
 Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Ganymed Stanek

Bluetella: A Java Application for New
Mobile Phones

Student Thesis SA-2003.19
Summer Term 2003

Tutor: Matthias Bossardt

Supervisor:
Prof. Dr. Bernhard Plattner

4.7.2003

 Institut für Technische Informatik und Kommunikationsnetze
Computer Engineering and Networks Laboratory

2

Contents

Abstract i

1 Introduction 1

2 Java Capabilities of Mobile Phones (J2ME CLDC MIDP) 3
2.1 Java Editions for Mobile or Embedded Devices 3
2.2 Version Numbers . 5
2.3 Visual User Interface . 5
2.4 Keys . 7
2.5 Data Storage . 7
2.6 Sound . 8
2.7 Special Features . 8
2.8 New Features of MIDP 2 . 8
2.9 Connectivity in Java . 9

2.9.1 IrDA . 9
2.9.2 Bluetooth . 9

3 Bluetella: Filesharing for Mobile Phones 13
3.1 Selecting an Application . 13
3.2 Bluetella Filesharing Scenario 15
3.3 Why Bluetella is not Gnutella 16

4 Bluetella Protocols 19
4.1 The Necessity for Two Protocols 19
4.2 Field Format . 21
4.3 Bluetella Source Routing Protocol 21
4.4 Bluetella File Sharing Protocol 23

5 Bluetella Implementation 25
5.1 User Interface . 25
5.2 Threads . 27
5.3 Handling the Protocol Headers 29
5.4 Distance Abstraction Layer 30
5.5 Data Storage Revisited . 30

3

4 CONTENTS

6 Development Environment 31
6.1 Sun ONE Studio . 31
6.2 Mobile Phone Emulators . 31
6.3 Rococo Impronto Simulator 31

7 Conclusion and Future Work 35

A How to Compile and Execute Bluetella on Your PC 37
A.1 Software Installation . 37
A.2 Compiling and Running Bluetella 38

B Assignment of the Semester Thesis 41
B.1 Introduction . 41
B.2 Assignment . 41

B.2.1 Objectives . 41
B.2.2 Tasks . 41

B.3 Deliverables and Organisation 42

C Timeline 43

List of Tables

2.1 Elements that can be placed into a Form Screen 6
2.2 Derived classes from Screen which represent a complete Screen 7

4.1 Combination of BSR and BFS protocol message types used
together . 19

4.2 Bluetella Source Routing (BSR): common fields 22
4.3 Bluetella Source Routing (BSR): ’broadcast’ specific fields . . 22
4.4 Bluetella Source Routing (BSR): ’unicast’ specific fields . . . 23
4.5 Bluetella File Sharing (BFS): common fields 23
4.6 Bluetella File Sharing (BFS): ’searchRequest’ specific fields . 24
4.7 Bluetella File Sharing (BFS): ’searchResponse’ specific fields . 24
4.8 Bluetella File Sharing (BFS): ’packetRequest’ specific fields . 24
4.9 Bluetella File Sharing (BFS): ’packetDelivery’ specific fields . 24

5

6 LIST OF TABLES

List of Figures

2.1 Overview of the various Java versions [J2M] 4
2.2 Siemens SL45i, the first mobile phone with J2ME CLDC . . . 5
2.3 Simplified Bluetooth protocol stack 10

3.1 General filesharing scenario 15

4.1 Two in one sequence diagram: BSR and BFS protocols 20

5.1 Screen shown when beginning to use the Bluetooth functionality 26
5.2 Additional screens . 27
5.3 Downloading a file . 28

6.1 Sun ONE Studio . 32
6.2 Rococo Impronto Simulator with Siemens SL55 Emulators . . 33

7

8 LIST OF FIGURES

Abstract

New mobile phones provide a Java Virtual Machine for development of de-
vice independent software. Subject of this thesis is to demonstrate the possi-
bilities and limitations of this JVM by implementing an application running
on today’s or near futures phones. A file share client similar to Gnutella,
but using Bluetooth instead of the Internet protocol, was chosen and was
therefore given the name Bluetella. The fileshare network involving several
clients is as well a good demonstration of the newly specified Java API for
Bluetooth Wireless Technology (JABWT), which is significantly increasing
the possibilities of the Java Micro Edition. As no phones with this API
were available at the time of writing, a third-party simulator had to be
used, which turned out to bring several problems along. Beside that, the
lack of an ad-hoc routing API on the MIDP platform required the imple-
mentation of a routing protocol. Because the focus of this thesis wasn’t on
advanced ad-hoc routing algorithms or their implementation, an own, more
simple routing algorithm was defined based on source routing, but kept gen-
eral. The actual file sharing protocol was then defined on top of that source
routing protocol with strict layer separation in order to reuse both protocols
independently, or for a later upgrade to an advanced ad-hoc routing proto-
col, which would reduce file transfer interruptions due to network topology
changes.

i

ii ABSTRACT

Chapter 1

Introduction

A growing percentage of the mobile phones available today support the
execution of Java software. The fact that millions of these phones are al-
ready sold and that Java is a device independent programming language
bears a huge potential for new little software utilities that could change the
way of our everyday life.

One of these applications that is missing on mobile phones today is a
fileshare client similar to Gnutella or KaZaA available on personal comput-
ers. Implementing an ordinary fileshare client for mobile phones accessing
these desktop filesharing networks via Internet would be possible1 although
not always a desirable solution. Data transfer rates for Internet access in
mobile phones are still down near analog modem speeds while prices for the
transferred megabytes are still impractically high at around 15 sFr2. Ad-
ditionally, at some places, the mobile phone carrier network isn’t available
at all, or its reception quality is varying very strongly as in public trans-
portation systems, especially trains. For these reasons, direct Bluetooth
communication between mobile phones is an attractive alternative to an In-
ternet connection. The combination of a fileshare client similar to Gnutella,
but using an own Bluetooth network, is represented in the name Bluetella
which was chosen for the application implemented in this thesis.

After getting an overview of the different editions of Java for mobile or
embedded devices in section 2.1, the rest of chapter 2 concentrates on the
most promising one and looks at its possibilities and limitations. Based on
these capabilities, several possible applications are looked at in section 3.1 of
which the fileshare client mentioned above was chosen. Chapters 4 to 5 deal
with the protocols developed for this application and its implementation.

1Above version 2 of MIDP due to the required socket connections.
2Swisscom GPRS prices as of 25th July 2003 are 1.90sFr/100kB below 1 Megabyte a

month and 1 sFr above one Megabyte

1

2 CHAPTER 1. INTRODUCTION

Chapter 6 presents the development environment in a general way.

Chapter 2

Java Capabilities of Mobile
Phones (J2ME CLDC
MIDP)

2.1 Java Editions for Mobile or Embedded De-
vices

Java entered the market of mobile or embedded devices with a one for all
solution called PersonalJava, which contained almost the functionality of the
JDK 1.1 but needed impractically powerful devices. In 1999 when all Java
editions were renamed and regrouped, a new strategy was chosen for mobile
or embedded devices [Relb]. The very different hardware capabilities and
usage scenarios found in these devices ranging from watches to TV set top
boxes or car navigation systems required a more versatile approach than the
one for all solution of PersonalJava. Under the name Java Micro Edition
(J2ME) two different so called Configurations were defined, the Connection
Device Configuration (CDC) and the Connection Limited Device Configu-
ration (CLDC) (see figure 2.1).

While the relatively powerful CDC was targeted to replace PersonalJava,
CLDC approached a new market of even smaller devices like low to mid-end
mobile phones. In summer 2001 Siemens was the first manufacturer to in-
clude J2ME CLDC into their mobile phone SL45i [KB] (see figure 2.1).

