
Ins titut fü r
Tec hnis c he Informatik und

K ommunikations netze

Caspar Schlegel

Realtime UDP NetFlow Processing
Framework

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

c(
b)

b

function c(b)

cb

filter

sampled ti tj

cj

* * *

+

c(b)
flush coefficient

*

b
buffer fill ratio

to

flows in

...

...

* *

Average
of n

elements

working
point

Diploma Thesis DA-2003.26
May 2003 to September 2003

Supervisors: Thomas Dübendorfer, Arno Wagner
Professor: Bernhard Plattner

Abstract

For the detection of an ongoing infection or attack phase of a distributed denial of service attack
it is important to be able to characterize the current Internet traffic. Therefore network pack-
ets containing NetFlow data periodically generated by Cisco routers have to be captured and
buffered. Near realtime plugins can process the data. For optional resending of the received
data on a network, bursts in the input traffic have to be filtered out. From different possible de-
signs of such a receiving framework a variant has been chosen and implemented where shared
memory buffers circulate between the data capturing entity and the framework clients. The im-
plemented framework offers a function library to easily implement client plugins. This library
also contains a traffic shaping unit which filters out the data bursts and generates a smooth
traffic characteristics. The framework has been tested with simulation data and data from an
Internet provider backbone router.

Um eine laufende Infektions- oder Angriffsphase einer distributed denial of service Attacke
zu erkennen ist es wichtig, den aktuellen Internet-Verkehr charakterisieren zu können. Hierzu
müssen Netzwerk-Pakete, welche NetFlow-Daten enthalten die periodisch von Cisco-Routern
generiert werden, aufgefangen und gebuffert werden. Near-Realtime-Plugins bearbeiten die-
se Daten. Falls die Daten über ein Netzwerk weitergesendet werden, müssen Lastspitzen in
der Datenrate geglättet werden. Unter verschiedenen möglichen Designs eines solchen UDP-
Empfangs-Frameworks wurde eine Variante gewählt und implementiert, welche mit Shared-
Memory-Buffern arbeitet. Diese Buffer zirkulieren zwischen dem Daten-Empfänger und den
Framework-Clients. Das implementierte Framework bietet eine Funktionsbibliothek an, mit der
einfach Client-Plugins erstellt werden können. Diese Funktionsbibliothek enthält des weiteren
eine Traffic-Shaping-Einheit, welche Datenhäufungen vermeidet und eine glatte Verkehrscha-
rakteristik produziert. Das Framework wurde mit simulierten Daten und auch mit Daten eines
Internet Provider Backbone Routers getestet.

Contents

1 Motivation 4

2 Problem 5

2.1 Today’s situation . 5

2.2 Requirements for the plugin framework . 6

2.3 Possible solution: in Hardware . 6

2.3.1 Custom Flow Replicator Hardware . 6

2.4 Possible solution: in Software . 6

2.4.1 Extending Fromplicator/Samplicator . 7

2.4.2 Extending another NetFlow Receiving Framework 7

2.4.3 Result of the evaluation: Implementation of a new Framework 7

2.5 Data Buffering . 7

2.5.1 Buffer Switching . 7

2.5.2 Circulating Memory Segments . 8

2.6 Chosen Design and the Design Requirements 9

3 Design 11

3.1 Writer Process . 14

3.2 Reader Plugins . 15

3.3 Management Process . 15

3.3.1 Request Processing: commandDispatcher() 16

3.3.2 Memory Management and Statistics: memoryCycle() 17

3.3.3 Sleep . 19

3.4 Watchdog Process . 19

3.5 Statistics Watcher . 19

3.6 Configuration . 19

4 Implementation Details 20

4.1 Communication between Processes . 20

4.1.1 Via Named Pipes . 20

4.1.2 Via Shared Memory . 21

4.2 FIFO Algorithm . 22

4.2.1 Ring Buffer . 23

4.2.2 Responsibility Domains . 24

1

CONTENTS 2

4.3 List processing . 24

4.3.1 Requirements . 24

4.3.2 Storage of the Lists . 24

4.3.3 Distances . 25

4.4 Crash Recovery . 25

5 Traffic Shaping 27

5.1 Input Traffic Characteristics . 27

5.2 Output Traffic Speed Calculation . 28

5.3 Rate Limiting and Output Traffic Generation . 31

6 How to write a Plugin 34

6.1 Forwarding Plugin using the TrafficShaper . 35

6.2 Local Plugin . 36

7 Testing and Validation 40

7.1 First Setup: Simulation of NetFlow Data . 40

7.1.1 Setup . 40

7.1.2 Results . 41

7.2 Second Setup: Real Data at Switch . 41

7.2.1 Setup . 41

7.2.2 Results . 41

7.2.3 Discussion . 44

7.3 Third Setup: UDP Forwarding Setup . 44

7.3.1 Setup . 44

7.3.2 Results . 45

7.4 Fourth Setup: High Load on Gigabit Ethernet . 48

7.4.1 Setup . 48

7.4.2 Results . 49

8 Other Use of the Framework 51

8.1 Message Broadcast System for Wireless Networks 51

9 Related Work 52

9.1 CAIDA cflowd . 52

9.2 Cisco Network Data Analyzer . 52

9.3 Netfltools . 52

9.4 Crannog Software Netflow Monitor . 52

CONTENTS 3

10 Further Work 53

10.1 Plugins . 53

10.2 Surveillance via RRDTool . 53

10.3 TrafficShaper . 53

10.3.1 Additional corrective measures . 53

10.3.2 Port to a realtime operating system . 53

10.4 NetFlow V9 . 54

11 Summary 55

11.1 Design and Implementation . 55

11.2 Major Challenges . 55

11.3 Conclusion . 55

A Interfaces 57

A.1 Read Plugin Library . 57

A.2 Write Library . 59

A.3 Watchdog Library . 60

A.4 Logging . 61

B Deployment and Usage of the System 62

B.1 Building the System from Source Code . 62

B.1.1 Source Distribution . 62

B.1.2 Installation . 63

B.1.3 More than one Framework . 63

B.2 Command Line Options . 64

B.3 Configuration . 65

B.3.1 Manager Configuration File Format . 66

B.3.2 Writer Configuration File Format . 66

B.3.3 Runtime Configuration . 66

B.4 Statistics and Alerting . 67

B.4.1 Statistics Viewer Mode . 67

B.4.2 Alerting Mode . 69

B.5 System and Maximum Memory Requirements . 69

C Original Task 70

D Timetable 73

Chapter 1

Motivation

The subject of the DDoSVax research project is the following (taken from the project home page
[2]):

“Distributed Denial of Service Attacks are a growing threat to the whole Internet. The DDoS-
Vax Project researches possible detection and analysis algorithms, general attack mitigation
strategies and possible (semi-)automatic countermeasures.

The DDoSVax Project’s objectives are

• Detection of infection phases while infection takes place

• Detection and analysis of massive DDoS attacks when they start in near real-time.

• Provision of methods and tools that support countermeasures during both phases.

To achieve these objects data of the current and past Internet traffic has to be gathered. Having
the possibility to process the Border-Gateway-Router generated NetFlow-Data1 of a Backbone
Provider (in our case of SWITCH), one can study all flows which cross the boundary of the
Switch-Backbone.”

The Realtime UDP NetFlow Processing Framework provides a research workbench to experi-
ment with different algorithms working on NetFlow.

This framework should provide the following key functionality to it’s client plugins:

• Reception of the NetFlow data from several routers

• Provision of a buffering mechanism to cope with bursts of data

• Protect the client plugin from the bulky traffic characteristics generated by the routers

• Provide watchdog functionality for the clients

With this framework, it is save to experiment with different types of detection algorithms because
the client plugins are protected from each other, the crash of one will not lead to disruption of
the framework functionality for the other clients.

1NetFlow is Cisco’s data format for collecting IP data flow statistics entering router or switch interfaces, uses UDP
packets and is described in [3]

4

Chapter 2

Problem

2.1 Today’s situation

There exist tools (Fromplicator and Samplicator, [1]) from SWITCH which collect the produced
NetFlow data from the routers, do a protocol conversion from NetFlow version 7 to NetFlow
version 5 while at the same time filling in fields not provided by the router and send the UDP
packets to other hosts which process the data for example for accounting and billing reasons.
This tool chain runs on x86 based machines with Linux as operating system.

machine 2machine 1

Fromplicatorbulky Fromplicatorbulky AccountingS S

Figure 2.1: Status Quo

This solution has some drawbacks, especially

• There is no plugin support. The only possibility to add or remove subscribers of the data is
to reconfigure the tool chain (see below).

• It has a static configuration. For reconfiguration the tools have to be restarted, which implies
data loss. For example it is not possible to add new receiving hosts at runtime, but as a
research workbench, it is required that it is be possible to add and remove targets without
interrupting the data capturing since during development plugins have to be tested with real
world data without interrupting productive plugins

• The UDP reception functionality has to be implemented for every member of the tool chain.
As the routers cache the NetFlow Data and flush every few seconds, the traffic is very
bursty. This burstyness is preserved during the forwarding in the tool chain. This leads to
the need of very large socket buffers for each process in the tool chain1.

• This bursty traffic is forwarded on the Switch networking backbone to the central processing
facility. This leads to congestion in the backbone and again to data loss.

1Socket buffers under Linux are per default rather small. Because of that and the fact that Linux does not have
realtime scheduling, bursty traffic leads to data loss.

5

2.2. REQUIREMENTS FOR THE PLUGIN FRAMEWORK 6

2.2 Requirements for the plugin framework

It’s the goal of this Diploma Thesis to design a Realtime UDP NetFlow Processing Framework as
a workbench for the further analysis of the NetFlow Data Stream. One can define the following
requirements for the framework:

• The data is as complete as possible.

• The framework is runtime configurable.

• All data that is resent from the framework is debursted. There is an optional rate limit
imposed on the data stream.

• The framework provides a data buffering mechanism

• There is a plugin mechanism, plugins can join and leave the framework at any time.

• No plugin can ever hinder other plugins.

• Optionally, plugins are on surveillance by a watchdog process

• Statistics over several aspects of the framework are generated

2.3 Possible solution: in Hardware

2.3.1 Custom Flow Replicator Hardware

NetFlow data
 stream

reader
process

reader
process

reader
process

Figure 2.2: In Hardware

The replication of the data in multiple output streams can be done very efficiently in hardware.
Plugins could be implemented by designing extension cards using co-processors or by using
reconfigurable hardware (for example with FPGA’s).

This solution is expensive as it is not widely available like PC hardware.

It is not suitable as experimental research platform because either new extension cards have
to be constructed and built or algorithms have to be implemented in hardware description lan-
guages like VHDL. There is no easy and fast way to test a prototype of some algorithm.

2.4 Possible solution: in Software

Using a PC as basis for the Network Receiving Framework has the advantage that the hard-
ware is widely available and cheap compared to custom built hardware. Algorithms can be
implemented using well known programming languages, ideas can be tested using scripting
languages. The development cycles are fast.

2.5. DATA BUFFERING 7

2.4.1 Extending Fromplicator/Samplicator

One possibility for the implementation would be the extension of the existing Fromplicator/Sam-
plicator tools like described in chapter 2.1 with the missing functionality. As practically all re-
quired functionality is missing this corresponds to a new implementation of such a system.

2.4.2 Extending another NetFlow Receiving Framework

There exists the traffic flow analysis tool cflowd from CAIDA [4]. It implements the receiving
of NetFlow data, the processing of the data and the storage of both raw NetFlow Data and
of derived statistics. The buffering of the data is done using the “Buffer Switching” technique
which has some major drawbacks like limited buffer space or high latency. See chapter 2.5 for
a discussion of different buffering techniques and their advantages and disadvantages.

It would have been possible to extend a third party framework with the missing functionality like
extended buffering, plugin functionality and a traffic shaping facility. This would have meant a
major rework of all parts of cflowd as for example the processing of the data is done monolith-
ically in the cflowd process. One would have had to extend the buffering facility, to implement
the traffic shaping facility etc.

The only part that would stay untouched would be the receiving part but it would have required
a considerable amount of time to understand the existing data structures and to find locations
where the desired functionality could have been added.

2.4.3 Result of the evaluation: Implementation of a new Framework

Because of the reasons stated above neither extending Fromplicator/Samplicator nor extending
another framework like CAIDA would taken considerably less time than implementing a new
approach of a receiving framework. Another advantage is that a custom built framework can be
tailored exactly to it’s employment’s needs, therefore all requirements stated above can be met.

The variant finally chosen is to build a new framework while recycling some code from Sampli-
cator in order not to have to implement basic code like reception of an UDP packet etc.

2.5 Data Buffering

The buffer component is one of the crucial components of the system. During the implementa-
tion two different approaches have been tested:

2.5.1 Buffer Switching

This is the first mechanism considered for a preliminary version of the framework and is also
implemented in the CAIDA Traffic Flow Analysis Tool cflowd[4]. Therefore it is explained with
cflowd as example:

Two shared memory segments2 are used. The received data is entered in one segment by
cflowdmux while cflowd reads the data from the other segment. As soon as cflowdmux has
finished filling the first segment, these two segments are interchanged, the segment formerly
read by cflowd is now written on by cflowdmux and vice versa.

Despite of it’s simplicity this approach has some major drawbacks which makes it unusable for
our needs and therefore was replaced with another approach, “Circulating Memory Segments”:

Looking at the requirements defined above, One can find the following drawbacks:

2In this thesis the term “shared memory” is always used as a synonym to “System V Shared Memory”, a Unix kernel
facility where multiple processes can share memory. Each memory segment is identified by a shared memory key
(analogical to a file name) and a shared memory identifier (analogical to a file descriptor)

2.5. DATA BUFFERING 8

buffer 1

buffer 2

cflowmux

buffer 1

buffer 2cflowmux

cflowd

buffer 1 completely filled,
buffer 2 completely read

cflowd

NetFlow data
 stream

NetFlow data
 stream

Figure 2.3: Switching Buffers

The data should be as complete as possible. Due to the limited socket buffer of the Linux
kernel to prevent data loss the receiving component has to gather the data from the socket buffer
as fast as possible. During the switching of the two shared memory segments the reading
and writing process have to be synchronized. In the example of cflowd, this is achieved by
semaphores. It is possible that the receiving component looses data during waiting for this
semaphore.

The framework should provide a data buffering mechanism. As this solution only uses two
memory segments to provide a significant amount of buffer space (approx. 100M) these seg-
ments have to be very large, which leads to a huge amount of latency, these memory segments
would be allocated statically and could not grow or shrink which causes a big memory footprint.
As this buffering mechanism is one of the desired key features of the framework, this solution is
not applicable.

