With the current populariBisifibuted Denial of Service (DDOS) [30]
attacks, the total lack of access control from traditioal4 multicast schemes poses a threat to all hosts
in a multicast-enabled network.

The problems of address allocation and access control weeatly addressed by schemes dedicated
to single-source multicast applications. Protocols of tiipe includeExpress [31]and Source Specific
Multicast (SSM) [32].

There are a lot of other open issues and some of them will loeigied in the next section.

2.3 Motivation for Overlay Multicast

First of all we would like to address the question why we evdnk about implementing multicast
services in the application layer, if they exist in the netwiayer as part of IPv4. Or in other words:
Why did IPv4 multicast fail in that is has not been deployeiginet-wide?

There exist several lines of reasoning. One popular exptane with the chicken and egg problem:
The Internet service providers (ISPs) didn’t deploy makie—the egg—because nobody seemed to want
to use it. The potential users—the chicken—didn’t use itlose it hadn’'t been deployed wide enough.

There are philosophical objections as well. The implentariaf multicast services in the network
layer violates a widely accepted design paradigm sumndiizéhe papeEnd-To-End Arguments In
System DesigfB83]. Applied to multicast, it says in essence:

Since multicast services cannot be provided completelyowitsupport of the application
layer, they should only be implemented at a lower layer ifgam in performance is so large
that it justifies the additional cost of more complexity ie tbwer layer.

Another general network design paradigm is not in favouhefrietwork layer either:

2.4. OVERLAY MULTICAST PRIMER 15

No service should be implemented in a particular layer usitéss layer can completely and
reliably implement the whole functionality.

One very important function that is lacking from IPv4 mudist is address management: How are mul-
ticast addresses assigned and by what means are poteietiéd ehformed about the available multicast
services? A third paradigm is more specific to the networkray

The network layer should not contain any state information.

While unicast routing has been successfully implementelPu# and is doing an impressive job in
routing across a subset of the several thousantbnomous Systems (ASspmprising the Internet,
the same is obviously not true for multicast. With IPv4 nmuast, any router needs to potentially keep
membership information adll hosts which are directly connected to it or to a dependerterohis
limits the scalability when groups are dispersed amongrae&s and consist of thousands of members.

While the above arguments may seem rather esoteric, theee lat of tangible and technical prob-
lems with IPv4 multicast as well. We will summarize the mastvalent in the next section.

2.3.1 Problems of IPv4 Multicast

Accounting For Internet service providers and backbone owners, naslttimpens a lot of difficult ques-
tions: How is the transferred data accounted for? Who paysdnsumption of the precious resources
of the routers used for multicast routing and group statermétion?

Interdomain Routing If a multicast group spans multiple autonomous systemsthangroblem
arises: Since there are multiple protocols available antks&Ss even offer no multicast at all, static IP
tunnels need to be set up to interconnect disjoint multivaisés. This problem has lately been mitigated
by the introduction of interdomain multicast routing pradts. However, a long-term solution has yet to
be found.

Deployment Model For IPv4 multicast to fulfill its purpose, all, or close to,dlbsts should be con-
nected to the same multicast domain. This makes the depldyane‘all or nothing” decision, and most
providers went for nothing.

Access Control What's more, for the streaming of copyrighted material, fioulti-party games,
database replication and distributed computing, IPv4igagdt often cannot be used because it provides
neither authenticity nor confidentiality. Of course, theéadaight be encrypted at the application layer
and then distributed via network layer multicast. But thisa no longer be transparent to the applica-
tion.

In order to work around all these problems at once, condidieetfort has been put into the development
of new multicast schemes at the application layer. Accogniencryption, authentication—virtually all
features lacking from IPv4 multicast can be provided witplegation layer multicast. Of course, this
comes at a price. How steep this price is we will try to at lgzstially assess with our simulation
experiments in Chapter 4.

2.4 Overlay Multicast Primer

As the term overlay implies, we are talking about a virtuatwwek topology laid out on top of the
underlying physical network. The terapplication layer multicastlenotes a subset of schemes which are

9An autonomous system is a network or internetwork that isatite administrative control of a single entity. The term
routing domainis often used when talking about routing between ASs whithds callednterdomain routing

16 CHAPTER 2. BACKGROUND INFORMATION

running in the application layer. However, the two termsumed interchangeably because all application
layer schemes inherently use an overlay network.

This virtual network can conceptually be divided into twrustures: A redundant control topology
termedmeshand a spanning tree callethta delivery tree Common to all schemes is also that they
need a central entity to bootstrap the protocol. This ingodrinachine is often calle@ndez-vous point
(RP).However, this is no different in IPv4 multicast. The boatgtinformation in this case is the group
address, the distribution of which is a non-trivial probleanwhich a satisfactory solution has not been
proposed yet. In overlay multicast schemes, the bootsifapniation may also be offered by another
out-of-band entity, e.g. a web site where interested rentpineed to click on a link or copy and paste an
address.

Routing in the application layer seems to be inherently &sient. This becomes evident when
we take into account the overhead experienced by packetdling through the complete protocol stack
at every node. In addition, whenever a tree is used for dataldition, all nodes with more than one
child will transmit a separate copy of every data packet &rgehild, resulting in a manifold increase
of upstream usage. Since the upstream bandwidth of curredem and broadband connections is
usually small in comparison with the ever increasing dovaash capacity, this increased stress is a
major problem of overlay multicast schemes and needs to hamzied at any rate. The motivation
behind overlay multiast schemes is not to improve the perdmice over native IPv4 protocols but to
provide comparable performance without network infraitice support.

2.4.1 Classification of Overlay Multicast Schemes

There exist several different classes of overlay multicasiemes. A widely accepted classification
divides them into two main classddpst-basedandreplicator-based.

Host-Based Host-based multicagses only end systems to build a distribution overlay. Evege of
the overlay acts potentially as a router and as a data sousiekoat the same time. This is in contrast to
IPv4 multicast, where the whole multicast routing algaritls running on dedicated routers, completely
transparent to the end systems.

Replicator-Based Replicator-basednulticast needs infrastructure support in the form of deaidid
hosts capable of running the multicast routing protocobtavard and replicate the data packets dissem-
inated by the source host. From the point of view of end sysiéhis approach is very similar to native
network layer multicast.

The overlay network on which the multicast routing algaritbonstructs the data delivery tree may
be established in several ways and allows to further clatis#f schemes according to [34].

Tree-First The most intuitive approach is callége-first approachEvery new node requests a list of
members from the rendez-vous point and subsgequently lasks members to be added to their list of
children. Once a node has found its parent, it tries to etlogner nodes and if it finds one with better
properties, it becomes its child. At the same time, it cédlex list of members in its vicinity. These
redundant nodes form the mesh and are substituted for tleatpiar case this host fails or the tree is
partitioned.

Schemes applying this procedure are most useful for apigliawhere high bandwidth is more
important than low latency. Protocols using this approaetyaid [35] andHMTP [36].

Mesh-First Doing the same steps the other way around works as well aadptbcedure is called
mesh-first approachwith this method, every node first selects a subset of the@eahd links to form a
redundant mesh connecting all end systems either amongoéa&t or with one or several replicators,

2.5. AIMS AND GOALS OF THIS SEMESTER PROJECT 17

depending on the scheme. Using a subset of these links, attteure is then dynamically created to
deliver the data packets.

Protocols of this class are efficient for small multicastupr® but do not scale well beyond a few
tens of hosts. The most popular scheme of this claslarada [1].

Implicit Performing both steps at the same time is also possible aadléslimplicit approach.Here,
the nodes are usually arranged in clusters and the optimizarks towards putting the nearest neigh-
bors in the same cluster, while respecting upper and lowendeof cluster size.

The advantage of this approach is its flexibility and scéitgbiNICE [37], CAN-Multicast [38]and
Scribe [39]are popular representatives of this class.

2.4.2 Overlay Multicast Scheme Example

In Figure 2.10, an example of an overlay network is shown. tiiloi grey denote end-to-end connections
which form part of the overlay network. These logical cortiers do not correspond to the physical links
of the underlying network. Rather, they are virtual conimes between end systems. In this example,
hostS is the multicast source and all hosts marked withg are subscribers.

In the leftmost network, the two group membérs and G2 can be reached by the sourSeusing
direct overlay links because they are in the same physidalank. The receivers in the bottom network
are connected to the source via the overlay link fi$ito G4, which passes router$ and D. FromGy,
data packets are delivered to hoStsandG5 via direct overlay links. The hosts in the rightmost network
are attached to host, via an overlay link passing routef@ andC'. From host(zg, data is delivered to
hostsGg andG7.

Note that in this example the physical link from routerto hostG, is used twice for every data
packet. The physical link from hosi, to its switch is even passed by four copies of the same packet.
This inefficiency is unavoidable because the overlay ndtvisrconstructed without information about
the physical topology. The overlay routing algorithm canasae certain properties of links, e.g. the
roundtrip time of a packet, but it cannot determine the ei@ablogy. Thus, every overlay network is
inherently less efficient than the underlying physical roetw

2.5 Aims and Goals of this Semester Project

The subject of the conceptual formulation for this semesteject is

One approach to provide multicast services is applicatayel multicast, where data is routed
via an application layer overlay to the group members. Thal gbthis thesis is to model and
implement a generic simulation framework for such ovetlays

The complete document can be found in Appendix A. The questidoe addressed is

What is the most efficient multicast service for wide depéoytrim the existing Internet among
the existing alternatives?

The procedure should follow these steps:

=

. Study of related work.

2. Selection of a representative set of multicast schempsttonder study.

3. Discussion of the evaluation parameters and creatiopmlication profiles.
4. Study the use of the OMNET simulator.
5

. Implementation of the chosen protocols in the OMN&Tenvironment and measurement of the
variables of interest.

18 CHAPTER 2. BACKGROUND INFORMATION

S Router A Router B Router C
AT A (/\fL \’ |
N VAV '3y, A DC G
] Router D 1
G, 73(:7 7:)(:7 G,
[o |
G, d/» G,

| ,
6, +DE—C—IC
| |

G, G

Figure 2.10: Overlay multicast scheme. Here, the multicast forwardmgerformed by ordinary end
systems denoted Iy, s. Note, that some of the physical links are used several timesntrast to the
example in Figure 2.9 where the multicast delivery is hadhdiig the routers.

6. Processing of the results and derivation of conclusions.
To what extent these goals were achieved is discussed inndppB.

In the next chapter, we will present the schemes we consider¢he evaluation and present our overlay
multicast protocol.

Chapter 3

Schemes Under Study

This chapter discusses our selection of schemes to evandti@ description of our custom overlay
multicast protocol.

3.1 Scheme Classes

3.1.1 Native IPv4 Multicast

We have analyzed the most popular multicast protocols fot.IRVe rated them qualitatively against the
following criteria: Current deployment status, flexilyliéind suitability for future Internet-wide deploy-
ment.

DVMRP The first multicast protocol proposed for TCP/IP networkd %88 was thdistance Vector
Multicast Routing Protocol (DVMRP) [4]. It is a multicast extension to the unicast distance vector
routing protocolRouting Information Protocol (RIP) [40], [41]but it builds its own multicast routing
table based on which it constructseverse path forwardingtree. When DVMRP was developed, it
was assumed that almost everybody in a network would wantlscsibe to a multicast group and it is
accordingly termed dense moderotocol. Data destined at multicast groups are sent toebggdated
DVMRP routers of all subnetworks in a DVMRP-enabled doméfithere are no multicast subscribers
in a certain subnetwork, its designated router may ask istre@m router to be pruned from the tree.
Both routers store this information for a few minutes andhthenew prune message needs to be sent by
the downstream router. This costs potentially a lot of mgmmorouters which are connected to many
networks with no subscribers. Obviously, this approacrsdus scale well. Additionally, the maximal
diameter of a DVMRP multicast group is limited to 32 links. fBsnedy this limitation, a hierarchical
model was proposed in 1995 [42] to increase the scalabiity,it was not blessed with long standing
success.

DVMRP failed our examination because it is depending on @aréqular unicast routing protocol
and does not appear to be scalable enough for the Interneday.t

MOSPF The unicast routing protocol that mainly replaced RIP waes lihk-state routing protocol

Open Shortest Path First (OSPF) [43], [44]Based on this, thélulticast Open Shortest Path First

(MOSPF) [5] scheme was proposed in 1994. For multicast, the link-stptiates are extended by
group membership information. This allows all routers iroatng domain to draw a complete, up-to-
date image of the topology and group membership. When acasttidata packet arrives at a router,
this device computes a shortest-pathurce-specific treeooted at the subnetwork of the sender. If
this calculation shows that the router forms part of thigtié forwards the packet accordingly. The
computation of the shortest-path using Dijkstra’s aldponit however, is computationally involved and

19

20 CHAPTER 3. SCHEMES UNDER STUDY

the distribution of the link-state packets relies on a @éabroadcasting mechanism calldoding,
which is not scalable for wide area networks like the Interne

MOSPF thus failed also because it relies on a specific unrcasing protocol and due to strong
concerns regarding its scalability.

PIM We have choseRrotocol Independent Multicast (PIM) [9], [10]as a representative protocol for
IPv4-based multicast. PIM offers high flexibility as it pides two different modes of operation: For
sessions with high node density, it may be run in dense moldé-[M), whereas if density is low, it
can be run irsparse mod¢PIM-SM). PIM-DM uses ashared treej.e., the data delivery tree is rooted
at one router and is the same for all source hosts. PIM-SNkstath a shared tree as well but has the
ability to switch to a source-specific tree later on if thisrses useful.

PIM appears to be the most widely-deployed IPv4 multicastqmol, according to for example [29].
To make the comparison as fair as possible, we considergdPtvi-SM, because most overlay multicast
schemes are targeted at sparse groups. Unfortunately,dugotlihave enough time to run simulation
experiments with this protocol, but it will be discussed étall in Section 3.2.

CBT Focused on scalability from the very beginning was the sefeare Based Trees (CBT) [6], [7],
asparse moderotocol. It uses the same root node termeckfor all sources and uses a more complex
algorithm to construct a shared tree than PIM-SM.

CBT version 1 did not have much success, the incompatiblgore® is not widely deployed either
and version 3 is currently an expired Internet-draft [8]. TOBas thus disregarded because of lacking
deployment.

3.1.2 Host-Based Overlay Multicast
In this area, we have looked ¥bid [35] andEnd System Multicast (ESND)].

ESM The routing protocol of the ESM scheni¢grada,is quite sophisticated and seems to make good
use of the processing power offered in today’s end systenesdéffided to take this scheme as a basis
and design and implement a custom architecture for our measunts. For easier reference, we will call
our scheméverlay Multicast Protocobr OMCP. It will be specified in detail in Section 3.3 on page
23.

Yoid This scheme is host-based in its basic mode, but its perfttenanay be enhanced by the in-
stallation of dedicated replicators at critical points e internet. Yoid uses a tree-first approach with
clustering. A new member gets a number of currently actimigrmembers and asks the most suit-
able to be its parent. Since Yoid is not specifically desigimesupport classical multicast applications
like streaming but also employs caching for file transfers,decided to use the more generally-scoped
Narada.

3.1.3 Replicator-Based Overlay Multicast

We evaluated\LMI [45], OMNI [46], Overcast [47],andScattercast [48]. Our gualitative examination
of the above protocols led us to choose OMNI. ALMI uses a cetep) centralized approach, which
sets it very far apart from the distributed nature of the oth® candidates. The application-specific
extensions of Overcast and Scattercast made the comparigonetwork layer multicast appear ques-
tionable. The goal of OMNI, on the other hand, is a minimathaty distribution tree using dedicated
replicator nodes.

3.2. PROTOCOL INDEPENDENT MULTICAST—SPARSE MODE (PIM-SM) 21

Legend

—— IGMP connection
PIM Domain

PIM connection

®--¢ Interdomain link

" Border
.“Router

PIM
Router

PIM
Router

PIM
Border
Router

[']‘?:o,rd'e'r

Router

Non-PIM-enabled

PIM Domain .
Domain

PIM
Bootstrap
Router

PIM
Router

PIM
Border
Router

PIM Domain

Figure 3.1: Example internetwork topology to show how PIM operates sxmon-PIM-enabled do-
mains

3.2 Protocol Independent Multicast—Sparse Mode (PIM-SM)

PIM-SM version 1 is described in RFC 2362, published in Jus@31[9]. The most recent develop-
ment was the submission of the latest PIM-SM version 2 spatifin to the IESG in April 2004 for
consideration as a proposed standard.

All mentioned IPv4 multicast protocols rely on th&ernet Group Management Protocol (IGMP)
[49] to manage communication between end systems and theimdatast router. Hosts can join and
leave groups by sending their router I&MP Joinor anIGMP Leavemessage, respectively. All hosts
which have registered their membership in a group with sagedroup address are then forwarded alll
packets destined to this address by the router.

PIM conceptually divides networks into PIM domains, i.egas with PIM support, and all other
areas without support for PIM. Thus, the task of PIM is on the band to distribute data within PIM
domains and on the other hand to provide for unicast cororextising interdomain routing to connect
these islands. An example of this architecture is shownguiei 3.1.

