
1

Final Report

of the Semester Thesis

of

Felix Pfrunder

Configuration of SIP-based Conference Servers

Aufgabenstellung: Konstantinos Katrinis

Thema: Configuration of SIP-based Conference Servers

Beginn der Arbeit: 02.05.2003

Abgabetermin: 31.08.2003

Betreuung: Konstantinos Katrinis,
Georgios Parissidis,
Prof. Dr. Bernhard Plattner

2

Abstract (auf deutsch - in german)
Das Aufkommen von neuen Technologien wie das Internet und andere Computer-

netzwerk Technologien und die immer grösser werdende Bandbreite, ermöglicht es Dienste, die
Ort gebunden waren, unabhänging vom Ort anzubieten. Es gibt verschiedene solche Dienste,
eine Vorlesung, eine politische Debatte, eine Teamsitzung, eine Pressekonferenz, ein Brain-
storming- Meeting oder eine Tagung.

Dienste dieser Art sollten Übertragung von Daten über mehrere Medien unterstützen. Bei
einer Vorlesung gibt es zum Beispiel einen Referenten der spricht, eine Wandtafel und eventuell
ein Beamer oder Videogerät, das die Vorlesung zusätlich mit Anschaungsmaterial Unterstützt.
Bei einer typischen Konfiguration kann jeder dazwischen rufen, die Wandtafel, der Beamer
oder das Videogerät wird aber nur vom Referenten bedient. Es gibt also in einer Vorlesung mehr
und minder priviligierte Teilnehmer. Diese Privilegien können sich ändern, wenn ein anderer
Referent die Vorlesung weiter führt. Eine andere Eigenschaft, die unterstützt werden sollte, ist
die Möglichkeit, sich in Gruppen zu unterhalten, ohne dass der Rest der Vorlesung etwas davon
mitkriegt. Es kann aber auch sein, dass genau diese Fähigkeit Verboten ist. Typisches Beispiel
dazu wäre eine Teamsitzung, bei der es der Chef nicht bevorzugt, dass seine Mitarbeiter hinter
seinem Rücken Geschäfte tätigen. Weitere Beispiele von Konferenzart-spezifischen Privilegien
erscheinen z.B. in einer Pressekonferenz, wo nur diejenige Teilnehmer Fragen stellen dürfen,
die bezahlt haben und der Rest darf nur zuhören, oder bei einer politischen Debatte, bei der über
Staatsgeheimnisse referiert wird: in diesem Fall wäre es erwünscht, dass nur bestimmte Perso-
nen teilnehmen dürfen.

Es existieren bereits Applikationen, die eine Konferenz über SIP unterstützen. Was noch
fehlte war ein Modell, das beschreibt, wie die Rechte von den Teilnehmern verwaltet werden
sollen.

In dieser Arbeit wird eine vorlesungsartige Konferenz als Musterfall angenommen und
Policen (Privilegien, Profile von Teilnehmern usw.) wurden so implementiert, dass sie diesen
spezifischen Fall abdecken. Trotzdem is unser Design genügend generell, dass es bei der Imple-
mentation jener Konferenzart angewandt werden kann. Zusätzlich kann unsere Implementation
für die Realisierung von Konferenzen anderer Art direkt übernommen werden, indem die ein-
deutigen Erweiterungsmechanismen gebraucht werden.

3

Abstract (auf englisch - in english)
The wide spread of new computer network technologies such as the Internet and the

steady growth of bandwidth enabled the realization of online services that in the past have been
spatially bounded to a place. These can now hopefully be offered independent of any location.
Typical examples of such services are a distance learning course, a political debate, a team
meeting, a press-conference, or a congress.

Services of this kind should support the transmission of content over different types of
media. A referee, who is speaking, a whiteboard and probably a beamer or a video to show ad-
ditional illustrative material have to be supported to run a lecture. Every participant can interrupt
the lecturer by asking questions in a typical configuration of a lecture, but only the moderator
can operate on the whiteboard, the beamer or the video. Therefore we differentiate in a confer-
ence between privileged and non privileged participants (roles). The assignment of privileges
may dynamically change during the conference course, if for example another referee takes over
the moderation of the lecture. Another feature that is frequently desired is the ability to form
small subgroups for discussion. It should be possible to communicate with all the participants
of such a small group, without that the rest of the conference receives the content exchanged in
the scope of the subgroup. On the other hand it should be possible for this feature to be prohib-
ited for certain participants. For instance the director of a company might not like his workers
having private meeting among them during a company meeting and without him participating
in this sub-conferences. Another example, where conference privileges play an important role,
is a press-conference, where only a group of registered reporters have the right to ask questions,
whereas the rest has only the right to listen.

There exist already applications, that implement conferencing over SIP. Still, a model that
describes how policies of participants should are managed in the scope of SIP conferencing is
missing.

This thesis asserts a lecture-like conference model as the model case. As such, the policies
(privileges, profiles of the participant etc.) have been customized to implement exactly this spe-
cial case. Nevertheless our design is generalized enough to be easily adaptable to any confer-
encing scenario. To serve this purpose, unique extension mechanisms have been used.

4

Table of Contents
1. Introduction 7
1.1. Use Cases 8
2. Terminology 8
3. Conference Model 10
3.1. Topological Model 10
3.1.1 Inviting Users to Join 11
3.1.2 Users Joining 11
3.2. Conference Management 11
3.2.1 Membership Management 12
3.2.2 Floor Control 12
3.2.3 Subsessions 12
3.3. Conclusion 12
4. Conference Policy Control Model 12
4.1. Policy server in the SIP - Framework 13
4.2. Provide conference status 13
4.3. Administration interface 14
4.4. Notification of the conference server 14
4.5. Sidebars 14
4.6. Root Session vs. Sidebar Join 14
5. Policy and State Model 15
5.1. Connection between states and policies 15
5.2. Controlling of the policy 16
5.3. Policy and State Aggregations 16
5.4. State Entry Types Specification 17
5.5. Policy Entry Types Specification 18
5.6. States and policies with special behaviour 20
5.6.1 Inviting a participant 20
5.6.2 Ejecting a participant by changing his join policy 20
5.7. Creating a conference entry 21
6. Implementation 21
6.1. Database 23
6.2. Participant-policy server Interface 23
6.3. Policy server-Database Interface 24
6.4. Policy server-Conference Server Interface 24
6.5. Example 24
7. Issues on Implementations 25
7.1. Transaction Management 25
7.2. Profile Templater 26
7.3. Adding new policies 26
7.4. Adding new states 26
7.5. Adding new participant templates 26
7.6. Adding new conference templates 27
8. Discussion 27
8.1. Model 27
8.2. Interface 27
8.3. Implementation 27
8.4. Flexibility 28
9. Outlook 28

5

10. References 29
11. Appendix A - Aufgabestellung 30
12. Appendix B - Interface Signatures 37
13. Appendix C - Installation Instructions 55

6

Table of Figures
Figure 1: Dial-In Conference Server 10
Figure 2: Components in our SIP conference model 13
Figure 3: The policy-state model 15
Figure 4: Relationship between the classes of the application 22
Figure 5: The DOM tree of the XML database implementation 23

Table of Tables
Table 1: The states specification 18
Table 2: The policies specification 20

Introduction

7

1. Introduction
In a moderated computer supported conference several participants communicate synchronous-
ly towards a common objective using simultaneously numerous media components, as for ex-
ample audio/video stream, shared presentation tools and shared white boards. An instance of an
“umbrella-protocol” termed conference control protocol running at the end-system of every
participant (and at the conference server in the case of centralized topologies) acts as the gate-
way of the local user to the conference: it facilitates reception and presentation of events related
to conference state and, more importantly, provides conference control services significant to
the local user. These services can be categorized as conference creation (including sub confer-
ences in the scope of the main conference), conference join/leave, membership control and floor
control. We characterized the protocol as an “umbrella-protocol” due to the fact that each serv-
ice category is implemented by a stand-alone protocol. Two reasons speak for the use of a mod-
ular solution against a monolithic all-inclusive conference control solution: extensibility and
exploitation of well-established protocols to realize part of the service categories. The first rea-
son being obvious, we focus on the second.
Conference creation refers to the specification of the details of a conference instance, such as
list of users authorized to join the conference, assignment of profiles to admitted users, title,
start time and duration of the conference, preferred media components and selection of their
configuration, among others. The capability of creation of sidebars - ad hoc sub conferences in
the scope of the main conference - is also included in this service class.
Conference join/leave encloses location unaware identification and addressing of users and
mechanisms for (re-)negotiation of the configuration parameters of media components used by
a conferee.

Membership control comprises of services like inviting users to the conference and eject-
ing joined participants.

Floor control regulates the number of concurrently active users in moderated conferenc-
es. In these scenarios only a predefined maximum number of participants is allowed to interact
at any time instance, while the rest is following the input of the active users. In case floor man-
agement is human controlled, the controlling entity is called moderator.
In the scope of a specific conference scenario should not every participant have the permission
to use all of the commands offered by the formerly listed service categories. Typical cases ex-
emplifying the need for privilege differentiation are:

• only conferees with moderator privileges should have the permission to alter the state
of the floor status, e.g. interrupt the current speaker and hand over the right to speak (a
logical “floor token”) to another participant or specify the current maximum number of
concurrent active participants.
• the right to dynamically create a sidebar and specify its initial participant’s roster.
• specify the list of users authorized to join the conference instance and the profile
assigned to each.
• specify whether a participant has the right to invite other users or to expel joined partic-
ipants.
• configure the media stream map, which describes who is sending/receiving to/from
whom or how many concurrent streams of a single media component will be a partici-
pant receiving during the conference (e.g. multiple video streams).

Clearly there appears the need to define participant profiles and specify the access rights of each
profile to any of the commands of the service categories. The set of the profiles implemented
by a conference scenario and the associated mapping of each profile to access rights constitutes

Terminology

8

a conference policy set. Abstractly set, the implementation of a conference policy set comprises
of

• specification of its syntax/semantic and storage technology (e.g. representation lan-
guage like XML, storage system like a database management system or plain files).
• specification of a protocol used to retrieve or update information stored in the policy
(access primitives and their reflection to specific implementation technologies).
• enforcement of the implemented policy by the conference managing entity (conference
server in centralized scenarios or every participant in fully distributed scenarios).

A conference server based on SIP does already exist. This server can handle users that like
to join or leave. It offers an API to start or terminate sub-sessions. However, this server supports
only conferences where all users have the same rights (flat model).

Our goal was to add an additional service to this conference server to support user man-
agement based on the assigned privileges to each user. More over we designed and implemented
an application that administers - apart from the policies - all information needed to run a con-
ference, as for example who is the active speaker or what type of video stream is received by
each particiapnt.

1.1 Use Cases
Use cases are a very helpful instrument to design an application. They allow validation of

a model for the application. The model has to be check with every use case and it is desired that
every use case is supported by the model. Of course, many more use cases are supported by the
our model and the set presented below gives only an outline of the supported feature:

• User A wants to start a conference with users B, C and D. For this purpose he creates
the conference and invites B, C and D to it. B is good in security issues, so A wants him
to help editing the conference policy. A, B, C should be able to create sidebars. C should
also be able to adjust the volume of each of the audio streams he receives.
• User A can change the policy “Invite” or “Eject” of B and C.
• There are two conference instances running on the server. B can join one of the two.
• User A wants to start a conference, where nobody is able to open a sidebar, because he
wants to be fully aware of what is being communicated.
• The technical assistant B can change the volume or the video layout, but he is not
allowed to join to the conference.
• User A prohibits B to speak, because he is only allowed to listen to the conference.
• No participant is allowed to speak.
• No participant is allowed to send data to the whiteboard.
• Only one user is allowed to transmit data of a certain media type at any time instance.
• A group of maximum n users is allowed to speak concurrently.
• At most two sidebars can be opened in the scope of a single conference.
• User A receives only audio/video and user B only whiteboard and audio data.