Today, CLDC is implemented in millions of phones worldwide while in
the high end range the CDC was not yet able to substitute for PersonalJava.
In fact, high end mobile phones such as the SonyEricsson P800 offer PersonalJava
and J2ME CLDC, but no CDC despite the fact that SUN announced the
death of PersonalJava back in 1999.

3

4CHAPTER 2. JAVA CAPABILITIES OF MOBILE PHONES (J2ME CLDC MIDP)

Figure 2.1: Overview of the various Java versions [J2M]

As J2ME isn’t used just in mobile phones, it wouldn’t make much sense
to include phone book access functions from a mobile phone into devices
without phonebooks. Therefore, an additional layer called profile was built
on top of the configuration which includes all functionality that a group of
devices has in common. Mobile phones for instance use the Mobile Infor-
mation Device Profile MIDP.

Because there probably are still significant differences among this group
of devices, again another, but optional layer called packages has been added
on top of the profile layer. One of these optional packages for instance is
Bluetooth, another is Web Services. For further information about the or-
ganization of the different Java editions refer to [J2M].

The vast majority of today’s mobile phones uses the combination J2ME
CLDC MIDP. Therefore, and because SUN has positioned it as the future
programming API for mobiles, this thesis will concentrate on this set of Java
APIs.

2.2. VERSION NUMBERS 5

Figure 2.2: Siemens SL45i, the first mobile phone with J2ME CLDC

2.2 Version Numbers

The configurations, profiles and optional packages all have their own version
numbers. The whole thesis except the outlook in section 2.8 is referring
to version 1.0.4 of CLDC and version 1.0.3 of MIDP due to the following
reasons:

• MIDP 2 is specified by sun, but not yet implemented by the mobile
phone vendors.

• its features are not of specific use for the application implemented (see
section 2.8).

• MIDP 2 is backward compatible to MIDP 1.x.

• the later mentioned and needed Rococo Impronto Simulator doesn’t
work yet with MIDP 2 due to a bug in the Impronto Simulator.

2.3 Visual User Interface

MIDP applications are built to run on many different devices without modifi-
cation. This is particularly difficult in the area of the user interface because
devices have screens of all sizes, in grayscale and in color. Furthermore,
devices vary widely in their input capabilities, from numeric keypads to al-
phabetic keyboards, soft keys, and even touch screens. The minimum screen
size mandated by MIDP is 96×54 pixels. As far as color depth is concerned,
there is no restriction (thus including 1-bit monochrome). Devices are ex-
pected to have at least a keyboard or a touch screen.

6CHAPTER 2. JAVA CAPABILITIES OF MOBILE PHONES (J2ME CLDC MIDP)

From the programmers point of view, there are two ways of writing to
the display:

Using the Canvas class: For being able to have full control over the dis-
play, the application has to discover the device characteristics first,
such as the screen size of the mobile phone. This kind of user inter-
face enables programming games and a lot of other visually appealing
programs, but should just be used when really necessary. The code is
getting bigger due to the discovery of the device characteristics and
compatibility among devices is limited most often as additional as-
sumptions about the device are made. The Canvas class isn’t used
in the implemented application, therefore this thesis is referring to
[Esc03] and [Knu03] for a more detailed coverage of the the canvas
api.

Using the various classes derived from the Screen class: Instead of
specifying the exact position, size or font of a user interface element
such as a textfield or button, the class Form, which is derived from
class Screen, just allows to specify the order of the elements to be
displayed on the screen. This way every implementation of the Java
Virtual Machine can place the elements the best way, according to its
knowledge of the display size, readability of fonts, colors matching the
design of the device, etc. Table 2.1 is giving an overview of the various
elements that can be placed into a form.

ChoiceGroup A list with several rows, each beginning with
a box that can be checked.
Two types exist: EXCLUSIVE and MULTIPLE,
specifying how many boxes can be checked

DateField For user input of date and time. A calendar is
displayed where the user can choose the date.

Gauge Similar to a progress bar known from Windows.
Additionally, it can be used as input by placing
the bar to a certain position resulting in a linear
extrapolation between some min and max values.

ImageItem A container for an image to be displayed
StringItem For outputting text to the display.
TextField A field where the user can enter text.

Input constraints can be defined.

Table 2.1: Elements that can be placed into a Form Screen

The other classes derived from Screen go even a step further in ab-

2.4. KEYS 7

straction than the form class. Considering the small size of the display,
the user interface has to be partitioned into so many screens, that lots
of the forms would just contain one element as for instance a text box.
Therefore special screens have been defined, which already include
one type of user interface element. Table 2.2 lists these predefined
subclasses of Screen.

TextBox Similar to the TextField. Can be used to
enter passwords in ***** mode.

List The same as the choice group, but adding the
type IMPLICIT, which is the same as EXCLUSIVE
except that the user can’t change his mind after
selecting because an event is triggered
immediately without displaying a checkbox.

Alert Displays an alert message and depending on the
alert type, waits for a certain period or until
a key is pressed for getting back to the screen
displayed before.

Table 2.2: Derived classes from Screen which represent a complete Screen

2.4 Keys

The keys available and their location on the mobile phone differs a lot from
manufacturer to manufacturer. Following the way the visual user interface
was divided into a standardized and less standardized approach, there are
also two ways to use the keys. Actually, their use is associated with the
visual user interface. When the displayed object is of type canvas, events
can be specified for each key (therefore being laid out for a specific device).

When the displayed object is of type screen, keys can’t be assigned events
and are just used for navigating around the fields in the screen or for entering
data. Which key exactly is used for a certain function is specified by the
manufacturer of the mobile phone during the implementation of the Java
Virtual Machine.

2.5 Data Storage

The Java Microedition doesn’t offer access to the real mobile phone file-
system, instead it creates something like the application’s own filesystem
called RecordStore. A RecordStore consists of a collection of records which

8CHAPTER 2. JAVA CAPABILITIES OF MOBILE PHONES (J2ME CLDC MIDP)

remain persistent across multiple invocations of the MIDlet. A Record,
which is the analogon of a file, contains a byte array. We can regard the
RecordStore as a class instance, that survives the garbage collector and keeps
its content (Records) during reboots or battery changes. RecordStores are
created in platform-dependent locations, which are not exposed to the MI-
Dlets. It is possible for a MIDlet to have more than one RecordStore. But
most important, a RecordStore belongs to one MIDlet, so it is NOT acces-
sible from other MIDlets. Thus we can use it to store settings for instance,
but not for data interchange with other programs.

For being able to access the real mobile phone filesystem despite this limi-
tation, some mobile phone manufacturers provide their own, unstandardized
API as for instance Siemens, who offers the class com.siemens.mp.io.File for
file access of their filesystem called MMC. [sie]. The older Siemens mobile
phones available today (SL45, C-series) just allow access to the files in the
same folder as the MIDlet itself. The new models (SL55 and S-Series) show
an alert screen (see figure 5.1) when the currently running MIDlet tries to
access a file and asks the user if the access to the specified directory is al-
lowed, thus enabling access to all directories.

2.6 Sound

MIDP 1.x does NOT offer the ability to play sounds or any other media files
as videos. MIDP 2, however, will use a subset of the future optional package
JSR-135 Mobile Media API to play sound files.
Again, some mobile phone manufacturers have recognized the need for a
media API already some time ago and provided their own such as Siemens
(class com.siemens.mp.media).

2.7 Special Features

Most mobile phones include a vibrating motor, some offer different col-
ors for display background lighting. Features like these could be well used
in programs for getting the user’s attention, but unfortunately are neither
part of the J2ME CLDC MIDP api. Siemens provided again APIs to ac-
cess these functions via the classes com.siemens.mp.game.Vibrator and
com.siemens.mp.game.Light.

2.8 New Features of MIDP 2

Despite MIDP 2 isn’t used in the application implemented, the following
simplified list of new features in MIDP 2 [mid] was added for giving you

2.9. CONNECTIVITY IN JAVA 9

a feeling in which direction the J2ME CLDC MIDP platform is moving.
All but the 3rd and last two points are directed towards providing needed
features for commercial applications.

