
Semester Thesis

Java on the iPAQ

Nicolas Burri
nburri@student.ethz.ch

Dept. of Computer Science
Swiss Federal Institute of Technology (ETH) Zurich

Summer 2003

Prof. Dr. Roger Wattenhofer
Distributed Computing Group

Advisor: Aaron Zollinger



Contents

1 Introduction 3

2 The Given Program 4
2.1 The Basic Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Important Java Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Getting Started 6
3.1 How to Choose a Virtual Machine . . . . . . . . . . . . . . . . . . . . 6
3.2 Jeode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 The Adaptation Process 8
4.1 The General Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2 Solution One: Re-Implementation . . . . . . . . . . . . . . . . . . . . . 8
4.3 Solution Two: Code Replacement . . . . . . . . . . . . . . . . . . . . . 9
4.4 The Worst Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.4.1 The Symptoms . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.4.2 Expected Reasons . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.4.3 The Real Reason . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 Conclusion 12
5.1 The Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.2 Personal Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

A Tips and Tricks 13
A.1 Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
A.2 Jeode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
A.3 Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16



Chapter 1

Introduction

Over the last years the capabilities of small handheld computers, better known as
PDAs, have increased significantly. Today these small devices have become power-
ful enough to run programs which were designed to work on bigger hardware (like
notebooks) only one or two years ago. Not only the CPU speed of these devices has
improved but also additional features like Bluetooth- or WLAN-Support have become
widely available and allow a whole new range of applications.

Especially in the field of mobile applications there is a demand for such small
hardware devices, since even a slim notebook becomes uncomfortable for the user
if it must be carried around all day long. Therefore it makes sense to evaluate the
complexity of adapting existing mobile applications in order to run them on one of
those much smaller handheld devices.

The task of this semester thesis was exactly to do this by means of a practi-
cal example. An existing middle-sized Java application was adapted to run on a
Compaq iPAQ and the problems that occurred during this process were evaluated. In
this documentation some of the results of this work will be presented and a collection
of hopefully helpful tips for further iPAQ projects can be found in the appendix.



Chapter 2

The Given Program

To get a good overview of the capabilities of Java on the iPAQ, a test program was
required that made use of several different Java packages under real conditions. The
choice fell on the server-less Instant Messenger, developed by the Distributed Com-
puting Group at ETH Zurich. The decision to port exactly this application was based
on the fact that its source code was well known and its required Java packages will
probably also be core parts of possible future projects.

2.1 The Basic Concept

This special version of an Instant Messenger follows a different approach than today’s
widely used programs like ICQ or AIM. The basic idea is to have a local ad-hoc
wireless communication network which operates without any stationary hardware.
There is no central server where the users have to register, and also no WLAN access
points are required. The communication is purely based on IP broadcasts, which
means that all clients have to join a multicast group known in advance to participate
in the network.

The program offers different fuctions to deal with the problems that arise in such
an unreliable network. For example it supplies a special multi-hop layer in the com-
munication protocol to solve the problem that in an adhoc WLAN network usually
not all clients can reach each other directly, due to their restricted signal strength.
This multi-hop layer allows a sender to use other clients as repeaters for messages
that cannot reach their target directly. Like this, as long as any path from sender to
receiver exists, the message will be delivered.

The client also offers a couple of sniffing functionalities which show the local traffic
on different abstraction levels of the communication protocol, and a neat network
graph can be opened that plots the topology of the communication network, showing
all directly and indirectly reachable communication partners.



2.2 Important Java Aspects 5

2.2 Important Java Aspects

From the Java point of view, the Instant Messenger consists of several packages in-
cluding more than 60 classes. Three aspects can be seen as key components that are
essential for the program to run:

Multicast Socket: As mentioned above the communication is based on UDP/IP
broadcasts and therefore the Java MulticastSocket class is the vital component
for the exchange of messages.