2. Terminology
In the scope of SIP conferencing numerous technical terms are used. To clarify the docu-

mentation following and to avoid any misunderstanding, we review briefly the terminology
used herein. The latter is in compliance with the terminology of the work performed so far in
the TIK institute in this field and also with the terminology used in the IETF community.

Terminology

9

• active participant: a participant that is active in a conference, meaning it sends and
receives media streams. An inactive participant, to explain the expression more precise,
is a participant that does not send/receive streams, but is registered with the policy
server.
• agent: the gateway of a simple participant to the conference. It is responsible for
exchanging messages with the rest of the conference, i.e responding to messages initi-
ated by the session manager and realizing commands received from the participant.
• cascaded conferencing: a mechanism for group communication in which a set of con-
ferences are linked by having their focuses interact in some fashion.
• conference policy: the complete set of rules manipulated by the conference server. It
includes the membership policy and the media policy. [5]
• conference or session: constitutes of a number of participants and one or more moder-
ators, that have agreed upon exchanging multimedia data of certain formats during the
lifetime of the conference.[9]
• floor: the right to send media data to the other participants.
• focus: the focus is a SIP user agent that is addressed by a conference URI and identifies
a conference (recall that a conference is a unique instance of a multi-party conversation).
The focus maintains a SIP signalling relationship with each participant in the conference.
The focus is responsible for ensuring, in some way, that each participant receives the
media that make up the conference. The focus also implements conference policies. The
focus is a logical role.
• media session: a (virtual) channel over which media streams are distributed. One or
more media sessions can exist at every instance of time during the conference lifetime
and a distinct media session is used for every type of media (audio, video, white board
channel).
• membership policy: a set of rules manipulated by the conference policy server regard-
ing participation in the conference. These rules include directives on the lifetime of the
conference, who can and cannot join the conference, definitions of roles available in the
conference and the responsibilities associated with those roles, and policies on who is
allowed to request which roles.
• media policy: a set of rules manipulated by the conference. The media policy is used
by the focus to determine the mixing characteristics for the conference. The media policy
includes rules about which participants receive media from which other participants, and
the ways in which that media is combined for each participant.
• mixer: a mixer receives a set of media streams of the same type and combines them in
a type-specific manner, redistributing the result to each participant.
• policy: a right that determine, what a administrator, participant is allowed to do, change
states to open a sidebars.
• policy server: an information server, that manages all information (states and policies)
needed to run a conference. It offers an interface to the conference server and to the par-
ticipants. It is similar to the conference policy server mentioned in [5] with the differ-
ence, that the policies are divided in states and policies.
• session holder or moderator: conference participant(s), who has privileged access on
the conference management data. He is responsible for orchestrating the access to shared
conference resources (A/V channel, whiteboard tool) and for administering the confer-
ence roster (ex. dropping participants).[9]
•session manager: a component, that manages the session. It is responsible for session
initiation and session control, floor control and synchronization of the session. In our
conference model (centralized) an instance of this module runs at the session holder (or
sub session holder in case of a sub session). [9]

Conference Model

10

•sidebar: a sidebar appears to the users within the sidebar as a “conference within the
conference”. It is a conversation amongst a subset of the participants to which the
remaining participants are not privy.[5]
•simple participant: individual that takes part in a conference with basic access
rights.[9]
•state: an attribute that saves a configuration attribute of the conference.

3. Conference Model
SIP can support several topological models for conferencing. In the “end system mixing”

model for example, users are interconnected in a tree topology and each user acts as conference
server for the others. Another supported model is the “multicast” model, in which one or more
multicast addresses are allocated to the conference and are joined/left by the conference users.
The “dial-in” model consists of a conference server that maintains a point to point SIP connec-
tion to each user. An “ad-hoc” topology, where two users can spontaneously invite a third per-
son to open a conference is a further possible configuration. From all possible SIP conferencing
topologies, we will focus on an alternative of the “Centralized Signalling, Distributed Media”
model as presented in [3]. The reason for this lies on the fact that an implementation of this con-
ference model already existed in the TIK institute and as such testing our implementation with
an existing conference focus proved easy, as long as we confined to the constraints set by the
existing conferencing model. However, we do believe that applying our policy control service
to other conferencing models should be seamless and require minor changes/add-ons. It must
be noted that whenever we refer hereafter to the term “conference”, we will be assuming a cen-
tralized conferencing conforming to the model described below in this chapter.

3.1 Topological Model
The “Centralized Signalling, Distributed Media” model consists of a centralized confer-

ence server that maintains a point to point SIP connection to each joined participant. The server
is only responsible for signalling and conference state management, i.e. no media mixing is per-
formed at the conference server. Media distribution takes place either via multicast or multi-uni-
cast or combination of them.

Figure 1: Dial-In Conference Server

The conference is identified by the URI of the conference server’s UA and the participants use
this URI to join. For example, if the conference is called sip:conference21@servers.ch, the par-
ticipants have to send an INVITE to the URI sip:conference21@servers.ch to join the confer-
ence. In case multicast is used to distribute media, the number of participants can scale to large
numbers, basically being only limited by the scalability of the underlying multicast routing pro-
tocol used. If multi-unicast is used for transmitting media streams, then the conference size de-

C o n fe re n c e S e rv e r P a r t ic ip a n t B

P a r t ic ip a n t A

P a r t ic ip a n t A

P a r t ic ip a n t D

Conference Model

11

pends on the capabilities of the worst participant (assuming that we want to keep a full-mesh
model).

3.1.1 Inviting Users to Join
If participant A wishes to ask participant B to join, he uses the SIP REFER message. Participant
A sends the following message1 to B: (HIER: footnote that we don’t include the complete SIP
messages, but only the headers that are critical for understanding)

REFER sip:B@example.ch SIP/2.0
From: sip:A@exmaple.ch
To: sip:B@example.ch
Refer-To: sip:conference21@servers.ch

This causes B to send the following INVITE message to the conference server:

INVITE sip:conference21@servers.ch
From: sip:B@example.ch
To: sip:B@example.ch
Referred-By: sip:A@example.ch

After the conference server has received this message from B, it performs any necessary author-
ization steps and starts negotiating media configuration with user B. User B joins then the con-
ference, if he is authorized to do so and a match in media configuration preferences is found.

If participant B does not support the refer mechanism, A can still invite him to the confer-
ence by sending a REFER request containing B’s URI to the conference server:

REFER sip:conference21@server.com SIP/2.0
From: sip:A@example.ch
To: sip:B@example.ch
Refer-To: sip:B@example.ch

3.1.2 Users Joining
It is simple for a participant to join the conference, he only needs to send an INVITE message
to the conference server. This request message must have its Request-URI set to the URI of the
conference server and likewise be addressed (To header) to the conference server. For instance,
if B wishes to join sip:conference21@server.ch, he should send the following INVITE request:

INVITE sip:conference21@servers.ch
From: sip:B@example.ch
To: sip:conference21@server.ch

3.2 Conference Management
Management of the conferee’s roster and floor control, as well as event notification on

changes of the conference state are handled by the conference server.

3.2.1 Membership Management

1. Throughout this text we do not include complete SIP messages, but rather only those headers of the SIP message that are critical
for understanding the explained feature.

Conference Policy Control Model

12

The existing implementation supports two static profiles: conference moderator (or ses-
sion holder) and simple participant. Each of these profiles has fixed predefined privileges re-
garding membership control. Specifically, only a moderator entity can invite or expel users. On
the contrary simple participants are allowed only to join or leave the conference.

3.2.2 Floor Control
As in the case of membership management, floor control is performed over the conference

server through a request/response mechanism. Again here only two static profiles are supported,
namely moderator and simple participant. Those differ in some special privileges assigned only
to the moderator, like for instance the right to grab the floor or the decision to whom the floor
will be passed next.

3.2.3 Subsessions
Subsession or sidebars are managed by the same agent managing the parent session. This agent
has the ability to create a new subsession and to invite participants to it. A subsession is created
as follows:

• The initiator requests one or more new multicast addresses from the conference focus.
• After the initiator has received the multicast address, he sends an INVITE message to
each of the participants he wishes to have a subconference with.
• Every invited participant can accept or deny this invitation.
• If the participant accepts to take part, he joins the new multicast group addresses speci-
fied in the INVITE message received from the sidebar initiator.
• Finally, the new sidebar needs to be registered at the conference focus. The latter noti-
fies subsequently the rest of the conference about the newly created sidebar.

The existing model did not contain a mechanism to specify - in advance of the start of a confer-
ence or during conference runtime - which participants have the right to initiate a subsession.
By default only the moderator possessed this right. Moreover, no limitation in the maximal
number of parallel sidebar in the scope of a single conference instance could be specified.

3.3 Conclusion
From the discussion above it should have been made clear that the existing static assign-

ment of rights to only two classes of users (moderator and simple participant) in the existing
conference management protocol poses flexibility problems, mainly due to difficulty in the re-
alization of customized conferencing scenarios. To overcome this limitation, we defined a mod-
el to handle privileges of conferees on a user granularity, enabling the assignment of custom
roles to each user. Additionally, dynamic privilege management during conference runtime is
supported.

Besides membership control, the conference server stores and administers media informa-
tion: it keeps track of what media streams each participant is receiving, the media capabilities
of each participant and how the several media streams are being mixed. In what follows we ex-
plain thoroughly our model and its interfacing to the existing SIP conferencing infrastructure.

4. Conference Policy Control Model
The policy server uses a single central database to store all information necessary to run

a conference. The design of the database was inspired by the UNIX file system that similarly
defines distinct classes of users (groups), which are initially assigned a default set of access per-
missions, and are authorized to perform OS related operations according to these permissions.

Conference Policy Control Model

13

Again similar to UNIX systems, we define the “root user” profile: a participant with this profile
possesses all possible access permissions that a conferee can own.

4.1 Policy server in the SIP - Framework

Figure 2: Components in our SIP conference model

In Figure 2 we present the components involved in a SIP-conference, namely the data-
base, the policy server, the conference server and the participant agents. The policy server is re-
sponsible for managing the database. It exposes an interface (“get policy” interface in Fig. 2) to
the conference server that is used by the latter to retrieve all information needed to run a con-
ference. The second interface (“edit policy” interface in Fig. 2) offered by the policy server is
provided for participants with administrative rights, who intend to change the information
stored in the database, to create a new conference or to invite participants. The database com-
prises of a file that can be accessed and edited by the policy server solely. If certain information
is changed the conference needs to be informed, which is done over an interface provided by
the conference server. The figure shows three users participating in the conference. Participants
C is according to the conference policy the conference administrator. Like every other partici-
pant, he keeps a SIP dialog with the conference server notification on changes in the conference
status. Additionally he can remotely executes functions on the administrator interface of the pol-
icy server to alter the conference policy/state.

4.2 Provide conference status
The conference server should get all information needed to run a conference. The inter-

face ProvideConferenceStatus provides all functionality necessary for that. It provides methods
that allow looking up each policy individually. This makes policy management efficient, in case
the conference server has to handle a joining participant or a participant trying to invite another
individual. Likewise, the interface ProvideConferenceStatus offers for state browsing function-
ality. This simplifies the work of the conference focus by requiring only a few requests to the
policy server to retrieve the necessary information to start the conference.

Every one can look up the conference status if he knows the conference URI. The confer-
ence server has to call the browse function of the ProvideConferenceStatus interface that returns
the states describing the conference status. This function needs the sip name of the conference
as parameter. If the conference pointed with the sip name is not present an exception is thrown.

Conference Server Participant B

Participant A

Participant C
Administrator

Policy Server

Database

notify

get policy

edit policy

Conference Policy Control Model

14

4.3 Administration interface
The administration interface offers all functionality needed to edit any data stored in the

conference database. The policies and states can be read and edited individually, according to
the rights of the administrator. If an administrator wants to alter a specific conference state, he
has to call the corrersponding function of the administrator interface at the policy server side
(Remote Procedure Call paradigm). This function requires the conference identifier, the SIP
URI of the administrator and a password for authentication and authorization purposes. Further
arguments are a name identifying the state that will be changed and the new value that will be
stored for the particular state. If the call succeeds, the function terminates on the client side, oth-
erwise an exception is thrown informing the caller about the reason of the failure.