• A new security model needed for m-commerce applications.

• A standardized over the air (OTA) provisioning mechanism.

• Gaming enhancements.

• Connectivity standards such as serial ports and sockets.

• Push architecture so that midlets can be activated by a server, i.e. the
carrier.

• A subset of the Multimedia API to play sounds.

• Some minor user interface improvements.

2.9 Connectivity in Java

The only type of connection that MIDP 1.x requires to be implemented by
the Java Virtual Machine are http connections. Assuming Internet access
was made available through some other software on the mobile phone, HTTP
Get, Post and Head requests can be sent to a url such as http://www.stanek
.ch/ganymed/processData.jsp?firstParameter=red.

Other types of connections like datagram or socket connections might
be available on some mobile phones, but are not needed for MIDP 1.x com-
patibility. MIDP 2 offers several other connection mechanisms such as serial
port, https, UDPDatagramConnection, and optionally, socket and secure
socket (ssl) connections [Knu03].

2.9.1 IrDA

IrDA connections are not available in MIDP, but Siemens offers a manufac-
turer specific API com.siemens.mp.io.Connection. An API standardiza-
tion process for IrDA similar to the one for Bluetooth described in the next
section hasn’t taken place till today.

2.9.2 Bluetooth

Much more versatile than IrDA is the use of Bluetooth as wireless trans-
fer technology as it is not limited to line of sight connections. The mobile

10CHAPTER 2. JAVA CAPABILITIES OF MOBILE PHONES (J2ME CLDC MIDP)

phone industry, recognizing the potential of a standardized Bluetooth API,
began working on the Java API for Bluetooth Wireless Technology JABWT
in 2000. Often this API is referred to with the short form JSR-82 which
stands for Joint Specification Request, being the equivalent of a Request For
Comment (RFC) in the Java world.

JABWT is an optional package, meaning it can be included into the
implementation of the Java Virtual Machine by the manufacturer of the
mobile phone depending if a Bluetooth module is available in the device.
Despite the final specification was presented in 2002 and a substantial part
of the mobile phones available would have built in Bluetooth hardware, this
API is not yet available in any mobile phone on the market. The Bluetooth
modules are so far just accessible via C for third party developers or are
used in firmware software from the mobile phone manufacturer like for syn-
chronization of addresses.

Having a standardized Bluetooth API can’t be taken for granted. C for
instance does not yet have such a standardized API, which results in code
being dependent on the Bluetooth hardware module used.

For being able to use JABWT, it is useful to have a look at the simplified
Bluetooth Protocol Stack shown in figure 2.3.

RFCOMM
Service
Discovery
Protocol

Human Interface
Device Control
Protocol

Audio

Logical Link Control and Adaptation Protocol (L2CAP)

Host Controller Interface (HCI)

others

Figure 2.3: Simplified Bluetooth protocol stack

The Host Controller Interface layer is acting like a device driver for the
various Bluetooth hardware modules. Data integrity isn’t assured by this
layer, but by the following L2CAP layer. Besides reliable transmission of
data packets, L2CAP is offering multiplexion for higher protocols. All data is
passing through this layer, except audio links not needing reliable transmis-
sion have direct access to the HCI layer (i.e. wireless mobile phone headsets).

2.9. CONNECTIVITY IN JAVA 11

The RFCOMM protocol sits one layer above L2CAP and is commonly
known as wireless serial port or cable replacement protocol [HA03] because
it simulates the functionality of a standard serial port by offering a stream
without a maximum transfer unit.

There are a lot of other protocols that use the L2CAP layer, but we are
not explaining them further as JABWT gives us just access to the L2CAP
and RFCOMM protocols. This is limiting the usability of the JAVA - Blue-
tooth combination in two areas and forcing the programmer to use C++ or
other languages:

• Signal strength measurement (used for distance calculation)

• Voice applications such as for instance voice recognition from a Blue-
tooth headset.

We conclude that all we are able to do with JABWT is transmit reliable
data, either by wrapping it into L2CAP packets or by sending it over RF-
COMM, the “virtual cable”. But where do we send it to? We do not have
an IP address of the other node and we probably don’t have its Bluetooth
address,1 either.

The way we find the information for connecting to the other devices
is called Discovery. But before we can discover, we first need to specify
Services. A service is our partner software to which we like to connect
to. Each service running on a device has an unambiguous port on which
it is listening for incoming connections similar to sockets in the ip world,
except that the port number is called service url here and is of the form
"btspp://localhost:00112233445566778899AABBCCDDEEFF;
name=bluetella". The first part btspp://localhost specifies an RF-
COMM connection and the 32 digit hexadecimal number is called Universal
Unique Identifier UUID and should be unambiguous for the service. There
is a list of already assigned UUIDs in [UUI]. The attribute name is optional
and just for human readability.

Having some services waiting for connections on these service urls, we
can start searching for these services in two different ways:

• When we need to know about all services available, we need to search
first for all devices (javax.bluetooth.DiscoveryAgent.
startInquiry()) and then search on each device individually for the
service of interest (javax.bluetooth.DiscoveryAgent.
searchService()).

1Bluetooth addresses are written into the Bluetooth chipset during production similar
to a MAC address being written onto the Ethernet card and are 48 bits long.

12CHAPTER 2. JAVA CAPABILITIES OF MOBILE PHONES (J2ME CLDC MIDP)

• When we just need to get a connection to any one one of the services,
we can directly search for services with the method javax.bluetooth.
DiscoveryAgent.selectServices(), which cancels the search after
the first matching service was found.

For each service found we receive a serviceRecord from which we can
extract a connection url used for connecting to the host that offered the
service. The connection url should not be mixed up with the service url
which is the url used for advertising a new service. Having the connection
url, we can decide if we like to open an L2CAP or RFCOMM connection
to the service. In case of RFCOMM both, the client and server (the one
who offered the service) get a Java StreamConnection to each other from
which a InputStream and OutputStream can be opened as usual.2 In case
of L2CAP the client and server get a L2CAPconnection, which is a class
from JABWT and can be used according to the JavaDoc of JABWT [jav].

Readers familiar to Bluetooth might wonder why multipoint/singlepoint
capability of nodes isn’t mentioned or why we didn’t specify which node is
taking the role of the master of a connection and which the slave, so that all
nodes that like to talk to each other are able to.3 All this is hidden behind
the JABWT which groups Piconets into Scatternets the way it is most likely
the most fortunate at each time and therefore cannot be influenced, making
programming more simple but reducing also the amount of optimizations
that can be taken.

2for instance when writing and reading to a file in the first week of learning how to
program Java

3Just a master and slave can talk to each other, no other combination. There can be
maximal 7 slaves connected to a master

Chapter 3

Bluetella: Filesharing for
Mobile Phones

3.1 Selecting an Application

When we want our application to be portable between various mobile phones
from different manufacturers, we need to restrict ourselves to the use of the
pure J2ME CLDC MIDP API without any manufacturer specific APIs or
future optional packages. This limitation is hard to live with, as our only
way of communication would be the rather expensive way of http using the
Internet connection provided by the mobile phone. Therefore, most applica-
tions available that restrict themselves to these APIs are single player games
which do not use any form of communication and do not need to access the
filesystem. For storing highscores, the RecordStore is sufficient.

The optional package for Bluetooth will increase the field of possible
applications drastically enabling extensive mobile phone interaction which
isn’t used today. As the API specification is so recent and the first mobile
phones will not appear on the market before the end of 2003, we decided to
search for an application making use of this Bluetooth API.

When thinking about Bluetooth one often thinks about transferring large
packets of data, ignoring the huge amount of applications that just need to
deliver one or maybe a couple of bits of information where datarate is ab-
solutely unimportant, but the low power consumption of Bluetooth is.