Multi-Threading: Since the Instant Messenger needs to be able to send and receive
messages at the same time without locking the GUI, it runs in several threads.

Swing: Though, not as essential as the first two points, Java Swing still represents a
key component for the system: The GUI of the Instant Messenger makes use of
several Swing components, and a complete replacement of the interface would
be very time consuming.



Chapter 3

Getting Started

3.1 How to Choose a Virtual Machine

As every other hardware platform also the iPAQ requires a Java Virtual Machine
to run Java byte-code. Several companies offer different Virtual Machines for the
iPAQ which all support parts of the outdated Personal Java standard and/or parts
of the Java 2 Micro Edition (J2ME). Unfortunately every manufacturer has chosen
to include a different subset of Java packages in their product, what makes it almost
impossible to decide on one Virtual Machine for all possible tasks. It is therefore
inevitable to analyze the program that needs to be adapted and to identify all im-
portant Java packages that need to be available, before the work on the code can
begin. A good overview of the currently available solutions, their advantages and
disadvantages, offers the Semester Thesis of David Mayor from the EPFL. [1]

3.2 Jeode

After some investigations we decided to use Jeode, the Virtual Machine from Insignia,
for this project, since it offered all important packages we needed and also its general
user feedback found on the internet was mostly positive.

Advantages of Jeode:

• The java.net package including the MulticastSocket is fully supported.

• Multi-Threading is available, including synchronized functions

• Java Swing, even though not officially supported, can be refitted (also see A.2)

• Jeode comes with the iPAQ CD and can be used with an out of the box handheld
system running Windows CE 3.0

• A console mode is available. Even though it seems unnatural, there are VMs for
the iPAQ that don’t offer a simple console for printing.

• Jeode is quite sophisticated and comparatively well tested.



3.2 Jeode 7

Disadvantages:

• There is only a very poor documentation about the supported packages and
system arguments for Jeode available. Also many of the other Virtual Machines
suffer from this handicap and often one has to rely on third party information.

Till the end of the work we never regretted to have chosen Jeode, since tests with
its archrival, the Virtual Machine from NSIcom called CrEme proved that we would
have run into similar problems if we had chosen this alternative. On a side note:
Although CrEme officially supports Swing, the menu bar of the Instant Messenger
was not visible and the generated frames were always in full screen mode without any
close button.



Chapter 4

The Adaptation Process

4.1 The General Problem

Once the Virtual Machine is ready, the real work can begin. The whole development
of a Java application for the iPAQ takes place on the PC, since neither compiler
nor development environment are available on the handheld device. The major prob-
lem that arises from this fact is that debugging becomes very complicated. A pro-
gram can be compiled and tested on the PC with its Java Development Kit from
Sun Microsystems, and once the class files are copied to the iPAQ and run there,
a MethodNotFoundException will probably be the only output before the program
terminates. This happens, since the application uses Java classes which are available
on the Virtual Machine of the PC but not on the one of the PocketPC. The only
way to deal with this problem is to strip the program to a minimal skeleton and to
reactivate the components bit by bit. This means that a lot of files must be copied
from the PC to the iPAQ over and over again, which can be quite tedious, since the
throughput (especially over USB) can be very low. As soon as a missing component
is found and identified, there are two possible workarounds to fix the problem:

4.2 Solution One: Re-Implementation

If a whole class is unavailable, it may be reasonable to write an own partial imple-
mentation of the missing object. Due to the rather complicated inheritance of most of
the native Java classes, it will usually not be possible to offer a full re-implementation
of the object, but at least the missing functionality can be made available. A good
example where this solution makes sense, is the missing LinkedList class that offers
some handy functions and therefore is being used in many Java programs. A partial
re-implementation of this class might look like this:



4.3 Solution Two: Code Replacement 9

public class LinkedList{

private Vector myVector = new Vector();
public void add(Object o){ myVector.addElement(o); }
public int size() { return myVector.size(); }
public Object removeFirst() {
Object tmp = myVector.elementAt(0);
myVector.removeElementAt(0);
return tmp;

}
.
.
.