2.5.2 Circulating Memory Segments

The “Circulating Memory Segments” solution is the replacement solution for the “Buffer Switch-
ing” approach considered first for the framework. It fixes the shortcomings stated above and
also implements the plugin functionality.

There are not only two shared memory segments available but a variable number of shared
memory segments. These segments circulate between the writing component and the reading
components.

As seen in figure 2.4, a shared memory segment is taken by a Memory Management Process
from a free memory segment repository in step 1. It’s then passed in step 2 to the Writer
Process which subsequently fills this shared memory segment with received UDP payloads and
passes it (step 3) back to the Management Process. As we’ll see in chapter 3 there’s no locking
required in moving segments from or to the Writer Process.

In step 4, the now filled segment is enqueued in the Read List. The segment is then read by
Reader Processes (Client Plugins). Each Client Plugin can access this list on a different position
and individually advances to younger segments (step 5). There is a client library which provides
a iterator-like functionality to the Reader Processes: A Reader Plugin is locked on a certain
shared memory segment, therefore all operations working on a shared memory segment work
on this particular segment. The plugin can get all UDP-Payloads stored in that shared memory
segment and then switch to the next shared memory segment via the advance primitive. The
framework guarantees that locked segments are never being overwritten or deleted without
noticing the client plugin (later more on this).

As soon as a segment is read by all Client Plugins, it is dequeued from the Read List (6) by
the Management Process and put back into the Free List (step 7) where it moves to the head

2.6. CHOSEN DESIGN AND THE DESIGN REQUIREMENTS 9

Writer
Process

Reader
Process

segment

segment

segment segment

segment segment segment

Management
Process

1

4 6

7

5

8

2

3

Reader
Process

Reader
Process

NetFlow data
 stream

Read List

Free List

Figure 2.4: Circulating Memory Segments

(8) and is later again consumed by the Manager (step 1), which closes the Life Circle of a
shared memory segment. It has to be noted that while circulating the content of the shared
memory segment is never copied, it is merely an identifier the operating system assigns to a
shared memory segment (shared memory Id, ShmemId) that is enqueued in the different lists
and copied around. (As a matter of fact, shared memory segments are not attached to the
address space of any process most of the time...)

2.6 Chosen Design and the Design Requirements

The chosen design uses the “Circulating Segments” buffer. In addition to the reader and writer
used in the Buffer Switching approach, this it uses a central arbiter: the Management Process.
This process has several duties:

• Maintaining the Life Cycle of a shared memory segment as described above.

• Handling of plugin attaches and detaches of the Writer Process and the Client Plugins

• Handling of internal sequence numbers to ensure data consistency

With the help of some additional processes this design approach fulfills the stated requirements:
(the mentioned mechanisms are explained in detail in the next chapter)

The data is as complete as possible. Using lock- and wait free data structures as decoupling
device between the Management Process and the Writer Process the latter can concentrate on
receiving UDP packets and writing them into the buffer. In contrary to the “Buffer Switching” ap-
proach from above the Writer Process never has to wait for a Semaphore or something similar.

2.6. CHOSEN DESIGN AND THE DESIGN REQUIREMENTS 10

The data consistency is maintained with sequence numbers: in case the framework looses a
memory segment, the clients are notified.

The framework is runtime configurable. The configuration resides in a central shared mem-
ory segment. Every time a component needs a configurable value, it is directly taken from this
configuration repository. The configuration can be altered with a configuration tool at runtime.

All data that is resent from the framework is debursted. There is an optional rate limit
imposed on the data stream. The framework provides the clients an optional traffic shaper
mechanism which flattens and limits the data speed. Clients resending the data over the net-
work will use this mechanism while clients working locally with the data work at full speed and
minimal latency.

The framework provides a data buffering mechanism As there are more than two seg-
ments circulating in the framework, there can be a variable number of segments waiting to be
read. So, small bursts of data can be flattened out. Because there is not only one memory
segment Reader Plugins can work at their own speed. It is possible that a Reader Plugin stops
reading data for a moment, for example during garbage collection, disk access or while resend-
ing data via TCP, and can catch up later.

There is a plugin mechanism, plugins can join and leave the framework at any time. The
Management Process administrates the attached plugins and allows a plugin to join or leave the
framework at any time.

No plugin can ever hinder other plugins The plugins individually process the data segments
provided by the Management Process. If a plugin is too slow or crashes during the processing
of a memory segment, the manager steals this segment from the plugin when this memory
segment has to be reused for fresh data.

Optionally plugins are on surveillance by a Watchdog Process. There is a watchdog client
library the plugins can use for the communication with a Watchdog Process. With the help of
this library, the plugin sends heartbeat messages to the Watchdog Process. If a process stops
sending these heartbeat messages, it is restarted after a configurable amount of time.

Statistics over several aspects of the framework is generated. As all data segments are
circulated through the framework by the Management Process, this process can gather statistics
over several parameters of the framework.

Chapter 3

Design

The taken design follows the mentioned “Circulating Buffers” approach. Figure 3.1 shows a
more exact picture of a shared memory segment life cycle as it is implemented in the framework.

The different functional units of the framework, like Management Entity, Writer and Reader Plu-
gins can be implemented as threads of one process or each as one process. For the desiderata
of the framework the thread approach has several shortcomings:

• If one of the threads catches a operating system exception (like a segmentation fault etc.)
the whole process and therefore the whole system crashes.

• Every thread potentially can damage data structures of the other threads, therefore a badly
programmed Reader plugin can crash the whole system

• Using System V Shared Memory has the welcome side effect that it is not bound to a
lifetime of a process. In contrary to the memory shared between threads, System V Shared
Memory survives the crash of the whole framework and the data later can be recovered.

Therefore the functional units are chosen to be processes.

11

3 Design 12

tra
m

gm
t's

 re
sp

on
sib

ilit
y

do
m

ai
n

wr
ite

r's
 re

sp
on

sib
ilit

y
do

m
ai

n

Fr
ee

Bu
ffe

rT
o-

Tr
as

hB
uf

fe
r (

8)

fre
e

bu
ffe

r

ol
de

st

re
ad

 b
uf

fe
r

yo
un

ge
st

re

ad
 b

uf
fe

r

wr

Re
ad

Bu
ffe

rT
o-

Fr
ee

Bu
ffe

r (
4)

,
Ch

ec
kS

pa
ce

-
Re

ad
Bu

ffe
r (

5)

wr

Tr
as

h
wr

ite
 p

os
itio

n

Ad
dT

oF
re

eB
uf

fe
r (

2)

ne
w

bl
oc

ks

Fr
ee

Bu
ffe

rT
oF

re
eF

ifo
 (3

, 7
)

Re
ad

Fi
fo

To
Re

ad
Bu

ffe
r(6

)

Tr
as

hB
uf

fe
rT

o-
Fr

ee
Bu

ffe
r (

1)

FI
FO

FI
FO

re
ad

er
re

ad
er

bl
oc

k
de

le
te

d

Ti
m

eo
ut

Tr
as

h
(9

)

lis
t c

ha
in

in
g

life
cy

cle
 o

f a

Sh
ar

ed
 M

em
or

y
Bu

ffe
r

la
te

re
ad

er

F
ig

ur
e

3.
1:

Li
fe

cy
cl

e
of

S
ha

re
d

M
em

or
y

S
eg

m
en

ts

3 Design 13

The basic life cycle is exactly as explained in figure 2.4. To lessen the used memory of the
framework during quiet periods of network load, the number of shared memory segments circu-
lating in the framework is not fixed but can grow and shrink dynamically, the memory footprint is
bounded though. This leads to certain design requirements:

• To guarantee that the Writer Process has always free segments, the Management Pro-
cess has to ensure that the list of free segments has always a certain length. If this length
falls below a certain limit, new segments are requested from the operating system and en-
queued. The reason why this is not done by the Writer Process itself is that each operating
system call is a point where a Linux kernel can preempt a process and set another process
in the state “running”. By loosing processor time, the probability of loosing data because of
a socket buffer overrun increases.

• To lessen the memory requirement after an incoming burst of data, shared memory seg-
ments have to be freed if the length of the free segment list exceeds a certain limit.

• A to be freed segment is entered into the Trash List where it is held for a certain grace
period and subsequently deleted. This Trash List helps Reader Plugins which still read a
to be freed memory segment to be able to finish reading the segment. If a new burst of
incoming data should lead to a need of empty memory segments, these are taken from the
Trash List, as this is cheaper than requesting new segments from the operating system.

• Only if the Trash List is empty, the Management Process will request new shared memory
segments from the operating system.

The Framework is split into simultaneously running processes as shown in figure 3.2. Therefore
it is important to address the problems of concurrent accesses from more than one process to
some data structure.

To address concurrency problems, I established the notion of a Responsibility Domain (RD). A
RD designates domains where one process has the guarantee that no other process will ever
interfere with the data therein. One can identify two RD’s in the framework:

The Management Process is responsible to feed empty segments to the Writer Process, to
collect them and to provide access to the Client Plugins.

The Writer copies the UDP payload into the provided segments.

The Reader Plugins never work with shared memory segments. All accesses are delegated to
the Management Process and the Reader Process never has direct access to the Read List, so
the Read List completely lies in the Management Process’ RD.

The two identified RD’s can be seen in figure 3.1.

There are two possible conflicts at the border between the identified RD’s: These arise when

• The Management Process passes segments from the Free List to the Writer and

• The Management Process gathers a filled segment from the Writer and passes it to the
Read List.

A FirstInFirstOut(FIFO)-buffer is used as a decoupling element between two RD’s. The FIFO is
split in two parts, each part lies in one of the two RD’s. The FIFO now allows a one way flow of
data between the two RD’s.

The implemented FIFO therefore defines one side as Producer and one as Consumer. At the
moment it suffices to understand that the FIFO implemented allows concurrent access of both
the Producer and the Consumer at the same time without any required locking. For more details
of the implementation of this FIFO see chapter 4.2.

As seen in figure 3.2 in addition to the Management Process, the Writer Process and the Reader
Processes there exists a Watchdog Process, a Monitor Facility and a Configuration Facility. The
function of all mentioned processes will now be explained in turn.

3.1. WRITER PROCESS 14

Plugins

Socket
Buffer

writer
process

reader1

reader4

reader5

Disk
buffer

Disk/
DB

TCP

UDP

write to

other
 functionality

mgmt
Process

reader2

reader3

Config
Data

Shared-
Mem
Buffer

Flow
Splitter

separated by
sender IP,
engine type, ...

External discrete
Components

Netflow Receiving
Plugin Framework

Statistics
Data

Config
Tool

Monitor

Administrator
Tools

Watch-
dog

requests to
mgmt
data flow

configuration
access
watchdog
activity

Figure 3.2: Architecture

3.1 Writer Process

The Framework is designed in such a way that the Writer Process is as simple as possible.
Library routines hide the communication between the Writer Process and the Manager as well
as the access to the FIFO. For am explanation of the usage of libwrite, please see chapter A.2,
for information about the communication between processes of the framework chapter 4.1.

i n t main (i n t argc , char ∗∗argv) {

/* writer specific initialization like opening UDP socket
* etc .
*/

initialize () ;

writerAnnounce () ;
while (1) {

data = getUdpPacket () ;
statistics () ;
writerPut (data , s izeof (data)) ;

}
}

Listing 3.1: Writer Skeleton (simplified)

Before using the Framework, the Writer Process has to announce itself at the Management
Process. Libwrite sends an announce packet to the named pipe of the Manager (see chapter
4.1.1). The Management Process replies by sending the answer to the named pipe of this
Writer. It includes the ShmemId of the central administration memory space, called adminpage.
The contents of this structure is explained in chapter 4.1.2. The library function attaches the
adminpage and has now access to configuration, common data structures and the ShmemId’s
of the two FIFO’s. With this information the library can attach to the FIFO. Specific information

3.2. READER PLUGINS 15

about the use and implementation of the FIFO can be found at chapter 4.2. One has to note
that all these complicated actions are hidden from a programmer and happen in the background
steered by the function library. The programmer of a Writer process can use these function calls.

The Writer now can start receive the (bursty) UDP traffic. The Library consumes a shared
memory segment from the Free FIFO. The network packets buffered in the socket buffer of the
operating system are now read and copied into the shared memory segment. There are logical
receivers which receive the data from exactly one set of routers. Statistics is gathered about
these receivers, for example how many packets are received on this receiver or how fast.

At some time the memory segment is filled with UDP payloads. The framework then detaches
the segment and produces (copies) the ShmemId into the Read FIFO. Thereafter it consumes
a new shared memory segment from the Free FIFO and continues copying.

3.2 Reader Plugins

The Reader Plugins are the Clients of the Framework. They will contain various functionality like
statistical algorithms which check the data stream, forwarders which send the received data to
External Discrete Components or store procedures which save the data to disk. How one writes
a Reader Plugin using the TrafficShaper or by using the underlying library calls is described in
chapter 6.

i n t send (bufferPacketp_t data , i n t result) {
/* perform plugin functionality */

}

i n t main (i n t argc , char ∗∗argv) {

/* Reader Plugin specific initialization like opening files */
initialize () ;
readerAnnounce () ;
readerTrafficShaper (maxBandwidth , send) ;

}

Listing 3.2: Reader Skeleton using TrafficShaper (simplified)

The first step is again the announce at the Management Process. In “readerAnnounce” again
a announce packet is sent to the named pipe of the Management Process which subsequently
answers this packet on this Plugin’s named pipe which is created from the function library. This
packet either tells the library that no more plugins are allowed or the shared memory id of the
adminpage is returned. The function library will in this case attach the adminpage.

The last step is calling readerTrafficShaper with the allowed bandwidth the TrafficShaper should
generate and some callback (send in the example) which will be called by TrafficShaper for
every UDP packet contained in a shared memory segment. The traffic shaper automatically
reads the UDP payloads out of the shared memory segment and switches to the next shared
memory segment if needed

The timing of the callback calls is calculated so that the maximum bandwidth will never be
exceeded. The produced traffic pattern is low pass filtered to eliminate spikes.