The first IPv4 multicast protocol, DVMRP, assumed that aitedén a network were group members
and constructed a tree comprising all hosts. It then prumaddbes where no group members were
available. PIM-SM uses the opposite concept: It assumes,nth group members exist. Therefore,
group subscribers need to sendeaplicit join packet to the rendez-vous point in order to start receiving
data sent to the group. Group members need to check peligdidsether they receive data. It is this
explicit join model that makes PIM-SM so much more scalab#ntdense mode multicast protocols like
DVMRP and MOSPF.

Another important difference is that PIM-SM uses a singde tio distribute data to all PIM routers
with active group members. This tree is rooted at a well-éefimachine calledendez-vous point (RP).
This is in contrast to theource-specific treenodel used by DVMRP where a source-specific tree is
maintained for every group member that has sent some datathgc This increases the scalability
tremendously. But using a single tree is not necessarilyngpfor all sources in terms of latency, as we

22 CHAPTER 3. SCHEMES UNDER STUDY

PIM
Router

Router

PIM ;
PIM — [Receiver |
Router U

Receiver

PIM @

Router Quty

Receiver |

| Receiver |

Figure 3.2: PIM-SM shared tree. The shared tree is always available in&W The multicast source
sends the data to the rendez-vous point, and from there,aliedy is performed along the same tree,
independent of the source host. Note that all data packets the source cross the rendez-vous point.
(Border routers are omitted in the figure for simplicity.)

will see later in an example. The selection of an optimal ezrebus point is an NP-complete problem
and is in all practical implementations approximated usiagristics.

All PIM routers who need to receive data for a certain groupster their group membership at the
rendez-vous point of this group. A rendez-vous point mayesaeveral groups and every group of a
particular domain uses only one RP. Information about Rissisibuted bybootstrap routerswithin a
PIM domain. Every physical network needs at least one PIMerourhis machine constantly collects
information about rendez-vous points. PIM domains are eotad viamulticast boundary routersrhich
serve as gateways and transmit information about rendez-points to the PIM domain at the other
end. Every PIM router with active subscribers periodicayds a PIM Join data unit to the rendez-vous
point to indicate that it still needs the packets for thisugroThe join process in a PIM domain works as
follows:

1. The joining host sends an IGMP Join message to the desaynatiter of its subnetwork.

2. The designated router searches its records about rendezpoints for the responsible RP. Obvi-
ously, for this to be successful, the router needs to hawevert this information from a bootstrap
router beforehand.

3. Multicast data packets sent from the source to the remdez-point are replicated at the RP and
forwarded to all PIM domains with active group members. Thalbr routers of these domains
then forward data along the distribution tree to all PIM syatinside the domain which have sent a
PIM Join message recently enough.

To put away with the inefficiency of a shared tree, PIM-SM lelishes a source-specific tree once the
data rate of a source exceeds a certain threshold. A coroparstween a shared tree (dashed lines)
and the corresponding source-specific tree is shown in &ig§&. The process that leads to such a tree
is complex and beyond the scope of this text. It is remarkdideever, that this tree is established as
soft state, which means that it is destroyed if the forwayditate has not been renewed during a given

3.3. OVERLAY MULTICAST PROTOCOL (OMCP) 23

PIM
Source
Router

PIM
Router

Receiver

Receiver

PIM PIM

Router Quty

Receiver |

Receiver

| Receiver |

Figure 3.3: PIM-SM source-specific tree. Such a tree is only establisimed the data rate of a source
has exceeded a certain threshold. Note that this tree dogisivolve the rendez-vous point. The shared
tree is drawn with dashed lines for comparison. (Border epsitare omitted in the figure for simplicity.)

timeout interval. This simplifies the protocol, but can léad high amount of control traffic, especially
if large networks are involved, because receivers will trnkeep their trees established even if no data
are sent for an arbitrary period of time.

3.3 Overlay Multicast Protocol (OMCP)

In this section, we will describe Narada and point out whatwaee done differently in our custom pro-
tocol termedOMCPfor easier reference. The scheme currently works towardgmzing the perceived
overlay latency, but other metrics could also be used asdsripey are attainable by end systems.

3.3.1 Contributions in OMCP

There are a number of differences between OMCP and NaradawiNexplain them in detail in the
description in the next sections, but here is a list of thetmotable contributions:

¢ Negotiated improvement of the mesh overlay structure.

Route poisoning to control the data delivery tree.
Triggered routing updates for faster routing convergence.

Faster incorporation of fresh members into the data delitree.

More accurate measurement of link latency.

3.3.2 Mesh

Since Narada is a mesh-first approach, its performance erges mainly by the quality of the mesh. A
sophisticated mesh setup and improvement strategy is ttalisosthe success of the whole scheme. The

24 CHAPTER 3. SCHEMES UNDER STUDY

mesh improvement should be based on the metric which is mitisatfor the application because the
data delivery tree can at most perform as good as the mesh.

Mesh Establishment And Maintenance

The evolution of the mesh is not described in the Narada pap&MCP, nodes strive very fast towards
their minimal degree and then become more selective abaaohwihks they add. It is therefore wise not
to choose too high a minimal degree parameter, i.e., noggrézn about five, to avoid adding lots of
underperforming links which will be dropped later. Here shart breakdown of how a multicast group
evolves:

1. A node decides to initiate a group and makes the group ssl@sailable to other potential mem-
bers. A well-defined rendez-vous point could be put intoiserand keep track of active groups
and provide a partial list of active members. Or there mightabveb page, where groups and
members can be registered and retrieved by new users.

2. To join the mesh, a node sendsaadMeshLinkmessage to one or more active group members.
The recipients will then decide based on their current nurobenesh links if they can take one
more mesh link. If yes, they send an affirmative reply and tleshriink is established. If not, a list
of active members is sent back and the node chooses anothd@rane

As soon as a node has established the first mesh link, it stecteanging the following messages with
its mesh neighbors:

¢ Refresh messageJhese contain a list of all known group members and a sequamcder for
every member. If a node stops receiving refresh messaghsneieasing sequence number from
a certain member, it assumes either the member to be dea€ oreth to be partitioned and starts
the probing mechanism (see below).

e Routing updatesWith these packets, mesh neighbors exchange their complgtiag tables. The
route entries contain the next hop address, the associieacy and the complete path to the
destination. Routing updates are sent periodically. Aaldly, an update is triggered whenever
changes to the routing table occur and no RoutingUpdatehisdsited within a very short time-
frame.

¢ Pings: Similar to ICMP echo requeststhese messages request an echo message and are used to
measure the latency of links. Depending on the applicatlwge packets might be enlarged using
padding to get more accurate measurements, e.g. for dodentfdarge files. Periodically, every
member sends Pings to every member to make sure it has remrrglelatency measurements.

e Routing update requestSimilar to Pings, this kind of message asks the receivergly mith its
complete routing table. The sender then uses this infoomati calculate if a mesh link should be
added.

Mesh Performance Measurement

Only on the basis of recent and accurate latency measursnsenpossible to improve the mesh con-
stantly and to reliably find better links. In the specificatimf Narada, it is just mentioned that members
periodically probe each other to measure the unicast atenc

Narada uses the same kind of messages for the measuremeitastlinks and to check if a member
is dead and requires the receiver to respond to these messdbets complete routing table. Since the
size of the routing table may vary depending on the age of & aod the number of members in the

Internet Control Message Protocol (ICMR a companion protocol to IP and is used for the communioatigtween
routers and end system&cho Requesinessages are mostly used to check if a host is running or tsureshe roundtrip
delay.

3.3. OVERLAY MULTICAST PROTOCOL (OMCP) 25

group, affecting directly the processing time at the rezeas well as the transmission time of the reply,
we introduced three different packet types. Ping packetsised to measure the performance and may
be of arbitrary length. It might be advisable to adapt thgikmf the Ping messages to the length of data
messages. The second packet type is céliedbeand is used solely to determine if a member is dead.
The third kind is termedRoutingRequesind asks the receiver to send back its complete routing. table

We developed the following measurement mechanism for OM@Renever a node is informed
about a new member, it waits for a random time bounded by arpea value and then sends the first
Ping message to the new member. This random delay is eddentieoid that members which have
just come online are flooded with Pings by all current groupniners. In steady-state, every node sends
Pings to group members periodically. In Narada, the tagyselected randomly. We think that this can
be dangerous because the law of great numbers does notarédgegsply for groups with a few dozens
of members. A node might send Pings unevenly distributed aVgroup members and thus never get
latency information about potentially very fast links.

Our approach calculates the interval between two Pingsds#éme host],,;,,, with respect to a
time parametet},;,g7arge: s follows:

T . TpingTarget
ping — Ta

whereNN is the number of group members that the host is aware of.

EveryT,;,, seconds, an OMCP node does the following: It searches fan#maber record that has the
oldest Ping time stamp, sends a Ping to this member and sptieePing time stamp in the member
record.

Under steady-state conditions, this approach guararttesgtsa Ping message is sent to every group
member in an interval of};,grarget- Thus, the latency measurement of no link grows older than
TpingTarget and all group members are sent Pings in equal intervals.

The links to mesh neighbors are evaluated more frequentig allows to detect almost immediately
when a mesh link goes down and to replace it.

Mesh Improvement

The Narada paper gives a description of the procedure tai@ealf a new link should be added or a
current one be dropped. The scheduling algorithm for théuatian, however, is not specified. So we
came up with the following approach in OMCP: Every node aliges between evaluating its current
mesh links and checking out new links. If it decides to addropdh mesh link, it subsequently waits for
some time before running the next evaluation cycle to alloewbuting to converge. For similar reasons,
a fresh link is granted a grace period, during which it carreotiropped.

Mesh Reduction Based on its own routing table and the stored routing talflei &nown members,
every node periodically calculates a value cattedsensus co$br every mesh link. The consensus cost
of a link indicates, what the cost is of dropping this link hetview of the hosts at both ends. First, the
nodes at both ends count, how many of their routes use thelatkeas first hop. This number is the cost
from their point of view. The consensus cost is defined as taeimum of both these numbers. How
this value is computed in OMCP is described later in thisisect

It is not clearly defined whether Narada evaluates all linksrdy links with certain characteristics.
In our protocol, we evaluate links with the following proties:

e The link is active.

26 CHAPTER 3. SCHEMES UNDER STUDY

e The link is not in use by the data delivery tree.
e The grace period of the link is over.

e The latency measurement and the stored routing table of #mbar at the other end are recent
enough.

e The link latency is greater than a minimum parameter.

As specified in Narada, member A calculates the consensttoaogsh neighbor B as follows: It counts
the number of routes in its routing table that use B as firstdmapstores this value. It then calculates the
cost of dropping the link from member B’s point of view using $tored routing tables in the member
record and stores this value as well. The consensus codiaimed as the maximum of both costs.

After the consensus costs have been calculated, the looagdirk is dropped if and only if the cost
is below the currentost threshold.This value depends on the number of mesh links the node has and
on the node’s perception of group size. How the cost thresisatomputed is not defined in the Narada
paper, though. We developed the following calculus: We tietite current number of mesh links with
M. Let M,,;, be a parameter for the minimal aid,,,.. for the maximal number of mesh neighbors.
We define the rangeas

T = Mmaz — Mmin

and the positionp as

Let M;qrqe: b€ the optimal position betweeW,,,;,, and M,,,,.. The number of group members in the
perception of the current node is denoted¥ySince the maximal cost equalé— 1, we made the cost
thresholdep,shoiq depend on this variable. It is defined as

Cthreshold = P * (1 - Mtarget) * (N - 1)

Furthermore, links which have a very low relative latenoy,dxample, less than one tenth of the average
latency of all mesh links, are never dropped.

To avoid loss of data packets, we added the following netiotianethod: Mesh neighbors ask their
peer if they may drop the link between them. Permission t@ dhe link is granted only under the
following conditions:

e The number of mesh links is greater than the minimal degresnpeter.

e The link is not in use by the data delivery tree.

To avoid packet loss when links are dropped, Narada reqo@@ss to continue sending data packets via
dropped links for a transient time. We went one step furtheradded a function which actively vacates
mesh links. This function is called when a mesh link shoulditopped.

Vacating Mesh Links Whenever a mesh link needs to be dropped, in our approachmotte which
wants to drop the link first vacates it as follows: It sends dkiger end avacateMeshLinknessage,
poisons all its routes which contain the other node and sariRisutingUpdate to all its neighbors im-
mediately. The node at the far end does the same. After sonee ioth nodes check if they still have
routes using the link and if not, they ask their peer if it iady to drop the link as well. If not, they wait
again. After a maximal wait time, if the link could not be dpagl, it is re-enabled because appearently
the situation has changed and the link now appears to bessyder the mesh.

3.3. OVERLAY MULTICAST PROTOCOL (OMCP) 27

Mesh Enhancement To evaluate if a mesh link to another member should be adde@®MCP node
first sends the candidateRoutingRequeshessage. This asks the recipient to reply with its complete
routing table. Based on its own routing table and the oneet#ndidate, the node then calculate a value
called utility, which indicates to what extent the addition of this link webuéduce the latencies to all
group members. As specified in the ESM paper, to compute tlity of adding a link to member B,
node A does the following: For all group members, it caledahe new latency.,,.,, if the link were
added. IfL,.,, is less than the current latenéy.,.n¢, it increases the utility value as follows:

/ Lcurrent - Lnew
U =u-+ s

Lcurrent

uUu=u.

The link is only added, if the utility is greater than the @t utility threshold. This threshold is not
specified for Narada, it is only said that the value is a fumctf the degree of both members and the
group size and that the link might also be added if the curoestlay delay is very high and the new
latency to the candidate would be very low. We used an apprioased on the same variables as defined
for dropping mesh links. The utility thresholdy,.csnoq 1S thus:

Uthreshold = P * (1 - t) * (N - 1)

If the new link would reduce the latency to the candidate Wwedovery low threshold, for example,
lower than one tenth of the average latency of all mesh litiks,added regardless of its utility. The
reasoning behind this is: If more links with minimal laterang part of the mesh, links with high latency
will be dropped earlier and this leads to a mesh with loweraiVétency.

Repair

Nodes can detect when group members die or the mesh is gagtitivia the refresh mechanism. All
mesh neighbors are required to periodically exchange ¥mmiwledge about other group members in
Refreshmessages which consist of pairs of member addresses anehsegoumbers. If a node stops
receiving increasing sequence numbers from a group meiibets its status tS&taleMemberand puts

its member record into thetale queud).;,.. Periodically, the node checks if there are members in the
stale queue. If there are any, it pops the first entry and sendsnber oProbepackets to the concerned
node. If it responds, its status is reseFteshMemberlf, however, no replies are received, the member
is declared &ZombieMemberShould a Refresh message about a member with ZombieStaitves &r

will be ignored. After some time, when the information abth disappearance of this member has
spread over the mesh, all records pertaining to it are rethove

The scheduling is the same as in Narada: The above procedureperiodically and is repeated until
all members which have been in the stale queue longer thae peniod of time have been processed
and with probabilityP..,.tinue = 'QLA;“E‘, one more stale member is probed.

In Narada, it is said that all mesh neighbors jointly detexenif a node has failed and only then
propagate this information through the mesh. However, Hosvgropagation works, is not clear. One
possibility would be via refresh messages, for example bgttimg the sequence number to an invalid
value.

Since preliminary tests showed that it is vital for the fgliéadelivery of the data packets to distribute
the information about a node failure fast, our approach isenaggressive: As soon as a single mesh
neighbor has sent a number of probes to the node and notedaaivanswer, it perceives it to be dead. It
sends aDbituarymessage to all its mesh neighbors. A member which receiv@banary about a node
checks its record of this node. Ifit is said to be an active foemit sets its status to ZombieMember and
forwards the Obituary to all mesh neighbors except the onerevit came from. If, however, it doesn't
have a member record of the appearently dead node or if bsd@adicates that this node is not in the

28 CHAPTER 3. SCHEMES UNDER STUDY

active state, it ignores the Obituary entirely. This enstnat an Obituary concerning a particular host is
forwarded at most once by any node and thus obituaries @giesdtne time.

3.3.3 Overlay Routing

Like Narada, we run a distance vector routing protocol widithpinformation on top of the mesh in
OMCP. Mesh neighbors periodically exchange their compieiing tables. Additionally, as described
in Section 3.3.2, nodes may ask for the routing table of a negrtitat is not currently a mesh neighbor
when it is considering the addition of a link.

For better control of the addtition and especially the rephaent of routes, we introduce a poisoning
mechanism. This allows a node to poison its routes to fosedfito replace them. Additionally, through
poisoned routing entries in RoutingUpdate messages, msnaa@ advise each other to drop routes
which they consider invalid or which use mesh links they vtardrop.

