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Abstract

Despite the focused attention to Mobile Ad-Hoc Networks (MANETs) in
the past years, models of interference on the abstraction level of graphs are
poorly studied. It is often argued that assuring low degree in topologies is
sufficient to minimize interference.

In this work, several models of interference are defined. A classification
of models is developed and relations among different models are investigated.
One of the main differences between models is whether they focus on outgo-
ing (Iout) or incoming (Iin) interference. For Iout a greedy algorithm (GLIT)
is presented that constructs an interference optimal spanning tree. GLIT
can be adapted to construct an interference optimal t-spanner (GLIS).

Based on these models, the maximum degree of a network turns out to
be merely a lower bound for interference and thus the need for topologies
that minimize actual interference instead of node degree becomes obvious.
Despite the fact that reducing interference is the main reason for doing topol-
ogy control at all, widely used topologies as the Minimum Spanning Tree,
Relative Neighborhood Graph, Gabriel Graph, Delaunay Triangulation or
Yao graph are shown to be prone to bad interference properties, while the
introduced algorithms GLIT and GLIS are interference optimal for Iout and
provide good heuristics for other measures.

Moreover, the MINIMUM INTERFERENCE BROADCAST (MIB) prob-
lem and its connected variant (CMIB) are defined. Solutions to CMIB can
be used as interference optimal virtual backbones in ad-hoc networks. Al-
though MIB and CMIB are shown to be NP-complete, a constant approx-
imation of both is given. Changing the interference model from Iin to Iout

makes MIB and CMIB optimally solvable in polynomial time, which is a
very intriguing result concerning the complexity of interference measures.
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Chapter 1

Introduction

Interference: A coherent emission having a relatively narrow
spectral content, e.g., a radio emission from another transmitter
at approximately the same frequency, or having a harmonic fre-
quency approximately the same as another emission of interest to
a given recipient, and which impedes reception of the desired signal
by the intended recipient.

Glossary of Telecommunication Terms - Federal Standard 1037C

Much research has been done in the area of mobile ad-hoc networks
(MANETs) in the past years. This attention is mainly due to the tremen-
dous progress that wireless technologies are undergoing at the moment.
MANETs consist of autonomous mobile hosts that are equipped with the
ability to communicate over wireless links.

Devices like mobile phones, PDAs, notebooks or mobile sensors consti-
tute the hardware that enables completely new applications and are pene-
trating everyday life more and more as they are getting cheaper and per-
form better every day. At a steady pace society is approaching a realization
of Mark Weiser’s vision [Wei91] of a ubiquitous computing environment.
Computing power will once be invisible and latently present as electricity is
nowadays.

MANETs constitute the spine of such future communication infrastruc-
ture. They represent the paradigm shift in distributed computing from
centralized client-server models towards decentralized peer to peer (P2P)
and ad-hoc networks. Future networks will be large, spontaneously formed
and unmanageable. Thus they need to organize themselves and must not
be dependent of central entities.

As mobile hosts should be autonomous, they suffer from having limited
energy resources. An easy way to conserve energy is to restrict transmission
power and thus the range of coverage of hosts. This gives rise to the issue of
multi-hop routing. A particular host might only see some of its immediate
neighbors due to restricted transmission ranges. Anyhow the host is able

1



2 CHAPTER 1. INTRODUCTION

to reach distant hosts all across the network if intermediate hosts relay
messages.

The major part of recent research in the area of MANETs has been ded-
icated to the fundamental issues of topology control and routing. Topology
control aims at constructing sparse network topologies that ensure desir-
able properties, such as short paths, low power consumption, planarity, dis-
tributed construction algorithms or easy maintenance in case of high host
mobility. Routing algorithms then try to actually route information along
optimal paths that are theoretically present due to topology control.

The main reason for constructing sparse networks at all is to reduce
interference. Nevertheless, up to today, no topology control algorithm has
been known that explicitly minimizes interference! The issue of interference
has always been beaten down with the superficial argument that having a
little number of direct neighbors (low node degree) will be sufficient. Yet a
host potentially interferes with many hosts it has no direct connection to.
The objective of this work is to thoroughly define and analyze the notion
of interference in ad-hoc networks. Algorithms are presented that minimize
actual interference instead of node degree.

Interference of electromagnetic waves is usually tackled by various mul-
tiplexing techniques, of which the four major ones are:

Space Division Multiplexing (SDM) divides space to gain more chan-
nels. One can for example think of directed antennas that divide space
into sectors. Within each sector the full bandwidth is available.

Time Division Multiplexing (TDM) makes use of time slots. Each
channel is assigned time slots during which it can use the medium
exclusively and all others must wait.

Frequency Division Multiplexing (FDM) divides the frequency band
into segments and assigns to each channel one of these segments. A
widely used example are radio stations that are tuned to a certain
frequency.

Code Division Multiplexing (CDM) is a technique which is a little more
involved. Streams of data can be modulated using a unique code and
are then fed into a channel. At the receiver side of the channel, the
data can be regained by applying the same code. Interestingly this
can be done by several senders simultaneously without distorting oth-
ers seriously.

Any subset of these techniques can usually be combined. In this work
only one logical channel is considered. If conflicts on one channel are mini-
mized, multiplexing techniques can still be applied to multiply that channel.
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1.1 Preliminaries

Mobile ad-hoc networks are usually modelled by graphs. A graph G = (V, E)
consists of a set of nodes V ⊂ R2 and a set of edges E ⊆ V 2. Nodes
represent mobile hosts, whereas edges represent links between nodes. Edges
can be directed (unidirectional) or undirected (bidirectional). A directed
edge e = (u, v) can only be used by u to reach v but not vice versa. Yet v
could reach u by some other distinct path. An undirected graph is called
connected if there is a path between any two nodes in the graph. If there
is a path between any two nodes in a directed graph, the graph is called
strongly connected. In the following, several terms are defined that are used
throughout this work:

Definition 1 (t-spanner). A t-spanner of a finite undirected graph G =
(V, E) is a subgraph G′ = (V, E′) such that for each pair (u, v) of nodes
dG′(u, v) ≤ t · dG(u, v), where dG′(u, v) and dG(u, v) denote the shortest
distances between u and v in G′ and G respectively.

Definition 2 (Unit Disk Graph). Let V be the set of nodes and let E
be the set of edges such that (u, v) ∈ E if and only if the Euclidean distance
between u and v is at most 1. Then the Euclidean graph G = (V,E) is called
the Unit Disk Graph (UDG) of the nodes in V .

Definition 3 (Gabriel Graph). Let V be the set of nodes and E be the
set of edges. If for each pair of nodes (u, v) there is an edge in E if and only
if there is no other node within the circumcircle of u and v, then G = (V, E)
is called the Gabriel Graph (GG) of V .

Definition 4 (Delaunay Triangulation). Let V be the set of nodes and
E be the set of edges. Let there be edges (u, v), (u,w) and (v, w) in E iff
there is no other node within the circumcircle of u, v, and w. The resulting
graph G = (V, E) is called the Delaunay Triangulation (DT) of V .

Definition 5 (NP-complete). A problem is NP-complete if it is both in
NP (verifiable in nondeterministic polynomial time) and NP-hard (any other
problem in NP can be translated into this problem).

If a problem is NP-complete, there is no polynomial time algorithm
to solve it, unless P=NP. Examples of NP-complete problems include the
traveling salesperson and satisfiability of boolean formulae (SAT) problems.
See [GJ79] for an introduction to the theory of complexity.

Let D(w, r) denote the disk centered at node w with radius r and let
|u, v| be the Euclidean distance between nodes u and v. Then we define the
coverage of a directed edge e = (u, v) as the set of nodes that is covered by
the disk induced by e:
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Figure 1.1: Gabriel Graph. Figure 1.2: Delaunay Triangula-
tion.

u′ v′e′

Figure 1.3: Nodes covered by an undirected edge.

Cov(e) := {w ∈ V |w is covered by D(u, |u, v|)}.
The coverage of an undirected edge e′ = (u′, v′) is defined accordingly as

Cov(e′) :={w ∈ V |w is covered by D(u′, |u′, v′|)}∪
{m ∈ V |m is covered by D(v′, |v′, u′|)}.

1.2 Related Work

In the literature it is often argued that low or bounded degree goes together
with low interference. This conjecture will be discussed more in depth in
Chapter 5. Interestingly, there is not much to be found about ad-hoc inter-
ference in literature beyond the low degree argument.

In [MSVG02] a model of interference (denoted IMS) between undirected
edges is defined. Based on this interference model a time-step routing model
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and a notion of congestion is introduced. It is shown that there are inevitable
tradeoffs between congestion, power consumption and dilation. For some
vertex sets congestion and energy are even shown to be incompatible.

Assuming a layer architecture for ad-hoc network protocols similar to the
seven ISO/OSI-layers for network models, topology control is found at a very
low layer. The problem of choosing an appropriate transmission power such
that connectivity is assured but interference is minimized must be addressed
somewhere between the physical and the data link layer. Traffic analysis by
a given routing problem is actually using application level information and
can thus not be used to shape network links at a low layer. It is therefore
desirable to have a static model of interference that depends solely on a
vertex set and does not take a routing problem into account (as congestion
does). Usually, no a priori information about the traffic in a network is
available, anyway. Still one might be interested in guidelines for building
interference optimal network topologies in a general sense.

