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Abstract

This diploma thesis is about optimizing processors by the criteria performance,
area and power consumption. Because this is a multi criterion optimization
problem, the created results do not represent a single optimal or best fraction of
optimal solutions, they represent a bunch of non-dominated elements, called the
Pareto front. To get this Pareto front, a multi criterion optimization algorithm,
based on the principle of Evolutionary Algorithms (EA), SPEA2, is used. Tools
are used to compute the objectives where possible. The estimation of the area
consumption is showed how it’s made with tools and complementary information
like pictures of processor cores. EA aspects like creation of random elements and
variation operators like mutation and cross-over are discussed. A model is shown
which support this all. The protocol PISA is used to connect the optimization
algorithm with the optimization problem, together with its variators. A PISA
implementation in Java, JavaPISA, is presented. At the end optimization results
are presented and discussed.

1



2 LIST OF FIGURES



Chapter 1

Introduction

Optimizing processors is an iterative process. One can select a certain processor
configuration by hand or by reflection, and then evaluate it considering chosen
criteria like performance, area and power consumption. Afterwards, one selects
an other processor configuration and evaluates this one again. This selection and
evaluation cycle produces and evolutionary path of elements one is interested
in. One might have found the ideal product or a collection of interesting ones of
them. All in all, this is a manual process, which can be automatized to get at
least an other optimization alternative.

To do an automated optimization of an processor, all steps have to be automa-
tized, which means they must be executable by a computer. Both parts of the
optimization process, the element selection and the element evaluation, have to
be done in software. The smart element selection has to be done by an opti-
mization algorithm, and the element evaluation by simulators.

Working with multiple criteria leads to the consequence, that, in difference to
optimizing against a single criteria, where one gets a single optimal solution,
with multiple criteria one can not receive a single optimal solution in general,
because some elements might be good in one criteria, but for an other one there
exists a better element. Of course, if an element is at least as good in all criteria
as an other one, then the last one is ignored, because it’s dominated by the
first one. So filtering all dominated elements out of the collection, one receives a
bunch of compromises, called the Pareto front [1]. It’s exactly this Pareto front
in which all decision makers are interested in.

Because we work with an multi objective optimization problem, MOOP in short,
we have to have an multi objective optimization algorithm (MOOA). MOOAs are
a new and living field. It’s relevant to select one or two well tested algorithms for,
firstly avoiding to reinvent the wheel, and secondly and much more important,
to have a reliable part for your automated optimization. SPEA2 and NSGA2
are two favorites. See [1] for a good introduction into the topic of MOOPs.

The other component of the optimization process, the evaluation part, is done
by simulators. Simulators can serve completely for an optimization criteria, or

3



4 CHAPTER 1. INTRODUCTION

they can only partially fulfill their job, for which it’s necessary to complete the
necessary information. An other problem is the precision of the received results.
While precise values are not problematic, so are their counterparts, the imprecise
ones. One can try to improve their precision to make them useful. But one may
have few or no luck with other ones, for whatever reason it may be behind. So
one has to live with this problem and being aware of the imprecise results. An
other possibility is to learn how to deal with this uncertainty, which makes the
needs to have knowledge that doesn’t exist in mature form.

Whatever problem you want to optimize, you have to provide the tools for
optimizing it. Using a multi objective evolutionary algorithm (MOEA) as SPEA2
is, you need also the components for it to serve. This means you have to have
to define how random elements are created, to have an initial population, and
one or more variation operators like mutation and cross-over. Multiple of them
might be possible and necessary if the problem to optimize for offers and needs
multiple variation possibilities.

So having your optimization algorithm and your problem variator, you have to
connect them together so that they can work. Realizing this collaboration can
be done with specific knowledge and by reinventing the wheel, or you can take
an existing collaboration protocol to realize your optimization process. PISA[2]
is an example.

Finally, the problem you want to optimize has to be well understood a priori.
While this is clear and sounds reasonable, understanding it and knowing all
internals like value dependencies in before is a key and a must for successfully
realizing the steps needed to complete your optimization process. Mostly you
have to transform your vague, and for yourself clear, knowledge into a clear
mathematical model to work with it.

This diploma theses deals concretely with optimizing processors for perfor-
mance, area and power consumption, with SPEA2 by PISA, with simulators
for all criteria, and with the goal to create Pareto fronts in respect to certain
benchmarks. Not treated is the uncertainty problem or a comparison between
different MOEAs. The focus is on developing a complete and qualitative model
and framework to do processor optimizations. Thorough work and a solution
stand in front, oppositely to fast, vague and imprecise steps which make a
found solution useless, reuseless and therefore oblige to redo and restart and
new solution search.



Chapter 2

Processor optimization

2.1 Task description

Here the exact task description in german:

Aufgabenstellung für die Diplomarbeit

”Mehrkriterielle Optimierung eines Prozessors mittels

Evolutionärer Algorithmen”

Sommersemester 2003

Student: Bojan Antonovic
Betreuer: Stefan Bleuler (TIK), Christian Plessl (TIK), Rolf Enzler (IfE)
Professor: Lothar Thiele

Thematischer Hintergrund

Die Rechenleistung eines Prozessors wird von einer Vielzahl von Faktoren bes-
timmt. Die komplexen Interaktionen der Architekturparameter machen eine an-
alytische Bestimmung des Einflusses einzelner Parameter auf die Gesamtleis-
tung der CPU schwierig. Deshalb werden vermehrt CPU Simulatoren einge-
setzt. In unseren Projekten wurde bisher der SimpleScalar Simulator eingesetzt
(www.simplescalar.com) [2, 6]. SimpleScalar hat sich für viele Fragestellungen
als zweckmässig erwiesen und wird von vielen Forschungsgruppen eingesetzt.

Mit SimpleScalar wird ein CPU-Architekturmodell simuliert, das sich mittels
Textdateien konfigurieren lässt. Die Applikationen werden mit einem C Cross-
Compiler kompiliert und auf der simulierten CPU ausgeführt. So kann die
benötigte Ausführungszeit bestimmt werden. Neben der Ausführungszeit für
bestimmte Applikationen gibt es zwei weitere zentrale Kriterien beim Prozes-
sordesign: Erstens, die Chipfläche, die ein guter Indikator für die Kosten eines
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6 CHAPTER 2. PROCESSOR OPTIMIZATION

Prozessors ist, und zweitens, der Energieverbrauch. Für diese beiden Kriterien
existieren Ansätze von Estimations- und Simulationsverfahren.

Da die Qualität eines Prozessors bezüglich der genannten drei Kriterien durch
Simulation oder Estimation bestimmt werden kann, bietet sich eine automa-
tisierte Optimierung der Prozessorarchitektur an. Dazu sollen in dieser Arbeit
Evolutionäre Algorithmen eingesetzt werden. In dieser Richtung existieren schon
vereinzelte Ansätze [14, 9, 1].

Evolutionäre Algorithmen (EA) sind stochastische, iterative Optimierungsver-
fahren [10, 3]. Sie imitieren die Prinzipien der natürlichen Evolution
(Variation und Selektion), um eine Population von Entscheidungsalterna-
tiven (Lösungvorschlägen) sukzessive zu verbessern. Beim vorliegenden Opti-
mierungsproblem stehen die verschiedenen Optimierungsziele in Konflikt. Es
soll deshalb nicht nach einer optimalen Lösung gesucht werden, sondern nach
der Menge optimaler Entscheidungsalternativen, die den “trade-off” darstellt,
den man beim Design eines Prozessors eingehen kann. Für solche Mehrzielopti-
mierungsprobleme eignen sich EAs sehr gut [18, 7].

Ausgangslage

Ein Pool von Applikationen aus dem embedded and wearable Bereich wurde auf
SimpleScalar portiert und ausgemessen [8, 15]. In einer vorgängigen Semsterar-
beit wurde ein Framework geschaffen zur Ankopplung von Optimierungsalgo-
rithmen an den SimpleScalar Simulator [12].

Mit CACTI existiert ein Tool zur Bestimmung der Chipfläche und des En-
ergieverbrauchs von Caches [13]. Zur Abschätzung des Energieverbrauchs eines
simulierten Prozessors existieren mehrere SimpleScalar-Erweiterung wie Power-
Analyzer [11], Wattch [5] oder SimplePower [16, 17].

Auf der Seite der EAs existiert eine Schnittstelle (PISA) [4] die es erlaubt
die problemabhängigen Teile einer Optimierungsmethode (z.B. Mutation und
Rekombination) von den problemunabhängigen Teilen (z.B. Selektion) zu tren-
nen. Diese Teile können dann als unabhängige Programme implementiert
werden. Es bestehen bereits Module für mehrere evolutionäre Mehrzielopti-
mierungsverfahren. Siehe auch www.tik.ee.ethz.ch/pisa.

Problemstellung

Basierend auf den bestehenden Komponenten ist ein Programm zur evolu-
tionären Mehrzieloptimierung von Prozessoren zu entwickeln. Das Ziel ist,
Prozessoren für bestimmte Anwendungsgebiete optimieren zu können. Wie
erwähnt sollen dabei dem Benutzer alternative Designvarianten präsentiert wer-
den.

