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Abstract

The usage patterns of certain network protocols (such as the amount of e-mail traffic in
bytes per hour) show a clearly visible daily rhythm. In case of an attack, this rhythm is
disturbed. We use backbone border router flow-level data in this thesis and apply existing
and new algorithms that detect anomaly patterns.

Four algorithms using diverse methods such as peak detection, past data compari-
son and Holt-Winters forecasting have been implemented in a new anomaly detection
system. Using UPFrame [17], an application framework for the processing of UDP data,
Internet flow traffic can be monitored and alerts raised, when an anomaly has been detected.

Concentrating on mail traffic with a distinct daily usage pattern, it has been found that
there is no single algorithm capable of a good rhythm anomaly detection with a very low
false positive rate. Running several algorithms in parallel improves the false positive de-
tection rate at the cost of sensitivity, though the struggle for a low false positive rate remains.
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1 Introduction

The importance of the Internet has increased tremendously over the last few years. Businesses
whose market and customers are entirely Internet based, information and distribution channels
that cannot work without the Internet and a multitude of services and technologies that require
the universal communication between systems over the Internet are widespread today. This has
effectively made an Internet connection as important as electricity, water and the telephone
system in the industrial countries. It is expected that the telephone system and the Internet will
converge in the next few years, with the telcos slowly looking into replacing their proprietary
networks by IP-capable technology [1].

With the advent of new services like VoIP (Voice over IP, transmitting voice telephony services
over an IP network) that finally get increasingly deployed or companies using VPN (Virtual
private networks) technology to connect their business units and partners over the Internet
instead of buying traditional leased lines, the dependency on a working Internet connectivity has
risen dramatically. Depending on the use or business, an interruption of the Internet connectivity
can have severe consequences and cause many problems.

Because of the increasing dependence on the Internet, it has become important to ensure flawless
operation and protect the network from attacks. Unfortunately, the growth and importance
of the Internet also draws malicious users to the network. Furthermore bugs and errors in
software used in the systems connected to the Internet now have far more consequences, since
the systems are no longer isolated and thus code written to exploit such bugs can spread very
fast throughout the network, not limited anymore by company, department or country borders.
A prime example is the SQL.Slammer worm, which managed to infect an estimated 90% of all
vulnerable systems in merely 10 minutes, worldwide [2]. Since the worm with its brute-force
flood property saturated many links, the effects on the global Internet was very visible.
Entire backbone networks connecting many thousand customers became hardly reachable or
disappeared entirely, causing further problems.

DDoS flooding attacks are capable of knocking out entire sites by over-saturating the network
link with millions of requests or by exhausting all server resources with too many fake requests.
While DDoS attacks are known for a long time, effective countermeasures are scarce. With the
number of bot-nets [3] increasing steadily, the potential damage and number of people capable
of mounting a successful DDoS attack is further rising. ”Owners” of bot-nets also started to
sell off access to their army of compromised systems for spamming purposes or blackmailing
[4] businesses by threatening to launch a DDoS attack and thereby preventing them from
conducting their business on the Internet.

Due to the general increase in bandwidth available to end-users through CATV and DSL
broadband technologies, not only the amount of often badly maintained systems that are easily
subverted increases, but also the available upstream bandwidth required for DDoS attacks to be
effective. The current situation is such that even big sites with a large amount of resources can
be knocked out by a large DDoS attack with hundreds to thousands of participating systems
with each only having a fraction of the resources of the victim.

In the light of these developments and new threats, it becomes clear that effective tools for
reliable detection need to be readily available in order to allow network operators to detect and
react to such events. The goal of this thesis is to provide one such tool that will enable network
operators to be notified of unusual events in the network and hence decrease the time to deploy
countermeasures.
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2 The Problem

The first-most problem in anomaly detection lies in the definition of anomaly itself. Anomalous
behaviour can often be easily spotted by a human observer, given the right visual representation
of the underlying data. Defining the anomaly in a formal way, however, is not easy. Consider
for example the sudden change of traffic on a network link by 20 megabits/sec. While such an
event certainly stands out on any graph displaying the link load if the links capacity is of similar
magnitude (like an E3 link with 34 mbps capacity), it will probably be easily overlooked on a
graph displaying the load of a high-traffic link such as an STM-4 (622 mbps) where the change
is simply dwarfed by the normal variance of the link traffic.