3.3 Management Process

The Management Process is responsible for various housekeeping tasks in the framework:

• Process incoming requests from Readers and Writers

• Memory Management

3.3. MANAGEMENT PROCESS 16

• Waiting List Processing

• Gather Statistics

The main loop of the Management Process looks like listing 3.3.

while (1) {

commandDispatcher () ;
memoryCycle () ;
processWaitingList () ;
sleep () ;

}

Listing 3.3: Management Main Loop (simplified)

3.3.1 Request Processing: commandDispatcher()

As first step in the loop, incoming requests on the named pipe are processed. Commands to
the Management Process include “announceReader”, “announceWriter” to announce a Plugin
and as counterpart “shutdownReader” and “shutdownWriter” to sign off from the Management
Process. With these commands the Plugin mechanism is implemented. There are additional
commands for the Reader Plugins to navigate in the Read List: “advance” advances to the next
younger segment, “toHead” allows to jump to the youngest segment of the Read List. With
the command “yield”, a read lock is given back so a segment can be trashed (see chapter
3.3.2 for more exact information). It’s also possible to get the information which byte sequence
number the youngest segment has (with “getByteNo”) without advancing to this segment. This
functionality is useful for sampling reasons.

For some commands a response is sent. More about this type of inter process communication
between the Writer Process, the Client Plugins and the Management Process is explained in
chapter 4.1.1.

A special command: Advance

The most important functionality of the Management Process is the advance command. As
mentioned above, every Client Plugin has access to exactly one shared memory segment. the
command “advance” switches this visible data segment to the next younger data segment. If
there is no younger segment the request cannot be answered immediately but the Reader Plugin
has to wait for an incoming new segment from the Writer Process. For this case in the central
administration structure (adminpage) the current segment number is marked in the waiting list.

In the main loop it is checked regularly by processWaitingList() if a new segment is ready to be
read. As soon as this is the case, a reply message is sent to the Reader Plugin (which blocked
on the reception of this reply packet).

There is one important exception to the fact that advance always jumps to the next younger
block:

SoftLimit Functionality: If the newly visible data segment would be more than SoftLimit (a
configurable limit) segments away from the youngest data segment in the Read List, the ad-
vance call skips some segments and jumps to the segment at position SoftLimit (see figure
3.3). This skipping of segments enlarges the possibility that a very slow Reader Plugin can
successfully read the whole visible data segment.

As seen below the Management Process has to ensure that there’s always space to insert one
data segment in the Read List. If this condition has to be enforced, one segment has to be
removed even if a (late) Reader Plugin is still reading this segment. It can be that this deleted

3.3. MANAGEMENT PROCESS 17

Reader
Process

segment segment

Reader
Process

Reader
Process

segment

SoftLimit

before advance
after advance

skipped

segment...

Figure 3.3: Skipping blocks with the SoftLimit functionality

segment is immediately re-used and it’s content overwritten. The libread library checks for these
conditions and aborts reading from this segment which leads to incomplete read segments.

Therefore it makes sense to give this Reader Plugin some head start so this condition does not
(repeatedly) happen.

3.3.2 Memory Management and Statistics: memoryCycle()

The core functionality of the Memory Management Process is to circulate the shared memory
segments between the Writer and Reader Plugins. This is done in the function memoryCycle().
In figure 3.1 the edges are marked with the corresponding function call from listing 3.4. The
numbers in parenthesis designate the number of the step in the algorithm below.

saveStats () ;

trashBufferToFreeBuffer () ;
saveStats () ;

addToFreeBuffer () ;
saveStats () ;

freeBufferToFreeFifo () ;
saveStats () ;

readBufferToFreeBuffer () ;
saveStats () ;

checkSpaceReadBuffer (1) ;
saveStats () ;

readFifoToReadBuffer () ;
saveStats () ;

freeBufferToFreeFifo () ;
saveStats () ;

freeBufferToTrashBuffer () ;
saveStats () ;

timeoutTrash () ;
saveStats () ;

Listing 3.4: memoryCycle (simplified)

I split up the memory cycle in small functions which get inlined at compile time so different
building blocks are more clear visible.

3.3. MANAGEMENT PROCESS 18

saveStats()

saveStats() is called at the beginning, the end and between every memory management func-
tion. It takes a sample of various statistical values like free and read Buffer length, segments
received and sent etc and it calculates the filtered input stream in behalf of the TrafficShapers
of the Reader Plugins (see 5. These samples are saved in the adminpage. The statistic viewer
“stats” retrieves this data periodically and shows it. To see effects happening between the single
steps of the memory management function, samples are taken after every step.

trashBufferToFreeBuffer()

At the beginning of memoryCycle the management Process tries to generate as much free
segments as possible. Because it is cheaper to recycle segments from the Trash Buffer, they
are dequeued from the Trash List and enqueued into the Free Buffer.

addToFreeBuffer()

If after filling the Free Buffer with segments from the Trash Buffer the configured minimal value
is not reached, new shared memory segments are created and enqueued in the Free Buffer.

freeBuffertoFreeFifo()

Now the Free FIFO which provides the Writer Process lock- and wait free access to shared
memory segments is filled with segments from the Free Buffer.

readBufferToFreeBuffer()

It is important that all shared memory segments which are read by all Reader Plugins are
removed from the Read Buffer to make space for new segments.

checkSpaceReadBuffer(1)

To enforce at least one free space in the Read Buffer, if there’s no space, one shared memory
segment (the oldest) is unconditionally removed and enqueued in the Free List. It is more
important that newly arrived segments can be enqueued in the Read List and are read by many
Plugins as that also the pathologically behaving Plugins can finish read their packets. The
Reader Plugin whose segment has been stolen is notified from libread. This situation should
rarely happen because of the SoftLimit functionality. This limit should be configured to be early
enough that every Plugin can finish reading a segment before the segment is reused.

readFifoToReadBuffer()

Now there is space in the Read Buffer for at least one shared memory segment. The segment
is dequeued from the FIFO and enqueued into the Read Buffer.

again freeBuffertoFreeFifo()

In the meantime, the Writer Process could have emptied the Free FIFO, so supply the Free
FIFO with fresh shared memory segments.

3.4. WATCHDOG PROCESS 19

freeBufferToTrashBuffer()

If there are more segments in the Free Buffer than the configured maximum, segments are
moved to the Trash Buffer until this maximum is reached.

timeoutTrash()

Segments in the Trash List are traversed and segments older than a configurable timeout are
deleted and the memory given back to the system.

3.3.3 Sleep

In order not to burn CPU cycles, the Main Loop is sleeping here.

3.4 Watchdog Process

The Watchdog Process ensures that the system stays operational. Every process that would
like to be monitored by the Watchdog Process announces this by using the respective watch-
dogInitHeartBeat() function of the watchdog client library. This function takes a restart command
as argument. This command (most likely a shell script) will be run as soon as the Watchdog
Process recognizes that the respective process is hanging or crashed by not sending heart-
beats anymore. For a Reader Plugin the watchdogInitHeartBeat() call happens automatically if
the needed information is passed to announceReader().

It is very important that the monitored process regularly calls sendHeartBeat(). This will write
the current time into a timestamp field of the adminpage corresponding to that process so the
Watchdog recognizes that this process is still living.

The Watchdog Process regularly checks that all timestamps are up-to-date. If one timestamp
is too old, it’s corresponding process is either hanging or crashed. Watchdog tries to kill that
process and restarts it using the supplied start command.

3.5 Statistics Watcher

The Statistics Watcher prints out the information found in the statistics section of the adminpage.

3.6 Configuration

The online configuration tool allows to change the configuration at runtime by feeding new con-
figuration data into the adminpage. Some entries are not allowed to change at runtime: for
example if the shared segment size would be changed there would be a transition phase with
two sizes of segments. This is error prone, would complicate the whole framework and is there-
fore not allowed.

Chapter 4

Implementation Details

I’m describing here technical details of the more interesting parts of the framework.

4.1 Communication between Processes

As seen in the previous chapter, multiple processes work together to build the framework. It is
vital that these processes have a means of communication. I’m using two mechanisms for inter
process communication (ipc): for “rare” events like announce or shutdown, the “named pipe”
facility of the operating system is used. For “not so rare” events, especially for statistics and the
communication with the Watchdog process, accesses to a shared memory segment are used.

4.1.1 Via Named Pipes

Named pipes are a means for non related processes1 to pass messages. A Named Pipe be-
haves like an ordinary file and also resides in a directory. In the contrary of a plain file, data
written to a named pipe is not written to disk but are held in memory.

Message Format

typedef s t ruc t message_s {
i n t magic ;
i n t command;
i n t sender ;
i n t memid ;
unsigned long long i n t byteseq ;

} message_t ;

Listing 4.1: Format used on Named Pipes

All messages sent on the Named Pipe channel have the format specified in listing 4.1. The
value magic prevents data accidentally written to the Named Pipe from being handled as a
command. It always contains the same value defined in message.h: PACKETMAGIC. The type
of command is specified in the field command, the field sender specifies the PID (process id)
of the sender.

There exist these defined commands:

1Processes that have a parent – child relationship created by the parent forking and calling exec are called related.
They have additional ways of communication.

20

4.1. COMMUNICATION BETWEEN PROCESSES 21

Command Sent by Answered with Usage
ANNOUNCEREADER reader ANNOUNCEREADER

SHUTDOWNREADER
announce a reader

ANNOUNCEWRITER writer ANNOUNCEWRITER announce a writer
SHUTDOWNREADER reader n/a sign off a reader
SHUTDOWNWRITER writer n/a sign off a writer
ANNOUNCEREADER mgmt n/a send adminpage shared

memory Id in memid
SHUTDOWNREADER mgmt n/a no more readers allowed
ANNOUNCEWRITER mgmt n/a send adminpage shared

memory Id in memid
ADVANCE reader ADVANCELATE

ADVANCEOK
request the next younger
segment

TOHEAD reader ADVANCELATE
ADVANCEOK

request jump to youngest
segment

YIELD reader n/a yield interest in current
segment

ADVANCEOK mgmt n/a send new ShmemId in
memid

ADVANCELATE mgmt n/a like ADVANCEOK but it
took the reader too long
to read the last seg-
ment, some segments
were skipped

4.1.2 Via Shared Memory

The central administration shared memory page is called adminpage2.

typedef s t ruc t adminpage_s {
i n t tag ; // for retrieving after crash , contains adminpage - tag .
i n t id ; // id to separate different frameworks . is initialized to

// the adminpage shmemkey

// reader section
reader_t readers [MGMT_MAX_CLIENTS] ;
i n t waiting [MGMT_MAX_CLIENTS] ;

// writer section
writer_t writer ;

// mgmt section
mgmt_t mgmt;

// pid of watchdog
i n t wdpid ;

// shared data structures & mem keys

i n t freeFifoMemKey ;
i n t readFifoMemKey ;

// configuration space
config_t config ;

// statistics
stat_t stat ;

2It used to be 4K large (one memory page) but has grown since, therefore the name

4.2. FIFO ALGORITHM 22

} adminpage_t ;

Listing 4.2: central administration location

As seen in listing 4.2 it is divided into different sections. After the tag which contains a unique
value for adminpage shared memory segments for crash retrieval (see chapter 4.4 for more
information) and the id, which designates to which framework this adminpage belongs (more
than one can run concurrently and have separate adminpages) there is a section for the Reader
Processes, for the Writer Process, the Management Process, configuration of the Management
Process and room to store statistical information. In here are also stored information like the pid
of the watchdog and the shared memory Id’s of the two wait free FIFO’s.

The configuration tool works by overwriting some of the values in the config structure, the statis-
tics tool by reading the values of the statistics section.

typedef s t ruc t reader_s {
unsigned i n t fd ; // fd of named pipe to this reader
char fifopath [AP_STRLEN] ; // and it ’ s path
i n t pid ;
i n t restart ; // does this reader like to be restarted from ←↩

the watchdog ?
char command[AP_STRLEN] ; // if yes , use this command...
unsigned i n t currentBlock ; // current segment , for advance
time_t lastBeat ; // time of last heartbeat for watchdog

} reader_t ;

Listing 4.3: reader part of the central administration location

The watchdog library sets the lastBeat value to the current time. The Watchdog Process checks
these times.

4.2 FIFO Algorithm

For a lock-less memory cycle, some decoupling device is needed to transfer data over the border
of the two responsibility domains. This mechanism has to provide write access to one and read
access to the other process. The opened path between the RD’s is one way. The accesses can
happen simultaneously, no locking is allowed in the algorithm.

The FIFO acts as this interface between the RD of the Writer and Management Process.

To grant both processes access to the data structures of the FIFO, not only the data segments
it administrates but also the data structures have to reside in shared memory.

This leads to problems:

• In SYSV shared memory, every process attaches the memory at a different position in the
address space. It’s hard to work with linked lists, as pointers have to be relative to the
start of the address segment. To follow a pointer one has to add the relative pointer to the
segment start and access the memory there. This is not an atomic operation anymore and
would require locking to guarantee consistency.

• Shared memory segments can’t grow

• There is no memory management (like malloc and free) on the shared memory Segments

Therefore an algorithm using an array has to be employed, which limits the maximum fill level
of the FIFO.

4.2. FIFO ALGORITHM 23

4.2.1 Ring Buffer

Empty Empty Empty Filled with
Payload

Filled with
Payload

Filled with
Payload

Filled with
Payload Empty

E

F

F

FF

E

E

E

Consumer RDProducer RD

indexP

indexC

oldest

youngest

Figure 4.1: A Ring Buffer in an Array

The used algorithm is a straightforward Ring Buffer implementation using an array. The pointers
indexP and indexC designate the next production or consumption element in the ring. When
moving these indices over the edge of the array a wrap around has to be performed. The value
level helps to check for buffer overrun (level >= size) and buffer underrun (level < 0).

typedef s t ruc t {
i n t tag ; // contains FIFOTAG to recognize this

// shmem buffer as fifo buffer
i n t id ; // contains adminpage memkey to

// distinguish different frameworks

i n t dirtyC ; // if 1: crashed during consume
i n t dirtyP ; // if 1: crashed during produce
i n t locked ; // during shutdown fifo is locked
i n t memkey; // memory key of this shared memory segment
i n t indexP ; // next production index ;
i n t indexC ; // next consumption index ;
i n t size ; // size of the fifo
i n t level ; // fill level

// for the statistics :
i n t hiwater ; // highest fill
i n t lowater ; // lowest fill
i n t threshold ; // when to issue a warning
i n t type ; // source or sink , for warning
i n t warncount ; // how many warnings where issued ?
i n t warnstate ; // in warn state right now?

memblk ary [] ; // contains fifo
} fifo_t ;

// this pointer is passed to all fifo operations
typedef fifo_t ∗ fifop_t ;

Listing 4.4: Layout of the FIFO Shared Memory Segment

The layout of the shared memory segment of the FIFO is described in listing 4.4.

4.3. LIST PROCESSING 24

4.2.2 Responsibility Domains

Revisiting the Responsibility Domains (RD) of chapter 3, this FIFO represents the interface
between two RD’s. Therefore also in the array are elements belonging to the producer’s RD and
elements of the consumer’s RD.