To allow for faster convergence, OMCP disseminatéiggered RoutingUpdate whenever a route’s
next hop changes, when a route is poisoned or when a mestslvdcated. To avoid oscillation and
too much routing information traffic, we use the following chanism: If the routing table has been
modified, no RoutingUpdate is sent immediately. Insteacklfarsessage is scheduled to be received
after a short period of time, e.g. 500ms. Only when this ngssareceived, the RoutingUpdate will be
sent. If, however, another routing change occurs, the nogtecfiecks if there is a self message scheduled
already. If this is the case, it just waits because this ngessall cause the RoutingUpdate to be sent
soon enough. With this algorithm, a minimal interval betwepdates is guaranteed.

3.3.4 Data Delivery Tree

Data is sent over a tree-like structure which is dynamiczgigblished for every group member as soon as
it starts sending data. To be able to distinguish data pscket use a sequence number mechanism. For
greater fault tolerance, every node maintains a liste¥ parentsaandtree childrenand relies upon this
information in addition to its routing table when sendingfamwarding data packets. This information
enables nodes to recognize and accept data packets frorarfparents and send or forward to former
children during a transient period. Additionally, freshmigers or members which for some other reason
have incomplete routing tables are also sent and forwardekkps. This allows fresh group members to
participate in the delivery tree even though they do not lzewemplete routing table yet.

Sending Data Packets
The source sends the data packet to all its mesh neighborh vahive at least one of the following
properties:

e The stored routing table of the neighbor indicates thatntreach the sender in one hop.

e A copy of the neighbor’s routing table is not yet availablatandicates, that the neighbor doesn’t
currently have a route to the source.

Forwarding Data Packets

The list of parents is used to decide if a data packet receiiedld be forwarded. The decision process
works as follows:

e The packet is dropped immediately if

— The sender is not a mesh neighbor.
— The packet is destined at a group which the node is not a mewiiber

e The packet is considered valid if and only if at least one efftillowing conditions holds:

3.3. OVERLAY MULTICAST PROTOCOL (OMCP) 29

— The sender of the packet is the node’s next hop to the sourttee@ource itself. This is the
base case for reverse path multicast. If the sender is nat yle¢ parents list, it is added now.

— The node doesn’t have a route to the source of the packee Hehder is not yet in the parents
list, it is added now.

— The sender has been the node’s parent until recently anchtisent accept period is not over
yet.

o If the sequence number is greater than the last, the nodemassthe packet and forwards copies
to all neighbors for which any of the following applies:

— The stored routing table of the neighbor indicates that tienis its next hop to the source.

— The neighbor has been a child of the node until recently amdrémsient forward period is not
over yet.

— A copy of the neighbor’s routing table is not yet availableitoindicates that the neighbor
doesn't currently have a route to the source.

3.3.5 Group Dynamics

Multicast schemes based solely on end systems are inheneoté prone to node failures than router- or

replicator-based environments. Since not only failuremigconfiguration but also intentional behaviour

of users may cause nodes to disappear, appropriate couesamunes need to be put in place to handle
situations like member leave, service degradation and-t+otadlenging—sudden node failure.

Member Leave

A member leave should not lead to any data packet loss sir@@nibccur arbitrarily frequently. As
described in the Narada paper, a node will forward data pad&ea period of time after it has quit. A
member wishing to leave the group first poisons all its roates thus will only advertise unreasonably
high costs causing its mesh neighbors to look for other sodteaddition to this measure, leaving OMCP
nodes will ask their neighbors to vacate their mesh linkslessribed in Section 3.3.2.

But with end users operating the routing entities, it is noargnteed that a leaving user will allow
its computer to forward long enough, especially if they ledcause they were not satisfied with the
performance of the service or because they need the baidfeiddomething else.

The method used by Narada to detect node failures is basér eaftesh mechanism and described
in Section 3.3.2. In OMCP, members may detect a mesh linkr&aiinuch faster when a Ping message
they sent to a neighbor is not returned.

3.3.6 Further Improvement

Due to time constraints, we were unable to implement all gagures we had in mind. Some of the more
interesting ones are the following:

Multi-Path Routing During preliminary tests, we noticed that almost all dateke# loss was caused
by abrupt node failure. A multi-path routing scheme shoualddie such situations much better. Members
would accumulate at least one backup route to every meshlimaiglt can easily be shown, that even
with this primitive multi-path scheme it would be possibtehtandle node failures without any packet
loss after the failure has been detected as long as each mezihle is detected before another member
fails.

30 CHAPTER 3. SCHEMES UNDER STUDY

Use All Control Traffic to Measure Mesh Performance As mentioned before, the active monitoring

of the state of mesh links is critical to the performance efdiata delivery tree. Therefore, we propose
using Refresh and RoutingUpdate packets to measure thétrguaelay of mesh links. Since these

messages need a non-negligible time of processing at tlké/eecthey should be time stamped first
when entering and second when leaving the OMCP applicafitve. sender could then get an accurate
measurement by subtracting this processing time from theeped roundtrip time.

Harvest Topological Information of the Underlying Network In addition to the experimental de-
duction of the structure of the physical network, nodes migte their network address and netmask to
recognize members on the same subnet. Additional infoomatbuld be gained using freely available
services likeDNS reverse lookupr whois lookup. Furhermore, it might prove to be helpful to use a
strategy similar to the UNIX traceroute utility in order teveal more of the physical substrate on top
of which the overlay topology is running. This approach wballow to make use of network layer
information for multicast without causing any additionagmory in routers to be wasted.

Accumulate Control Messages In contrast to the experiments conducted by the develogétarada,

we assumed that node failures were quite common and theragmd much shorter intervals between
control messages. It makes no sense, however, to for irstamel one RoutingUpdate message followed
immediately by a Refresh message, since the conveyed iafammcould just as well be put into one
packet. What's more, Pings could be replaced by data padkeitsg periods of high data rates with a
bit in the data packet which indicates to the receiver thelid@uld immediately send a Ping reply to the
sender.

In the next chapter, we will present the specification of thpliaation profiles we developed for the
simulation experiments and specify the parameters to besumee as well as the heuristics we will use
for the evaluation.

Chapter 4

Model and Evaluation Method

To compare several multicast schemes in a way that is at the siene fair and reproducible as well
as meaningful for practical applications is a daunting .ta&% decided to rate the different approaches
with respect to four application profiles. In this chaptege mtroduce first the constituting criteria, i.e.,
metrics and heuristics, and then the profiles. Due to outéuniime budget, we could only implement
and evaluate our own overlay multicast scheme. We term ¢thisrseOMCP for easier reference.

4.1 Methodology

In order to allow for a comprehensible comparison, we dettdébase our evaluation on measurements
of key performance characteristics. The success of a ngstatocol in terms of popularity, however,
does not depend solely on hard facts. Therefore, we alsodadheuristic criteria in our evaluation to
account for differences in complexity of the implementatand other characteristics.

4.1.1 Metrics

While our simulation framework allows to measure severalricee we focus on the following three:
stress, stretch and delay. All metrics may vary over thesmof a session, i.e., a period of time where
the data source is sending constantly. Hence, we mainlywesages over time and over all receivers for
the evaluation.

Notation

We will use the following notation.
Number of physical links on unicast routes among group mesbe 7.5

Duration of the session in seconds Ss

Duration of the session in packets Sp

Unicast delay from hostto hostj in seconds d; j

Multicast delay from host to host; in seconds D; ;

Number of copies of a packet carried by the link between homtgl; NV ;
Arithmetic mean of realisationX;, of a random variable X = % Yok Xk

Statistical variance of realisatiod;, of a random variableX X := VAR [X}]

When we talk about the value of a metfi€ for a particular data packet, we denote this by a superscript
MF,

31

32 CHAPTER 4. MODEL AND EVALUATION METHOD

Stress

This metric is defined as the number of identical copies ofrtiquéar data packet carried by a single
physical link. For the data packet with sequence nuniben the link between two devices (routers or
end systems) andy, stress is defined as

Nk

Z7j'
Specifically, we are interested in the average stress oftelar link | between devicesand; over an

entire session:

_ I =
Nl = S_p ZNiyj’
k=1
and accordingly its variance among all links
N := VAR N

For the evalutation, we use the mean of the average strefldioks.

B 1 Niinks B
N = N;.
Niinks =1

During the setup phase or in transient conditions, stresslmavery large. This is especially true for
protocols which have some or all neighbors transmit dat&giado hosts that have indicated that they
have lost their parent. Thus, another indicative properttheé maximal stress that has occured on any
link from sourcei to any subscribej due to any data packet with sequence nunibes given by

maxmafoj.
kogg#e 7

Delay

This is the overlay data delivery delay from the source lidst a receiverj. Again, we are mostly
interested in the the mean of the average delay to everywezcei

INE

]l

Il
S
INg
.@I

and the variance among all subscribers
VAR[D, j].
J
Stretch

This metric measures the delay overhead incurred by ovandtfcast compared to the respective unicast
delay. The mean stretch factor for hgstvhen host is the source, is denoted by

wll

Kz‘,j =) .

2¥)

In an optimal multicast scheme, the latency from any souscanly subscriber is equal to the unicast
latency, resulting in a stretch factor of one. While thishisdretically possible to achieve with a network
layer multicast scheme, it is practically impossible withpkcation layer multicast. We are mostly
interested in the mean of the average stretch factor ovapatk

S8

n

_ 1 _
K = E Z Ki7j7

J=1, j#i

4.1. METHODOLOGY 33

Fault Tolerance

Most network layer multicast schemes do not focus on faildtamce, as the reliability of the forwarding
devices is usually sufficient. This is not the case with axdirpersonal computers. Since most overlay
multicast protocols are designed to run on such deviceg, riblsustness against incidents like abrupt
node failure and changes in network level routes plays aroitapt role. Unfortunately, robustness
is very difficult to measure. Because our time was limited,dgeided to run all measurements in a
setting where no network level route changes occur. Allesaire computed before the simulation starts
according to a shortest path algorithm and are static oeesithulation run. To at least estimate the fault
tolerance, we performed simulation experiments withowdentailures and again with a certain node
failure probability. This is not a strict reliability measment, but still can give a basic indication about
the robustness of our scheme.

Further metrics

Due to time constraints, we could not perform all measureésner had planned. Here is a brief overview
of what other metrics we deem important.

Efficiency Multicast protocols force routers or end systems to keeprsiderable amount of state
information about group membership etc. Further, theyeausnsiderable amount of additional control
traffic. Both these quantities can be measured and compatsath classes of multicast protocols.

Packet Loss It is not necessarily the objective of a multicast protocoyjtiarantee reliable delivery of
data packets. But in any case, packet loss should be avoiddicasts. For instance most streaming
applications do not tolerate packet retransmissions. ?dogs is easily measurable. In our scheme, no
packet loss occurs under the assumptions we made, but aasdwsts fail, a nonnegligible number of
packets is lost.

To assess the performance of a scheme in terms of packea Isissiliar approach as proposed in the
next section for the assessment of service interruptiogbtprove useful. A percentile-based evaluation
[50] could also be used.

Setup Time The time delay between initiating the join process and tleepon of the first multicast
data packet may vary from less than a second to several tesesofnds among the discussed schemes.
Thus, it is an important factor when a multicast protocolaleated.

Hold Time This is the period of time during which a former group memisestipposed to continue
forwarding packets to its neighbors. While this is zero imantioned network layer schemes, it can be
up to a few dozens of seconds for application level protocols

Jitter This is a metric that is mostly relevant for media streamipigligations. It is an indicator of how
constant the interarrival time of data packets is duringsti&sion as perceived by the receivers. There
are several different definitions for jitter. One of the moreiitive definitions is the following: For a
given hostj, jitter of packets received from sourcés defined as

Jij = VAR[Dy],

assuming that no packets are lost and that the packets srgeguence. To compare the performance of
multicast schemes based on jitter, statistical methodspléecentile measurement are required. Another
possibility is proposed in the next section.

Further information on jitter and other metrics relevant riculticast services is provided in [51],
[52], [53] and [54].

34 CHAPTER 4. MODEL AND EVALUATION METHOD

Fairness The variance of the arrival times of data packets among thiéaast group is a metric for
the fairness of a multicast scheme. This is crucial for tisaé applications like stock market tickers and
online bidding platforms. It is defined as the maximum of tifeecences of the arrival time at the first
and the last receiver of a data packet

max ij — mjnDZ’-“j.
J ’ J ’
Of particular importance is the maximum of the above valueabse it determines if a delay-critical
application can be run with a given multicast scheme or nias.diven by

k ok
max [max D; . —minD; . | .
N E—
In the next section, a method for the assessment of sernieguptions is given. Such an approach
seems to be indicated to evaluate fairness as well.

Service Interruptions Any interruption of the reception of data packets hurts tadggmance of the
multicast network. But depending on the application, défe kinds of interruptions have very dissimilar
impacts on the quality degradation perceived by the agmita Hence, this property is crucial when
deciding if a certain scheme is suitable for a particuladiaggon.

In the case of messaging, it doesn’t hurt the performanaeaafy twentieth packet is lost, because
this service by definition only uses very little bandwidtiddast packets can be retransmitted quickly.
Download, in contrast, uses all available bandwidth, ang,tin the same network, packet loss would
probably be higher and download performance would be degradticeably.

On the other hand, if it happens that the service is completehvailable for a period of one minute
every ten minutes, this only lowers the download bandwigtkeln percent, but can render instant deliv-
ery of messages infeasible.

Measuring this property is a difficult undertaking. It ne¢albe defined, by what a service interrup-
tion is constituted to distinguish it from the metric packests. One possibility is to use a®®%percentile
scheme, but this neglects the duration of the longest fiveepéiof interruptions. In the next section, a
more accurate assessment scheme is presented.

4.1.2 Class-based Assessment

One of the main concerns about percentile-based measur¢s®dris that it offers no insight about
how bad the worst results were. For instance, if a multibased messaging scheme guarantees that 95
percent of all packets arrive within ten seconds, it malffettse other five percent arrive within twelve
seconds or one minute. We propose to use several classds avhiassigned different penalty factors.
According to the number of occurrences and the penalty fagtsingle value can then be calculated that
accurately represents the suitability of a scheme for theirements of an application.

We will use the metric service interruption as an examplestferf all, we need to define a few time
periods with a corresponding penalty factor. ISetdenote the duration of the session in seconds. The
penalty factor indicates, how often an interruption of aaierlength may occur within a time period
before the service quality becomes inacceptable. The nuofbeccurences which render the service
quality zero divided by the duration of the sessifh, is the penalty factor.

However, the penalty factor for interruptions above theangmund for the acceptable interruption
duration, isnot divided by S;. This becomes more clear with an example. Let us considenstarit
messaging service where service interruptions of 1 secofess do no harm, outages of less than ten
seconds may happen three times per 100-seconds of a sesdibmaist be guaranteed that all messages
arrive within ten seconds. For such an application, the Ipefactors are:

4.1. METHODOLOGY 35

Duration [s] \ Penalty Factor
do =1 Po = 0

dy = 10 pL= 100, 1
d2 = 20 D2 = 1

d3 = 20 pP3 = 2

d4 = 50 P4 = 5

According to this scheme, the service quality would then &leutated as follows. Letg 4 denote
the number of occurrences of outages of the correspondirggidn. The quality of the service is then

defined as A
QZ: 1—2])7;-717;.
i=0

If Q is equal to one, this incicates that the longest servicerumigons were no longer than one second.
WhenqQ is % this indicates that on average once per one hundred seobtitssession, an interruption
of less than ten seconds occured. A valué)of 0, however, indicates that at least one interruption has
been longer than the allowed ten seconds or that more thee ihierruptions of between one and ten
seconds have occured per hundred seconds of the session.

All negative values of) correspond to an inacceptable service quality, eitherdsecan interruption
of more than ten seconds has occured, or because too mamyjititens of between one and ten seconds
have happened. But even if the quality factor is negativaylte are still meaningful and comparable
among multicast schemes.

4.1.3 Heuristics

One of the key limitations of IPv4 multicast schemes is thited scalability, even though—or perhaps
because—they are quite simple. We give a rating for sinipland scalability for both replicators (if
applicable) and end systems.

Simplicity

We estimated, how easy it is to implement a protocol in hardwadnere memory is limited or in software
where the processing of network packets is mostly limitegtims of speed.

Scalability

We analyzed the schemes for properties which limit scatgbNVe take into account, how much state
information is necessary as well as what kind of processasyth be done to set up and improve the
network (if applicable).

4.1.4 Application Profiles

Different multicast-based applications have differemuieements in terms of quality of service. While
it may do no harm to a audio streaming service if the delay fileersource to the receiver is 500ms, such
a delay can make another application, for example videoetenting, infeasible. This does not hurt
when we consider software distribution or data backup sesvi If the multicast scheme offers a high
average throughput over the course of an hour, this may wemkwell, even though the protocol might
interrupt the service every five minutes for a few secondgtoroze the overlay topology.

Alas, we think that a fair comparison of different approacie multicast communication is not
feasible if only the requirements of one application aresaigred. Based on recent research papers and
commercial multicast services, we came up with the follgniour application profiles. The quality of

36 CHAPTER 4. MODEL AND EVALUATION METHOD

service offered by our multicast scheme is compared to thdsef these applications. The results are
given in the next chapter.