In IMS , an (undirected) edge e = (u, v) interferes with another edge
e′ = (u′, v′) if Cov(e) contains u′ or v′ (see Figure 1.3). An interference
graph Gint is defined for a graph G. Its nodes are the edges of G and there
is an edge between two nodes if the corresponding edges interfere. The
interference number of a communication link is defined as the number of
incoming edges of this link in Gint. The interference number of an entire
network is the maximum of all its link interference numbers.

The paper comprises an interesting result concerning IMS and an al-
gorithm for constructing a t-spanner presented by Arya and Smid [AS94]
(denoted AS-spanner). Lemma 1 in [MSVG02] states that the interference
number of a graph constructed by the AS-spanner on a node set V is bounded
by O(g(V )) where g(V ) is the diversity of the node set V . g(V ) is defined
as the number of magnitudes of distances between pairs of nodes in V :

g(V ) := |{m|∃u, v ∈ V : blog |u, v|c = m}|
IMS seems to be a little too strict in some cases. Consider the situation

in Figure 1.4. According to the definition, the directed edges e, e′ and e′′

interfere and therefore u′ cannot send a message to v′ while u is commu-
nicating with v, although physically the two signals would not interfere at
the target nodes. Also, node v′′ could receive the message from u′′ without
being disturbed by u sending simultaneously to v. This restriction roots
in the assumption that any node receiving a message implicitly sends an
ACK to the sender. Clearly the implicit ACK of v would prevent v′′ from
correctly receiving a message from u′′. Sending ACKs again is a matter of
higher layer protocols and must not be addressed at physical layers. There
exist wide spread protocols such as UDP that do not rely on ACKs at all.
Therefore the implicit ACK assumption could as well be dropped and a
model of directed edges could be used, leaving more freedom for link choices
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and thus enabling better interference properties.
In the next section additional approaches to defining an appropriate

interference measure are examined and Chapter 6 contains an in-depth dis-
cussion of various interference models. The models differ mainly in terms
of

• focus on edges or nodes,

• counting outgoing or incoming interference,

• choosing maximum or average node interference.

u
v

e

u′
v′

e′

u′′
v′′

e′′

Figure 1.4: Interfering edges that cannot communicate simultaneously.



Chapter 2

The rmax Model

This chapter provides basic definitions summarized by the term rmax model.
First a notion of outgoing and incoming interference of nodes is defined.
Based on these node level definitions, interference measures for entire net-
works are developed. Properties of these measures and relations between
them are analyzed considering examples.

2.1 Definitions

Let G = (V,E) denote a graph with node set V and edge set E. We assume
that a mobile station can adjust its transmission range to any radius between
zero and its maximum range. With rmax(v) being the distance between v and
its farthest neighbor v′ connected by edge emax(v) = (v, v′), we define the
potential interference area of a node v as the disk of radius rmax(v) centered
at v, denoted D(v, rmax(v)). The idea behind this definition is that a node
potentially interferes with all nodes covered by D(v, rmax(v)), that is, no
node within the disk can receive a message from any other node while v is
sending a message to its farthest neighbor. Obviously the interference of
a node v can be defined in two different ways. Either we count the nodes
covered by D(v, rmax(v)), or we count the disks covering v.

Definition 6 (Interference). The outgoing and incoming interference of
a node v are defined as follows:

Iout(v) :=
∣∣Cov

(
emax(v)

)∣∣,
Iin(v) :=

∣∣{u
∣∣v ∈ Cov

(
emax(u)

)}∣∣.
Note that we consider the sending node to be covered by its own disk.

Thus a sending node not reaching any other nodes still has interference 1 (see
also Section 6.5). These node level interference measures are now extended
to graph level interference measures. Of course, these global measures some-
how need to pool over the nodes of the entire graph. This can be done either
by building an average or by taking the maximum.

7



8 CHAPTER 2. THE RMAX MODEL

Note that already at the node level one could distinguish between average
and maximum interference. The above definition of Iout and Iin already does
a maximizing step by taking rmax(v) as the radius of the surrounding disk.
Instead of that one could for instance define the outgoing interference of a
node as the average number of covered nodes when communicating with its
neighbors. Definition 6 therefore leads to an estimation of the potential or
worst case interference of nodes. See Chapter 6 for an in-depth discussion
of a wide variety of interference models.

Definition 7 (Average and Maximum Interference). Let I(v) denote
either Iout(v) or Iin(v). Then the average interference and maximum inter-
ference of a graph G are defined as follows:

Iavg(G) :=
∑

v∈V I(v)
|V | ,

Imax(G) := max
v∈V

I(v).

Considering Iout, Iin and both average and maximum pooling this yields
four different interference measures for a graph G: Iavg,out, Iavg,in, Imax,out,
and Imax,in. There is no difference between measuring the incoming or
outgoing average interference. This is because every occurrence of a node
covering is counted exactly once, either at the node who is the center of
the covering disk (outgoing case) or at the covered node (incoming case).
Therefore three measures remain: Iavg, Iout = Imax,out and Iin = Imax,in.

2.2 Properties

How do these three measures relate? What is the difference between them?
In this Section several example node sets are examined with respect to the
previously defined interference measures.

A graph with no connected nodes obviously has interference ≤ 1 for all
measures. The maximum interference can be observed in complete graphs
where every node has connections to the entire node set. Interference than
is as high as n for all measures, where n = |V |. Therefore

0 ≤ Iavg ≤ Iout/in ≤ n

holds. For connected graphs the lower bound can be raised. For the simplest
connected graph, a chain of nodes, Iout = Iin = 3 (if n ≥ 3), because all
the inner nodes communicate with their left and their right neighbors. Iavg

is a little smaller than 3, as the start and end node only interfere with one
neighbor: Iavg = 3− 2

n .
Consider the node set shown in Figure 2.1. All nodes are placed along

the border of a circle with a node u in the center of the circle. Topologies as
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v

u

p1 p2

Figure 2.1: Gabriel Graph of
nodes on a circle.

� ��
Figure 2.2: Connected grid.

the Gabriel Graph or the Delaunay Triangulation will connect all the nodes
on the circle in a (closed) chain and each node directly with the center node.
Iout = n, for node u interferes with all the nodes on the circle. Also Iin = n,
as all nodes on the circle wish to communicate with u. For computing the
average interference, we take a look at a node v on the circle. When sending
a message to u, it interferes approximately with 1

3 of the nodes on the circle,
as the angle enclosed by (u, p1) and (u, p2) is 2π

3 . Taking into account node
u, which interferes with all nodes, this leads to Iavg ≈ n

3 + 1.
In a grid (Figure 2.2) we have three different areas. The first area is

the corners, where nodes have two neighbors (node c). Along the edges,
nodes have three neighbors (node e) and all nodes inside the grid have four
neighbors (node m). Due to the inner nodes, Iout = Iin = 5. Summing up
all nodes according to their local interference leads to Iavg ≈ 5− 4√

n
.

Intuitively, bounded degree seems to be a good property when trying to
get constant interference. An example of a bounded degree topology is the
sparse or symmetric Yao graph [GLSV02]. The sparse Yao graph has in- and
out-degree of at most k1 (thus degree 2k in total) whereas the symmetric
Yao graph has total degree of at most k. Unfortunately, the sparse (and
symmetric) Yao graph can exhibit bad interference properties. Imagine a
small sector originating at a node on the circle in Figure 2.1. This sector
might just miss the center node by a short distance. The closest node within
the sector therefore lies somewhere on the opposite side of the circle. If the
opposite node symmetrically misses the center node, an edge between the
two circle nodes is added to the graph (see also Figure 5.5). This edge causes
both nodes to interfere with almost all other nodes when sending messages
over it. Therefore a node on the circle is potentially interfered by almost
all nodes on the circle, pushing the upper bound for Iin and Iavg as high as

1k is a parameter that specifies the number of sectors around each node.
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n. Iout = n, as node u covers all nodes on the circle. Note that a simple
chain of nodes from u to one of the nodes on the circle could be used to
connect u to the rest of the nodes with constant interference while GG and
DT would still cause interference to be O(n). Thus GG and DT are not
even competitive in this case. This intriguing insight will be discussed more
thoroughly in Section 5.

In the examples seen so far either all interference measures were constant
or all measures were O(n). Anyway, as it turns out, Iout seems to be a more
fragile measure than Iin or Iavg. Consider the cluster of nodes in Figure 2.3
with its leftmost node h. Say the cluster has constant interference. Iout

can be pushed up to n by simply adding a new node h′. As h interferes
with the entire cluster when communicating with h′, the constant outgoing
interference gets lost. Iavg and Iin are just increased by 1.