One of these groups of Bluetooth applications are the so called proxim-
ity applications. Analyzing the signal strength, they are able to know how
far away other senders are. This knowledge is used for localizing people
indoors where GPS isn’t working or for localizing lost objects like wallets,
keys or mobile phones. The signal strength could also be used to turn on

13

14CHAPTER 3. BLUETELLA: FILESHARING FOR MOBILE PHONES

or off lamps in a house when walking around, or traffic lights to react on
arriving cars, to name just a few of the uses. Unfortunately, this whole area
of applications is out of reach for J2ME programs, as JABWT just offers
methods for data transfer and no information about the signal strength, so
far.

Another group of these low information uses of Bluetooth are key access
systems. Having stored a secret key on the simcard or the memory of the
mobile phone, one could imagine using it to open garage doors or adjust the
seats and radio station in the car to the momentary driver.

Similar to the use above is the use of Bluetooth for payment. While
mobile phones are used more and more for payment via sms or payment via
a phone call, there will always be regions without network cover. The pay-
ment could then be done with extensive security mechanisms over Bluetooth
and later, when being back in a place with network cover, synchronized with
a bank account. In fact, among several other companies, VISA is working
on payment via Bluetooth [Rela].

Of course the groups of applications described in the last two paragraphs
would be possible to implement with the current JABWT, but they all make
use of just one single connection a time between two partners. Much more
interesting would be to have a peer-to-peer network of dozens of mobile
phones to interact with each other. That’s why we abandoned the ideas
above.

Two technically similar applications would make much more use of Blue-
tooth connectivity: a dating application and a flea market. Both compare
profiles - and in case of matches - inform the user. These applications would
have the advantage over their Internet versions that the users would physi-
cally be not much further away than 10 meters, but of course also have the
disadvantage that matches would be much less frequent.

After all, we decided on a fileshare client (described in the next sec-
tion), as it simply demonstrates network functionality the best among the
mentioned application ideas due to the fact that there are always several
connections open at the same time to several different peers. Additionally,
one of these connections is not just involving two nodes, but also all nodes
in between that are necessary for routing the packets to their destination
node. Finally, nobody published any information about an already existing
implementation on the Internet so far, enlarging the chances that we are the
first to implement a Bluetooth fileshare client.

3.2. BLUETELLA FILESHARING SCENARIO 15

3.2 Bluetella Filesharing Scenario

For better understanding of Bluetella, let’s imagine sitting bored in one end
of a train coach with Bluetella available on our mobile phone. Lets assume
some of the other passengers also have Bluetella running on their mobile
phone and that the range of each mobile phone is about 10 meters.1 A
situation like this is drawn in figure 3.1

If we now would like to check if one of the other users of Bluetella, in-
cluding the ones sitting at the other end of the coach or maybe even train
have some interesting files shared on their mobiles, all phones in between
need to work as relay stations for our search request.

A B1

B2

CWE
1

2

3

Figure 3.1: General filesharing scenario

We could imagine searching for ID3 tags of mp3s specifying a song title
or user preference of the files among many other possibilities known from the
desktop filesharing programs. For keeping the space-limited user interface
simple and concentrating on the implementation of the network functional-
ity, Bluetella is limited to searches for filenames or parts thereof. This way
its still possible to list all files available by searching for an empty string ””
or listing all textfiles by searching for “.txt”.

Having chosen a file for download, the request must somehow reach the
owner of the file so that he can send it back to us divided in packets. We can
imagine a situation where we (marked WE in figure 3.1) are in the middle of
a download and one of the passengers B1, working as relay station between

1This is referring to class 3 Bluetooth devices. Class 2 devices reach 20m and class 1
100m, but they are not built into mobile phones due to high energy consumption. [HA03]

16CHAPTER 3. BLUETELLA: FILESHARING FOR MOBILE PHONES

other relay stations A and C, leaves the train at a stop interrupting the data
transfer. For being able to resume the transfer, we can imagine a person
B2 that was sitting next to B1 also being in range of A and C to take over
the relay function between A and C. Maybe B2 was not yet sitting beside
B1, but entered the train some minutes after B1 left. In both situations, it
would be theoretically possible to resume the data transfer. For being able
to recognize situations like this, we would need an advanced Ad-Hoc routing
algorithm. Implementing one of these algorithms2 has been excluded from
this thesis in favor of a more simple self-defined Ad-Hoc source routing pro-
tocol (see section 4.3).

For not having our searches bother mobiles too far away, we limit the
number of hops that continue spreading our search. In the example in figure
3.1 the search is limited to 5 hops. Still being node WE, we have no chance to
find files from phone 3, but files from 1 and 2 will be found by those search
packets not going over more than 5 hops.

3.3 Why Bluetella is not Gnutella

The Gnutella protocol [gnu] is relying on an underlying IP layer, resulting
in several differences to Bluetella:

Gnutella always needs a first IP address of another Gnutella client, for
getting to know other clients to which it can send its search packets to.
Blutella, being able to use Bluetooth service discovery, doesn’t need a first
address of another Bluetella client, just the service url mentioned in 2.9.2
for starting a service discovery. With the connection urls Bluetella gets back
from the service discovery, it can build connections to all Bluetella clients
within reach. Resulting from this, the next hops of a Bluetella client are
within more or less 10 meters, while in Gnutella the next hops are spread
all over the world.

Search packets in Gnutella are broadcasted without remembering the
way they took. A computer that hosts the file being searched for (lets call
him server) replies directly to the searching client’s ip address. This answer
packet as well doesn’t have any information about the way between the
client and the server, just the IP addresses of the two - leaving routing to
IP. Most likely, the way, which the packets being sent directly between the
client and the server take, is completely different from the way, on which
the search packet reaches the server. Bluetella, not having the possibility
of sending packets to a globally known address, needs to keep track itself of

2For instance the Dynamic Source Routing (DSR) protocol.

3.3. WHY BLUETELLA IS NOT GNUTELLA 17

the way the search packets find the servers.

When Gnutella is deciding to talk to a new host whose IP address it got
from one of the already connected hosts, the connection set up time will be
in the order of milliseconds. Blutella, having to start a new service discovery
for getting to know new hosts, needs in the order of 10 seconds to build up
a new connection.

From time to time, Gnutella is sending out ping messages and reply-
ing to incoming ping messages with pong messages for updating its list of
available Gnutella clients. As the Gnutella neighbors are physically very far
and many ip hops apart from each other, lot of unnecessary traffic would
be generated when a file transfer is started to a client that wasn’t available
anymore. Bluetella, being directly connected to its neighbors, doesn’t need
this functionality as it won’t even be able to send data off to a lost partner
as the latter is not sending any acknowledge messages to the underlying
Bluetooth handshake mechanism. Additionally, Bluetella would not be able
to send the packet on another way to its destination anyway, as it is relying
on the hops collected during broadcast of the search packet.

Furthermore, Gnutella offers some functionality to work behind a proxy,
omitted in Bluetella.

18CHAPTER 3. BLUETELLA: FILESHARING FOR MOBILE PHONES

Chapter 4

Bluetella Protocols

4.1 The Necessity for Two Protocols

For being able to replace our limited ad-hoc source routing mechanism men-
tioned in section 3.2 at a later time, we like to separate delivery of the packets
from the actual file sharing protocol. The protocol defined for delivering our
packets in the Bluetooth network is called Bluetella Source Routing (BSR)
and is described in detail in section 4.3 and the protocol taking care of the
file sharing functionality is the Bluetella File Sharing (BFS) Protocol de-
fined in section 4.4.

Both of these protocols consist of several message types, but the combi-
nation of message types used together is always the same. Table 4.1 shows all
message types that exist and in which combination they are used together.

