
Diploma Thesis

Minimum Stretch Spanning Trees

Philipp Boksberger

supervised by

Prof. Dr. Roger Wattenhofer
Fabian Kuhn

Institute for Pervasive Computing
Distributed Computing Group

ETH Zürich, Switzerland

July 18, 2003

Abstract

Spanning trees have always been of great interest in various areas of com-
puter science. The same is true for the idea of shortest paths in a graph.
Minimum Stretch Spanning Trees can be described as a combination of these
two concepts. On the one hand they are spanning trees, on the other hand
they have a minimum stretch which means that the distances between the
nodes in the spanning tree remain as short as possible. We can talk about
detours between endpoints of edges, which are introduced by removing these
edges from the original graph in order to obtain a Minimum Stretch Spanning
Tree. A spanning tree with a minimum stretch is one where the largest of
these detours is minimal. Computing a Minimum Stretch Spanning Tree is
known to be NP-hard for general graphs. This leads us to two simplifications
of the problem. First, we restrict the input graphs to special graph families
such as grids, grid subgraphs and unit disk graphs. Second, our main interest
is in an approximation of the problem and not in the optimal solution. We
present an algorithm that computes a spanning tree with stretch O(OPT 4)
in time O(n log n). Besides this we show a greedy and an evolutionary al-
gorithm and prove that they do not produce a spanning tree with stretch
better than O(n). At last we present two algorithms for which, in the worst
example found, the resulting spanning trees have stretch Ω(OPT 2) but it
remains open how good the approximation factors of these algorithms are.

Contents

1 Introduction 3
1.1 The Problem . 4
1.2 Notations and Definitions . 6
1.3 Related Work . 7
1.4 Overview and Results . 8

2 Considerations of Lower Bounds 9
2.1 A Lower Bound for General Graphs 9
2.2 Lower Bounds for Grid subgraphs 10
2.3 A Lower Bound for Regular Grids 12
2.4 Alleged Lower Bounds . 13

3 MSST on Regular Vertex Grids 15
3.1 A Polynomial Time Algorithm 16
3.2 Time and Space Complexity of the Algorithm 17
3.3 This Algorithm on Grid Subgraphs 18

4 OPT 4 Approximation for Grid Subgraphs 19
4.1 Weighted Dual Graphs . 19
4.2 The Algorithm . 21
4.3 Proof of Correctness and the OPT 4 Bound 22
4.4 Time and Space Complexity of the Algorithm 25
4.5 Some Remarks about the OPT 4 Bound 26

5 An Abortive Evolutionary Algorithm 28
5.1 The Algorithm . 28
5.2 Two Evaluation Functions for this Algorithm 30

1

6 Remarks about two Greedy Algorithms 34
6.1 A Greedy Algorithm . 34
6.2 Time Complexity of the Greedy Algorithm 36
6.3 Improved Version of the Greedy Algorithm 36
6.4 Time Complexity of the Improved Greedy Algorithm 39

7 MSST on Unit Disk Graphs 40
7.1 The OPT 4 Algorithm on Unit Disk Graphs 40

8 Conclusions 42
8.1 Open Problems . 43

2

Chapter 1

Introduction

Finding a subgraph that somehow represents its original graph is a well
known problem that arises quite often in the area of distributed computing.
Examples are routing algorithms or protocols to share a common variable.
The goal is, however, that these subgraphs approximate the original graphs
in a good way. As the title Minimum Stretch Spanning Trees implies, the
subgraphs we will deal with are spanning trees. They are obviously the
smallest connected subgraphs possible, containing all of the original graph’s
vertices. These trees are important for many algorithms that need a graph’s
spanning tree to work on it. But how can be guaranteed that such a spanning
tree is a good approximation of the original graph? We need to introduce a
measure that enables us to assign a characteristic value to a spanning tree.
This value shall tell us how good the tree approximates a given graph. One
possibility for such a measure that characterizes the approximation quality of
a subgraph is the stretch of the subgraph or tree. The notion of stretch was
established by Peleg and Ullman when they introduced tree spanners in [17].
They defined a tree t-spanner T of a graph G to be a spanning tree in which
the distance between every pair of vertices is at most t times their distance in
G. The key idea behind the notion of tree spanners is the approximation of
pairwise vertex-to-vertex distances in the original graph by spanning trees.
The quality of the distance approximation is measured by the parameter t,
which is referred to as the stretch factor.

Some applications need a tree spanner whose stretch is as small as possible
because the size of the stretch has a direct effect on the time complexity of
the algorithm. An example for such an application is the arrow protocol
[6, 9]. The arrow protocol is a distributed queuing protocol which is based

3

on path reversal in a network spanning tree. The protocol runs on a fixed,
preselected spanning tree T of the network graph G. The small size of this
spanning tree’s stretch is crucial to the worst case competitive ratio of the
arrow protocol which is s in the sequential case1 and s log r under concurrent
access2, where s is the stretch of the preselected spanning tree in the network
and r is the number of simultaneous requests in [9].

1.1 The Problem

In order to formalize the problem of Minimum Stretch Spanning Trees, we
need some basic definitions regarding graphs. Since we are concerned mainly
with unweighted graphs, we need a measure that enables us to talk about
distances. So, given an unweighted graph G = (V, E), and given a path3

[v0, v1, . . . , vk] between two vertices v0, vk ∈ V , the length of the path is k.
This means, the length of a path is equal to the number of edges or hops
in the path. The distance distG(u, v) between two vertices u, v ∈ V is the
length of the shortest path between u and v.

Provided with this measure for distances in unweighted graphs we are
ready to define the stretch of an edge e in the graph as the length of the
shortest path, i.e. the distance between the endpoints of e in G \ e.4 See
Figure 1.1 for an example.

The next step is to define the stretch of a spanning tree T = (V, Ê) in
an unweighted graph G = (V, E). Here we focus on the edges which are not
in the spanning tree. The stretch of a spanning tree of G is defined as the
maximum stretch of an edge e ∈ E \ Ê in T . Note that the path between
the endpoints must lie completely in T . The stretch of the spanning trees in
Figure 1.2 is 7 and 4, respectively.

This leads us to a notion for the stretch of an unweighted graph, which
is the stretch of its spanning tree with minimum stretch. The stretch of the
graph in Figure 1.1 is 4 because this is the stretch of the spanning tree with

1The sequential case is described in the original paper about the Arrow distributed
queuing protocol [6].

2The competitive analysis of the Arrow distributed queuing protocol under concurrent
access can be found in [9].

3A path in G = (V,E) is an ordered list of vertices [v0, v1, . . . , vk], vi ∈ V for 0 ≤ i ≤ k
with edges {{vi, vi + i}|0 ≤ i ≤ k} ⊆ E such that vi 6= vj for every i 6= j.

4G \ e means G without the edge e. More formally: Given a graph G = (V,E), G \ e
denotes the graph Ĝ = (V, Ê) where Ê = E \ e.

4

Figure 1.1: Graph G = (V, E) with e ∈ E. StretchG(e) = 4.

Figure 1.2: StretchG(T1) = 7 and StretchG(T2) = 4.

minimum stretch (see Figure 1.2). The following definition summarizes the
notion of stretch in the context of unweighted graphs, as suggested in [16].

Definition 1.1.1 (Stretch) Let G = (V, E) be an unweighted graph, let
{u, v} ∈ E be an edge of G and let T = (V, Ê) be a spanning tree of G.

• The stretch of {u, v} is defined as

StretchG({u, v}) = distG\{u,v}(u, v).

• The stretch of T in G is defined as

StretchG(T) = max
e∈E\Ê

{StretchT (e)}.

