
Report

On the Approximation of Unit Disk Graph

Coordinates

Thomas Rusterholz

tr@student.ethz.ch

Supervisors: Fabian Kuhn, Roger Wattenhofer

{kuhn,wattenhofer}@inf.ethz.ch
Department of Computer Science, ETH Zurich, 8092 Zurich, Switzerland

October 21, 2003

Abstract

In this paper we study a problem occuring in the context of geometric
routing algorithms for mobile ad-hoc networks: Finding unit disk graph
coordinates given a graph G = (V, E). Based on a proof that recognition
of unit disk graphs is an NP-hard problem, we show that the problem
of finding unit disk graph coordinates given a graph G = (V, E) is NP-
hard. Subsequently, we show that the proof does not extend to quasi
unit disk graphs, a generalization of unit disk graphs. We give an exact
formulation of the problem of finding unit disk graph coordinates in terms
of a quadratic feasibility problem and explore different approximations in
terms of linear programs, quadratic programs and semidefinite programs.

1 Introduction

A Unit Disk Graph (UDG) G = (V, E) is a graph where each node u ∈ V has
a position in the plane such that for any two nodes u, v ∈ V there is an edge
e = (u, v) ∈ E if and only if the Euclidean distance between u and v is less than
or equal to 1.

Equivalently, the unit disk graph may be defined as the intersection graph
of a set of unit diameter disks in the plane. Each node corresponds to a disk in
the plane, and two nodes are adjacent in the graph if the corresponding disks
intersect.

One particular application of unit disk graphs occurs in the emerging field
of mobile ad-hoc networks : In the UDG model for mobile ad-hoc networks, each

1

node has a geometric location and a transmission range—a disk centered at this
node with fixed communication radius. It is assumed that all disks share the
same communication radius. Two nodes can communicate directly if and only if
they are in mutual transmission range i.e. their Euclidean distance is less than
or equal to the communication radius.

As with traditional networks, the routing problem arises if two nodes cannot
communicate directly. In this case their messages need to be relayed through
a series of intermediate nodes. Since the topology of an ad-hoc network is
dynamically changing, standard routing schemes which are used in traditional
wired networks are not applicable for ad-hoc networks.

Recently, new routing algorithms have been developed to efficiently perform
in the UDG model (see [2, 3, 4]). These are so called geometric routing algo-
rithms requiring a unit disk graph with associated node positions as input.

In practical mobile ad-hoc networks, however, most often only connectivity
information about the network is given but the positions of the nodes are un-
known. The target of this project was to develop efficient algorithms to assign
coordinates to the nodes in order to realize the network graph. This is equal to
the problem of finding a UDG-realization given a graph G = (V, E).

2 Mathematical Preliminaries

2.1 Convex Functions

For an introduction to convexity and its applications in optimization, see [7].
For a more advanced treatment of the topic the reader is referred to [8, 9].

Definition 2.1. (Convex Set) A (point-)set K is called convex if for any two
points p1 and p2 with p1 ∈ K, p2 ∈ K all points

λp1 + (1 − λ)p2 (0 ≤ λ ≤ 1)

belong to K, i.e all points on the line between p1 and p2 belong to K.

Definition 2.2. (Convex Function) A function f : K → R from a convex
set K to the set R of real numbers is called convex if for any two points x1 and
x2 from K the following holds:

f(λx1 + (1 − λ)x2) ≤ λf(x1) + (1 − λ)f(x2)

with (0 ≤ λ ≤ 1), i.e. if the set {(x, y)| x ∈ K, y ≥ f(x)} is convex.

Definition 2.3. (Concave Function) A function f : K → R is called concave
if g = −f is a convex function.

2

2.2 Optimization Theory

For an introduction to optimization, see [7]. Again, a much deeper discussion
may be found in [8, 9] (many practical examples are found in [9]).

Definition 2.4. (Optimization Problem) The general optimization problem
is given by

max f(x1, . . . , xn)

subject to gi(x1, . . . , xn) ≤ 0 i = 1, . . . , m

xj ≥ 0 j = 1, . . . , n.

The f and gi are functions in the variables x1, . . . , xn.

Definition 2.5. (Feasibility Problem) In the feasibility problem correspond-
ing to an optimization problem the objective function f is equal to 0. Solving
the feasibility problem means to find values (“feasible values”) for the variables
x1, . . . , xn to satisfy all constraints gi .

Definition 2.6. (LP) A LP (Linear Program) is an optimization problem
where the f and gi are linear.

Definition 2.7. (QP) A QP (Quadratic Program) is an optimization problem
where f is quadratic and the gi are linear.

Definition 2.8. (QCQP) A QCQP (Quadratically Constrained Quadratic Pro-
gram) is an optimization problem where the f and gi are both quadratic.

Definition 2.9. (Convex Optimization Problem) An optimization problem
is called convex if the function f is concave under maximization and convex
under minimization, respectively. The functions gi are required to be convex in
both cases.