4.4 Notification of the conference server
Part of the changes lead to reconfiguration of the conference server. Due to the fact that

the conference server must be informed about the changes, before he can reconfigure, a confer-
ence server interface is exposed by the conference server for this purpose. If reconfiguration at
the conference server is needed, the policy server calls (remotely) a function of this interface to
inform the conference server accordingly.

4.5 Sidebars
The administrator has to identify himself with his SIP-URI and his password, whenever

he wants to open a sidebar. If he owns the required rights, a new conference is created with the
administrator as its first participant. The profile, which the first participant is created out of, is
called superuser and has enabled nearly all possible rights in this conference. It is not possible
to open a new sidebar out of an existing sidebar (no cascading). Due to the fact that a sidebar is
always associated with a participant, the root administrator can not create such a sidebar, as he
is not a conference participant.

A participant, who wishes to close an active sidebar, must either have the root password
of the sidebar or alternatively be a member of the sidebar with the permission to close the side-
bar. Internally the right open and close a sidebar is symmetrically implemented, i.e. a participant
that has the right to open a sidebar has also the right to terminate the same sidebar.

4.6 Root Session vs. Sidebar Join
The method, which is called when a participant joins a session, must be capable of detect-

ing whether the participant joins a sidebar or the main session. In the case of a participant join-
ing a sidebar, the policy server checks whether the participant has already joined the parent
conference and whether he is still an active participant. If not, the handling method signals an
error, making it impossible for a conferee to be member of a sidebar without having joined the
main session first. As such no authorization procedures are needed during sidebar joins. Simi-
larly if a participant is ejected out of a conference with active sidebars, he is first ejected out of
all sidebars he is an active member of.

Policy and State Model

15

5. Policy and State Model

Figure 3: The policy-state model

The policy server stores states and policies. A state holds information about a conference
like video resolution received by a participant or conference duration. The set of current values
of all states make up the current status of a conference. A policy on the other hand stores infor-
mation about permissions that participants have, either on performing specific conference man-
agement actions (e.g. invite another user to the conference) or altering the conference state (e.g.
alter the maximum number of participants allowed).

When a state has been changed by an authorized subject, the conference server needs to
be notified in order to apply the changes (e.g. expel a participant). Therefore the policy server
is triggered to send a message containing the state change to the conference server, whenever a
state change occurs. States are stored either on a conference-wide level, like for example the
video layout or the maximum number of participants, or on a participant-specific level, as for
instance the volume at which the participants voice stream will be mixed at together with other
voice streams.

Contrary to state changes, the conference server does not need to be notified on updates
of a policy entry. It is even possible that a policy change is never sensed by a participant. This
occurs for example if a participant, who is revoked by the administrator the right to alter any
state in a conference, never tries to change a conference state. Rather than being notified, the
conference server looks up a policy entry to check whether a participant is authorized to perform
a specific operation on conference state. Apparently policy entries refer always to a particular
participant, as it is not semantically significant to have conference-wide policies. One reason for
conference-wide policies would be to keep the database file small: have a policy that denies or
grants a permission to all participants and then single participant policy entries that override the
conference-wide entry.

5.1 Connection between states and policies
To clarify the connection between states and policies, the latter are used by the conference

server to decide whether a participant is authorized to perform a conference state altering oper-
ation. Whenever a participant tries to change a state of another participant or of the conference,
the policy server checks whether this is allowed by the participant’s policy entry with the same
name as the state. If this is the case, the value of the state is set to the new value as specified by
the participant’s command, otherwise an exception is thrown.

Note that not every policy is assigned a state, whereas a state is always assigned a policy.
A policy is assigned a state only if the action that the policy controls permissions on, needs one
or more status values stored in the conference database. As an example, the state “lifespan” (full

Participant

state policy
For each state exists a policy

rw attribute

saves who can
change the state

determines who can
change the policy

with the same name.

policy rw attribute

policy without state:
i.e. getMemberInfo

Saves information for
a conference or a participant.

Policy and State Model

16

entry: <state name="lifespan" value="Mon Jun 2 13:14:25 CEST
2004"/>) holds the (conference-wide scoped) duration of the conference and can be changed
only by participants, who have their corrersponding policy entry “lifespan” enabled (full entry:
<policy name="lifespan" rw="n" use="y"/>). On the other hand the policy
entry getMemberInfo that decides whether a participant is allowed to retrace information about
the other members of the conference, does not have a corrersponding state entry.

5.2 Controlling of the policy
Changing permissions is controlled by a special attribute (rw) contained in each policy en-

try. If the rw attribute of a policy entry is set to ‘y’, then the participant is allowed to change the
every entry of the particular policy of the associated conference, including the one referring to
himself. Let us give a short example: if a participant A wants to change the policy entry of par-
ticipant B, the policy server checks the “rw” attribute associated with the policy of the partici-
pant A. Only if this attribute allows that change, the operation is performed. Exceptionally is the
“rw” not at checked, if the participant that initiated the operation is authenticated as a user with
root permissions.

5.3 Policy and State Aggregations
Policies and states are semantically grouped into aggregations to serve modularity in de-

sign and implementation. We list below the main (first-level) policy and state aggregations:
• partPolicy: contains all policy entries the permissions of a participant within the con-
ference regarding membership and general conference status management operations,
aka not controlling any operations on media stream status control. In particular, the pol-
icy entries of this aggregation control permissions on changing state entries contained in
the “partState” and “confState” aggregations discussed later on in this chapter. For each
participant there exists a “partPolicy” aggregation. This category constitutes the imple-
mentation of the membership policy as described in [5].
• mediaPolicy: the “mediaPolicy” aggregation contains atomic entries that refer to spe-
cific aspects of a medium used in the conference (currently audio, video and white
board), like for instance the volume level of the audio stream or the size of the video
stream received by a participant. Policy entries in this aggregation control changes of
states contained in the “partMediaState” and “mediaState” aggregations. There could be
numerous “mediaPolicy” instances stored for a single participant. This category imple-
ments the “conference media policy” as mentioned in [5].
• partState: this aggregation contains all state entries describing the status of a single
participant and is therefore saved participant-wide. A change of a state within that aggre-
gation causes the policy server to notify the conference server by remotely calling with
the function “partStateChanged”.
• partMediaState: states describing the configuration of all media used by a single par-
ticipant are stored within this aggregation. There exist several “partMediaState” aggrega-
tions, with a name indicating the managed media type (audio, video or white board).
Whenever a state of this aggregation has changed, the policy server calls remotely the
method “partMediaStateChanged”.
• confState: groups all states, apart from media stream states, that describe the configu-
ration of a conference. If a state within this aggregation changes, the function “confState-
Changed” is called to notify the conference server. This aggregation is saved conference-
wide.

Policy and State Model

17

• mediaState: contains all states controlling the media streams of a conference and has
conference-wide scope. The notification of the conference server takes place by calling
function “mediaStateChanged”.

The distinction between policies and states is important, because only changes in states
need to be reported to the conference server. The second distinction is among states: between
the “partState” and “confState” on the one hand and “partMediaState” and “mediaState” on the
other hand, depending on whether the states are participant- or conference-wide scoped.

5.4 State Entry Types Specification
A state entry consists of a name identifier and a corresponding value. It applies either to

a single participant or to a conference instance. State entries are classified either as (normal)
states (including all states besides these that influence media streams) or media states (including
all states influencing media streams).

Identifier Category Content Type Description

floor mediaState SIP-URI name of the partici-
pant that holds the
floor

inputVolume partMediaState unsigned integer the volume a partici-
pant speaks

layout mediaState an integer value appearance of the
video stream

lifespan confState date as string enddate of the con-
ference

loudestSpeaker mediaState SIP-URI participant that is
allowed to speak
loudest

maxMixers confState unsigned integer number of available
mixers

maxParticipant confState unsigned integer the maximal number
of active participants

participant confState SIP-URI name of an active
participant, can
occur more than
once

receive partMediaState y or n determines if the
participant gets the
media stream type of
that category where
the receive state is
saved

Policy and State Model

18

Table 1: The states specification

A state entry in the conference database looks as follows:

<state name="loudestSpeaker" value="felix@linux.tik.ethz.ch" />

This indicates which user is the one that should be mixed with at the loudest volume. The name
attribute stores the string that is used to identify this state through the interfaces. This string has
to be passed as parameter, if an administrator likes to edit the state and it is returned as name-
value pair string, if the states are browsed by the conference server. The value attribute contains
the actual information, which stores the conference state or the participant state and influences
the configuration of the conference server.

5.5 Policy Entry Types Specification
A policy entry consists of a name identifying the state, to which the policy rule applies,

and of two attributes, “rw” and “use”. Both attributes take values out of the domain {“y”,”n”},
corresponding to yes/no logical semantic. Specifically, the “use” attribute indicates whether a
participant is permitted to perform actions that can lead to a change in the status of the state that
the particular policy rule is administering (namely use the associated state controlling interfac-
es). Exceptionally, some policy entries do not refer to a particular conference state element, but
rather to the permission to read conference state information (e.g. getMemberInfo policy) or to
perform actions that can implicitly alter the current conference state (e.g. invite policy). The
“rw” attribute in a policy entry designates whether a participant is allowed to read/change the
corresponding policy entry of any of the conference participants (including himself, wherever
this makes sense). An identical list of policies is stored for every participant and this list com-
prises of policies each belonging to one of two categories: “partPolicy” or “mediaPolicy”.

send partMediaState y or n determines if the
participant is
allowed to send the
media stream type of
that category where
the receive state is
saved

tiled mediaState y or n indicates whether
the video is tiled or
not

Identifier Category Administered State Description

floor mediaPolicy floor specifies whether the
participant can influ-
ence floor control
state

Identifier Category Content Type Description

Policy and State Model

19

getMemeberInfo partPolicy - specifies who can
learn to whom he is
speaking to, we pro-
pose this policy in
order to enable Con-
ference-Unaware
Participants as men-
tioned in [5]

inputVolume mediaPolicy inputVolume specifies whether the
participant can influ-
ence inputVolume
state

invite partPolicy - specifies whether the
participant can invite
another user to the
conference

join partPolicy - specifies whether the
participant can join
the conference

lifespan partPolicy lifespan specifies whether the
participant can influ-
ence lifespan state

layout mediaPolicy layout specifies whether the
participant can influ-
ence layout

loudestSpeaker mediaPolicy loudestSpeaker specifies whether the
participant can influ-
ence loudestSpeaker
state

maxMixers partPolicy maxMixers specifies whether the
participant can influ-
ence maxMixers
state

maxParticipants partPolicy maxParticipants specifies whether the
participant can influ-
ence maxParticipants
state

openSideBar partPolicy - specifies whether the
participant can open
a new sidebar

Identifier Category Administered State Description

Policy and State Model

20

Table 2: The policies specification

A policy entry in the conference database looks as follows:

<policy name="invite" rw="y" use="y" />

This policy specifies whether the participant is allowed to invite users. The string denoting the
name of the policy is stored behind the name attribute. Then follows the rw attributed. If this
attribute is y then the owner of this policy is enabled to read or change all policies named "in-
vite" of the conference participants. The use attribute specifies if the participant can actually use
the policy, in the example above the owner is allowed to invite.

5.6 States and policies with special behaviour

5.6.1 Inviting a participant
If an administrator wants to turn a participant active, which means that the participant is

now active listening and speaking in the conference and not just registered with the database,
the policy server checks first if the administrator has the right to invite somebody and subse-
quently checks whether the participant, who will be turned active, is allowed to join. If both con-
ditions are met, a “participant” state with the name of the newly activated participant as its value
is added to the database.(e.g. <state name="participant" value="arthur@linux.tik.ethz.ch"/>).

5.6.2 Ejecting a participant by changing his join policy
An active participant is removed, if the use attribute of the “join” policy of this participant

is set to “n” value. The policy server deletes all participant states of the expelled participant au-
tomatically and a message is sent to the conference server.