How are these RD’s separated?

All elements containing data ready to be consumed clearly are in the consumer’s RD, all ele-
ments which are empty (all elements between indexP and indexC, the element indexP inclusive,
element indexC exclusive) are in the producer’s RD.

4.3 List processing

4.3.1 Requirements

Lists are used as Free List, Read List and Trash List. These lists have special needs the List
Subsystem has to accomplish:

For all lists:

• Initialization

• FIFO functionality with

– Produce

– Unconditional Consume

For the Read List:

• Conditional Consume: consume if read

• Buffer Increment: get next newer segment, it won’t be consumed

• Return: return read lock on segment

• GetHead: get youngest segment, it won’t be consumed

For the Trash List:

• bufferClean: run callback function on all entries older than a timeout

For Crash Recovery:

• Insert in Sequence: searches the right position to insert an element

4.3.2 Storage of the Lists

Since these lists are only accessed from the Management Process, no locking is required. The
Reader Plugins can never directly access these lists since they do not reside in shared memory
but in the Management Process’ private memory.

The elements of these lists store the shared memory identifier of a memory segment. To ac-
complish the timeout facility, the time has to be recorded when an element is produced, to have
access to the sequence number of a shared memory segment this is also stored to allow access
to the sequence number without attaching it first.

4.4. CRASH RECOVERY 25

s t ruc t listblk_s {
s t ruc t listblk_s ∗next ; // next segment in list
unsigned i n t memid ; // memid of this segment
time_t time ; // time of insertion (secs)
unsigned long long i n t byteseq ; // sequence number of first

// byte in segment
} ;

Listing 4.5: List Segment Entry

4.3.3 Distances

The distance of a Reader Plugin, meaning the number of shared memory segments from the
segment the Reader Plugin is currently reading to the youngest segment in the List is used in
two places in the framework:

• It flows into the timing calculation of the TrafficShaper

• It allows the Conditional Consume command mentioned above to recognize segments read
by all Reader Plugins. The distance of every Plugin is known (it is calculated by the Man-
agement Process for every Plugin). The largest of these distances sets a border which
designates which blocks are still in use and which are save to be removed.

4.4 Crash Recovery

A crash of one or more processes of the system is always possible, either if there are program-
ming errors (likely) or because of faulty hardware (less likely). It is therefore important to have
some means to recover from a crash. The Watchdog Process (see chapter 3.4) tries to restart
crashed processes.

Since shared memory segments not attached to any running process are preserved and can
be attached from new processes, it is possible to recover from a crash. Every shared memory
segment is tagged, is marked with an identifier of it’s origin. The most important segment to
retrieve is the adminpage. The adminpage contains the shared memory id of the Read- and
Free FIFO, which allows to retrieve these and the segments contained in the FIFOs.

Only the memory segments belonging to the Read List have to be retrieved now. The entries
of the Free- and the Trash List contain no data and are deleted. Since the administrative data
structure of the list is in private memory of the Management Process it is lost in case of a crash
of this Process. However it can rebuilt out of the information stored in the shared memory data
segments itself:

The field “loc” designates the data structure this segment belonged to, for example to the Read
List. In this case, the sequence number can be used to re-insert the segments into the Read
List in the correct order.

At the end of the day the framework is back running without having lost data of the last incar-
nation of the framework. If the socket buffer of the Writer Process is large enough to hold the
incoming data during the down time of the framework, no data is lost at all!

4.4. CRASH RECOVERY 26

typedef s t ruc t {
i n t tag ; /* marks a buffer shmem segment */
i n t id ; /* id of framework this segment

/* belongs to */
i n t loc ; /* current location eg. FreeFIFO etc . */
i n t size ; /* total size of mem segment */
i n t fill ; /* how much data in segment */
i n t memid ; /* shmem id */
unsigned long long i n t seq ; /* sequence number counted in Segments */
unsigned long long i n t bytes ; /* sequence number counted in Bytes */
long long i n t recTime ; /* how long it took to receive

/* the data (usec) */
char data [] ; /* payload */

} shmemblk_t ;

Listing 4.6: Shared Memory Data Segment

Chapter 5

Traffic Shaping

One of the requirements to the Buffering Framework stated that all traffic leaving the framework
on a network connection has to be debursted. This is performed by the (optional) Traffic Shaping
facility1.

5.1 Input Traffic Characteristics

The incoming data is already pre-smoothened by the socket buffer. Very short spikes of data
are absorbed, the traffic pattern is more even but the input characteristic is still irregular. The
shaper-generated data pattern should be as regular as possible.

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 0 10 20 30 40 50 60

sp
ee

d
[B

yt
es

/s
]

time[s]

measured input

Figure 5.1: Input Traffic

1Optional because for locally performed tasks, eg. storing to disk no shaping should be made

27

5.2. OUTPUT TRAFFIC SPEED CALCULATION 28

5.2 Output Traffic Speed Calculation

Following must be true so the buffer is in equilibrium:

to = ti

to is the time used to write one data segment, ti time to read one data segment.

It is not necessary that this condition holds over short time though. Therefore the framework
uses a low pass filtered version of the sampled data as smoothed version.

The samples of ti are done every second. The sample is taken from a average over the last four
elements written into the buffer. The input traffic is very spiky. If one samples without averager,
the risk is high that only spikes are sampled and the average is way too high.

The filtered version tf is calculated as following:

tf =
n∑

j=1

tj ∗ cj

holds.

with ti as the historical input rate i seconds ago and ci the i-th filter coefficient. n is the degree
of the filter.

In the plots presented here these filter coefficients are set to:

cj =

 20 1 ≤ j ≤ 10
5 11 ≤ j ≤ 70
1 71 ≤ j ≤ 100

I’m using a traffic characteristics like in figure 5.3 to test the filter response. The result can
be seen in figure 5.4. The characteristics is reproduced by a NetFlow replay tool. It sends
the captured data and waits the time between two captured packet arrivals. This pretty well
simulates the given input. As a challenge for the framework between 100 sec and 200 sec
times between two arriving packets are divided by ten, therefore the arrival rate is ten times
faster.

Only using the low pass filtered version with an input like 5.3 reveals two problems:

• The filter is too inertial, the maximum input speed is not reached until 200 sec (I’m using a
100 elements filter, sampling rate for the filter is one element per second).

• After processing a burst of data, to = ti holds. This means that the buffer fill ratio b of the
Read buffer stays high, the buffer won’t be emptied.

The buffer fill ratio b is defined as

b = bf/bs

with bf as number of filled segments of the Read List unread by this Reader Plugin and bs the
size of the Read List. bf is calculated as the distance of the current memory segment to the
youngest memory segment.

To allow the TrafficShaper to filter out bursts without loosing packets because of buffer overflow
the buffer fill ratio flows into the speed calculation as a feedback factor:

to = tfc(b)

where c(b) is defined as

5.2. OUTPUT TRAFFIC SPEED CALCULATION 29

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

c(
b)

b

function c(b)

cb

filter

sampled ti tj

cj

* * *

+

c(b)
flush coefficient

*

b
buffer fill ratio

to

flows in

...

...

* *

Average
of n

elements

working
point

Figure 5.2: Block Diagram of the Output Time Calculation

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 0 100 200 300 400 500 600 700 800

sp
ee

d
[B

yt
e/

s]

time [s]

timing characteristics

incoming

Figure 5.3: Test Input Traffic, 10 times more traffic between 100 sec and 200 sec

5.2. OUTPUT TRAFFIC SPEED CALCULATION 30

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 0 100 200 300 400 500 600 700 800

sp
ee

d
[B

yt
e/

s]

time [s]

timing characteristics

outgoing
filtered

Figure 5.4: Test run with above input showing the filtered input speed and the calculated output
speed

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

c(
b)

b

function c(b)

cb

Figure 5.5: c(b)

5.3. RATE LIMITING AND OUTPUT TRAFFIC GENERATION 31

c(b) =


20− 850 ∗ b b ≤ 0.02
3− 66(b− 0.02) 0.02 < b ≤ 0.05
1− 0.53 ∗ (b− 0.05) 0.05 < b ≤ 0.8
0.6− 2.5 ∗ (b− 0.8) otherwise

As stated above the different t values are not measured in Bytes/s but in µsec/segmentsize.
It’s measured how long it takes to read one data segment. Therefore the parameter values are
inverse to what one assumes thinking with speed values. Smaller values in this notation always
mean faster sending.

The function for c(b) tries to hold b between 2% and 5%. Smaller b values are punished with
a c(b) much larger than 1. The TrafficShaper sends out less packets and b will grow. With a b
bigger than 5%, the outflow is boosted and b will go back to 5%. A b bigger than 80% is treated
as an emergency. The buffer will amplify the outflow much stronger until at 100% c(b) is 0.1,
therefore the outflow is ten times bigger than the filtered input. One could omit the function
segment between 0.2% and 0.5%. This would work but results in a jaggy output traffic because
the high slope amplifies the inevitable changes in b very much.

The reason why the ideal position is between 2% and 5% is that the estimated output speed
could be a little bit too fast. If the buffer would be holding only one element and the data would
be sent faster than new data came in, holes would appear in the output traffic.

Dependent on the number of concurrent processes in the system the framework is running on
the sleep times cannot be guaranteed. This leads to the situation that the equilibrium is not
reached at 5% as planned but much later. Here further research is needed (see chapter 10).

The effects of the parameter can be seen very well in the above plot 5.4. As visible in 5.7
between 0 and 100 seconds b is bigger than 1. Therefore in 5.6 b is slowly growing to 5%. At
100 sec b starts to rise very fast therefore c(b) drops below 1 and enforces the outflow of the
data. After the burst is finished after 200 sec b recovers slowly. The buffer tries to get ridden of
the surplus data of the burst. After 500 sec the input traffic stops and the buffer fill level b falls
rapidly until at 700 sec the buffer is empty again. At 700 sec the buffer fill level falls below 5%
and a little bit after below 2%. This can be seen clearly in figure 5.6.

These plots have been made a filter with 100 elements, the first 10 elements were set to 20, the
next 60 to 5 and the rest to 1. This configuration is not ideal because the surplus data of the
burst is only flushed out slowly. One has to experiment with the filter coefficients to find the best
configuration for a certain traffic characteristic.

Also the parameters of the Traffic Shaper (like the function c(b)) will have to be tweaked for the
final installation of the framework to accommodate with differences of network load, CPU load
etc.

5.3 Rate Limiting and Output Traffic Generation

The Reader Plugin programmer can use the TrafficShaper by providing a callback which per-
forms the needed Plugin action.

This callback is called for every packet in regular intervals tw. This interval is dependent from
to, the time available to write the whole segment:

tw =
to ∗ sp

sb

with sp the size of a data packet and sb the size of a whole data segment.

The TrafficShaper measures the time it takes to get the data, to calculate the shaper parameters
and to call the callback. It then waits the rest of the calculated time. Since Linux has a minimum
granularity for waiting of about 10 ms, shorter wait times will be round up to 10 ms. Therefore

5.3. RATE LIMITING AND OUTPUT TRAFFIC GENERATION 32

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700 800

time [s]

timing characteristics

b

Figure 5.6: Buffer Fill Level

wait times shorter than 10 ms are accumulated until 10 ms are reached. Since the slept time
is not exactly the time passed to the system call as parameter, the slept time is also measured
and flows into the calculation of the next cycle.

The Rate Limiter sets a lower bound to the waiting time. This prevents the TrafficShaper to
call the callback function too often and so limits the traffic speed. Picture 5.8 shows the output
generated by the TrafficShaper with a rate limit set to 1’000’000 Bytes/s.

5.3. RATE LIMITING AND OUTPUT TRAFFIC GENERATION 33

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 100 200 300 400 500 600 700 800

c(
b)

time [s]

timing characteristics

cb

Figure 5.7: Buffer Coefficient

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 1.1e+06

 0 100 200 300 400 500 600 700 800 900

sp
ee

d
[B

yt
es

/s
]

time[s]

measured output

Figure 5.8: Generated Output with Rate Limiting set to 1’000’000 Bytes/s

Chapter 6

How to write a Plugin

There are two possibilities to write a Plugin dependent on the application the Plugin should fulfill:

• A “forwarding” Plugin which does resend the data over the network can use the Traffic-
Shaper. This code will do all duties for the Plugin, especially call advance() when needed
and serve the Watchdog Process.

• A “local” Plugin which does not resend the data over the network won’t use the Traffic-
Shaper. The above mentioned duties have to be done by the Plugin itself, therefore the
code is more complicated.

There’ll be a skeleton of a Plugin for both variants in the next sections.

Common to both approaches is that they consist of calls to functions provided by libread.

The data structure used to store a packet in the segment is described in bufferpacket.h.

typedef s t ruc t {
unsigned i n t size ; // size of payload
char data [] ; // payload

} bufferPacket_t ;

typedef bufferPacket_t ∗bufferPacketp_t ;

Listing 6.1: bufferpacket.h: buffer PDU

The Writer includes the received UDP packets as payload using the data structure defined in
udppacket.h.

typedef s t ruc t {
unsigned long long i n t seq ; // sequence number : bytes since start
s t ruc t sockaddr_in source ; // receiver of packet
s t ruc t sockaddr_in target ; // sender of packet
s t ruc t timeval captureTime ; // time of capture
unsigned i n t size ; // size of data
char data [] ; // payload

} UDPPacket_t ;

typedef UDPPacket_t ∗UDPPacketp_t ;

Listing 6.2: udppacket.h: UDP packet PDU

34

6.1. FORWARDING PLUGIN USING THE TRAFFICSHAPER 35

Shared Memory Segment

buffer PDU

size: ...

data: ...
UDP
PDU

buffer PDU

size: ...

data:

UDP
PDU

Figure 6.1: Encapsulation of PDU’s in the Shared Memory Segment

6.1 Forwarding Plugin using the TrafficShaper

1 void samplisend (bufferPacketp_t packet , i n t result) {
2 /** this is the customizable part ,
3 below is an example customization :
4
5 static int i = 0;
6
7 UDPPacketp_t nfPacket = (UDPPacketp_t) packet -> data ;
8
9 resendUDP (nfPacket , recipient) ;

10
11 if ((i ++ % 100) == 0) {
12 printf ("% d\ n", i) ;
13 }
14
15 end of customizable part */
16 return 0 ;
17 }
18
19 i n t main (i n t argc , char ∗∗argv) {
20
21 i n t ret ;
22 whandler_t whandler ;
23 char ∗ fifoPath = " / tmp / ne r f " ;
24 char ∗ restartCommand = " t s_ske l " ;
25
26 while (1) {
27 while ((ret = readerAnnounce (fifoPath , restartCommand ,
28 &whandler)) == −2) {
29 sleep (1) ;
30 } ;
31
32 i f (ret == −1) {
33 exit (1) ;
34 }
35
36 i f (readerTrafficShaper (1000000 , samplisend) < 0) {
37 exit (1) ;
38 }
39 }
40 }

Listing 6.3: Skeleton of a Reader Plugin using the TrafficShaper (simplified: look at
samplireader.c in the software distribution for a running example)

6.2. LOCAL PLUGIN 36

Lines 1 to 17 define the callback that will be called by the TrafficShaper regularly. Line 22 defines
the watchdog handler variable. In this variable watchdog related information is stored. Line 26
starts a endless loop, though it is not required that every Plugin lives endlessly.