Für die Arbeit sind im wesentlichen folgende Teilaufgaben zu bearbeiten:

• Einarbeitung in SimpleScalar und das bestehende Framework zur An-
bindung an Optimierungsalgorithmen.
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• Abklären der Varianten für die Bestimmung der Chipfläche und des En-
ergieverbrauchs.

• Einarbeitung in evolutionäre Mehrzieloptimierung und PISA.

• Definition einer geeigneten Repräsentation des Optimierungsproblems und
Definition entsprechender Variationsoperatoren.

• Auswahl eines geeigneten Sets von Applikationen die als Benchmarks di-
enen.

• Untersuchen des Einflusses verschiedener Architekturparameter.

• Implementierung des Optimierungsproblems als Varitor Modul für PISA.

• Vergleich verschiedener Selektionsmethoden mittels PISA.

• Optimierung von Prozessoren für verschiedene Applikationsgruppen.

• Vergleich der resultierenden Architekturen mit real existierenden Prozes-
soren.

Neben den genannten Kernaufgaben bestehen weitere Fragestellungen, die in
Absprache mit den Betreuern untersucht werden können. Darunter fallen:

• Während die Laufzeitsimualtion sehr genau Resultate liefert, basiert
z.B. die Bestimmung der Chipfläche auf einer Abschätzung. Die unter-
schiedlichen Unsicherheiten in den Zielfunktionswerten könnten im Opti-
mierungsalgorithmus berücksichtigt werden.

• Vergleich mit anderen nicht evolutionären Optimierungsverfahren.

• Weiterführende Abschätzungen von Chipfläche und Energieverbrauch.
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Organisation

Dauer der Arbeit: 4 Monate.

Zeitplan: Erstellen Sie am Anfang der Arbeit einen Zeitplan. Halten Sie Ihren
Arbeitsfortschritt laufend fest.

Wöchentliche Besprechung: Um den Stand der Arbeit zu verfolgen und
um Schwierigkeiten oder das weitere Vorgehen zu besprechen ist ein
wöchentliches Treffen mit den Betreuern geplant.

Anfangsvortrag: Ca. zwei bis drei Wochen nach Beginn der Arbeit soll ein
kurzer Vortrag über die Aufgabenstellung und die geplanten Schritte
gehalten werden. Dauer: maximal fünf Minuten.

Schlussvortrag: Gegen Ende der Arbeit sollen die Resultate in einem ca. 20
minütigen Vortrag präsentiert werden.

Dokumentation: Am Ende der Arbeit ist ein schriftlicher Bericht abzugeben.
Dokumentieren Sie Ihre Arbeit sorgfältig. Beschreiben Sie darin nicht nur
die Resultate, sondern auch die Überlegungen und Designentscheide. Im
weiteren sollen auch die von Ihnen geschriebenen Programme sorgfältig
kommentiert und dokumentiert werden.
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2.2 Overview

As explained in the introduction, this diploma thesis deals with the optimization
criteria performance, area and power consumption. For using them, the tools
SimpleScalar[4][5] (performance, result in cycles, evaluation by a benchmark),



10 CHAPTER 2. PROCESSOR OPTIMIZATION

CACTI[8][9] (area consumption and access time of caches) and SimWattch[6][7]
(power consumption, result in Watt) are presented, together with their needs.
Further, all parameters of a processor are presented and, the most important,
where importance is defined for analytical importance instead for the object
itself, are discussed. Then the ideas of random population creation and the
variation operators mutation and cross-over are discussed with some variants
of them. Then an analysis is presented how the area consumption is made by
using multiple information sources. Afterwards some implementation aspects
and products are presented. Beyond them is JavaPISA, a realization of the
PISA protocol in Java. At the end, optimization runs of multiple benchmarks
are presented and analyzed.

The differences between this diploma thesis and a similar semester thesis[10]
are:

• a complete cache architecture model is used, which allows also unified
caches

• a better area consumption model is used

• a better MOOA and the interface protocol PISA are used

• reutilization by structured, object-oriented implementation in Java is
made (instead with Perl)

This points shouldn’t be understood as a critique. It’s so that preworkers are
concentrating on building up something, for which they selected their best pos-
sible realization method. Also SPEA2 and PISA where not available at this time
period. Nevertheless, in the implementation part it’s explained what realization
decisions are chosen for this thesis to provide a good framework.

2.3 Evaluation tools

In this section the used tools for determining the criteria performance, area and
power consumption are presented and their basics are shown up. Informations
about processor parameters will be introduced drop-wise and where necessary.
It’s not necessary for you to understand all parameters in order to understand
the explained problem. But feel free to look intro appendix A for an excact
explanation about all processor parameters.

2.3.1 SimpleScalar

SimpleScalar 3.0 [4][5] is a tool to determine, how many cycles a processor, by
a given processor configuration, needs to proceed through a given benchmark.
Your processor configuration must be in a SimpleScalar readable format (see
appendix) and the benchmark compiled for the processor model SimpleScalar
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uses. Compilation of a in C given benchmark can be done by a modified GCC
version. For details about the SimpleScalar suite see appendix.

SimpleScalar can emulate an out-of-order processor. For this, the com-
mand sim-outorder has to be used. If your configuration has the name
myconfig.config and the compiled benchmark the name mybenchmark.eio,
then the corresponding call of sim-outorder is

sim-outorder -config myconfig.config mybenchmark.eio

If you omit the configuration, then the default configuration is used. If you omit
a single or more parameters, then their default values are taken.

Very useful is the feature to automately send the output to a file, which can be
read and parsed later:

sim-outorder -redir:sim result.txt mybenchmark.eio

which, in this example, sends the output of the evaluated default configuration
to the file result.txt. The value of interest at SimpleScalar is the number of
cycles:

sim_cycle 11491 # total simulation time in cycles

which can be easily parsed by before cutting off the text left and right aside
from the cycle number or how one prefers.

SimpleScalar is a very stable tool. Two ugly bugs are when you choose the block
size of a cache in the second level smaller then it’s corresponding part in the
first level cache, like the example

-cache:dl1 dl1:8:32:8:f

-cache:dl2 dl2:8:16:8:r

shows, where the first block size (32) is greater then the second (16) , and
when you use for the level 1 cache only a data cache with the combination of
a unified second level cache. While this case is not forbidden or caught by the
SimpleScalar input check, it makes SimpleScalar freezing. A really ugly, and for
beginners a hardly discoverable one!

2.3.2 CACTI

CACTI [8][9] is a tool for computing the access time, the area and power con-
sumption of caches and everything you see as caches like memories. CACTI
takes a cache configuration and returns the demanded values with an internally
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optimized cache. Optimized means that beyond multiple possible caches the
best is chosen. This is an internal CACTI feature, as described in [9]. While
the CACTI parameters are described in [9], appendix A, here is a more helpful
description of them with an useful example.

To call CACTI, you have to pass the following parameters as scalar values, if
nothing else stands:

• cache size

• number of blocks

• associativity

• technology (lambda)

• number of subbanks

An extended parameters list comprehends the number of read-and-write ports,
and the number of read-only and write only ports. So the call syntax looks like:

CACTI <size> <blocks> <assoc> <lambda> <subbanks>

or
CACTI <size> <blocks> <assoc> <lambda> <RWP> <RP> <WP> <subbanks>

The values can have the following parameters:

• cache size ≥ 64 bytes

• number of blocks ≥ 8

• associativity ∈ [1, 32] or FA

• technology (lambda) value in µm

• number of subbanks ≥ 1

• read-and-write ports ∈ [1, 2], default 1

• read-only ports ≥ 0, default 0

• write only ports ≥ 0, default 0

Example: Let’s say we have a cache with 64 sets, 16 blocks, associativity of 4,
lambda of 0.13 µm and 1 subbank. Then we have a cache size of 64 ·16 ·4 = 4096
bytes. The CACTI call would be:

CACTI 4096 16 4 0.13 1

CACTI delivers many parameters. We are only interested in the access time,
the area and power consumption.



2.3. EVALUATION TOOLS 13

Access Time (ns): 0.889773

Total Power all Banks (nJ): 0.544613

Total area subbanked (cm^2): 0.004362

The CACTI manual [9] gives an other example with an old technology size, and
its written for CACTI 3.0. In CACTI 3.2 the naming of the last two parameters
has changed slightly.

The access time, which is here in nano seconds, is used later for computing
the access time of the cache in processor cycles. For this, a 2 GHz processor is
assumed, and the number of cycles is rounded up, because even a 10th of cycle
can’t be ignored, so the access will take a full additional cycle. This means that
our access time of 0.889773 ns will have equivalent of 1.779546 cycles, which
means 2 clock cycles in the practice.

The consumed power is directly irrelevant for this thesis. However, because the
following tool, SimWattch, and future extensions of this thesis can use it, it’s
presented here and parsed in the software.

2.3.3 SimWattch

SimWattch[6][7], like SimPower and PowerAnalyzer, is an extension of Sim-
pleScalar, especially of version 3.0, which, in opposite to the other two, came at
closest for our purposes, because the others two either didn’t fulfill our demands
or where excluded by the tutor of this thesis and the last one was not regarded
after SimWattch was found as useful.