Streaming

Streaming is by far the most popular applications assatiaiéh multicast services. The media to be
streamed might be a live broadcast of a conference or an st broadcast of a university lecture.
We assume that there is only one source, but a great numbecaifers. The most important factor is
stress. Stretch and delay are not as important becauseishaoeinteraction in this service. Another
crucial property is jitter, but we did not have time to measitiand thus will not take it into account.

Messaging

With messaging, we mean collaborative work where sevemplpesend messages to all other group
members, similar to instant messaging. Key criteria aredelay and stretch and high fault tolerance
because such services are often used when people are faapg@ossibly communicating via wireless

networks. For purposes like stock market tickers, delayusial as well because if a message arrives
too late, this might directly result in loss of money. Strisssot critical because the transmitted amount
of data is assumed to be very small.

Download

More and more computer software and media is distributed tréecinternet. Download is the classical
example for replicator-based multicast. The infrastrietio allow huge amounts of data to be down-
loaded simultaneously by people around the world is alresfiyred by Akamai([EdgeSuite]55] and
other companies. Download services can also be implemessiad host-based multicast in a fashion
similar to peer-to-peer file sharing [12], [13]. What madtbere is bandwidth, i.e., low stress. Since we
assume the data transfer to take longer than a few secondg,ahel stretch are not important at all.

Conferencing

A video conference of a group of people, dispersed aroundgltiiee, is probably the most demanding
application for a multicast scheme. In contrast to stregmaii subscribers may also act as data sources.
It has been shown in [51] that delays of more than 200ms reintkmaction almost infeasible. Hence,
low stretch and low delay are of vital importance for thisvess. Jitter should be very low as well.
Since the distances among the group members are assumelig beetwork outages need to be taken
into account and high fault tolerance is necessary. Thdnetjbandwidth is large because every group
member needs to receive a video stream from every other nterfibas, a scheme with low stress is
more likely to provide enough netto throughput.

4.1.5 Weighting

Based on the above discussion of the application profileseweap an evaluation procedure as follows.
The goal is to get a rating between zero and ten for every sehath every application profile. Since
our heuristic estimations are not as reliable as resultsroflation experiments, we weighted them only
with a factor of three, while measured metrics are weightid seven:

IR
metrics heuristics

The weighting of the metrics and heuristics is laid out in & waat ensures that an ideal scheme gets
a total of one point for the metrics as well as the heuristhstually, it was planned to take the results

4.2. SIMULATION EXPERIMENTS 37

of the network layer multicast protocol PIM as benchmark, ieel did not have time to implement and
test this protocol. Therefore, we use an ideal value of onbdith the average stress; ..;, and stretch,
Kigeq:- The ideal value for the average overlay delBy,.,;, is the average of the unicast deldy,

To get the weighted value of, for instance, stretch for ariegjon profile where stretch is weighted
with a factor of 0.7, the following equation is used:

% Kideal
Kweighted =07 ——.
Komcpr

The weighting of the metrics and heuristics for all applimatprofiles is given in Table 4.1.

Table 4.1: Application profile weights of metrics and heuristics

Application | Messaging | Download| Streaming| Conferencing
Delay Stress Stress Delay

Key factors| (Reliability) (Jitter) Stress

(Jitter)

Metrics

Stress 1 0.8 0.3

Delay 0.7 0.5

Stretch 0.3 0.2 0.2

Heuristics

Simplicity 0.2 04 0.3 0.1

Scalability 0.8 0.6 0.7 0.9

4.2 Simulation Experiments

In this section, we specify the experiments we performedh witr overlay multicast scheme, OMCP.
The results and discussion are given in the next chapter.

4.2.1 Simulation Software

We based the implementation of our overlay multicast scheméeDiscrete Event Simulator OM-
NeT++. We have chosen this software over the stand®i¥l,2 [56], for the following reasons: OM-

NeT++ appears to be easier to learn and provides a cleaeefaice to the programmer. Additionally, it
is constantly improving and has a supportive user community

4.2.2 Network Topology

The simulation experiments are based onTransit-Stub Domaimodel, an abstract representation of
today’s Internet created using the topology gener@miTM [57] of the Georgia Institute of Technology,
available at [16].

We assume that there is no other traffic on the network. Toraodate for this assumption, we
added an artificial queueing delay in every router. Thusgtieue sizes of the routers vary over time
and influence end-to-end delays. All other properties ofriigvork are constant over the course of a
simulation run.

For our small-scale evaluation, we used only one topology.aFstatistically sound evaluation, one
would have to run the same experiments with many differgmbltmies until the means of all measure-
ments stabilize.

38 CHAPTER 4. MODEL AND EVALUATION METHOD
Backbone Network

The topology consists of 38 routers. The network comprigestdb domains and 6 transit domains. All
18 domains have an average of 3 interior routers. All routerge the same constant queueing delay,
i.e., the time they require to process a packet is assumed torstant and is the same for all routers.
The links of the backbone have a bit error rate of zero. Thaydebf the links are distributed randomly,
as well as the per-link capacity. They are chosen by GT-TIM iway that ensures that packets to
destinations in the same domain will take a route entirelpiwithe domain.

The queueing delay was determined by evaluating the raprtitires of three UDP packets sent to
every router along the routes from the network of the ETH @uto the following hosts:

Switzerland www.bluewin.ch [195.186.6.80] and www.nine.ch [193.5/38]

USA www.berkeley.edu [169.229.131.109], www.apple.com 112.8.11] and www.lycos.com
[213.140.50.210]

China www.shanghai.com [210.177.1.110]

Japan www.jal.co.jp [210.174.170.135]
This delivered the following results: The average numbenays per route was around 17 and the av-
erage roundtrip time was about 105ms. The roundtrip timarned by one hop was 10ms on average.
Thus, the queueing delay of a router seems to be approxiyries.

However, the average length of a path in our topology is omiyeps, which corresponds rather to
the European part of the Internet. To make the topology miangas to a a multicast group with some
members in other parts of the world, we set a higher queuestay ef 10ms.

For comparison: The one-year average roundtrip time of paakets sent from the ETH Zurich to
the web server of the Massachusetts Institute of Technafotie USA is 96.5ms, which is equivalent to
a unicast delay of 48.25ms. This value is quite constant itvecourse of a day. The average of twenty
ping packets sent every five minues is always below 100ms.

The delay incurred by the physical link does not play an irtgdrrole in our topology. It is
0.10294ms on average with a standard deviation of 0.047310.

End Systems

Every end system is connected to exactly one interior rapftarstub domain and there are no two end
systems connected to the same domain. The access links bavelaidth of 1LMBit/s and an error rate
of zero. The delays are distributed randomly. The multigastip consists of one source host and 10
subscribers.

4.2.3 Scenario

For the evaluation of OMCP according to the application pesfiwe used a very optimistic setting where
no nodes fail. Further, we have run many different scenavioare nodes fail with a certain probability
and within certain time intervals. We give a few informaluls of such settings in the next chapter.
In this section, we will first describe the most importantgmaeters and then specify the scenario we
used for the evaluation. All parameters of the simulationictviare not discussed here are explained in
Appendix C.

4.2. SIMULATION EXPERIMENTS 39

Activity of the End Systems

The end systems calculate the following points in time atigginning of a simulation run according to
a uniform distribution:

Join Probability P;,;, Probability, that a node will join the group.
Parameterd_j oi n_probability.

Join Time Tj,;, Time when a node begins to accept packets from other nodesiiates the
bootstrap process.
Interval: |t _j oi n_ti me_begi n,t_j oi n_ti me_end].

Leave Probability P..,. Probability, that a node will leave the group.
Parameterd_| eave_probability.

Leave TimeT,..,.. Time when a node initiates the leave routine and informseighbors about
its intention to leave the group. Interval._| eave_ti me_begin,t_| eave_ti me_end].

Death Probability P,..:, Probability, that a node will die.
Parameterd_sui ci de_probability.

Death Time Ty..;n, Time when a node fails entirely. It immediately stops segdind processing
any packets.
Interval: |t _sui ci de_ti me_begin,t_suici de_ti me_end].

The source host additionally takes the following three peizrs.

Data Start Time T qtasta¢ TimMe when the source host begins to send data.
Parametert _data_start

Data Stop TimeTjqq5t0p TiIMe when the source host stops sending data.
Parametert _dat a_end.

Data Interval Ty iarntervar TiMme between two data packets sent by the source host.
Parametert _data_i nterval .

Session

A session is the period of time when the data source is serthte packets. From the subscriber’s
point of view, this is an unsuitable definition and we use aarwecise one. There are three parameters
governing when a seesion begins and ends in the notion ofysteinss. During a session, all nodes are
expected to receive all data packets, otherwise packebtusss. Packets lost before or after the session
are not counted.

Setup DelayD,.,,,, Period of time during which a node is assumed to be in the psoogjoining
the multicast group and thus is not expected to receive datleeps.
Parametert _dat a_set up

Propagation Delay D,,opagation Delay between source and subscriber. This parameter istosed
calculate the sequence number of the first packet which dhmuteceived by a subscriber.
Parametert _dat a_propagat e

Packet loss is accounted using sequence numbers. The sounbers all data packets, starting at one.

Session Start

There are two cases which need to be distinguished. In thediss, the subscriber has joined the group at
leastDy.t.,,, Seconds befor&,.,s:q,+ and the first data packets are expect€tligl, siart + Dpropagation-
Thus, the first expected sequence number in this case is 1.

40 CHAPTER 4. MODEL AND EVALUATION METHOD

In the other case, however, the first data packets are expet®,;,, + Dsctup + Dpropagation- The
first expected sequence number is the first packet sent bptineesafterl’;,;,, + Detup @nd is calculated

as follows:
Tjoin + Dsetup - TdataStart

Tdata[nterval

Session End

Again, there are two cases to be distinguished. If the sillesctays in the group for at lead,.opagation
seconds after the source has stopped sending, data paeketspacted until'y,;o5:0p + Dpropagation
and the last expected sequence number is

TdataStop — propagation — TdataStart

Tdata[nterval

In the other case, data packets are expected Tiptil. and the last expected sequence number is

Tleave - Dpropagatz’cm - TdataStart

Tdata[nterval

In both cases, we allow all packets which are sent duringasiel,,; pqgation SECONS t0 get lost.

4.2.4 Key Parameters of the Scenario

In the following table, all parameters described above afmdd for the scenario we used for the evalu-
ation. Note, that the parametgrsui ci de_pr obabi I i ty is equal to zero and thus, hosts never fail.

Parameter | Value
t_join_time_begin[s] 0
t_join_time_end][s] 100
d_join_probability 1

t _| eave_ti me_begin [S] 600
t_leave_time_end[s] 700
d_| eave _probability 0.5
t_suicide_tinme_begin[s]| 100
t _suicide_time_end [S] 700
d_suicide_probability 0
t_data_start [S] 100
t _dat a_end [S] 500
t_data_i nterval [S] 0.1
t _data_setup [S] 50
t _data_propagat e [S] 0.5

4.2 5 Statistical Evaluation

As mentioned, we did only use one topology which was randagelyerated. To ensure a statistically
sound evaluation of OMCP within this topology, we have rua simulation with the same parameters
repeatedly until the mean of all measurements stabilized.

4.2. SIMULATION EXPERIMENTS 41

In order to estimate the stability of the values, we derivaih#ple yet effective procedure. We will
explain it for an example metric we call.
Run the simulation for a few timés & € [1, o0), and then do the following:

1. Calculate the mean df, X, of all k£ performed runs.

2. Calculate an error indicatdfy using the difference of},, the mean of all runs, anil;,_;, the
mean of all runs except the most recent, as follows:

_ | Xk —_Xk—l\

E
X X,

3. (a) If £, is less than a suitable maximal value:
i. Calculate the error indicator for the other metrics ueiher
A. The error indicators of all metrics have been calculateald.
B. An error indicator is greater than acceptable: Continith mextk runs.
(b) Else: Continue with next runs.

The results of the simulation experiments are summarizéfoeimext chapter.

Chapter 5

Results

In the first section, we present the results of the measursméthe three metrics stress, delay and stretch
and rate our overlay multicast scheme according to the @i profiles specified in the previous
chapter. In the second section of this chapter, we will disdhe obstacles we encountered during the
evaluation.

5.1 Application Profile Results

The key results of the simulation experiments are given ilel&.1. In the column labelled “Ideal”,
estimations about the ideal values that could be achievedieen. In the next column, the unweighted
results of OMCP are shown. In the column labelled “Indexg duotient of the ideal value and the value
of OMCP is given. This is the initial value that is then weigghiccording to the application profiles. The
weighted values are given in the application profile coluniiee number of runs we have performed is
400.

We have measured the following three metrics. A more detaiiscussion of them can be found in
the previous chapter.

Stress This metric measures the efficiency of the overlay multigmstocol. Stress is measured on
every physical link and is defined as the average number oficd copies of a data packet that travelled
this link during a session. The value given in the table isaverage over all physical link. For all links
that are used for data delivery, stress is 1 in the optimad,casd zero for all other links. An overlay
multicast protocol inherently has a higher overall stresddr if there are nodes which transmit data
packets to more than one other host.

Delay This is the average of the end-to-end delay from the souregdry receiver. The ideal value is
an estimation based on the measured unicast delay.

Stretch This metric measures the overhead incurred by the overldijaast protocol in terms of la-
tency. It is the average ratio of overlay data delivery delag unicast delay from the source to every
receiver.

42

5.2. DISCUSSION 43

Table 5.1: Results of the simulation experiments.

Application| Ideal | OMCP | Index | Messaging| Download| Streaming| Conferencing

Metrics

Stress 1.0 1.5896| 0.62909 0.6291 0.5033 0.1887
Delay [ms] | 61.886| 89.339| 0.6927 0.4849 0.3464
Stretch 1.0 1.4330| 0.69784| 0.2094 0.1396 0.1396
Heuristics

Simplicity 1.0 0.4 0.4 0.08 0.16 0.12 0.04
Scalability 1.0 0.3 0.3 0.24 0.18 0.21 0.27
Rating | 10 | | [582 | 542 | 549 | 5.65

5.1.1 Variation between Runs

The measured values of the means of stress, delay and sterield considerably between runs. As
explained in the previous chapter, we used an error inditatdecide when we had accumulated enough
run results. In Table 5.2, we give an example of how this d@ndicator varies for different numbers of
runs.

Table 5.2: Error indicator after different numbers of runs

Runs | 1 | 11 | 21 | 31 | 205

Stress | 1 0 0 0 0

Delay | O 0 0 0 0

Stretch| 0.18446| 0.0059306| 0.0038655| 0.0018952| 0.00053782

5.2 Discussion

The simulation experiments and the evaluation based orpiplecation profiles indicate that our overlay
multicast protocol is rather a general-purpose protocohat\an be seen is that it is better suited for
applications where delay matters, especially messagidgalso conferencing. When raw throughput
matters, OMCP is a little bit less suitable.

The stress factor is lower than what we had expected. Thag®ef the maximum of all runs is
5.6315, the average of the mean is 1.5896 and the standaedioexamong all physical links is 0.39696
on average. This means that about 66 percent of all links aateess factor of between 1 and 2.

The average stretch factor of 1.4330 is also quite good. mkans that the delay when using the data
delivery tree of OMCP is less than 50 percent higher than vehdimect unicast connection was used.
The maximal stretch value, however, is 5.6315, which ressdadt there are hosts which have almost a
500 percent increase of the delay. Fortunately, the stdraiuiation is only 0.68799 and thus almost 66
percent of all receivers have a stretch factor of 2 or less.

What was said about stretch applies to delay as well bectese two metrics are related. The
maximal delay was 222.56ms and the average was 89.339m#$ aWtandard deviation of 35.082,
most receivers have a delay below 125ms. Thus, videocordieig should be feasible with almost all
receivers. For comparison we give the unicast delays as Wall average unicast delay is 61.886ms and

44 CHAPTER 5. RESULTS

the maximum is 89.929ms. This indicates, that video confgng should be possible with all receivers
if a better multicast scheme is used.

What bears repeating is that we did not assume node fail@@sie qualitative results of scenarios
where this kind of incident is allowed to happen will be diseed in Section 5.2.1.

In addition to the very compact results in Table 5.1, we widlgent a few plots of a session. The source
host has address 0 and we will focus on three of the more stilegesubscribers, which are hosts 1, 9
and 10. Data transmission starts at 100 seconds and end3 s¢@d@nds.

Delay Samples

In OMCP, the unicast delay among all hosts is periodicallasueed usindgPing packets. Additionally,
we measure the overlay delay from the source to the recdiyeiimestamping the packets at the source
host and evaluating this timestamp at the subscriber. Bestithe latter measurements are shown in
Figure 5.1 over the course of a session. We eliminated atsHomm the plot for which the delay was
constant to make the figure more readable. Only after 275ssde the topology stable. An indication
that the mesh improvement mechanism of OMCP works is thatdlag is monotonically nonincreasing.