While Iout may be arbitrarily high compared to Iin, it can be shown that

Iin − 1 ≤ 5 · (Iout − 1)

always holds. The equation can be simplified to

Iin ≤ 5 · Iout (2.1)

if self-interference is not counted (see Section 6.5).
This result is obtained by trying to cover a node with as much incoming

interference as possible without increasing Iout. Figure 2.4 shows such a
setting. Node I is the node we try to cover with incoming interference from
nodes P1, P2, . . . , Pi. Placing P1 reduces the possibilities for placing P2.
We want to increase Iin(I) without increasing Iout(P1), therefore P2 must
be placed outside the disk centered at P1 and going through I. Additionally
we want P2 not to interfere with P1, keeping Iout = 2 while incrementing
Pin. This requires P2 to be placed below the midperpendicular of P1 and
I. As can be seen in the figure, the angle enclosed by (I, P1) and (I, P2) is
minimized to π

3 when P2 is placed exactly at the intersection of the circle
and the midperpendicular. Any other placement P ′

2 would increase the angle
and as a consequence reduce the space available for placing P ′

3, . . . , P ′
i . So

maximally six nodes can be placed before Iout is increased by at least 1.
Note that if we define nodes on the circle to be within the disk, we need to
marginally displace P2 away from the intersection point, say by a distance
ε. If we do this, the maximum number of nodes is even reduced to five.

Concluding this section of examples, we have seen that in a grid topology
interference is constant while in other topologies interference can be as bad as
O(n) for all measures. Constant interference certainly is a desirable property
for ad-hoc network topologies in general.
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�� �
Figure 2.3: A single node can de-
stroy a low Iout.

�� � ���� ������
Figure 2.4: Illustration for
Iin ≤ 5 · Iout.





Chapter 3

A Greedy Approach

In this chapter we present a greedy algorithm that is capable of finding an
interference optimal connected topology for some measures. By adapting
the stopping condition of the algorithm, other topology properties can be
achieved. A dynamic greedy criterion is then defined that is more suitable
for minimizing incoming instead of outgoing interference.

3.1 Greedy Low Interference Tree

Prior to minimizing interference on a set of nodes one must define certain
conditions that must be met by the desired topology. Clearly there is a trivial
zero interference topology: A graph where no node is sending. Reasonable
properties of graphs include

• dominating set property,

• (strong) connectivity,

• Euclidean, power, or hop spanner property,

• planarity,

• bounded degree.

In addition to requiring topology properties it must be guaranteed that
nodes can adapt transmission ranges as proposed in [WLBW01]. For in-
stance in a unit disk graph model, nodes might be able to lessen transmis-
sion energy and thus their range of coverage in order to save energy and
local resources. It makes no sense to talk for example about a minimum
interference connected topology if all nodes send at a fixed radius, as there
is no room for optimization. A lower range of coverage imposes less inter-
ference to other nodes and thus gives rise to an optimization task: meeting
conditions with as little interference as possible. In the following we require

13
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nodes to be spanned by a tree and present a simple greedy algorithm that
computes the minimum interference tree.

Definition 8 (Minimum Interference Tree). The Minimum Interfer-
ence Tree (MIT) for a given set of nodes V and an interference measure I
is a tree on V that minimizes I.

Definition 9 (c-interfering). A graph G = (V, E) is called c-interfering
according to an interference measure I if

I(G) ≤ c · I(MIT (V ))

As it turns out, Algorithm 1 (called GLIT) computes an MIT if I is an
outgoing interference measure. Edges can be directed or undirected. Note
that although the name GLIT (Greedy Low Interference Tree) implies the
construction of a tree, this is only true for undirected edges. If directed edges
are used, GLIT builds an interference optimal strongly connected topology.

Algorithm 1 Greedy Low Interference Tree (GLIT)
Input: V , a set of nodes
1: sort all (directed) edges (u, v) according to |Cov(u, v)|
2: E = ∅
3: G = (V,E)
4: while edges left do
5: e = (u, v) (∗ next edge ∗)
6: if no path u → v in G then
7: E = E ∪ e
8: end if
9: end while

Theorem 1. The tree constructed by GLIT is 1-interfering according to
interference measure Iout.

Proof. The proof is by induction. Let m be the global minimum edge and
thus the first edge to be added to the tree. Trivially, m belongs to an MIT.
Now let τ be the tree constructed by GLIT so far. Suppose that τ is part
of an MIT τ ′. Let e = (u, v) denote the next fringe edge chosen by the
algorithm to be added to the tree. We will show that τ + e is contained in
some MIT τ ′′.

If e ∈ τ ′ we are done, simply let τ ′′ = τ ′. If e /∈ τ ′, consider a path
P from u to v in τ ′. Some edge e′ = (u′, v′) along this path P will be a
fringe edge of τ . Then I(e) ≤ I(e′), otherwise e′ would have been chosen
by the algorithm instead of e. Now let τ ′′ = τ ′ − e′ + e. τ ′′ is still a tree
and I(τ ′′) ≤ I(τ ′). This is because e′ was replaced by an edge e covering a
smaller or equal number of nodes. Thus τ ′′ is an MIT.
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The time complexity of GLIT is O(n3) since there are
(
n
2

) ∈ O(n2) edges
that must be processed (O(n) for each edge). Sorting only is O(n2 log n).
Note that there are two versions of GLIT, differing in the same way as Prim’s
and Kruskal’s algorithms for minimum spanning tree. The first version
adds fringe edges to an existing tree (like Prim’s algorithm) whereas the
other version adds the edge that minimizes the greedy criterion globally
(like Kruskal’s algorithm). The above proof is for the tree growing version
but can easily be adapted to fit for both. Note that if directed edges are
used, NNG ⊆ GLIT where NNG denotes the Nearest Neighbor Graph1.
Of course, GLIT could alternatively be specified as a shrinking algorithm,
starting with a fully connected graph and continually removing edges with
high coverage as long as the desired property is maintained.

Theorem 1 holds for many other interference measures (such as Iavg)
that consider interference on nodes (see Section 6 for an overview). This is
because nodes are static and thus the number of covered nodes by a disk can
be computed once for all, no matter what edges are added to the topology
in the future.

Unfortunately, the shown type of greedy algorithm does not work for
almost any type of incoming interference measures and measures targeting
edges. Whenever an edge e is added to the intermediate tree, Iout(e) can be
computed and will never change while the algorithm is progressing. When
dealing with some kind of Iin, the final interference of an edge is not known
until the algorithm has stopped. Iin always depends on other edges that
might be added to the tree only much later. The same is true for measures
that count the coverage of edges.

3.2 The Geometric Dominating Set Problem

The problem of covering a set of nodes V using a minimum number of
disks with radius r, centered at nodes in V , is known as the GEOMETRIC
DOMINATING SET problem (GDS) and is NP-complete [MIH81]. Thus
each node has the choice to either send with fixed radius r or not to send
at all (radius zero). Minimizing the covering for Iout instead of the number
of disks turns out to be easily solvable. If we want to know whether V
is coverable with Iout ≤ k we simply add all edges that cover at most k
nodes. If and only if this covers all nodes then the answer is ’yes’. As there
are 2

(
n
2

) ∈ O(n2) directed edges, this is a polynomial algorithm and thus
GDS for Iout is in P. The same procedure works for connected GDS which
is GDS with the additional condition that nodes in the dominating set must
be connected.

In Section 4 we show that minimizing GDS and connected GDS for Iin

instead of Iout is NP-complete, which is a very intriguing result.

1In a NNG, each node has a directed edge to its nearest neighbor.
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3.3 Low Interference Spanners

Algorithm 1 can easily be adapted to fit other needs. For instance one could
construct an algorithm for a Greedy Low Interference t-Spanner (GLIS) by
simply changing lines 6-8 as follows:

if shortestPath(u → v) in G > t|u, v| then
E = E ∪ e

end if

This clearly constructs a t-spanner, as it adds edges until for all nodes u
and v there is a path u → v of length at most t. GLIS resembles the greedy
spanner introduced by Das and Narasimhan [DN94], denoted GS here. GS
sorts edges according to their length whereas GLIS sorts edges according to
coverage of nodes. Das and Narasimhan use graph clustering techniques to
reduce the cost of shortestPath-queries such that the overall time complexity
of GS becomes O(n log2 n). Similar techniques can be used for GLIS. But
what effect do the different sorting criteria have on the resulting topologies?

Consider a setting as in Figure 3.1. The figure shows for instance recov-
ery teams that have settled down after a hard day of work in a disaster area
along a river. The camps (gray disks) are equipped with ad-hoc communi-
cation networks and interconnected via some relay stations along the river
that might not be placed as close to the river due to rough terrain. Assume
that within the camps, network topology is such that constant interference
k can be achieved. GS first adds all edges within the camps, as nodes are
closest there. Then it will cross the river directly from camp to camp using
the dashed edges. Usage of these edges interferes with the entire camp on
one side, increasing overall Iavg and Iin. Iout is pushed up to the size c
of the camps. GLIS on the other hand prefers the crossing edges outside
camps as they have much smaller coverage. Depending on t it might not be
necessary to use the direct edges between camps and therefore an increase
of interference can be avoided. Table 3.1 summarizes the performance of
the two algorithms for the presented scenario. Note that for n nodes and m
camps c ≈ n

m ∈ O(n) and thus also IGS
out ∈ O(n).