Thus the ”I know one when I see one” human approach to anomaly detection can not be ported
to an automatic system. The next best step from observing absolute changes is to put them
into relation to the magnitude of the value. This will subsequently fail to detect continuous
degradation if the change is not too abrupt. A cascading effect such as a spreading worm
that shuts down the infected machines after a short phase of reproduction might slowly kill
all normally traffic producing machines, resulting in a continuous decrease of traffic on the link(s).

What we therefore desire is a system or algorithm that continuously monitors the input
data and over time learns to distinguish the normal rhythms from disruptions and anoma-
lies. It should further realize that there is less variation during the night hours than during
rush-time and consequently be more sensitive to sudden changes in the night than during the day.

Another problem in anomaly detection is the fact that while anomalies may be detected, the
systems that do so usually cannot really tell why exactly they sent an alarm. This is not a big
problem in itself, since the system’s purpose is to notify a human operator to take a closer look
at things. But if such relative vague alerts turn out to be false or unfounded too often or if the
system just produces too many alarms, it often is quickly considered useless and turned off or
ignored.

Furthermore, DDoS attacks and widespread worm infections don’t come and go unnoticed.
Outages caused by an attack get reported to the ISP at some time, after the cause has been
detected. Having a system in place that is capable to detect such attacks early can be a huge
competitive advantage. By enabling the operator to detect and mitigate the problem early allows
him to prevent the damage or outage that otherwise may occur, both to his equipment and
assets as well as those of his customers. In an environment where critical services are provided,
it is important to detect and react to attacks as early as possible.

Finally, the system should be easy to set up and maintain, meaning the cost both in terms of
money and time should be non prohibitive.

2.1 Our data

Network operators are generally concerned with parameters such as link load and capacity in
order to be able to schedule maintenance and upgrades. This data is readily available on all
routers as simple counters. It can be easily gathered and stored for long periods. The downside
is that this data is already heavily summarized. In order to be able to better detect certain
anomalies we gather data from border routers as NetFlow data records [15]. That means we
collect information about the individual flows which enables us to see attacks that may be
suppressed in the overall data flow of big links, but show distinctively when one considers only
certain classes of traffic. We are especially interested in mail traffic (comprising of traffic from
or to port 25/TCP) in order to catch mail worm activity.

Having such detailed data comes at a price, however. The amount of data to process and store
can be very huge, depending on the capacity and traffic of the links that are under observation.
As a point of reference, one hour of traffic at one border router carrying 300 mbit/sec of traffic
on average generates between 200 and 550 MBytes of compressed (using bzip2) Cisco NetFlow
v5 data. The latter amounts to 1.6 GBytes in uncompressed flow records (per hour). These
values are not set in stone of course, and will vary widely depending on the network topology,
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link capacities and usage levels. But they can be taken as a first estimation of the amount of
data to process. In order to collect, process and store this data from several routers, UPFrame
[17] is used. UPFrame has previously been developed for the DDoSVax team for this purpose.
Storing this data longterm needs an infrastructure capable to deal with this amount of data.
For detection of anomalies only in near-real time, one or two computers with current standard
hardware are sufficient.

The NetFlow data is being generated on the routers and sent to our collector in the form of
UDP packets. A router sends one packet whenever enough flow records have been generated
to fill a packet or after a configurable timeout. For TCP connections which comprise the
majority of data traffic, the record can only be exported after the connection has been shut
down. The router will export a flow record after it has seen the FIN-ACK sequence, signalling
the termination of the connection. Unfortunately, this may never happen if one end of the
connection is disconnected from the network or crashes. Furthermore, there can be long flows
in which the TCP connections are established for hours or even days. In order to not consume
too much memory on the routers and to report such long established flows in a timely manner,
they are reported after a configurable amount of time and immediately registered as a new flow
again. This essentially treats a long flow as several short ones.