BSR message BFS message
broadcast searchRequest
unicast searchResponse
unicast packetRequest
unicast packetDelivery

Table 4.1: Combination of BSR and BFS protocol message types used to-
gether

As the combination of messages used in conjunction is always the same,
the sequence diagrams for the two protocols are joined in figure 4.1. Lets
assume again the more or less one dimensional positions of mobile phones in
a train (NOT the same as in figure 3.1) and the reception range to be again
10 meters. The distance between the mobiles is given in meters on top of the
sequence diagram. The two sided arrows between the mobiles show which
ones are in reach of each other (according to the distance). The broken ar-

19

20 CHAPTER 4. BLUETELLA PROTOCOLS

searchRequestsearchRequest searchRequest
searchRequest

searchRequest

search
Respo

nse

fileRequest

fileDelivery

fileDelivery

fileDelivery

u s e r e n t r y

searchRequest

0m 2m 10m 17m 20m

Figure 4.1: Two in one sequence diagram: BSR and BFS protocols

rows represent packets sent via BSR Broadcast, the solid arrows packets sent
via BSR Unicast. The labels represent BFS packet names and the circles
mark hosts, where just the BSR packet is looked at, but not the BFS packet.

When we follow the data flow beginning on the top left corner, we see
that the searchRequest packet passing directly to the mobile phone at the
10m marker is further broadcasted while the one that arrived via the mobile
phone at 2m was discarded. The decision, which one of the two is chosen
to be forwarded is based on time, NOT number of hops. If the way via the
additional hop had been faster, chances are high, it would be faster again in
future, so being the way to choose in that case. Additionally, using time as
criteria, the first packet can already be forwarded before the second packet
has arrived.

The mobile phone at the 17m marker is the only one hosting the file
we are looking for. We recognize this as no other phone is answering the
search with a searchResponse packet, which is sent directly back to the client

4.2. FIELD FORMAT 21

searching for the file. Of course the file has to pass via the mobile phone at
the 10m marker, but the payload of the BSR packet has not to be looked at,
symbolized with the circle. The way the unicast searchResponse packet is
taking back to the client who initiated the search is exactly the same as the
one of the broadcast packet, that reached the server first. If a server hosts
several files that match the search string, then it does not need to send back
several searchResponse packets as it can put all answers into one packet.

In our example, the client receives just one searchResponse packet, but
of course it is likely that a whole bunch of answers from different phones
get back to the him. After the user chooses any one of them, his Bluetella
client sends a fileRequest packet to the server, which then sends the file,
divided into fileDelivery packets, back to the client. Again, the way these
two packets take is the same as the one found with the broadcast packet
and already used for the searchResponse packet.

4.2 Field Format

Before we can define the protocol fields in detail, we need to specify how
each of this field is actually filled with data in case of number and text con-
tent:

Number fields consist of a certain number of bytes specified in the proto-
col specification. Inside a byte, the bits are set according to the big endian
standard, as the bytes are written by Java in our implementation, which al-
ways uses big endian. If a number is bigger than one byte, a long for instance,
then it is written as several bytes in a row, again ordered in big endian style.

Text fields do not have terminating characters, their length is always
given in a number field preceding the text field.

4.3 Bluetella Source Routing Protocol

The Bluetella Source Routing Protocol consists of two different message
types: broadcast and unicast. The beginning fields of both message types
are the same, shown in table 4.2. The client Bluetooth address clientBTaddr
is the address of the host who initially launched the broadcast packet into
the net for building up the connection.

Lets first concentrate on the broadcast packet. At the time it is created
on any one of the nodes, the number of hops field is set to 0 and no hop
fields are following. The packet is sent out on each connection with a value
of 7 in the depth field and a packetID being unambiguos for the packet’s

22 CHAPTER 4. BLUETELLA PROTOCOLS

clientBTaddr. Each hop receiving the packet checks if it is the first time
a packet with this packetID from that clientBTaddr arrived. In case the
packet was seen before, it is discarded. If it’s new, then the numberOfHops
field is incremented and the processing node adds it’s Bluetooth address to
the hoplist.

When one of the nodes wants to respond back to the client, all it needs to
do for getting the unicast message header is to take the packet header, change
the messageType to unicast, add its Bluetooth address to the serverBTaddr
field instead of the hops list and set the LSB bit of the flag byte to 1 for signi-
fying a backward direction (serverBTaddr, lastHop, ..., hopTWO, hopONE,
clientBTaddr) and add the new payload. Later, when the client wants to
send again a packet to the server, it just has to change the direction flag
again to 0, add the new payload and send it off.

field name bytes explanation
protocolVersion 1 1
headerLength 2 just the BSR header (# of bytes)
payloadLength 4 BSR Payload (# of bytes)
messageType 1 0 = broadcast

1 = unicast
clientBTaddr 6 the one who initiated the connection

with a broadcast
numberOfHops 1 client and server addr don’t count as hops
hopONE 6 Bluetooth addr of hop one
hopTWO 6 ...

Table 4.2: Bluetella Source Routing (BSR): common fields

field name bytes explanation
packetID 2 recognition of loops
depth 1 numberOfHops to fload

Table 4.3: Bluetella Source Routing (BSR): ’broadcast’ specific fields

4.4. BLUETELLA FILE SHARING PROTOCOL 23

field name bytes explanation
serverBTaddr 6 the other end of the client
flags 1 LSB: direction

0 = forward
1 = backward
further bits: future use

Table 4.4: Bluetella Source Routing (BSR): ’unicast’ specific fields

4.4 Bluetella File Sharing Protocol

The Bluetella File Sharing Protocol is made of four message types. The
common fields are analog to the common fields of the Source Routing pro-
tocol’s common fields and shown in table 4.5. The only type with a payload
is packetDelivery, which contains the file to be transferred. The other fields
should be self-explaining together with the description in table 4.6 to 4.9.

field name bytes explanation
protocolVersion 1 1
headerLength 2 just the BFS header (# of bytes)
payloadLength 4 BFS Payload (# of bytes)
messageType 1 0 = search

1 = searchResult
2 = packetRequest
3 = packetDelivery

Table 4.5: Bluetella File Sharing (BFS): common fields

The searchRequest packet also contains a flag field of which just the LSB
bit is used. If it is set to 1, it specifies if gateways, who receive the search-
Packet should propagate the search in their networks and deliver the results
back.

The number of parts and their size a file is partitioned into is up to
the implementation to decide, as long as the length can be written into
the BSR header, which is satisfied up to a payload length of about 4 GB
(232 − BFS headerLength bytes).

24 CHAPTER 4. BLUETELLA PROTOCOLS

field name bytes explanation
flags 1 LSB: include Gateway to

the Gnutella network
0 = false; 1 = true;
other bits: future use

searchStringLength 1
searchString searchStringLength maximal 256 characters

Table 4.6: Bluetella File Sharing (BFS): ’searchRequest’ specific fields

field name bytes explanation
numberOfResults 1 maximal 255 hits
fileID 3 more than one file can have the

same fileName
fileSize 4 maximal 4GB
fileNameLength 1
fileName fileNameLength

Table 4.7: Bluetella File Sharing (BFS): ’searchResponse’ specific fields

field name bytes explanation
fileID 3 more than one file can have the same fileName
partOfFileNumber 2 0 for request of all parts of the file

1-65535 for request of just one part

Table 4.8: Bluetella File Sharing (BFS): ’packetRequest’ specific fields

field name bytes explanation
fileID 3 more than one file can have the

same fileName
partOfFileNumber 2 which part of the file is

being delivered now
payload payloadLength the actual part of file transmitted

Table 4.9: Bluetella File Sharing (BFS): ’packetDelivery’ specific fields

Chapter 5

Bluetella Implementation

5.1 User Interface

In this section, we will explain the usage of all Bluetella menus and the type
of visualization screen that was chosen for them. The order in which they
are explained was chosen the way they would appear in a typical user session.