Lines 27 to 30 try to announce this Plugin at the Management Process. The argument “fifoPath”
designates the directory where the named pipes reside. The argument “restartCommand” tells
the Watchdog Process how to restart this Plugin. The watchdog client library stores this infor-
mation in the watchdog handler “whandler”. The announce function saves a copy of this handler
in behalf of the TrafficShaper so it has not to be passed to the TrafficShaper call in line 36.

It is possible that the connection to the Management Process can’t be established, for example
because the Management Process is not running at the moment because of a recent crash and
is restarted by the Watchdog Process in any moment. The function readerAnnounce will return
ADVANCENOMGMT in this case and after one second, another try is started.

Lines 32 to 34 exit the program in case of another error during announce (ANNOUNCEERROR).

Lines 36 finally starts the TrafficShaper passing the bandwidth limitation value of 1’000’000
Bytes/s and the callback function “callback”.

The TrafficShaper now starts to regularly call the function samplisend. The first argument of the
callback samplisend is the received UDP packet. The second argument tells if a data loss has
been detected between the last and the current invocation: Either its READOK, READSTALE
(data segment already reused or no more memory available) or READSEQ (sequence check
failed in Management Process).

Normally the TrafficShaper is in an endless loop and the function does not return but there are
cases that the function returns: if the Watchdog Process restarts the Management Process the
Plugins must re-announce to make themselves known to the new Management Process. The
Watchdog Process sends a SIGHUP signal to the Plugins. The TrafficShaper finishes reading
the current segment and then returns with a positive return value. This is the reason for the
outer endless loop starting at line 26. If the return value is negative, something non-fixable
happened in the TrafficShaper and the program should abort.

6.2 Local Plugin

1 // signal handler
2 s t a t i c void sighupHandler (i n t signal) {
3 myreconnect = 1 ;
4 }
5
6 // process data
7 inline i n t process (bufferPacketp_t packet , i n t result) {
8
9 /** this is the customizable part ,

10 below is an example customization :
11
12 static int i = 0;
13
14 UDPPacketp_t nfPacket = (UDPPacketp_t) packet -> data ;
15
16 saveToDisk (nfPacket , fd) ;
17 saveStatsToDisk (nfPacket , fp , & nr , & start) ;
18
19 if ((i ++ % 100) == 0) {
20 printf ("% d\ n", i) ;
21 }
22
23 end of customizable part */
24
25 return 0 ;
26 }

6.2. LOCAL PLUGIN 37

27
28 i n t main (i n t argc , char ∗∗argv) {
29 i n t ret ;
30 s t ruc t sigaction sa ;
31 whandler_t whandler ;
32 bufferPacketp_t rec =NULL;
33 s t ruc t timeval wait ;
34 i n t len ;
35 i n t loss ;
36
37 fd = saveToDiskOpen (dumpfile , 0) ;
38 fp = saveStatsToDiskOpen (statfile , 0 , & start) ;
39
40 while (1) {
41
42 while ((ret = readerAnnounce (path , restartCommand , & whandler)) ←↩

== −2) {
43 sleep (1) ;
44 }
45
46 i f (ret == −1) {
47 exit (−1) ;
48 }
49
50 sa . sa_handler = sighupHandler ;
51 sigemptyset (&sa . sa_mask) ;
52 sa . sa_flags = 0 ;
53 sigaction (SIGHUP, & sa , NULL) ;
54
55 while ((ret = readerAdvanceToHead ()) == READANODATA) {
56 wait . tv_sec = 1 ;
57 wait . tv_usec = 0 ;
58 select (0 , NULL, NULL, NULL, & wait) ;
59 }
60
61 while (1) {
62 ret = readerGet (&rec , & len) ;
63
64 i f (restartCommand ! = NULL) {
65 watchdogSendHeartBeat (&whandler) ;
66 }
67
68 i f (ret <= 0) { // error occured during readerGet
69
70 i f (ret == −2) {
71 exit (1) ;
72 }
73
74 i f (myreconnect) {
75 // finished reading segment now go back for reannounce
76 break ;
77 }
78
79 i f (ret == −1) {
80 loss = READSTALE; // data lost : segment no more there
81 }
82
83 i f ((ret = readerAdvance ()) == READGSEQ) {
84 // segment loss detected in sequence number
85 loss = READGSEQ;
86 } else i f (ret == READAERR) { // error in communication
87 wait . tv_sec = 1 ;
88 wait . tv_usec = 0 ;

6.2. LOCAL PLUGIN 38

89 select (0 , NULL, NULL, NULL, & wait) ;
90
91 } else i f (ret == READANODATA) { // no data
92 wait . tv_sec = 0 ;
93 wait . tv_usec = 1 0 0 ;
94 select (0 , NULL, NULL, NULL, & wait) ;
95 }
96 } else { // data is ok .
97 process (rec , loss) ;
98 loss = READOK;
99 }

100 }
101 }
102 }

Listing 6.4: Skeleton of a Reader Plugin not using the Traffic Shaper

By not using the functionality of the TrafficShaper all work has to be done in the Reader Plugin
itself. This has the advantage that one is in full control of the timing and of the advance-calls.
For example one could implement a sampling routine by only reading the first UDP PDU of
every segment

This example code does also use a callback so it’s similar to the example of using TrafficShaper.
In principle, one can write a new local Plugin by changing the samplireader function.

This code is (except for the missing traffic shaping mechanism) similar to what the TrafficShaper
is doing internally.

This Plugin lacks some minor details (command line argument interpretation, log file handling)
and can be found complete in the software distribution. The skeleton implements a disk logging
functionality. The payload of the UDP packets is written to disk together with a statistics file.

In the next few lines the structure of this skeleton is explained. I’m starting at the main function:

Lines 30 and 31 open some files for the functionality implemented in process(). In line 33, the
endless loop starts that guarantees that this Plugin reannounces at the Management Process
when a SIGHUP is received in case the Management Process is killed by the Watchdog Process
and the Plugins have to reannounce.

Lines 35 and 36 try to announce this Plugin at the Management Process. Again the parameter
“path” describes the path to the directory where all named pipes reside. This time, the parameter
“whandler” is of importance, as this Plugin has to serve the Watchdog itself. Therefore the
information in “whandler” will be used later.

Like in the example above, if the communication to the Management Process cannot be estab-
lished, this Plugin keeps trying. If any other error happens, the Plugin quits.

As mentioned the watchdog sends a SIGHUP to all Reader Plugins when it kills the Manage-
ment Process to let the Plugins reannounce itself at the new Management Process. The function
readerAnnounce sets a function handler for SIGHUP, but this Plugin cannot use this handler as
it is closely related to the TrafficShaper which is not used in this example. Therefore the existing
SIGHUP-handler is overwritten in lines 43 to 46.

Lines 48 to 52 call the function readerAdvanceToHead to get an initial data segment to read
from. If there is no data to read, the Plugin waits one second and retries.

At line 54 the main processing loop starts, the Plugin will spend most time in here.

Now in line 55 readerGet() tries to get one data packet. Parameter rec is a pointer to a buffer-
Packet structure as defined in line 25, len describes it’s size and is 0 at start. The readerGet
function dynamically increases this rec buffer size if a packet is too large and accordingly adjusts
len. The variable ret saves the result of this get operation.

Lines 57 to 59 serve the watchdog. The condition restartCommand 6= NULL shows if the
watchdog is switched on. The call to watchdogSendHeartBeat() will perform the needed actions.
The information it needs to do so is fetched from the watchdog handler whandler which is
returned on announce.

6.2. LOCAL PLUGIN 39

Line 61 checks if any error happened during readerGet(). Possible conditions are READOK for
“no error”, READNODATA for “no more data available”, READLATE for “segment invalid, call
readerAdvance() for valid data” and READERR for “fatal error”.

Line 63 to 65 terminate the program on fatal error, therefore for all other conditions the Plugin
has to call readerAdvance to get to a new data segment.

As mentioned, the Plugin is sent a signal SIGHUP if the watchdog restarts the Management
Process. The installed signal handler will set the global variable myreconnect. Line 67 checks
this variable. Delaying the check from line 55 to here enables the Plugin to finish reading the
data segment it is locked on and afterwards going into “announce” mode when having finished
reading this segment.

If readerGet returned READLATE, the attached shared memory segment does not hold the data
segment this Plugin advanced to. This Plugin had very long to process this data segment. The
Management Process reused this shared memory segment for a new data segment. Therefore
the unread part of this segment is not read by this Plugin, therefore a data loss is detected.

If readerAdvance returned READLATE, the data segment this Plugin was locked was not in
memory anymore. This means that there is no direct successor to jump to. Using the SoftLimit
mechanism described in chapter 3.3 a segment in a save distance to the end of the buffer is
chosen and locked to. The data segments in between are not read by this Plugin, a data loss is
signaled in line 73.

In line 76 the readerAdvance call is issued. If readerAdvance returned -1, a sequence number
mismatch was detected by libread. Some segments in-between are lost. Therefore a data loss
is signaled in line 78.

In line 79 is checked if there was a communication error. If this is the case the Plugin waits for
1 sec and retries.

Finally in line 84 is detected that there’s no data segment to advance to. After sleeping 100
µsec the Plugin retries.

In line 61 was checked if there was a problem getting data. The lines 62 to 88 handled the
various reasons. On the other side if there was no problem, in line 90 the worker function is
called and the loss signaling variable is set back. Now another inner loop cycle starts.

Chapter 7

Testing and Validation

7.1 First Setup: Simulation of NetFlow Data

7.1.1 Setup

To test the framework during the implementation phase a previously recorded trace of NetFlow
data has been replayed with the help of an extended version of netflow_replay, originally written
by Arno Wagner.

The flow capture tool of the DDoSVax Team not only saves the raw UDP payloads of the NetFlow
packets but also saves time stamps for each packet arrival. Using these time stamps it is
possible to mimic the traffic characteristics produced by the routers.

The replayed NetFlow packets is sent over the loop back interface to the framework. Attached to
the framework is a plugin which is using the TrafficShaper interface to achieve a smooth version
of the traffic. The plugin again saves the UDP payload to disk together with a timestamp.

The test for completeness of the data can be done by comparing the input- and the output file,
the generated traffic pattern can be extracted from the time stamps.

Test Machine

Buffer
Sampli-
reader

Flow Replicator Test DataMATCH?

Sampli-
writer

forward to
 localhost

Figure 7.1: Test Setup

40

7.2. SECOND SETUP: REAL DATA AT SWITCH 41

7.1.2 Results

The results are already presented in chapter 5 as this test was used as a test case in the
development of the TrafficShaper. During the tests no data was lost.

7.2 Second Setup: Real Data at Switch

7.2.1 Setup

Router swiEZ2.switch.ch

Po
rt

19
99

4
Po

rt
23

40
0

UDP-
Forwarder

Framework running on ezmp2.switch.ch

Buffer

forward to localhost:23400

Fluxoscope

Sampli
-writer

Figure 7.2: Test Setup

The setup of this test was the following:

The router swiEZ2 (which connects the ETH to the Switch Backbone) exports NetFlow Version
7 packets to port 19994 of the machine ezmp2. A Sampliwriter instance reads the data and
puts it into the Framework Buffer. The data is then read by the Client Plugin UDPForwarder.
This plugin converts the V7 data to V5 data (using existing conversion code from Switch) and
resends it to the port 23400 of the same machine using the Traffic Shaper. Here a external
discrete component, the Fluxoscope reads the data.

This test is to show that the framework is able to receive real NetFlow data. Until now only
captured NetFlow data was used. The machine ezmp2 usually has high load. There are many
memory-intensive processes running so from the point of view of resource allocation this is
a worst-case scenario for the TrafficShaper (which normally needs a machine with no or only
small load so the TrafficShaper is exact and lots of memory).

7.2.2 Results

Figures 7.3 to 7.6 show the captured traces of the experiment run at 7.9.2003 at 17:00. Since
this is a Sunday less traffic as usual is expected.

7.2. SECOND SETUP: REAL DATA AT SWITCH 42

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 0 500 1000 1500 2000 2500 3000 3500

sp
ee

d
[B

yt
e/

s]

time [s]

timing characteristics

incoming

Figure 7.3: Captured data at Switch Backbone

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0 500 1000 1500 2000 2500 3000 3500

b

time [s]

timing characteristics

b

Figure 7.4: Buffer Fill Level b

7.2. SECOND SETUP: REAL DATA AT SWITCH 43

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 0 500 1000 1500 2000 2500 3000 3500

sp
ee

d
[B

yt
e/

s]

time [s]

timing characteristics

outgoing
filtered

Figure 7.5: Estimation and Output Speed

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 1500 1550 1600 1650 1700

sp
ee

d
[B

yt
e/

s]

time [s]

timing characteristics

incoming
filtered

outgoing

Figure 7.6: Estimation and Output Speed, magnified between 1500 sec and 1700 sec

7.3. THIRD SETUP: UDP FORWARDING SETUP 44

7.2.3 Discussion

Input

Figure 7.3 shows the highly irregular traffic pattern of the incoming traffic. Since the router the
captured data came from is not a border router but connects the ETH Zurich more traffic is
generated as expected from a border router. At approx. 2400 sec there is a large spike. The
plot is chopped at 107 Bytes/s but the spike went up to 9 ∗ 107 Bytes/sec. We will see later how
the framework coped with this spike.

Output: Fluctuations

The output plot 7.5 and the b in7.4 shows large fluctuations between 1000 and 1700 sec and
at 2500 and 3000 sec. There seem to be fluctuations in the input the overview plot 7.3 cannot
explain but a closer look to plot 7.6 which magnifies the region between 1000 sec and 1700 sec
and relates the input to the estimate and the output rate shows a correlation between the input
data, the estimation and the output data.