The following lemmas are given without proof (A proof may be found in [8]):

Lemma 2.1. The feasible region of every set of linear constraints is convex.

Lemma 2.2. For any convex optimization problem, a local optimum of f is
the global optimum of f .

3

3 Unit Disk Graph Realization is NP-hard

In [5] SATISFIABILITY was reduced to the problem of recognizing unit disk
graphs, showing that the decision problem asking if a given graph has a UDG-
realization is NP-hard. It can be shown that the corresponding optimization
problem of finding such a UDG-realization is NP-hard by reduction.

Figure 1: Reduction scheme for deriving a lower bound for problem U of un-
known complexity by reduction from problem K of known complexity.

Lemma 3.1. Unit disk graph realization is NP-hard

Proof. The problem K of known complexity is the decision problem asking if
a given graph has a UDG-realization. We know that K is NP-hard. Let the
problem U of unknown complexity be the problem of finding a UDG-realization
for a given graph.

The input transformation function s does nothing but pass on the input data
it receives. I* = I , see Figure 1. Both problem types K and U require the same
kind of input, an arbitrary graph G = (V, E).

The output transformation maps the output O* of U to a yes/no-answer. It
checks if the output O* received from U constitutes a valid UDG-realization.
This can be done in time O

(

n2
)

where n = |V |: If for all tuples (vi, vj) ∈ E, the
distance between vi and vj is ≤ 1 and for all tuples (vi, vj) /∈ E, the distance
between vi and vj is > 1, return yes (the graph has a UDG-realization), else
return no (the graph does not have a UDG-realization).

If O* is a UDG-realization, the input graph G = (V, E) has a UDG-realization.
If the output O* does not realize the graph, the graph does not have a UDG-
realization because otherwise, the algorithm solving U (find a UDG-realization
for a given graph G = (V, E)) would have found it.

4

4 The Original Proof

The aim of this section is to show that the proof in [5], although it works well
for unit disk graphs, does not work if a graph class with a definition that differs
only slightly from the unit disk graph definition is considered. For this reason,
we define the notion of the quasi unit disk graph (Quasi-UDG) as introduced in
[1]:

Definition 4.1. (Quasi Unit Disk Graph) Let V ⊂ R
2 be a set of points in

the 2-dimensional plane and d ∈ [0, 1] be a parameter. The symmetric Euclidean
graph (V, E), such that for any pair u, v ∈ V

- (u, v) ∈ E if |uv| ≤ d and

- (u, v) /∈ E if |uv| > 1,

is called a Quasi Unit Disk Graph (Quasi-UDG) with parameter d.

In the following, we give an outline of the proof. We then give some details
on key statements of the proof, on the components of a graph called GC and
their building blocks in particular. We show that these building blocks do not
work for Quasi-UDGs and that, as a consequence, the components of the proof
do not work as expected.

4.1 Proof Outline

This section gives a sketch of the proof in [5] reducing SATISFIABILITY to
unit disk graph recognition. For further details we refer the reader to [5].

Given an instance C of SATISFIABILITY, a graph GC = (VC , EC) is con-
structed such that GC has a UDG-realization if and only if C is satisfiable. It
is assumed that w.l.o.g. each clause in C contains at most three literals and
each variable appears in at most three clauses. The graph GC is built in sev-
eral stages. First, a graph GSAT

C is constructed that corresponds closely to the
instance C of SATISFIABILITY: The nodes of the graph correspond to the
clauses, variables and negated variables. The nodes corresponding to variables
and negated variables are called literal nodes. There is an edge between a lit-
eral node and a clause node if the literal appears in the clause. A notion of
orientability is defined for this graph and it is proved that it is orientable if and
only if C is satisfiable.

The next step considers a canonical drawing of this graph on the grid: A
grid with polynomial size in the number of variables and clauses of the SATIS-
FIABILITY instance C is constructed. Each of the nodes of the grid is either
unused, or is associated with a unique component of the drawing. There are
three groups of components: communication components, literals, and clauses.
There are three different groups of communication components: wires, corners,
and cross-overs. The communication components serve to connect the appro-
priate literals and clauses. A wire is a unit length line segment passing through
a grid node, a corner is two half-length line segments meeting a right angles

5

at a grid node, and a cross-over is two unit length line segments crossing at
right angles on a grid node. Each component in the drawing has one to four
points where they can be connected to other components. These connection
points are called terminals. The number of terminals is according to the degree
of the component in GSAT

C . The terminals on the top, bottom, left and right
side are called T , B, L and R terminals respectively. Two components in the
drawing are adjacent if they have coincident terminals. A complimentary pair
of literals is considered to be a single truth setting component, there are no
terminals between them. An orientation of a terminal is a direction N , S, E,
or W . A terminal T (resp. B, L, R) is directed away from its component if it
is oriented N (resp. S, W , E) and is directed towards its component otherwise.
A grid drawing is said to be orientable if all terminals can be oriented subject
to conditions:

draw1: only terminals adjacent to vertical line segments are directed N or S,

draw2: only terminals adjacent to horizontal line segments are directed E or
W ,

draw3: every wire, corner, cross-over line segment, and clause has at least one
terminal directed away from it,

draw4: every truth setting component has a literal component wit all terminals
directed away from it.