SimWattch takes a processor configuration and returns, beside all values Sim-
pleScalar does, also the total power consumption of the processor, which is
expressed in the line

Total Power Consumption: 78.5882

The returned value is in Watt. SimWattch uses CACTI to determine the power
consumption of caches, and internal models for the rest. After many investiga-
tions to make SimWattch runnable on our working platform(s), and by patching
it do support missing caches, and parsing the power value in software, it was
discovered that SimWattch uses and old version of CACTI, likely to be version
2.0, which has a less detailed area model and no subbanking, and therefore also
an incompatible power consumption model with CACTI 3.2. Also the returned
values made no sense. Even for a processor in 0.18 µm technology, with a clock
frequency and voltage we also couldn’t extract, results in more than three mag-
nitude of order like 7 W and 21 KW (!) disqualified SimWattch for further usage.
Therefore, and because power consumption was made usable in the last part of
the thesis time and before no one had a reliable power consumption tool, power
consumption was dropped as an optimization criterion. At least it served as a
proof of concept for the thesis software and model.
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2.4 Area consumption

An estimation of the area consumption can be made for caches, as in the CACTI
presenting subsection was explained. What about the rest? Branch predictors
need tables to look up. While this tables have often a width of some few bits, it
should be possible to view them as memories, and then to compute their area
consumption by CACTI. But there’s still a rest of the processor. The saving
idea came up to estimate the area consumption of certain units from pictures
of processor cores.

First, a remark about the area consumption of normal caches is made. Second,
the area consumption for branch predictors is presented. Together with the value
of all caches, only the rest has to be computed.

The computations are made to express the results in the structure size λ, because
this gives the possibility to choose a demanded λ and to get the die size of an
actual technology like 0.13 µm, which is also used in the implementation.

2.4.1 Caches

You can read this subsection without understanding completely how caches are
organized. Exact knowledge about caches is not necessary.

Caches, like the instruction and data cache of the first or second level, or a
unified part of them in a level, can, together with the instruction and data
TLB, be straightforwardly sent to CACTI to get their area consumption. On
the fly, the latency times for the first and second level cache can be determined
to have the most realistical values. For instruction and data TLB this possibility
doesn’t exist. Therefore this is an open gap in the SimpleScalar architecture.

Back to the area consumption eastimation. Because CACTI 3.2 introduced a
banking model, and offers the possibility to specify the number of read-and-
write, read-only and write-only ports, a reasonable model has to be found to
use appropriate values. [9] says that a multi-banked cache can in best case
be as good as a multi-ported. While one may understand it that a 1-ported
and n-banked cache is in ideal case like a n-ported 1-bank cache, the question
comes up for the behavior of a n-ported m-bank cache. A mail to one author of
CACTI stayed unanswered1. So no experiments where made and the assumption
is selected that all caches consist of only one bank while only the number of ports
is varied.

SimpleScalar has a parameter -res:memport which specifies the total number
of L1 cache ports. Neither in the document nor in the code can be seen exactly
of which type this ports are. So, generally, a cache of the first level, might it be
a IL1, DL1 or a UL1, has the number of read-and-write ports that is equally to
the memport parameter, and no read-only and write-only parameter.

1Premishkore Shivakumar is meant. But he gave many replies before. It could be that he’s

absent at the moment.
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Because the IL1 cache never writes data back to higher cache hierarchies (IL2,
UL2 or RAM), it shouldn’t need a real write port. It should only need a fast
updating logic which could be implemented efficiently in reaction time and area
consumption, and so only a read-only port would be necessary. Again, also this
question of the same CACTI author stayed unreplied.

It was observed by the author and described in [9], that a split of a read-and-
write port into a read-only and write-only port doubles the size of the cache like
the number of read-and-write ports is doubled. Experiments have shown that
a write-only increases the area consumption more then a read-only port, and a
read-and-write port, like mentioned above, more then both together.

The reason why this port analysis was made is that CACTI doesn’t support
more then two read-and-write ports. So the question came up, how more then
two memports should be represented. A possibility is that up to a value of two
ports a value of two for the read-and-write ports is used, zero for the read-only
and write-only, and for all values above two the rest one read-only and write-
only port is taken. This thoughts were made to provide a work-around for the
CACTI limit to still offer more than two points. A contra point is that the area
consumption of the cache is dramatically increasing as described in [9]. The final
decision, chosen with the tutors, was that the memport parameter can be only
in the interval [1,2], and that our optimization trials have to live with this limit.

For the caches of the second hierarchy and the TLB caches a single read-and-
write and no read-only or write-only port configuration was assumed, because
SimpleScalar doesn’t support multiple cache ports for this caches.

2.4.2 Branch predictors

Branch predictors need tables for look ups. And tables are memories, and those
can be regarded as caches under certain circumstances. But let’s first take a
look at all possible branch predictors and then analyze their area consumption
step by step.

• perfect

• taken

• not taken

• bimodal [BTC, RSS, BTB]

• 2-level [2LEV, RSS, BTB]

• combined [BTC, 2LEV, RSS, BTB, COMB]

We see that the first three contain no parameters. For this simple branch pre-
dictors a negligible area consumption, which means 0, is assumed. The rest has
some parameters of common type. So, if, for example, the parameter BTC ex-
ists, then its area consumption is computed and then added up to the result of
results of other parameters, if they exist.
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It should be noted in advance, that all this parameters use tables with n entries
and a width of m bits, but the minimal block size, the depth of an entry, that
CACTI needs for an area consumption service to provide, is 8 bytes, 64 bits at
the end. So doing it trivially would lead to a massive area waste.

The transformation model that was used is the following. Assume that 64 is a
multiple of m, the width. Then 64

m
entries can be packed into a block, which

is an entry of a higher order cache. So we would have a mn

64
-entry cache of

size mn bits (equal to mn

8
bytes). Assuming that this higher order cache is of

associativity 1, which means direct mapped, we have a higher order cache with
nm

64
sets, block size of 8 bytes, associativity 1 and a cache size of mn

8
bytes. This

are all parameters you need to feed CACTI! And for the structure size λ the
same value can be used as for ordinary caches.

It’s assumed that the packing and depacking logic is minimal and efficient.

Because CACTI can’t proceed smaller cache sizes then 64 bytes, we have to use
a minimal amount of space for each branch predictor entry if it falls under a
certain value. If some parameter has a widht of 2 bits, which would correspond
to 64

2

8

= 64·8

2
= 256 entries, then every part of the branch predictor with less

then 256 entries would have a bigger estimation of the area consumption than in
reality2. However, and more important, an area consumption model for branch
predictors is received, which is reasoned and correct in the trend of larger entry
sizes.

2.4.3 Rest of the processor

In the previous subsection we have seen how the area consumption for usual
caches and as cache viewn branch predictors is computed. However, for the rest
of the processor we don’t have the luck for a CACTI, or any tool, supported
area consumption estimation. A different way has to be found.

A good possibility is to collect information from real processors like the number
of units they have, their core sizes, their fabrication λ, and of pictures of their
cores where it can bee seen how the single elements are arranged. A simple and
compact arrangement shows us that an area packing optimization problem of
the units would fall away, which can become a heavy burden under the sheer
amount of difficulties that are already here.

The table 2.1 shows a collection unit data of some real processors. In table 2.2
we see area information of some real processors.

Interesting is the observation, that many processor seemed to be constructed
that way that their area consumption is a fine multiple of an area expressed by
the square of the structure size (λ2).

More important is that pictures of the Athlon processor core where found with-
out, with 128 KB and 256 KB L2 cache, where it can be seen that the L2 cache
was only attached to the rest core and that the processor itself is packed very

2Negligible in contrast to a large level two cache.
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processor FP ALUs INT ALUs L1 cache L2 cache
Power4 2 2 128K / 64K 1.41 M
Power3-II 2 2 32K / 64K 4 or 8 M
Pulsar 2 2 64K / 64K ? 8 M
PowerPC 970 2 2 64K / 32 K 512 K
G4 (latest) 1 1 32K / 32K 256 K
Opteron n/a n/a 64K / 64K 1 M
Athlon XP (Barton) 3 3 64K / 64K 512K
Athlon (Thor.,M8) 3 3 64K / 64K 256K
Athlon (K7) 3 3 64K / 64K -
P4 (Northwood) n/a n/a n/a 512K
P4 (Willamette) n/a n/a n/a 256K

Table 2.1: Some modern processors with the number of floating point and integer
ALUs, and the sizes of their level 1 and 2 cache.

processor λ die (in mm2) die in Gλ2

Power4 180 - - ≈ 7
Power3-II 220 163 ≈ 7
Pulsar 220 140 ≈ 7
PowerPC 970 130 118 6.98 ≈ 7
G4 (latest) 180 106 3.27
G4 (MPC 7410) 180 - -
P4 (Northwood) 130 145 8.58 ≈ 9
P4 (Willamette) 180 217 6.67
Athlon XP (Barton) 130 101 5.98 ≈ 6
Athlon XP (Thoroughbred) 130 84 4.98 ≈ 5
Athlon XP (2000+) 180 128 3.95 ≈ 4

Table 2.2: Some modern processors with their structure size λ, the size of their
core, and the calculated size of the core in λ2.
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Figure 2.1: Core of the Athlon processor without level 2 caches. Shape of the
units is very detailed.

efficiently, which removes us the trouble of an unit packing problem, as it can
be seen by the pictures 2.1, 2.2 and 2.3.