• The stretch of G is defined as

Stretch(G) = min
T
{StretchG(T)}

5

According to this notation, the problem of finding a Minimum Stretch
Spanning Tree can be described as:

Definition 1.1.2 (MSST) Given an unweighted graph G, the Minimum
Stretch Spanning Tree (MSST) problem asks for finding a spanning tree T
minimizing StretchG(T).

The MSST problem has been introduced by Cai and Corniel in [5]. They
showed that determining the existence of a tree t-spanner in unweighted
graphs is NP-complete for any fixed t ≥ 4. Therefore, MSST is known to be
NP-hard. This leads us to two simplifications of the problem. First, we re-
strict the input graphs to special graph families such as grids, grid subgraphs
and unit disk graphs. Second, our main interest is in an approximation of
the problem and not in the optimal solution.

1.2 Notations and Definitions

We will use the terminology of Bondy and Murty [2]. Graphs in this paper
can be either weighted or unweighted and are undirected. They are connected
graphs without loops and multi edges. For any graph G, V (G) denotes the
vertex set of G, E(G) denotes the edge set of G and if G is planar, F (G)
denotes the set of faces of a planar embedding of G.

Since regular grids and grid subgraphs are the fundamental graph families
that we will deal with, let us give a definition of them here. We will use the
following notation for regular grids and grid subgraphs.

Definition 1.2.1 (Regular Grid) A regular (n×m)-grid is a graph G =
(V, E), where every vertex has coordinates from {1, . . . n} × {1, . . . m}. The
set of edges of G is defined as

E = {{vi,j, vi′,j′} : vi,j, vi′,j′ ∈ V, |i− i′|+ |j − j′| = 1}

Given a grid G = (V, E), a grid subgraph Ĝ = (V̂ , Ê) has a vertex set
V̂ ⊆ V and an edge set Ê ⊆ E, i.e. it is a grid graph where some vertices
and/or edges are missing.

6

Figure 1.3: A regular (4× 6)-grid and a grid subgraph.

1.3 Related Work

As mentioned above, the first time spanners were mentioned was in the con-
text of practical motivations from communication networks. See Peleg and
Ullman [17], who introduced spanners to synchronize asynchronous networks.
Various kinds of spanners have been analyzed in order of choosing subnet-
works with good properties. See [12, 17] for some of the variants. A survey
of some results about spanners is presented in [18]. In most applications,
the sparseness of a spanner is crucial. The sparsest spanners possible are
spanning trees. Therefore the problem of finding t-spanners with a minimum
number of edges leads naturally to the notion of tree t-spanners.

Cai [3, 4] and Cai and Corneil [5] showed that the problem of deciding
the existence of a tree t-spanner in an unweighted graph G can be solved
in polynomial time for t = 2, but that the problem is NP-complete for any
t ≥ 4. The case t = 3 is still open, but it was conjectured in [5] to be NP-
complete. Peleg an Reshef [16] expanded this result. They showed, that the
problem cannot be approximated by a factor better than (1 +

√
5)/2 unless

P = NP . In [20], Venkatesan et al. have proven the NP-hardness of the
problem even for restricted, unweighted graph classes such as chordal, split,
bipartite, or degree-constraint graphs.

Fekete and Kremer [8] focused on the case of planar graphs. They showed
that determining the optimal stretch is also NP-hard for unweighted planar
graphs. On the other hand they gave a polynomial time algorithm for any
fixed t that for any given planar unweighted graph G with bounded face-
length, decides whether G has a spanning tree with stretch t.

7

1.4 Overview and Results

The main result, which is presented in Chapter 4, is an algorithm that works
on grid subgraphs or unit disk graphs and approximates a Minimum Stretch
Spanning Tree with stretch in O(OPT 4).5 This is a theoretic bound that is
only reached by very specific graphs. Chapter 2 is devoted to several lower
bounds in connection with the stretch of graphs. Some of the algorithms pre-
sented later build up on these lower bounds, especially the OPT 4-algorithm
in Chapter 4. In Chapter 3 we discuss a polynomial time algorithm that com-
putes Minimum Stretch Spanning Trees for regular (n×m)-grids. It is also
discussed there, how this algorithm applies to grid subgraphs. In Chapter 5
we present an abortive evolutionary approach to solve the problem of finding
a Minimum Stretch Spanning Tree. Abortive, because it did not work as we
expected in the beginning. An uncomplex and interesting greedy algorithm
is presented in Chapter 6. Unfortunately we cannot give an upper bound for
the stretch this algorithm produces. The only thing we can show is that there
are examples, where the stretch produced by the algorithm is in Ω(OPT 2).
No worse examples have been found.

5While the optimum Minimum Stretch Spanning Tree has stretch OPT .

8

Chapter 2

Considerations of Lower
Bounds

Dealing with approximation algorithms, we are interested in having good
lower bounds for the Minimum Stretch Spanning Tree problem. It is often
the case that lower bounds lead directly to good approximation algorithms
or that they help analyzing them. With this hope in mind we are going to
look at some lower bounds for the stretch of graphs. Some of them will be
used later in order to prove results on approximation algorithms, others just
help us to get a clearer understanding of Minimum Stretch Spanning Trees.
A lower bound for the stretch of planar graphs is presented in [15]. We will
not discuss this lower bound here.

2.1 A Lower Bound for General Graphs

We first discuss a lower bound that holds for all graphs, weighted or un-
weighted. In every graph, the length of the longest1 non-abbreviatable cycle2

(minus 1, for there are no cycles in the spanning tree) is a lower bound for the
graph’s stretch. By non-abbreviatable we mean that there exists no abbrevi-
ation for any set of edges in the cycle. The longest non-abbreviatable cycle
is exactly the same as the longest shortest path between the two endpoints

1We defined a measure for distances in unweighted graphs in the introduction. For
weighted graphs, the measure is obvious.

2A cycle is a path [v0, v1, . . . , vn], where v0 = vn, i.e. the path is starting and ending
at the same vertex.

9

of an edge. Therefore it has the same length as the maximum stretch of any
edge in the graph3.

Lemma 2.1.1 Given a graph G = (V, E), the following holds.

Stretch(G) ≥ max
e∈E

{StretchG(e)}

Proof: Let emax be the edge with maximum stretch in G. If StretchG(emax) =
0, G is a tree and contains no cycles. Therefore, Stretch(G) = 0 too. If
Stretch(emax) > 0, emax is part of at least one cycle in G. According to
our definition of an edge’s stretch, the shortest cycle on which emax lies has
length StretchG(emax) + 1. In the minimum stretch spanning tree of G, this
cycle doesn’t exist anymore, i.e., at least one edge is missing. Therefore there
must be an edge that was on this cycle before and produces a stretch which
is at least StretchG(emax). �

2.2 Lower Bounds for Grid subgraphs

Our next graph family for which we look at lower bounds is the family of grid
subgraphs. Both lower bounds mentioned in this section need an important
property of grid subgraphs stated in the following lemma.

Lemma 2.2.1 Inside a cycle of k edges, there can be no more than k
2
(k

4
+1) =

O(k2) edges. And if there is a set of h edges, the shortest cycle that encloses
those h edges cannot be shorter than −2 + 2

√
1 + 2h = Ω(

√
h). This means

that the number of edges and vertices4 in an area A is at most proportional
to the size of the area.

|V (A)| ∈ O(A)

Proof: The cycle which contains the maximum number of vertices and edges
has a quadratic shape. The lemma follows directly. Another way to show
the proportionality is the following. For every face which is added to a grid
subgraph, one can add at most 4 edges and 4 vertices to the graph. And,
vice versa, one cannot add more than 4 vertices or edges without adding a
new face too. The proportionality follows. �

3See the definition of an edge’s stretch in definition 1.1.1.
4Note that |E(A)| ∈ O(A) follows from planarity because |E| ≤ 3n− 6.