Stretch Samples

By taking the quotient of the measured overlay delay and teasured unicast delay, stretch can be
calculated easily. This quotient is shown in Figure 5.2 far $ame run and the same hosts as the delay
samples. These two plots only make sense together. Obyjdlslistretch of host 1 increases at around
130 seconds, then goes down twice, while during the samegéried, the delay of this host decreases
in three steps to about one half of the initial value.

This can be explained by the fact that the stretch factor lisutsied as the ratio of the overlay
delay and the unicast delay. Both these values are measuaetitees and the measurements are subject
to queueing delays at six routers on average. Since all sinttlays are measured about every nine
seconds, it can happen that the measured value of the udélagtdecreases and thus, stretch increases.
Host 10 experiences the same kind of stretch variabiligr lmt the session.

5.2. DISCUSSION 45

Figure 5.1: Delay samples of the three hosts. All other delays were anhduring the session. It can
be seen, that it takes about 275 seconds from the time wheefeghnode comes online until the overlay
topology becomes stable. This plot shows that ho changenti@sases the delay occurs and thus the
optimization seems to work.

90 T T T T T T
Delay Samples host[10] —+—
Delay Samples host[9]
Delay Samples host[1] ------
e
80 | _
x
h
70 | ; 1
o
60 § ‘ i
50 | 1
40 R
30 . -
100 200 300 400 500 600 700 800

Time [s]

Figure 5.2: Stretch samples of three hosts. This plot makes only sereseaompared to the delay plot
above. Interestingly, stretch increases in the curves sthband 10, even though the delay decreases at
the same time. This is caused by the fact that the unicasy edi&ch as a direct influence on the stretch
factor is measured bi?ing packets and if they are delayed in the queue of a router, theesurements

vary.

2.2 ¥
Tt I I I Stretch Samples hoslt[lO] —
Stretch Samples host[9]
Stretch Samples host[1] ------
2 .
=
18k -
Pl
HERETE
16 i
14 F 4
12 R
1 . A A A . "
100 200 300 400 500 600 700 800

Time [s]

46 CHAPTER 5. RESULTS

Data Delivery Tree

Every host maintains parents listof hosts which he receives data packets from actilren list of
hosts he sends or forwards data packets to. Figure 5.3 shewsitber of children of four hosts. Host
0 is the data source and therefore has the most children.

In Figure 5.4, the current tree parent for the same hostsoirsh (The source is omitted because
it does not have a parent for obvious reasons.) It can be be¢mlt nodes eventually become direct
children of the source host 0. At first, host 9 switches itepafrom 6 to the source. Thus, it becomes
more attractive for hosts 1 and 10. Host 10 also is at firstld cifiihost 6, but after host 9 has become a
direct child of the source, host 10 becomes a child of 9. Adteut 275 seconds, it then determines that
it is best to be a direct child of the source and switches todstH first switches from its parent 3 to 6,
but about one second later switches to host 9. About ten dedater, it also notices that it is best to be
a direct child of the source and switches to 0.

5.2. DISCUSSION

47

Figure 5.3: Number of data delivery tree children of four hosts. All sastcept leaves have children. In
this plot, it is indicated, how many children a hosts has dtercourse of a session. The source, host 0,
accumulates the most children, because the algorithmestrie minimize the delay between the source
and all receivers. Because the number of receivers is rathell, most of them have one child.

7 T

T T
Tree Children host[
Tree Children host|
Tree Children host[9

Tree Children host[10

0]
1]
|
]

300

400 500
Time [s]

600 700

800

Figure 5.4: Current parent host of three hosts. (Source is omitted.)hédits eventually become direct

children of the source. First of all, host 9 leaves its pardrist 6, and becomes a child of the source.
Then, host 10 determines, that host 9 has a better connetitire source and becomes its child. Host
1 switches from its initial parent, host 3, first to host 6 ahdri to host 9. But both, hosts 1 and 10, have

become direct children of the source after 275 seconds.

9 — T

T T
Current Tree Parent host[10] ———
Current Tree Parent host[9]
Current Tree Parent host[1]

100 200

300

400 500
Time [s]

600 700

800

48 CHAPTER 5. RESULTS

5.2.1 Node failures

In order to provide some insight in the behaviour of OMCP ia tase of node failures, we will now
present some plots of such a scenario. The parameters aanigeas specfified in the previous chapter,
except that the paramter sui ci de_probabi | i ty now has the valu®.5. The source host, however,
cannot die. Addionally, the_dat a_i nt erval now has the value 1, which means that the source only
emits one packet per second.

In Figure 5.5, the status of all nodes which die during theisesis shown. All nodes start in the
initial status2. When they start the joining procedure, their state iSnce a host has joined the mesh, its
status becomes When it leaves the group, it switches its status-tig but continues to forward packets
for some time. If, however, a node dies abrubtly, its statomes—2 and it stops processing packets
immediately.

It comes as no surprise that node failures lead to packet $ysse the source host sends one packet
per second, the duration of the offline status of a host catitirbe determined from the plot in Figure
5.6. Host 6 misses packets twice, first when host 1 dies, amdabain when host 4 stops operating. All
hosts which are not shown in this plot do not miss any datagiacklhe packet loss is only detected
when a host receives the first packet after a down time. Towexrefhe death of a host and the resulting
indication of packets loss do not coincide exactly.

Whenever a nodes dies which had children, they perceiveepéass. This happens first to hosts 6
and 10 because their parent, host 9, dies. Later, when noas 1hibst 6 misses packets again. When
nodes 4 and 8 die at about 440 seconds, hosts 5 and, once 10siré,rhiss packets.

5.2.2 Obstacles

We were unable to perform all the simulation experiments act lanned due to the very limited time-
frame of a semester project. For this reason, we only hawetsesf one specific topology with one
particular set of parameters. We suspect that the perfarenaihour scheme could be improved consid-
erably with the appropriate parameters. The parametersawe Used in our simulation runs were mere
estimations of reasonable initial values.

Missing Information There is currently no freely accessible data about thetiétiaof Internet back-
bone routers and links. Internet service providers (ISRsjldvbe the natural source of such information,
but it is just as natural for them to be unwilling to “admit’attheir network infrastructure is not infalli-
ble.

Topological Limitations Due to time constraints we could only evaluate one netwgokltmy. Thus,
our results are far from representative. What's more, theltmy we used is much too small to deliver
results that can be applied to the Internet.

5.2. DISCUSSION 49

Figure 5.5: Status of six hosts which die during the session. Statiaes 1 indicate that the node has
not yet joined or is in the process of joining, respectivedyatusO indicates a fully operational group
member. Statusesl and —2 indicate a leaving and a dead host, respectively.

2 e
: I I I I I Nod(la Status hostl[l] —
Node Status host[2]
: Node Status host[4] ------
15 Node Status host[7] @ -
: Node Status host[8]
Node Status host[9]
1 p i
05 | E
O pok - R
05 § -
-1 -
15 E
_2 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800

Time [s]

Figure 5.6: Number of packets missed at three hosts. As indicated bybiheegplot, four hosts die.
When host 9 dies at = 303s, both host 6 and 10 miss 16 packets. Caused by the death oflnode
host 6 misses packets againtat= 312s. At aboutt = 440s, when both node 4 and 8 die, hosts 5
and—again—host 6 miss packets.

50
I I I I IData PacketsI Missed hostl[5] —
Data Packets Missed host[6]

Data Packets Missed host[10] ------
40 g
30 | 1
20 | R
B A - ——HAKh L
10 b .

0 1 1 1 \j/ 1 1 1 1

0 100 200 300 400 500 600 700 800
Time [s]

Chapter 6

Conclusion

We designed an overlay multicast scheme basddayada,and implemented it in the network simulator
OMNeT *. With this simulator, we have conducted a sufficient numtfetuns to be able to gather
statistically sound values for stretch, delay and stresmeftopology and with one set of parameters.

A lot of work could not be done because our time budget was hWeniyed. The behaviour of our
scheme under conditions where nodes, routers or linkcfauld not be analyzed. However, from a few
test runs, it appears that our schemaassuitable for scenarios where node failures are likely bseeau
packet loss in this kind of event is too high for most multicagplications, even for fault-tolerant ones
like media streaming.

6.1 Further Research

One of the key problems of our scheme is its missing res#ieagainst node failures. As a possible
counter measure, we suggest multi-path routing. Additigniawould be necessary to add a mechanism
which allows to immediately detect when a nodes loses itsrgan the data delivery tree.

Instead of flooding the network with dedicated probe pact@®tseasure the performance of links,
ordinary control packets could be used for this purposes Waiuld allow a more continuous monitoring
of the performance of the underlying network at no additi@ost.

The current version of our scheme uses a lot of very smallrgbpaickets. This could be avoided
by simply concatenating the payload of these packets iggdni“summary” packets. Furthermore, data
packets could be used to deliver control information as.well

With the extensions sketched above, our scheme might ber lseiited for real world scenarios. It
would be very interesting to analyze, how resilient it isiagathe kinds of failures that occur in the
Internet in a large-scale evaluation.

50

Appendix A

Conceptual Formulation

On pages 52 to 59, the complete conceptual formulation engi¥A review of the project goals reached
and not reached follows in appendix B on page 60.

51

52 APPENDIXA. CONCEPTUAL FORMULATION

' ' ‘ Institut fiir Technische Informatik und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Aufgabenstellung
von der Semesterarbeit
fiir

Hr. Simon Heimlicher

“Evaluation of Routing Schemes for Group Communication in Packet
Switched Networks"

Aufgabenstellung: Kostas Katrinis
Beginn der Arbeit: 04.11.2002
Abgabetermin: 15.02.2003

Betreuung: Kostas Katrinis - Prof. Bernhard Plattner

m Eidgendssische Technische Hochschule Zirich Ecole polytechnique fédérale de Zurich
Swiss Federal Institute of Technology Zurich Politecnico federale di Zurigo

1. Introduction

The establishment and wide deployment of numerous emerging applications - like video
conferencing, computer-supported collaborative work and network games - depend largely on the
availability of a dependable and efficient group communication transport service. Focusing on
packet based networks and particularly on the Internet Protocol (IP) as the network layer protocol,
group communication is supported by native 1P multicast [1]. The latter defines group specific
addressing and is accompanied by membership IGMP - Internet Group Management Protocol)
and routing protocols (e.g. DVMRP - Distance Vector Multicast Routing Protocol [2]). A wide
area testbed called "Multicast Backbone" (MBone) was developed by academic and research
affiliators to study IP multicast. MBONE is comprising of geographically dispersed multicast
"islands" interconnected with dedicated static unicast tunnels.

Despite the efforts of the networking community, IP multicast is still lacking of wide
deployment in the Internet. Possible reasons accounting for this are the inefficiency of inter-
domain multicast routing, the non-incremental deployment model, the lack of pricing schemes
and the lack of a reliable delivery service and congestion control among others [3]. In an effort to
alleviate this problematic situation and yet to enable emergent applications, researchers have
come up with alternative ways of realizing group communication in non multicast-capable IP

networks: host-based multicast and replicator-based (or reflector-based) multicast.!

2. Conceptual Formulation

2.1 A Primer on Overlay Multicast

Host-based multicast ([4],[5]) tries to harness the bandwidth and processing capacity of
endsystems to construct distribution overlays. Every node of the overlay can be at the same time
both a switching and a sink entity, i.e. a node both forwards packets to its neighbours (in the
overlay) and also consumes the received packets (e.g. renders a video stream to the user residing
at the endsystem). Figure 1 shows an instance of a multicast overlay consisting of 5 nodes and
with node A being currently the source of the distributed packets. Distribution of streams takes
place in this overlay as following: A is aware that C is his neighbour in the overlay. As such, it
forwards all the packets to C and relies on C to populate the distribution to the other nodes.
Subsequently C forwards the packets to its two neighbours, namely B and D and the packet
distribution continues in the tree until all the leaf nodes have been reached. The weights assigned
to each point-to-point between every two nodes corrersponds to the delay between the nodes it is
connecting. Note that a link in this figure is an end-to-end link between two endsystems and
comprises normally of a path of several physical links. To elaborate more on this, we present in
Figure 2 the same overlay in network layer granularity. For instance, the end-to-end link between
nodes C and D consisting of a path of three physical links (C-R3, R3-Ry, R4-D) is presented at the

network layer. Note that the involved routers are not aware of a multicast transport service, they
just provide for unicast connections between the participating end systems. On the contrary, in the
native multicast case the routers form a multicast tree that connects all the nodes among the
communicating group (Figure 3). Switching is in this scheme performed only by routers and
multicast transport is completely transparent to the end systems.

"'In the bibliography numerous terms are used, as for instance "application layer multicast" or "overlay mul-
ticast". For clarity reasons we use the term "host-based" to refer to schemes, where end systems have also
switching functionality and the term "replicator-based" to refer to schemes that use only special purpose ma-
chines (replicators) to realize multicast and not end systems. Note that both paradigms shall be categorized
under application layer multicast schemes. Li et al. prefer the terminology "fixed nodes" and "dynamic
nodes" overlays with a similar semantic.

53

54 APPENDIXA. CONCEPTUAL FORMULATION

Figure 1 - Application Layer Overlay

Figure 2 - The overlay of Figure 1 in network layer granularity

Figure 3 - Communication among the same node group using native IP multicast transport

Intuitively, any routing overlay realized on the application layer is not as efficient as a scheme
fullfilling the same goals implemented on the network layer. This should become clear if one
compares the native multicast scheme presented in Figure 3 with the overlay alternative of Figures
1 and 2 against routing efficiency.

First, it is straightforward that routing delays are higher in the overlay case. For instance, the
delay experienced by each packet sent by the source A to node E is 14 in the overlay scheme,
whereas [P multicast reduces it to 10 (we even act here optimistically and assume that the
endpoints have the same forwarding delays with the routers). Generally, we consider the IP
multicast scheme as the optimum and evaluate the delay efficiency of the application layer
overlay using a metric called Relative Delay Penalty (RDP):

d,, (v, w))
|V|-RDP= X———— for every node v,w in V
d(v, w)

, where d,, (v,w) is the delay between end systems v and w in the overlay (we assume symmetric

delays on the links), d(v,w) is the delay between the end systems v and w when IP unicast to
connect them is used (lower bound) and V is the set of all end systems (group members) in the
group. It is straightforward that RDP will be always greater than 1 and that overlays with RDP
values closer to 1 will be more efficient with respect to delay.

Furthermore overlay multicast schemes pose extra load on the network. This lies on the fact
that data packets need often cross a single link multiple times. Consider for example in the overlay
fn Figure 2 the route of a packet from A to E: the packet first reaches D and then is forwarded by
D to E. This has the side-effect that the link between node D and router R, is crossed twice by the

same data packet. Again the optimum here is native IP multicast, where every data packet crosses
every link only once en route to any of the destination end systems. We define a metric called
stress S to quantify the load that an overlay multicast scheme poses on the network:

S = Zse for every link e in E

, where s, the times that link e is crossed by a single data packet on the overlay and E is the set of

links used by the overlay. The stress S is lower bounded by the number |El of links. Obviously one
wants to design overlays with low stress.

Similarly to delay overhead and network load, one can define metrics to quantify the efficiency
of an overlay with respect to further parameters:

* end-to-end bandwidth between every two nodes on the overlay

* node load bound: this aspect refers to the maximum number of neighbours that each node is
allowed to have in the overlay. Clearly, allowing an unbounded number of neighbours for
each node maximizes the topology alternatives, but at the same time it raises fairness issues;
nodes with large number of neighbours (high degree nodes) would carry much more load
than nodes with low number of neighbours (low degree nodes).

* fault tolerance: an application could for instance require 2-fault-tolerant overlays, i.e.
overlays where connectivity is guaranteed at single node failures. For this purpose it is
critical to deduce a failure model for such overlays and use it to design overlays that match
application requirements.

* scalability across several dimensions apart from number of nodes (group size), like number
of groups and group density (geographical dispersion of nodes). To exemplify this in the case
of IP multicast, Distance Vector Multicast Routing Protocol (DVMRP) is not appropriate for
sparse groups (large geographical dispersion of nodes) in terms of network resource
utilization and network overhead. This lead to the development of multicast routing protocols
targeted at sparse groups (PIM-SM).

* fairness issues should also be considered, if one wants to achieve a wide deployment of such
protocols. For example, many existing approaches measure the average delay between any
two nodes in an overlay, but they do not proceed to measure the standard deviation of the
delay samples. As such, it is not obvious, whether nodes suffering from considerable delay
exist in the overlay. Typical parameters that need to be optimized here are placing load to

55

56 APPENDIXA. CONCEPTUAL FORMULATION

nodes proportionally to their capabilities and achieving equal performance gains (like delay
from source) on every node in the overlay.

Apart from the quantitative evaluation one can compare the existing scheme categories
according to qualitative criteria. Maturity and ease of deployment (incremental for example) are
two critical points governing establishment, as well as existence of pricing models. Furthermore
specific applications require provision of vertical services to a group communication scheme, like
reliable transport and congestion control. Last but not least maintaining secure communications
would prove also necessary for specif application domains.