What one can do and what was made is to measure out manually the sizes of
single units, look at their proportionality corresponding to the whole picture
size, and then multiplying the size of the processor in λ2 to receive the size of
the unit in λ2.

From this core pictures we are not interested in information we have already
like the caches or the branch predictors. The most useful information is the
size of the integer and floating point units. Because we know the area size of a
unit aggregation, and because we know the number of subunits this aggregation
holds (3 in the case of the Athlon), we simply divide the area by the number of
units to obtain the area for a single unit.

The story isn’t over know. SimpleScalar has parameters for a INT ALU and
a INT MulDiv, a multiplication and division unit, and corresponding parts for
the FPU, the FPU ALU and the FPU MulDiv. As far no further information is
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Figure 2.2: Core of the Athlon processor with 128 KB of level 2 caches.
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Figure 2.3: Comparison between two Athlon processors with 128 KB and 256
KB of level 2 caches (last two pictures). The first two pictures compare the
processors at whole.

available about a partitioning of the corresponding area or size proportionalities
between an ALU and a MulDiv unit, it’s assumed that they have the same size,
which is the computed value above.

The rest of the processor, from which no information can be gained, is assumed
to be a basic area and unit demand for a workable processor.

The overall model is surely discussable. But it should be said that the Athlon was
the only processor where all informations for completing the calculation were
found, and that at most 5 values in the area estimation have to be changed
when better informations are obtained.



Chapter 3

Evolutionary algorithm

components

In this chapter the topic of components for evolutionary algorithms is regarded.
This means, ideas are presented how a processor configuration can be randomly
created and variated, specially how mutation and cross-over can be done over
it. The ideas are not regarded to be complete, and are discussable.

The discussion will be separated for simple values like the number of integer
units or certain powers of 2, and for complex parameters like branch predictors
and cache configurations.

3.1 Random elements

3.1.1 General description

Understanding how to create random elements is a prerequisite for further com-
plex operations like variation. While one would think this is not a great deal,
he/she must realize the the opposite is true. A big problem is the one of the
feasibility of the created element, because most complex problems have a sort
of feasibility. If you have a feasibility checker, a simple one or an aggregated one
with multiple subcheckers, the you could create elements, check whether they
are feasible, and then kick the unfeasible away. While this is surely a simple
and good method to begin with, it produces the problem of the unfeasibility
rate. If the unfeasibility rate is of an enough high fraction, let’s say x, then we
have to expect to make simply 1

x
more trials to collect our amount of feasible

elements. But if x is a very small number, then we will need a huge, maybe even
exponential high, number of trials to have our initial population. A possibility
is to find a model that represents your problem that reduces your unfeasibility
rate drastically. But this would open an other problem front which has to be
closed with eventually a large amount of work. An other, maybe smarter, pos-

21
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sibility is to create feasible elements by default. While perfect feasibility in one
step can be hard to reach, they idea is to reach it in two or more steps. First
an as feasible element as possible is created, and then a feasible one is created
by transforming the given one into a close but feasible one. This multi-step
production may produce certain elements more often then others, because their
creation probability is not uniform as good random would allow, but this is only
the problem of the initial population. Because we deal with algorithms based
on evolution, their overrepresentation can disappear.1

Now we want to take a view on the parameters, to make a categorization of
them and to see the difficulties clearer. Exact informations about processor
parameters, like presented in the appendix, are not necessary for the first two
subsections. And for the caches they will be introduced to understand the topic.

3.1.2 Simple parameters

Most parameters are simple and independent. This means they are usual num-
bers. Some of them are powers of two. All have to lay in a certain range. So
their creation is simple. One takes a random number from this range and then
returns this value. For powers of two an exponent in the range for exponents is
taken, and then a power of two with this exponent is returned. So the returned
element consist of independent coordinates. Seeing the powers of two only by
their exponent, the returned object is originated in an object with a geometric
form of a multidimensional cuboid.

3.1.3 Branch predictor

The branch predictor is a complex parameter but still independent from others.
Instead of being filled by numbers of any form, this value consists of an object,
chosen from a collection of disjoint objects. So this objects are a generalization
of numbers. Having a view at the possible values for a branch predictor

• perfect

• taken

• not taken

• bimodal [BTC, RSS, BTB]

• 2-level [2LEV, RSS, BTB]

• combined [BTC, 2LEV, RSS, BTB, COMB]

we see that only the first three possible values are simple objects like a gener-
alization of numbers. The other three, if chosen, contain subparameters. So for

1Non-uniform probability of created elements is only a problem for topics like Monte-Carlo

tests, where some data has to be collected, but we have our correction factor, the EA.
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an external viewer having 5 integers units is in the same range like having a
bimodal branch predictor, but for using a bimodal branch predictor firstly some
more arguments are needed, and secondly not all of them occur in the other
branch predictor values. So a branch predictor has to have additional values
that others don’t need. Creating a branch predictor can be done by first ran-
domly choose a type, and then further a random value for each of its subtypes.
Furthermore, if this subtypes again contain subtypes, then the random selection
has to continue until the last level of this parameter tree.

3.1.4 Caches

Cache configurations themselves don’t have this amount of parameter levels
like branch predictors. They can be of certain type, and each cache type uses
then same parameters like every other cache. But attention, there are different
sorts of caches. On the one side, we have caches in the first and second level
of the cache hierarchy, and we have instruction and data TLBs. The last two
are independent of the others and from each other. So creating them randomly
means creating their parameters randomly. Then for them the creation process
in finished.

Caches of both levels are independent from other parameters but they have
multiple intra-dependencies. First, a cache of a certain level can have one of this
possibilities:

• none

• instruction and data cache

• instruction cache only

• data cache only

• unified cache

Caches with at least an instruction or data cache can be viewn as splitted caches,
oppositely to a unified cache. Furthermore, not all possibilities between cache
types between the first and the second level are allowed, as can be seen by figure
3.1.

So there is an inter-dependence of cache types. Also there’s a further inter-
dependence between a certain type of the cache parameters, the block size, and
this only between the same cache type of two levels. This means that the block
size of the instruction cache of the second level must be at least as great, the
opposite of not smaller, as the block size of the instruction cache of the first
level. The same counts if there’s a data cache on both level. Note that, because
a unified cache on one level implicitly has also the corresponding cache type,
this counts also. For example, if you have an instruction cache on the first level,
and an unified cache on the second, then, because a unified cache also counts
as an instruction cache, the block size of the UL2 is a least as great as its part
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Figure 3.1: All by SimpleScalar allowed cache combinations. The one with DL1
and UL2 makes it freezing.
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of the IL1. Continuing with this logic, having two unified cache levels unified,
which means having a UL1 and UL2, then the block size dependency counts
also here. The block size of the UL2 is greater or equal then the block size of
the UL1.

Having seen all difficulties that are expecting us, we have to deal with the
problem step by step. First, we have five cache type on each level, including none.
This means, we can create an initial cache combination by randomly choosing
a cache type for each level with also random values for the parameters of each
cache type. This product is likely to be unfeasible. Secondly, we transform the
cache type pair into a feasible one by removing single caches. So if there’s no
cache in the first level, then no cache in the second level is allowed. If we have
a unified cache in the first level then the second can’t be splitted. So here the
second cache is removed.

While this method clearly produces cache pairs with a higher amount of absent
partial caches, it’s a multi-step method that produces - by cache types - feasible
caches, as proposed above.

The third step is to deal with the block size dependency. Here a simple method
is to manually adjust the block sizes of all caches in the second level. Depending
on the internal cache configuration representation, this can increase the over-
all cache size, leading to a unfeasibly too large cache size, dependent on how
feasibility is defined here. The focus in this section was to present a three-step
method to produce a feasible cache by its criteria. It’s an completely different
topic what problems this else might produce elsewhere.

3.2 Mutation

After having seen how random elements are created, it should be easier under-
standable, how certain parameters of them are mutated. Again, we have to deal
with the separation of simple and complex objects, between independent and
depended ones.

3.2.1 Simple parameters

Simple objects like numbers can be mutated by moving them one position up
or down, or in the case of powers of two, by shifting them up or down, where
shifting is understood as the binary multiplication or division. Or both of them
can receive a completely new random value. The grain coarsed changing of a
single parameter is called macro level mutation, while the fine coarsed one micro
level mutation. So we have two different mutation operators2.

2Random element creation can be understood as doing a macro level mutation on all

parameters of an given element.
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3.2.2 Complex parameters

Now let’s see how it stands with some complex parameters, like the branch
predictor. Because this is a multi-level parameter, changes can be made on
different levels. A change on the first level will change its type. It’s hard to
see in advance if a single position change will lead to a better or worse branch
predictor, meaning that a more or less, like in the case of numbers, doesn’t exist.
So changing a branch predictor can be only made by choosing a completely new
one, like in the case of a macro level mutation. Continuing this logic, you can
perform grain coarsed or fine coarsed changes on lower level parameters.