10

Note that this lemma does not hold for planar graphs where one can add
arbitrary many vertices and edges for every face and vice versa. Provided
with this property, we can now discuss a non-trivial lower bound for grid
subgraphs. The idea behind this lower bound is that of a path of faces
that connects a face fi with the ∞-face. The action of every algorithm that
computes a Minimum Stretch Spanning Tree can be interpreted as finding
a way to merge the faces of the graph until there is only one face, the ∞-
face left. A Minimum Stretch Spanning Tree can be understood as a graph
for which all of its faces have been opened to the ∞-face. We now want to
formalize this idea and use it to prove a lower bound.

Let G = (V, E) be a grid-subgraph and let fi denote the faces in a planar
embedding of G. The set of edges which are adjacent to the face fi is called
E(fi).

Definition 2.2.1 Path(fa,fb) is an ordered list of faces [f0,f1,f2, . . . ,fn]
which have the following properties:

• f0 = fa and fn = fb.

• all the fi are different (for 0 ≤ i ≤ n).

• E(fi−1) ∩ E(fi) 6= {} for 1 ≤ i ≤ n.

For the computation of the lower bound, we are interested in the perimeter
of such a path of faces which can be computed as:

p([f0, f1, ..., fn]) =
n∑

i=0

|E(fi)| − 2
n∑

i=1

|E(fi−1) ∩ E(fi)|

For each Face fi we compute the path of faces which has the smallest perime-
ter and connects it with the ∞-face (f∞). For setting up the lower bound
we are interested in the path having the longest, shortest perimeter. This
longest, shortest perimeter is called k.

k = max {min {p (Path (fi, f∞))}}

Lemma 2.2.2 Given a grid subgraph G, Stretch(G) ∈ Ω(
√

k).

Proof: Given an algorithm Γ that computes a minimum stretch spanning
tree5 T , we assume that Stretch(G) /∈ Ω(

√
k). In G, there exists a face fmax

5i.e. Stretch(G) = StretchG(T).

11

having a maximum perimeter with length k as defined above. This face fmax

is connected to f∞ through a set M of faces. We now add all the edges to T
which were removed by Γ and which are adjacent to f∞. The result is called
T ?.

E(T ?) = E(T) ∪ {ei : ei ∈ E(f∞)}

If our assumption that Stretch(G) /∈ Ω(
√

k) holds, then there exists no cycle
in T ? with length ∈ Ω(

√
k), because this would produce a Stretch(G) ∈

Ω(
√

k). Let E(M) denote the set of edges which are adjacent to at least one
face of M . M must contain a path of faces connecting fmax with f∞. The
perimeter of this path cannot be longer then min{p(Path(fmax, f∞))} = k.
Therefore, |E(M)| ≥ k ∈ Ω(k). All edges of M are enclosed by a cycle in
T ?. Because there can only be Ω(

√
k) edges on a cycle around k edges6, it

follows, that there must exist a cycle with length ∈ Ω(
√

k) which is contrary
to our assumption. �

Provided with this lower bound for grid subgraphs, it is easy to see that
the square root of the longest face length7 in a grid subgraph is a lower
bound for the stretch. This is true because if fl denotes the face with maxi-
mum face length, the face length is equal to p(fl), which is of course part of
Path(fl, f∞).

2.3 A Lower Bound for Regular Grids

Let us again use a stronger restriction of the problem’s input graphs, which
leads us to complete grids (n ×m)-grids. These graphs have a very regular
structure. All faces have the same size and shape. This regular structure
relieves the task of proving a lower bound. The following lemma states a
lower bound8 for regular grids.

Lemma 2.3.1 Given a (n×m)-grid G, the following holds for n ≥ 3, m ≥ 3.

Stretch(G) ≥ 2

⌈
1

2
min{n, m}

⌉
+ 1

6See Lemma 2.2.1.
7See Section 2.4 for an explanation, why it isn’t the face length but it’s square root

which is the lower bound.
8Which is the optimal solution for regular grids at the same time. See Chapter 3.

12

Proof: Due to the regular structure of a grid graph G the following holds.

Stretch(G) = max
facefi

{p(Path(fi, f∞))}

Let us call the faces, which produce this maximum stretch, max faces. There

Figure 2.1: A (6× 4)-grid with marked max faces.

is no set of faces that connects such a max face with the ∞-face and has a
shorter perimeter than the direct path. The perimeter of such a path can be
computed as the lemma states. �

2.4 Alleged Lower Bounds

At the end of this section we want to address some alleged lower bounds.
These seem to be lower bounds at first glance, but do not withstand deeper
investigations. The first of these alleged lower bounds is

Stretch(G) 6≥ max
f∈F (G)

{p(f)} − 1,

where p(.) is the perimeter of a face as defined above. As the counterexample
in Figure 2.2 shows, this is not a correct lower bound. The perimeter of the
”E”-shaped face is 22, therefore the stretch would have to be 21. But the
minimum stretch spanning tree which is drawn in Figure 2.2 has stretch 15,
which is the stretch of this graph.

Another alleged lower bound is

Stretch(G) 6≥ k = max {min {p (Path (fi, f∞))}}

See Figure 2.3, where p(Path(fmax, f∞)) = 35, but the minimum stretch
spanning tree, drawn in Figure 2.3, has stretch 27. Obviously, there is a
set of faces, containing fmax and f∞, which has a smaller perimeter than
Path(fmax, f∞).

13

Figure 2.2: A counter example for the max-facelength lower bound.

Figure 2.3: A counter example for the max-min-path lower bound.

14

Chapter 3

MSST on Regular Vertex Grids

Regular vertex grids are an interesting form of planar graphs. A number
of graph problems can be simplified by restricting the input graphs to ver-
tex grids. This is also true for the problem of finding a Minimum Stretch
Spanning Tree. We have already defined the regular (n ×m)-vertex grid in
definition 1.2.1 and in Section 2.3 we proved a lower bound for MSST on
regular grids. In this section we are going to show that this lower bound
is equal to the minimum stretch for every regular grid and that there is a
polynomial time algorithm that computes an optimal stretch spanning tree.
But, first of all, we need to prove a general property of regular grids which
we will use later.

Lemma 3.0.1 Given a planar embedding of a regular (n × m)-grid G =
(E, V), where F is the set of faces and N = |V |. Then,

|E| ≤ 2N − 2
√

N ∈ O(N) and |F | ≤ 2 + N ∈ O(N).

Proof: The regular (n × m)-grid with the maximum number of edges for a
given number of vertices is a square. And a square of N vertices cannot
contain more than 2N − 2

√
N edges. Note that this bound is tight. The

upper bound for the number of faces follows from Euler’s Formula which
says: |V | − |E| + |F | = 2. The number of vertices is N and therefore |E| ≤
2N − 2

√
N . If we insert this in Euler’s Formula we get |F | ≤ 2 + N −

√
N

and it follows that |F | = O(N). �

15

3.1 A Polynomial Time Algorithm

Let us now present a polynomial time algorithm which reaches the lower
bound for every regular grid and therefore computes the optimal MSST of
any regular grid. The algorithm is called machete algorithm, because it goes
from the grid’s border step by step to the inner faces of the grid, just like
chopping down a piece of rain forest.