It is then proved that the grid drawing is orientable if and only if the underlying
graph is orientable.

Finally, GC is formed by simulating components of the grid drawing. A
graph component is created for each grid drawing component: wires, corners,
cross-overs, truth-setters, and clauses. Each of these graph components has
terminals corresponding to the grid drawing terminals T , B, L and R. The
graph GC is constructed by connecting every pair of components adjacent in the
grid drawing together by identifying appropriate terminals, by label. Terminal
T (resp. B, L, R) should be identified with an adjacent B (resp. T , R, L)
terminal.

Subsequently, it is shown that GC has a UDG-realization if and only if the
underlying grid drawing is orientable.

The proof is finished by showing that the entire reduction can be executed
in polynomial time.

4.2 Graph Components

In the following, the building blocks are described from which the various graph
components are composed: These building blocks consist of cycles (“cages”)
with additional independent nodes (“beads”). A bead is attached to two nodes
(a “hinge”) of a cage by a short path through another node (“chain”). Such a
cage looks like the one in Figure 2. The maximum number of independent beads
that can be embedded inside a cage in any UDG-realization is called capacity.

6

The capacity is constant and depends only on the number of nodes on the cycle.
A bead embedded inside a cage diminishes its remaining capacity. It thereby
displaces other beads, which may otherwise have been embedded inside the cage.
This is the basic mechanism for propagating information in a UDG-realization
of GC .

The following lemma must hold in order for the notion of a node being
embedded inside a cage to be well defined:

Lemma 4.1. Let e1 = (u1, v1) and e2 = (u2, v2) be two intersecting edges in a
UDG G = (V, E). Then the subgraph induced by {u1, v1, u2, v2} contains K3 as
a subgraph.

Proof. Suppose that e1 = (u1, v1) and e2 = (u2, v2) cross at m. Let |uv| denote
the distance between point u and point v. Then

|u1u2| + |v1v2| ≤ (|u1m| + |mu2|) + (|v1m| + |mv2|)
= (|u1m| + |v1m|) + (|mu2| + |mv2|)
= |u1v1| + |u2v2| ≤ 1 + 1 = 2

Therefore |u1u2| ≤ 1 or |v1v2| ≤ 1. Similarly, |u1v2| ≤ 1 or |v1u2| ≤ 1. Any of
the four possibilities implies a K3 subgraph.

However, for Quasi-UDGs with parameter 1/
√

2 ≤ d < 1, Lemma 4.1 does
not hold anymore. Instead, the following holds (Lemma 4.2 is proved in [1]):

Lemma 4.2. Let e1 = (u1, v1) and e2 = (u2, v2) be two intersecting edges in
a Quasi-UDG G with parameter d ≥ 1/

√
2. Then at least one of the edges

(u1, u2), (u1, v2), (v1, u2) and (v1, v2) exists in G.

Similar arguments hold for the cage capacities. A n-cage is defined as a cage
with a capacity for n beads. The capacities of cages with up to 10 nodes can
be verified by considering the optimal disk packings in Figure 3: A 6-node cage
cannot contain a bead, an 8-node cage cannot contain two beads, a 9-node cage
cannot contain three beads, and a 10-node cage cannot contain four beads.

Note however that for Quasi-UDGs and any parameter d < 1, each of the
packings adds capacity at least one.

The graph components do only work as long as beads embedded in one cage
force other beads into different cages the way it was intended. For d < 1, too

Figure 2: A cage with two embedded independent beads (black nodes) on two
chain nodes.

7

many beads may be embedded in one cage and the graph components do not
behave as expected. It may however be possible to overcome this problem by
adjusting the cage sizes depending on d.

In Subsection 4.1, conditions draw1−4 are described for a grid drawing to
be orientable. The graph GC has a UDG-realization if and only if the underlying
grid drawing is orientable. In the following example, we show that for Quasi-
UDGs with parameter d = 1/

√
2 it is possible for GC to have a realization while

the underlying grid drawing is not orientable because condition draw3 cannot
be satisfied, thus showing that the proof does not work for Quasi-UDGs with
parameter d = 1/

√
2.

Figure 5 shows a wire component which is realized in an incorrect way (see
Figure 4 for a correct realization of a wire component): The left terminal has
been embedded into a 5-node cage attached to the cycle (so called “mortar”-
cage). In the following, we explain why this is a valid realization for a Quasi-
UDG with parameter d = 1/

√
2. Let t denote the terminal node, let c denote the

chain node through which the terminal node is attached to the hinge. Finally,
let m1 and m2 denote the two nodes of the shared cage edge. Refer to Figure 6
for details on the region of interest:

According to the cage capacities in Figure 3, a cage with up to 6 nodes cannot
contain a bead. However, in a Quasi-UDG with parameter d = 1/

√
2 a 5-node

cage can contain a bead. In the left part of Figure 6, the node t has distance
> d from all the nodes in the cycle. Thus none of the edges connecting the
terminal to the nodes on the 5-node cage are required to exist in GC according
to Definition 4.1.