Having understood the mutation of the previous two parameter categories, and
then creation of random cache elements, it’s easy to see that you can do mutation
on caches also on multiple subparameter levels. On the first level, you have to
change the entire cache type. On the second level, you can already change one or
two cache configuration. Two then and only then when you have a splitted cache
with both instruction and data cache available. Later, after having mutated your
both levels of your main cache configurations, you have to look to get again to
a feasible cache composition, and this is meant by type with type transforming,
by the block size dependency3.

Summarized, you have a huge possibility of mutation operators. They can be
grain or fine coarsed on each level. Analogue to the simple parameter case, a
macro level mutation should be understood for a grain coarsed mutation on the
first level, and the micro level mutation for fine coarsed mutations on the first
level and for all mutations on lower levels. This names where chosen to indicate
that mutations on the macro level are generally more influent and those on a
micro level.

3.3 Cross-Over

3.3.1 Description and simple parameters

The cross-over variation operator is an operator that takes some parameters
from one parent and the other parameters from the other parent4, and then
producing a child on this way, like the biological cross-over of genes.

Cross-Over for simple and independent parameters is not a problem, as the rules
are clear and side-effects like damaged dependencies don’t occur. For complex
parameters this is different. We start again with the branch predictor and work
then to the caches.

3It’s recommended to leave this mutation possibility away in a implementation. Type

changing mutation of caches will bring you enough fresh information into your population.
4A parameter is either taken from one parent or from the other, but not from both. Also

every parameter must have a parental origin.
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3.3.2 Branch Predictor

Let’s recall again the parameter possibilities for the branch predictor:

• perfect

• taken

• not taken

• bimodal [BTC, RSS, BTB]

• 2-level [2LEV, RSS, BTB]

• combined [BTC, 2LEV, RSS, BTB, COMB]

Now comes the question up how to define a cross-over. If both parents have the
same simple parameter, then the child will have it. However, this lucky case will
occur seldomly in practice. When both parents have a simple branch predictor,
and by the analogy from above these are generalizations of numbers, so the
child will have one of this two possibilities. More complex is the case when the
parameter loaded possibilities are brought to game. Now the child can have an
entire copy of a parental branch predictor for all levels. Having only this cross-
over, you won’t have individuals with different parameters on lower levels then
those which were created with the initial population. You have to live with the
limitations your ”big bang” has brought to you.

But both parents can have a multilevel parameter, where also the possibility
exists, that this subparameters are of common type5, or those that common
in every branch predictor6. Here comes the possibility up to cross-over those
common parameters, and take the noncommon from a parent. This can be
understood that the child is a clone of one parent but takes some common
information also from the other one7.

3.3.3 Caches

For caches there are similar possibilities, but slightly different. First, the child
can take over the cache type for each level. Secondly, if two parents have an
instruction cache on a common level, which is the case when an instruction
cache is available with or without the data cache, then the configurations of this
instruction caches can be cross-overed. Similarly the same can be done when
having common data caches on the same level. Of course, having a cache level
unified gives you also the possibility to cross-over this caches.

As you have seen, there’s a strong analogy in the cross-over of caches like with
branch predictors, except that, you guess it, the caches of both levels have to
be brought in a feasible state.

5like BTC and 2LEV
6like RSS and BTB
7It’s easier for implementations to determine a parental origin in advance like the first

parent and the to look for common parts in the other parent.
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3.4 Summary of EA aspects

In the last three sections a huge number of possibilities was presented how to
create and, especially, variate processor configurations. This possibilities can be
extended as one likes. They where presented here independently of a chosen
representation of a processor configuration to separate the what is done from
how it is done.



Chapter 4

Realization and

Implementation

In this chapter all aspects regarding a realization of the previously presented
subjects is discussed. This considers various paradigms, guide lines, and also the
presentation of JavaPISA, an implementation of the PISA protocol in Java.

4.1 Realization criteria

Every work made has to serve certain critieria. Here, not what is realized is
described, it’s how it’s realized. A list of keywords is shown with the description
what is understood of them:

Completeness Completness means that no, or nearly no, compromises are
made. Every compromise you make offers others, and often also yourself,
a critique point and a weakness for reusing your work. Many achieved
problem solutions had to be thrown away because they showed massive
leaks due to strong approximations.

Syntax A strong syntax of the programming language you choose reduces
the complexity and enables the compiler to exclude many potential er-
rors at compile time. A good example of preventable bugs was found in
SimWattch, file power.c. There, multiple global variables were defined. The
author reused them often. A refactoring of the code with introducing local
variables has shown that certain function values are computed but never
used. Was this a result of too many copy-and-paste operations or avoid-
able mistakes? It’s the last one. Therefore, one should use all possibilities
for avoiding mistakes, included a strong programming language.

Common platforms Under this is not a common OS understood1. Here is
meant that people should prefer using commonly accepted things like a

1The convergency of many UNIX OS could lead to this but it’s not a subject here.
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common programming language, concepts of whatever kind and so on.
It’s no longer acceptable that every one comes with his own wishes and
excuses himself for that the others are too lazy or stupid to work into his
field. Instead of putting everybody’s energy into horizontally (managing
the diversity), people should focus of verticallity (quality and progresses).
Many progresses where made in the last years, which are often unused and
no excuse stayes of not using them.

Reusability Reusability is also the result of multiple efforts and sometimes
hard to define. But reusability is meant that projects are made with the
idea in background of really being reusable; this by the idea, by the created
code and so on. Completeness, common platforms and simplicity can lead
to this.

Simplicity Simplicity is not a present for less gifted people. Simplification is
meant as the information keeping simplification, and not the destructive
one where generality is lost. Unsimplified results like software consume
much worthful energy, which can be used better. Simplicity, together with
testing, will enable you to remove many potential errors, but not all.

Factorization Here is not the mathematical factorization meant. It’s more
meant the common parts of a code should be unified. A good factorization
technique is also object oriented programming (OOP). Here, superclasses
keep common code, and subclasses define the small amount of necessary
functionality. A good effect of realizing something in the OOP way can be
seen in the difference between the implementations PisaLib and JavaPISA
(see below). The first one is in C, the second one in Java. Instead of pasting
your code into an other one, it’s much better to focus on the missing parts
in a simple file. Also a change in the common parts won’t have great
impacts into the specific parts when implemented in the object oriented
way. Instead, if a bug is found in PisaLib, all users of it have manually to
adapt their code. With centralizing the code this won’t happen2.

Testing Testing and simplicity are the two key components for an error poor
software. Testing is a necessary part of software or any product develop-
ment. It can’t be replaced by a good design, as inexperienced people thing
and how reality shows, because also the designer self is a error source.

For a successful realization of all this criteria, the programming language Java in
its latest version, 1.4, was elected. Version 1.4 supports assertions, a key feature
to check pre- and postconditions.

Remark: Many criteria are hard to reach and also the author knows that he is
judged by the same laws like others. Nevertheless, they had to be shown and
defined. In the conclusion you will see that most of the enumerated criteria
where indeed reached.

2The original PISA inventors had first the problem to create something like PISA and the

PisaLib. This comparison shows only the gain you can make by using appropriate techniques.
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4.2 Model

Here two realization paradigms are presented and discussed. The first one was
used earlier in the thesis, the second one later. To be precise, a switch of the
first one to the second one was made.

4.2.1 Procedural

The procedural implementation has the focus on how things are done. This
means an realization model is thought out. Then a data structure is found, and
the whole realization is oriented toward this data structure. This approach was
first made, as it appeared naturally for our problem.

We assume that every parameter of the processor configuration has to be filled
with an object, its value. An object can be a number, a power of two, a branch
predictor, a cache type or cache configuration or whatever you want. We further
assume that an array of objects is also an object, a parameter object if you want.
Of course, single objects should be distinguishable from object arrays, and those
between themself by their number of elements. Such an object can be seen as
the Java class Object, but we won’t focus on a specific programming language
or a concept. Most important precondition is, that if a parameter contains one
object, it doesn’t contain an other one. So this temporary exclusion, doesn’t
matter if it’s seen as trivial, must hold.

This above defined object is used to store different sorts of parameter values.
Like mentioned this can be a number for the integer unit count. Or the cache
configurations of the instruction and data BTB can be stored so. Branch pre-
dictors can be represented so. For those, when having one of the simpler types,
we have to store their type, let’s say a unique number per predictor. For the
complex ones, we can store, additionally to their type, their parameters, which
are arrays of objects.

When storing the two cache levels, we can use no object for no cache3. The cache
levels can be stored into a single variable or into two separate variables, where
no cache at all means void entries. Further, if we have a unified cache type in one
level, we store directly its configuration, which is an array. If we have a splitted
cache, we represented it by an array with two elements, and each element has
either no entry or a configuration of the cache it represents (instruction or data
cache), but not two empty entries if there’s no cache at all. So we can perfectly
distinguish whether we have no, a unified or a splitted cache.