Algorithm 1: Machete algorithm

input : A regular grid G = (V, E)

output : A minimum stretch spanning tree of G

repeat
Mark all edges in G that are adjacent to the ∞-face;
foreach face fi adjacent to the ∞-face do

delete one marked edge of fi from G;

end
until There are no faces other than the ∞-face;
return G;

Theorem 3.1.1 Given a (n × m)-grid G, where n ≥ 3, m ≥ 3, the above
algorithm computes a minimum stretch spanning tree T of G with

StretchG(T) = Stretch(G) = 2

⌈
1

2
min{n, m}

⌉
+ 1.

Proof: The algorithm works from the border to the inner part of the graph.
Let us introduce the idea of face layers in a grid graph. A layer consists of
all faces that have the same face distance to the ∞-face, see figure 3.1. In
every execution of the repeat-until loop, one of these face layers is opened,
i.e. merged with the ∞-face. Therefore the algorithm needs 1

2
min{n, m}

outer loops. It follows, that the stretch is 2d1
2
min{n, m}e + 1 and because

this is equal to the lower bound of Lemma 2.3, we know that this is the
optimal solution. �

16

Figure 3.1: The face layers of a regular (n×m)-grid.

3.2 Time and Space Complexity of the Algo-

rithm

Both, the time and the space complexity of the machete algorithm depend
on the data structure we use to store the input graph. A good data structure
to deal with planar graphs is the doubly connected edge list1.

Theorem 3.2.1 Given a planar embedding of a regular (n × m)-grid G =
(V, E) and F , its set of faces, the time complexity of the machete algorithm
is in

O((|E|+ |F |) min{n, m}) = O(|V |min{n,m})

and its space complexity is in

O(|V |+ |E|+ |F |) = O(|V |)

Proof: Marking the edges which are adjacent to the ∞-face takes O(|E|)
time. One execution of the for-each loop takes O(|F |) time, because one
has to go through all the faces. The number of layers in a regular grid is
1
2
min{n, m}, which is equal to the number of executions of the repeat-until

loop. From Lemma 3.0.1 we know that O(|E| + |F |) = O(|V |). The time
complexity follows.

The space complexity is determined by the doubly connected edge list,
where a constant amount of data is used for every vertex and edge. For
general planar graphs, the amount of storage for a face is linear in the com-
plexity of the subdivisions of this face. Because there are no subdivisions in

1See [13] for explanations about the doubly connected edge list.

17

Figure 3.2: A grid subgraph where the machete algorithm is not optimal.

the faces of regular grids, the amount of storage for faces is constant too.
O(|V |+ |E|+ |F |) = O(|V |) follows from Lemma 3.0.1. �

3.3 This Algorithm on Grid Subgraphs

Let us take a look on how the machete algorithm works on grid subgraphs.
Unfortunately it is possible to construct examples, where it is far from being
optimal. See figure 3.2 for a such a graph. What is the problem with this
graph? The optimal stretch would be k + 4 = O(k), but the machete algo-
rithm returns a spanning tree with stretch 1

3
(k− 6)(k− 2) + 7 = O(k2). The

reason for this can be explained using again the concept of layers. During
the first main loop of the machete algorithm, all faces of the first layer are
merged with the ∞-face. These are all the small faces on the border of the
graph and the first face with perimeter k. In the second execution of the
main loop all the other faces with perimeter k are merged with the ∞-face,
because these are layer 2 faces. In short: the problem is, that all the large
faces lie in layer 2 and therefore produce the large stretch.

18

Chapter 4

OPT 4 Approximation for Grid
Subgraphs

In this chapter we will present an algorithm based on the lower bound in
Section 2.2. From this lower bound we know, that the optimal solution is in
Ω(
√

k), where k was defined as

k = max {min {p (Path (fi, f∞))}} . (4.1)

To make a long story short, our algorithm will compute the minimal path
for each face which leads to a tree on the faces, rooted in the ∞-face. Then
the algorithm will merge all the faces according to this tree which leads to
a stretch of at most k2. Therefore, if the optimal solution has stretch OPT ,
the stretch tree computed by our algorithm has at most stretch OPT 4.

4.1 Weighted Dual Graphs

This was the overall idea. Let us now go into the details of the algorithm.
We will first introduce the notion of a weighted dual graph of an unweighted
grid subgraph. See Figure 4.1 for an example.

Definition 4.1.1 (Dual graph) A weighted dual graph of an unweighted
grid subgraph G = (V, E) is a graph G?, that contains a vertex for every face
of G:

V (G?) = F (G)

19

Figure 4.1: An unweighted grid subgraph and the corresponding weighted
dual graph.

and G? contains an edge between two vertices if and only if the two vertices
are adjacent faces in G:

E(G?) = {{fi, fj} : fi, fj ∈ V (G?) and E(fi) ∩ E(fj) 6= {}}.

The weight of an edge in G? is the number of common edges of the corre-
sponding faces in G which is defined by the function w : E(G?) 7→ N:

w({fi, fj}) = |E(fi) ∩ E(fj)|

Note that the ∞-face is also represented by a vertex in G?. In the algorithm
we will refer to the face length of a vertex v ∈ V (G?) by v.facelength, which
can be computed by adding the weights of the vertex’ adjacent edges. In the
dual graph, we can compute the perimeter p(S), where S is a set of faces in
G, without difficulty according to the following formula, i.e., we have to sum
up all the face lengths of faces in S and then subtract two times the weights
of all their common edges.

p(S) =

 ∑
v∈V (G?)

v.facelength

− 2

 ∑
e∈E(S)

w(e)

 (4.2)

20

Figure 4.2: A grid subgraph and the spanning tree which the k2 algorithm
returns. The paths of faces are marked in the result.

4.2 The Algorithm

The algorithm is based on Dijkstra’s method1 of finding shortest paths in a
graph. In order to use Dijkstra’s algorithm for our problem, we just have to
adapt the function that computes the distances. For our purpose we need
a distance function which keeps track of the chosen faces’ perimeter. We
start at the ∞-face and compute the paths with minimum perimeter to the
inner faces. This can be achieved by using the slightly changed algorithm
of Dijkstra on the weighted dual graph. Finding the minimum perimeter
Path(fi, f∞) is the same as computing a shortest path tree, rooted in the
∞-face, on the dual graph of our input graph, where it is not the distance
but the perimeter of the path that has to be minimized. Given a path of
faces from f∞ to f and the perimeter of this path. And given a face fnew

that shall be added to the path. In the dual graph, the faces are vertices and
fnew is connected to a face of the path by an edge enew. We can compute the
perimeter of the path we had so far plus the new face as follows.

p(Path(f∞, f) + fnew) = p(Path(f∞, f)) + 2w(enew) + fnew.facelength

Thus we know how to keep track of the perimeter. We will save the so far
computed perimeter of Path(f, f∞) in f.perimeter. In addition we note the
predecessor of every face f in the paths of faces in f.predecessor and f.chosen
is used to decide if a face has already been chosen by the algorithm.

1See [7] or [14] for explanations about Dijkstra’s algorithm.

21

Every face, i.e. vertex of the dual graph is a member of one of three
classes. It is either chosen, reached or unreached. For every face f that is
chosen, there is already known a path of faces from f to f∞ with minimal
perimeter. Further, there is known a path to every chosen face and there
is no such known path for every unreached face. All the reached faces are
stored in the border B.

See Figure 4.2 for an illustration of the algorithm. An input grid subgraph
is drawn on the left side. The resulting approximated spanning tree is drawn
on the right side. There are also drawn the paths of faces with minimum
perimeter, which result from the adapted Dijkstra algorithm.