Another possibility to implement participant ejection could be done by managing a policy
"eject" and providing the method "removeParticipant". This leads to the following situation: if
a user is ejected and he is allowed to join (“join” “use” attribute is set to“y”), then he could re-
join, so ejecting a user might have no effect. Another strange situation is, if a participant can
change the read write tag of the join policy, but is not allowed to eject a participant. Out of this
arise situations in which participants are active members of a conference, but have not the right
to join to that conference. This is not a problem, but it is not intuitive, and makes the adminis-
tration complicated.

receive mediaPolicy receive specifies whether the
participant can influ-
ence receive state

send mediaPolicy send decides whether the
participant can influ-
ence the send state

titled mediaPolicy titled specifies whether the
participant can influ-
ence titled state

Identifier Category Administered State Description

Implementation

21

5.7 Creating a conference entry
There is a function that creates out of a template an initial conference without any partic-

ipants. This function requires first authentication with the root password. The initial conference
is created with a conference name, which is passed as parameter. The result is a conference with
default values stored in its states. The task that follows next could be adding participants and
giving them pass phrases. The function provided to perform this operation takes the name of the
new participant, a pass phrase and the name of a profile template as parameters. The first par-
ticipant has to be added by an administrator that has the root pass phrase, but all further partic-
ipants can be registered by every participant that have their invite policy entry set.

It is not necessary to define all policies, states and participant before the conference starts.
The policy server is specially designed to add participant, change states or policies while the
conference runs and this is just the normal case.

Apparently it is very easy to invite for example a guest conferee with minimal rights. You
first add him based on a template, than change his policies. The most useful would be, you en-
able his join policy and let him send and receive all kind of media streams, whereas the remain-
ing policies are disabled. The guest participant cannot join without sending a pass phrase to the
policy server, but it is possible to define the empty string as pass phrase.

6. Implementation
Figure 4 shows the UML diagram of the policy server. The application code is in the root

Java package “confController” and there exists one additional package “confController.ele-
ment” within the confController package. The lines connecting the several classes mean that
each class can instantiate the other. The class “XMLParsed” can instantiate “Conferences” and
“Conferences” can instantiate “Conference”. The AdministrationInterface class can instantiate
the “SendMessage” class.

Implementation

22

Figure 4:Relationship between the classes of the application

ProvideConferenceStatus

element

Conferences

 (from element)

SendMessage

XMLParsed

AdministrationInterface

Conference

 (from element)

Participant

 (from element)

Policy

 (from element)

PolicyContainer

 (from element)

State

 (from element)

StateContainer

 (from element)

XML File

Implementation

23

6.1 Database
The database consists of an XML file saved in plain text format. The database the confer-

ence server is working on is placed in the file db/policy.xml. This file is validated by the corre-
sponding Document Type Definition file db/policy.dtd (all paths here are relative to the root
installation directory of the policy server code.For more information see Appendix C).

Figure 5: The DOM tree of the XML database implementation

The structure of this database and of an XML database in general is very close to object
orientation. It is easy to construct a UML model out of this. We have created for nearly every
node a class (conference for example) that provides functionality to create the class of the child
nodes.

The policy server application uses Apache Java Xerces to access the elements in the XML
file. We preferred using the DOM interface, because it offers an object view of the elements.
The alternative SAX interface, which is event based and very convenient, if for example at-
tributes of elements in different hierarchical levels should be edited, did not accomplish our
needs as accurately.

6.2 Participant-policy server Interface
If a participant wants to access the policy server directly, then must act as administrator

and has to send a password for authentication. The functions implemented in the “Administra-
tionInterface” class are typically used for that. The class “XMLParsed” that creates the classes
out of the confController.element package parses the XML database file to get the required in-
formation or to store it. This class provides functions for both: “getConferences()” to look up
and change and “save()” to save the changes. If the participant changes a state, then the class
“SendMessages” is created, which records the action and causes that the conference server gets
informed about the changes. All functions of the AdministrationInterface require the SIP-URI
of the administrating user and his password or the root password. If this user simply wants to
look up the information stored on the policy server, he utilizes the functions of the “ProvideCon-
ferenceStatus”. These functions do not require any authentication.

It was desired, that the conference server and the conference server could be placed on
different machines, so they have to communicate over the net. We decided to use a middle ware
to simplify the parameter passing. SOAP was chosen due to the fact, that good open source im-
plementations are available. Additional Soap works with HTTP as SIP does.

conferences

conference conference conference conference (sidebar)

participant participant states mediaStates

policies mediaPolicies states mediaPolicies

Implementation

24

6.3 Policy server-Database Interface
The “XMLParsed” class parses the XML file and creates a conferences object that is

member of the “confController.element” package. The classes of this package read all attributes
and its values out of the XML file. These classes are therefore the interface form the database
to the policy server. The classes “Conferences”, “Conference”, “Participant”, “Statecontainer”,
“Policycontainer”, “State”, “Policy” that help reading, and changing the XML file are similar
to the DOM tree of the XML and therefore take advantage of the object orientation of XML.

6.4 Policy Server-Conference Server Interface
The conference server uses the functions of the “ProvideConferenceStatus” class to get

the necessary information of the conference. As the “AdministratorInterface” class the “Provi-
deConferenceStatus” class does create the “XMLParsed” class to parse the xml file. The differ-
ence between these two classes is that “ProvideConferenceStatus” does not need to save
anything. Due to the browse functionality of the class “ProvideConferenceStatus” the classes
“PolicyContainer”, “StateContainer” and “Conference” of the “confController.element” pack-
age implement the iterator interface.

The conference server has to offer a service for the notification. The client side of this is
implemented in the “SendMessage” class. The name of the function that is called if a change in
the database occurs consists of the name of the category where the change happened followed
by the string "Changed". If for example the state "maxParticipants" within the category "conf-
State" has been changed then the function "confStateChanged" is executed. The conference
server needs to know the name of the conference where the state has been changed, the name of
the state, the new value and last but not least it may make a difference whether the state has been
added, changed or removed. All these information is passed as parameters to the conference
server. If the state that has been changed is a media state then the name of the media type is an
additional parameter. The function called if not a state should be change, but for example a new
conference should be opened or a new side bar should be added are named like the action that
has been performed: “conferenceOpened and sideBarOpenend. The complete list of all function
that a conference server should offer is described in the appendix.

6.5 Example
The best way to illustrate the operating mode is to show what happen if the state “maxPar-

ticipant” is changed by a participant that has got the necessary rights.
Before we describe how the state is changed it may be useful to learn how the state is read

because you probably like to check the value of the state before you overwrite it. The action can
be performed by a call over SOAP of the function “browseConfState()” that belongs to the
“ProvideConferenceStatus” interface and takes the conference’s SIP-URI as parameter. After
that an XMLParsed object is created that in turn creates a “Conferences” object. As next step a
“Conference” object is created with the “Conferences” function “getConference()” that takes
the conference name (SIP-URI) as parameter. In the following step a “StateContainer” is creat-
ed with the function “getStates()”. This object implements the iterator pattern that allows pass-
ing all states within a conference. A state object is created with the “StateContainer” function
“next()” and its name and state are extracted with the state object function “getName()” and
“getValue()”. The “NameValuePair” object is filled by its constructor and it is added afterwards
into a vector. The commands listed in the last two sentences are repeated until the “StateCon-
tainer” function “hasNext()” indicates that no more states remain. Finally a “Vector” is passed
back as return value over the SOAP interface. Due to this the administrating user has to search
within the “Vector” after the “NameValuePair” object that stores the desired state.

Issues on Implementations

25

After the user has checked the state he might want to change its value. At this point it
should be mentioned that these two actions (reading a state and writing a state) are not in a trans-
action meaning it is possible that another user has altered the state before our user does this. The
function “setConfState()” of the “AdministrationInterface” has to be called over SOAP to
change the state. The application allows changes if either the root password is sent as parameter
or the participant, that identifies himself with a SIP-URI and a password has got the appropriate
rights.

In case that a participant likes to change the state the SIP-URI of the participant and the
password have to be checked before anything is done. Nevertheless the database is locked first.
The locking is done with the “XMLParsed” object by an explicit call of the function “open-
Transaction()”. After locking the XML database is parsed and a “Conferences” object that con-
tains the whole content of all configurations of conferences managed by this server is created
with the function “getConferences()” of the XMLParsed object. Now the conference that the ad-
ministrator likes to manage is extracted with a call of the “Conferences” function “getConfer-
ence()”. This function takes the SIP-URI of the conference. After that, some information about
the administrating participant is needed, so a Participant object is created by the method “get-
Participant()” of the “Conference” object. The password is checked with the function “correct-
Password()” of the “Participant” object. Whether the user has got the necessary rights to
administrate is checked next. Out of the “Participant” object a “PolicyContainer” object con-
taining all policies is created. The function “getPolicy()” called with the argument string "max-
Participant" returns an object of a “Policy”. Finally the method “getUse()” of the “Policy”
object has to return a string containing "y". If one of these operations fails (wrong password,
conference does not exist, participant not present or not enough rights) the database is unlocked
and an exception is thrown.

If the root password is sent as parameter the same steps have to be performed as men-
tioned above till the “Conferences” object is created. The function “correctPassword” of the
“Conferences” object checks if the root password is correct, if not the database is unlocked and
an exception is thrown.

After the successful authorisation the tag named “maxParticipant” has to be changed. The
method “getStates()” of the already instantiated object “Conference” is called and returns a
“StateContainer” object. The state “maxParticipant” itself is extracted by calling the “StateCon-
tainer” function “getState()” and it is changed with the “State” object command “setState()”.
Calling the “XMLParsed” function “save()”, that unlocks the database after saving, so that other
changes can be done, saves the changes.

Finally a message to the conference server has to be sent to inform it, that a state has
changed. Creating a “SendMessage” object, adding the method name of the “AdministrationIn-
terface” that has been called first with the parameters, does this. The method “send()” of the
“SendMessage” object calls the function “confStateChanged()” over SOAP from the confer-
ence server so that this server is notified.

7. Issues on Implementations

7.1 Transaction Management
The transaction management that keeps the database in a consistent state, even if a lot of

participants are administrating states and policies simultaneously, is implemented in the “XM-
LParsed” object. It is based on a java “.lock” file that is created at the entry point of each oper-
ation that writes back a changed XML database. The function to create a lock is called
“openTransaction()” and is executed in the first line of such a subroutine. The file is deleted and
the lock is released not until the operation is completed and the file is written back or an excep-

Issues on Implementations

26

tion occurs. Therefore the function “save()”, which deletes the lock file is executed in the last
line of such a function. The “XMLParsed” method unlock, that only deletes the java lock file
but does not overwrite the xml database file is call in the catch expressions, that are executed if
an exception occurs.

The result of this is that the policy server is blocked even if another call likes to change
information that does not affect the information of the blocking operation. Therefore the mech-
anism implemented is inefficient.

7.2 Profile Templater
The “db/participant.template.xml” saves the profiles or default participants. It is also a

complete XML file and can be validated with the corresponding “dtd” file “db/policy.dtd”. The
participants are stored with an empty password attribute and with the profile name in the sip-
Name attribute.

Some default conferences, sidebars or profiles for conferences, sidebars are stored in the
“db/conference.xml”. The file can also be validated against the “db/policy.dtd”, but there are no
participants listed. Instead of a SIP-URI saved in the “conferenceName” attribute, the profile
name is saved there and the profiles for sidebars are stored the same as for ordinary conferences,
with the difference of "sidebar" written in the owner attribute instead of leaving it empty.

7.3 Adding new policies
It is not possible to add a new policy over the interface calls. It is possible to add a policy

by altering the program, to say it more precise, only the database needs to be changed. The pol-
icy has to be inserted in every participant into the appropriate category (“partPolicy” or “me-
diaPolicy”). The actual used database is placed in “db/policy.xml”. If new conferences are
opened and new participants are added, the templates have to be updated too. All templates for
users are saved in the “participant.template.xml”.