This data structure has some great advances. First, it’s natural for the problem
we deal with, and secondly it allows a unique storage, and therefore identification
of a certain parameter value, because storing a value automatically overwrites
and replaces the previous value. However, dealing with this data structure is
a pain. Each time you have to read a value or identify it’s type you have to
make an extensive case analysis. And this every time you use is, whether its
for the I/O, the mutation, cross-over or for any reason. You see, that this case

3Assume the existence or absence of an object is also allowed.
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analysis enlarges your realization complexity, and this hits directly to a high bug
number, where you risk that your project never finishes due to this handicap.

Therefore is the term procedural selected. We are focusing on how we deal, here
considering toward a data structure.

This procedural realization model was taken at the beginning but was dropped
exactly due to this extensive case analysis. We now will look at a better method.

4.2.2 Functional

The functional implementation has the focus on what is done, oppositely than
how it’s done. This means it’s more important that we get the information of
a certain cache type, that we can use a certain branch predictor, that we can
generally use a service, rather than to deal each time how we have to manage it,
like it stands in the focus of the procedural way. The functional implementation
is a paradigm that keeps the jobs done on a higher, more abstract level. Basically
this high abstraction level is never left. A lower abstraction level work would
deal more with data structures. An data structure API belongs clearly to this
lower abstraction level, because the data structure is in the focus. Functional
realizations simple don’t care about data structures, because data structure
dteal with how something is stored, rather than what is stored.

Functional viewing is a paradigm as object oriented is. And like the last one, also
programming languages where developed for this paradigm. They’re not called
C++ or Java, they’re ML, PROLOG4 and so on. See for more information in
[11]. This functional implementation paradigm has help drastically to simplify
the realization. The transformation was done quickly. The result is encapsulated
from, and therefore, independent of any data structure.

4.3 JavaPISA

4.3.1 Introduction into JavaPISA

Because the programming language Java was chosen to implement the thesis
software, and PISA had to be used, a realization of the PISA protocol, mainly
the variator supporting part, had to be implemented in Java. Furthermore,
some additional goals where chosen for a Java-based realization of PISA, called
JavaPISA:

• OOP (to remove all common parts from the final variator)

• usage of data structure knowledge like hash based versions (HashMap in
Java)

4Deals mainly with logic programming.
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• life long identification numbers for individuals (to better understand their
evolution career)

• use all strengths of Java (like libraries, exception handling)

• snapshotting (storing each created generation individually for evolutionary
research)

• keeping the PISA consistence when the variator crashes

• simplicity in the realization

• small usage effort (quick understanding what and how to implement)

• maintainability

An excellent introduction and description about many sorts of heaps, and
especially the hash based one, can be found in [12]. The Java class
java.util.HashMap is described in [13], also all Java features. Life long identi-
fication numbers for individuals can be reached by a ticket system. This means
every ever created element receives a unique number. Snapshotting is good when
you want to see how the evolution process progressed. You can use the created
files to see each generation in a presentation program like Gnuplot[14]. There
you can get a movie which shows the dynamic of the evolution.

PISA can become inconsistent if a participator, the selector or variator, termi-
nates in an unexpected behavior like a crash or assert. A possible problem is
that the other part keeps running forever (until you stop it manually, of course).
An other problem is that the recorded PISA state has a value, which, when you
want to restart the PISA partners again, will lead you again in an illegal state.
For all this reasons, any many more, JavaPISA catches, with the help of Java’s
exception handling system, all internal exceptions and terminates into a consis-
tent state5. Of course, the caught exception can be stored for debugging, if you
want.

Figure 4.1 shows the main structure of JavaPISA. PisaVariator is the main class.
It represents a PISA variator. HashPisaVariator is a HashMap based realization
of PisaVariator. Their helper class in PisaCommon. Those three classes contain
about 90% of the functionality for a successful realization of a PISA variator,
like LotzVariator realizes the LOTZ example found in [2]. ProcessorVariator is
the variator that represents a processor variator, that, what this thesis is about.

The last figure was very rough. The are more classes in the context of JavaPISA,
like the next two figures (4.2 and 4.3) show.

In this two figures we see also a class PisaSelector, which indicates how a com-
pleted PISA selector would fit into JavaPISA. It’s easier to see so that PisaCom-
mon holds all common parts of a selector and variator. RandomComparator
helps sorting a group of values like a table in lexicographical order.

5At this time only one variator supports this feature, but on a very global place.
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HashPisaVariator

PisaVariator PisaCommon

LotzVariator ProcessorVariator

Figure 4.1: Basic JavaPISA classes with final variators LotzVariator and Pro-
cessorVariator. All final variators have to implement HashPisaVariator.

Figure 4.2: The package JavaPISA with its classes.
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Figure 4.3: The inheritances and usages in JavaPISA.

4.3.2 Variators with JavaPISA

While the structure of JavaPISA is nice to see, it’s more important how you can
use it. Therefore, a quick introduction into the implementation of a variator is
presented. More can be seen when taking a look into the files.

The following methods must be completed to have a minimal variator:

computeHashCode Returns the a numerical identifier of a single element in
the pool.

newRandomElement Creates a new random element.

evaluateElement Evaluates an element by all its objectives.

applyVariatorOperator Variates a given population.

stopCriteriaReached Defines a stopping criteria for the optimization process.

The constructor must call the method actionLoop() so that the optimization
process can begin. Therefore, your variator’s constructor can look so:

public DummyVariator(String parameterFile, String fileNameBase,

double pollIntervall) throws Exception

{

super(parameterFile,fileNameBase,pollIntervall);

// enables snapshotting

buildSnapshot=true;
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// starts the optimization process

actionLoop();

}

The optimization process starts automatically when a new object of your varia-
tor is created. The parameters parameterFile , fileNameBase, pollInterval
are the same as for each variator presented on [2]. Anyway here a short pre-
sentation: parameterFile is the file name of the file containing the parameters
for your variator6, fileNameBase like PISA_ is the prefix of all files a PISA
selector like spea2 needs to work with, and pollInterval is the time interval
for the variator to poll when awaiting the selector to have finished, so that he
can continue again.

Remark: Note that a thorough introduction into JavaPISA (with or without [2]
and [3]) was not a core task of this thesis and thesis report. So you have to be
familiar with PISA and some implementations of PISA to use JavaPISA. Also
the code should be enough documented to work into an example variator like
LotzVariator to understand what is meant, if you’re also a little bit familiar
with Java.

4.4 Classes and their collaboration and work-

flow analysis

Figure 4.5 shows the basic packages and classes used in the thesis software,
without JavaPISA. Figure 4.6 shows the major dependencies between the classes
of the thesis software.

There’s a JavaDoc-based description of each class, and also the code is self-
speaking. Here some short description anyway:

AbstractProcessorConfiguration Processor configuration with simple pa-
rameters and an API for complex ones to realize the functional implemen-
tation paradigm. All classes work with this class when they have to work
with processor configurations.

ProcessorConfiguration A concrete processor configuration. Realized by the
procedural paradigm.

EvaluateConfiguration Evaluates a processor configuration with Sim-
pleScalar or SimWattch.

CactiBasedAreaComputation Estimated the area consumption of a proces-
sor with CACTI and die size informations.

ProcessorConfigurationWriter Abstract class for writing processor config-
urations to console and files.

6It’s up to your responsibility to use this option. It’s not included in JavaPISA to support

it.
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Figure 4.4: Basic states from the variator view in JavaPISA.
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Figure 4.5: Basic packages and classes used in the thesis software (JavaPISA
excluded).
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Figure 4.6: Dependencies of the important classes.
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DeviceRandom A random number generator which can be initialized by
/dev/random to be non-repetitive.

RandomConfiguration Creates a random processor configuration.

MutateCompletly Does a macro level mutation on a processor configuration.

MicroLevelMutation Does a micro level mutation on a processor configura-
tion.

ConfigurationCrossOver Cross-over two processor configurations.

4.5 Miscellaneous

In this section some things were described which are worth being mentioned but
don’t fit into other part of the documentation.

4.5.1 Processes and their output

To read the results of the tools like CACTI, SimpleScalar or SimWattch, you
must somehow obtain them. While the SimpleScalar-family gives the possibility
to parse them from a result file, so doesn’t CACTI. Here is shown, with CACTI
as an example, how processes are created, their inputs parsed, and then termi-
nated. Assumed is that the parameters for the program to execute are in the
string cactiParams.

// create a new process

Process cactiProcess=Runtime.getRuntime().exec(cactiParams);

// await its termination

int returnValue=cactiProcess.waitFor();

// read the its output

InputStream inStream=cactiProcess.getInputStream();

// parse it

CactiResult result=new CactiResult(inStream);

// terminate the process explicitely

cactiProcess.destroy();

4.5.2 Parallelization

Evaluations of time consuming benchmarks are a good candidate for a paral-
lelization. This means that the SimpleScalar-family can become the most time
consuming part of the evaluation process, so it’s worth doing it on multiple
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machines. The other parts, especially the area consumption with CACTI, take
few time per element to proceed. However, it can be a future task to evaluate
multiple bunches of them at multiple machines instead of doing it serially in an
for-loop and letting it becoming the bottleneck in the execution process.