4.3 Proof of Correctness and the OPT 4 Bound

Let us now proof that the spanning tree computed by the above algorithm
in deed has a stretch of at most OPT 4. In a first step we will show that the
algorithm computes the paths of faces with minimum perimeter correctly.
Then we will show that the resulting stretch cannot be greater than k2. This
leads us to the following theorem.

Theorem 4.3.1 Given a grid subgraph G = (V, E) with Stretch(G) = OPT .
For the spanning tree Talg, returned by the k2 algorithm, the following holds.
Then follows the initialization of the vertices.

StretchG(Talg) ∈ O(OPT 4)

Proof: We will prove this theorem by proving the following two lemmas.
Given a grid subgraph G = (V, E) as input,

Lemma 4.3.1 The steps 1 to 5 of the k2 algorithm compute for each face
fi ∈ F (G) a path of faces Path(fi, f∞) with minimum perimeter, and

Lemma 4.3.2 Step 6 of the algorithm, where edges are removed, leads to a
stretch of at most k2, where k is defined as in equation 4.1.

From these lemmas follows the theorem, because according to Lemma 2.2
the optimal solution OPT ∈ Ω(

√
k), and therefore O(k2) = O(OPT 4). �

Proof (Lemma 4.3.1): The first step of the algorithm just computes G’s
dual graph G?. To use Dijkstra’s principle for finding a shortest path, two
conditions must be satisfied, as explained in [14]. Our notion of paths of
faces do satisfy these conditions, because

22

Algorithm 2: k2 algorithm

input : A grid subgraph G = (V, E)

output : A spanning tree T of G with StretchG(T) ≤ k2

1 Compute G’s the dual graph G?;

2 /* Initialization */
foreach f ∈ V (G?) do

f.perimeter := ∞;
f.predecessor := undefined;
f.chosen := false;

end

3 /* f∞ is the start vertex */
f∞.perimeter = 0;
f∞.predecessor := f∞;
f∞.chosen := true;

4 ExtendBorder(f∞);

5 /* Compute shortest paths starting from f∞ */
while B 6= {} do

choose v ∈ B, where v.perimeter is minimal and remove v from
B;
v.chosen := true;
ExtendBorder(v);

end

6 /* Delete the edges induced by the shortest path tree */
foreach f ∈ V (G?) do

Delete an edge e ∈ {E(f) ∩ E(f.predecessor)} in G;

end

return G;

23

Procedure ExtendBorder(v)

foreach {v, v′} ∈ E(G?) do
if v.perimeter− 2w({v, v′}) + v′.facelength < v′.perimeter then

v′.predecessor := v;
v′.perimeter := v.perimeter − 2w({v, v′}) + v′.facelength;
add v′ to R

end
end

1. for every path of faces with minimum perimeter Pmin(fa, fb) and every
edge {fa, fc} it is true that

p (Pmin(fa, fb)) + p (fc)− 2 |E (Pmin(fa, fb)) ∩ E (fc)| ≥ p (Pmin(fa, fc))

2. for at least one path of faces with minimum perimeter Pmin(fa, fb) and
every edge {fa, fc} it is true that

p (Pmin(fa, fb)) + p (fc)− 2 |E (Pmin(fa, fb)) ∩ E (fc)| = p (Pmin(fa, fc)) .

Basically this means that the perimeter of a path of faces can not become
shorter when adding a face to the path. This would not be true in the case
of arbitrary sets of faces, but for our case where we only use paths of faces as
defined in definition 2.2.1 the above conditions hold. Therefore the algorithm
computes the path with minimum perimeter for every face of the graph. �

Proof (Lemma 4.3.2): The problem that might arise while deleting edges in
step 6 of the algorithm is, that several paths of faces could have some faces in
common and that their perimeter gets enlarged therefore. We have to show
now, that the perimeter will not become larger than k2, where k is defined
as in equation 4.1.

The perimeter of the longest shortest path of faces has length k, by def-
inition. Let us call the face that implies this path fmax. This means that
there are k edges on that perimeter, where another path could be appended,
to use then the same path of faces as fmax. The additional parts of these ap-
pended paths cannot be longer than k, for Path(fmax, f∞) with perimeter k
is the path with the maximum perimeter. This means that all this appended
paths cannot be farther away than k

2
vertices, so they all lie in a circle with

24

k
2

Figure 4.3: The longest shortest path of faces, together with appended paths.

radius k
2
. See Figure 4.4. This circle has a perimeter of πk. It follows from

Lemma 2.2.1 that there can only be O(k2) edges inside this circle. Therefore
the perimeter of all the paths is in O(k2). �

4.4 Time and Space Complexity of the Algo-

rithm

For graphs with |E| ≤ |V |2 and with a heap for managing the vertices in the
border, Dijkstra’s algorithm needs time O(n log n), where n = |V |.2 Using
a doubly connected edge list3, the dual graph of a grid subgraph can be
computed in linear time O(n). Removing the edges in step 7 of the algorithm
needs linear time again. The space needed for the computation is determined
by the way we save the graph. As we have already seen in Section 3.2, the
doubly connected face list needs space in O(n). This leads us to the following
theorem.

2See [14].
3See [13].

25

Figure 4.4: An example where the k2 upper bound of the algorithm is tight.

Theorem 4.4.1 Given a planar embedding grid subgraph G = (V, E), where
n = |V |, the time complexity of the k2 algorithm is in O(n log n) and its space
complexity is in O(n).

4.5 Some Remarks about the OPT 4 Bound

How good is this OPT 4 bound? For the k2 algorithm, the bound is tight,
i.e., there are examples of grid subgraphs where the spanning tree returned
by the algorithm has a stretch in Θ(OPT 4). Such an example is shown in the
Figures 4.4 and 4.5. Let us first look at Figure 4.4. This is an example, where
the paths of faces have many faces in common. The arrows show the paths
with minimum perimeter. Removing the edges to construct the spanning
tree leads to a stretch in Θ(k2) in this example. Therefore Figure 4.4 shows
that the upper bound of the algorithm is tight, whereas Figure 4.5 presents
a graph where the optimal stretch’s lower bound, presented in Section 2.2, is
tight. This is true because the minimum stretch would be reached removing
the edges inside the grid subgraph, while the k2 algorithm will delete edges
on the border. k is the stretch that results from computing the paths of faces
with minimum perimeter. The minimum stretch would have been in Θ(

√
k).

We can now combine these two examples by filling all faces of Figure
4.4 as demonstrated in Figure 4.5. What we get is an example where the
minimum stretch is in Θ(

√
k) and the stretch computed by the algorithm is

26

Figure 4.5: Here, the
√

k lower bound of the minimum stretch is tight.

in Θ(k2). This shows that the OPT 4 bound is tight.
The OPT 4 bound can also be expressed in terms of n, the number of

vertices. We can show, that the spanning tree resulting from the k4 algorithm
is an n

3
4 -approximation of the Minimum Stretch Spanning Tree. To see this

we have to investigate two cases. First, if StretchG(TOPT) ≤ 4
√

n it follows
that the approximation factor

StretchG(TAlg)

StretchG(TOPT)
≤ StretchG(TOPT)3 ≤ n

3
4 .

Since the stretch of spanning tree computed by the algorithm cannot be
larger than n, we know that for the other case where StretchG(TOPT) > 4

√
n

follows that
StretchG(TAlg)

StretchG(TOPT)
≤ n

n
1
4

= n
3
4 .

27

Chapter 5

An Abortive Evolutionary
Algorithm

Beside the OPT 4 algorithm we want to discuss some other possible ap-
proaches to compute a Minimum Stretch Spanning Tree. The first one is
an evolutionary algorithm which starts with a random solution and tries to
improve it. We will see that our problem cannot be solved with this kind of
algorithm. Another idea are two very simple greedy algorithms, which will
be discussed in the next chapter.