The edge between the chain node and the terminal crosses the edge shared
between the 8-node cage and the 5-node cage. According to Lemma 4.2, at least
one of the edges (m1, c), (c, m2), (m1, t) and (t, m2) exists in GC . One of these
edges is contained in every wire component anyway: the edge (c, m2). In Figure
6, the nodes are arranged such that the only edge required to exist in GC is
(c, m2) which readily exists in every wire component.

If wires are realized in this way in the realization of a graph GC , displaced
beads do not properly displace other beads anymore, since some beads are
embedded in the surrounding mortar. The basic mechanism for propagating
information in a realization of GC is broken.

In the underlying grid drawing, the corresponding wire component has both
terminals directed towards itself. Thus condition draw3 is not met.

Figure 3: Optimal packings limiting a 0-cage, 1-cage, 2-cage and 3-cage

8

Figure 4: A wire component realized in the correct way (Quasi-UDG with pa-
rameter d = 1/

√
2). Lines with length l = 1 are plotted in black. Lines with

1/
√

2 < l < 1 are plotted in yellow. Lines with l ≤ 1/
√

2 are plotted in blue.

Figure 5: A wire component realized in an incorrect way. The left terminal is
embedded into the upper mortar cage.

m1

c

t

m2

Figure 6: Detail view of a portion of the wire component depicted in Figure 5.
Both pictures show the same portion of the wire component. On the left hand
side, a detail view of the realization with real coordinates is shown. The right
hand side shows a schematic of the same portion of the wire. Solid lines are
edges belonging to GC , dashed lines are edges not belonging to GC .

9

5 Exact Formulation of the Problem

In [5] it is proved that deciding if a graph has a UDG-realization is NP-hard. In
Section 3 it is shown that the problem of finding such a UDG-realization is NP-
hard by reduction. In this section, we give a formal description of the problem
of finding a UDG-realization in terms of a quadratic feasibility problem.

First, the UDG-realization is defined by (similar to [5]):

Definition 5.1. (UDG-Realization) The UDG-realization of a graph G =
(V, E) is a function f : V → R

2 that projects every vi (i = 1, . . . , n) to a tuple
(xi, yi) such that (vi, vj) ∈ E if and only if d(f(vi), f(vj)) ≤ 1 where d is the
Euclidean distance between two points.

In order to obtain a quadratic feasibility problem, the Euclidean distance
d =

√

(xi − xj)2 + (yi − yj)2 is replaced by its square d2 = (xi−xj)
2+(yi−yj)

2.
(The right hand side stays 1 since 12 = 1.)

Now, an exact formulation of the problem in terms of a feasibility problem
with quadratic constraints can be constructed: Take an arbitrary graph G =
(V, E). For nodes vi, vj adjacent in the graph, define the constraint set

qcqpedges := {(xi − xj)
2 + (yi − yj)

2 ≤ 1 | (vi, vj) ∈ E},

for nodes vi, vj not adjacent in the graph, define the constraint set

qcqpnonedges := {(xi − xj)
2 + (yi − yj)

2 > 1 | (vi, vj) /∈ E}.

The union set
qcqp := qcqpedges ∪ qcqpnonedges (1)

yields constraints for a quadratic feasibility problem. These constraints are
quadratic functions in the coordinates xi, yi of the nodes vi.

If coordinate tuples (xi, yi) (i = 1, . . . , n) are found that satisfy Constraints (1),
a UDG-realization has been found for the input graph G = (V, E).

By Lemma 3.1 the feasibility problem of finding (xi, yi) (i = 1, . . . , n) to
satisfy Constraints (1) is NP-hard. Since the exact problem can probably not
be solved in polynomial time, the main interest is in approximation algorithms.
In the following sections, ways are explored to find approximations with best
possible guarantees on precision and with possibly polynomial running times.

10

6 Approximation Algorithms

6.1 Linear Programming Formulation of the Problem

In this section, we explore approximations in terms of linear programs. The ap-
proximations are found by replacing the quadratic constraints (1) from Section
5 by linear ones.

The objective is that the solutions of the LP formulation are as close as
possible to the solutions of the exact problem formulation of Section 5. If two
nodes vi, vj are not connected by an edge, their distance in the UDG-realization
should be > 1. Equivalently, if two nodes vi, vj are connected by an edge, their
distance in the UDG-realization should be ≤ 1.

We introduce some common norms and a measure of distance in the respec-
tive norms:

Definition 6.1. (`2-Norm) The `2-norm (Euclidean distance) of a vector x ∈
R

n is defined as ‖x‖2 =
√

x2
1 + · · · + x2

n.

Definition 6.2. (`1-Norm) The `1-norm (Manhattan distance) of a vector
x ∈ R

n is defined as ‖x‖1 = |x1| + · · · + |xn|.