Parallelization can be made on two ways. The first is to divide up all jobs to
all machines, then letting the machines doing their job, and then collecting the
results. This means if you have 105 jobs and 15 machines, then each machine
gets 105

15
= 7 jobs to do. The minus is that a single machine has to reserve

many resources at once. The second method avoids this resource consumption.
It distributes only one job to each machine and then awaits the termination of
all. So the jobs are evaluated block wise. The minus of this method is a friction
in the partitioning into blocks. This means the synchronization is responsible
for a non-optimal usage of the available resources. The first method uses more
resource at once, but as soon one process on a single machine is ready, then this
machine can concentrate itself to the remaining ones and doesn’t have to await
for being feed with new jobs. The first method is also the preferred one.

A minus in the current implementation is that is a single machine needs too much
time for their tasks, it becomes the bottleneck. However, the implementation was
simple and a derivation of the previously described process activation method.
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Chapter 5

Optimization results

Optimization results are made on the following benchmarks:

rijndael-enc Encodes a given input by the Rijndael (AES) algorithm.

adpcm-enc Encodes a given piece of sound.

frag An internet based benchmark.

helloworld A simple program printing HelloWorld! on the console.

Optimizations where made with all this fore benchmarks. The size of the pop-
ulation was 100 elements, and per turn where 45 new elements created. The
optimization was made over 100 turns. The variation operators where the cross-
over and the mutation. Mutations where made on the macro and micro level. All
three variators appeared in this order. Note that the created results should not
be looked as being perfect. The doubts described in the area consumption parts
of this thesis show that the created results should be taken with care. However,
most important is to see if the tendency of the optimization leads to plausible
results. So should the optimal processor for helloworld be quite minimal in the
number of units and in the cache sizes. On the same way should rijndael produce
not a FPU loaded processor as not FPU unit is needed there. Similarly frag and
adpcm shouldn’t prefer cacheless processors.

Because power consumption isn’t available as a third objective like explained in
the appropriate part of the report, optimizations where only made for the two
objectives performance and area consumption. So we have to look for elements
that are very good in either or even both optimization criteria and to see how
they look. Also interesting is the speed of convergence of the non-dominated
elements toward the Pareto front. The results are presented benchmark-wise
with some example contents. All are saved into apropriate files.
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Figure 5.1: HelloWorld at initial population.

5.1 HelloWorld

For HelloWorld, three elements of the Pareto front where picked out and com-
pared:

4169 good in both criteria, 5 INT ALU, 2 L1 cache ports, cacheless, 8 KB
ITLB, 16KB DTLB

4552 minimal cycle count, like 4169 except 128 KB ITLB

3779 minimal area consumption, 2 L1 cache ports, 8 KB ITLB, 1 K DTLB

Comment: HelloWorld needs no L2 cache, which seems reasonable. At least 8
KB ITLB seem to be a must. The 2 L1 cache ports have, of course, no influence
on a cacheless configuration, and stayed because they where unpunished.

5.2 Rijndael-enc

For rijndael-enc, three elements of the Pareto front where picked out and com-
pared:

4133 minimal cycle number, 6 INT ALUs, 2 L1 cache ports, no instruction
cache, 4 KB DL1, 64 KB DL2, 32 KB ITLB, 16 KB DTLB

3633 minimal area consumption, minimal unit count, 4KB UL1, no L2 cache,
1KB ITLB, 512 B DTLB

4546 good in both criteria, 2 INT ALUs, no instruction cache, 4 KB DL1, 64
KB DL2, 1KB ITLB, 512 B DTLB
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Figure 5.2: HelloWorld at 25th generation.

Figure 5.3: HelloWorld at 50th generation.
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Figure 5.4: HelloWorld at 75th generation.

Figure 5.5: HelloWorld at 100th generation.
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Figure 5.6: Rijndael at initial population.

Comment: It’s reasonable that nearly no instruction caches are required, because
rijndael is loop intensive. The presence of data caches is a must. Astonishing
is that 4546, the on which is good in both criteria, is a mixture of both other
extremes.

5.3 Adpcm-enc

For Adpcm-enc, three elements of the Pareto front where picked out and com-
pared:

4338 good in both criteria, 3 INT ALU, 2 L1 cache ports, no IL1, 8KB DL1,
no L2, 8 KB ITLB, 8 KB DTLB

3630 minimal cycle number, like 4338 but with 16 KB ITLB

4107 minimal area consumption, minimal unit count, 1 L1 cache port, caches
like others except 128 B DL1

Comment: adpcm seems to be very locality oriented as it dislikes a L2 cache
and prefers instead of that a multi-ported DL1, because no IL1 is available. 8
KB ITLB are common.

5.4 Frag

For Adpcm-enc, three elements of the Pareto front where picked out and com-
pared:
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Figure 5.7: Rijndael at 25th generation.

Figure 5.8: Rijndael at 50th generation.
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Figure 5.9: Rijndael at 75th generation.

Figure 5.10: Rijndael at 100th generation.
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Figure 5.11: Adpcm-enc at initial population.

Figure 5.12: Adpcm-enc at 25th generation.
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Figure 5.13: Adpcm-enc at 50th generation.

Figure 5.14: Adpcm-enc at 75th generation.
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Figure 5.15: Adpcm-enc at 100th generation.

4134 good in both criteria, 2 INT ALU, no IL1, 256K DL2, no L2, 8KB ITLB,
4KB DTLB

4487 minimal cycle count, 3 INT ALU, same cache like 4134 except 512 B
DTLB

2960 minimal area consumption, 2 INT ALU, 8 KB IL1, no DL1, no L2, 8 KB
ITLB, 512 B DTLB

Comment: Level 2 caches seem to be superfluous. 8 KB ITLB are common. Also
a non-minimal amount of INT ALUs is required.
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Figure 5.16: Frag at initial population.

Figure 5.17: Frag at 25th generation.
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Figure 5.18: Frag at 50th generation.

Figure 5.19: Frag at 75th generation.



5.4. FRAG 55

Figure 5.20: Frag at 100th generation.



56 CHAPTER 5. OPTIMIZATION RESULTS



Chapter 6

Conclusion

The demanded goals where reached, and also in the way the realization guideline
describes. Optimizations showed that the software, and the concept it’s based
on, do it. However, it’s unrealistically to await perfection from about 5’600
lines of code1 made by one person and not reviewn by an other one. Hidden
errors, those where your software works but doesn’t crash, like also forgotten
parameters, can happen. Simplicity and testing effort helped to reduce them,
but couldn’t do it for all.

Preworks from others like cache limits from the made semester thesis or the
PISA protocol were fully integrated. However, the wish on trying to do paral-
lelization on the preferred way like with a favorite programming language (here:
Java) can turn into a trap, because the method you choose can bring you prob-
lems somebody else has solved already. However, the view to implement and
realize most things from scratch has shown as the right way, like JavaPISA
demonstrates.

The uncertainty aspect of objectives, meaning that you have to deal with impre-
cise function values, couldn’t be brought into the model because nothing right
exists at the moment. Also the deficits of the area consumption, even if they’re
regarded as small, should, together with those from power consumption orig-
inated by SimWattch, be removed in a succeeding work. The author believes,
that, together with a good solution of the uncertainty problem, then a very well
processor optimizing suite will be created.

The current model is quite well. But as we have on one side existence dependent
parts like cache types, and on the other side an integer linear problem2, then
there’s a possibility to unify this aspects to a more abstract and simpler level
where also the variation operators can be understood and realized simpler.

The author believes to that the work done is enough for a succeeder to make a
quite well project.

1Earlier there were over 6’000 lines. But the debug code and unnecessary code was removed.
2we look the all dependencies and logarithmize the powers of two
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Appendix A

Processor configuration

The processor configuration is divided into multiple parts. They are: processor
core, memory hierarchy, branch predictor and caches. In this appendix all pa-
rameters are presented, together with their equivalent in SimpleScalar and how
to be used. SSP stands for SimpleScalar parameter, and these are written like
SSP -fetch:ifqsize. All interval limits are found in the file Limits.java.

A.1 Processor core

FetchWidth Must be in [20, 26]. SSP -fetch:ifqsize

FetchSpeedRatio Must be in [1, 4]. SSP -fetch:speed

FetchBranchMispredictionLatency Must be in [1, 10]. SSP -fetch:mplat

DecodeWidth Must be in [20, 210]. SSP -decode:width

MaximumIssueWitdh Must be in [20, 210]. SSP -fetch:ifqsize

RuuCapacity Must be in [20, 210]. SSP -ruu:size

LoadStoreQueueCapacity Must be in [20, 210]. SSP -lsq:size

NumberOfIntegerAlu Must be in [1, 8]. SSP -res:ialu

NumberOfIntegerMulDiv Must be in [1, 8]. SSP -res:imult

NumberOfL1CachePorts Must be in [1, 2]. SSP -res:memport

NumberOfFloatingPointAlu Must be in [1, 8]. SSP -res:fpmult

NumberOfFloatingPointMulDiv Must be in [1, 8]. SSP -res:fpmult

Notes:
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• NumberOfL1CachePorts has a CACTI limit of 2 and a SimpleScalar limit
of 8. 2 was also chosen after a discussion.