5.1 The Algorithm

In this evolutionary approach, the algorithm is given an arbitrary spanning
tree together with the input graph. Then the algorithm keeps changing edges
which are in the tree with edges that are not in the tree, as long as these
changes lead to an improvement of the tree’s stretch. More formally: We
define a function that assigns a characteristic value to every possible spanning
tree. Then we change an edge of the given spanning tree with an edge of
the input graph if thereby the tree’s resulting value improves1. We will first
present the skeleton of the algorithm and then discuss several functions to
evaluate a spanning tree.

Both, the evaluation function f and the initial spanning tree are inputs
of the evolutionary algorithm. Of course, the algorithm could compute a
random spanning tree by itself and we could also describe the algorithm

1Note that in our case an improvement is a decrease of the spanning tree’s stretch.

28

Algorithm 4: Evolutionary Algorithm

input : A grid subgraph G = (V, E)
T = (V, Ê), an arbitrary (e.g. random) spanning tree of G
A function compare : (G, T1, T2) → {−1, 0, 1}

output : A spanning tree of G

changedEdge := true;
while changedEdge do

foreach Edge {u, v} in E \ Ê do
Tbefore := T ;
add {u, v} to T ;
changedEdge := false;
pathLength := length of the path from u to v in T ;
i := 1;
while not changedEdge and i < pathLength do

ei = edge i on the path from u to v in T ;
delete ei from T ;
if compare(G, T, Tbefore) = −1 then

changedEdge := true;

end
else

add ei to T ;

end
i := i + 1;

end
if changedEdge = false then

delete {u, v} from T;

end
end

end
return T ;

29

that way. The outer while loop ensures that the algorithm proceeds until
there is no edge change that improves the value of the spanning tree. The
foreach loop handles all the edges not part of the actual spanning tree T .
For each of these edges, it is tested, if a change with another edge leads to
an improvement of the tree’s value. Note that we only need to look at edges
which lie on the path in T that leads from one of the handled edge’s endpoits
to the other. This is the case because two edges can only be changed if they
are on a cycle. Otherwise the change leads to an unconnected spanning tree.
Because there is only one path between any two vertices in a tree, there is
also only one cycle containing the actual handled edge, in T . And this cycle is
the path between the endpoints of the edge. The first thing that happens in
the foreach loop is that the current tree is stored in the variable Tbefore. Then
the current edge is added to the tree. In the inner while loop, it is tested for
all the edges on the path of the edge if a change leads to an improvement of
the tree, and if so, the edges are changed and the inner loop is quitted2. If
no edge was changed within the inner while loop, the added edge has to be
removed.

5.2 Two Evaluation Functions for this Algo-

rithm

Let us now discuss two evaluation functions for this algorithm. We will
present the functions and show why they are not appropriate to solve the
problem of finding a Minimum Stretch Spanning Tree of a grid subgraph.
The first evaluation function is quite simple:

compare1(G, T1, T2) =

−1, if StretchG(T1) < StretchG(T2)

0, if StretchG(T1) = StretchG(T2)

1, if StretchG(T1) > StretchG(T2)

The problem with this evaluation function is that it cannot handle spanning
trees in which two edges produce the same maximum stretch. The spanning
tree in Figure 5.1 has stretch 13, which is reached by two of the edges.
Although a change of edges would be possible, it does not take place because

2Another variant of the algorithm would be to look for the change of edges which
improves the spanning tree at most. But this variant wouldn’t solve the problem that
arises in the examples presented later either.

30

Figure 5.1: The evaluation function compare1 leads to a bad stretch here.

it does not improve the stretch of the spanning tree. An improvement would
only occur after two changes. Therefore, nothing is changed and the returned
spanning tree has a very large stretch. One could easily create an example
with an arbitrary bad stretch. A tree with more than two edges reaching the
maximum stretch leads to an example where more changes must take place
at once. Regarding these problems we introduce another evaluation function
that works with lexicographic comparisons on descending lists of stretches:

compare2(G, T1, T2) =

−1, if StretchListG(T1) <l StretchListG(T2)

0, if StretchListG(T1) =l StretchListG(T2)

1, if StretchListG(T1) >l StretchListG(T2)

where

StretchListG(T) = [StretchT (e0), StretchT (e1), ..., StretchT (en)]

with ei ∈ E \ Ê and StretchT (ei) > StretchT (ei+1) for every i < n. The op-
erators with the subscript l denote lexicographic comparisons3. This second
evaluation function will handle the problems discussed so far. But there are
other cases where this function fails too. Let us describe such an example
where compare2 cannot improve a spanning tree although it would have been
possible. We can achieve this with a spanning tree where two or more edges
have to be changed in order to improve its stretch. Therefore we need a
spanning tree where changing only one pair of edges leads to a tree with the
same stretch list, but changing two pairs of edges improves the tree. This
is the case in the example in Figure 5.2. The stretch of the spanning tree
drawn in the figure is k2 but the minimum stretch would be k. There is no
pair of edges changed because every change of only one edge in E \ Ê leads
to a spanning tree with the same stretch list. Knowing this example, it is

3By lexicographic we mean that the stretch of all edges in E \ Ê is considered. To make
an edge change take place it would be enough to improve the stretch of one of these edges,
even if this would not change StretchG(T).

31

Figure 5.2: The evaluation function compare2 leads to a bad stretch here.

Figure 5.3: The evaluation function compare2 leads to a stretch in O(n) here.

easy to construct examples where three or more pairs of edges have to be
changed until the stretch list improves.

After all we will present an example with stretch in O(n), where n is the
number of vertices in the grid subgraph. The example is shown in Figure
5.3. A spanning tree as it is drawn in this figure cannot be improved by
changing a pair of vertices. The example can easily be enlarged. The stretch
of the drawn spanning tree T can be computed as follows. The number of
the rectangles consisting of two k-cycles is

n− 3

3k−2
2

.

32

Each of these rectangles adds k−2
2

to the stretch. At the beginning of the
sequence 1 is added to the stretch and at the end 2 is added to the stretch.
It follows that

StretchG(T) =
n− 3

3k−2
2

k − 2

2
+ 3 = 2

n− 3

3
+ 3 ∈ O(n).

Recapitulating what we have seen in this chapter we can conclude that evolu-
tionary algorithms that change pairs of edges are not convenient to solve the
problem of finding a Minimum Stretch Spanning Tree. This is the case be-
cause there are spanning trees where we have to change an arbitrary number
of edge pairs in order to improve the tree.

Let us look to the problem from a different perspective to make this clear.
We can think of this problem as minimizing a function. The function takes
a spanning tree and assigns a stretch to it for a given grid subgraph. To find
the minimum stretch spanning tree we have to minimize this function. This
is exactly what our algorithm does. It tries to find a local minimum of this
function by going always in a direction that leads to a lower stretch. The
problem that arises is, that we can construct grid subgraphs where there are
spanning trees whose stretch lie in an arbitrary large plateau. This means
that all the neighbors in an arbitrary distance of these spanning trees have
the same stretch. This makes it impossible for our algorithm to minimize
the function.

33

Chapter 6

Remarks about two Greedy
Algorithms

Another idea we want to discuss is that of greedy algorithms. As it is often
the case with algorithms of this nature, the greedy algorithms we are going
to describe are very straightforward and uncomplex. The basic idea behind
the algorithms is: as long as there are cycles, remove the edge, that enlarges
the stretch of the resulting tree as little as possible.