While this ensures that data about flows arrives in a timely, albeit somewhat incomplete manner,
full real time operation is not possible when information about long flows is held back several
minutes in this manner. As we show in Section 5.3.3, only a minor percentage of the flows in the
data we received were long flows and of those very few had a significant size.

Since we only create NetFlow records at the border, data about internal traffic not leaving the
network is unavailable to us. This reduces the amount of data, but not the usefulness. Large
DDoS attacks usually involve hundreds if not thousands of machines distributed around the
world and worm outbreaks occur uncoordinated in a pseudo or completely random fashion.
This automatically leads to traffic coming in or leaving our borders and thus getting detected.
Another side effect is that the necessity of maintaining a graph of the topology of our network
falls away. We are mainly concerned with the interaction of our network with the Internet,
assuming that internal problems are dealt with in a different way.

Figure 1: Detailed traffic flow data

The collected aggregated data from our four border-routers display the bursty behaviour
common in network traffic flows, as can be seen in Fig 1. Note that the interval between points is
one minute. Averaging over the last minutes removes the somewhat erratic spikes and smoothens
the graph at the cost of some information loss. Figures 2 and 3 show 12 hours of mail traffic
data in unprocessed one minute intervals and as averaged over the last 3 minutes respectively.

As can be seen in Fig 2, the spikes can easily deviate from the previous data point by 50% or
more. This fact necessitates the use of algorithms that process such data to employ some sort of
smoothing or weighting as not to overvalue these bursts. On the other hand, a large spike could be
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Figure 2: 12 hours of SMTP traffic data, raw

Figure 3: 12 hours of SMTP traffic data, averaged

a hint for a single machine that was used to send a lot of mail messages to many recipients within
a short time frame, such as a mailing-list server or a spammer. Smoothing out such bursts in
order to obtain a more usable graph can hide such information, thereby decreasing the efficiency
of the system as a whole to detect anomalies.

2.2 The goal

Based upon the flow level data as described in 2.1, the goal of this thesis is the design and
development of a Traffic Anomaly Detector. This system should be able to detect rhythm
anomalies and raise an alert so that countermeasures can quickly be employed. In order to be
useful, its false alarm rate must be as low as possible and deployment should be easy. Specifically,
it should be possible to use it without complex configuration or the need to make the network
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topology known to the system at any one time.

We are concentrating our efforts on mail traffic, because the time and date of email worm out-
breaks is well known and archived NetFlow data of these events are readily available. Further-
more, mail traffic shows a very distinct daily pattern toward which we will try to train our al-
gorithms to. It should also be mentioned that mail and web traffic have somewhat similar usage
patterns which should allow the algorithms trained and validated against mail traffic anomalies
to be used against web traffic anomalies also without the need of painstakingly detailed analysis
of web traffic.
In Section 3 we present a survey of the field of Anomaly Detection. Later in Section 4 we
describe the algorithms used in the implementation in some detail. Section 5 takes a closer look
at the implementation of our Anomaly Detection System and in Section 6 we evaluate the results
achieved.
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3 Survey

A survey of existing systems trying to achieve the same goal as this thesis was conducted. About
every ISP (Internet Service Provider) worth its name is monitoring his equipment for failures
and rate/throughput as well as data traffic in their network. Yet there are very few documents
and papers about deployment or operation of tools that monitor flow data and report anomalies
not using hard coded thresholds like activity on well-known worm-ports.

As mentioned in Barford et al. [7], most ISPs seem to simply have deployed their own monitoring
system, based on router throughput and server usage statistics and are raising alarms when
certain thresholds are reached or merely visualize data and identify anomalies by recognizing
patterns from past experience. Learning systems that adapt to a perceived level of ”normal-
ity”and report abnormal behaviour seem to be either not widely in operation or not documented.

Nevertheless one can find a small number of interesting research activities in this field. A helpful
guide covering some projects in Anomaly Detection and measurement is Neil Patwari’s Anomaly
Detection Resource Page [8].