}

Advantage: The advantage of this solution is that there is hardly no need to change
the code of the application, since usually a simple import is all that needs to be ad-
justed to fix the problem. As a nice side effect of this clear separation of application
and bug fix, it will be possible to port later versions of the same program very effi-
ciently, since the changes in the old version will be easy to reapply to the new one.

Disadvantage: The drawback of this solution is that the re-implementation of the
missing objects must be seen as a hack. If at any time the existing code is going to be
extended it will be very probable that the current bug fixes will lead to several new
problems, especially if manipulated classes are being inherited.

4.3 Solution Two: Code Replacement

The other possible approach is to replace calls to missing classes or methods with calls
to existing components. Especially if a certain class is available on the handheld’s
Virtual Machine but does not support all methods it is supposed to, this solution
will usually be the better choice, since in most of those cases the class offers substi-
tutes for the missing methods. For example on Jeode the Vector class is missing the
two methods Object get(int i) and void add(Object o), but their substitutes
Object elementAt(int i) and void addElement(Object o) are available. Replac-
ing the calls to the missing methods with calls to their functional twins will do the
job most of the times.

Advantage: The advantage of this solution is that the resulting code will not ”fake”
any information to produce a running program, and so follow-up problems are im-
probable.

Disadvantage: Still, this way to solve the problem has a severe drawback as well.
Since a lot of changes at many different places in the source code are necessary, it



10 4 The Adaptation Process

will be practically impossible to recover them all at a later time. Therefore even a
small update of the original application will be very hard to include in the handheld
version of the program.

Finally both ways lead to a working iPAQ program, and so the decision which ap-
proach to take to deal with a missing component must be made case by case. Unfortu-
nately, once all the missing classes and methods are repaired, there may still be some
problems left that have their origin in the implementation of the Virtual Machine or
even are the result of a hardware problem. These bugs are very hard to track down,
since they tend to produce non-deterministic application behavior. Furthermore, due
to the fact that the code of the program seems to be correct, it is difficult to decide
where to start searching for the problem. The next section will show the worst bug
of that kind that occurred during the adaptation of the Instant Messenger.

4.4 The Worst Problem

4.4.1 The Symptoms

Once the Instant Messenger was adapted to a level where sending and receiving of data
became possible, a lot of the incoming messages were rejected by the communication
layer of the Instant Messenger with the error message: ”Unknown type received”.1 The
strange thing about this error was that the same code did not produce any problems
on the PC but only on the iPAQ. Also did the situation not get any better even
when the whole application was adapted to run on the PocketPC, and so we started
to search for the reason behind this bug. Soon it became clear that the incoming
messages were already defective at the level of UDP packets, and at the same time
a network sniffer on a PC proved that all messages which were transmitted over the
network had a correct format.

4.4.2 Expected Reasons

The first suspicion was that the MulticastSocket produced the problem, probably
due to collisions while receiving the packets. After some intensive testing it became
clear that this was not the case, since it was impossible to reproduce the problem
within the specially written test program. Of course it was possible to enforce packet
loss if there was too much traffic on the network, but all the captured packets were
fully correct. The next idea was that the CPU of the iPAQ was overloaded because of
the many threads used by the application and that this would lead to corrupted data
read from the socket. Unfortunately also this assumption could not be confirmed by
any test program, and so we had to try to find the problem somewhere else.

1This message was produced, since a high level data packet was detected to be faulty.



4.4 The Worst Problem 11

4.4.3 The Real Reason

After days of experimenting we finally found the problem lying in the definition of the
DatagramPacket that was generated to store the incoming data. The length of the
data buffer and the DatagramPacket itself was set to 0x10000, which means 65536
bytes. This is exactly one byte more than the maximum possible UDP packet size.
Calling the getLength() method of the DatagramPacket before actually receiving
data also returned exactly this correct value, but as soon as there was data stored in
the object, it became corrupted.