Definition 6.3. (`∞-Norm) The `∞-norm of a vector x ∈ R
n is defined as

‖x‖∞ = maxi |xi|.

Definition 6.4. (Distance d(x, y)σ) Denote by d(x, y)σ the distance between
two elements x, y ∈ R

n in the norm `σ: d(x, y)σ = ‖x − y‖σ for σ ∈ {1, 2,∞}.

The feasibility problem can be formulated as follows: For nodes vi, vj adja-
cent in the graph, define the set

lpedges := {d(vi, vj)∞ ≤ 1 | (vi, vj) ∈ E}. (2)

These constraints make sure that the length of any horizontal or vertical line
does not exceed 1. Add the constraints

lpedges := lpedges ∪ {d(vi, vj)1 ≤
√

2 | (vi, vj) ∈ E}. (3)

Both types of constraints are chosen such that a line of length 1 may still be
realized at any slope while the maximum length of a line satisfying Constraints
(2) and (3) exceeds 1 by as little as possible (the maximum length of a line

satisfying the constraints is given by
√

2
√

(2 −
√

2) ≈ 1.082, see also Figure 7).

For vi, vj not adjacent in the graph, define the set

lpnonedges := {d(vi, vj)1 > 1 | (vi, vj) /∈ E} (4)

These constraints are chosen such that a line of length > 1 may still be realized
at any slope while the minimum length of a line satisfying Constraints (4) is
smaller than 1 by as little as possible (the minimum length of a line satisfying
the constraints is > 1/2

√
2 ≈ 0.707. See also Figure 8).

11

Then,
lp := lpedges ∪ lpnonedges (5)

yields constraints for a feasibility problem.
Using the notion of the Quasi-UDG (see Definition 4.1), it can be seen that

any solution satisfying Constraints (5) constitutes a Quasi-UDG with parameter
d ≈ 0.653 which is below 1/

√
2 ≈ 0.707 only by a small amount.

Theorem 6.1. Every set of coordinates (xi, yi) (i = 1, . . . , n) satisfying Con-
straints (5) realizes the input graph G = (V, E) as a Quasi-UDG with parameter

d = 1/(2
√

2 −
√

2) ≈ 0.653.

Proof. Consider the value d = 1/2
√

2 ≈ 0.707. Clearly, d ∈ [0, 1]. The distance
between every two nodes (u, v) /∈ E is > d. This implies that all nodes (u, v)
with distance ≤ d are ∈ E. Thus the coordinates satisfy the first condition in
the Quasi-UDG definition: (u, v) ∈ E if |uv| ≤ d.

Edges are realized in the interval [a, b], a = 0, b =
√

2
√

(2 −
√

2). The

largest distance between two nodes (u, v) ∈ E is b. Since b > 1, divide all

1/2*sqrt(2)

1/2*sqrt(2)

1

1

1/sqrt(2)

Figure 7: On the left hand side, a configuration is shown where the maximum

distance of
√

2
√

(2 −
√

2) ≈ 1.082 for two connected nodes is reached. (There

exist other, symmetric configurations, of course). On the right hand side, the
well balanced configuration with distance exactly 1 is shown.

1/2*sqrt(2)

1/2

1/2

Figure 8: The well balanced configuration with distance 1/2
√

2 ≈ 0.707 which
cannot be reached by two unconnected nodes.

12

coordinates by b. Then,

a′ = a/b = 0,

b′ = b/b = 1,

d′ = d/b = 1/2
√

2/(
√

2

√

2 −
√

2) = 1/(2

√

2 −
√

2) ≈ 0.653.

Edges are now realized in the interval [0, 1]. Thus the coordinates satisfy the
second Quasi-UDG condition: (u, v) /∈ E if |uv| > 1. Notice that also d′ ∈
[0, 1].

In order to use them in an LP formulation, Constraints (2), (3) and (4) have
to be reformulated as linear constraints. Constraints (2) and (3) are reformu-
lated as follows (the three lemmas are given without proof):

Lemma 6.2. A constraint maxi=1,...,n ai ≤ c may be equivalently expressed by
(a1 ≤ c) ∧ (a2 ≤ c) ∧ · · · ∧ (an ≤ c)

Lemma 6.3. A constraint |x| ≤ c may be equivalently expressed by two con-
straints x ≤ c ∧ −x ≤ c.

Lemma 6.4. A constraint |x| + |y| ≤ c may be equivalently expressed by four
constraints x + y ≤ c ∧ x − y ≤ c ∧ −x + y ≤ c ∧ −x − y ≤ c.

A single constraint

d(vi, vj)∞ = max{|xi − xj |, |yi − yj |} ≤ 1

from Constraints (2) may be expressed by two constraints using Lemma 6.2:

|xi − xj | ≤ 1 ∧ |yi − yj | ≤ 1.

Further, these may be expressed by four constraints using Lemma 6.3:

xi − xj ≤ 1 ∧ xj − xi ≤ 1 ∧ yi − yj ≤ 1 ∧ yj − yi ≤ 1.

