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Abstract

This paper describes the design process of a software framework for use of a
biclustering algorithm for gene expression data. Facilitating the use of such an
algorithm requires tools for reading expression data from files, processing said
data and visualizing the results. The software must be designed in a modular
fashion to allow for future expansions.
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Chapter 1

Introduction

1.1 Motivation

One of the major challenges in modern molecular cell biology lies in exposing
whole genomes to a set of conditions, and gaining useful information from the
measured results. Microarray technology is a recent development that allows
biologists to perform massively parallel experiments on entire DNA sequences at
once. The results of these experiments are matrices that contain an expression
value for every combination of genes and experiments; but due to the huge
number of samples and the way genes are thought to interact with each other,
it doesn’t make sense to look at these values in isolation.

A popular approach to this problem is to look for groups of genes that
perform similarly under a certain set of conditions. The sheer amount of data
that needs to be analyzed practically requires the use of a computer as an
aid. Many different clustering algorithms are in use today, but one common
drawback is that they only work in one dimension at a time. Thus, they search
for clusters in the set of genes and in the set of chips, but not in both at once.
This artificially limits the pool of results, since there exists a large number of
clusters that only span a subset of genes and chips. For example, for a particular
set of genes to qualify as a cluster, it has to exhibit similar behavior accross the
entire set of experiments.

Biclustering, a method recently proposed in [1], is the focus of this project.
The difference to previous clustering methods is that the expression value matrix
is sorted both by rows and columms at the same time. Although the goal, as
always, is to find permutations that result in uniform blocks of data being
displayed in the expression matrix, biclustering yields many more results since
it works on rearranging genes and chips simulteneously.
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Figure 1.1: Microarray data arranged in a matrix

Figure 1.2: Binarized data rearranged to display a bicluster
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1.2 Problem Description

The goal of biclustering is to find submatrices in the expression data that have
maximal size and maximum similarity of values. This similarity can be mea-
sured in different ways; one of the simplest methods is to separate all expression
values along a threshold, and define all values on one side to be similar to each
other. A biclustering algorithm can then operate on the binarized data, and
search for submatrices of values that are all above or below the threshold.

Bica is an implementation of a biclustering algorithm described in [2]. It
operates on a binarized version of the expression matrix and is capable of finding
all biclusters in a given data set.

Biclustering a data matrix that consists of dozens of chips and thousands of
genes can result in tens of thousands of biclusters, far too many to sort through
by hand. It would be useful to have a tool that assists biologists in sorting
through these results and looking for those that seem to be most relevant. Due
to the clustering approach, the size of the datasets and the nature of microarrays,
it is also required to visualize the expression data.

The goal of this term project was to develop a framework for Bica that would
facilitate use of the algorithm, and provide additional functionality to support
biologists in their research.

1.3 Overview

The following chapters are presented in chronological order. Existing Programs

will describe some currently available software packages we examined before
beginning to work on the program. Theory will concentrate on the requirements
and the planning stage of the project. The chapter on Practice will focus on
the implementation of the code, while Future Additions will describe features
that might be added to the program at a later date. Finally, we will present
a short Case Study that demonstrates one of the uses of the program and end
this report with a chapter on Conclusions.
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Chapter 2

Existing programs

There exist many programs, both commercial and free, that are designed to
visualize and cluster the results from microarray experiments. However, we
are only aware of one other software package that implements a biclustering
algorithm. The following is a short list describing some of these programs, in
no particular order:

2.1 Expander

Expander is developed by Prof. Ron Shamir’s Computational Genomics Lab-
oratory at the School of Computer Science, Tel Aviv University, Israel. It im-
plements several different clustering algorithms, can perform biclustering and
provides facilities for visualization and functional analysis. Its biclustering al-
gorithm, SAMBA, uses statistical models to limit the search to what are likely
to be the most significant results. Thus, execution time is shortened at the cost
of completeness. The software is freely available for academic use.