The large peak at 1500 sec in the input is followed after some seconds by a peak in the esti-
mation and the output, the dent at 1600 sec is followed by a decrease of the output speed. The
difference between the peak and the dent is about 1’000’000 Bytes/s.

The estimation is largely affected by these big fluctuations in the input rate, additionally the
buffer fill level rises at these large peaks and also leads to an accentuated outflow.

These two effects cumulated lead to the fluctuations seen in plot 7.5.

As a remedy one could experiment with different filter coefficients in order to flatten the estima-
tion curve or functions for c(b) so that changes in b do not lead to fast changes in the outflow
rate.

On the other hand the input has peaks up to 1.7 ∗ 106 Bytes/s where the output only has peaks
up to 600’000 Bytes/s. The very high peak at 2400 sec is completely flattened out.

Output: Artifacts in Filter

An artifact of the filter mechanism can be seen in plot 7.5: The filtered value at first is very high
and only after 100 sec is near the average inflow. The framework was freshly started for the
capture. The first value recorded for the estimate was a spike. With this value the filter was
initialized by setting all array elements to that value and it took 100 sec to flush out this spike
information.

The filtered values are higher than the output values. This is still an impurity in the sampling for
the estimated data and is compensated by the feedback function c(b). If the output is too high
the equilibrium is not reached at 5% but earlier. In the course of these tests the averager (figure
5.2) was implemented, without it the estimation was way too high. One can experiment with a
larger number of samples to improve the situation.

7.3 Third Setup: UDP Forwarding Setup

This test examines the performance of the TrafficShaper under heavy network load.

7.3.1 Setup

Four machines are acting as routers each sending a recorded trace of the Sobig F attack
recorded at the 19. 8. 2003, 14:20 (a section of the data is shown in plot 7.8). The timing
and the size of the packets is correct but the payload of the UDP packets is faked (the machines

7.3. THIRD SETUP: UDP FORWARDING SETUP 45

Network 2
100MBit

Network 1
100Mbit

Test Machine

UDP-
Forwarder

ID1

Buffer

Sampli-
writer

UDP-
Forwarder

ID2

UDP-
Forwarder

ID3

UDP-
Forwarder

ID4

ID 1

ID 2

ID 3

ID 4

ID1

ID2

ID3

ID4

Figure 7.7: Setup of UDP Forwarding Test

used as sender and receiver did not have enough disk space to hold the data files) and replaced
by an Id and a sequence number.

The UDP Forwarding Plugins checks the id field of the packet against some command line
switch and only forwards matching packets to the configured external discrete component.

On for machines a external discrete component is running that receives the UDP packets and
checks for the sequence number. Like this, lost packets are detected immediately. These com-
ponents also write timestamps into a file for each received packet. This enables the comparison
of the input data and the captured data at the receivers.

To minimize packet collisions on the network the server has two network interface cards. The
senders are on one net, the receivers on another. I tested both with 100Mbit Hubs and Switches
but there was no influence detectable.

7.3.2 Results

One Sender

The first plot, 7.9 shows a configuration where only one sender sends data therefore only the
corresponding receiver receives data. The received data looks much more smooth. Input peaks
go up to 1’000’000 Bytes/s where the reception of the shaped data only shows peaks to 450’000
Bytes/s. Again fluctuations are visible, therefore the filter parameters definitively have to be
tweaked for production use of the framework.

No data was lost during the experiment.

Four Senders with Selective Routing

In another configuration four sender sent data each using an individual id, each plugin filtered
for one id and forwarded it to one receiver (selective routing). The total amount of data flowing in

7.3. THIRD SETUP: UDP FORWARDING SETUP 46

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 0 10 20 30 40 50 60 70 80 90

sp
ee

d
[B

yt
es

/s
]

time[s]

measured input

Figure 7.8: Capture of Sobig F attack

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 0 10 20 30 40 50 60 70 80 90

sp
ee

d
[B

yt
es

/s
]

time[s]

measured input at receiver

Figure 7.9: Received data, only one id is used

7.3. THIRD SETUP: UDP FORWARDING SETUP 47

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 0 10 20 30 40 50 60 70 80 90

sp
ee

d
[B

yt
es

/s
]

time[s]

measured input at receiver

Figure 7.10: Received data, Selective Routing

the framework is now four times larger, therefore about 1’200’000 Bytes/s. The result is shown
in plot 7.10.

It is interesting that there are gaps in this plot where no data is arriving at all. The peaks exactly
go up to the calculated 1’200’000 Bytes/s. Where are these gaps coming from?

Looking at plot 7.11 shows that the reception of the data in the framework does not happen in
round robin fashion but the framework receives multiple packets from the same sender in a row.
The packets are entered into the framework in that order.

The Plugins read the packets in that order. The TrafficShaper assumes that all packets for
which a callback is called are being sent out. The selective routing mechanism now fools the
TrafficShaper because some packets (those with wrong id) are not sent out by a certain plugin.
What can be observed in plot 7.10 is traffic shaped for all packets but only a fourth of the packets
is really being sent out, the other packets build the gaps between the peaks.

This test resulted in the realization that plugins which perform a selective retransmittion of the
data and therefore do not send out all packets need another type of TrafficShaper than the one
presented here. The assumption to = ti does not hold anymore.

Only a very small percentage of the packets where lost during these tests.

7.4. FOURTH SETUP: HIGH LOAD ON GIGABIT ETHERNET 48

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0 10 20 30 40 50 60 70 80 90

tim
e

[s
]

Bytes/s

id 1

Figure 7.11: Received data on Framework for ID 1

7.4 Fourth Setup: High Load on Gigabit Ethernet

7.4.1 Setup

Test MachineGigabit Ethernet

Buffer
Sampli-
writer Statistics

Plugin

Figure 7.12: Setup of Load Test

Goal of this test is to examine the reaction of the framework under heavy load, especially the
fill level of the buffer and the test for possible data segment loss. The test setup was like shown
in figure 7.12: Two machines were sending two copies of the Sobig F trace at the same time.
This again resulted in average in a load of 1’200’000 Bytes/s. The usage of Gigabit Ethernet
was chosen because the routers normally export their data on Gigabit Ethernet, in addition the
danger of collisions before the arrival of the data at the framework is minimized and all data has
to be stored by the framework.

7.4. FOURTH SETUP: HIGH LOAD ON GIGABIT ETHERNET 49

 360000

 370000

 380000

 390000

 400000

 410000

 420000

 430000

 0 100 200 300 400 500 600 700 800 900

sp
ee

d
[B

yt
es

/s
]

time[s]

measured output

Figure 7.13: Data rate of the used Sobig F plot, averaged over 15 seconds. This data was sent
to the framework four times simultaneously, so the actual data rate arrived at the framework is
four times the data rate in the plot. The data shows a rising tendency.

7.4.2 Results

It can be seen that there’s a relation between the input speed and the buffer fill level. Although
there is a rising tendency of the inflow but the filter should adapt and the buffer fill level should
stay low. This relationship is not intended and should be subject of further research.

It seems that the point of equilibrium where the inflow is equal to the outflow is not reached
at 5% as intended but dependent of the inflow between 50% and 60%. This indicates that the
time slept in the TrafficShaper is too long and the additional speed up of c(f) is needed to reach
the equilibrium. One can see that the TrafficShaper can empty the buffer during the more quiet
period after 700 sec.

Although the framework does not loose any data (as long the buffer is large enough to hold the
data), the latency of the buffer rises dramatically.

The produced output 7.15 looks rather smooth and shows the same increase in network output
as the original input 7.13. The produced output is four times higher than the input shown in plot
7.13 because the two machines each sent two such streams.

7.4. FOURTH SETUP: HIGH LOAD ON GIGABIT ETHERNET 50

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 100 200 300 400 500 600 700 800 900

b

time [s]

b

Figure 7.14: Buffer Fill Level

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 0 100 200 300 400 500 600 700 800 900

sp
ee

d
[B

yt
es

/s
]

time[s]

produced output

Figure 7.15: Produced Output

Chapter 8

Other Use of the Framework

The framework is not limited to NetFlow data, As a matter of fact every packet oriented payload
can be buffered and read by multiple Reader Plugins. Here is a small example:

8.1 Message Broadcast System for Wireless Networks

UDP Receiving
Framework

Plugin 1

Plugin 2

Plugin 3

Incoming Data

Figure 8.1: Message Broadcast System: Service interruption at the first sender

One can think of a broadcast system for wireless networks: Messages to be sent over four
different satellite antennas (each located in a different region) are received at the Writer Process
over the Internet. The Writer Process enters the data into the framework, the Reader Plugins
read the data and can decide if their antenna have to route that particular packet. Imaging
that the Wireless network works with acknowledge packets, it can take a considerable amount
of time until this acknowledge arrives (for example if there is a thunder storm in the area of
one antenna. The other antennas are not disturbed by the stall as they continue reading the
messages.

If the thunder storm doesn’t take very long, the data for that antenna is still in the buffer and can
be sent out. The reader for that antenna can now catch up.

51

Chapter 9

Related Work

9.1 CAIDA cflowd

The cflowd suite from CAIDA [4] is taken as example in chapter 2.5.1. The reason why it is not
suitable is also mentioned there.

9.2 Cisco Network Data Analyzer

There exists the (non free) Network Data Analyzer suite from Cisco [6]. It includes the NFCol-
lector which is the working horse of the system, collects the data and writes them to disk. The
data is then again read and analyzed.

It would be possible to have a plugin framework that works on these files but a plugin could not
start analyzing the data before a data file is completely written to disk which would lead to high
latency.

9.3 Netfltools

The Netfltools by Andrey Slepuhin [7] also implement a NetFlow receiving server. There is
the possibility to process the gathered data including summarizing and logging. The system is
rather monolithic, there exists a simple export tool, but no pronounced plugin functionality.

9.4 Crannog Software Netflow Monitor

Netflow Monitor by Crannog Software [8] is a Microsoft Windows based capture and analysis
tool. It is currently in use at ETH Zurich but showed a very high memory demand in high traffic
situations (like the mentioned Sobig F attack in August 2003).

52

Chapter 10

Further Work

10.1 Plugins

There now exists a framework for plugins, but the plugins still have to be written. One can think
about plugins that:

• monitor the NetFlow data in (near-)realtime and perform several statistics and/or evalua-
tions

• generate plots of the current network traffic

10.2 Surveillance via RRDTool

The possibilities of surveillance of the framework is minimal at the moment. There is only the
statistics tool gathering the various values and sending mail in case of a problem. A graphical
representation could be created using RRDTool from Tobi Oetiker [5]. This would help the
administrator of the system to recognize and trends of buffer fill level etc.

10.3 TrafficShaper

The TrafficShaper algorithm is far from perfect. Due to the fact that Linux is not a realtime
operating system the correct timing of the callback calls is nearly impossible. With many running
processes the probability of sleeping too long is growing. Despite of corrective measures the
state of equilibrium is not always reached at the intended point but at a much higher buffer fill
level. This leads to a constant memory wastage and to high latencies.

One can think of two remedies:

10.3.1 Additional corrective measures

There could be some additional factors speeding up the outflow depending on the number of
concurrent processes, the load of the CPU or depending on the equilibrium reached.

10.3.2 Port to a realtime operating system

Fiddling with additional speed up factors only hide the problem. Using a realtime operating
system the wait times can be followed much more exact. It would be worthwhile to test the
framework on a realtime system.

53

10.4. NETFLOW V9 54

10.4 NetFlow V9

The existing tool chain at SWITCH is based on NetFlow version 5. The current version de-
veloped by Cisco is version 9. To unify all protocol versions in the framework data could be
converted to NetFlow V9 so all plugins could base on NetFlow V9 independent of the version
the routers deliver.

Chapter 11

Summary

11.1 Design and Implementation

The task of this Diploma Thesis was the design and implementation of a UDP framework as a
research platform for the DDoSVax Project. The framework will receive UDP packets containing
Cisco NetFlow data as payload.

The incoming data is buffered for two reasons: the routers exporting the NetFlow packets do
this on an interval of two seconds. Therefore the generated traffic is irregular. On the other
hand the stored data is read by Reader Plugins. These processes may pause reading data on
several occasions, for example garbage collection, writing a file to disk or by resending the data
with TCP. Therefore the framework provides a buffer of substantial size, able to hold several
seconds to minutes of incoming data.

The focus during the design of the framework laid on robustness and safety, therefore the frame-
work consists of several simple processes. The algorithms used are wherever possible straight-
forward. Where this wasn’t possible, especially in the fifo component, the code is well com-
mented and the details of the algorithm is explained in this thesis.

It’s very easy to to adapt the sample plugins to a certain task. All framework-dependent tasks
are hidden by a function library which allows access to the framework through a few simple
function calls.

The plugins optionally can use a TrafficShaper which filters the bursts inherent to the incoming
traffic and limits the outgoing throughput. This allows to resend the captured data over the
network to do further perhaps CPU intensive processing at another machine.

Should a plugin process or even a process that belongs to the framework (like the Management
Process or the Writer Process) crash, this is noticed by a Watchdog which regularly checks for
hanging or crashed processes.

11.2 Major Challenges

A big challenge was achieving precise sleeps under Linux for the Traffic Shaper. Since Linux
is not a realtime operating system no guarantee is given how long a sleep call will really sleep.
The granularity of the sleep system call is coarse. Therefore tricks had to be used to circumvent
these limitations but the TrafficShaper does not behave perfectly under high load.

11.3 Conclusion

I hope the designed and implemented framework proves usable for further research projects of
the DDoS Vax Project.

55

11.3. CONCLUSION 56

I would like to thank Simon Leinen and Peter Haag of SWITCH for their help, Prof. Bernhard
Plattner for his assistance and especially my supervisors Thomas Dübendorfer and Arno Wag-
ner for their support and feedback during this diploma thesis.

The “Topsy Template” from Lukas Ruf [16] and Tobi Oetiker’s “The not so Short Introduction to
LaTeX” [17] proved invaluable for writing this documentation.

Appendix A

Interfaces

For an up-to-date version of the framework interface one should consult the include files of the
source distribution. The include files are the authoritative source of information.