During startup of the Bluetella application, a first access to the Blue-
tooth module is made for initialization purposes. As the Siemens mobile
phones require user confirmation for network access, the alert screen in fig-
ure 5.1 is displayed automatically by the operating system. It is the type of
alert mentioned in 2.2 where a key needs to be pressed for continuing.

After confirming with yes, the main menu is displayed. It is a list screen
containing the four menu entries:

1 - explore neighborhood Builds connections to all Bluetella clients by
making a Bluetooth service discovery. If the network topology changed,
this function can be launched again to get connections to possible new
neighbors.

2 - search&download After having connections to the neighbors, a searchRe-
quest can be sent to them. Several screens will follow when this entry
is chosen.

3 - my shared directory Displays the files from the Bluetella shared di-
rectory (see figure 5.2, right). Just the files in this directory are visible
to other Bluetella clients and all downloaded files will be put into this
directory.

4 - settings So far there is just the include Gnutella Gateway option avail-
able in the settings menu (see figure 5.2, right).

25

26 CHAPTER 5. BLUETELLA IMPLEMENTATION

Figure 5.1: Screen shown when beginning to use the Bluetooth functionality

As the small size of mobile phone displays leads to a large number of
individual screens, Bluetella’s menus contain numbers for ease of navigation.
An example displays them best: Menu 214 would be reached by choosing
the second entry in the main menu, the first in the following and ultimately
the fourth menu entry. If a screen doesn’t offer anything more to choose
than a back and an ok button, then the following screen is also referenced
by 1 as there are no other options.

Figure 5.3 displays, all the screens encountered when searching and
downloading a file in their appearing order. The first picture displays the
main menu, where we first need to choose the first entry to discover all
neighbors and build connections to them. The mobile phones found are
shown in the second picture.1 Then we can choose the second option in the
main menu and specify a part of the filename that we want to find. For
this screen the form class was chosen, so that other fields could be added at
a later time. The screenshots were taken in an example where the shared
files had the names fileXoY where X stood for the last digit of the Blue-
tooth address and Y for the file number. When just searching for file we
therefore get all files available in this Bluetella network. The fourth picture

1In the current implementation, the mobile phones found are written to the debug
output and the names displayed on the mobile phone screen are dummy names.

5.2. THREADS 27

Figure 5.2: Additional screens

displays the files found (list screen). For getting more information like size
and number of hops the file is away, we can select one of the files and get
to the fifth screen (also a form screen). When we are happy with the file,
we are then at the point where we can start the file download, during which
the sender and receiver mobile phone display the alert shown in the sixth
picture (They both display the same alert). First, the server displays the
alert, when Bluetella wants to read the file and second, the client displays
the alert when Bluetella wants to write the arrived packets to the file system.

After the file is downloaded completely, it appears in the my shared
directory menu.2 Future versions could use the screen type Gauge to display
the progress of the download as all the necessary information would be
available in the Bluetella protocol.

5.2 Threads

This and the next section are particularly helpful for somebody, who is con-
tinuing working on the code. We will use the class names found in the code3

and give an overview of how these classes work together.

Bluetella contains a lot of threads for making it possible that the user
interface reacts quickly and that the whole bunch of connections that can
be opened don’t need to wait for another connection that might be blocked
at the moment.

Every connection to a neighbor node is represented as an instance of
the BiDirConnection4 class and contains an outputstream for writing to the
neighbor and it contains as well a thread called InputRdr which hosts the

2The SL55 emulator used had a bug in the method that displays the content of a
directory. Used as in a documentation example, it did just show the contents of the root
directory. A dummy file list is therefore displayed in the implementation.

3The complete source code is available on the CD added to this thesis
4The BiDirConnection class is one of the classes of Bluetella

28 CHAPTER 5. BLUETELLA IMPLEMENTATION

Figure 5.3: Downloading a file

inputstream belonging to this connection. The inputstream was put into a
separate thread, as reading on the stream blocks the reading thread until
data arrives and therefore making it impossible to send from that thread.
We now have two threads for each connection to a neighbor. A BiDirCon-
nection which contains an InputRdr. All these BiDirConnection threads
to the various neighbors are organized by the ConnectionThreadController,
which is a Thread himself. The latter has methods to send a bytearray to
just one Bluetooth address, or to the whole group of its connections.

The question remains, where these connections originally come from.
They all originate from the NeighborhoodDiscoverer thread which starts
the DiscoverySearchMan, who was called like that due to a bug in Rococo
Simulator. Whenever a DeviceDiscovery is started, the results are given
back to a class that implements a Listener interface called DiscoveryLis-
tener. Our DeviceSearchMan is the class who implements this interface and
therefore receives the results of the searches. Due to the bug, the method
in our DeviceSearchMan just gets back the results of one single search (the
found devices), but the second and and following searches don’t deliver any
results. The Rococo Knowledge Base [roc] knew from this bug and stated
further, that every instance of the Listener can receive just the results from
one serach. Therefore, we have to let the DiscoverySearchMan instance,
who is implementing the listener interface, die and recreate him for the next
search. The NeighborhoodDiscoverer is doing this.

5.3. HANDLING THE PROTOCOL HEADERS 29

Having found a device, we need to start the ServiceSearchMan, in order
to get the connection url of a Bluetella application, if there is one on that
device. The ServiceSearchMan has the same problem as the DeviceSearch-
Man, he is implementing the DiscoveryListener interface and just receives
the results for one search. He therefore needs to be reinstantiated for every
search on each device, which is done by the DeviceSearchMan.

The DeviceSearchMan and ServiceSerachMan don’t need to be threads
as they don’t block while waiting for the results thanks to being just listen-
ers for the implemented DiscoveryListener interface.

In the end, when all these ServiceSearchMan instances have found Bluetella
clients, they inform the ConnectionThreadController about the new neigh-
bor who is then being added to the ConnectionThreadController’s list of
BiDirConnections.

5.3 Handling the Protocol Headers

Optimizing code for execution speed or human readability often are con-
tradicting tasks. In Bluetella this question turned up when the protocol
headers had to be read in, analyzed, changed and written out again. This
happens for instance when a BSR packet had not yet reached its destination
and had to be forwarded to the next hop.

The fast way would be to read in the byte array, keep it as byte array
and build several functions working on the array for changing the fields. The
slower, but more general way of doing it is parsing the string and saving all
its information in an object. After all changes have been made to the ob-
jects variables, build the byte array completely new. If just a few changes
are made to the bytearray, the latter is definately wasting cpu power and
memory. If a lot of fields get longer inside the array, enlarging the array gets
very complex without unnecessary copying of the array - and even might be
slower than the object variant.

Bluetella parses the header always when it arrives, because human read-
ability for further programmers was more a concern than speed and the
header is never getting longer than a few kilo bytes anyway.

The Bluetella Source Routing header and Bluetella File Sharing header
are both represented by the separate classes BSR header and BSF header,
respectively. Each class has two constructors, one getting an input stream

30 CHAPTER 5. BLUETELLA IMPLEMENTATION

from which they read and fill their protocol field variables and another one
having the message type as argument from which they fill the field variables
for a new empty protocol header. Both classes also offer a toByteArray()
method which writes all field variables in the correct order and with the nec-
essary helping fields into a new byte array. For instance, the search string
in the object is written out as a length field plus the actual characters of
the string. For programmers convenience a Bluetooth address, that is com-
pressed into a 6 byte subarray in the array is saved as a string in the header
object. Other fields offering a similar way for simplification such as numbers
of type long are stored analog.

Separating both protocols as well in the implementation after they have
been separated in the protocol specification allows for easy exchange of a
singular protocol in Bluetella’s source code at a later time.