http://www.cs.tau.ac.il/∼rshamir/expander/expander.html

2.2 Genesis

Genesis, developed by Alexander Sturn at the Institute for Biomedical Engi-
neering at the Graz University of Technology, has implementations of most of
the popular clustering algorithms such as K-means, self organizing maps, prin-
cipal component analysis and correspondence analysis. It also has a very clean
and intuitive user interface.

http://genome.tugraz.at/Software/GenesisCenter.html
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2.3 GeneXPress

GeneXPress, from Eran Segal et al. at Stanford University, is a simple and
clean visualization tool that provides most of the features one would desire. It
is freely available for academic use.

http://genexpress.stanford.edu/tutorials/start gxp demo.html

2.4 TM4 suite

The TM4 suite of tools from The Institute for Genomic Research (TIGR) is
unusual in that its source code is available for download. It consists of four
applications, of which the Multiexperiment Viewer, a flexible Java application
that handles visualization, was of the most interest to us.

http://www.tigr.org/software/tm4/mev.html

2.5 Microarray Explorer

Microarray Explorer, developed at Sourceforge, is another open source project
written in Java. Its focus is on interactive data mining, with access to remote
genomic databases. It offers several clustering options and a large set of vi-
sualization tools, including array pseudoimages, scatter plots, histograms and
expression profile plots.

http://maexplorer.sourceforge.net/

After making some inquiries, we decided that the current program should be
written from scratch, only using code from other projects if absolutely necessary.

To our knowledge, Bica is the only existing implementation of a biclustering
algorithm for gene expression data that delivers a complete set of results. Writ-
ing a completely new framework would allow us to tailor it to the needs of this
new algorithm, so that it can be used to its fullest potential.

This would mean more work, but would allow more flexibility in designing
the code. Doing so would also avoid the pitfall of having to work through rather
large codesets in order to understand them.
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Chapter 3

Software Architecture

3.1 Preconditions

The core of the project, the biclustering algorithm Bica, was already complete
when we started working on its graphical user interface. In its standalone ver-
sion, Bica is a command line controlled Java program that reads a two dimen-
sional array of binarized1 data from a given file, and produces a list containing
all the biclusters it has found therein. Since the current version of the algorithm
operates on binary input, the data must be processed and binarized externally
before one can proceed with clustering. A direct consequence of this is that
the preprocessing steps can potentially have a large impact on the biclustering
results.

One of these preprocessing steps is to normalize the data. Within a microar-
ray, every chip is assigned a control chip, essentially a set of values that it should
be normalized to before being processed any further.

3.2 File formats

The unprocessed microarray data is read from files, the exact format of which
was to be determined during the course of the project. Although there is no
clear standard, most existing data seems to conform to the following rules: The
data is contained in plain text ASCII files, with the first line containing the chip
names. One of the first words of each following lines is the gene name, followed
by the expression values for that gene. All names and values are separated by
one whitespace, either a space character or a tab character. Two consecutive
whitespaces signify a missing value.

A second file relates each chip to its control chip. Each line in this file
contains the name of a chip, followed by the name of its control chip, separated
by whitespaces.

1If the value is above a given threshold, it becomes a one; else, a zero.
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Figure 3.1: Expression graphs

The files may contain additional information, such as gene pathways, that
was not used in the course of this project.

3.3 General design goals

The fundamental goal of providing a framework for Bica and other clustering
algorithms can be divided into two parts: A graphical user interface, and the
underlying data processing code.

3.3.1 GUI requirements

Perhaps the most important part of the GUI is the visualization of the data. It
should include a display of the data matrix, with the expression values mapped
to a color scale2. The visualized matrix should have name tags for the gene
rows and chip columns, a way to mark genes and chips for later reference, and
functionality for zooming in and out of the display. The program needs to
be able to rearrange the matrix so that a bicluster is clearly displayed to the
user. It should also be possible to retrieve detailed information on biclusters
and particular gene-chip combinations within the matrix.

The user also should be able to view expression graphs for each gene, or a
selected set of genes. These graphs plot the expression values of a particular
gene accross the various experiments; they are generally not interesting for the
absolute values that they plot, but because they allow a comparison of the
behavior of several genes accross the entire set of conditions.