GLIS produces an interference optimal t-spanner with respect to Iout as
it uses the least interfering edges to build the spanner. Any other t-spanner’s
interference can only be equal or worse.

GLIS GS
Iavg k k + 1
Iin k k + 1
Iout k k + c

Table 3.1: Performance of GLIS versus GS
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Figure 3.1: Communication structure of camps along a river.

Unfortunately, GLIS is not necessarily a planar embedding. Consider
four nodes arranged as in Figure 3.2. Edge BC has already been added by
the GLIS algorithm. Assume that nodes A,B and B,D are already connected
by paths ÃB and B̃D of lengths t · |AB| and t · |BD| respectively. The
shortest detour from A to D without using the direct edge is via B. Assume
that there is a constant c > 1 such that |AB| + |BD| = c · |AD|. Thus the
overall length of the detour from A to D will be

|ÃD| = |ÃB|+ |B̃D| = t · (|AB|+ |BD|) = c · t · |AD|.

Accordingly the shortest path from A to D in the graph does not satisfy
the t-spanner property and thus edge AD will be added by GLIS, crossing
edge BC.

A

DC

B

t · |AB|

t · |BD|

Figure 3.2: GLIS is not planar.
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3.4 The Competitive Ratio

As discussed above, |Cov| is not necessarily a useful greedy criterion when
going for low Iin. We present an example where GLIT does not compute
the optimum with respect to Iin and propose a new heuristic criterion called
impact which is better suited to minimize Iin.

Consider a set of nodes as shown in Figure 3.3. Two rings of nodes are
placed around a center node I. Between each pair of consecutive nodes on
the second (outer) ring, there is an additional outer node. The radius of
the first (inner) ring is r, while the radius of the second ring is < 2r. Outer
nodes are placed outside the second ring. In the figure, we see the coverage
annotated to some directed edges. Obviously, GLIT will first add the edges
with coverage 2, connecting nodes between the two rings. Edges from the
first ring to I and from outer nodes onto the second ring both have coverage
3 and thus will be added next. Because edges from the second ring to outer
nodes have coverage 4 they are added later. Meanwhile, all nodes on the
first ring have been connected to I directly, causing as much as 6 disks to
cover I (counting self-interference of I). These inner spokes could have been
saved if connections via outer nodes would have been established earlier,
which was not possible due to the higher coverage of edges from the second
ring to outer nodes. An optimal connected topology would connect at most
three first ring nodes directly to I and connect the remaining first ring nodes
via links over outer nodes, ending up with an incoming interference of 4.

The question arises whether GLIT can be arbitrarily bad in terms of Iin.
GLIT might as well be c-interfering, meaning that there is some constant
c > 1 such that

Iin(GLIT) ≤ c · Iin(MIT).

If self-interference is neglected, the above example shows that c must be at
least 5

3 .

3.5 Dynamic Greedy Criterion

To overcome this weakness of GLIT in terms of Iin, we present an new
greedy criterion called impact which is better suited to minimize incoming
interference. Let e be an edge, then the impact of e is defined as follows:

impact(e) := |Cov(e)|+
∑

v∈Cov(e)

Iin(v)2

impact(e) not only counts the nodes covered by a potential edge e but
also takes existing incoming interference in these covered nodes into account.
Note that the term Iin(v) in the above definition is dynamic, since incoming
interference is dependent on edges that are added by the algorithm. Thus
the values of Iin(v) need to be updated every time a new edge is added
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Figure 3.3: A set of nodes where GLIT is not optimal for Iin.

to the graph. An algorithm deploying impact will do everything to avoid
covering nodes that are already highly interfered. In fact, GLIT using the
impact criterion (denoted GLITimp) stops adding direct edges to I in the
above example as soon as three direct edges are in place and ends up with
an optimally connected topology having Iin = 4.

An already mentioned disadvantage induced by using impact is the need
for updating the edge table after each step. This is because any new edge
increases Iin in covered nodes. Yet the overall time complexity of the result-
ing greedy algorithm will not exceed O(n4). There are

(
n
2

) ∈ O(n2) edges.
For each edge, all n nodes are checked for coverage, which is O(n3). Thus
building the edge table and sorting it is O(n3 + n2 log n) = O(n3). The
resulting tree has O(n) edges, thus the table must be rebuilt O(n) times.

Yet another approach to make GLIT perform better in terms of Iin is
to append a second phase. In this second phase, nodes with high Iin are
examined and edges adjacent to these nodes are deleted as long as the graph
is still (strongly) connected. In the above example, this removal phase would
eliminate some edges that cause high interference in I. Because nodes on
the first ring are now connected via the second ring, some first ring nodes
can drop their direct connection to I, reducing Iin to 4.





Chapter 4

NP-Completeness Results

Although one can think of many different greedy criteria for the algorithm
proposed in Chapter 3 or even other types of algorithms, not all interfer-
ence measures can be tackled as easily as Iout or Iavg. This chapter defines
two problems in the domain of Iin: MINIMUM INTERFERENCE BROAD-
CAST (MIB) and its connected variant (CMIB). NP-completeness of both
problems is shown. At last, a known algorithm is shown to construct a
constant approximation of CMIB.

4.1 Minimum Interference Broadcast

It is known that GEOMETRIC DOMINATING SET (GDS) is NP-com-
plete [MIH81]. In this section we will show that a variation of GDS which
minimizes incoming interference also is NP-complete.

Definition 10 (MIB). Let V be a set of nodes in the two-dimensional
space. Furthermore let R be a finite set of radii with |R| ≥ 2. Then MIN-
IMUM INTERFERENCE BROADCAST (MIB) is the problem of covering
all nodes in V with disks D(vi, rj) where vi ∈ V and rj ∈ R such that Iin of
the resulting graph is minimal.

Theorem 2. MIB is NP-complete.

Proof. We will reduce a restricted version of 3SAT to MIB. ONE-IN-THREE
3SAT is a restriction of 3SAT such that each clause contains exactly one
true literal. The problem remains NP-complete even if no clause contains a
negated literal [Sch78].

Let R = {r, r + δ}, where δ ¿ r is a positive constant. Consider a set of
3k nodes along a closed loop of wire as in Figure 4.1. The distance between
two consecutive nodes is s = r√

2
such that a disk of radius r centered at a

corner node of a s × s square will cover all nodes on the square. Any disk
with radius r centered at a node along the wire exactly covers three nodes:

21
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Figure 4.1: Nodes along a looping
wire.
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Figure 4.2: Overview of the wire
construction.

itself and its two neighbors. By building groups of three consecutive nodes
we see that an interference optimal covering must choose either the first,
second or third node of each group as a center node of a disk. Hence a wire
can be covered with minimal interference 1 in exactly three ways. Any other
covering will lead to an interference ≥ 2.

Now take an instance of ONE-IN-THREE 3SAT, a boolean formula B in
conjunctive normal form consisting of a set of variables U and a collection
C of clauses over U such that each clause c ∈ C has |c| = 3. The question
is, whether there is a truth assignment for U so that each clause in C has
exactly one true literal.

The construction contains a looped wire wi for each of the variables
ui ∈ U . Let one of the three interference optimal coverings of wi correspond
to a true assignment and the other two to a false assignment of ui. Let
Ti denote the set of center nodes in the true covering of wire wi. For each
clause cj ∈ C we define a clause point pj . The three wires corresponding to
the literals of cj are brought into close proximity of pj such that pj can be
covered by its wires ’for free’ if any of the wires is in the true state. This
can be done by arranging the wires around pj such that for each wire wi

exactly one node in Ti is at distance r from pj while the other nodes in Ti are
further away from pj . We need not worry about negated literals, because
the restricted problem instance containing no negated literals remains NP-
complete. Figures 4.2 and 4.3 show the overall construction and a detailed
vicinity view of a clause point.

This construction cannot be built without crossing wires. It can be
shown that any crossing of two wires can be covered with interference 1
and that if this optimal covering is chosen, both wires will independently
maintain their ’values’ when passing the crossing. To achieve this, some
extra nodes need to be added wherever two wires cross (see Figure 4.4). Let
the coordinates of crossing point x be (0, 0). Its right neighbor is at (1, 0)
accordingly. Then we must add helper nodes at coordinates (1, 1), (1,−1),
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Figure 4.3: The vicinity of a clause
point p with the three correspond-
ing wires.

�
Figure 4.4: Crossing of two wires.
Configuration is [1, 0].

� � ��

Figure 4.5: Crossing of two wires.
Configuration is [1, 1].

(−1, 1) and (−1,−1). Around nodes at distance 2 from x two helper nodes
need to be placed at distance δ from the wire.