A.1 Read Plugin Library

int readerAnnounce()
Parameter char *commandpath path to directory where named pipes reside

char *command command to be executed to restart Plugin
Returns ANNOUNCEERROR fatal error

ANNOUNCENOMGMT unable to create connection to Management Pro-
cess

ANNOUNCEOK announcement successful
The function readerAnnounce announces a Reader Plugin at the Management Process. If this
plugin should be monitored by the Watchdog Process, the parameter command holds the com-
mand which will be executed when the crash of this Plugin is detected. The parameter command
can be NULL. In this case the Plugin is not announced to the Watchdog process. The first com-
mand after announce must be readerAdvanceToHead, if the TrafficShaper is not used.
see also
readerShutdown()

void readerShutdown()
Parameter
Returns
This function signs off from the Management Process
see also
readerAnnounce()

int readerAdvance()
Parameter
Returns READERR Communication Problem with Management Process

READLATE Data block lost
READSEQ Sequence number error, framework lost block
READOK Everything is ok

This function locks to the next younger data block than the one currently locked to. readerGet
then reads data from currently locked to data block. If the current data block is already re-used
by the framework or if the current data block is older than a certain threshold (configuration option
“SoftLimit”) the locked-on block is the one at the threshold and READLATE is returned. In this
case the locked-on data block is valid.
see also
readerGet(), readerAdvanceToHead()

57

A.1. READ PLUGIN LIBRARY 58

int readerAdvanceToHead()
Parameter
Returns READERR Communication Problem with Management Process

READNODATA No data available
READOK Everything is ok

This function locks to the youngest data block. readerGet then reads data from this youngest data
block.
see also
readerGet(), readerAdvance()

int readerYield()
Parameter
Returns READERR Communication Problem with Management Process

READOK Everything is ok
This function yields the current lock. Before any call of readerGet, readerAdvanceToHead has to
be called.
see also
readerGet(), readerAdvance()

int readerGet()
Parameter bufferPacketp_t *result Pointer to the fetched packet, see note!

int *size Size of the result memory chunk
Returns READNODATA No more data in data buffer

READLATE Data buffer invalid, call advance
READERR Fatal error
READOK Everything ok

This function reads data of the locked on data buffer. The first call of this function must be made
with *result=NULL and *size=0. The function will allocate memory and expand it if needed. If the
data block locked on is re-used before the Plugin finished reading the data -1 is returned. The
Plugin then has to call readerAdvance().
see also
readerGet(), readerAdvance()

unsigned long long readerGetByteSequence()
Parameter
Returns byte sequence
Returns the Byte Sequence Number of the youngest block.
see also
readerAdvanceToHead()

unsigned long long readerGetHeadSequence()
Parameter
Returns Sequence number of

youngest block
Returns the Sequence Number of the youngest block.
see also
readerAdvanceToHead()

unsigned long long readerGetSequence()
Parameter
Returns Sequence number of cur-

rent block
Returns the Sequence Number of the current block.
see also
readerAdvanceToHead()

A.2. WRITE LIBRARY 59

unsigned long long readerGetDistance()
Parameter
Returns distance of current block

to head
Returns the distance of the current block to the youngest block. The distance is 1 if current block
is youngest block.
see also
readerAdvanceToHead()

int readerTrafficShaper()
Parameter int maxBandwidth Maximum bandwidth in Bytes/s

int (*callback) (buffer-
Packetp_t, int)

worker function, see below

Returns READERR Fatal error
READOK Reannounce

This function automatically advances and gets data. It shapes the outgoing traffic so that no
spikes or bursts of high load arise. For every packet in a data buffer the callback function is called.
see also
readerGet(), readerAdvance()

int callback(bufferPacketp_t packet, int loss)
Parameter bufferPacketp_t packet data to be processed

int loss READOK READSTALE READSEQ READERR
READOK Everything OK
READSTALE Data loss: too slow
READSEQ Data loss: framework error

Returns currently ignored
Prototype of the callback function. The function has to be implemented by the plugin program-
mer . With the parameter loss it can check for data inconsistencies.
see also
readerTrafficShaper()

A.2 Write Library

int writerAnnounce()
Parameter char *commandpath path to named pipe of mgmt

queuep_t *handle will contain the buffer handle after successful an-
nounce

int reconnect 1 if handle contains valid handle
char *restartCommand restart command

Returns -1 on error, 0 else
Announce the existence of a writer process to the mgmt process. If the Management Process
crashes the handle is valid. Therefore no new handle is needed on reconnect.
see also
writerShutdown()

void writerShutdown()
Parameter queuep_t *handle buffer handle
Returns
Shutdown writer
see also
writerAnnounce()

A.3. WATCHDOG LIBRARY 60

int writerPut()
Parameter queuep_t *handle buffer handle

void *data data to be inserted
int size size of data

Returns -1 on error, 0 else
Put data into buffer
see also
writerFlush()

int writerFlush()
Parameter queuep_t *handle buffer handle
Returns -1 on error, 0 else
Flush buffered data, get new memory segment
see also
writerPut()

A.3 Watchdog Library

int watchdogInitHeartBeatMgmt()
Parameter whandlerp_t whandler handler variable

adminpagep_t admin-
page

adminpage

char *restartCommand restart command
int timeout watchdog timeout

Returns always 1
The watchdog handler whandle is initialized so that subsequent calls of watchdogSendHeartBeat
have their environment. The environment is configured for Management Process supervision.
see also
watchdogSendHeartBeat()

int watchdogInitHeartBeatWriter()
Parameter whandlerp_t whandler handler variable

adminpagep_t admin-
page

adminpage

char *restartCommand restart command
int timeout watchdog timeout

Returns always 1
The watchdog handler whandle is initialized so that subsequent calls of watchdogSendHeartBeat
have their environment. The environment is configured for Writer Process supervision.
see also
watchdogSendHeartBeat(), writerAnnounce()

int watchdogInitHeartBeatReader()
Parameter whandlerp_t whandler handler variable

adminpagep_t admin-
page

adminpage

char *restartCommand restart command
int timeout watchdog timeout

Returns always 1
The watchdog handler whandle is initialized so that subsequent calls of watchdogSendHeartBeat
have their environment. The environment is configured for Reader Plugin supervision. This is
done by the readerAnnounce call.
see also
watchdogSendHeartBeat(), readerAnnounce()

A.4. LOGGING 61

void watchdogSendHeartBeat()
Parameter whandlerp_t whandler handler variable
Returns
Send a heartbeat to the watchdog.
see also
watchdogInitHeartBeatMgmt, watchdogInitHeartBeatWriter, watchdogInitHeartBeatReader

A.4 Logging

Logwrite is a syslog wrapper that can also write similar formatted messages to stdout or into a
separate file. If the logger is used by including “log.h”, also <syslog.h> has to be included!

logwriteSetMedium()
Parameter int medium set logging medium

LOG_TO_STDOUT log to stdout
LOG_TO_FILE log to file
LOG_TO_SYSLOG log to syslog
char *filename if logging to file: filename
char *ident name of program

Returns 0 on success, -1 else
Prepare logging medium.
see also
logwriteCloseMedium

int logwriteClose()
Parameter
Returns 0 on success
Close log medium, optional.
see also
logwriteSetMedium()

void logwrite()
Parameter int priority see syslog.h

const char *format like printf
... varargs like printf

Returns 0 on success
Write a message to the log. logwrite follows closely the syslog() function call. %m is not supported
see also
syslog()

Appendix B

Deployment and Usage of the
System

B.1 Building the System from Source Code

B.1.1 Source Distribution

The top level directory of the source distribution contains the following directories:

• common contains various include files and the source code for helper libraries used by the
whole system.

• fifo contains the include file and the source code of the locking- and wait free FIFO and is
used by mgmt and writer.

• mgmt contains the source code of the Management Process including the management of
the different lists in buffer.c and buffer.h.

• The code in netflow is written by Arno Wagner and contains code for manipulating NetFlow
V5 packets. It is used by libnetflowutil.

• rawsend is written by Simon Leinen and contains code to send UDP packets with faked
source addresses.

• reader contains the plugin library libread, the utility library libnetflowutil and some sample-
and test plugins.

• scripts contains perl programs used to generate test data and to plot traffic characteristics.

• stat contains the source code of the statistics viewer and the statistics watcher.

• v7v5 contains code from Simon Leinen to convert NetFlow V7 to NetFlow V5 while adding
fields which the router did not fill in.

• watchdog contains the watchdog code and the watchdog client library libwatchdog.

• writer contains the sample writer sampliwriter and the libwrite library.

It also contains some sample system start scripts and a Makefile.

62

B.1. BUILDING THE SYSTEM FROM SOURCE CODE 63

B.1.2 Installation

There exist compile time options. These options are version specific and are documented in
the README file enclosed with the software distribution. At the moment the maximum number
of Client Plugins, the number of filter coefficients and the maximum number of Receivers (see
chapter 3.1) are configurable at compile time in adminpage.h.

The Makefile is used to compile the system by executing make. make install installs the
system. The install location is encoded in the beginning of the Makefile, per default the binaries
are installed in the nerfinst subdirectory of the current user.

A directory structure like in figure B.1 is created.

bin

etc

var

Figure B.1: Directory Structure of Software Installation

Located in bin are the binaries of the framework, in etc some sample config files. After the
installation var is empty but it is recommended to configure the framework via the mgmt.cfg
configuration file and the configuration switch -p so the named pipes are located in there. It is
also recommended to keep the log files in here.

For each component should exist a start script in the etc directory that can be called from the
watchdog and contains all needed command line options. These start scripts can be called from
a system start script which initially starts the system.

Start Sequence

It is important that the mgmt process is always started first, also when using the watchdog. The
rest of the programs can start in any order.

Watchdog

The usage of the watchdog functionality is easy: as soon as the watchdog process is started, all
Client Plugins plus the Writer and the Management Process are under surveillance. By killing
the Watchdog Process this surveillance is stopped.

B.1.3 More than one Framework

It is possible that more than one framework run parallel on one machine. One has to keep in
mind that

• The adminpage shared memory id, and

• The directory for the named pipes

B.2. COMMAND LINE OPTIONS 64

must be separated. One can set the adminpage shared memory id with the command line
switch -a , this is only needed for mgmt, watchdog , wdctl and stat , the rest of the programs
get the shared memory id while announcing. Therefore they need access to the named pipe
directory with the parameter -p . This concerns sampliwriter and all reader plugins.

B.2 Command Line Options

Management Process: mgmt
-h Usage
-w script script which restarts the Management Process with

all required options
-c config file file config file (see below)
-a id Adminpage id, unique per running framework
-r memory retrieval mode, collect shared memory seg-

ments belonging to an earlier incarnation of the
framework.

-d log to stdout
-f filename log to file
-s log to syslog

Writer Process: sampliwriter
-h Usage
-w script script which restarts the Writer Process with all re-

quired options
-t timeout watchdog timeout
-c config file config file (see below)
-p path to FIFO’s
-b socket buffer size
-d log to stdout
-f file log to file
-s log to syslog

Client Plugin Process: udpforwarder
-h Usage
-w script script which restarts the Writer Process with all re-

quired options
-t timeout watchdog timeout
-d log to stdout
-f file log to file
-s log to syslog
-p path to FIFO’s
–targetaddr addr target addr
–targetport port target port
–buffersize size: socket buffer size

Client Plugin Process: trafficlogger
-h Usage
-w script script which restarts the Writer Process with all re-

quired options
-t timeout watchdog timeout
-d log to stdout
-f file log to file
-s log to syslog
-p path to FIFO’s
–dumpfile file file to save NetFlow dump to
–statfile file file to save NetFlow stats to

B.3. CONFIGURATION 65

Statistics Viewer: stat
-h Usage
-f sampling frequency how often a value is sampled
-i shmem id which framework is observed
-s Summary Mode
-d Data flow View
-m Memory View
-r Receiver View
-1 One-shot Mode, show only one line
-t traffic shape debug Mode

Process Control Tool: wdctl
-h Usage
-a adminpageid select framework
-d log to debug
-f filename log to file
-s log to stdout
-l list processes of framework
-r pid remove bad behaving reader. It’ll be removed from

the watchdog control and killed with SIGKILL
-k shutdown framework
-kk kill framework and all processes

Watchdog Process: watchdog
-h Usage
-a id adminpage id
-d log to stdout
-f file log to file
-s log to syslog

Statistics Viewer: stat
-h Usage
-d log to stdout
-f file log to file
-s log to syslog
-f frequency : sample frequency
-a shmem id : id of adminpage
-s: Summary View
-d: Dataflow View
-m: Memory View
-r: Receiver View
-t: TrafficShaper View
-1: One shot Mode: only show one line
-A command : Alert mode

B.3 Configuration

The configuration file layout is always “key value”. The writer configuration file is context sen-
sitive: once a receiver is defined with the keyword “receiver” all subsequent configuration keys
belong to this receiver. The keywords are now explained in turn.

B.3. CONFIGURATION 66

B.3.1 Manager Configuration File Format

mgmt.cfg
keyword default explanation
blocksize 1048576 size of a memory segment
fifoPath /tmp/nerf/ directory where the named pipe will be created
freeFifoSize 20 Size of Free FIFO
freeFifoWarn 15 A warning will be issued if the level is below the

warn level.
readFifoSize 100 Size of Read FIFO
readFifoWarn 20 A warning will be issued if the level is above the

warn level.
freeBufferMin 20 Minimal fill level of Free Buffer
freeBufferMax 50 Maximal fill level of Free Buffer
freeBufferWarn 10 A warning will be issued if the level is below the

warn level.
readBufferSize 100 Maximal size of Read Buffer
readBufferWarn 50 A warning will be issued if the level is above the

warn level.
softLimit 95 see chapter 3.3
trashTimeout 10 Segments in Trash List are deleted after 10 seconds
trashBufferMax 20 Maximum number of segments in trash Buffer. If

trash is full, blocks are deleted unconditionally
Filter Configuration, filter has 100 elements. The filter coefficients are normal-
ized after loading.
filtercoeff1 20 Filter coefficients for elements below lowerlimit.
lowerlimit 10
filtercoeff2 5 Filter coefficients for elements between lowerlimit

and upperlimit.
upperlimit 70
filtercoeff3 1 Filter coefficients for elements above upperlimit.

B.3.2 Writer Configuration File Format

sampliwriter.cfg
keyword default explanation
port 19991 receive port of sampliwriter
There are 20 receivers to be configured. The framework accepts matching pack-
ets and generates statistics over the receivers.
receiver n/a number of the receiver
sender 0.0.0.0 Address where the packets are coming from. This

can be the address of a network. This keyword can
exist multiple times in the config file, each must be-
long to one receiver.

mask 255.255.255.255 The netmask of the sender. The default is for a sin-
gle host, if sender is a network then this is it’s net-
mask.

B.3.3 Runtime Configuration

The runtime configuration is performed by using the programs mgmtcfg and sampliwritercfg.
They have the same usage:

B.4. STATISTICS AND ALERTING 67

Online Configuration
-a adminpage id, identifies framework to configure
-g file get configuration from memory and save in file, “-” is stdout
-p file put configuration from file to memory.
-d log to stdout
-f file log to file
-s log to syslog

B.4 Statistics and Alerting

There exists the program stat which provides statistics and alerting functionality. There are two
modes:

• Statistics Viewer Mode: prints the chosen page of statistics.