3.1 Types

We classify anomaly detection into the following types:

• Signature based systems: A system that has a list of well defined signatures and raises
an alarm if the signature pattern occurs. This can range from an exceeded threshold of
an arbitrarily monitored device variable to an infected host contacting some well known
master server on a specific port. Signature based systems are often static, that is to say,
can neither detect new anomalies even if they show very clearly in the data nor can they
detect unexpected variations of known anomalies (worm opens backdoor on another port)
until they are updated with new signatures.

• Statistical analysis: A system that performs statistical analysis over the dataset to calculate
predictions and expected behaviour and then reports deviations from the estimated result.
Such systems are generally able to adapt to slowly changing environments.

• Signal analysis: A relatively new method that decomposes the data into frequency com-
ponents by using signal analysis techniques and subsequently applies a statistic analysis
over these components. Strictly speaking, signal analysis is a specialized case of statistical
analysis.

• Combined systems: A system that combines some or all of the above types in order to
reduce false positives of one method or enhance detection rate due to deficiencies or slow
detection in one method.

3.2 Signature based systems

Signature based systems are the oldest (see [18]) and most widely deployed systems for
monitoring networks. Those that only read counter values out of network equipment and alert
on threshold violations, are simple to setup, operate and maintain. However, the drawback of
such a monitoring system is its limited ability to detect DDoS or worm attacks unless those
are of such a magnitude that the pre-set thresholds are exceeded. Attack traffic that is too
low to dominate for example a monitored backbone link can however be more than enough
to completely knock out a small customer site with limited bandwidth capacity and going
undetected until the network operator gets notified by the victim.

While signature based systems are well suited for observing global values such as link saturation,
they are generally useless to detect anomalies such as traffic levels falling down to night-levels
during peak time due to the failure or attack since that is neither exceeding a maximum
threshold, nor is the traffic completely down or sinks below another warning threshold. One
could amend such a rule with expected traffic low and high-values during day and a different set
during nighttime, but that would lead only to a huge set of static rules to maintain for every
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change of the network, which quickly becomes cumbersome and unmanageable.

Examples of signature based systems are traditional Intrusion Detection Systems (IDS for short)
like SNORT [9] or BRO [10], but also PHAD [11] as used in the combined system described in
Mahoney [12].

Of course, reactive inspection from stored NetFlow [15] data after an incident as a
SecurityFocus[20] article describes is also a possibility.

3.3 Statistical analysis

An example of statistical anomaly detection is NETAD [13], which observes events and assigns
probabilities when the next event of the same type is to be expected. This produces a ”score”
and the system raises an alarm as soon as this score exceeds a threshold. The NETAD system
needs to be trained in an attack-free environment, which makes it somewhat less useful than
other approaches, since the simulation of a backbone network is not trivial. Alternatively, it
can be left running in training mode, which does however decrease the amount of attacks detected.

Another approach by Brutlag [6] uses a variant of the Holt-Winters [19] algorithm that decom-
poses the data into a baseline, trend and seasonal variance. This approach is used successfully at
Microsoft’s WebTV [14] to monitor thousands of devices for aberrant behaviour. As this method
is also employed in this thesis, a more detailed insight into the algorithm is provided in Section 4.1.

In Lakhina [21] principal component analysis on origin-destination (OD) flows is being used
to analyze the structure of network traffic flows. The result of this work leads to a system
that is able to decompose traffic levels gained from the links in a network into OD-flows
and detect volume anomalies (a sudden positive or negative change in an OD-flow’s traffic)
with a high detection and a small false alarm rate. Principal Component Analysis is used to
separate the space of link level traffic measurements into subspaces which are then distinguished
into normal and anomalous traffic behaviour using a separation step. Finally, anomalies are
detected by projecting traffic of a given link onto these subspaces, thereby revealing quite
clearly distinguishable anomalies which are then reported (after an additional quantification
step the system performs). While not specifically mentioned in the paper, we assume that the
method outlined requires a huge amount of processing power since the calculations take place
over large nxn matrices. It is unclear whether their method can be directly applied to our
”border router only”backbone traffic without having traffic data of any intermediate router nodes.