7.4 Adding new states
This is also not possible with an interface method and a bit more complicated as to add a

policy, but it suffices also to change the XML files. Due to the fact that for every state must be
a policy that controls the state this policy has to be added in the same category as the state. Let
me show you an example: If the “confState” "test" should be added, then a policy called "test"
has to be added within each participant in the category “partPolicy”. The same has to be done
when the state is added as a “partState”. On the other hand if a state within the category “medi-
aState” or “partMediaState” should be added, the corresponding policy has to be inserted into
the “mediaPolicy” with the same name. And of course every participant has to be updated.

7.5 Adding new participant templates
The new participant template has to be added in the template database “db/partici-

pant.template. xml”. It has to be complete, I mean for every state in the categories “confState”,
“partState” “mediaState” and “partMediaState” must be a policy and the syntax has to be cor-
rect, so that it can be validated by the “db/policy.dtd” file. There are no constraints checked by
the policy server protecting the application against errors generated by changing any XML files.
The name the profile is selected with over the interface has to be written in the attribute “sip-
Name”.

Discussion

27

7.6 Adding new conference templates
The file “db/conference.xml” contains all conference templates, so a new conference tem-

plate has to be added here. In the conference must not be any participants. It has to be possible
to validate the new conference template against the “db/policy.dtd” file. The name the confer-
ence profile is selected with over the interface method is saved in the conferenceName attribute.

8. Discussion

8.1 Model
In a file system or a database the question occurs, who can edit it and who can edit what.

Should a user be possible to either edit all or nothing or should some user edit one part the other
another part.

The first model we considered consists of root administrators, that can edit all and users
that have got no rights. To make the model really simple there is no connection between the
states and the policies as described in chapter 5.1. The advantage of this model is its simplicity.
The interface can be reduced (no “rw” policy attribute), the logic in the policy server is simpler
and the database smaller, because there are less attributes and no policies for the states. The han-
dling of such a model is easier, because for example it is not possible to take away rights from
oneself as in the implemented model, which can be done if the participant changes his rw at-
tribute of a policy.

The reasons why we did not chose that model are, that it does not met the use cases. It is
possible to have participants that can join or invite and such that can not, but it is not possible
to have participants with different roles, for example a media stream manager is not realizable
with that model. For a simple operation as changing the inputVolume for a participant an ad-
ministrator is needed. The fact, that the first model can be emulated by the second does also mil-
itate in favour of the second model.

However, even the complex model cannot handle with every use case. It is not possible to
realize, that a participant can manage only the policies of some participants. Such a feature can
only be implemented if the name of all participants is stored at each policy. We thought that the
cost (disk space, bigger interface) is too high to pale in comparison to the return (the possibility
to implement the former use case).

8.2 Interface
The draft [5] proposes that a participant can subscribe by the agent where the conference

runs and then get notified if the states or policies change. We decided that it suffices to notify if
a state has changed. We like to propose that a subscribed participant gets an interface, where he
can learn the policies by calling functions or sending messages over a protocol.

8.3 Implementation
The existing SIP framework has been implemented in Java and a lot of free and useful

libraries are also available in java (SOAP an XERCES). Due to these two reasons we decided
to take Java as implementation language of the policy server.

The advantage of an XML plain text file is, that it can be read by a developer with a simple
editor, which simplifies the debugging of the policy server and later of the conference server.
An disadvantage is that we have to implement the transaction management somewhere in the
conference server, but the solution based on a java lock file seems to work fine. Of course an
SQL database like oracle would be a more efficient and faster solution, particularly if much par-

Outlook

28

ticipants like to change information on the policy server simultaneously, but it was not a goal
of the problem task to implement a very fast solution.

8.4 Flexibility
The drafts clearly defined some use cases but remain vague with policies and states need-

ed to configure a conference. Especially the media states and policies, which partly depend on
the implementation, can not be determined at this stage of development. Due to these two facts
we designed the policy server, so that it is very easy to add new policy or state. We succeeded
partly. It suffices to change the xml files to add a new policy or state, but this is quite some work
because all template files need to be changed either. It may remain writing a script or building
an application which does that work.

9. Outlook
Our work shows a possible way of managing the configuration of a policy server. We cre-

ated an application called policy server, that can manage different users with different rights.
They can edit the conference according to their privileges. It can be argued that a conference
can be run with a much simpler configuration, but it is also possible to enlarge the whole user
management. So we think we have chosen the happy medium.

We decided at the beginning to design the application without considering much about the
existing SIP-framework. This lead to a design without any existing waste deposits, but it does
not simplify the integration which is outstanding.

The conference does not claim to offer a complete set of policies and states. The use of
the policy server will show, if new policies or states have to be added or if some can be removed,
how good the choice of the policies or states is.

References

29

10. References

[1] J. Rosenberg, G. Camarillo et al. (2002), “SIP: Session Initiation Protocol (RFC
3261)”, Internet Engineering Task Force, June 2002.

[2] J. Rosenberg and H.Schulzrinne, “An Offer/Answer Model with the Session Descrip-
tion Protocol (SDP)”, Internet Engineering Task Force, June 2002.

[3] J. Rosenberg and H Schulzrinne, “Multi Party Conferencing in SIP”, Internet Draft,
Internet Engineering Task Force, July 2002.

[4] J. Rosenberg and H. Schulzrinne, “Models for Multi Party Conferencing in SIP”,
Internet Draft, Internet Engineering Task Froce, June 2002.

[5] J. Rosenberg, “A Framework for Conferencing with the Session Initiation Protocol”,
Internet Engineering Task Force, July 2002.

[6] R. Even, O. Levin et al, “Conferencing media policy requirements”, Internet Engi-
neering Task Force, August 2003.

[7] R. Mahy and N. Ismail, “Media Policy Manipulation in the Conference Policy Con-
trol Protocol”, Internet Engineering Task Froce, February 2003.

[8] P. Koskelainen, H. Schulzrinne and Xiaotao Wu, SIP-base Conference Control
Framework

[9] R Miethig, M. Ruppen, “Implementation of a protocol for the setup/termination and
the management of lecture-like multimedia conferences”, Semester Thesis, TIK ETH
Zürich, July

Appendix A - Aufgabestellung

30

 Appendix A - Aufgabestellung

Aufgabenstellung

von der Semesterarbeit

für

Hr. Felix Pfrunder

 “Configuration of SIP-based Conference Servers"

 Aufgabenstellung: Konstantinos Katrinis
 Beginn der Arbeit: 04.05.2003
 Abgabetermin: 10.07.2003
 Betreuung: Konstantinos Katrinis,
 Georgios Parissidis,

Prof. Dr. Bernhard Plattner

Appendix A - Aufgabestellung

31

1. Introduction

Late advances in the area of information technology, such as the emergence of broadband
access networks and the increasing processing capabilities of commodity computer systems
enabled the widespread usage of several multimedia applications, such as streaming,
conferencing and voice over IP. All these applications require the delivery of services of assured
quality from the side of the Application Service Providers and therefore require support of
equal quality at the network level. In particular, we are interested in conferencing applications:
applications that realize real-time communication among computer users residing in spatially
separated sites. Communication is achieved through several types of media streams. The mix of
media streams used by a specific conferencing application instance depends strongly on the
application target (e.g. a distance learning platform might use a whiteboard tool, whereas for a
videoconferencing-based chatroom an audio/video synchronized stream would suffice) and the
target infrastructure (e.g. a conferencing application embracing contemporary mobile phones
would probably hardly offer a whiteboard component). Apart from the media streams further
assets offer communicative awareness and coordination, such as membership information, floor
control and cascaded sessions within a conference session.

2. Conceptual Formulation

2.1 Conferencing Signaling using SIP

The Session Initiation Protocol (SIP) [1] is a signaling protocol defined by the Internet
Engineering Task Force to be used in applications that require the creation and management of
sessions. By the term session we refer to the exchange of data between an association of
participants. The functionality offered by SIP can be summarized in the following not
exhaustive list:

• user location: determination of the system where an end-user resides

• user capabilities: negotiate the configuration of the media types and media parameters
that should be used during the session according to user capabilities.

• session management including dynamic alteration of the session setup (media stream
configuration, change in user location) and invocation of services.

As it has been already described in [3], SIP can facilitate the setup and termination of multiparty
conferences. Several topological models can be realized, however we will focus on the "dial-in"
model as presented in [3]. An instance of such a model is shown in Figure 1. The conference is
managed by a single entity, the conference server. The latter maintains a point-to-point SIP
session with every joined participant until the participant leaves the conference. Therefore this
conference topology is often referred to as "tightly coupled". A user that wishes to join the
conference should first establish a session (called dialog in SIP terminology) with the
conference server. The potential participant communicates over this session her network
address (e.g. IP address/port number pair) to the server entity. Furthemore media types (e.g.
video codecs) and parameters (e.g. bit rate of audio codec) can be negotiated during the session
setup phase. This is achieved through an offer/answer model well defined in the scope of the
Session Initiation Protocol [1], [5]. The established SIP dialog is kept alive during the lifetime
of the participation of a site in the conference and should be used whenever any of the
communication peers needs to alter the configuration of a session related to the conference: for

Appendix A - Aufgabestellung

32

instance when an end system is assigned a new IP address or when the server needs to signal the
participant the creation of a new multicast group for a new video stream. Accordingly,
whenever a participant wishes to leave the conference or the server decides to expell a
conference member, the established dialog is used to tear-down the session between the
conference server and the particular participant.

Figure - 1 : SignalingTopology in the centralized conference model

Similar to the SIP topology for conference creation/termination, conference management
can be accomodated via SIP means: management of participants (using third party INVITE,
REFER and BYE methods), dynamic modification of media parameters and notification about
conference state changes [4]. Additionally, media connectivity is handled by the conference
server: the server decides about the connectivity graph of media flows streams among
participants by configuring the media components of the end systems and potential network
media elements (mixers, transcoders, replicators etc.) accordingly.

2.2 Conference Mechanisms vs. Conference Policies

In the former chapter we briefly discussed the functional specification of a conference
server with regard to conference creation and management using SIP mechanisms. However,
the sound specification of a fully operational conference server requires the determination of a
concrete policy that is to be implemented via the prescribed mechanisms. As an example the
policy table of a conference instance would list the identifiers of the users that are authorized to
join the particular conference or likewise contain a role (e.g. listener, simple
participant,moderator) assigned to every potential participant according to a predefined
participation level scheme.

Appendix A - Aufgabestellung

33

2.3 Conference Policy

Following logical analysis procedures we structure conference policy in three distinct
domains: participation policy, floor control policy and media policy. This is partially
compliant with the related IETF RFCs [5], [6], [7] about conference policies, as floor control is
not considered as a policy domain in the latter document.

Participation policy should normally contain the list of user identifiers that are authorized
to participate in the conference compiled as a record list. Each participant record could
additionally contain information about the rights of a participant to perform specific actions that
augment the conference membership, such as the right to invite/expell users or to decide
whether a potential participant not listed in the starting roster should be admitted to the
conference. This can be achieved by defining for example access groups, similar to the UNIX
operating systems approach. Each group will by default have predefined rights with regard to
membership actions. Evidently the conference server should enforce access groups by
performing access control prior to each action and by forwarding specific requests to the
members of the appropriate group. For instance consider defining a group of moderators and
assigning it the right to decide whether a newcomer, whose identifier is not listed in the list of
authorized users to join conference, should be granted or denied admission. The conference
server should then enforce the participation policy by forwarding the participant’s join intention
to the group of moderators.

Floor control policy refers to the interaction control protocol that should be used together
with configuration parameters, e.g. human-mediated scheduled floor control, where floor
requests are queued in the conference server and floor decisions are taken by a human entity.
Apparently the floor control protocol of a policy instance should be chosen out of a pool of
protocols that are supported by the conference server. Moreover, the dynamic alteration of the
active floor control policy should be enabled, reflecting the intention to use multiple interaction
control schemes throughout a single conference instance.