Until now we have not touched on replicator-based multicast schemes. Likewise to the host-
based case, these are overlays realized on the application-layer. However, in addition to ordinary
end systems, they deploy special purpose application-layer elements called replicators. As the
term conveys, a replicator is a forwarding entity: it forwards to all its neighbours the packets it
receives from another neighbour. Ultimately, every node has a replicator as its parent and routing
is performed among replicators, i.e. transparently to the end systems. An instance of a replicator-
based group communication scheme is shown in Figure 4. Of course one could derive hybrid
models, where replicators are used for clustering nodes and routing among clusters and host-based
multicast is utilised for intra-cluster routing. A similar problematic with host-based multicast
appears also in the replicator-based schemes, with slight differences however. For instance, we
expect a more stable failure model, due to the fact that replicators have far more larger online time
and failure rate compared to ordinary end systems in the host-based scheme. On the other hand,
we face the problem of the calculation of the optimal number of replicators and their optimal
placement into the network. Existing experimental schemes of this type are Scattercast [6] amd
Akamai’s EdgeSuite Streaming [7].

Figure 4 - Instance of a replicator-based application-layer overlay. In this snaphsot a single
replicator serves all hosts of a particular domain, whereas the replicators organize
themselves into an overlay according to a given routing protocol.

2.2 Thesis Objectives

As the title conveys the goal of the present thesis is the evaluation of existing approaches for
realizing group communication in the Internet. Departing from the common truth that the Internet
is still lacking a globally available multicast service, we arrive at the following question:

"" What is the most efficient multicast service for wide deployment in the existing Internet
among the existing alternatives?''

We have already shortly reviewed the prominent alternatives, namely IP multicast, host-based-
and replicator-based application-layer multicast. The objective is to choose one existing protocol
representative for each category and evaluate them against each other according to well defined
criteria. It should be noted here that we will not limit the evaluation to comparison of measured
primitive performance parameters (like RDP and stress). We will proceed to estimate the
suitability of each scheme for specific application domains. To achieve this, we will define first
application profiles and then assign weights to every performance parameter for each profile. For
instance, a real-time application profile will have a high delay weight and a high network load
weight. In this manner we will derive a general score for each scheme and be able to assess the
appropriateness of it for a particular applilcation domain. This final step will test the hypothesis
that no single multicast scheme is the most efficient for any target application (considering of
course accompanying costs).

3. Procedure

Herein we present a draft set of steps towards achieving the thesis objectives:

1. Studying of the literature recommended by the advisor. Please note that the list of references
given in the last chapter is not exhaustive for the purpose of this thesis.

2. Selection of the multicast schemes that will be put under study. The selection criteria will
be obviously qualitative in this step, however they shall be acceptably justified.

3. Discussion of the evaluation parameters and creation of the application profiles. Here it
should also be decided, which parameters will be measured using simulation and which will
be qualitatively estimated.

4. Studying of the OMNET++ simulator.

5. Implementation of the chosen protocols in the OMNET++ environment and measurement
of the parameters of interest.

6. Processing of the results and derivation of conclusions.
The student may feel free to propose his own approach on the accomplishment of the thesis

tasks. It is highly recommended to work on the documentation in parallel with the treatment of
each task.

57

58 APPENDIXA. CONCEPTUAL FORMULATION

4. Important Remarks

* The OMNET++ network simulator [8] shall be used for any simulation-mediated evalua-
tion of the schemes under study. During the working plan creation, the student should not
underestimate the learning cycle time of the tool. The selection of the schemes put under
study may be conditioned on the existence of available OMNET++ simulation source, as
far as they are representative of the multicast paradigm they implement.

* A timeplan for the realization of the semester thesis should be made by the end of the first
week and discussed with the supervisor.

* By the end of the thesis you should compose a written report in the form of documentation
of the thesis. All abbreviations and not widely established terms must be clearly defined and
all assumptions made must be clearly stated.

* The thesis may abstractly be layered into the following seven parts: Introduction, Back-
ground Information (including aims and goals), Schemes under study, Evaluation (Methods
and Models), Results, Conclusion, References.

* By the end of the second month a short intermediate report should be composed and
reviewed during a meeting of the student with the supervisors. The intermediate report
should list the already achieved tasks and the tasks that are foreseen to have been accom-
plished by the end of the thesis. The intermediate report should comply with a structural
design of the final report (in a bulleted form).

* An ordinary weekly meeting must shall take place between the student and his supervisor
to review the progress of the work and to discuss possible problems and advancement deci-
sions. It is important for the student fo prepare himself for the meeting in advance. The
student may feel free to communicate more frequently with its supervisor via alternative
means (e-mail, telephone). Especially vital is the daily reading of e-mails.

5. Thesis Results

A fifteen minutes presentation of the thesis results should be given in the TIK Institute. The exact
date of the presentation will be specified late in the semester. Apart from this presentation, the
following documents should be handed in on thesis completion:

* A detailed technical report ("Bericht") in english. The following topics should be thor-
oughly addressed in this report: a description of the investigated research area, a detailed
survey of the examined multicast alternatives, a listing of the criteria according to which the
schemes have been evaluated and a precise specification of the methods and models used
for the evaluation. The results shall be visualized using graphs/tables and conclusions shall
be drawn out of them, applied only in the scope of the assumptions made and using only
logical reasoning. Finally the report may include a listing of the solved and unsolved prob-
lems (together with the reasons why they haven’t been solved) and should contain refer-
ences to literature, table of contents/figures/tables and potential appendices (glossary,
programming code, state diagrams, protocol descriptions etc.). The report should end up
with an evaluation of how far the initial tasks of the thesis have been achieved and whether
the initial timeplan was fulfilled. Four copies of the final report should be handed in, all in
paperback form and double sided printed.

* An abstract in both german and english, 1-2 pages long. This should contain a quick over-
view of the performed work. The structure of the abstract should be in the form: (1) Intro-
duction, (2) Aims & Goals, (3) Results, (4) Open Issues.

* An electronic version of the technical report as well as of all the produced documents

(code documentation, models etc.). Figures contained in the final report have to be addit-
tionaly stored as independent data in a custom-selected format (ex. EPS). The material in
electronic form should be either stored on a CD or in a separate directory on an institute’s
server (accounts should then be created for the students).

* Referenced and processed literature, whether in electronic or printed form.

* A handbook of the implemented system that should contain: system overview, description
of the implementation (structure), documentation on data structures and description of test
programms. Moreover installation guidelines and potential hardware/software require-
ments should be included.

* The complete source code of the system and of the test codes, together with all the neces-
sary libraries/APIs/external programs. Respectively for the system executables and the test
programs.

6. Bibliographical References

[1] Wittmann R. , M. Zitterbart, "Multicast Communication: Protocols, Programming, and

Applications”, Morgan Kaufmann, 2000.

[2] Waitzman D., C. Partridge and S. Deering, "Distance Vector Multicast Routing Protocol",

[3]

[4]

[5]

[6]

[7]
[8]

RFC 1075, Internet Engineering Task Force, 1988.

Almeroth K.C., "The evolution of multicast: from the MBone to interdomain multicast to
Internet2 deployment”, Network, IEEE, 2000. Vol. 14 Iss. 1: p. 10-20.

Chu Yang-hua, Sanjay G. Rao, and Hui Zhang, "A Case for End System Multicast", ACM
SIGMETRICS International Conference on Measurement and Modeling of Computer
Systems, 2000.

Pendarakis D., S. Shi, D. Verma, M. Waldvogel, " ALMI: An Application Level Multicast
Infrastructure”, 3rd USENIX Symposium on Internet Technologies and Systems, 2000.

Chawathe,Y.D., "Scattercast: An Architecture for Internet Broadcast Distribution as an
Infrastructure Service", PhD Dissertation, University of California at Berkeley, 2000,
California.

EdgeSuite Streaming, Akamai, http://www.akamai.com

OMNET++ Discrete Event Simulator, http://www.omnetpp.org

59

Appendix B

Review

From the initial plan, to implement two overlay multicashemes and compare them to a native multicast
scheme, about one third—the implementation and evaluatiane overlay multicast scheme—was

achieved. However, the performance of this custom scherpeaap to be far better compared to the
original scheme it has been derived from.

The lessons to be learnt in this kind of semester project are:

1. Effectively find and study related work.

2. Develop sound criteria to classify related work and éxgssolutions and select the most represen-
tative of them.

3. Design a procedure to perform a fair, reproducible andpretrensive comparison of a set of solu-
tions.

. Usage of a network simulator.
. Implementation of a distributed algorithm, i.e. a ma#itprotocol running on several nodes.
. Select parameters of interest and develop the facititi@seasure them accurately.

N o 0o A~

. Process huge amounts of data and derive statisticallydscanclusions if possible.

Even though only one protocol could be implemented anddete above—and a lot more—has been
learnt thoroughly.

One of the key learnings is the importance of implementation in the words of somebody who
obviously has learnt this lesson long ago:

We reject: kings, presidents, and voting.
We believe in: rough consensus and running code.

Dave Clark, IETF

60

Appendix C

OMCP Implementation

In this chapter we will first specify all simulation paranmstef our overlay multicast scheme OMCP and
then present a few excerpts from the source code of the ingpl&tion in OMNeT +.

C.1 Simulation Parameters

There are a great number of parameters governing the penfmerof OMCP. With most of them, there
is a trade-off between efficiency and speed as well as nesdiagainst node failures. In general, to make
the protocol faster and more adaptable to changes in thasoemore control traffic is necessary.

The numerical values of the parameters in the followingviste determined by hand and are in no
way proven to be sound by simulation experiments.

The first character of a parameter name indicates its type.

e t_... are time parameters and can be specified either in secondihothe OMNeT + time
notation as followsns for nanosecondsys for microsecondsys for milliseconds,s for seconds,
mfor minutesh for hours andi for days.

e d_... are double parameters, mostly probabilities.

e n_... areinteger parameters, mostly numbers of items.

C.1.1 Join, Leave And Death Events

e t _duration = 1000s: Duration of one simulation run.

doubl e_j oi n_probabil ity = 1.0: Probability that a node will join the group.
et join_time_begin = 10,

e t_join_time_end = 100: Beginning and end of the interval within which a node that Hater-
mined that it will join the group sends its initial join recgi¢o the other group members. The exact
join time is calculated randomly according to a uniform listtion.

e doubl e_| eave_probability = 0.5: Probability that a node will leave the group at some point in
time.

e t | eave_tinme_begin = 600,

61

62 APPENDIX C. OMCP IMPLEMENTATION

e t_|leave_time_end = 700: Beginning and end of the interval within which a node that Hater-
mined that it will leave the group starts the leave proceduree exact leave time is calculated
randomly according to a uniform distribution.

doubl e_sui ci de_probabi l ity = 0.0: Probability that a node will fail abruptly at some point in
time.

e t suicide_tine_begin = 100,

e t_suicide_time_end = 700: Beginning and end of the interval within which a node thas ha
determined that it will suffer of an abrubt node failure diekhe exact death time is calculated
randomly according to a uniform distribution.

bool _al i ve = true: With this parameter, a node can be defined to be dead fronetijiaring by
setting it equal ta al se.

C.1.2 Bootstrap Process

e n_boot strap_nodes_known = 3: Number of other group members a hode knows when bootstrap-
ping the protocol. They are chosen randomly according toimm distribution from all valid
group member addresses. This set might contain nodes vdiicbrjly after this node or which are
already dead or which will never be alive.

e n_bootstrap_nodes = 2. Number of nodes that will actually be contacted in the bwagspro-
cess. They are chosen randomly according to a uniform lalision from the above set of candi-
dates.

e t_bootstrap_tinmeout = 10s: Time to wait for successful connection with the group befor
restarting the bootstrap process with a new selection frmtandidates set.

C.1.3 Refresh Mechanism

e t_refresh_interval = 500ns: Interval between dissemination of refresh messages.
e n_refresh_size = 100: Maximal number of nodes contained in a refresh message.

e t_refresh_timeout = 2s: Time to wait for the next refresh message of a mesh neighéfurd
sending probe messages to check its status.

C.1.4 Routing Protocol
e t_routing_latency_initial = 1s: Initial latency of newly detected routes which have notrbee
evaluated using ping packets yet.
e t_routing_update_interval = 2s: Interval between dissemination of routing update message
e t_routing_update_del ay = 200nms: Minimal time between triggered routing updates.
e t _routing_lifespan = 15s: Lifespan of routing information.

e t_routing_poison = 100s: Poison to add to routes which have expired or which passbhyota
dead nodes.

e n_routing_update_size = 50: Maximal number of route entries in a routing update packet.

e n_routing_update_path_size = 20: Maximal length of a path in a routing update packet.

C.1

SIMULATION PARAMETERS 63

C.1.5 Latency Measurement

t_initial_ping_delay = 2s: Timeframe within which a ping is sent to a newly detectedugro
member. The exact point of time is calculated randomly tadaflooding this new member with
pings.

t_ping_interval = 5s: Interval between evaluating a link.

t_ping_timeout = 1s: Timeout of a ping packet.

C.1.6 Data Source Characteristics

adr_t_data_source = 0: Address of the data source.

t _data_start = 100s: Time at which the data source starts to send data packets.
t_data_interval = 10ms: Interval between data packets.

n_data_max = 1000000: Maximal number of data packets to send.

C.1.7 Mesh Improvement Mechanism

n_mesh_nei ghbors_mi n = 4: Absolute minimal number of mesh links a node should have.
n_mesh_nei ghbors_max = 6: Maximal number of mesh links a hode should have.
t _mesh_eval _interval = 5s: Interval between evaluating the mesh.

t _mesh_eval _wait = 10s: Time to wait before re-evaluating the mesh after a link reenbadded
or dropped.

t _mesh_link_graceperiod = 10s: Minimal time to wait before considering dropping a fresikli

t _mesh_link_vacation_tinmeout = 10s: Time to wait before potentially dropping a mesh link
after the announcment that it should be vacated.

t _mesh_link_drop_timeout = 60s: Time to wait before re-enabling a mesh link after the an-
nouncement that it should be vacated.

d_nesh_eval _target = 0.5: Target area in the range between minimal and maximal nuwiber
mesh links.

d_nmesh_eval _utility_mn = 0.5: Minimal utility of a link to be added.
d_nmesh_eval _cost _max = 5. 0: Maximal cost of a link to be dropped.
d_nesh_eval _current _| atency_nin = 0.002: Minimal latency of a link to be dropped.

d_nesh_eval _current _| atency_divider = 10: Divider to calculate the minimal latency of a
link to be dropped.

t _member _info_lifespan = 10s: Lifespan of information about group members which is rele-
vant for dropping links.

C.1.8 Mesh Repair Mechanism

t _repair_interval = 5s: Interval between running the mesh repair process.

t _stale_max = 30s: Time to wait before a stale nodes becomes a zombie node.

t _zombi e_timeout = 60s: Time to wait before eliminating the member record of a zamnimde.
t _probe_timeout = 500ns: Timeout of a probe packet.

n_probes = 2: Number of probes to send to stale nodes.

10

20

30

64 APPENDIX C. OMCP IMPLEMENTATION

C.1.9 Tree Transient Data Forwarding Characteristics

e t _tree_branch_transient_send = 30s: Time to continue forwarding data packets to former tree
children.

e t _tree branch_transient_receive = 60s: Time to accept data packets from a former tree par-
ent.

C.2 Excerpts from the OMCP Source Code

C.2.1 OMCP Node Class
C.2.2 Member Record Class Header File

This is the header file of the member records of OMCP nodesyE¥®ICP node keeps such a member
record for all currently online group members. It is used twres information about the status of a
member, about the overlay link to it and about its routindetal@ he latter is used to improve the mesh
as well as for the construction of the data delivery tree.

/I File name: MemberRecord.h

/x Models record of a group member. According to the specibeati

« of Narada, the record must contain the address,the last esecp

* number seen by this address and the timestamp of the last seq.
x number. In OMC, there are a few other things to be kept in a

* member record.

*/

#ifndef MEMBERRECORD_DECL
#define MEMBERRECORD_DECL

#include <vector>

#include "csimul.h"

#include " esmdefinitions . h"

#include "routingTable .h"

#include "RefreshTimeout_m.h"
#include "ZombieTimeout_m.h"
#include "ProbeTimeout_m.h"

#include "PingTimeout_m.h"

#include "RoutingRequestTimeout_m.h"
#include "MeshLinkVacationTimeout_m.h"
#include "MeshLinkDropTimeout_m.h"

using namespacestd;

class MemberRecord
{
/I member fields
private :
int memberAddress;
int status ;

/x Mesh dynamics
*/

40

50

60

70

80

90

C.2. EXCERPTS FROM THE OMCP SOURCE CODE

/I Status of this mesh link

int meshLinkStatus;
MeshLinkVacationTimeoutmeshLinkVacationTimeoutPtr;
MeshLinkDropTimeout meshLinkDropTimeoutPtr;

/I Timestamp when adding a mesh link to this node

/I was last evaluated

simtime_t meshLinkEvaluatedTimestamp;

/I Timestamp when the measured latency was last updated
simtime_t latencyTimestamp;

/I Timestamp when this node was added to the mesh.