Statistical analysis allows a system to react to unknown and not prespecified events by predicting
the immediate expected future compared against the real measured data. This is a feature that
signature based systems cannot perform. The major drawback is the loss of concise reports to
the user. The system may detect an anomaly but is not able to tell what exactly the anomaly
is or why the alarm has been raised. Nevertheless, statistical anomaly detection has been widely
used and has proven quite effective in the test scenarios.

3.4 Signal analysis

Signal analysis is strictly speaking also a statistical method using special wavelets. The approach
is relatively new and is looking to become a promising tool for anomaly detection. A special class
of wavelets, called graph-wavelets are applied over the spatial domain of the measurement in the
paper of Crovella and Kolaczyk [23] in contrast to the time domain which is used in almost every
other system. The wavelet transformation can decompose the measurement into high, mid, and
low frequency components, which represent the bursty, trend and seasonal components of the
original signal. Anomalies can then easily be detected since the seasonal, normal traffic does not
show the anomaly while it clearly shows in the high and mid frequency ”bands”. The prototype
system as described by Crovella and Kolaczyk [23] is built to detect traffic shifts due to link
failures and anomalies in a network by collecting router statistics from every link. It furthermore
needs complete knowledge of the network graph it works on, which makes it not ready for everyday
usage. Another implementation of the signal analysis approach is the IMAPIT system developed
and described in Barford [7]. While the IMAPIT system is not real-time capable due to the
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use of a three hour sliding-window for a weighted calculation in the employed deviation score
mechanism, it does not need to know the network graph but works with traffic data from a single
router and shows a high detection rate as well as a very low false-positive rate. Unfortunately,
while both wavelet approaches certainly look promising, they need to be carefully tuned to be
effective.

3.5 Combined systems

To decrease the amount of false alarms or to achieve higher confidence a combination of the
methods outlined above or consideration of different input sensor is suggested. Roughan et al.
[24] use a combination of different sensor inputs, BGP route update counts and SNMP traffic
counters to increase their detection rate.
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4 Algorithms

Our traffic data is very bursty with many spikes (noise) but nevertheless shows a very distinct
daily rhythm pattern with a sag during the midday hour. Saturdays and Sundays can easily be
seen due to reduced use of the Internet over the weekends.

Figure 4: SMTP traffic: precise and averaged during mydoom outbreak

Network traffic not only shows daily rhythms but is generally also showing higher order seasonal
effects such as different usage patterns in summer than in winter months and between normal
workdays and special holidays where a large part of the population is not at work. Additionally,
network systems tend to be growing with more users connecting to the network or upgraded
connection speeds due to the proliferation of affordable broadband connectivity at home and
increased importance of the Internet. Furthermore, network providers need to regularly change
and adapt the network in order to accommodate new users, increase fault tolerance or to
be able to provide new services with higher bandwidth demands. This causes the data to be
non-stationary.

Because of these constant changes in the usage patterns and in the capability of the network, it
is desirable that algorithms working on such data are free of fixed limits and thresholds in order
that they can adapt to a live, evolving network but still be able to detect anomalies and rhythm
disturbances.

4.1 Holt-Winters

In 4.1.1 we take a closer look at the Holt-Winters [19] method as implemented in the development
versions of the RRDTool [16] by Jake Brutlag [6] which is used in Horus, our implementa-
tion of a network traffic anomaly detector. The implementation of Horus is described in Section 5.

Later in Section 4.2, we present one algorithm designed and implemented for this thesis, which
employs a somewhat fuzzy-logic approach to score the deviation from the level of normality
perceived. Following in Section 4.3 is the Loopback-Algorithm, which calculates the median over
the values gathered some days before and compares them to the actual observation, taking into
account the variability of the deviations. Lastly, in Section 4.4 we are explaining the MinMax-
Algorithm from Thomas Dübendorfer and show its application in this thesis.
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4.1.1 Description

The Holt-Winters method is an exponential smoothing forecasting algorithm that is built
upon the premise that the observed time series is composed from three distinct components:
A baseline, a linear trend and a seasonal effect. The seasonal effect allows to take different
behaviour at regular intervals into account, such as a sag during meal times or less variation in
usage during nighttime. The Holt-Winters method furthermore assumes that these components
change over time and adapts by applying exponential smoothing [25] over the data. A prediction
based on the three components is then being made together with a confidence band around the
prediction. The prediction is derived from the seasonal variability of the input data encountered.
Anomalies are then marked as any reading where the observed value exceeds the confidence
interval. This makes the algorithm an ideal candidate for our cause.