6.1 A Greedy Algorithm

See Algorithm 5 for a description of a first version of a greedy algorithm.
Of course, this algorithm might remove suboptimal edges, but this is due

to its greedy nature. The question is, how bad this can go. For the algorithm

Figure 6.1: O(n) stretch example for the first greedy algorithm.

34

Algorithm 5: Greedy Algorithm

input : A grid subgraph G = (V, E)

output : A spanning tree of G

Make T a copy of G;
while |E(T)| > |V (T)| − 1 do

Stretchmin := ∞;
foreach e ∈ E(T) do

E(T) := E(T) \ {e};
if StretchT (G) < Stretchmin then

emin = e;
Stretchmin = StretchT (G);

end
E(T) := E(T) ∪ {e};

end
E(T) := E(T) \ {emin};

end
return T ;

35

described above, we can show an example where the minimum stretch is 3 and
the stretch obtained by the algorithm is in O(n). This example is presented in
Figure 6.1. First the algorithm will remove some edges that produce stretch
3. Assume it removes the edges marked in Figure 6.1 (2). After the algorithm
has removed these edges it must remove further edges. Every remaining edge
will produce stretch 5. Assume the algorithm removes the edges marked in
Figure 6.1 (3), then the edges in Figure 6.1 (4) and so on. It is obvious that
we can enlarge this example to make the algorithm produce every stretch we
want, where the minimum stretch remains 3.

We could reduce this problem by using some randomness in the algorithm
if there are several edges that produce the same stretch. This would prevent
us from getting such a regular1 result.

6.2 Time Complexity of the Greedy Algo-

rithm

Let us prove the following theorem about the time complexity of the greedy
algorithm.

Theorem 6.2.1 Given a grid subgraph G = (V, E). The greedy algorithm
presented above has time complexity in O(n3 log n).

Proof: According to Lemma 3.0.1, a grid subgraph with n vertices can have
at most 2n−

√
n vertices. Therefore the number of passes of the outer while

loop can be (2n −
√

n) − n + 1 = n −
√

n + 1 ∈ O(n). There can be O(n)
edges that are processed in the foreach loop, and for every of these edges the
stretch has to be computed, i.e. a shortest path has to be found, which can
be done in time O(n log n). The time complexity follows. �

6.3 Improved Version of the Greedy Algo-

rithm

There is another way to improve the algorithm besides the adding of ran-
domness. We get an algorithm which can handle the problem mentioned

1Which is bad in this case, because it produces the large stretch.

36

above with a little change. Let us get a deeper understanding of what the
greedy algorithm does, in order to see the little change in it, that leads to
the improvement.

A way to analyze the greedy algorithm presented above is to investigate
its behavior on the dual graph of its input. We can construct a dual graph
as proposed in a previous chapter. Each face of the original graph becomes
a vertex in the dual graph and to vertices of the dual graph are connected
if and only if the corresponding faces have common edges. Therefore each
edge of the dual graph stands for a number of edges in the original graph.
We can then weight each of the dual graph’s edges with the stretch that
the removing of one of the corresponding edges in the original graph would
produce. What the greedy algorithm does is nothing other than computing
a minimum spanning tree on this weighted dual graph. The only problem
is that the weights of the edges change throughout the execution of the
algorithm because the more edges are removed by the algorithm, the larger
becomes the stretch that is produced from removing further edges. But if
we ignore this changing of the weights, the greedy algorithm computes a
minimum spanning tree on the dual graph. It does so by always choosing
the edge with the smallest weight that produces no cycle, as it is described
in [14].

But this algorithm that traces back on [11], is not the only way to obtain
a minimum spanning tree that is mentioned in [14]. Another possibility is
the algorithm of Dijkstra, Prim and Jarnik [7, 19, 10]. This algorithm starts
from one vertex and builds a so called border that contains all the edges that
can be reached from this start vertex. Then the border’s edge with minimum
weight is added to the spanning tree and the border is extended by the edges
adjacent to the other vertex of the chosen edge. These steps are repeated
until a spanning tree is obtained. See [14] for more detailed explanations.

How can we implement this other way of obtaining a minimum stretch
spanning tree? We just have to transform this idea back from the dual graph
to the original grid subgraph. There this means that we have to start from
one face and remove greedily the edge adjacent to this face, which produces
a tree with minimum stretch. When we choose the ∞-face as start face, this
leads us to the following algorithm.

Note that in this approach the ∞-face is merged with other faces until
there is nothing else than the ∞-face. Therefore it is enough to add all the
edges adjacent to the ∞-face, after the edge that produces the minimum
stretch has been removed.

37

Algorithm 6: Improved greedy algorithm

input : A grid subgraph G = (V, E)

output : A spanning tree of G

Make T a copy of G;
Border := Border ∪ {e ∈ E) : e is adjacent to f∞};
while |E(T)| > |V (T)| − 1 do

Stretchmin := ∞;
foreach e ∈ Border do

E(T) := E(T) \ {e};
if StretchT (G) < Stretchmin then

emin = e;
Stretchmin = StretchT (G);

end
E(T) := E(T) ∪ {e};

end
E(T) := E(T) \ {emin};
Border := Border ∪ {e ∈ T (E) : e is adjacent to f∞};

end
return T ;

38

Figure 6.2: Quadratic example for the greedy algorithm.

Unfortunately we cannot present a result about the approximation factor
of this algorithm. The only thing we can show is that the resulting tree can
have stretch OPT 2. This is true because of the example presented in Figure
6.2.

In this example, the algorithm will remove the edges of the small rect-
angles first. The problem is, that it removes the edges on the outer border
first. This leads to a large stretch. The minimum stretch would have been
the perimeter of the large rectangle. But with these holes in it, the perimeter
of the large face becomes quadratic in the minimum stretch. This is the case
because the stretch consists of all the edges inside the rectangle. According
to Lemma 2.2.1, the number of edges inside a cycle with length k is in O(k2).

Note that this algorithm becomes arbitrary bad on planar graphs where
the Lemma 2.2.1 does not hold. On such a graph we can draw as many holes
as we want in a cycle and therefore we can construct an example with any
stretch we want.

6.4 Time Complexity of the Improved Greedy

Algorithm

In this section we will investigate if the change in the greedy algorithm affects
its time complexity. We can argue as before that the outer while loop can
be processed O(n) times. Because it is possible that there are O(n) edges
in the border, the foreach loop has to handle O(n) edges. Computing the
stretch needs O(n log n) as before. Therefore we see that the time complexity
remains the same.

39

Chapter 7

MSST on Unit Disk Graphs

In this last chapter we want to consider which of the described algorithms can
be used not only on regular grids and grid subgraphs, but also on unit disk
graphs. These graphs consists of vertices in the plane. Two of the vertices are
connected by an edge if and only if the distance between them is at most 1.
The idea is not to look for new algorithms, but to think of how the algorithms
described so far can be applied to this new graph family. Thereby it does not
pay to rethink the evolutionary algorithm or the first version of the greedy
algorithm, because they won’t produce a better Minimum Stretch Spanning
Tree approximation on unit disk graphs. But let us now investigate, if we
can use the OPT 4-algorithm on unit disk graphs.

7.1 The OPT 4 Algorithm on Unit Disk Graphs

The OPT 4 algorithm described in chapter 4 is based on two properties of its
input graph.

1. The input graph has to be planar, and

2. The number of vertices in an area A of the input graph is in O(A).

Without the first property we could not speak about faces and paths of faces.
The second property is the one, stated in Lemma 2.2.1, which is also crucial
for the algorithm. Unit disk graphs do not fulfill either of these properties.
But it is possible to transform them in a way that they satisfy these two
constraints while the stretch is enlarged by a constant factor only. Such a

40

transformation is described in [1]. Let us give a quick overview of how this
works. For details, consult [1].