5.4 Distance Abstraction Layer

As the Rococo Simulator doesn’t simulate the range of Bluetooth nodes,
service discovery finds all running Bluetella clients, which is rather unreal-
istic. Most likely, some of them would be too far away of each other. For
being able to test our protocol, we can’t live with this simplification as ev-
ery node would have a direct connection to all the others, never having to
route its packets over hops in between. The class DistanceAbstractionLayer
is simulating a distance between the mobile phones. It offers a method that
returns true if a mobile phone couple is within reach of each other by just al-
lowing predefined mobile phones (Bluetooth addresses) to build connections
between them.

5.5 Data Storage Revisited

For accessing the filesystem of the mobile phone, the Siemens specific class
com.siemens.mp.io.File is used. As mentioned in section 2.5, this is the
only way for accessing the filesystem. This use of the Siemens API is the
only ocurrance in the code of a non-standard Java API and is limited to
Bluetella’s FileSystem class.

Chapter 6

Development Environment

This chapter is just giving a brief overview of the third-party software used.
For a detailed instruction on how to install and integrate Sun One Studio,
the mobile phone emulators and Rococo Impronto Simulator please refer to
appendix A.

6.1 Sun ONE Studio

Basically, there exist three major development environments for J2ME devel-
opment: Borland JBuilder, Metroworks CodeWarrior and Sun ONE Studio
(see figure 6.1). As Sun ONE Studio was the only version available for free,
it was practically decided to be chosen for this work. Being the only one to
be sure that doesn’t include third party libraries or code contributed to the
decision.

6.2 Mobile Phone Emulators

Access to the mobile phone’s file system was the main criteria why emulators
of Siemens mobile phones were chosen. For having the new type of file access
mentioned in section 2.5 we needed one of the newer Siemens mobile phones.
The SL55, one of the new color phones, satisfied all needs, except that it
lacks an mp3 player. The SX1 will be the first Siemens mobile phone with
the new file access method based on user alerts and an mp3 player, but
neither the emulator nor the phone were available during the thesis (the
SL45i uses the old file access).

6.3 Rococo Impronto Simulator

The software used for simulating the JSR-82 API and Bluetooth environ-
ment is from Rococo [weba]. This company offers a free Linux version which

31

32 CHAPTER 6. DEVELOPMENT ENVIRONMENT

Figure 6.1: Sun ONE Studio

needs a hardware Bluetooth stack and a 1000$ Windows version which sim-
ulates a Bluetooth stack (see figure 6.2), therefore getting along without any
hardware at all as the mobile phone is emulated as described in section 6.2.
At the time of writing, Rococo Impronto Simulator was the only available
software that simulated the Bluetooth stack. For development of Bluetella,
the evaluation version of the Windows version of Rococo Impronto simulator
was used. Its features are equal to the full version, just its use is limited to
30 days by a license file that can be generated on Rococo’s webpage [weba].

There is a further bug in the simulator besides the ones mentioned in
the knowledge base of Rococo [roc]. While demonstrating Bluetella from
the notebook without network connection, an IOException is thrown inside
one of the Rococo Simulator’s classes, which is not caught. It appears that
the Rococo Simulator just works if the computer it is running on has got an
ip address, which is not the case if the computer gets the address by DHCP
and the network cable is not connected.

6.3. ROCOCO IMPRONTO SIMULATOR 33

Figure 6.2: Rococo Impronto Simulator with Siemens SL55 Emulators

34 CHAPTER 6. DEVELOPMENT ENVIRONMENT

Chapter 7

Conclusion and Future Work

The implementation of Bluetella and the demonstration of a complete and
error free download of a file over several hops showed that it is possible to
build a file share client for mobile phones using the Java Microedition and
the newly available API for Bluetooth Wireless Technology.

Having an implementation of Bluetella that is optimized for speed and
that deals with all possible breakdowns of connections would need further
time for development. In a future work, one should be able to recognize
when neighbors become unavailable and close the transfer gracefully. In the
current implementation of Bluetella, the reading and writing threads to a
neighbor who disappeared block till the other side writes to the buffer or
reads from it, respectively. For terminating these threads instead of having
them suspended till Bluetella is exited could be done by timers that are reset
whenever a byte was sent or received.

Another likely situation that should be dealt with is when one of the in-
termediate hops disappears. The client and server need to recognize this in
order to interrupt the transfer instead of leaving suspended threads behind.

An even better way of dealing with nodes that leave the Bluetella net-
work and new ones that appear would be exchanging the Bluetella Source
Routing protocol layer with a more advanced ad-hoc routing protocol by
either improving BSR or replacing it completely.

Shall the user be blessed with more search results, a gateway to one of the
desktop file sharing clients like Gnutella or KaZaA could be implemented.
Most likely, the gateway would be running on a personal computer who has
both an Internet and Bluetooth connection and could automatically search
in one network, when it sees a search in the other. Actually, the Bluetella
File Sharing protocol already has a field in the searchRequest packet, where

35

36 CHAPTER 7. CONCLUSION AND FUTURE WORK

can be specified whether such gateways should be included in the search or
not.

For making Bluetella compatible to all manufacturers of mobile phones,
future versions should exchange the FileSystem class as soon as a standard-
ized filesystem access gets available in the J2ME APIs.

As mentioned in chapter 2.3, several user interface improvements are rec-
ommended. During download a gauge screen should inform the user about
the current state of the download. Screen 1 is a dummy screen and should
be filled with the found Bluetooth addresses instead of the names displayed.
Screen 3 displaying the shared directory content is as well just displaying
dummy data, but can’t be implemented till the the directory listing bug was
removed from the SL55 emulator.

Appendix A

How to Compile and Execute
Bluetella on Your PC

A.1 Software Installation

All installation files being mentioned in this section can be found on the
CD enclosed to this thesis in the directory 3rdPartySoftware. It is rec-
ommended you begin further development of Bluetella with the program
installation files from the CD instead of downloading the latest versions.
Bluetella isn’t particularly sensitive to different third-party software ver-
sions, but some version combinations of the development environment pro-
grams themselves will not work properly as stated below.

Microsoft Windows 2000 or XP Both versions were used during de-
velopment of Bluetella and worked fine with all third-party software.

J2SE Developer Kit (JDK) 1.3.1 It is crucial to have exactly this version
(not a newer or older one) installed, otherwise Rococo Impronto Simu-
lator will fail already during installation with a message saying ”could
not load jvm.dll”. In case you see this error message despite having
installed JDK 1.3.1, try uninstalling all other JDK’s and Java Run-
time Environments (JRE). Remember that Windows might itself have
a JRE in its system directories. If you see the error message ”Installer
User Interface / Mode not supported” then the installer hasn’t found
the JDK at all. [roc]

Rococo Impronto Simulator As mentioned in 6.3, the evaluation version
of Rococo Impronto Simulator is sufficient for running Bluetella. In-
stall simulator.exe and follow the on-screen instructions. After com-
pletion you need to download a license file from Rococo’s webpage
[weba] which will enable you to use the simultor for 30 days counting
from the day the license was downloaded. Copy the (License.txt)
file into the subdirectory config\ of Rococo Impronto Simulator.

37

38APPENDIX A. HOW TO COMPILE AND EXECUTE BLUETELLA ON YOUR PC

Siemens Mobile Phone Emulator Run siemens_smtkSL55_00_4089.exe
(from [webb] / CD) to install the Siemens Mobility Toolkit for SL55
mobile phones.

SUN Studio One Development Environment Install ffj_me_win32.exe
and follow the on-screen instructions till the installation completes.
To tell SUN Studio where to find the emulator we installed earlier,
run SUN Studio and select the Editing tab. Select Runtime from
the appearing subtabs to show the Runtime tree and open it to the
branches Runtime / Device Emulator Registry / Installed Emulators.
Right click on Installed Emulators and select Add Emulator. Guide
the appearing “file open” window to the directory where the emula-
tor is installed and click add (If you haven’t changed the path names
during installation it will be c:\Siemens\SMTK\SL55).