/I If zero, then there currently exists no link to it
simtime_t meshLinkAddedTimestamp;

/I Timestamp when this node was dropped from the mesh
/I If zero, then there never wasa link.

simtime_t meshLinkDroppedTimestamp;

/I Timestamp when this node was added to the tree as a child.
/I If zero, then there currently exists no link to it
simtime_t treeChildAddedTimestamp;

/I Timestamp when this node was dropped from the tree.

/I If zero, then there never wasa link.

simtime_t treeChildDroppedTimestamp;

/I Timestamp when this node was added to the tree as a parent.
/I If zero, then there currently exists no link to it

simtime_t treeParentAddedTimestamp;

/I Timestamp when this node was dropped from the tree.

/I If zero, then there never wasa link.

simtime_t treeParentDroppedTimestamp;

double linkUtility ;

int linkCost;
[Tree
*/

/I Timestamp when this node was added to the tree.

/I If zero, then there currently exists no branch to it
simtime_t treeBranchAddedTimestamp;

/I Timestamp when this node was dropped from the mesh
/I If zero, then there never was a branch.

simtime_t treeBranchDroppedTimestamp;

I+ Refresh

*/

/I Sequence number sent in last refresh message
int lastRefreshSeqNumber;

RefreshTimeout refreshTimeoutPtr ;

/+ Routing

*/

/I Pointer to track RoutingRequestTimeout message
RoutingRequestTimeoutoutingRequestTimeoutPtr;

/I Member’s routing table from RoutingUpdate messages
/I Used for construction of the data delivery tree
RoutingTable routingTable ;

65

100

110

120

130

140

66

APPENDIX C. OMCP IMPLEMENTATION

/I Sequence number sent in last routing update message

int lastRoutingSegNumber;

/I Timestamp when routing information of this node was laptiated
simtime_t routingTimestamp;

/+ Probing

*/

/I Sequence numbesent in last probe reply to this member

int lastSentProbeSeqNumber;

/I Sequence numbereceived: in last probe reply from this member
int lastReceivedProbeSeqNumber;

/I Pointer to track ProbeTimeout message

ProbeTimeout probeTimeoutPtr;

/I Counter to track how many probes have been sent to this eremb
int probeCount;

/I Timestamp when last probe to this node was sent

simtime_t probeTimestamp;

ZombieTimeoutzombieTimeoutPtr;

/% Pinging

*/

/I Pointer to track PingTimeout message

PingTimeout pingTimeoutPtr;

/I Sequence numbesent: in last ping reply to this member
int lastSentPingSeqNumber;

/I Sequence numbereceived: in last ping reply from this member
int lastReceivedPingSegNumber;

/I Timestamp when last ping to this node was sent
simtime_t pingTimestamp;

/I Latency local node to this member (from probe cycle)
simtime_t latency;

/I Member’s routing table from PingReply messages

/I Used for evaluation of utility of adding a mesh link
/I and cost of dropping a mesh link

RoutingTable meshRoutingTable;

/I Refresh cycle timestamp
simtime_t refreshTimestamp;

public:

/I constructor
MemberRecordft,int,simtime_t, simtime_t) ;

/I destructor
~MemberRecord();

/I operator =
void operator=(const MemberRecord &);

/x access methods
*/

int getAddress()const;

C.2. EXCERPTS FROM THE OMCP SOURCE CODE

int getStatus ()const;
150 void setStatusifit);

int getMeshLinkStatus(xonst;
void setMeshLinkStatusit);

MeshLinkVacationTimeoutgetMeshLinkVacationTimeoutPtr€pnst
void setMeshLinkVacationTimeoutPtr(MeshLinkVacationTimg9;
MeshLinkDropTimeout getMeshLinkDropTimeoutPtrQonst

void setMeshLinkDropTimeoutPtr(MeshLinkDropTimee)t

160 simtime_t getMeshLinkEvaluatedTimestanguhst
void setMeshLinkEvaluatedTimestamp(simtime_t);

simtime_t getMeshLinkAddedTimestamp@nst
void setMeshLinkAddedTimestamp(simtime_t);

simtime_t getMeshLinkDroppedTimestamp@nst
void setMeshLinkDroppedTimestamp(simtime_t);

simtime_t getTreeChildAddedTimestampfnst
170 void setTreeChildAddedTimestamp(simtime_t);

simtime_t getTreeChildDroppedTimestampnst;
void setTreeChildDroppedTimestamp(simtime_t);

simtime_t getTreeParentAddedTimestanga(st,
void setTreeParentAddedTimestamp(simtime_t);

simtime_t getTreeParentDroppedTimestanepf)st;

void setTreeParentDroppedTimestamp(simtime_t);
180

int getRefreshSeqNum¢pnst

void setRefreshSeqNuing);

int getRoutingSegNum@onst,
void setRoutingSeqNurir(t);

int getSentPingSegNum¢pnst,
int getNextSentPingSeqNum();
void setSentPingSegNum();

190
int getReceivedPingSeqgNungpnst
int getNextReceivedPingSegNum();
void setReceivedPingSeqNuimi);

int getSentProbeSeqgNungdnst
int getNextSentProbeSeqNum();
void setSentProbeSeqNuimy);

int getReceivedProbeSegNunafnst
200 int getNextReceivedProbeSeqgNum();
void setReceivedProbeSeqNumnj;

simtime_t getRefreshTimestampgpnst;

210

220

230

240

250

68

APPENDIX C

void setRefreshTimestamp(simtime_t);

adr_t getNextHop(konst;
void setNextHop(adr_t);

int getNumberOfMeshRoutesgpnst

int getNumberOfMeshRoutesTo(adr_t);

RouteEntry getMeshRouté(t) const;

RouteEntry getMeshRouteTo(adr_tonst;

adr_t getMeshNextHop(adr_t);

adr_t getMeshHop(adr_int);

simtime_t getMeshLatency(adr_t);

void addMeshRoute(adr_t, adr_t, simtime_t, simtime_t);

void addMeshRoute(adr_t dest, adr_t next,
simtime_t lat , simtime_t, vector<adr_t>:: iterator path,
int length);

void addMeshRoute(RouteEnty

void setMeshRoute(adr_t, adr_t, simtime_t, simtime_t);

void clearMeshRoutes();

int getNumberOfMemberRoutestpnst

int getNumberOfMemberRoutesTo(adr_t);

RouteEntry getMemberRouteEntriy(t) const,

RouteEntry lookupMemberRouteEntry(adr_t);

adr_t getMemberNextHop(adr_t);

adr_t getMemberHop(adr ipt);

simtime_t getMemberLatency(adr_t);

void addMemberRoute(adr_t, adr_t, simtime_t, simtime_t);

void addMemberRoute(adr_t dest, adr_t next,
simtime_t lat , simtime_t, vector<adr_t>:: iterator path,
int length);

void addMemberRoute(RouteEn#)y

void setMemberRoute(adr_t, adr_t, simtime_t, simtime_t);

void clearMemberRoutes();

ZombieTimeout getZombieTimeoutPtr@onst
void setZombieTimeoutPtr(ZombieTimeait

RefreshTimeout getRefreshTimeoutPtr (tonst;
void setRefreshTimeoutPtr (RefreshTimegut

ProbeTimeout getProbeTimeoutPtr(fonst;
void setProbeTimeoutPtr (ProbeTimeeyt

PingTimeout getPingTimeoutPtr()const;
void setPingTimeoutPtr (PingTimeoyt

RoutingRequestTimecugetRoutingRequestTimeoutPtrgpnst;
void setRoutingRequestTimeoutPtr(RoutingRequestTimgput

int getProbeCount(tonst;
void setProbeCountit);

void incrementProbeCourtt) ;
void incrementProbeCount();

simtime_t getProbeTimestammdnst;

. OMCP IMPLEMENTATION

260

270

280

290

10

C.2. EXCERPTS FROM THE OMCP SOURCE CODE 69
void setProbeTimestamp(simtime_t);

simtime_t getPingTimestamp@onst;
void setPingTimestamp(simtime_t);

simtime_t getRoutingTimestamp¢pnst;
void setRoutingTimestamp(simtime_t);

simtime_t getLatencyTimestampgpnst;
void setLatencyTimestamp(simtime_t);

simtime_t getLatency (const;
void setLatency (simtime_t);

double getLinkUtility () const;
void setLinkUtility (double);

int getLinkCost() const,
void setLinkCost(nt);

/I CAUTION:

/I This enum has to be kept in sync with the enum memberStatus

/I of class ESMNode in file esmnode.h

enum memberStatus {freshMember,staleMember,probedMember,
zombieMember};

/I CAUTION:

/I This enum has to be kept in sync with the enum meshLinkStatu

/I of class ESMNode in file esmnode.h

enum meshLinkStatus {unusedLink, activeLink , forsakenLink};

h

#endif

OMCP Node Routing Update Handler Method

This is one of the about 100 methods of the OMCP node clasanttlas RoutingUpdate packets which
contain the conplete routing table of another group memB&CP uses path information in order to
avoid routing loops. Additionally, routes may be poisonethtlicate that they are either scheduled to be
torn down or they are already considered to be down.

/' File name: OMCNode.cc
/A

/x Handles received routing update messages

x 1. Check, if a member record for the sender exists and if a

x mesh link to the sender is active . If not, ignore the packet.
x 2. Check, if the sequence numberin the packet is greater than
x the routing sequence number stored in the member record otf n
x ignore the packet.

x 3. Update the routingTimestamp in the member record of thalese

x 4. Process route after route in the packet as follows:

70 APPENDIX C. OMCP IMPLEMENTATION

x 4.1. Put the whole routing table contained in the packet iotar

* member record of the sender.
x 4.2. Check, if the advertised path contains our address.es,y
* ignore the entry.

x 4.3. Calcualte the effective latency to the destination :

* newlLatency = (latency advertised by sender)+(latency todse)
* — If the sender is —— according to the current routing
20 x table —— our next hop to the destination :
* Replace our current route with the route from the packet
* — If the sender is not currently our next hop, but newLatency
* is less than our current latency to the destination : Replace
* our current route with the route from the packet
* — Else ignore the route.
*/

void ESMNode::routingUpdateHandler(RoutingUpdate)

{
30 adr_t senderAddr = ri>getSrc();

/I Get the member record

MemberRecord sender = locateGroupMemberRecord(senderAddr);
/I Check if the pointer appears reasonable

if (sender == NULL) {

return ;
}
else {
int senderStatus = sendergetStatus();
40 int senderLinkStatus = sendergetMeshLinkStatus();
if (senderStatus != freshMember){
return ;

if (senderLinkStatus == forsakenLink){
return ;

}

bool fromMeshNeighbour false

if (meshNeighbourExists(senderAddr)) {
/I Sender is mesh neighbor.

50 fromMeshNeighbour true;

}

else{
/I Sender is not mesh neighbor and probably
/l wants to evaluate adding a mesh link to us

}

/I Check if the sequence numberis greater than the last
int segNum =static_caskint >(ru—>getSeqNum());
if (seqNum > sender>getRoutingSegNum()) {
60 /I Update routing sequence number
sender->setRoutingSeqgNum(seqNum);

/x Process routing update
*f

/I Current routing table in the member record of the sender

/I Clear the routing table in the member record

70

80

90

100

110

120

C.2. EXCERPTS FROM THE OMCP SOURCE CODE

/I We will add all routes anew as we process the
/I routing update
sender->clearMemberRoutes();

/I Get the length of the paths to be able to demuxthem
int maxPathLength sstatic_caskint >(ru—>getPathLength());

/I Get the latency from local node to sender of this
/I RoutingUpdate.
/I We look in the MemberRecord for this because we measure the
/I latency with pings and then write the latency into the
/I MemberRecord in method "pingReplyHandler()"
simtime_t senderLatency = sendergetLatency();
if (senderLatency < 0){
/I Something went wrong. Should never happen.
senderLatency = t_routing_latency_initial_M ;

}

/[l Number of entries in this RoutingUpdate
unsigned int numEntries = ru->getNumEntries();

/x Check if the mesh link to the sender is active.

x If its status is forsakenLink, then check if it uses

x US as next hop for any route.

x If yes, then we need to reschedule the VacationTimeout
* because we wait until all routes have left this link.

*/

bool forsakenLinkStillUsed =false;

/x Check if we received one or more poisoned routes we

x believed were good. If yes, we send out routing updates
x in at most t_routing_update_delay M seconds.

*/

bool sendUpdatesimmediatelyfalse;

/I Go through all vectors in RoutingUpdate
/I simultaneously with index i
for (unsigned int i =0; i < numEntries; i++){
/I Get the destination address of this route
adr_t destAddr =static_cast<adr_t>(ru->getDestination(i));

/%

x RoutingUpdate conventions:

x — The very first entry is always of the form

x Destination = <senderAddress> NextHop = <senderAddress>
* Latency =0;

x — The following entries have different destinations than

* <senderAddress>.

x — The end of valid entries is reached if an entry to

x destination <senderAddress> appears.

*/

if (i>0&& destAddr == senderAddr) {
/I This route must be invalid . Quit processing this packet
break;

71

72 APPENDIX C. OMCP IMPLEMENTATION

else{

/x Valid route
*f

130 /I Update the routing information timestamp
/I of the sender
sender->setRoutingTimestamp(simTime());

adr_t nextHop =static_cast<adr_t>(ru->getNextHop(i));
simtime_t lat = static_cast<simtime_t>(ru->getLatency(i));

/x Copy the path into a vector and check if it contains
x our address. If yes, ignore the entire entry and go
x to the next.
140 */
bool pathContainsUs =false;
/I Get the beginning of the path in the array
int base = maxPathLengthi;
/I Set the index in the path for this record to the first hop
int pathindex = base;
/I Count the number of valid hops in the path
int pathLength = 0;
vector<adr_t> pathVector;
pathVector. clear () ;
150 /Il Set the first hop in the path to
/I the sender of this packet
pathVector .push_back(senderAddr);
pathLength++;
for (int hop =0; hop < maxPathLength; hop ++) {
pathindex = base + hop;
adr_t hopAddr = ru->getPath(pathindex);
/I Check if this is a valid hop address
if (hopAddr ==this—>localAddress_M){
/I Set variable to not incorporate this route into our
160 /I routing table . But we still need the whole path
/I to put it in the memberrecord of the sender.
pathContainsUs #rue;
pathVector . push_back(hopAddr);
pathLength++;

}

else if(hopAddr!= ROUTING_NO_HOP){
pathVector . push_back(hopAddr);
pathLength++;

}

170 elsg

break;

}

}

/x Update routing tables

*

x — If this RoutingUpdate was sent by a mesh neigbhbour:

x Add the routes to our routing table if they seem useful.

x — Else only add them to the MemberRecord of the sender.
180 */

C.2. EXCERPTS FROM THE OMCP SOURCE CODE 73

/x Copy routing information into the member record of the

* sender

x At the beginning, we cleared the routing table . Therefore,
* We can now just create a new entry for all routes found.
*x We won't add routes which are poisoned, however.