The only plausible explanation we found for this behavior is that the mobile Vir-
tual Machine must have been optimized to run with a minimal amount of memory
and therefore does not expect a DatagramPacket to be bigger than the maximum
UDP packet size. This thesis is supported by the fact that, as soon as we reduced the
packet size by one byte, the error disappeared and never showed up again.



Chapter 5

Conclusion

5.1 The Program

The last release of the adapted Instant Messenger is now working on the iPAQ and
supports all features of the original version. Tests with several clients on other ma-
chines forming a communication network showed that the handheld device is capable
of dealing with the traffic of six and more clients. Precise tests to determine the
maximum number of clients the iPAQ could deal with were unfortunately not pos-
sible, since there were not enough peer computers available. Experiments with more
than one instance of the original program running on a computer were also not really
helpful, since the instances interfered with each other and the whole network became
unstable very fast. The biggest remaining nuisance is the very slowly responding GUI.
Swing obviously demands too much computing power to run at a reasonable speed on
the iPAQ. For the Instant Messenger application the resulting delay is still acceptable,
but for programs that require more interaction with the user, another GUI library
will be necessary (also see A.2). Nevertheless Jeode has proved, that it can handle
a sophisticated Java application, and that it certainly represents a good choice for
further projects.

5.2 Personal Experience

Working on this project was for sure an interesting experience since it was exciting
to see what problems can occur if an ”exotic” hardware platform tries to run default
software. It turned out that the ”‘Write once, run Anywhere”’ slogan often propagated
in the Java context should not be taken too literally, since the degree of portability
depends heavily on the quality of the implementation of the Virtual Machine.

There were times when the work was very tedious and frustrating, especially if
an unexplainable bug stopped the progress for several days, but solving these bugs in
the end was all the more rewarding.

Finally, the information listed in the following appendix, will hopefully help an iPAQ
newbie to get started and perhaps to avoid some of the problems we had to deal with.



Appendix A

Tips and Tricks

A.1 Getting Started

Q: Where can I get Jeode and how do I install it on the iPAQ?
Jeode can be found in the corresponding folder on the iPAQ CD-Rom. To install the
software, just start the .exe file in this folder, and the installation will be executed
automatically. (This requires an installed version of Active Sync on the PC)

Q: Where can I get the Win CE/PocketPC Driver for my Cisco Aironet
350 WLAN adapter?
The necessary driver and configuration tool for the Cisco Aironet 350 WLAN adapter
can be downloaded from the Cisco homepage [2]. Make sure to get this version:
”Windows CE 3.0 (Pocket PC 2002)”

Q: How should I transfer my programs to the iPAQ?
If a lot of small files have to be transferred from the PC to the iPAQ, the throughput
over USB is less than 3 kB/s. If the transfer is done over WLAN, at least a value of
about 30 kB/s can be reached. Therefore either set-up Active Sync to use WLAN
or just use the Windows network directly to copy your data to the handheld.
To do this you have to share the PC folder containing your files for the iPAQ over
the Microsoft Network (Usually possible by right-clicking the folder). Once the PC is
ready start the File Explorer on the iPAQ and choose to open a remote source
by clicking on the Open button at the bottom of the screen. A pop-up window
will open and ask for a URL. Enter the path to your shared data folder on the
PC (e.g. \\myPc\theDataFolder\) and click OK. If everything works correctly, you
should be able to copy the files from the PC now. To paste them into the memory
of the iPAQ, switch to the folder where you want to put them (choose the first of
the three icons in the toolbar at the bottom of the screen to get back to the iPAQ
memory) and click on Edit->Paste

Q: Which Java compiler should I use?
Even though you can use any Java compiler, using a Sun SDK of version 1.4 or



14 A Tips and Tricks

newer seems to produce problems. A good solution is to get a copy of the outdated
jdk1.1.8 and to compile your program with this development kit. Since Personal
Java was based on Java 1.1, it is missing many of the modern Java classes, and using
this old compiler will help you to identify those at compile time already and not only
when you try to run your application on the iPAQ.