A.2 Compiling and Running Bluetella

Open the Project Manager in the Project menu bar of SUN Studio. Choose
new project and give it a name at your discretion, then choose CLDC/MIDP
and click Finish.
For using Rococo Impronto Simulator to simulate the JSR-82 API and Blue-
tooth hardware, all we need to do is adding it to the classpath by adding a jar
library to our project: Click File, then Mount Filesystem and choose Archive
(JAR,ZIP). Guide the appearing explorer window to lib\isim_midp.jar
in the Rococo Impronto Simulator directory and click Finish.
Prepare a source code directory on your harddrive at your discretion and
mount it also into your project by clicking: File, then Mount Filesystem
and choose Local Directory. Guide the appearing explorer window to your
source code directory that you created before and click Finish.
The quickest and safest way to get Bluetella running is by creating a hel-
loMidlet and overwriting its source code by the one from Bluetella. It
showed to be the only possibility to get the Siemens emulator to accept
all Bluetella classes without classpath problems. Create a new midlet by
clicking File then New. Choose the branches MIDP / HelloMidlet and con-
tinue with Next. Select your source code directory, change <default name>
to Bluetella and click Finish. You should see now the source code of a
hello world application. Feel free to try it out by compiling it with the key
F11 and running it with F6. If the Siemens SL55 mobile phone appeared
on your screen and you see the words test string in it, then everything
worked properly and you can exchange the helloWorld source code with the
one from the CD found in the Bluetella directory. Compile it again with
F11. Before running it, we need to start the management console of Rococo
Impronto Simulator by executing bin\manager.bat in the Rococo Impronto
Simulator directory and wait till the window Bluetooth Simulation Console

A.2. COMPILING AND RUNNING BLUETELLA 39

appears. Now go back to SUN Studio and run Bluetella by pressing F6.

40APPENDIX A. HOW TO COMPILE AND EXECUTE BLUETELLA ON YOUR PC

Appendix B

Assignment of the Semester
Thesis

B.1 Introduction

Mobile phones of the latest generation feature a Java virtual machine (J2ME).
In this project, we will analyze the capabilities of those phones. Based on
this analysis, an application is defined and then implemented. In particular,
we encourage the student to come up with ideas for interesting applications
and discuss them with the supervisors.

B.2 Assignment

B.2.1 Objectives

New mobile phones feature different communication protocols, such as GPRS,
IrDA, Bluetooth, and others, which can be programmed using the Java Vir-
tual Machine (JVM) provided by those phones. Since processing and storage
resources on mobile phones are scarce, the functionality of the JVM is lim-
ited.

In this project, the JVM functionality of mobile phones is evaluated.
Based on the evaluation, an application is defined and implemented. The
application should exploit as many phone features as possible.

B.2.2 Tasks

• Get familiar with the JVM and related APIs provided by the latest
models of mobile phones.

• Compile a list of ideas for applications. Discuss them with your su-
pervisors and select an appropriate application for detailed definition
and implementation.

41

42 APPENDIX B. ASSIGNMENT OF THE SEMESTER THESIS

• Evaluate development environments for mobile phones and choose an
appropriate one.

• Define the selected application in detail.

• Implement the selected application.

• Define and set up a demonstration scenario of the application.

• Document your work in a detailed and comprehensive way. We suggest
you to continually update your documentation. New concepts and
investigated variants must be described. Decisions for a particular
variant must be justified.

B.3 Deliverables and Organisation

• If possible, students and advisor meet on a weekly basis to discuss
progress of work and next steps. If problems/questions arise that can
not be solved independently, the students may contact the advisor
anytime.

• At the end of the third week, a detailed time schedule of the semester
thesis must be given and discussed with the advisor.

• At half time of the semester thesis, a short discussion of 15 minutes
with the professor and the advisor will take place. The student has
to talk about the major aspects of the ongoing work. At this point,
the student should already have a preliminary version of the table
of contents of the final report. This preliminary version should be
brought along to the short discussion.

• At the end of the semester thesis, a presentation of 15 minutes must be
given during the TIK or the communication systems group meeting.
It should give an overview as well as the most important details of the
work. Furthermore, it should include a small demo of the project.

• The final report may be written in English or German. It must con-
tain a summary written in either English or German, the assignment
and the time schedule. Its structure should include an introduction,
an analysis of related work, and a complete documentation of all
used software tools. Related work must be referenced correctly. See
http://www.tik.ee.ethz.ch/flury/tips.html for more tips. Three copies
of the final report must be delivered to TIK.

• Documentation and software must be delivered on a CDROM.

Appendix C

Timeline

43

Zeitplan Semesterarbeit: Java application for new mobile phones
 Ganymed Stanek, Stand 10. Mai 2003

Woche ab Montag, den ... 31. Mrz 07. Apr 14. Apr 21. Apr 28. Apr 05. Mai 12. Mai 19. Mai 26. Mai 02. Jun 09. Jun 16. Jun 23. Jun 30. Jun

evaluation J2ME's vs. Personal Java

Bluetooth Umgebung suchen (Tel/Emulator/Simulator)

Projektideen & Nachforschung (u.a. Paymentlösung)

P2P Technologien, JXTA, Access Handy Filesystem

Siemens Emulator & Rococo Simulator & IDE kopeln

portieren auf anderes Tel damit Sound&FileAccess
in einem Emulator, z.B. Siemens SX1, ev. SonyP800

User Interface definieren

User Interface programmieren

Protokolle einarbeiten (Gnutella, FastTrack...)

eigenes Protokoll spezifizieren

Protokoll programmieren (Suchfunktion)

Filedownload vom Peer programmieren

Testen / auftauchende Probleme / Vergessenes
wenn noch Zeit: J2SE Bluetooth Gateway ins richtige Gnutella Netzwerk.

Docu Latex

Vortrag

Software fertig
Milestones: user interface läuft Dateitransfer möglich

Bsp mit Bluetooth compiliert & läuft im Handy Emulator Suchfunktion OK
Projektentscheid

Bibliography

[Esc03] Sebastian Eschweiler. Java 2 Micro Edition - Das
Einsteigerseminar. bhv-verlag, 2003.

[gnu] The gnutella protocol specification v0.4. http://www.clip2.com.

[HA03] Bruce Hopkins and Ranjith Antony. Bluetooth for Java. apress,
2003.

[J2M] Datasheet: Java 2 plattform, micro edition.
http://java.sun.com/j2me/j2me-ds.pdf.

[jav] Jsr-82 javadoc. http://jsr82.devzone.possio.com/javadoc/.

[KB] Sun Mirosystem Klaus Bergius, Enterprise IT Architecht Wireless.
Java macht mobil: Neue spezifikationen und endgeraete.
http://www.linecity.de/pdfs/Artikel%5FJavaSpektrum.pdf.

[Knu03] Jonathan Knudsen. Wireless Java: Developing with J2ME.
apress, 2003.

[mid] What’s new in midp 2.0.
http://java.sun.com/products/midp/whatsnew.html.

[Rela] Nokia Press Release. Nokia demonstrates electronic mobile
payment services with visa and meritanordbanken.
http://press.nokia.com/PR/200002/775312

[Relb] Sun Microsystems Press Release. Sun announces java(tm) 2
platform, micro edition.
http://java.sun.com/pr/1999/06/pr990615-01.html.

[roc] Rococo knowledge base.
http://www.rococosoft.com/devcorner/knowledge.html.

[sie] Mobile information device profile (midp) and siemens extension
apis. html - just available in one of the Siemens Mobile Developer
Kits found at http://www.siemens-mobile.com.

45

46 BIBLIOGRAPHY

[UUI] The bluetooth assigned numbers document.
http://www.bluetooth.org/assigned-numbers/sdp.htm.

[weba] Rococo website. http://www.rococosoft.com.

[webb] Siemens Mobile Developer website.
http://www.siemens-mobile.com.