At a crossing, nine different configurations of wire values can occur. Let
[0, 0] denote the case where both wires center a disk at x. [1, 0] means that
the vertical wire places a node at x, but the horizontal wire has a phase
shift of 1, that is it places a disk at node (1, 0). Any configuration [i, j]
for i, j ∈ {−1, 0, 1} is possible. Configuration [0, 0] is optimally covered
anyway, since both wires use the same disk at x. Figure 4.4 shows how the
[1, 0] case can be solved by simply dropping a disk on the vertical wire. Due
to symmetry, this also solves the configurations [−1, 0], [0, 1] and [0,−1].

The remaining cases are those where both wires are out of phase by either
−1 or 1. Without loss of generality configuration [1, 1] can be considered
(see Figure 4.5). The center of the leftmost disk must be displaced to node
(−1, δ) so that node (−1,−1) will not be covered by 2 disks. Of course,
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the bottom disk could instead be displaced. The remaining nodes can be
covered by a single disk centered at (1, 1). Note that the algorithm must
choose the bigger radius r + δ for this disk, otherwise it would not cover all
helper nodes of (2, 0) and (0, 2). This is the only case where radius r + δ
is needed to maintain optimal interference. If both wires keep their state
beyond the crossing, the crossing can be optimally covered. It can also be
seen that if any wire changes its state over the crossing, the remaining points
cannot be covered with interference 1. Eventually, an algorithm seeking the
optimal covering must preserve wire states across intersections.

At a clause point pj , if exactly one literal of the corresponding clause is
true, pj is covered by the according wire with interference 1 as in Figure 4.3.
If two or three literals are true, pj is covered by two or three distinct wires
respectively, increasing the interference at pj . If none of the literals is true,
pj remains uncovered and an additional disk needs to be placed either at pj

itself or at a wire close to pj . In either case, this disk entails an interference
of 2 in at least one of the wires (the additional disk can be placed on a literal
wire or on the clause point itself). Consequently there is a truth assignment
over U satisfying all clauses with exactly one true literal per clause if and
only if the shown construction can be covered with a minimal interference
of 1.

The number of nodes and crossovers is bounded by O(|U | · |C|), where
|U | is the number of variables and |C| is the number of clauses. Thus, the
node set can be generated in time O(|U | · |C|) which is clearly polynomial
in |U | for |C| ≤ (|U |

3

) ∈ O(|U |3).
We have shown a reduction of ONE-IN-THREE 3SAT to MIB and there-

fore MIB is NP-hard. Since it is clearly in NP (for solutions are verifiable
in polynomial time) it is also NP-complete.

4.2 Connected Minimum Interference Broadcast

When studying wireless ad-hoc networks, using some kind of virtual back-
bone structure can be beneficial [DB97, WL99]. Most of the traffic is routed
on the backbone and thus protocol overhead can be reduced and fault-
tolerance increased. Other advantages include alleviation of the broadcast
storm problem [TNCS02], improved network throughput or primitives for
broad- and multicast.

We introduce connected MIB (CMIB) as an interference optimal virtual
backbone and show its NP-completeness. CMIB is MIB with the additional
requirement that the broadcasters (sending nodes) are connected.

Theorem 3. CMIB is NP-complete.

Proof. We will reduce planar 3SAT to CMIB. Lichtenstein showed planar
3SAT to be NP-complete in [Lic82]. In order to understand what planar
3SAT exactly is, we recapitulate its definition.



4.2. CONNECTED MINIMUM INTERFERENCE BROADCAST 25

Definition 11 (Planar 3SAT). Let B be an instance of 3SAT with m
clauses cj and n variables vi. Then G(B) = (N, A) is a graph defined on B,
where

N = {cj |1 ≤ j ≤ m} ∪ {vi|1 ≤ i ≤ n}
is the set of nodes and A = A1 ∪A2 is the set of arcs1 with

A1 =
{{ci, vj}|vj ∈ ci or vj ∈ ci

}
,

A2 =
{{vj , vj+1}|1 ≤ j ≤ n

} ∪ {{vn, v1}
}
.

Planar 3SAT is 3SAT restricted to formulae B such that G(B) is planar.

There is a node in G for each clause and each variable. Variables are
connected to the clauses they are part of (A1). In addition, all variables are
interconnected (A2).

Similar to the proof for MIB we will construct wires that carry truth
values of variables. A structure is needed that has exactly two (or few that
can be combined) interference optimal solutions for CMIB, allowing us to
code true and false for each variable. Connected topologies have a mini-
mum interference of 3 which complicates finding a useful structure, as the
higher optimal interference admits more freedom in choosing broadcasters.
Figure 4.6 shows a mesh that has exactly two optimal solutions represented
by the two zigzag lines (ltrue and lfalse). The distance between two nodes
diagonally is r, thus a sending node covers exactly all diagonal neighbors.

Figure 4.6: Mesh structure with only two optimal solutions for CMIB.

For each variable in B there shall be a wire consisting of the above
structure visiting all connected clause points along the arcs in A1, always
returning to the variable node between two clause points. At clause points
the three wires are brought into close proximity such that from each wire
there is exactly one node within distance r of the clause point. If the oc-
currence of the variable in the particular clause is positive, a node in ltrue is
put closest. If the occurrence is negated, the wire will be slightly distorted
before and after the clause point such that a node in lfalse will be closest.

1The term arc is used here for edges that need not be straight but can be bowed.
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clause point

n4,0

s5

ltrue

lfalse

s1

c−2
c0 c2

Figure 4.7: Turn of a five-stranded wire at a clause point.

In order to make the entire dominating set connected, the wire fringes
must be connected by strands, corresponding to the arcs in A2. Those
connecting strands can be simple lines of consecutive nodes at distance r
that are attached to the ends of two wires.

It is not quite trivial to see that the five-stranded wires can be bent tight
enough so they will not interfere with each other at clause points. Figure 4.7
illustrates the situation.

As three wires need to visit each clause point, a wire must be turned
within an angle of 120◦. Of course there are conditions to meet that prevent
the turning angle from being arbitrarily small. Let si denote strand number
i, starting at the inner strand s1 and cj column number j where columns
are sets of two or three nodes along radial lines as shown in the figure
(c0 being the column containing the clause point). Node ni,j denotes the
node on strand si and column cj . Then the following conditions guarantee
preservation of wire properties:

(i) Nodes must not interfere with their immediate neighbors on the same
strand (|ni,j , ni,j±1| > r).

(ii) Nodes must not interfere with their immediate neighbors in the same
column (|ni,j , ni±1,j | > r).
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(iii) Nodes must reach their diagonal neighbors (|ni,j , ni±1,j±1| ≤ r).

Once the conditions are met, the question of where to put the tangential
lines that enclose the turning angle arises. n4,0 is part of the broadcasting
set iff the wire satisfies the literal. In the case where the literal is false,
nodes n4,±2 are sending. In order not to interfere with its corresponding
nodes (mirrored across the tangential) in a neighboring wire, there must be
a distance of at least r

2 around n4,±2, depicted by the small solid disks. Thus
if we draw the tangential from the clause point to those solid disks we can
be sure that no broadcasting node in one wire can reach a node of another
wire, as also the mirrored equivalent to n4,−1 can not be reached by n4,−2

or n4,0.
Note that an algorithm seeking a solution to CMIB could as well consider

connected sets that jump from wire to wire in nodes as n4,−1, n4,−3 or
the clause point. Nevertheless a solution with interference 3 admits only
connected sets that constitute a single line. If some node in the set has
more than two neighbors its interference will be at least 4. Thus leaving
a wire w for wire v cuts of the connected line in w as well as in v. Think
of the global connected set as a string. Changing wires around a clause
point corresponds to cutting the string twice and knitting two of the three
fragments together, ending up with two not connected fragments (Note that
we don’t include edge {vn, v1} in A2. If we did, the algorithm could indeed
once change wires). Thus changing wires does not produce connected sets
with optimum interference and therefore it is no option for the algorithm.

The turning in Figure 4.7 satisfies conditions (i) through (iii) and turns
within 118◦. A number of example disks of radius r allow the verification
of the conditions for some of the nodes. Trigonometrical calculation of the
minimum possible turning angle is fairly intricate and omitted in the scope
of this work.

If at least one of the literals in each clause point resolves to true the
corresponding wire will cover the clause point for free. If no literal resolves
to true, the clause point must be covered by an additional disk centered at a
wire node, inevitably leading to an interference higher than 3 on that wire.
Thus it can be concluded that B is satisfiable if and only if the corresponding
construction described above has a solution to CMIB with interference 3.

The construction can be built in polynomial time and thus it constitutes
a reduction of planar 3SAT to CMIB. So CMIB is NP-hard. Since it is
clearly in NP (for solutions are verifiable in polynomial time) it is also NP-
complete.

4.3 Constant Approximation of CMIB

Since CMIB is NP-complete, our focus now lies on finding polynomial time
approximations. The CONNECTED DOMINATING SET (CDS, equal to
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connected GDS) algorithm presented by Alzoubi et al. [AWF02] turns out
to be a constant approximation of CMIB (and MIB as well). The algorithm
(called AWF here) works as follows: First, a MAXIMAL INDEPENDENT
SET (MIS) S is constructed. Nodes in S (called dominators) can be con-
nected by using at most two additional nodes (connectors) between pairs
of dominators. The necessary connectors are accumulated in a set C. The
resulting graph U = S ∪C is a CDS with size bounded by a constant times
the size of an optimal CDS, as has been proven in the paper. The algorithm
is fully distributed and runs in linear time and message complexity.