Q: How do I set-up Eclipse to use a special compiler?
Eclipse insists on using its own Java compiler but it allows to specify the Runtime
Environment used to run a program. According to this Runtime Environment Eclipse
also highlights compatibility problems during development time already. Therefore
setting the Runtime to 1.1.8 will help a lot to find nonexistent Java components fast.
The Runtime Environment can be changed under

Window->Preferences->Java->Installed JREs

Of course the JRE 1.1.8 must be installed first before it can be used in Eclipse.

A.2 Jeode

Q: How can I prevent the console from closing when my program terminates?
By default Jeode closes the console as soon as a program terminates (also in case of
an exception). To prevent this, add the following parameter to your call:

-Djeode.evm.console.local.keep=TRUE

Q: I only need to see the first screen-full console output, can I prevent
Jeode from scrolling?
Just add this parameter to your program call:

-Djeode.evm.console.local.paging=TRUE

Q: How do I create a link?
The command line parameters for Jeode become quite long and since the input with
the pen is not very efficient, it makes sense to create a link for every of your Java
applications. To do this, do the following:

1. Create a link on the iPAQ to the file evm.exe (if you have a default installation,
this file should be in the folder \windows\)

2. Copy this link to the PC using Active Sync or the Windows network.

3. On the PC, start a text editor of your choice and open the link file. (Right-
clicking on the file will not work) The content of this file should look like this:

18#"\Windows\evm.exe"1

1A link has always the form NUM#”URL” where NUM is the number of characters of the
URL plus 2 for the leading and closing ”



A.2 Jeode 15

4. Add the command line parameters after the closing ”. For example the link to
one of our test programs looked like this:

18#"\Windows\evm.exe" -cp \swingall.jar MCS 100

5. Save the link and copy it back to the iPAQ.

Q: Can I use Swing on Jeode?
Insignia officially denies that Jeode supports Swing but clever users have discovered
that the incompatibility between Swing and Jeode is caused by a small bug in the
Swing 1.1.1 package which can be fixed easily:

1. Get Swing 1.1.1 [4]

2. In the Swing package you downloaded, there will be a src.zip file. Unzip it.

3. In the Javax\Swing subdirectory there will be a SwingUtilities.java file.

4. Go to line 677 of that class:
Method m = Class.class.getMethod("getProtectionDomain", null);

5. Replace this line with:
Method m = Class.class.getMethod("getPackage", null);

6. Save and compile the file.

7. Move the swingall.jar file from the download directory to the main directory
of the extracted zip file. It should be where the Javax directory is.

8. Open up the command prompt and goto this directory.

9. Enter: jar uvf swingall.jar javax\swing\SwingUtilities.class
to update the class in the jar file.

The resulting swingall.jar can be included in the classpath to enable Swing support
for the application

Q: Does it make sense to use swing on the iPAQ?
Some applications depend heavily on swing and will need this library at any cost. In
this case and for some first tests with a partially adapted application it makes sense
to use Swing on the iPAQ. For programs that require a lot of user input though,
Swing is definitively not the way to go. Besides the dull reaction time on user input,
also the startup time of the application becomes ridiculously long. Just to load a test
program with one JFrame containing one JButton and one JLabel, the iPAQ needs
about 30 seconds. For real applications the startup time will be between 40 and 90
seconds.
Since it is difficult to rely on pure awt and still to get an appealing GUI, the use
of special interface libraries is recommendable. An interesting freely available awt



16 A Tips and Tricks

extension is called thinlet[5]. Even though it is still under development, this open
source project already offers a lot of components, which are all based on AWT. It
is therefore compatible with virtually any Java version starting from Java 1.1 and
also runs perfectly on Jeode. A very short test with a demo application provided by
the thinlet download package showed some very promising results. The application
loaded much faster than a comparable Swing program, and also the delay between a
click with the pen and the reaction of the GUI was much smaller than with Swing.