The first step of the transformation is to compute a dominating set of the
unit disk graph. This can be achieved by computing a maximal1 independent
set, which is always a dominating set. This is true for all graphs2. If we focus
only on the computed dominators, we have already met the second constraint
mentioned above. This is true because of the inherent structure of unit disk
graphs. All vertices that are in a circle with radius 1/2 are connected with
each other. And therefore there can only be one dominator in such a circle,
i.e. the number of dominators in an area A is in O(A). But these dominators
are not very useful yet because they are just an unconnected set of vertices.
The next step is therefore to connect these dominators. If the original unit
disk graph was connected, it is possible to connect the dominators with 2 or
3 hops each, i.e. each dominator is connected to its neighbour dominators
which can be reached from it in two or three hops3. On the resulting graph
we compute a Delaunay Triangulation4 or a Gabriel Graph on the resulting
graph, in order to meet also the first constraint and make the graph planar.
All the vertices that were neither in the dominating set nor part of the
connections between the dominators, can be connected to their dominators
with one hop.

This construction leads to a spanner of the original unit disk graph. This
spanner has constant stretch and satisfies both properties that we need to
use the OPT 4-algorithm on it. Therefore we can approximate a Minimum
Stretch Spanning Tree on unit disk graphs with this algorithm as we can do
it on grid subgraphs.

1Note, that there is a difference between a ”maximal” and a ”maximum” independent
set. The ”maximal” independent set, we use here, is one where no more vertices can be
added, but the number of vertices does not have to be a maximum or optimum.

2We can add no more vertices to a maximal independent set, i.e. every vertex that is not
in it, is dominated by a vertex in the independent set. Therefore, a maximal independent
set is a dominating set. See [1] for more details.

3This works because if there would be two dominators that could only be connected
with 4 hops, i.e. 3 vertices in between them, it follows that there is a vertex that is not
dominated and is no dominator at the same time, which is a contradiction to step 1 where
we built a dominating set. See [1] for details.

4For our purposes the Delaunay Triangulation is prefered to the Gabriel Graph, because
its stretch factor is smaller.

41

Chapter 8

Conclusions

We discussed various algorithms to compute a Minimum Stretch Spanning
Tree in regular grids, grid subgraphs and unit disk graphs, where the main
focus was on grid subgraphs. Although it seems that there exists an ap-
proximation algorithm that computes a spanning tree with stretch OPT 2 or√
|V | for grid subgraphs, we could not prove this. Intuitively, the improved

version of the greedy algorithm and the machete algorithm appear to be
good candidates for OPT 2-algorithms. This intuition is fortified by the fact
that we have not been able to find a counter example yet. As opposed to
these rather vague assumptions, we have also discussed and proved results
about other algorithms. The main result of this diploma thesis is discussed in
Chapter 4 where we present an OPT 4 algorithm together with an analysis of
the upper bound of the stretch it produces. Now, the next step is to simulate
this algorithm and to investigate how large the stretch becomes in real world
examples. We assume that the stretch will be near to OPT 4 only in special
examples, but it might be near OPT 2 in most of the relevant practical cases.
The simulation will help to answer this question. After all, we proved some
”negative” results and showed that the spanning trees resulting from an edge
changing evolutionary algorithm can have a stretch in O(n). It is interesting
to see that there are examples where this approach does not work. The same
is true for the simple greedy algorithm.

42

8.1 Open Problems

During the simulation of the evolutionary and the simple greedy algorithm
it became clear that randomly chosen spanning trees have a surprising good
stretch most of the time. It is worth investigating them and try to find out
how probable it is to randomly choose a spanning tree with a large stretch.

Another thing that remains open is an analysis of the improved greedy
algorithm and the machete algorithm. Either one can find an example which
proves that the stretch of the resulting worst case spanning trees is in Ω(n),
or it is possible to prove that the stretch is in O(OPT 2). A different approach
is to try to improve the OPT 4 algorithm so that the upper bound becomes
smaller.

Because the problem of finding a Minimum Stretch Spanning Tree seems
to be hard even in the simplified environment of grid subgraphs, it surely
would pay to analyze if the problem hardly ever can be approximated better
than a certain factor.

43

Bibliography

[1] K. Alzoubi, P.-J. Wan and O. Frieder, Message-Optimal Connected
Dominating Sets in Mobile Ad Hoc Networks, Proc. of the 3 rd ACM Int.
Symposium on Mobile ad hoc networking & computing (MOBIHOC),
2002.

[2] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, North-
Holland, New York, 1976.

[3] L. Cai, Tree spanners: spanning trees that approximate distances, Ph.D.
thesis, University of Toronto, Toronto, Canada, 1992. Available as Tech-
nical Report 260/92, Department of Computer Science, University of
Toronto.

[4] L. Cai, NP-completeness of minimum spanner problems, Discrete Ap-
plied Mathematics, 48, pp. 187-194, 1994.

[5] L. Cai and D.G. Corniel, Tree Spanners, SIAM Journal on Discrete
Mathematics, 8: 359-387, 1995.

[6] M. Demmer and M. Herlihy, The Arrow Directory Protocol, Proceedings
of 12th International Symposium on Distributed Computing, 1998.

[7] E. W. Dijkstra, A note on two problems in connection with graphs, Nu-
merische Mathematik, 1:269-271, 1959.

[8] S. P. Fekete and J. Kremer, Tree Spanners in Planar Graphs, 24th Inter-
national Workshop on Graph-Theoretic Concepts in Computer Science,
1998.

[9] M. Herlihy, S. Tirthapura, and R. Wattenhofer, Competitive Concurrent
Distributed Queuing, Proceedings of the Twentieth ACM Symposium on

44

Principles of Distributed Computing (PODC), Newport, Rhode Island,
August 2001.

[10] V. Jarnik, O jistem problemu minimalnim, Moravske Prirodovedecke
Spolecnosti 6, 57-63, 1930 (In Czech.).

[11] J. B. Kruskal, On the shortest spanning subtree of a graph and the trav-
eling salesman problem, In Proc. AMS 7, S. 48-50, 1956.

[12] A. L. Liestman and T. Shermer, Grid Spanners, Networks, 23, pp. 123
- 133, 1993.

[13] D. E. Muller and F. P. Preparata, Finding the intersection of two convex
polyhedra, Theoretical Computer Science, 7:217-236, 1978.

[14] T. Ottmann and P. Widmayer, Algortihmen und Datenstrukturen, 3rd
Edition, Spektrum Akademischer Verlag, 1996.

[15] D. Peleg and D. Tendler, Low Stretch Spanning Trees for Planar Graphs,
September 2001.

[16] D. Peleg and E. Reshef, A variant of the arrow distributed directory
protocol with low average case complexity, in Proc. 25th Int. Colloq. on
Automata, Language and Programming, LNCS, Vol. 1443, pages 670-
681, Springer, Berlin, 1998.

[17] D. Peleg and J. D. Ullman, An optimal synchronizer for the hypercube,
in Proc. 6th ACM Symposium on Principles of Distributed Computing,
Vancouver, 1987, pages 77-85.

[18] D. Peleg and A. A. Schäffer, Graph spanners, Journal of Graph Theory,
13:99-116, 1989.

[19] R. C. Prim, Shortest connection networks and some generalizations, Bell
System Techn. J., 36:1389-1401, 1957.

[20] G. Venkatesan, U. Rotics, M. S. Madanlal, J. A. Makowsky and C. P.
Rangan, Restrictions of minimum spanner problems, Information and
Computation, 136(2):143-164, 1997.

45