3.3.2 Data processing framework

Before commencing any work, the program needs to retrieve all necessary data
from properly formatted files. The expression data sets are then normalized to
their control sets. This is done by dividing each expression value of a chip by

2e.g. low values are red, high values are green
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the corresponding value in its control chip. The control chip values are then
removed from the dataset. If the user wishes, the data can then be logarithmized
to a base of two or ten. Another optional step would be to perform some form
of statistical filtering on the data. Finally, the data must be discretized using
a user inputted threshold, which results in a matrix of binary values. Missing
values are marked, both for the biclustering algorithm and for later reference.

The next step is to run the biclustering algorithm on the processed data,
which results in a list of biclusters. At this point, it would be interesting to look
for extensions to the biclusters that have been found; these are uniform blocks
that can be appended to a bicluster without necessarily completing a larger one.

In order to help the user find the most interesting results, the program needs
scoring schemes that allow a ranking of the biclusters. The user should be able
to sort the entire list of biclusters according to the various ranking schemes, and
search for biclusters that fulfill certain criteria. There should also be an option
to search for genes by their names, and to get a list of the biclusters that contain
these genes. In a similar vein, it would be interesting to rank genes according to
their participation in various biclusters, and perhaps even associate genes with
each other by looking at how many clusters they share.

3.4 Basic design decisions

The programming langauge chosen for the project is Java. It offers platform in-
dependence, a large toolbox that includes support for graphical user interfaces,
and a programming environment that I was already familiar with. The core bi-
clustering algorithm is also written in Java, with several supporting Perl scripts
that perform preprocessing and formatting steps. We decided to implement the
entire program in Java rather than reuse those scripts.

We originally planned to separate the program into a set of five functional
parts, each of which would perform a set of tasks that are closely associated
with each other. The list of parts included:

• A file reading object, responsible for reading and writing to the hard drive.

• One central manager for the raw data matrices, where the data would be
kept and preprocessed (normalization, discretization etc.)

• An instance of Bica, to perform the biclustering.

• A postprocessing unit where the list of results (biclusters) would be kept
for sorting and searching.

• A visualization unit, responsible for displaying the data matrix, the ex-
pression views etc.

Doing so would give the code some structure and modality, making it easier
to understand and modify. Having the central manager and the GUI control
the other parts of the program also seemed like a good idea, since having one
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governing body should significantly reduce the number of errors made in writing
the code.

In terms of the GUI, we originally envisioned one large window containing
several smaller, resizeable windows that would display various lists and display
modes. But since this version doesn’t offer any appreciable advantages over a
simple split pane, we quickly abandoned it. The layout we settled on in the end
is as follows:

• A main menu bar at the top of the window, which allows the user to
change settings and invoke commands

• A left hand pane, which contains a list of various display modes that the
user may select from

• A right hand pane, which displays whatever the user currently has selected
(currently either a data matrix or a set of expression graphs)

This setup is both simple and functional. It isn’t very flexible in that it only
allows the display of one graphical representation at a time, but the tradeoff is
that all the data is presented in only three distinct areas, which should make
for a very simple and user friendly experience. It is also easily extensible; the
left hand pane can include any number of display options, and the right hand
pane can be used to draw any customized graphics that are required.
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Figure 3.2: The GUI

11



Chapter 4

Implementation

4.1 Preprocessor

The preprocessor, as it stands, is a combination of the file reading and prepro-
cessing units we had originally planned to make. Since the steps of reading the
data and performing initial operations on it are closely related and often done
right after each other, they were included in a single object.

The file reading code was fairly straightforward to implement; one of the
problems encountered while writing it was how to determine the size of the
input file efficiently. A first solution involved dynamically resizeable arrays, but
we later included a second version that required the file size to be included in
the header. Since the files can contain tens of megabytes of data, it seemed
sensible to make such a requirement for the sake of speed. Other than that, the
format required for the input files is identical to what was described in section
3.2. The result of the file reading steps is a two dimensional array that contains
the expression values, and several other arrays containing gene and chip names
and control chip relations. It should be noted that this raw data is kept until a
new batch of files is loaded; this allows the user to repeat the preprocessing steps
an arbitrary number of times, and even view biclustering results with different
preprocessing options.