Q: Does Jeode support jar files?
Yes, jar files are supported, but there is no "java -jar" option to start them. Since
Jeode does not read the manifest to find the main class, it is not possible to have a
self-starting jar file anyway. To use a jar file, just include it in the classpath and call
the main class manually.

A.3 Debugging

Q: Can I use the Personal Java Emulator (pjee) from Sun Microsystems
to test my programs?
Maybe. . . Unfortunately we could not get it to start our program, since it obviously
does not support the inclusion of the swingall.jar we needed. If your application
does not use Swing, you should give pjee a try. You can get it for free from here [3]

Q: An exception prints too much information on the console and the in-
teresting part scrolls out of the window. How can I find out where the
exception happened?
The best way is to redirect the error stream to a log file. To do this add the following
line to your program:
System.setErr(new PrintStream(new FileOutputStream("logfile.txt")));
Like this all exception messages will be written to the file logfile.txt in the root
directory of the iPAQ.

Q: My program just stops working but does not terminate either,
what now?
Remove all programs from the memory and restart your program and/or remove
-Djeode.evm.console.local.paging=TRUE from your programm call!
During the development of our application we faced the problem that the program
just stopped running at a certain point in the code. It did not crash and termi-
nate but just didn’t continue its execution any more. Since the problem happened
at a place where a programming error was impossible (setting the text of a label)
we started to examine other possible reasons. Finally we found out, that as soon as
Active Sync was loaded into the memory of the iPAQ, our application failed (even
if Active Sync was inactive). Removing the synchronisation tool from the memory
(System->Settings->Memory->Applications) solved the problem. Also the Jeode
console parameter -Djeode.evm.console.local.paging=TRUE produced a similar



A.3 Debugging 17

problem for a while.
With the final version of the Instant Messenger the error cannot be reproduced any
more, and it is unknown what caused it in the first place.

Q: Why can’t my application find its data files?
You are probably trying to use a relative path to your file. Jeode always uses the
iPAQ root menu as its working directory, which means all paths need to be written
in their absolute form (e.g. \myProgramFolder\dataFiles\data.dat)



Bibliography

[1] David Mayor: Comparaison de Machines Virtuelles Java pour PDA.
Semester Thesis EPFL (2002)
http://lsrwww.epfl.ch/cavin/work/manet/mayor02.pdf

[2] Driver and configuration tool for the Cisco Aironet 350 WLAN adapter
http://www.cisco.com/pcgi-bin/Software/WLAN/wlplanner.cgi

[3] Personal Java emulator
http://java.sun.com/products/personaljava/pj-emulation.html

[4] Download for Java Swing 1.1.1
http://java.sun.com/products/jfc/download.archive.html

[5] Thinlet awt extension homepage
http://www.thinlet.com

http://lsrwww.epfl.ch/cavin/work/manet/mayor02.pdf
http://www.cisco.com/pcgi-bin/Software/WLAN/wlplanner.cgi
http://java.sun.com/products/personaljava/pj-emulation.html
http://java.sun.com/products/jfc/download.archive.html
http://www.thinlet.com

	Introduction
	The Given Program
	The Basic Concept
	Important Java Aspects

	Getting Started
	How to Choose a Virtual Machine
	Jeode

	The Adaptation Process
	The General Problem
	Solution One: Re-Implementation
	Solution Two: Code Replacement
	The Worst Problem
	The Symptoms
	Expected Reasons
	The Real Reason


	Conclusion
	The Program
	Personal Experience

	Tips and Tricks
	Getting Started
	Jeode
	Debugging