The media connectivity graph is specified in the scope of the media policy. As the term
implies the media policy should describe the media connections among the conference
participants and any additional processing that should be applied on particular media streams.
For example the lecturer in an educational conference instance might wish to receive the video
streams from all participants tiled in a single video frame during the whole conference.

2.4 Architectural Considerations

A SIP conferencing architecture needs to be enhanced with additional communication and
storage elements to enable full exploitation of the conference policy concept. A policy
repository (e.g. a database system) could be used to store the policy instances corrersponding to
conference instances. Interaction of a remote client with the policy repository will be provided
via a conference policy server. The latter will serve client requests to perform read/write/update
commands to the repository in a transactional manner. A dedicated protocol between the client
and the conference policy server - termed conference policy control protocol [5] (abbreviated
to CPCP) - needs to be defined for this purpose. Furthermore the conference server has to be
extended with appropriate interfaces in order to retrieve information (also remotely) from the
policy repository and to be notified when policy update transactions occur. An illustrative
representation of the briefly described architecture can be viewed in Figure 2. The components
(protocols, elements, interfaces) drawn with dashed lines are the enhancements that are to be
researched and implemented in the scope of this semester thesis. Note that the preceding system
specification aims to be functional and not to point to specific implementation solutions. For
instance, the conference policy control protocol should not necessarily be drawn up as a text
based message exchanging protocol. Instead, a Remote Procedure Call Protocol or server side
scripting could be deployed (as an illustrative example). The research of implementation
alternatives and the justification of the approach adopted constitutes also a task in the scope of

Appendix A - Aufgabestellung

34

this thesis.

Figure - 2 : SIP Conferencing Architecture enhanced with policy support

 3. Procedure

In this chapter a sequence of tasks is listed that should be completed during this thesis:
• Study related literature starting with the references given in chapter 6. These references
constitute the core documentation in the subject area and do not claim to be exhaustive.
Additional research might prove necessary as the thesis progresses, if new queries arise
during detailed specification or implementation approaches (languages, frameworks etc.)
need to be considered.
• Formally define the conference policy concept using an appropriate description model-
ling language. The attributes of a policy instance are not intended to cover every possible
type of conference, as it would be difficult to include every possible aspect, but rather
reflect the basic set of attributes of a generic conference instance. The collection of policy
instances should be stored in a policy repository.
• Specify formally a server entity (conference policy server) that should accept read/write
requests by a client destined to the repository. The interaction between client and server
will be accommodated through a special purpose conference policy control protocol. It
should be also taken into consideration that the communication between policy repository
and policy control server might be remote and local communication should not be taken
for granted.

Appendix A - Aufgabestellung

35

• Likewise define the interfaces (remote and local) between the conference server and the
policy repository used by the server to retrieve policy information about a specific confer-
ence instance.
• Implement the logical design using appropriately chosen software solutions. The
preferred approaches should be satisfactorily justified in case multiple solutions are
possible.
• Setup a testbed to demonstrate the developed prototype.

4. Important Remarks

• The operating system used for development can be freely selected. For the testbed it is
desirable to use several OSes for the participants of the conference.
• A timeplan for the realization of the semester thesis should be sketched by the end of the
first week and discussed with the supervisor.
• By the end of the thesis you should compose a written report in the form of documenta-
tion of the thesis. The report should be written in english understable by a non-specialist.
Additionally it should contain all the requirements, design decisions and architectural
details.
• The thesis will abstractly be layered into five parts: Literature Study, Requirements
Specification, Design, Implementation (including testing) and Documentation. It is advis-
able to document each phase at its completion time rather than writing the documentation
at once before thesis completion.
• In the midterm of the thesis a short intermediate report should be composed and
reviewed during a meeting with the supervisors. The intermediate report should list the
already achieved tasks and the tasks that are foreseen to have been accomplished by the
end of the thesis. Strictly speaking the intermediate report should comply with a structural
design of the final report (in a bulleted form).
• An ordinary contact (at least once a week) between the student and their supervisor has
to take place via telephone, e-mail, meeting sessions or other means. During these
contacts the progress of the performed work has to be presented and problems should be
discussed. Especially vital is the daily reading of e-mails.

5. Thesis Results

 A fifteen minutes presentation should be given in TIK Institute. The exact date of the
presentation will be specified late in the summer semester. Apart from this presentation, the
following documents should be handed in on thesis completion:

• A detailed technical report ("Bericht") in english. The following topics should be thor-
oughly addressed in this report: a description of the investigated research area, a descrip-
tion of the examined design alternatives together with a detailed reasoning in favor of the
finally selected design approach, a listing of the solved and unsolved problems (together
with the reasons why they haven’t been solved), references to literature, table of contents/
figures/tables and potential appendices (glossary, programming code, state diagrams, call
flow examples etc.). The report should end up with an evaluation of how far the initial
tasks of the thesis have been achieved and whether the initial timeplan was fulfilled. Five

Appendix A - Aufgabestellung

36

copies of the final report should be handed in, all bound and double sided printed. The
technical report should be composed using Framemaker.
• An abstract in both german and english, 1-2 pages long included as a preface in the tech-
nical report. This should contain a quick overview of the performed work. The structure
of the abstract should be in the form: (1) Introduction, (2) Aims & Goals, (3) Results, (4)
Future Work.
• An electronic version of the technical report as well as of all the produced documents
(code documentation, models etc.). Figures contained in the final report have to be educa-
tionally stored as independent data in a custom-selected format (ex. EPS). The material in
electronic form should be either stored on a CD or in a separate directory on an institute’s
server (accounts should then be created for the students).
• Referenced and processed literature, whether in electronic or printed form.
• A handbook of the implemented system that should contain: system overview, descrip-
tion of the implementation (structure), documentation on data structures and description
of test programs. Moreover installation guidelines and potential hardware/software
requirements should be included.
• The complete source code of the system and of the test codes, together with all the neces-
sary libraries/APIs/external programs should be handed in. Respectively for the system
executables and the test programs.

6. Bibliographical References

[1] J. Rosenberg, G. Camarillo et al. (2002), "SIP: Session Initiation Protocol (RFC 3261)",
Internet Engineering Task Force, June 2002.

[2] J. Rosenberg and H. Schulzrinne, "An Offer/Answer Model with the Session
Description Protocol (SDP)", Internet Engineering Task Force, June 2002.

[3] J. Rosenberg and H. Schulzrinne, "Models for Multi Party Conferencing in SIP",
Internet Draft, Internet Engineering Task Force, July 2002.

[4] J. Rosenberg and H. Schulzrinne, "A Session Initiation Protocol (SIP) Event Package
for Conference State", Internet Engineering Task Force, June 2002.

[5] J. Rosenberg, "A Framework for Conferencing with the Session Initiation Protocol",
Internet Engineering Task Force, February 2003.

[6] R. Even, O. Levin et al., "Conferencing media policy requirements", Internet
Engineering Task Force, August 2003

[7] R. Mahy and N. Ismail, "Media Policy Manipulation in the Conference Policy Control
Protocol", Internet Engineering Task Force, February 2003.

Appendix B - Interface Signatures

37

 Appendix B - Interface Signatures

ProvideConferenceStatus Interface
getPartPolicy
public java.lang.String getPartPolicy(java.lang.String confName,
 java.lang.String partName,
 java.lang.String policyName)
 throws java.lang.Exception

Discovers the policy as called in the param policyName that is in force at the conference conf-
Name for the participant partName.

Parameters:
confName - A name of a conference
partName - A name of a participant
policyName - A name of a policy
Returns:
A string containing the use of the policy
Throws:
DBReadException
PartNotFoundException - If the participant has not been found
ConferenceNotFoundException - If the conference is not present
PolicyNotFoundException - If the policy is not present
java.lang.Exception

--

getMediaPolicy
public java.lang.String getMediaPolicy(java.lang.String confName,
 java.lang.String partName,
 java.lang.String mediaName,
 java.lang.String policyName)
 throws java.lang.Exception

Discovers the policy as called in the param policyName that is in force at the conference conf-
Name for the participant pratName It influences the media type named in the mediaName argu-
ment

Parameters:
confName - A name of a conference
partName - A name of a participant
mediaName - A name of a media type (audio, video, whiteboard)
policyName - A name of a policy
Returns:
A string containing the use of the policy
Throws:
DBReadException
PartNotFoundException - If the participant has not been found
ConferenceNotFoundException - If the conference is not present

Appendix B - Interface Signatures

38

MediaPolicyNotFoudnException - If the media policy is not present
PolicyNotFoundException - If the policy is not present
java.lang.Exception

--

getPartState
public java.lang.String getPartState(java.lang.String confName,
 java.lang.String partName,
 java.lang.String stateName)
 throws java.lang.Exception

Discovers a state that is in force at the conference with the name confName

Parameters:
confName - A name of a conference
partName - A name of a participant
stateName - A name of a state
Returns:
A string containing the value of the state
Throws:
DBReadException
PartNotFoundException - If the participant has not been found
ConferenceNotFoundException - If the conference is not present
StateNotFoundException - If the state does not exist
java.lang.Exception

--

getPartMediaState
public java.lang.String getPartMediaState(java.lang.String confName,
 java.lang.String partName,
 java.lang.String mediaName,
 java.lang.String stateName)
 throws java.lang.Exception

Discovers a state that is in force at the conference with the name confName It concerns the me-
dia of the type mediaName

Parameters:
confName - A name of a conference
partName - A name of a participant
mediaName - A name of a media type (audio, video, whiteboard)
Returns:
A string containing the value of the state
Throws:
DBReadException
PartNotFoundException - If the participant has not been found
ConferenceNotFoundException - If the conference is not present
MediaStateNotFoundException - If the media type is not present

Appendix B - Interface Signatures

39

StateNotFoundException - If the state does not exist
java.lang.Exception

--

browseConfState
public java.util.Vector browseConfState(java.lang.String confName)
 throws java.lang.Exception

Discovers all state of a conference (the active participants belong also to the state

Parameters:
confName - A name of a conference
Returns:
A Vector containing the name of the state and its value
java.lang.Exception

--

browseConfMediaState
public java.util.Vector browseConfMediaState(java.lang.String confName,
 java.lang.String mediaName)
 throws java.lang.Exception

Discovers all states of a conference for a specific media type

Parameters:
confName - A name of a conference
mediaName - A name of a media type either audio, video, whiteboard
Returns:
A Vector containing the name of the state and its value. Stored as NameValuePair.
java.lang.Exception

--

browseParticipants
public java.util.Vector browseParticipants(java.lang.String confName)
 throws java.lang.Exception

Discovers all registered users in a conference no matter if they are active or passive

Parameters:
confName - A name of a conference
Returns:
A Vector containing all names of participants
java.lang.Exception

--

browsePolicy

Appendix B - Interface Signatures

40

public java.util.Vector browsePolicy(java.lang.String confName,
 java.lang.String partName)
 throws java.lang.Exception

Discovers all policies of a single participant

Parameters:
confName - The name of the conference
partName - The name of the participant
Returns:
A Vector containing the name of the policy and the use tag as NameValuePair
java.lang.Exception

--

browseMediaPolicy
public java.util.Vector browseMediaPolicy(java.lang.String confName,
 java.lang.String partName,
 java.lang.String mediaName)
 throws java.lang.Exception

Discovers all policies of a certain media type within a single participant

Parameters:
confName - The name of the conference
partName - The Name of the participant
mediaName - The name of the media type
Returns:
A Vector containing the name of the policy and the use tag as NameValuePair
Throws:
MediaPolicyNotFoundException - If the media of the named type does not exist
java.lang.Exception

--

browsePartState
public java.util.Vector browsePartState(java.lang.String confName,
 java.lang.String partName)
 throws java.lang.Exception

Discovers all states of a participant

Parameters:
confName - The name of the conference
partName - The Name of the participant
Returns:
A Vector containing the name of the state and the value as NameValuePair
java.lang.Exception

--

Appendix B - Interface Signatures

41

browsePartMediaState
public java.util.Vector browsePartMediaState(java.lang.String confName,
 java.lang.String partName,
 java.lang.String mediaName)
 throws java.lang.Exception

Discovers all states of a participant within a media type

Parameters:
confName - The name of the conference
partName - The Name of the participant
mediaName - The Name of the media type
Returns:
A Vector containing the name of the state and the value as NameValuePair
Throws:
MediaStateNotFoundException - If the media type is not present
java.lang.Exception

--

AdministrationInterface Interface
setUsePartPolicy
public void setUsePartPolicy(java.lang.String focusName,
 java.lang.String password,
 java.lang.String confName,
 java.lang.String partName,
 java.lang.String policyName,
 java.lang.String use)
 throws java.lang.Exception

Sets the use tag of a policy of an participant in a conference. If the policy join is set from y to n
then the participant state of the participant named partName is removed, and the conference
server method confStateChanged is executed so the conference server is notified.