The Holt-Winters algorithm as used in RRDTool predicts one single1 value based upon the sum
of the three components as follows:

ŷt+1 = at + bt + ct+1−m

where m is the period of the seasonal trend, in our case a day expressed in the number of
observations. The three components a, the baseline, b the linear trend and the seasonal trend c
are updated with:

at = α(yt − ct−m) + (1 − α)(at−1 + bt−1)
bt = β(at − at−1) + (1 − β)bt−1

ct = γ(yt − at) + (1 − γ)ct−m

The new baseline is the observed value adjusted by the last seasonal coefficient and the predicted
slope is added to account for the change due to the linear trend. The new trend or slope is simply
the difference between the new and old baseline. The new estimate of the seasonal component
finally is the difference of the observed value and the corresponding baseline while considering
the value one season ago.

α, β and γ are the three adaptation parameters of the value with 0 < α, β, γ < 1. These
parameters determine how much weight newer values have over older predictions. A large value
lets the parameter put more weight on recent observations, in other words lets the algorithm
adapt to changes more quickly while smaller values put more weight on the past history of the
time series.

Comparing the prediction ŷt to the observed value yt, the confidence bands measure the deviation
for each point. The Holt-Winters algorithm in RRDTool takes seasonal variability into account
which is to say that the average deviation can be different during a seasonal cycle. The formula
to calculate the confidence band including the expected deviation at time t is:

dt = γ|yt − ŷt| + (1 − γ)dt−m

(ŷt − δ− · dt−m, ŷt + δ+ · dt−m) (4.1)

Where dt is the predicted deviation at time t and the confidence band thus the interval from
ŷt − δ− ∗ dt−m to ŷt + δ+ ∗ dt−m with δ+ and δ− as scaling factors for the width of the confidence
band. Since a symmetric band is desired, we set δ+ = δ− and denote it in the future as parameter
δ.

If an observed value falls outside the confidence band interval from formula (4.1) an anomaly is
detected. Since short bursts or values outside the prediction occur quite frequently, abnormal
behaviour is only reported if several such violations occur within a specified time frame. The

1The Holt-Winters algorithm is able to predict more than one future value
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size of this sliding window and the alert threshold can be freely chosen.

More details about the implementation of the Holt-Winters algorithm in RRDTool can be found
in Brutlag [6].

4.1.2 Parameters

As seen in 4.1.1, there are several model parameters for the algorithm. Choosing the right
parameters is vital in order to achieve the desired result of a low amount of false alarms yet
early detection of rhythm anomalies.

The following formula can be used to calculate the parameters:

α = 1 − exp
(

ln(1 − total weight as %)
# of time points

)
(4.2)

For example if you want the last 15 minutes with an observation every minute to account for
80% of the weight then the formula gives α = 0.1. By simple rearrangment of the formula to

total weight as % = 1 − exp(ln(1 − α) · # of time points) (4.3)

it becomes easy to get the weight of a certain time span at a given value of α. For example, with
α = 0.001, 4 hours of values with a sample rate of 1 observation per minute (240 values) gives
a weight of 21.3%. The same timespan using a sample rate of 1 observation per 5 minutes (48
values) gives a weight of 4.7%.

Although the formulae use α as parameter, they apply to β and γ in the same way. If the last
day at 1 observation per minute (1440 values) should contribute only 25% weight you will get a
parameter value of 0.00019976 by using formula (4.2).

At least one of the parameters α, β and γ should allow adaptation in a short time frame. Since
β tries to capture a slowly changing trend and updates on γ only happen infrequently once per
seasonal cycle for each coefficient, the recommended choice is α.
The initialization of the coefficients of the parameters is bootstrapped from the first observed
values. In case of γ, the seasonal component, one complete seasonal cycle needs to be encountered
first. The effect of the initialization diminishes with more observed values as newer values with
their higher weight suppress older ones.
In the RRDTool implementation two more parameters become available. Per definition every
single observed value that oversteps the confidence band around the predicted value would raise
an alert. Our input data, however, is too bursty and short spikes do occur quite frequently. To
mitigate this problem an alert is only reported when there are more than a specified amount of
such violations within a time window. The two parameters set the threshold for the number of
alerts required and the size of the window and default to 7 and 9.