*/

/I Check, if this route has been poisoned, i.e ., its
190 /I latency is equal to or greater than t routing_poison_M
bool poisonedRoute Halse;
if (!(lat < t_routing_poison_M)){
poisonedRoute #rue;
}
if (! poisonedRoute){
vector<adr_t>:: iterator pathlter = pathVector.begin();
/x The first entry in the path vector is the address of
x the sender. We only need this in our own routing table.
x Therefore , we increment the pathlter once here.
200 x Example: path vector is "321".
x — Our routing table will contain:
x dest : 1, next : 3, path length : 3, path:321
* — The member routing table of sender 3 will contain only:
x dest : 1, next :2, path length : 2, path:21
*/
pathiter ++;
sender>addMemberRoute(destAddr, nextHop, lat, sSimTime(),
pathlter , pathLength- 1);

}
210
if (fromMeshNeighbour){
/x Update our routing table
x/
/I Ignore routes to us
if (destAddr ==this —>localAddress_M){
continue;
}
220

/I Check, if we already have an entry for this destination
RouteEntry re = routes_M.lookupEntry(destAddr);
if (re == NULL){

/x New destination
*/

/I If the path contains us, ignore the route.
if (pathContainsUs){
230 if (senderLinkStatus == forsakenLink){
/I The mesh link to the sender should be vacated, but
/I this memberis still using us in this route.
/I We need to wait some more time.
forsakenLinkStillUsed =rue;
}

continue;

74

240

250

260

270

280

290

APPENDIX C. OMCP IMPLEMENTATION

}

/I We won't add a new route if it is poisoned.
simtime_t effectiveLatency = lat + senderLatency;
if (! poisonedRoute){

/I Create new route entry in the table
vector<adr_t>:: iterator pathlter = pathVector.begin();
routes_M.addRoute(destAddr, senderAddr,
effectiveLatency , simTime(), pathlter , pathLength);
}

else{

/+ Known destination
*/
/I Calculate the effective latency if we took this route
/I with the sender as next hop
simtime_t effectiveLatency = lat + senderLatency;
simtime_t currentLatency = re>getLatency();
bool updateRoute =false;
/I Update the entry if the sender is currently our next
/I hop because in this case, the sender is authoritative
/I about link failures etc.
adr_t currentNextHop = re>getNextHop();
if (senderAddr == currentNextHop){
/I 1f the path contains us, we need to poison
/I this route to avoid a routing loop.
if (pathContainsUs){
routes_M.poisonRouteTo(destAddr, t_routing_poison, M)
continue;
}
else if (poisonedRoute) {
/I If the route is poisoned:
/I 1. Check if we already have poisoned the route in
I our routing table . If not we set the latency to
I our own value of a poisoned route and send
1 routing updates to our neighbors immediatley,
1 i.e. set sendUpdatesimmediatley to true
if (ceil (currentLatency) == ceil (t_routing_poison_M)){
/I We already know that this route is poisoned.
}
else {
routes_M.poisonRouteTo(destAddr,
t_routing_poison_M);
/I Set this variable to true to make sure we send
/I this information to our neighbors immediately.
sendUpdatesimmediatelytrue ;
continue;
}
}

else{
updateRoute #rue;
/I Check if our current route in the routing table is
/I poisoned.
/I If yes, we send routing updates to our neighbors

C.2. EXCERPTS FROM THE OMCP SOURCE CODE 75

/I immediatley, i.e. set sendUpdatesimmediatley to
/Il true
if (ceil (currentLatency) == ceil (t_routing_poison_M)){
/I Set this variable to true to make sure we send
/I this information to our neighbors immediately.
sendUpdatesimmediatelytrue ;
}
300 }
}
/I Poison the entry if the old entry is too old
else if (re—>getTimestamp() < simTime@ t_routing_lifespan_M) {
/I If the path contains us, go to the next entry.
if (pathContainsUs){
routes_M.poisonRouteTo(destAddr, t_routing_poison, M)
continue;

else if (poisonedRoute) {
310 /I If the advertised route is poisoned, we set

/I the latency to our own value of a poisoned route
routes_M.poisonRouteTo(destAddr, t_routing_poison, M)
continue;

}

else {
/I This route seems to be valid and our current route
/I has expired.
updateRoute #rue;

320
/I Check if our current route in the routing table is
/I poisoned.
/I If yes, we send routing updates to our neighbors
/I immediatley, i.e. set sendUpdatesimmediatley to
/Il true
if (ceil (currentLatency) == ceil (t_routing_poison_M)){
/I Set this variable to true to make sure we send
/I this information to our neighbors immediately.
sendUpdatesimmediatelytrue ;
330 }
}
}
/I Change the entry if the new route is better
else if (effectiveLatency < currentLatency) {
/I If the path contains us, go to the next entry.
if (pathContainsUs){
continue;
}
else {
340 updateRoute true;
/I Check if our current route in the routing table is
/I poisoned.

/I If yes, we send routing updates to our neighbors

/I immediatley, i.e. set sendUpdatesimmediatley to

Il true

if (ceil (currentLatency) == ceil (t_routing_poison_M)){
/' Set this variable to true to make sure we send
/I this information to our neighbors immediately.

76 APPENDIX C. OMCP IMPLEMENTATION

sendUpdatesimmediatelytrue ;
350 }
}
}

/I Do the update if necessary

if (updateRoute){
re—>setNextHop(senderAddr);
re—>setLatency(effectiveLatency) ;
re—>setTimestamp(simTime());
vector<adr_t>:: iterator pathlter = pathVector.begin();
re—>setPath(pathlter , pathLength);

360 }
}
}

}
if (forsakenLinkStillUsed){

/I Reschedule VacationTimeout
MeshLinkVacationTimeoutvacationTimeout
= sender->getMeshLinkVacationTimeoutPtr();
if (vacationTimeout != NULL)Y
/I Seems to be a valid timeout pointer
370 delete cancelEvent(vacationTimeout);
}
sender->setMeshLinkVacationTimeoutPtr(NULL);
/I Schedule a new timer to check if the link has been vacated
/[already
vacationTimeout
= new MeshLinkVacationTimeout(
"Mesh Link_Vacation Timeout");
vacationTimeout >setKind(MeshLinkVacationTimeoutEvent);
vacationTimeout >setMemberAddress(senderAddr);
380 sender>setMeshLinkVacationTimeoutPtr(vacationTimeout);
scheduleAt(simTime()+t_mesh_link_vacation_timeout_M
vacationTimeout);

}

}
if (sendUpdatesimmediately){

if (routingUpdateEventMsg>arrivalTime()
> ceil (simTime() + t_routing_update_delay_M)){
/I Cancel the current timer
cancelEvent(routingUpdateEventMsg);
390 /I Schedule triggered update
routingUpdateEventMsg
= new cMessage("TriggeredRouting Update Timer");
routingUpdateEventMsg>setKind(ROUTING_UPDATE_EVENT);
scheduleAt(simTime()
+t_routing_update_delay M, routingUpdateEventMsg);
}

else{

C.2. EXCERPTS FROM THE OMCP SOURCE CODE

77

Bibliography

[1] Y. Chu, S. G. Rao, S. Seshan, H. Zhang, “A Case for End Sy8lelticast.” Proceedings of the
ACM SIGMETRICSJune 2000.

[2] E. B. Shapiro. “Network Timetable.” IETF RFC 4 (Informamal), March 1969.
[3] J. Postel. “Internet Protocol.” IETF RFC 791 (Standa®@ptember 1981.

[4] D. Waitzman, C. Partridge, S. E. Deering. “Distance ‘dedflulticast Routing Protocol.” IETF
RFC 1075 (Experimental), November 1988.

[5] J. Moy. “Multicast Extensions to OSPF.” IETF RFC 1584 ¢pPosed Standard), March 1994.

[6] A. Ballardie, P. Francis, J. Crowcroft. Core Based Tré&&sceedings of the ACM SIGCOMM,
September 1993.

[7] A. Ballardie. “Core Based Trees (CBT) Multicast RoutiAgchitecture.” IETF RFC 2201
(Experimental), September 1997.

[8] A. Ballardie, B. Cain, Z. Zhang. “Core Based Trees (CBTylIMast Routing Architecture.” IETF
Internet-draft “draft-ietf-idmr-cbt-spec-v3-01.txtAugust 1998.

[9] D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S. E. DeggjiM. Handley, V. Jacobson, C. Liu,
P. Sharma, L. Wei. “Protocol Independent Multicast — SpMede (PIM-SM): Protocol
Specification.” IETF RFC 2362 (Experimental), June 1998.

[10] B Fenner, M. Handley, H. Holbrook, 1. Kouvelas. “Protbéndependent Multicast — Sparse Mode
(PIM-SM): Protocol Specification (Revised).” IETF Intetrdraft, February 2004.

[11] S. E. Deering, R. Hinden. “Internet Protocol, Versio(iBv6) Specification.” IETF RFC 2460
(Draft Standard), December 1998.

[12] J. Frankel, T. Pepper. “Gnutella.”
http://rfc-gnutella. sourceforge. net/

[13] B. Cohen. “BitTorrent.”
http://ww. bitconjurer.org/BitTorrent/

[14] “Internet Engineering Task Force (IETF).”
http://ww.ietf.org/

[15] Andras Varga. “OMNeT *— Objective Modular Network Testbed in"C.” Discrete event
simulation system.
http://ww. ormet pp. or g/

[16] Georgia Institute of Technology/College of Computit@T-ITM —Georgia Institute of
Technology Internet Topology Model.” Network topology geator.
http://wwv. cc. gatech. edu/ projects/gtitm

[17] A. TanenbaumComputer Networks?ublished by Prentice Hall PTR, 4th edidtion (August 2002),
ISBN: 0130661023.

78

BIBLIOGRAPHY 79

[18] L. Peterson, B Davie€Computer Networks: A Systems Approdetblished by Morgan Kaufmann,
3rd edition (May 2003), ISBN: 155860832X.

[19] J. Postel. “Transmission Control Protocol.” RFC 798&(f®lard), September 1981.

[20] L. Kleinrock. “Information Flow in Large CommunicatioNets.” Ph.D. thesis, Massachusets
Institute of Technology, May 1961.

[21] J. D. Day, H. Zimmermann. “The OSI Reference Mod@itbceedings of the IEEEecember
1983.

[22] International Organization for Standardization. ‘&pSystem Interconnection Reference Model.”
ISO/IEC Standard 7498, 1984.

[23] S. E. Deering. “Host Extensions for IP Multicastingg TF RFC 1112 (Standard), August 1989.

[24] S. E. Deering, D. R. Cheriton. “Host groups: A multicagtension to the Internet Protocol.”
Proceedings of the ACM/IEEE Data Communications Symposeptember 1985.

[25] S. E. Deering. “Multicast Routing in Internetworks alBgtended LANs.Proceedings of the ACM
SIGCOMM,August 1988.

[26] S. E. Deering. “Multicast Routing in a Datagram Intewerk.” Ph.D. thesis, Stanford University,
Electrical Engineering Department, December 1991.

[27] H. Erikson. “MBONE: The Multicast BackboneCommunications of the ACM\ugust 1994.

[28] T. M. Munzner, E. Hoffmann, K. Claffy, B. Fenner. “Visliging the Global Topology of the
MBone.” Proceedings of the IEEE InfoVi€ctober 1996.

[29] Y. Sh. Shi. “Design of Overlay Networks for Internet Miohst.” Ph.D. thesis, Washington
University, Sever Institute of Technology, August 2002.

[30] F. Lau, H. Rubin, M. H. Smith, L. Trajovic. “DistributeDenial of Service Attacks.Proceedings
of the IEEE International Conference on Systems, Man, armkf@yetics October 2000.

[31] H. Holbrook, D. Cheriton. “IP Multicast Channels: EXERS Support for Large-scale Single
Source Applications.Proceedings of the ACM SIGCOMMeptember 1999.

[32] H. Holbrook, B. Cain. “Source Specific Multicast.” IETRternet-draft, March 2000.

[33] J. H. Saltzer, D. P. Reed, D. D. Clark. “End-To-End Argnts in System DesignACM
Transactions on Computer SysterNsyember 1984.

[34] S. Banerjee, B. Bhattacharjee. “A Comparative Studggpblication Layer Multicast Protocols.”
University of Maryland, October 2002.

[35] P. Francis. “Yoid: Extending the Multicast Internetohitecture.” White paper, April 2000.
http://ww. aciri.org/yoid/

[36] B. Zhang, S. Jamin, L. Zhang. “Host Multicast: A Framelwor Delivering Multicast to End
Users.”Proceedings of the IEEE INFOCOMune 2002.

[37] S. Banerjee, B. Bhattacharjee, C. Kommareddy. “SdalApplication Layer Multicast.”
Proceedings of the ACM SIGCOMMugust 2002.

[38] S. RAtnasamy, P. Francis, M. Handley, R. Karp, S. SherikeScalable Content-addressable
Network.” Proceedings of the ACM SIGCOMMugust 2001.

[39] M. Castro, P. Druschel, A-M. Kermarrec, A. Rostron. ‘lSIBE: A Large-scale and Decentralized
Application-level Multicast InfrastructuréEEE Journal on Selected Areas in Communications
(JSAC),2002.

[40] C. L. Hedrick. “Routing Information Protocol.” IETF RE-1058, June 1988.
[41] G. Malkin. “RIP Version 2.” IETF RFC 2453 (Standard), mmber 1998.

80 BIBLIOGRAPHY

[42] A.S. Thyagarajan, S. E. Deering. “Hierarchical Distes\/ector Multicast Routing for the
MBone.” Proceedings of the ACM SIGCOMMugust 1995.

[43] J. Moy. “OSPF specification.” IETF RFC 1131 (Proposednstird), October 1989.
[44] J. Moy. “OSPF Version 2.” IETF RFC 2328 (Standard), Af898.

[45] D. Pendarakis, S. Shi, D. Verma, M. Waldvogel. "ALMI. Application Level Multicast
Architecture.”Proceedings of the USENIX USIT8arch 2001.

[46] S. Banerjee, Ch. Kommareddy, K. Kar, B. BhattacharfeeKhuller “Construction of an Efficient
Overlay Multicast Infrastructure for Real-time Applicatis.” Proceedings of the IEEE
INFOCOM,April 2003.

[47] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. KaashpdkW. O’'Toole, Jr. “Overcast: Reliable
Multicasting with an Overlay NetworkProceedings of the USENIX OSDI@ctober 2000.

[48] Y. D. Chawathe. “Scattercast. An Architecture for imiet Broadcast Distribution as an
Infrastructure Service.” Ph.D. thesis, University of @atnia at Berkeley, December 2000.

[49] B. Cain, S. E. Deering, |. Kouvelas, B. Fenner, A. Thyagan. “Internet Group Management
Protocol, Version 3.” IETF RFC 3376 (Proposed Standardjoker 2002.

[50] NIST/SEMATECH. “e-Handbook of Statistical MethodsJuly 2004.
http://ww.itl.nist.gov/div898/ handbook/

[51] I. Busse, B. Deffner, H. Schulzrinne. “Dynamic QoS Qohbf Multimedia Applications based on
RTP.” Proceedings of the First International Workshop on High&pBletworks and Open
Distributed PlatformsJune 1995.

[52] F. Dressler: “A Metric for Numerical Evaluation of theoQ of an Internet Connection.”
Proceedings of 18th International Teletraffic CongressC(18), August 2003.
[53] P. Clément, B. Jenkins. “Adapting Test and Measureriients to Centralcasting and Broadband

IP Contribution.” Thales Broadcast and Multimedia, 2003.
http: //ww. br oadcast papers. coni t est neasur enent/ Thal esAdapt Test MeasTool s. pdf

[54] F. Dressler. “How to Measure Reliability and Qualityl&f Multicast Services?Proceedings of
2001 IEEE Pacific Rim Conference on Communications, Comgpatel Signal Processing
(PACRIM '01),August 2001.

[55] Akamai. “EdgeSuite: A Comprehensive Content DelivBofution for Advanced E-Business.”
http://ww. akamai . com en/ ht m / servi ces/ edgesuite. htm

[56] University of Southern California/Information Sciees Institute. “The Network Simulator —
NS-2.” Discrete event simulation system.
http://ww.isi.edu/ nsnan ns/

[57] K. Calvert, M. Doar, E. W. Zegura. “Modeling Internetaogy.” IEEE Communications
Magazine June 1997.

Index

application layer, 7 join, 21
application layer multicast, 15
AS, 15 LAN, 14
autonomous system, 15 layer, 6
application layer, 7

CBT, 1, 20 data link layer, 7
channel, 7 network layer, 7
circuit-switched, 6 physical layer, 7
computer transport layer, 7

network, 3 leave, 21
cost, 8 level, 6

. local-area network, 14
data link layer, 7

datagram, 10 mesh-first overlay multicast , 16
dense mode, 14 MOSPF, 1, 19
DVMRP, 1,19 multicast, 1
dense mode, 14
end system, 3
Express, 14 overlay
: host-based, 16
forwarding, 8 implicit, 17
forwarding table, 8 mesh-first, 16
replicator-based, 16
header, 7 tree-first, 16
hop, 8 receiver, 13
host, 3 sparse mode, 14
host address, 10 subscriber, 13
host part, 10
host-based overlay multicast , 16 netmask, 10
HTTP, 11 network, 3
hub, 4 circuit-switched, 6
packet-switched, 6
IGMP protocol, 3
join, 21 network address, 10
leave, 21 network layer, 7
implicit overlay multicast , 17 next hop, 8
IP, 10
IPv4, 10 OMCP, 20
multicast Open Shortest Path First, 19
CBT, 1, 20 OSPF, 19
DVMRP, 1, 19 overlay multicast, 15
MOSPF, 1, 19 host-based, 16
PIM, 1, 20 implicit, 17
IPv6, 10 mesh-first, 16

81

82

packet-switched, 6

replicator-based, 16

tree-first, 16

physical layer, 7
PIM, 1, 14, 20
PIM-SM, 14
port, 10
protocol, 3

Express, 14
header, 7
HTTP, 11
IP, 10

IPv4, 10
IPv6, 10
layer, 6
level, 6
OMCP, 20
OSPF, 19
PIM, 14
PIM-SM, 14
RIP, 19
SMTP, 11
SSM, 14
stack, 6
TCP/IP, 10

receiver, 13

rendez-vous point, 21
replicator-based overlay multicast , 16
reverse-path forwarding, 19

RIP, 19
route, 8
routing, 8

protocol
OSPF, 19
RIP, 19

shortest path routing, 8
Routing Information Protocol, 19

routing table, 8
RPF, 19

shared tree, 21

shortest path routing, 8

SMTP, 11

source-specific tree, 21

sparse mode, 14
SSM, 14

subnet, 4
subnetwork, 4
subscriber, 13

switching, 6

TCP
port, 10
TCP/IP, 10
transport layer, 7
tree
shared tree, 21
source-specific tree, 21
tree-first overlay multicast , 16

INDEX