Parameters:
focusName - a name to identify the administrator
password - a string to identify the administrator
confName - a name of a conference
partName - a name of a participant
policyName - a name of a policy
use - a string containing the use y or n
Throws:
conf.confController.element.ConferenceNotFoundException - if the conference is not present
conf.confController.element.PartNotFoundException - if the participant that should be edited
or the administrator has not been found
conf.confController.PasswordException - if the password is wrong
conf.confController.NoRightException - if the administrator has not got the right to change the
information

Appendix B - Interface Signatures

42

OutOfRangeException - if the use argument is not y or n
PolicyNotFoundException - if the policy is not present
java.lang.Exception

--

setUseMediaPolicy
public void setUseMediaPolicy(java.lang.String focusName,
 java.lang.String password,
 java.lang.String confName,
 java.lang.String partName,
 java.lang.String mediaName,
 java.lang.String policyName,
 java.lang.String use)
 throws java.lang.Exception

Sets the use tag of a media policy of a participant in a conference.

Parameters:
focusName - a name to identify the administrator
password - a string to identify the administrator
confName - a name of a conference
partName - a name of a participant
mediaName - the name of the media type the policy is within.
policyName - a name of a policy
use - a string containing the use y or n
Throws:
conf.confController.PasswordException - if the password is wrong
conf.confController.NoRightException - if the administrator has not got the right to change the
information
OutOfRangeException - if the use argument is not y or n
conf.confController.element.ConferenceNotFoundException - if the conference is not present
conf.confController.element.PartNotFoundException - if the participant that should be edited
or the administrator has not been found
MediaPolicyNotFoundException - if the media type is not available
PolicyNotFoundException - if the policy is not present
java.lang.Exception

--

getRwPartPolicy
public java.lang.String getRwPartPolicy(java.lang.String focusName,
 java.lang.String password,
 java.lang.String confName,
 java.lang.String partName,
 java.lang.String policyName)
 throws java.lang.Exception

Returns the RW tag of a policy of a participant in a conference, if the asking participant has the
right to get it.

Appendix B - Interface Signatures

43

Parameters:
focusName - a name to identify the administrator
password - a string to identify the administrator
confName - a name of a conference
partName - a name of a participant
policyName - a name of a policy
Returns:
a string containing the rw tag
Throws:
conf.confController.PasswordException - if the password is wrong
conf.confController.NoRightException - if the administrator has not got the right to change the
information
conf.confController.element.ConferenceNotFoundException - if the conference is not present
conf.confController.element.PartNotFoundException - if the participant that should be edited
or the administrator has not been found
PolicyNotFoundException - if the policy is not present
java.lang.Exception

--

getRwMediaPolicy
public java.lang.String getRwMediaPolicy(java.lang.String focusName,
 java.lang.String password,
 java.lang.String confName,
 java.lang.String partName,
 java.lang.String mediaName,
 java.lang.String policyName)
 throws java.lang.Exception

Returns the RW tag of a policy that is for a media of a participant in a conference, if the asking
participant has the right to do that.

Parameters:
focusName - a name to identify the administrator
password - a string to identify the administrator
confName - a name of a conference
partName - a name of a participant
mediaName - the name of the media type rw attribute is placed
policyName - a name of a policy
Returns:
a string containing the rw tag
Throws:
conf.confController.PasswordException - if the password is wrong
conf.confController.NoRightException - if the administrator has not got the right to change the
information
conf.confController.element.ConferenceNotFoundException - if the conference is not present
conf.confController.element.PartNotFoundException - if the participant that should be edited
or the administrator has not been found
MediaPolicyNotFoundException - if the media type is not available.

Appendix B - Interface Signatures

44

PolicyNotFoundException - if the policy is not present
java.lang.Exception

--

setRwPartPolicy
public void setRwPartPolicy(java.lang.String focusName,
 java.lang.String password,
 java.lang.String confName,
 java.lang.String partName,
 java.lang.String policyName,
 java.lang.String rw)
 throws java.lang.Exception

Sets the RW tag of a policy of a participant in a conference, if the asking participant has got the
right to do that.

Parameters:
focusName - a name to identify the administrator
password - a string to identify the administrator
confName - a name of a conference
partName - a name of a participant
policyName - a name of a policy
rw - a string containing the new content of the rw tag y or n
Throws:
conf.confController.PasswordException - if the password is wrong
conf.confController.NoRightException - if the administrator has not got the right to change the
information
OutOfRangeException - if the use argument is not y or n
conf.confController.element.ConferenceNotFoundException - if the conference is not present
conf.confController.element.PartNotFoundException - if the participant that should be edited
or the administrator has not been found
PolicyNotFoundException - if the policy is not present
java.lang.Exception

--

setRwMediaPolicy
public void setRwMediaPolicy(java.lang.String focusName,
 java.lang.String password,
 java.lang.String confName,
 java.lang.String partName,
 java.lang.String mediaName,
 java.lang.String policyName,
 java.lang.String rw)
 throws java.lang.Exception

Sets the RW tag of a media policy of a participant in a conference, if the asking participant has
the right to do that.

Appendix B - Interface Signatures

45

Parameters:
focusName - a name to identify the administrator
password - a string to identify the administrator
confName - a name of a conference
partName - a name of a participant
mediaName - the name of the media type the policy is stored in
policyName - a name of a policy
rw - a string containing the new content of the rw tag y or n
Throws:
conf.confController.PasswordException - if the password is wrong
conf.confController.NoRightException - if the administrator has not got the right to change the
information
OutOfRangeException - if the use argument is not y or n
conf.confController.element.ConferenceNotFoundException - if the conference is not present
conf.confController.element.PartNotFoundException - if the participant that should be edited
or the administrator has not been found
MediaPolicyNotFoundException - if the media of the named type does not exist
PolicyNotFoundException - if the policy is not present
java.lang.Exception

--

setConfState
public void setConfState(java.lang.String focusName,
 java.lang.String password,
 java.lang.String confName,
 java.lang.String stateName,
 java.lang.String value)
 throws java.lang.Exception

Sets the state of a conference, if the administrator has got the oblige rights. The conference serv-
er method confStateChanged is executed to inform the conference server.

Parameters:
focusName - a name to identify the administrator
password - a string to identify the administrator
confName - a name of a conference
stateName - a name of a participant
value - a string containing the new content of the state
Throws:
conf.confController.PasswordException - if the password is wrong
conf.confController.NoRightException - if the administrator has not got the right to change the
information
conf.confController.element.ConferenceNotFoundException - if the conference is not present
conf.confController.element.PartNotFoundException - if the participant that should be edited
or the administrator has not been found
PolicyNotFoundException - if the policy corresponding to the state is not present
StateNotFoundException - if the state is not present
java.lang.Exception

Appendix B - Interface Signatures

46

--

activateParticipant
public void activateParticipant(java.lang.String focusName,
 java.lang.String password,
 java.lang.String confName,
 java.lang.String partName)
 throws java.lang.Exception

Activates a participant by inserting it into the conference states. The conference server method
confStateChanged is executed so the conference server is notified.

Parameters:
focusName - A name to identify the administrator
password - A string to identify the administrator
confName - A name of a conference
partName - The name of the participant, that should be activated
Throws:
conf.confController.element.ConferenceNotFoundException - if the conference is not present
conf.confController.element.PartNotFoundException - if the participant that should be added or
the administrator has not been found
java.lang.Exception

--

setPartState
public void setPartState(java.lang.String focusName,
 java.lang.String password,
 java.lang.String confName,
 java.lang.String partName,
 java.lang.String stateName,
 java.lang.String value)
 throws java.lang.Exception

Sets the state of a participant if the administrator has got the rights. The conference server meth-
od partStateChanged is executed to inform the conference server about the changes.

Parameters:
focusName - A name to identify the administrator
password - A string to identify the administrator
confName - A name of a conference
partName - A name of a participant
stateName - A name of a participant
value - A string containing the new content of the state
Throws:
conf.confController.PasswordException - If the password is wrong
conf.confController.NoRightException - If the administrator has not got
conf.confController.element.ConferenceNotFoundException - if the conference is not present
conf.confController.element.PartNotFoundException - if the participant that should be added or
the administrator has not been found

Appendix B - Interface Signatures

47

PolicyNotFoundException - If the corresponding policy is not present.
StateNotFoundException - if the state is not present
java.lang.Exception

--

setPartMediaState
public void setPartMediaState(java.lang.String focusName,
 java.lang.String password,
 java.lang.String confName,
 java.lang.String partName,
 java.lang.String mediaName,
 java.lang.String stateName,
 java.lang.String value)
 throws java.lang.Exception

Sets the media state of a participant if the administrator has got the rights. The conference server
method confMediaStateChanged is called to inform the conference server.

Parameters:
focusName - a name to identify the administrator
password - a string to identify the administrator
confName - a name of a conference
partName - a name of a participant
mediaName - a name pointing to the type of media the state is saved within
stateName - a name of a participant
value - a string containing the new content of the state
Throws:
conf.confController.PasswordException - if the password is wrong
conf.confController.NoRightException - if the administrator has not got
conf.confController.element.ConferenceNotFoundException - if the conference is not present
conf.confController.element.PartNotFoundException - if the participant that should be added or
the administrator has not been found
MediaStateNotFoundException - if the media of type mediaType is not present
PolicyNotFoundException - if the corresponding policy is not present
StateNotFoundException - if the state is not present
java.lang.Exception

--

setConfMediaState
public void setConfMediaState(java.lang.String focusName,
 java.lang.String password,
 java.lang.String confName,
 java.lang.String mediaName,
 java.lang.String stateName,
 java.lang.String value)
 throws java.lang.Exception

Appendix B - Interface Signatures

48

Sets the state of a conference if the administrator has got the rights. The conference server meth-
od confMediaStateChanged called to inform the conference server.

Parameters:
focusName - a name to identify the administrator
password - a string to identify the administrator
confName - a name of a conference
mediaName - it contains the name of the media type the state is situated
stateName - a name of a participant
value - a string containing the new content of the state
Throws:
conf.confController.PasswordException - if the password is wrong
conf.confController.NoRightException - if the administrator has not got the right to change the
information
conf.confController.element.ConferenceNotFoundException - if the conference is not present
conf.confController.element.PartNotFoundException - if the participant that should be added or
the administrator has not been found
PolicyNotFoundException - if the corresponding policy is not present
MediaStateNotFoundException - if the media of type mediaType is not present
StateNotFoundException - if the state is not present
java.lang.Exception

--

openConference
public void openConference(java.lang.String rootPassword,
 java.lang.String confTemplateName,
 java.lang.String confName)
 throws java.lang.Exception

Creates a new conference out of a template and saves it as a conference with confName. The
conference server method conferenceOpened is called to inform the conference server.

Parameters:
rootPassword - the root password
confTemplateName - the name of the template the conference is built after
confName - the sip name of the conference
Throws:
conf.confController.PasswordException - if the password is wrong
conf.confController.Conference

AlreadyExistException - if a conference with the same is already stored in the database
conf.confController.element.ConferenceNotFoundException - if the conference template you
have given does not exist
java.lang.Exception

--

closeConference
public void closeConference(java.lang.String rootPassword,

Appendix B - Interface Signatures

49

 java.lang.String confName)
 throws java.lang.Exception

Removes the conference entrance in the database. The conference server method conference-
Closed is executed to inform the conference server.