Similarly, a single constraint

d(vi, vj)1 = |xi − xj | + |yi − yj | ≤
√

2

from Constraints (3) may be expressed by four constraints using Lemma 6.4:

xi − xj + yi − yj ≤
√

2 ∧ xi − xj + yj − yi ≤
√

2

∧ xj − xi + yi − yj ≤
√

2 ∧ xj − xi + yj − yi ≤
√

2.

The definition of the `1-norm involves absolute values. Absolute value ex-
pressions can not necessarily be expressed by linear constraints. Although it
works for Constraints (2) and (3), it is impossible two model Constraints (4)
with linear constraints.

13

Theorem 6.5. Constraints (4) of the form d(vi, vj)1 ≥ 1 cannot be expressed
by linear constraints.

Proof. The condition d(vi, vj)1 ≥ 1 is equal to |xi−xj |+ |yi−yj | ≥ 1. Introduce
new variables dxij = xi − xj and dyij = yi − yj . The condition becomes
|dxij | + |dyij | ≥ 1. This constraint is equivalent to the constraint |x| + |y| ≥ 1
which is illustrated in Figure 9. The feasible region contains a hole where
|x| + |y| < 1. A line can be drawn starting in the feasible region, crossing the
infeasible hole and ending in the feasible region again. In a convex set however,
every line starting and ending in the set only contains points also belonging to
the set (by Definition 2.1). This proves that the feasible region of |x| + |y| ≥ 1
is not convex. However, the feasible region of every set of linear constraints is
convex (by Lemma 2.1). Thus the feasible region of d(vi, vj)1 ≥ 1 cannot be
expressed by linear constraints.

–2

–1

0

1

2

–2

–1

0

1

2

0

0.2

0.4

0.6

0.8

1

Figure 9: A plot of the function f(x, y) = 1 if |x| + |y| ≥ 1 else 0. Observe the
hole where |x| + |y| < 1 in the middle of a region where |x| + |y| > 1.

14

6.2 Introducing an Objective Function

Since Constraints (4) cannot be modeled by linear constraints, the constraints
are replaced by a linear objective function which is supposed to stretch the graph
in several directions in order to pull nodes with no edges between them away
from each other. The stretching is done as follows: Choose several pairs of nodes,
fix directions between them and maximize the distances between the nodes along
these directions. Three nodes a, b and c are chosen and two directions are fixed:
the x- and the y-axis.

The algorithm is formulated as follows:

1. Find the nodes a, b with the greatest distance in the graph (e.g. by running
Floyd’s all pairs shortest path algorithm and taking the nodes with the
biggest value).

2. Find the node m which lies exactly in the middle of the path (if the number
of nodes on the path is even i.e. there are two middle nodes, take the one
that is closer to b).

3. Find a third node c for which the following function is maximum: (ac +
cb)/|ac− cb| where ac denotes the length of the shortest path between the
nodes a and c. Note the purpose of maximizing (ac + cb)/|ac− cb| over c:
The node c should be as far away as possible from both a and b and, as
a heuristic, c should be similarly far away from a and b. Thus the term
|ac − cb| penalizes big differences in the distances ac and cb.

4. Add constraints to set the y-coordinates of the nodes m, a and b to 0 to
make sure these nodes are realized on the x-axis.

5. If m 6= c, add constraints to set the x-coordinate of m to be equal to the
x-coordinate of c to make sure the nodes m and c are realized on an axis
perpendicular to the x-axis and parallel to the y-axis.

6. Set the objective function to the following: f := max xb − xa + yc where
xb denotes the x-coordinate of b. The term yc is only present for m 6= c.

Solve the resulting linear program by obtimizing the objective function
f := max xb − xa + yc subject to Constraints (3) together with the additional
constraints for the nodes m, a, b and c introduced above.

For examples on how this performs in practice, see Figures 10 and 11. Figure
10 shows results of the algorithm run on very small graphs. Figure 11 shows that
if nodes are attached to the main paths ab and mc, these nodes are collapsed
to one single point by the algorithm. The algorithm only stretches nodes along
the main paths. It is only suitable for specific classes of graphs e.g. the path
Pn: V = {0, 1, . . . , n}, E = {{i− 1, i} : i = 1, 2, . . . , n}. (Consider the path P2

in Figure 10 for example: the graph is stretched between the two outer nodes a
and b.)

15

Figure 10: On the left hand side, the path P2 is shown. To the right, the
minimum graph where all nodes m, a, b and c are present and m 6= c.

Figure 11: To the left, the graph including small structures attached to the
main axes is drawn. To the right, the actual output of the algorithm: The small
structures are collapsed to one single point.

16

6.3 Quadratic Programming Formulation of the Problem

The approach in this section involves a quadratic objective function. For adja-
cent nodes, we take Constraints (3). We drop Constraints (4) for non-adjacent
nodes and add the following quadratic objective function instead:

f =
∑

(vi,vj)/∈E

d2(vi, vj)

This is the sum of the distances of non-adjacent nodes. The purpose of this
objective function is to maximize the distance between non-adjacent nodes,
thus stretching the graph similar to the approach in Subsection 6.2 involving a
linear objective function.