Theorem 4. AWF constructs a CDS that approximates CMIB within a
constant factor.

Proof. Consider a node v /∈ S. Let the unit radius be 1. Following the proof
of Lemma 1 in [AWF02] and by the standard area argument we can compute
the number of potential dominators d(r) within a disk of radius r around v
by calculating the maximum number of disks of radius 1

2 that can be placed
within the area of the disk with radius r + 1

2 around v. This leads to

d(r) :=
⌊

π(r + 0.5)2

π(0.5)2

⌋
.

Thus d(1) = 9 dominators can be placed that directly interfere with v.
d(2) = 25 dominators can be placed within radius 2. Each of these more
distant dominators could potentially be connected to any other of the 25
dominators by a path of at most two connectors. Each of these connectors
could be placed within the disk of unit radius around v and thus interfere
with v. There remain d(3)−d(2) = 24 dominators in the ring between radius
2 and 3 that can be connected to any of the radius 2 dominators in a way
that at most one of the connectors enters the unit disk around v. This leads
to an upper bound of interfering nodes in v.

Iin(v) ≤ 9 + 2
(

25
2

)
+ 24 · 25 = 909 (4.1)

Apparently one could place less than d(2) dominators within radius 2 to
allow the number of dominators in the outer ring between radius 2 and 3 to
be increased. A closer look at the formula shows that 2

(
r2

2

)
+r2(d(3)−r2) can

be simplified to r2(d(3)− 1) and thus is maximized if r2 is chosen as big as
possible, and r2 = d(2) as in Equation 4.1 actually maximizes interference.

The same argumentation leads to an upper bound of interference in a
dominator node s ∈ S. Indeed the maximum interference in s is slightly
smaller, as no other dominator can be placed within the disk of unit radius
around s.

Thus Iin is bounded by a constant on all nodes. Because any solution
to CMIB with more than two dominators has at least interference 3, AWF
approximates CMIB within a constant factor of at most 303.



Chapter 5

Low Degree versus Low
Interference

It is often argued that in MANETs low or bounded degree topologies are
well suited to minimize interference. In this section we will discuss this
conjecture by looking at several well known topologies and analyzing their
properties in terms of interference. It turns out that many topologies are
not competitive in terms of interference while GLIT is optimal for Iout and
Iavg.

5.1 Low Degree Spanners

The quest for low degree spanners was initiated by Dobkin et al. [DFS90].
They posed the problem of finding a v-degree constrained t-spanner such
that every node has degree v or less and showed that for two-dimensional
problems 2 < v ≤ 7. Soares provided a proof for v ≤ 5 [Soa92] and Sa-
lowe showed that v ≤ 4 [Sal94]. Das and Heffernan concluded the quest
by showing that actually v = 3, as previously conjectured [DH93]. The
major drawback of these solutions is a very high stretch factor t. Salowe
for instance uses a technique that takes a v-degree constrained spanner and
constructs a new (bv

2c+ 2)-degree spanner. By iteratively applying this de-
gree reduction he arrives at a 4-degree spanner. Let t and t′ be the stretch
factor before respectively after reducing degree. Then t′ ≤ 117t+864, which
is by no means tolerable in practice, even using a single reduction step. We
conjecture the performance of these low degree spanners with respect to our
interference measures to be bad. Up to today, v-degree constrained spanners
with desirable properties such as planarity, reasonable stretch factor and a
distributed construction algorithm are known having v ≥ 20 [LW03].
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i + 1i

2i

Figure 5.1: Although ∆ = 2, interference is O(n).

5.2 Performance of Known Topologies

Obviously, the maximum degree ∆ of a graph is a lower bound for interfer-
ence in any reasonable measure (see Section 6 for a thorough discussion of
various measures). Nevertheless interference can be as high as the number
of nodes n (or edges respectively). A striking example found in [MSVG02]
is the topology shown in Figure 5.1. The distance between two nodes i and
i + 1 is 2i. Thus each node will cover all nodes to the left when communi-
cating with its right neighbor1, and, although ∆ = 2, interference is O(n)
for all measures.

Yet there is no way the nodes could be connected causing less inter-
ference, and thus interference of O(n) is optimal. Consider an extended
example shown in Figure 5.2. Again, there is a horizontal exponential line
as in the previous example. In addition, each node hi of the exponential line
has a corresponding node vi which is vertically displaced by a little more
than the distance to its left neighbor. Let this vertical distance be called di,
then di > 2i−1. These additional nodes form a second (diagonal) exponen-
tial line. Between two of these diagonal nodes vi−1 and vi, there is a helper
node ti such that |hi, ti| > |hi, vi|.

Consider Prim’s algorithm for growing a minimum spanning tree (MST).
As it greedily adds shortest edges not forming cycles, it will always connect
nodes along the horizontal line via edges along the exponential line (see
Figure 5.3), leading to interference of O(n), although the degree of a MST
is bounded by 6. This time however, there exists a tree on the nodes that
imposes only constant interference. Figure 5.4 shows such a tree. It connects
horizontal nodes via vertical edges instead of horizontal edges. By doing this,
it omits edges (hj , hj+1) that cover all nodes to the left in the exponential
line. GLIT, the greedy algorithm introduced in Chapter 3, will construct
such a constant interference tree for all measures, being optimal for Iout.
Also, if t ≥ 3, GLIS will construct a constant interference t-spanner.

Let RNG denote the Relative Neighborhood Graph, GG the Gabriel
Graph and DT the Delaunay Triangulation. Then the relation

MST ⊆ RNG ⊆ GG ⊆ DT

1due to
∑n−1

i=1 2i < 2n
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hi
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di

ti

vi−1

Figure 5.2: Two exponential lines.

Figure 5.3: MST produces inter-
ference O(n).

Figure 5.4: Optimal tree with con-
stant interference.

implies that all topology control algorithms relying on one of the listed
topologies are prone to interference of O(n) in all measures (as they contain
the MST) while optimal interference may be constant. In general, GLIT
and GLIS construct Iout- and Iavg-optimal topologies, while they provide
good heuristics for other measures.

Another example where low degree is no guarantee for low interference
is the sparse Yao graph [GLSV02]. The basic idea underlying the Yao
graph [Yao82], also known as θ-graph, is to divide the space around each
node into k equal sectors. Each node is now connected to its nearest neigh-
bor in each sector. If k > 6, the Yao graph is a spanner with a stretch
factor depending only on k. The major drawback of this kind of graphs is
that the in-degree of nodes is not restricted. This disadvantage is overcome
in a variation known as the sparse Yao graph, where only the shortest of
all incoming edges per sector is kept. The sparse Yao graph has in- and
out-degree of at most k (thus degree 2k in total).

Now consider the node set shown in Figure 5.5. Iout = n if the center
node communicates with the nodes on the circle. The sectors originating at
u and v both just miss the center node. This causes u and v to add an edge e
between them. Sending a message over e interferes with virtually all nodes.
Because all nodes might just miss the center node, each node is covered
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by up to n disks directly leading to Iin ≈ n. Accordingly, Iavg can also be
as bad as n. In the previous example, constructing the sparse Yao graph
leads to the same topology as the MST (see Figure 5.3). It is known that
the sparse Yao graph is a power spanner [JRS02] and has constant degree.
Nevertheless it exhibits very bad interference properties!

u

v

e

Figure 5.5: An unfavorable edge in a Yao graph.

Thus we have shown two examples where several well known and widely
used topologies are bad in terms of interference, but GLIT and GLIS perform
well:

Figure 5.2: MST, GG, DT and the (sparse) Yao graph are not competitive.

Figures 2.1 and 5.5: When adding a chain of nodes from the center node
to a circle node, GG, DT as well as the (sparse) Yao graph are not
competitive.

5.3 Concluding Observations

The shortcoming of ∆ as a measure for interference mainly stems from the
fact that a node v (or an edge) may be interfered by nodes that are not
directly connected to v via an edge. However this is not the case in a Unit
Disk Graph (UDG) where there is an edge e between two nodes u and v iff
|u, v| ≤ r = 1. In a UDG, the incoming interference (Iin) of a node is given
by its in-degree: Iin(v) = ∆in. Interference of an edge2 depends directly on
the degree of the associated nodes, as Iin(e) = Iin(u)+Iin(v)−Iin(u)∩Iin(v)

2According to the definition for nodes, incoming interference of an undirected edge
e = (u, v) is the number of disks covering u or v. This notion will be discussed more
thoroughly in Chapter 6.
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where Iin(u) ∩ Iin(v) denotes the number of disks that cover both u and v.
It follows that

∆in ≤ Iin(e) ≤ ∆in(u) + ∆in(v) ≤ 2∆in.