Parameters:
rootPassword - the root password
confName - the sip name of the conference.
Throws:
conf.confController.element.ConferenceNotFoundException - if the conference that should be
deleted is not present
conf.confController.PasswordException - if the password is wrong.
java.lang.Exception

--

addParticipant
public void addParticipant(java.lang.String focusName,
 java.lang.String password,
 java.lang.String confName,
 java.lang.String partName,
 java.lang.String partPassword,
 java.lang.String partTemplateName)
 throws java.lang.Exception

This function adds a participant to the conference if either the rootPassword is given or the ad-
ministrator has got the right to invite people.

Parameters:
focusName - a name to identify the administrator
password - a string to identify the administrator
confName - a name of a conference
partName - the name the created participant will have
partTemplateName - the name of the template the participant is a copy of
Throws:
conf.confController.PasswordException - if the password is wrong
conf.confController.NoRightException - if the administrator has not got the right to add a par-
ticipant
conf.confController.element.ConferenceNotFoundException - if the conference is not present
conf.confController.element.PartNotFoundException - if the administrator is not found or the
participant template is not present
conf.confController.ParticipantAlreadyPresentException - if a particiapnt with partName is al-
ready registered in the conference
java.lang.Exception

--

removeParticipant
public void removeParticipant(java.lang.String rootPassword,

Appendix B - Interface Signatures

50

 java.lang.String confName,
 java.lang.String partName)
 throws java.lang.Exception

Removes a participant entrance in the database. Regard! If the participant is active it is not de-
activated.

Parameters:
rootPassword - the root password
confName - The sip name of the conference where the participant, that should be removed is
situated.
partName - the name of the participant that
Throws:
conf.confController.PasswordException - if the password is wrong
conf.confController.element.ConferenceNotFoundException - if the conference is not present
java.lang.Exception

--

openSideBar
public void openSideBar(java.lang.String focusName,
 java.lang.String password,
 java.lang.String confName,
 java.lang.String sideBarName,
 java.lang.String confTemplateName)
 throws java.lang.Exception

Creates a new sidebar, if the focus has got the right. It inserts the focusName as first user with
all possible rights. The method sideBarOpened from the conference server is called to notify it.

Parameters:
focusName - the user that likes to create a new side bar
password - the password to identify the administrator
confName - the name of the conference the side bar belongs to.
sideBarName - the name the side bar should have.
confTemplateName - the name of the template the sidebar will be a copy of.
Throws:
conf.confController.PasswordException - if the password is wrong.
conf.confController.NoRightException - if the openSideBar right is not turned on for the ad-
ministrator.
conf.confController.element.PartNotFoundException - if the administrator is not found
conf.confController.element.ConferenceNotFoundException - if the conference template is not
found.
conf.confController.ConferenceAlreadyExistException - if a conference or side bar with that
name already exist. Note that it is not possible to have a conference and a sideBar with the same
name simultaneously.
java.lang.Exception

--

Appendix B - Interface Signatures

51

closeSideBar
public void closeSideBar(java.lang.String focusName,
 java.lang.String password,
 java.lang.String sideBarName)
 throws java.lang.Exception

This function removes a sidebar either if the rootPassword is given or the focus has got the right
to open a side bar, within the sidebar itself. The method sideBarClosed of the conference server
is executed to inform the conference server.

Parameters:
focusName - the participant that likes to close the sideBar
password - the password of the participant, needed to identify him.
sideBarName - the name of the sideBar that should be removed
Throws:
PartNotFoundExeption - if the participant that likes to close the sideBar has not been found.
conf.confController.PasswordException - if the password is wrong.
conf.confController.NoRightException - if the openSideBar right is not turned on for the ad-
ministrator.
conf.confController.element.ConferenceNotFoundException - if the sidebar is not present
java.lang.Exception

--

Conference Server Interface
confStateChanged
public void confStateChanged(java.lang.String confName,
 java.lang.String name,
 java.lang.String value,
 java.lang.String typeOfAction)
 throws java.io.IOExceptionThis function receives the notification that a conference
state has change.

Parameters:
confName - a String containing the conference name
name - a String containing the name of the state
value - a String containing the new value of the state, if it has been deleted it is empty
typeOfAction - a String indicating the type of action. It contains either a, c, or r. a for added, c
for changed and r for removed.
java.io.IOException

--

confPartStateChanged
public void confPartStateChanged(java.lang.String confName,
 java.lang.String partName,
 java.lang.String name,
 java.lang.String value,
 java.lang.String typeOfAction)

Appendix B - Interface Signatures

52

 throws java.io.IOExceptionThis function receives the notification that a participant
member state has change

Parameters:
confName - a String containing the conference name
partName - a String containing the participant, where the state has changed
name - a String containing the name of the state
value - a String containing the new value of the state, if it has been deleted it is empty
typeOfAction - a String indicating the type of action. It contains either a, c, or r. a for added, c
for changed and r for removed.
java.io.IOException

--

confPartMediaStateChanged
public void confPartMediaStateChanged(java.lang.String confName,
 java.lang.String partName,
 java.lang.String mediaName,
 java.lang.String name,
 java.lang.String value,
 java.lang.String typeOfAction)
 throws java.io.IOExceptionThis function receives the notification that a
participant media state has change

Parameters:
confName - a String containing the conference name
partName - a String containing the participant, where the state has changed
mediaName - a String containing the type of the media, the state is situated
name - a String containing the name of the state
value - a String containing the new value of the state, if it has been deleted it is empty
typeOfAction - a String indicating the type of action. It contains either a, c, or r. a for added, c
for changed and r for removed.
java.io.IOException

--

confMediaStateChanged
public void confMediaStateChanged(java.lang.String confName,
 java.lang.String mediaName,
 java.lang.String name,
 java.lang.String value,
 java.lang.String typeOfAction)
 throws java.io.IOExceptionThis function receives the notification that a con-
ference media state has change

Parameters:
confName - a String containing the conference name
mediaName - a String containing the type the state has been changed within
name - a String containing the name of the state
value - a String containing the new value of the state, if it has been deleted it is empty

Appendix B - Interface Signatures

53

typeOfAction - a String indicating the type of action. It contains either a, c, or r. a for added, c
for changed and r for removed.
java.io.IOException

--

conferenceOpened
public void conferenceOpened(java.lang.String confTemplateName,
 java.lang.String confName)
 throws java.io.IOExceptionThis function receives the notification that conference
has opened.

Parameters:
confTemplateName - he name of the template the conference is built after
confName - he SIP-URI of the conference
java.io.IOException

--

conferenceClosed
public void conferenceClosed(java.lang.String confName)
 throws java.io.IOExceptionThis function receives the notification that a conference
has closed.

Parameters:
confName - the SIP-URI of the conference
java.io.IOException

--

sideBarOpened
public void sideBarOpened(java.lang.String confName,
 java.lang.String sideBarName,
 java.lang.String confTemplateName)
 throws java.io.IOExceptionThis function receives the notification that a side bar has
opened.

Parameters:
confName - the name of the conference the side bar belongs to.
sideBarName - the SIP-URI of the side bar
confTemplateName - the name of the template the initial sidebar will be a copy of
java.io.IOException

--

sideBarClosed
public void sideBarClosed(java.lang.String sideBarName)
 throws java.io.IOExceptionThis function receives the notification that a side bar has
closed.

Appendix B - Interface Signatures

54

Parameters:
sideBarName - the SIP-URI of the side bar
java.io.IOException

--

Appendix C - Installation Instructions

55

 Appendix C - Installation Instructions
The policy server uses the Java Xerces implementation to access the XML database file and a
SOAP implementation for the communication between the policy server and the rest of the com-
ponents presented in Figure 2, namely the conference server and the participant agents.

Installation of the external components

Installation of the Xerces Java 2 package
URL: http://xml.apache.org/dist/xerces-j/
CD: /cdrom/xerces-j/

• Copy the Xerces-J-bin.1.4.4.zip into the xerces root directory
You can extract the zip files using the Java jar command.

 jar xf Xerces-J-src.1.4.4

• Add the local path of the extracted jar files to your classpath environment variable

Installation of SOAP v2.3 package
URL: http://xml.apache.org/dist/soap/
CD: /cdrom/soap/

• Unpack soap-bin-2.3.tar.gz or soap-bin-2.3.zip into a desired directory
You can use the following command on unix like systems:

 gzip soap-bin-2.3.tar.gz
 tar -xvf soap-bin-2.3.tar.gz

mail.jar URL: http://java.sun.com/products/javamail/
activation.jar URL: http://java.sun.com/products/beans/glasgow/jaf.html
mail.jar CD: /cdrom/soap/javamail/
activation.jar CD: /cdrom/soap/jaf-1.0.2/

• Copy mail.jar and activation.jar into a desired directory
• Assuming that you extracted the soap-bin.2.3.tar.gz into the absolute path foo, add to
your classpath environment variable the paths foo/soap-2_3/lib/soap.jar, mail.jar and
activation.jar

Installation of package tomcat v3.2
URL: http://jakarta.apache.org
CD: /cdrom/tomcat/

• Copy jakarta-tomcat-3.2.4.zip for Windows or jakarta-tomcat-3.2.4.tar.gz for Unix
systems into a desired directory and unpack it.
• Assuming that you unpacked the compressed file into directory foo:

- If you use windows, then line 69 of foo/jakarta-tomcat-3.2.4/bin/tomcat.bat should
 look like this

set CLASSPATH=path-to-xerces\xercesImpl.jar;%CLASSPATH%;%

- If use a Unix-like system, then add the following line to foo/
jakarta-tomcat-3.2.4/bin/tomcat.sh after line 113 (or there about, as long as it
is before the export line):

Appendix C - Installation Instructions

56

CLASSPATH=path-to-xerces/xercesImpl.jar:{CLASSPATH}

• Copy the file soap.war located in foo/soap-2_3/webapps/soap.war relatively to the
SOAP root directory into the directory foo/jakarta-tomcat-3.2.4/webapps relatively to
the root tomcat directory.
• You should be now be able to list/deploy/undeploy services by pointing your browser
to http://hostname:port/soap

Installation of the Policy Server
• Unpack confController-src.1.0.tar.gz - or confController-src.1.0.zip if you are
installing the Server in a Windows environment - into a desired directory.
• Change into the directory confController relatively to the installation directory.
• Build the code by running the make command.
• Copy the files that implement the simple web interface from the directory confCon-
troller/servletContainer into the directory of your web browser, where Java
Servlets are expected to be found by the browser.
• Add the directory confController to your classpath

Starting the “Policy Server” Service
• Start tomcat by executing the start up script (startup.sh or startup.bat for Windows or
Unix respectively), ensuring that the classpath is set as recommended above.

Deploying the Services
• Make sure that the current working directory is confController. Subsequently give the
following commands on the command line:

%>java org.apache.soap.server.ServiceManagerClient \
http://hostname:port/soap/servlet/rpcrouter deploy \
DeploymentDescriptor.xml

%>java org.apache.soap.server.ServiceManagerClient \
http://hostname:port/soap/servlet/rpcrouter deploy \
DeploymentDescriptorAI.xml

• As a last step you have to deploy the services implementing the functions on the Con-
ference Server.

Configuration of application properties
• The paths to the database files in the file confController.conf in the directory
confController have to be set as follows:

database=path-of-confController/confController/db/policy.xml
databaseConfTemplateFile=path-of-confController/confController/ \
db/conference.template.xml
databasePartTemplateFile=path-of-confController/confController/ \
db/participant.template.xml
serviceName=urn:conferenceServerServiceName

Appendix C - Installation Instructions

57

• The configuration file admin.conf of the simple web interface in the directory
where the corresponding servlets are hosted must be configure as follows:

conferenceServerHost=hostname:port
serviceNameAdministrationInterface=urn:confControllerAdmin
serviceNameProvideConferenceStatus=urn:confControllerStatus