The optimization problem formulation yields:

max f(x1, . . . , xn)

subject to lpedges

Since we want a convex optimization problem (which can be solved quickly)
and this is a maximization problem, f is supposed to be concave. It turns out,
however, that the objective function f as formulated above is not a concave
function.

Theorem 6.6. The function f is not concave.

Proof. By contradiction. We take a concrete graph G = (V, E). We assume
that the function f is concave for this graph. We show how this leads to a
contradiction.

Consider the graph G = (V, E) with V = {v1, v2}, f(v1) = {x1, y1}, f(v2) =
{x2, y2} and |E| = 0. The graph consists of two nodes with no edge. Then,

f1 = (x1 − x2)
2 + (y1 − y2)

2.

W.l.o.g., we set x1 = y1 = y2 = 0 (any other configuration may be realized by
rotation and translation). Then f1 = −x2

2. Since f1 is concave, g1 = −f1 is
convex. Applying the definition of convexity to g1 yields

g1(λx1 + (1 − λ)x2)

= λ2x2
1 + 2λ2x1x2 − 2λx1x2

− x2
2λ

2 + 2x2
2λ − x2

2

≤ λg1(x1) + (1 − λ)g1(x2)

= λx2
1 + x2

2λ − x2
2.

(6)

Term cancellation and subtraction of the right hand side yields

(λ − λ2)(x2
1 − 2x1x2 + x2

2)

= x2
1 − 2x1x2 + x2

2

= (x1 − x2)
2

≤ 0.

(7)

17

The division by (λ − λ2) is allowed for 0 < λ < 1. Setting λ = 1 implies
f(x1) ≤ f(x1). Similarly, λ = 0 implies f(x2) ≤ f(x2). For 0 ≤ λ ≤ 1 we have
that Equation (7) is only satisfied if x1 = x2 or in the cases where both points
x1 and x2 correspond to one endpoint, but not for all values of x1 and x2. The
function g1 is not convex. Contradiction.

Practical tests have been conducted with simple graphs based on the QP
formulation in this section. The optimization tools used were the MOSEK Op-
timization Tools (see [11]) and LOQO (see [12]). Both were run with their
interior-point optimizers turned on. MOSEK refused to solve the problem be-
cause of its non-convexity. The solution output by LOQO was unusable.

6.4 Semidefinite Programming Formulation of the Prob-

lem

In [10], semidefinite programs are used as convex relaxations of NP-hard quadratic
optimization problems. Since the relaxations are for quadratic problems, we are
able to apply the technique to our exact problem formulation in Section 5.

In a semidefinite program (SDP) we minimize a linear function of a variable
x ∈ R

m subject to a matrix inequality:

min cT x

subject to F (x) ≥ 0

where F (x) = F0 +

m
∑

i=0

xiFi.

The problem data are the vector c ∈ R
m and m + 1 symmetric matrices

F0, . . . , Fm ∈ R
n×n. The inequality sign in F (x) > 0 means that F (x) is

positive semidefinite, i.e., zT F (x)z ≥ 0 for all z ∈ R. We call the inequality
F (x) ≥ 0 a linear matrix inequality (LMI).

Semidefinite programs can be regarded as an extension of linear program-
ming where the componentwise inequalities between vectors are replaced by
matrix inequalities. Most interior-point methods for linear programming have
been generalized to semidefinite programs. As in linear programming, these
methods have polynomial worst-case complexity.

Consider the quadratic optimization problem

min f0(x)

subject to fi(x) ≤ 0

where fi(x) = xT Aix + 2bT
i x + ci

i = 1, . . . , L.

18

The relaxation looks like

min TrXA0 + 2bT
0 x + c0

subject to TrXAi + 2bT
i x + ci ≤ 0

[

X x
xT 1

]

≥ 0

i = 1, . . . , L where the variables are X = XT ∈ R
k×k , x ∈ R

k and TrX is the
trace of the matrix X .
Note that the constraint

[

X x
xT 1

]

≥ 0

is equivalent to X ≥ xxT .
The target of this relaxation is to find a lower bound for the objective value.

Since our problem is a pure feasibility problem, we are not interested in the value
of any objective function. Instead, our focus is on the feasible region. Does the
relaxation enlarge the feasible region of our original problem in such a way that
feasible vectors are reasonable approximations to our problem? Or does the
relaxation admit feasible vectors which are not useful? The latter is the case:
We show that the solution x = 0 is a feasible solution to the SDP-relaxation of
our problem for a concrete graph G: Two nodes that are not connected in G
are allowed to have distance 0. This is not desirable: The distance between two
unconnected nodes should be > 1 for UDGs and > d for Quasi-UDGs. Thus
the SDP-relaxation should not be considered for this problem.

Theorem 6.7. The vector x = 0 is a feasible solution to the SDP-relaxation.