A common way to establish topologies for MANETs is to start from
a UDG and then consecutively remove redundant edges without affecting
desired properties such as the spanner property. This process of removing
edges will reduce interference only if nodes are able to lessen their trans-
mission radius in response to the deletion of edges! If all nodes constantly
maintain a transmission radius of r, deletion of edges neither affects Iin nor
Iout, as all disks considered remain exactly the same and thus all nodes are
covered by the same number of disks. Equation 5.1 follows and gives bounds
on Iin.

∆in ≤ Iin ≤ ∆UDG
in (5.1)

∆in denotes the maximum in-degree of the resulting graph and ∆UDG
in

stands for the maximum in-degree of the UDG on the node set. Similar
bounds hold for Iout.

Summarizing the chapter, it can be said that there is need for topologies
that do not (only) strive for low degree, as it is merely a lower bound, but
try to minimize actual interference.





Chapter 6

Modeling Interference

Dealing with wireless ad-hoc networks at the abstraction level of graphs
leaves open a wide area of possible interference measures. In this section
we will provide an overview and comparison of various interference models.
In Section 3 it is shown that minimizing some of them can be achieved
by a simple greedy algorithm while minimizing others is NP-complete (see
Section 4).

One of the first questions to ask is ’who interferes with whom’? Is
it mainly nodes interfering with other nodes or do links (edges) disturb
other links? Is there a significant difference between the two perspectives?
One might argue that communication along a link imposes interference to
all nodes within the link’s vicinity and hence interference from edges onto
nodes should be considered. Partitioned into four subsections corresponding
to the categories nodes to nodes, edges to edges, edges to nodes and nodes to
edges several more questions are accounted for. Where shall interference be
measured, at the originators or rather at the affected nodes? Does it make
a difference at all? How do we derive a measure for the entire network from
local measures? Relations among these different interference definitions are
studied.

6.1 Nodes to Nodes

Mobile stations are the physical entities that eventually emit radio signals
and are disturbed by signals of other stations. Hence it can be argued that
interference should best be measured between nodes. Figure 6.1 shows an
overview of several additional decisions that must be made along the way
to a thorough model of interference. Following the insight of Section 1.2
we will only consider directed edges in this section in order to not restrict
communication unnecessarily. Anyway, undirected edges will be discussed
in following sections.

Choosing the out branch at the direction node corresponds to measur-
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Figure 6.1: Interference nodes to nodes.

ing interference at originators (outgoing interference) whereas the in branch
corresponds to measuring interference at the affected nodes (incoming in-
terference). The next decision node (radius) is concerned with the way local
node interference is defined. Suppose the out branch is chosen. Thus for
each node, the impact its activity has onto other nodes is considered. A mes-
sage sent along an edge e interferes with all nodes within the disk of radius
|e| centered at the sending node. But how can one define the interference of
a node with several incident edges? Figure 6.1 shows three possibilities of
assigning a value to a node v:

max A disk with radius corresponding to the longest incident edge of v is
chosen. The number of nodes covered by this disk is the value for v.

sum For each incident edge of v, the number of nodes covered by the cor-
responding disk is summed up.

avg Similar to the sum case, but the value is then divided by the number
of edges.

No matter how the local measure is defined, when stepping onwards to
the entire graph, we need some pooling of individual nodes. This can for
instance be done by taking the maximum (m) or the average (a) of all nodes,
as shown in the figure. We could as well simply build the sum over all nodes,
but this would induce a direct dependency on the number of nodes in the
graph.

Along the in branch we have a bifurcation with two options:
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max As in the max case of the out branch, a disk of maximum radius is
considered for each node in the graph. The value assigned to a node
v now is the number of disks that cover v.

all Not only the maximum edge of a node is considered, but all edges are
represented by a disk with radius equal to the edge’s length. Again,
the number of disks covering v is counted.

Again, we have the max and the all pooling option at the bottom of the
decision tree. A subtree in the tree is denoted by the decisions that lead to
it. For instance Iin is the measure attained when following the nn-in-max-m
branch, where nn stands for the diagram (nodes-to-nodes in this case).

Branch nn-in-all is equivalent to branch en-in-uni1 in Figure 6.3 as
indicated by the attached box.

The same notion of interference (Iavg) is defined by following the max-a
branch in either in or out context. This can be seen by bringing to mind
the fact that in both cases a covering of a particular node by a particular
disk is counted exactly once, either at the originator or at the affected node.
Therefore both approaches end up with equal sum and average, though the
addends may be different. The same is true for Iala.

The gray shaded measures are those that can be tackled by the greedy
algorithm introduced in Section 3, at least for (strongly) connected graphs.
Hatched boxes are used for measures for which an NP-completeness result
has been proven (see Section 4). These results are not exhaustive, as a white
box indicates that the measure has not yet been shown to belong to one of
the two (or any other) classes. Note that simply by changing from the out
to the in branch (choosing all other branches alike), a greedily accessible
measure as Iout can turn into an intractable measure Iin for which even the
construction of a dominating set is NP-complete (see Section 4)!

Measures along out-sum and in-all can grow up to n2 which can be
doubted to be reasonable. Intuitively a mobile station cannot interfere with
more than all nodes. Other branches yield measures bounded by O(n).

Branch out-avg is not considered, as the corresponding measures exhibit
undesirable properties. At every node, the number of covered disks is av-
eraged over all incident edges. Say there is a node with a very long edge
covering virtually all nodes and some short edges covering merely a neighbor
or two. The heavy interference of the long edge is eased by the shorter edges.
Therefore a node with a heavy edge can decrease its interference by starting
to communicate along additional short edges, which is contradictive. Addi-
tional communication should certainly not reduce interference. Nevertheless
out-avg is shown in the figure for sake of completeness.

1en stands for edges to nodes
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Figure 6.2: Interference edges to edges.

6.2 Edges to Edges

Similar to the model of Meyer auf der Heide et al. [MSVG02], denoted
IMS here, interference can be considered between edges. Figure 6.2 shows
an overview of different edges to edges measures. The approaches mainly
differ in terms of outgoing or incoming interference and uni- or bidirectional
edges. A bidirectional edge e = (u, v) is considered to be interfered by a
disk if the disk covers u or v. An unidirectional edge is only interfered by
disks that cover target node v. This makes sense because the transmission
of a message via a directed link is only disturbed if interference occurs at the
target. Interference merely at the sender does not bother, as radio signals
follow the concept of linear superposition. IMS can be found along in-bi-m.
The according average measure is called IMSA.

Definition 12 (Incoming Property). A directed graph conforms to the
incoming property, denoted (i), if every node has at least one incoming edge,
that is, every node can be reached by at least one other node. Accordingly,
an undirected graph conforms to (i) if every node has at least one incident
edge.

Figure 6.2 shows a measure with a superscript (i). This denotes that
the measure at in-uni-m (denoted I∗) is equivalent to Iall, given that the
incoming property holds for the underlying graph. This equivalence can
easily be understood. Say the value of Iall is known for a graph G. Some
node v in G is maximally covered by Iall directed edges. Now if the incoming
property holds, v has an incoming edge e that is covered by exactly the
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same number of edges. Clearly, e cannot be covered by more disks without
increasing Iall at v. On the other hand, if I∗ is known, we know that the
target node of the maximally covered edge has the same covering edges, thus
I∗ = Iall. If the incoming property is not guaranteed, I∗ ≤ Iall. Generally it
can be said that all relevant topologies will be compliant with this property,
because we are interested in networks in which every node can be reached.

A common relation between similar measures that only differ in terms of
targets (nodes or edges) is the substitution relation which is defined below.

Definition 13 (Substitution Relation). Let source → target denote a
category of interference measures where source, target ∈ {nodes, edges}.
Let In be a measure in category s → nodes and Ie a measure in category
s → edges along an identical decision path as In. That is Ie and In are at
the same place in the decision tree, only the category differs by the target.
Then In and Ie are related by the substitution relation, denoted (s), if the
following two equations hold:

Ie ≤ ∆In

In ≤ 2Ie

For directed graphs, ∆ refers to the maximum in-degree, whereas for undi-
rected graphs it simply denotes the maximum node degree. The substitution
relation does not require the incoming property to hold.

If the substitution relation holds for two measures In and Ie, an interval
for either one is given, dependent on the respective other measure. If we
know the value of Ie, then Ie

∆ ≤ In ≤ 2Ie. On the other hand if In is known,
In
2 ≤ Ie ≤ ∆In holds.