• Logging and Alerting Mode: monitors critical levels of the system and informs an adminis-
trator in case of a failure or critical situation. Furthermore it logs the important statistics to
stdout, to a file or to syslog.

The two modes will now be explained in turn:

B.4.1 Statistics Viewer Mode

There are several sets of statistics. The file is formatted so it can easily be used as input to
gnuplot[15]. Every twenty lines a header is printed describing the data columns.

The first column, called smp for sample, is the number of the current line.

Summary View

The summary view provides fast access to the most important information. These are:

• FreeBF: free buffer fill level in segments

• FreeBW: number of free buffer warnings

• ReadBF: read buffer fill level in segments

• ReadBW: number of read buffer warnings

• FreeFLW: lowest reached value

• FreeFHW: highest reached value

• FreeFW: number of free FIFO warnings

• ReadFLW: lowest reached value

• ReadFHW: highest reached value

• ReadFW: number of read FIFO warnings

• Rcv: total number of received segments

• Snd: total number of sent segments

• Disc: total number of segments discarded by the framework

B.4. STATISTICS AND ALERTING 68

Dataflow View

• Rcv: total number of received segments

• Snd: total number of sent segments

• Disc: total number of segments discarded by the framework

• Trashed: number of segments put into the Trash List

• Readers: number of currently plugged in Reader Plugins

• Writer: 1 if a Writer Process is present

• Mgmt: 1 if the Management Process is present

Memory View

• FreeBF: free buffer fill level in segments

• FreeBW: number of free buffer warnings

• FreeBWS: 1 if a warning is pending

• ReadBF: read buffer fill level in segments

• ReadBW: number of read buffer warnings

• ReadBWS: 1 if a warning is pending

• FreeFLW: lowest reached value

• FreeFHW: highest reached value

• FreeFW: number of free FIFO warnings

• FreeFWS: 1 if a warning is pending

• ReadFLW: lowest reached value

• ReadFHW: highest reached value

• ReadFW: number of read FIFO warnings

• ReadFWS: 1 if a warning is pending

Receiver View

The Receiver View shows the following parameters per receiver:

• RecNo: number of receiver the values stand for

• Packets: number of UDP Payloads received

• Bytes: number of Bytes received

• B/s: Bytes/s averaged over the whole lifetime

B.5. SYSTEM AND MAXIMUM MEMORY REQUIREMENTS 69

TrafficShaper View

The values in the TrafficShaper View are meant for the tweaking of the TrafficShaper parame-
ters, see chapter 5. The times are given in µseconds/segment.

• Speed: Calculated outgoing speed

• rcoeff: 1 if filter is not yet initialized, real values (wtime) is taken instead of estimated (est)

• ecoeff: 1 if filter is valid.

• fcoeff: c(b), the fill coefficient

• fillr: b, the buffer fill level

• wtime: current incoming speed

• wtimea: averaged incoming speed (over four values)

• est: filtered incoming speed

B.4.2 Alerting Mode

The alerting mode is switched on with the command line switch -A . In this mode stat checks
regularly (with frequency f) for warning conditions and executes a command in case of a warn-
ing. The command is given the name of a temporary file as argument. This file contains in-
formation about the warning. The warning level (see chapter B.4.1) can be configured in the
Management Process configuration file.

B.5 System and Maximum Memory Requirements

The framework was implemented and tested on the following x86 PC’s, all running Linux:

• AMD Athlon 1900+, 1600 MHz with 1GB Ram

• Intel Pentium 4, 2000 MHz with 512MB Ram

• Dual Intel Pentium 3, 1400 MHz with 1GB Ram

The maximum memory requirement can be calculated from the configuration file as following:

memmax = blocksize∗(freeF ifoSize+readF ifoSize+freeBufferMax+readBufferSize+trashBufferMax+1)

The additional block stems from the Writer Process who is currently writing to a block not in any
data structure of the Management Process.

Appendix C

Original Task

Realtime UDP Netflow Data Processing Framework for
Caspar Schlegel <schlegel@use.ch>

Subject

Distributed Denial of Service (DDoS) are a threat to Internet services ever since the widely
published attacks on e-bay.com and amazon.com in 2000. ETH itself was the target of such an
attack 6 months before these commercial sites where hit. ETH suffered repeated complete loss
of Internet connectivity ranging from minutes to hours in duration. Massively distributed DDoS
attacks have the potential to cause major disruption of Internet functionality up to and including
severely decreasing backbone availability.

Attack Model

Most DDoS attacks share a common pattern: An infection phase where the initiator acquires
the attack resources by compromising a large number of weakly protected hosts, ideally causing
little or no visible change in host behavior, in order to make the compromise hard to notice. An
infection phase can last from less then 10 minutes to several months. Attacks within the order
of 100.000 and more compromised hosts have already been observed in practice (Code Red,
Sapphire).

In a second phase, the attack phase, the attacker uses the compromised hosts to initiate actual
attacks on a target computer or network. These attacks can be done autonomously or under di-
rect or indirect control of the attacker. Although attack control increases the risk of identification
for an attacker, there are possibilities to keep this risk small.

Diploma Thesis Task

A generic realtime UDP Netflow data processing framework will be developed and extensively
tested to assure proper operation under high loads and bursty Netflow data traffic as observed
in the Switch backbone network infrastructure.

This task is split into the following subtasks:

70

C Original Task 71

Understand network traffic raw data

As raw data of the network traffic, we use NetFlow1 traffic logs that are produced by border
gateway routers of the SWITCH2 academic network. In a first step, the format of this data and
its exact meaning must be understood.

Analyse the Samplicator program

Currently, SWITCH uses a program called “Samplicator” to queue the UDP Netflow data, pro-
cess it and then duplicate it to two other machines. The Netflow traffic stream is currently very
bursty in its nature, which is even aggravated by duplicating the data streams. In the process-
ing step, the “Samplicator” converts the Netflow format and overwrites some data fields in the
Netflow records. The source code of this program is available.

Design and Implementation of a realtime UDP Netflow data processing framework

The functionality of the “Samplicator” should be greatly improved. The result will be a realtime
UDP Netflow data processing framework, which consists of modular components that very likely
will be run on distributed machines.

In this thesis at least the following components of the framework will be developed:

• The queueing component de-bursts the Netflow data by using an efficient leaky-bucket
algorithm for emptying the queue.

• The statistics component calculates the most essential traffic statistics.

• The duplicating component duplicates the Netflow data stream and sends it to 1-N hosts.
The number and properties (IP address, port etc.) of the destination hosts can be config-
ured without stopping data acquisition.

• The logging component writes the raw Netflow data into files.

• The monitoring and alerting component reads the Netflow data and shows a selection of
important statistics and activates alerts upon detection of critical traffic patterns (based on
given traffic signatures).

Further optional components are:

• Graphical plots of aggregated statistics over time extracted from Netflow data

• etc.

Testing

Test scenarios with artificial bursts and high loads are to be conceived and executed in order to
assure the realtime capabilities of this framework.

Documentation and Presentation

A documentation that states the steps conducted, lessons learnt, major results and an outlook
on future work and unsolved problems has to be written. The code should be documented well
enough such that it can be extended by another programmer within reasonable time. At the end
of the semester, a presentation will have to be given at TIK that states the core tasks and results
of this semester thesis. If important new research results are found, a paper might be written
as an extract of the thesis and submitted to a computer network and security conference.

1A proprietary data standard by CISCO
2www.switch.ch

C Original Task 72

Dates

The diploma thesis will start on May 12th, 2003 and will be finished by September 11th, 2003.

Supervisors

Arno Wagner, wagner@tik.ee.ethz.ch, +1 632 7004, ETZ G64.1
Thomas Dübendorfer, duebendorfer@tik.ee.ethz.ch, +1 632 7196, ETZ G64.1

Appendix D

Timetable

73

D Timetable 74

W
ee

k

1
(1

2.
 5

. -
 1

8.
 5

.,
20

03
)

2
(1

9.
 5

. -
 2

5.
 5

.,
20

03
)

3
(2

6.
 5

. -
 1

. 6
.,

20
03

)

4
(2

. 6
.-

8.
 6

.,
20

03
)

5
(9

. 6
. -

 1
5.

 6
.,

20
03

)

6
(1

6.
 6

. -
 2

2.
 6

.,
20

03
)

7
(2

3.
 6

. -
 2

9.
 6

.,
20

03
)

8
(3

0.
 6

. -
 6

. 7
.,

20
03

)

9
(7

. 7
. -

 1
3.

 7
.,

20
03

)

10
 (1

4.
 7

. -
 2

0.
 7

.,
20

03
)

11
 (2

1.
 7

. -
 2

7.
 7

.,
20

03
)

12
 (2

8.
 7

. -
 3

. 8
.,

20
03

)

13
 (4

. 8
. -

 1
0.

 8
.,

20
03

)

14
 (1

1.
 8

. -
 1

7.
 8

.,
20

03
)

15
 (1

8.
 8

. -
 2

4.
 8

.,
20

03
)

16
 (2

5.
 8

. -
 3

1.
 8

.,
20

03
)

17
 (1

. 9
. -

 7
. 9

.,
20

03
)

18
 (8

. 9
. -

 1
2.

 9
.,

20
03

)

Ta
sk

s

fa
m

ilia
riz

e,

re
ad

in
g,

in
st

al
lin

g

De
sig

n

Do
cu

m
en

ta
tio

n

Im
pl

em
en

-
ta

tio
n

Te
st

in
g

(C
or

re
ct

-
ne

ss
)

In
te

rn
al

Te
st

in
g

(S
pe

ed
)

In
te

rn
al

re
se

rv
e

Te
st

in
g

Sw
itc

h

In
st

al
la

tio
n

Sw
itc

h

Zw
isc

he
n-

pr
äs

en
ta

tio
n

F
ig

ur
e

D
.1

:
T

im
et

ab
le

Bibliography

[1] SWITCH The Swiss Educational & Research Network, Network Monitoring and Analysis;
http://www.switch.ch/tf-tant/floma/sw/samplicator/.

[2] Arno Wagner, Thomas Dübendorfer, DDOSVAX Homepage;
http://www.tik.ee.ethz.ch/ ddosvax/.

[3] Cisco Systems, NetFlow Export Datagram Format;
http://www.cisco.com/en/US/products/sw/netmgtsw/ps1964/
products_installation_and_configuration_guide_chapter09186a0080080e30.html#wp1820.

[4] Cooperative Association for Internet Data Analysis, cflowd: Traffic Flow Analysis Tool;
http://www.caida.org/tools/measurement/cflowd/design/design.html.

[5] Tobias Oetiker, RRDTool: Round Robin Database;
http://people.ee.ethz.ch/ oetiker/webtools/rrdtool/.

[6] Cisco Systems, Network Data Analyzer;
http://www.cisco.com/univercd/cc/td/doc/product/rtrmgmt/nda/.

[7] Andrey Slepuhin, Netflow processing tools;
http://sourceforge.net/projects/netfltools/.

[8] Crannog Software, Netflow Monitor;
http://www.crannog-software.com/netflow.html

[9] Helmut Herold, UNIX und seine Werkzeuge: UNIX-Systemprogrammierung;
Addison Wesley, 1996.

[10] W. Richard Stevens, Networking APIs: Sockets and XTI;
Prentice Hall, 1998.

[11] Daniel P. Bovet, Marco Cesati, Understanding the Linux Kernel;
O’Reilly, 2001.

[12] Andrew S. Tanenbaum, Computer Networks, 3rd ed.;
Prentice Hall, 1996.

[13] Brian W. Kernighan, Dennis M. Ritchie, The C Programming Language, 2nd ed.;
Prentice Hall, 1988.

[14] Linux Man-Pages;

[15] The Gnuplot Team, Gnuplot;
http://www.gnuplot.info/.

[16] Lukas Ruf, Topsy Template;
http://www.topsy.net/TeX/.

[17] Tobias Oetiker, Hubert Partl, Irene Hyna and Elisabeth Schlegl, The not so Short Introduc-
tion to LaTeX;
http://people.ee.ethz.ch/ oetiker/lshort/.

75

	Motivation
	Problem
	Today's situation
	Requirements for the plugin framework
	Possible solution: in Hardware
	Custom Flow Replicator Hardware

	Possible solution: in Software
	Extending Fromplicator/Samplicator
	Extending another NetFlow Receiving Framework
	Result of the evaluation: Implementation of a new Framework

	Data Buffering
	Buffer Switching
	Circulating Memory Segments

	Chosen Design and the Design Requirements

	Design
	Writer Process
	Reader Plugins
	Management Process
	Request Processing: commandDispatcher()
	Memory Management and Statistics: memoryCycle()
	Sleep

	Watchdog Process
	Statistics Watcher
	Configuration

	Implementation Details
	Communication between Processes
	Via Named Pipes
	Via Shared Memory

	FIFO Algorithm
	Ring Buffer
	Responsibility Domains

	List processing
	Requirements
	Storage of the Lists
	Distances

	Crash Recovery

	Traffic Shaping
	Input Traffic Characteristics
	Output Traffic Speed Calculation
	Rate Limiting and Output Traffic Generation

	How to write a Plugin
	Forwarding Plugin using the TrafficShaper
	Local Plugin

	Testing and Validation
	First Setup: Simulation of NetFlow Data
	Setup
	Results

	Second Setup: Real Data at Switch
	Setup
	Results
	Discussion

	Third Setup: UDP Forwarding Setup
	Setup
	Results

	Fourth Setup: High Load on Gigabit Ethernet
	Setup
	Results

	Other Use of the Framework
	Message Broadcast System for Wireless Networks

	Related Work
	CAIDA cflowd
	Cisco Network Data Analyzer
	Netfltools
	Crannog Software Netflow Monitor

	Further Work
	Plugins
	Surveillance via RRDTool
	TrafficShaper
	Additional corrective measures
	Port to a realtime operating system

	NetFlow V9

	Summary
	Design and Implementation
	Major Challenges
	Conclusion

	Interfaces
	Read Plugin Library
	Write Library
	Watchdog Library
	Logging

	Deployment and Usage of the System
	Building the System from Source Code
	Source Distribution
	Installation
	More than one Framework

	Command Line Options
	Configuration
	Manager Configuration File Format
	Writer Configuration File Format
	Runtime Configuration

	Statistics and Alerting
	Statistics Viewer Mode
	Alerting Mode

	System and Maximum Memory Requirements

	Original Task
	Timetable