• Values with upper limit, 10 have this limit because no reasonable limits
was else found.

A.2 Memory hierarchy

MemoryAccessLatencyFirst Set fix to 120. SSP -mem:lat <1st> <next>

MemoryAccessLatencyNext Set fix to 15. SSP see above.

MemoryBusWitdh Set fix to 8. SSP -mem:width

TlbMissLatency Set fix to 30. SSP -tlb:lat

HitLatencyIL1 Determined by CACTI. SSP -cache:il1lat

HitLatencyDL1 Determined by CACTI. SSP -cache:dl1lat

HitLatencyUL1 Determined by CACTI. SSP see notes.

HitLatencyIL2 Determined by CACTI. SSP -cache:il2lat

HitLatencyDL2 Determined by CACTI. SSP -cache:dl2lat

HitLatencyUL2 Determined by CACTI. SSP see notes.

Notes:

• Because SimpleScalar doesn’t directly support unified caches, the hit la-
tency of the UL1 is expressed by setting the hit latencies of the IL1 and
DL1 with the same value HitLatencyUL1. Else SimpleScalar crashes.

• Similar if a UL2 is available. But SimpleScalar seems to read the value of
the DL2 latency and doesn’t crash. Anyway, the hit latencies of IL2 and
DL2 have also the same value HitLatencyUL2.

• The values for the memory access latency where proposed by the tutor
Christan Plessl due to reflection.

• Memory bus width was set to 8 because actual most nowadays processors
have this value.

• The TLB miss latency was taken like the SimpleScalar default value.
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A.3 Branch predictor

A.3.1 Branch predictor parameters

Branch predictors are used and presented multiple times during the thesis re-
port. Here’s anyway a presentation, but with its own focus. First, there are six
types of branch predictors. Some of them use the same sort of parameters when
they (the branch predictors) are used.

• perfect

• taken

• not taken

• bimodal [BTC, RSS, BTB]

• 2-level [2LEV, RSS, BTB]

• combined [BTC, 2LEV, RSS, BTB, COMB]

To say SimpleScalar which branch predictor type you like to use you have to set
the parameter -bpred with one of the following values and in this writing form:

• perfect

• taken

• nottaken

• bimod

• 2lev

• comb

The first three branch predictor types are simple ones. So its sufficient to set
-bpred with their value, and no other branch predictor parameter more. If,
however, you want to use a complex branch predictor, you have to set two of
their commonly used parameters and some depending on the branch predictor
type you use.

The common parameters are:

ReturnStackSize Must be 0 or in [21, 26]. SSP -bpred: ras

BtbSets Must be in [23, 212]. SSP -bpred: btb <sets> <assoc>.

BtbAssociativity Must be in [20, 25]. SSP see above.
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If you have a bimodal or combined branch predictor, then you must write the
bimodal predictor table size, which must be in [20, 212]. In SimpleScalar termi-
nology: -bpred:bimod.

For a 2-level or combined branch predictor the necessary parameters are:

• Size of the first level table. Must be in [20, 212].

• Size of the second level table. Must be in [20, 212].

• History width. Must be in [21, 220].

• Xor-ability. For allowing to xor the history and the address in the second
level of the predictor. Must be in [0, 1] (for no/yes).

The corresponding SimpleScalar parameter is
-bpred:2lev <l1size> <l2size> <hist_size> <xor>.

Finally, there’s a special parameter if you use a combined branch predictor: The
meta-table size of the combined predictor. It must be in [20, 212], and passed to
SimpleScalar in the form -bpred:comb.

A.3.2 Area consumption

To compute the area consumption of a branch predictor, one must know which
assumptions are taken to estimate their area consumption. The assumption are:

• perfect: 0 area at all

• taken: 0 area at all

• not taken: 0 area at all

• ReturnStackSize: 0 area at all

• BTB: normal cache (computed by CACTI)

• Level 2 table width: 2 bit per entry

• bi-modality table: 2 bits per entry

• combined meta-table: 1 bit per entry

The area consumption for the combined predictor, which also contains the bi-
modal and the 2-level predictor, can be best seen with figure A.1.
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Figure A.1: Area consumption for the combined predictor including its bimodal
and 2-level part.

A.4 Caches

Caches were introduced into the subsections about area consumption, and very
detailed, in the random elements creation part. To avoid information duplica-
tion, you’ll see in this section only and mainly a discussion about cache config-
urations (the lowest parameters).

Each cache configuration like UL1, DL2, instruction TLB, data TLB, consists
of four parameters.They are:

number of sets Must be in [20, 213]

number of blocks Must be in [23, 212]

associativity Must be FA, for full associativity, or in [20, 25]

replacement policy Must be in [0, 2] and stand for LRU, FIFO or random.

The number of sets, of blocks and the associativity must be chosen so that their
product, the cache size, lies in [26, 223].

There’s a basic difference in the way how SimpleScalar and CACTI see a cache
configuration. While SimpleScalar sees it as described above, except that it
doesn’t support fully associative cache explicitly, CACTI wants to see a total
cache size from which it calculates the number of sets, but knows nothing of a
replacement policy. Additionally, CACTI supports fully associative and direct
mapped caches. The last one means that the associativity is fixed to 1, and
CACTI knows no difference between an explicitly set associativity of 1 and a
direct mapped one because it detects the single associativity case and interprets
it as a direct mapped one.

Fully associative caches have a fix set number of 1, so is there definition. To sup-
port fully associative caches in SimpleScalar, the cache configuration creation,
which is CACTI like by giving the cache size as a parameter instead the number
of sets, calculates the needed associativity from given cache size and block size,
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by dividing the cache size through the block size.1

The CACTI author Premishkore Shivakumar suggested that the maximal block
size should be 29, but not larger than 212, because caches with this block size
make no sense. A further problem with CACTI consists when a certain internal
product can become larger than 230 bytes (1 GB), then an arithmetical overflow
happens and CACTI produces an exception on certain operating systems2. To
avoid this overflow, for which CACTI can create wrong results, the maximal
produced cache size shouldn’t exceed the value 230, therefore a maximal num-
ber of sets of 213 is used, because together with maximally 212 blocks and an
associativity of 25 the cache size limit of 230 is never reached (12+13+5=30).
However, all caches are internally at a size of most 223 bytes (8 MB) created,
because larger caches are not expected in the next future and would increase
the simulation time unnecessary.

A.4.1 Unified caches with SimpleScalar

This is a special topic when using SimpleScalar. Unified caches are defined
by first defining the DL2 as of unified type with all parameters of your UL2
configuration, and then ”pointing” the IL2 configuration variable to DL2, as
the example shows:

-cache:dl2 ul2:1024:64:2:1

-cache:il2 dl2

This works on the same way with a unified level 1 cache. Of course, the thesis
software works on this way.

1Creation of illegal set number or so shouldn’t stand here in the foreground, because the

idea matters.
2This happened on Solaris 5.8 and 5.9 with different exception names for each.
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Installation

All tools can be compiled and installed without problems. SimpleScalar, and its
extension SimWattch, were patched so that they can be compiled under Solaris
and Mac OS X. CACTI runs fine everywhere. It’s recommended to turn the
optimization with the GCC flag -O3 in the Makefile and to use version 3.2 or
higher of GCC because version 2.x of GCC doesn’t compile when local variables
are declared like in SimWattch.

The made patches consists mostly of adding statements like #ifdef __GNU__,
#ifdef __GNUC__, #ifdef __APPLE__ or as a parameter for an internal macro
called define like define(__APPLE__). Sometimes the system header file
termio.h was demanded, but on Mac OS X you only had termios.h so you
had to extend the case analysis.

When you’ve compiled the tools, make them available by adding them to your
path searching list.

The complete SimpleScalar suite is compilable and installable on Solaris. With
this are all SimpleScalar tools included like a modified GCC to compile your
benchmarks in C. But for running the whole optimization process you only
need compiled benchmarks from elsewhere and you can run the thesis software
as soon as your tools, and all necessary parts, are installed and prepared. For
detailed installation instruction see the README file.

If you want to install the SimpleScalar suite anyway, the tutor Christian Plessl
wrote a shell script, based on some prework from the author, which downloads
the necessary files, if not yet downloaded, and installes them into the directory
you want.

## installation script for SimpleScalar at TIK

## authors: Bojan Antonovic, Christian Plessl

## version: 0.4.1

## TODO

##

65
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## Gibc is copied manually, maybe compiling them would be better

SRC_DIR=~/simple_src # installation for source download

BUILD_DIR=~/simple_build # build directory

INSTALL_DIR=~/simple_install # installation directory

DOWNLOAD_SOURCES=1 # set to 1 if download is needed

GTAR=gtar

GMAKE=gmake

SRC_DIR, BUILD_DIR and INSTALL_DIR have to be set to your own value.
DOWNLOAD_SOURCES must be 1 because you need to download the sources once.
And please define appropriate value of GTAR and GMAKE, because the last one set
to make can be a bug source on certain OS.

A last word: The thesis software needs Java in version 1.4 to run. Create appro-
priate links to the Java compiler javac and the Java interpreter ”java” if you
have multiple versions of it installed.
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