In a decision tree, a box with symbol (s) means that the particular
measure is related by the substitution relation to its corresponding mea-
sure in the category where targets are swapped. For instance, according to
Figure 6.2, the substitution relation must hold for ee-out-uni-m (Ie) and
en-out-uni-m (In), which is shown in Figure 6.3 and is equivalent to Iout.
The validity of this relation can be seen by some simple arguments as fol-
lows. In category ee we consider the interference imposed by directed edges
on directed edges. In category en the interference imposed on nodes is con-
sidered. First, consider the case where In is known. There is an edge that
covers In nodes. At each of these covered nodes, no more than ∆ edges
can be adjacent. Therefore Ie is limited by ∆In. If on the other hand Ie

is known, some edge covers Ie edges. As stated before, a directed edge is
deemed interfered if its target node is covered. For each of these edges at
most two nodes are covered. If the incoming property holds, there cannot be
any covered nodes which are not adjacent to a covered edge. Thus In can-
not exceed 2Ie. Taken together, these relations constitute the substitution
relation (s).
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The case where an incoming average pooling measure (e.g. ee-in-uni-a
denoted Ie and en-in-uni-a denoted In) is claimed to meet (s) needs different
argumentation. Say In is given. Then every node is covered by In edges in
average. Thus |V | ·In coverings take place. For each of these node coverings,
at most ∆ edge coverings may exist. Averaging the edge coverings over edges
instead of nodes leads to

Ie ≤ ∆|V |In

|E| ≈ ∆In.

The approximation works if we assume that |E| ≈ |V |. Following the
same trace as above and using the assumption, In ≤ 2Ie can be derived as
well, which completes the substitution relation.

Hence if (s) is annotated to a measure, the incoming property is assumed
to hold. If (s) is annotated to an average incoming measure, it is only
valid if |E| ≈ |V |, which trivially holds for (spanning) trees and the like.
A proportionality factor between |E| and |V | leads to accordingly scaled
inequalities.

For other measures listed to be complying with (s), derivation is omit-
ted, as it follows similar reasoning. Branches out-uni and out-bi have been
combined, for both yield equal results.

We conclude this section by deriving a relation between Iin and IMS .
Suppose the incoming property is assured. Then trivially, Iin ≤ IMS , be-
cause the node v with maximum interference Iin(v) also has an (undirected)
incident edge e = (v, v′) with at least the same amount of interference. For
each disk covering v there is a center node c. c has at most ∆ incident edges.
Although there is only one disk originating in c that counts for Iin(v), each
of the ∆ incident edges potentially interferes with v when the measure is
changed to IMS . Furthermore e might be an edge between v and v′ of which
both have maximum interference Iin(v) = Iin(v′) but no disk covers both of
them. Thus IMS can be at most 2∆Iin. Put together this states

Iin ≤ IMS ≤ 2∆Iin

or IMS
2∆ ≤ Iin ≤ IMS , respectively.

6.3 Edges to Nodes

One could be interested in measuring the interference of communication
links (edges) onto mobile stations (nodes). Figure 6.3 gives an overview of
interference measures in the edges to nodes category.

A remarkable property of this category is the applicability of the greedy
algorithm to the entire out branch. This stems mainly from the fact that
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Figure 6.3: Interference edges to nodes.

outgoing interference to static entities (nodes) is measured. So the interfer-
ence of an edge considered to be added can once for all be computed and
will not change, no matter what edges are added later on.

The measure out-uni-m is equivalent to Iout, since it makes no difference
whether the edge covering the most nodes is considered separately or as
the maximum incident edge of a node. In/e measures the average number
of nodes covered by edges. This is slightly different from Iavg where the
average is done over all nodes instead of edges.

As mentioned in Section 6.1, the branch in-uni is equivalent to nn-in-all .
Measure in-bi-m, denoted I∗, can be closely related to IMS . By changing
target entities from edges (IMS) to nodes (I∗), it is clear that I∗ ≤ IMS . At
the same time an edge can capture at most twice the incoming interference
as the maximum of one of its nodes. Thus I∗ ≤ IMS ≤ 2I∗ or equivalently
IMS

2 ≤ I∗ ≤ IMS . This relation does not require the incoming property to
hold.

6.4 Nodes to Edges

When considering interference from nodes to edges we restrict the node
model to nn-out-max (see Figure 6.1) due to the discussed disadvantages
of nn-out-sum and nn-out-avg (see Section 6.1). Thus branches ne-out and
ne-in correspond to branches nn-out-max and nn-in-max respectively. Fur-
ther decisions along the path concern the target edges and global pooling.

If the incoming property holds, in-uni-m is equivalent to Iin and thus
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minimizing it can be NP-complete. Measure in-bi-m (denoted I∗) is tightly
related to Iin also, as Iin ≤ I∗ ≤ 2Iin holds.

For the remaining measures, the substitution relation is valid. Measures
of this category need to be related to their corresponding measures in the nn
category (Figure 6.1), just imagine the substitution of target edges by target
nodes. The directional decision can therefore be ignored when relating these
measures to each other. Remarkably, all measures marked with (s) refer to
greedily tractable measures, which is to say that upper and lower bounds
constituted by (s) can easily be calculated by a greedy algorithm.

6.5 Self-Interference

In all models discussed so far, interference of a node with itself is counted
(I1). Alternatively, we could argue that a sending node is not disturbed by
its own transmission and thus neglect self-interference (I0). However, there
is a close relationship between the two models. If we compare the same
interference model once counting self-interference and once not, we get

I0 ≤ I1 ≤ I0 + 1. (6.1)

Say I1 is the interference of a solution to CMIB, counting self-interference.
Let D be the set of dominating nodes for this solution. Then there is a set of
nodes M for which interference is equal to I1. Now assume we stop count-
ing self-interference. If M ⊆ D (all nodes with maximum interference are
dominators) then D is a solution with I0 = I1 − 1 (I0 = I1 if M * D).
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Anyhow, it is not possible to find a solution D′ with I0 < I1 − 1, otherwise
D′ could be used to find a better solution to I1 as well. Thus I0 ≥ I1 − 1
which is equivalent to I1 ≤ I0 + 1 and makes up the right part of Inequal-
ity 6.1. On the other hand of course, if we have a solution with interference
I0 and start counting self-interference, this may only increase the interfer-
ence of any solution. Thus I0 ≤ I1, which corresponds to the left part of
the inequality.





Chapter 7

Conclusion and Future Work

Focused attention has been payed to the field of MANETs in the past years.
The main part of recent research has been dedicated to the fundamental is-
sues of topology control and multi-hop routing. Although it is often argued
that in MANETs low degree topologies are well suited to minimize inter-
ference, models of interference on the abstraction level of graphs are poorly
studied.

In this work we provided an in-depth discussion of various possible in-
terference definitions (Chapters 2 and 6). A classification of models has
been given and relations among different models have been investigated.
One of the main differences between models is whether they focus on out-
going or incoming interference. For outgoing interference between nodes,
we presented a greedy algorithm (GLIT) (Chapter 3) that constructs an
interference optimal spanning tree (MIT). An adaptation of the algorithm
yields an interference optimal t-spanner (GLIS). For incoming interference
(e.g. Iin) these algorithms are merely heuristic. A dynamic greedy criterion
was suggested to better approximate optimal incoming interference.

The MINIMUM INTERFERENCE BROADCAST (MIB) problem and
its connected variant (CMIB) were defined in Chapter 4. A solution for
CMIB can be used as an interference optimal virtual backbone in ad-hoc
networks. MIB and CMIB were shown to be NP-complete. A constant
approximation of CMIB was shown, which is at the same time also an ap-
proximation of MIB. A change of measure from Iin to Iout makes MIB as well
as CMIB optimally solvable in polynomial time, which is a very intriguing
result concerning the complexity of interference measures.

The common conjecture that low degree is enough to guarantee low
interference was discussed in Chapter 5. The maximum degree of a network
turned out to be merely a lower bound for interference. Despite the fact that
reducing interference is the main reason for doing topology control at all, any
algorithm relying on topologies as the MST, RNG, GG, DT or Yao graph
was shown to be prone to bad interference properties, while the introduced
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algorithms GLIT and GLIS are interference optimal for Iout (and Iavg) and
provide good heuristics for other measures.

Future work will include exhaustive analysis of the various proposed
interference models. Maybe all measures can be partitioned into groups
of closely related interference measures. Are there other ways of defining
interference? Does low interference imply high network capacity? Of course
the model could be adapted to more precisely reproduce physical properties
of radio signals. The signal of a distant node could be modelled to be very
faint and cause little interference, while a close-by sending node would render
impossible the reception of any other signal.

Besides the general issues, there are simple questions to be answered that
tie in with this work directly. It follows a list of some continuing problems
that could not be answered within the time frame of this thesis:

• Is GLIT/GLIS c-interfering with respect to Iin?

• How well does GLITimp approximate Iin?

• Can GLIT/GLIS be approximated by a distributed algorithm?

• Are there good non-greedy algorithms that minimize interference?

• Can a practical approximation of CMIB be found?

• Is building a (strongly) connected topology with minimum Iin NP-
complete?

• How bad is the interference of the low degree spanners mentioned in
Section 5.1 really?

• Are the presented interference measures relevant for congestion or ca-
pacity? For instance, can we say that low interference implies high
capacity?

• Is there a topology control algorithm which is good in terms of interfer-
ence and has other nice properties (local or distributed construction,
Euclidean spanner, low power consumption, planarity, high capacity,
etc.)?

The last item already states the final goal of this research: A topol-
ogy control algorithm that has many of the desired properties of today’s
algorithms but also takes interference into account. Being a first step on
the way, this work has provided many basic definitions and results that are
fundamental for our understanding of interference in ad-hoc networks.
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