Proof. Let the graph be G = (V, E) with V = {v1, v2}, f(v1) = (x1, y1), f(v2) =
(x2, y2) and ‖E‖ = 0. W.l.o.g, we set x1 = y1 = y2 = 0.

The quadratic optimization problem looks like

min f0(x)

subject to f1(x) = TrXA1 + 2bT
1 x + c1

where f0(x) is arbitrary since we look at the feasibility problem.

Setting A1 = −1, b1 = 0, c1 = 1 we get f1(x) = −x2 + 1 ≤ 0.

The relaxation is

min f0(x)

subject to f1(x) = −X + 1 ≤ 0 (8)
[

X x
xT 1

]

≥ 0

19

The following lemma is given without proof:

Lemma 6.8. A matrix is positive definite if the determinants associated with
all upper-left submatrices are positive.

The conditions for the upper-left submatrices are

det(X) = X

≥ 0 (9)

det(

[

X x
xT 1

]

) = X − x2

≥ 0 (10)

Condition (9) is true because of (8). We require X > x2. Choose X = x2 + 1.
Then Condition (10) holds for an arbitrary x. This means there exist configu-
rations where the trivial solution x = 0 satisfies the constraints. X = 1, x = 0
is a particular example.

7 Conclusion

What is the benefit of an an exact solution to a problem if this solution takes
forever to compute? After discovering that a certain problem is NP-hard, the
focus can only be on the development of approximation algorithms: We showed
that finding a unit disk graph realization given a graph G = (V, E) is NP-hard.
We gave an exact formulation of the problem in terms of a quadratic feasibility
problem. We developed an LP-based approximation algorithm which is fast and
works well on specific classes of graphs. Finally, we proved non-convexity of a
QP-based approximation algorithm and showed that the SDP-relaxation of the
exact formulation does not provide reasonable approximations.

8 Acknowledgments

I would like to thank Fabian Kuhn and Roger Wattenhofer who guided me
through this work for their support.

Additional thanks go to Micha Bröker and Thomas Knecht for fruitful dis-
cussions on the subject.

References

[1] Fabian Kuhn, Roger Wattenhofer, and Aaron Zollinger. Ad-Hoc Networks
Beyond Unit Disk Graphs. The final version will appear in the Proceedings
of the 1st ACM DIALM-POMC Joint Workshop on Foundations of Mo-
bile Computing (DIALM-POMC), San Diego, California, USA, September
2003.

20

[2] Fabian Kuhn, Roger Wattenhofer, Yan Zhang, and Aaron Zollinger. Ge-
ometric Ad-Hoc Routing: Of Theory and Practice. In the Proceedings of
the 22nd ACM Symposium on the Principles of Distributed Computing
(PODC), Boston, Massachusetts, USA, July 2003.

[3] Fabian Kuhn, Roger Wattenhofer, and Aaron Zollinger. Worst-Case Op-
timal and Average-Case Efficient Geometric Ad-Hoc Routing. In the Pro-
ceedings of the 4th ACM International Symposium on Mobile Ad Hoc Net-
working and Computing (MOBIHOC), Annapolis, Maryland, USA, June
2003.

[4] Fabian Kuhn, Roger Wattenhofer, and Aaron Zollinger. Asymptotically
Optimal Geometric Mobile Ad-Hoc Routing. In the Proceedings of the 6th
International Workshop on Discrete Algorithms and Methods for Mobile
Computing and Communications (DIALM), Atlanta, Georgia, September
2002.

[5] Heinz Breu and David G. Kirkpatrick. Unit Disk Graph Recognition is NP-
Hard. Technical Report 93-27, University of British Columbia, Department
of Computer Science, May 1993.

[6] Heinz Breu and David G. Kirkpatrick. Unit Disk Graph Recognition is
NP-Hard. Computational Geometry, 9:3-24, January 1998.

[7] Theodor Ellinger, Günter Beuermann und Rainer Leisten. Operations Re-
search: Eine Einführung. 5. durchges. Aufl. Berlin; Heidelberg; New York;
Barcelona; Hongkong; London; Mailand; Paris; Singapur; Tokio: Springer,
2001.

[8] Dieter Jungnickel. Optimierungsmethoden: eine Einführung. Berlin; Hei-
delberg; New York; Barcelona; Hongkong; London; Mailand; Paris; Singa-
pur; Tokio; Springer, 1999.

[9] Steven Boyd and Lieven Vandenberghe. Convex Optimization. URL:
http://www.stanford.edu/~boyd/cvxbook.html, December 2002.

[10] Steven Boyd and Lieven Vandenberghe. Semidefinite programming relax-
ations of non-convex problems in control and combinatorial optimization.
In Communications, Computation, Control and Signal Processing, 1997.

[11] The MOSEK optimization tools version 2.0 (Build 20). User’s manual and
reference. URL: http://www.mosek.com.

[12] Robert J. Vanderbei. LOQO Users Manual - Version 4.05. Operations Re-
search and Financial Engineering Technical Report, Princeton University,
Princeton, New Jersey, October 2000.

21