The preprocessing steps themselves are quite simple, often just requiring
one operation to be performed on every element of the data array. Each step
is implemented as a separate function, which should make it easy to make
modifications or add new steps. One small pitfall that one should keep in mind
is that the original data contains a number of chips that are control values.
These are the values that the actual experiment results are normalized to, and
as such, they are discarded after use. Skipping the normalization step simply
removes these chips from the matrix, but either way, the matrix ends up with
less columns than it had before. This has some implications later on, especially
when it comes to visualizing the data.
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Figure 4.1: Class structure of the program
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4.2 Postprocessor

The postprocessing unit is responsible for running the biclustering algorithm, or,
for that matter, any other algorithm on a preprocessed data set. It then stores
the list of resulting biclusters and performs a searching and sorting commands
on said list.

Since running Bica is a very processing intesive task, it is executed in a
thread that is separate from the GUI and the other processing units.

The central piece of this class is a linked list of Bicluster objects. Each
of these objects contains complete information on one bicluster, including the
genes and chips involved, the total size and the Mean Square Residual Score.
The program will keep a copy of the original list at all times, so the user can
perform search operations on the full list as often as needed. The methods that
operate on the list will simply traverse it, either looking for biclusters that meet
certain restrictions or sorting the list according to some given criteria.

The Mean Square Residual Score (MSRS) of a bicluster is one of the criteria
used to sort the list of results. The following definition is taken from [1]:

Let X be the set of genes and Y the set of conditions. Let aij be the element
of the expression matrix A representing the logarithm of the relative abundance
of the mRNA of the ith gene under the jth condition. Let I ⊂ X and J ⊂ Y

be subsets of genes and conditions. The pair (I, J) specifies a submatrix AIJ

with the following mean squared residue score.

H(I, J) =
1

|I||J |

∑

i∈I,j∈J

(aij − aiJ − aIj + aIJ)2,

where

aiJ =
1

|J |

∑

j∈J

aij , aIj =
1

|I|

∑

i∈I

aij ,

and

aIJ =
1

|I||J |

∑

i∈I,j∈J

aij =
1

|I|

∑

i∈I

aiJ =
1

|J |

∑

j∈J

aIj

are the row and column means and the mean in the submatrix (I, J). A
submatrix AIJ is called a δ -bicluster if H(I, J) ≤ δ for some δ ≥ 0.

Thus, a high MSRS indicates that the values within the bicluster vary over
a large range of values, while a bicluster with very uniform values will have an
MSRS close to zero.

One thing to keep in mind is that the Bicluster objects gained from the
biclustering algorithm Bica are not the same as the Bicluster objects used by
Postprocessor. This is an unfortunate naming problem, but shouldn’t cause any
problems if kept in mind. As it stands, the list of results has to be transformed
into a format useable by Postprocessor before the program can perform searching
and sorting operations.
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Figure 4.2: Code structure of the GUI

4.3 BicaGUI

This central unit builds the graphical user interface, processes user input and
controls both the Preprocessor and the Postprocessor.

The GUI itself is a fairly striaghtforward implementation of what Java’s
Swing toolkit offers. The only unusual part is to the right hand of the split
pane, where one of two customized graphics panels are displayed.

The first of these is responsible for drawing the visualization of the data
matrix. It also keeps track of user selections within the matrix so that the
corresponding rows and columns may be marked. If the user selects a bicluster
for display, the graphics panel will build two translation tables, for genes and
chips respectively. These tables are simply arrays that contain a rearrangement
of the gene and chip indices, thus describing a permutation of the matrix that
will bring the bicluster out at the top left corner. Gene and chip names are drawn
along the top and left hand borders, so all matrix coordinates have to include
an offset to keep the elements from overlapping. The matrix itself consists of a
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block of small rectangles, each of which has the color shade corresponding to the
expression value it represents. The zooming options simply make the program
redraw the contents of this panel at a different size.

The second display panel shows the expression graphs of genes that the user
has selected within the matrix. The scaling of these graphs was kept simple and
rather arbitrary since most users will only need qualitative information. The
graphs for the selected genes receive one out of a set of predefined colors, the
same one as in the selection in the data matrix. However, this set of colors
is limited, so the selection of a large numbers of genes will cause a counter
to wrap around and start repeating. Another option would have been to map
the selections to a color scale (e.g. green - blue), but it turned out that this
approach results in many similar shades, which is perhaps even more confusing.

One of the issues we encountered was that redrawing large data matrices
can put a large strain on the system. A simple fix, included in the program, is
to limit the number of gene rows that are displayed. Since the point of interest
will generally be a bicluster which is displayed toward the top left corner, it’s
an obvious sacrifice to make.

The left hand panel contains the list of display options that are currently
available to the user. These options are built into a tree, which allows for almost
limitless extension of the list and easy grouping of elements. The original plan
was to generate a table of all biclusters that the user would be able to sort
according to different criteria by clicking on the column headers. However,
this approach turned out to be too difficult to implement, and too inflexible
in regards to future extensions. As it is, the display tree can hold an original
master list of results and a separate list of search results, not to mention entries
for any additions that might be made later on.

One question that had to be asked early on was how to structure the workflow
of the program, that is, how the user would progress through the different
processing steps that are provided. We had hoped to make this as simple as
possible by consolidating the file loading and preprocessing steps, allowing the
user to get to the results by executing just two commands. This turned out to
be a bad idea since biclustering is such a time consuming process. In the end,
we decided that it would be better to let the user try out different preprocessing
options and view the results before handing them to the biclustering algorithm.
An added benefit is that the user can view a set biclustering results under
different preprocessing conditions without having to execute the Bica algorithm
every time.

16



Figure 4.3: Workflow of the program
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Chapter 5

Future additions

Although the program is completed and useable at its current stage, there is a
large number of items that could be added to increase its functionality.

One obvious thing to do would be to add more clustering algorithms. Al-
though biclustering is a powerful tool, it would be beneficial to compare its
results to those of other algorithms, and perhaps see how much they overlap.
In a similar vein, it might be interesting to repeatedly perform biclustering on
a dataset with different preprocessing options activated each time, and see how
the results relate to each other.

The scoring algorithms are another area that could easily be added to. While
the currently implemented scoring schemes should cover basic needs, there are
many others that would likely be worth adding. One of the more interesting
ideas is to assign a suspiciousness score to biclusters. This is essentially a
measure of the likelihood that a bicluster is a purely random assortment of
genes and chips that just happen to have similar values. If the suspiciousness is
high, then that uniform collection of samples in the matrix is more likely to be
significant in some way or another.

Some of the things listed under desired features also remain to be added.
Finding extensions to biclusters would certainly be interesting, since the current
algorithm, for all its beauty, is a bit restrictive; since it works with strictly
binarized data, it will fail to recognize a large bicluster that contains just one
value that is on the wrong side of the threshold.

On a related note, one could add functionality to display several biclusters
simultaneously. This would require the program to check whether a given set
of biclusters can be shown without any conflicts occurring.
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Chapter 6

Summary and Conclusion

We have designed and implemented a framework for a biclustering algorithm for
gene expression data. The two goals of the project were to design an interface
to facilitate use of this algorithm, and to make a framework that would allow
the addition of other data mining and processing tools.

We believe that the goal of usability as been attained, as the program has
reached a stage of completion where most of the necessary features have been
implemented. The graphical user interface is capable of displaying gene expres-
sion data sets in the most widely used formats, with the additional functionality
required to work with large numbers of biclusters.

The underlying code implements a set of essential tools for processing and
navigating given datasets and clustering results. The software was written and
documented with future expansions in mind, and as such should be well suited
to accomodate any future additions.

The distinguishing feature of the biclustering algorithm we used is that it is
capable of finding all the maximal biclusters in an expression matrix. It is, to
our knowledge, the only available program that offers this functionality.
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