4.1.3 Limitations

A limitation of the Holt-Winters method is the availability of only one seasonal component. Since
the daily rhythm is most prominent it does not make sense to use another rhythm for γ. Higher
order seasonal effects such as weekly, monthly or quarterly seasons cannot be added and the
parameters must therefore be chosen in a way to allow these rhythms to be absorbed in α and
β.

4.2 Fuzzy-Algorithm

We designed and implemented a new anomaly detection algorithm that we called ”Fuzzy”The
basic idea of the Fuzzy algorithm is that the observed value at some time t is supposed to
be similar to the value observed at time t−n∗timeperiod. Thus the Fuzzy algorithm looks back
a certain period (days in our case) and compares each value found with the current observed
value. The difference of the values is then calculated and a score depending on the relative
deviation assigned. Higher deviations result in higher score values. These score values over
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the past days are summed up and compared against a threshold. If the score is exceeding the
threshold, an alert status is set for the current time. This method allows for some ”natural
deviation” by giving low scores for low deviations and high scores for large deviations. Because
of the somewhat arbitrary distinction into ”score buckets”, we call this algorithm Fuzzy.

Since our traffic data is bursty, this would produce an alert anytime a spike is observed. In order
to work in the presence of such spikes, the Fuzzy algorithm does not work on a single value at a
time t, but on the average of the last three values (i.e. (t, t−1, t−2)/3). This averages out small
spikes and reduces the amount of alerts tremendously that would otherwise occur often in such
a noisy signal. To reduce the false positive rate further, an alert is only reported if there has
been a certain number of alerts within a moving time span window.

Our SMTP data differs significantly between workdays and weekends. On weekends, the traffic
can be a third or less of the volume of a normal workday. This caused the first weekend
unaware Fuzzy algorithm to always raise alerts on weekends. The problem has been resolved
by comparing values only against past observations of the same day-type. Days have been
divided into weekdays (Monday through Friday) and weekend days (Saturday and Sunday). So
if the algorithm has to process an observation on a Sunday, it compares against data from past
Saturdays and Sundays but never from weekdays. This assumes that a weekday is always a day
which shows an usage of the same magnitude in our data as other weekdays. Special holidays
during weekdays are currently not implemented and will therefore be considered anomalous by
the Fuzzy algorithm.

4.2.1 Parameters

The Fuzzy algorithm needs a few parameters which are all tunable by editing the configuration
file. First and foremost is the lookback parameter which specifies with how many reference
values the current value is compared. Setting lookback to 7, the default value, makes the Fuzzy
algorithm compare the current value to the values at the same time of the last 7 days of the
same day-type. If the current day happens to be a Saturday, this would mean that the farthest
day still being looked at is 27 days ago.

The next-most important parameter is the alertscore. Alertscore specifies the score at which
the current value is considered anomalous. If the summed up scores exceed this value, an alert
status for the current time interval is set. Alertwindow and alertthreshold define the size of the
window and the number of such alert states to be encountered before an alert is logged to the
system. The window always looks back from the current value, thus including the current time
interval and the alertwindow − 1 last intervals.

With the uselinear parameter the scoring method to use can be selected. The scoring methods
are discussed in the next section. If this value is set to 1, linear scoring is used. Otherwise the
exponential scoring method takes place.

Finally it has been found that with much lower traffic on weekends, the influence of bursts is
higher due to the smaller traffic volume. Many false positives during weekends were the result.
This led to the introduction of a new parameter, weekendbonus, which raises the alertthreshold
during the weekend by the given amount. The default value of weekendbonus is 6. Also when
working on generally low volume signals like the count of flows (in comparison against bytes
transferred), the normal deviations from the mean in the signal can be too small and cause
the Fuzzy algorithm to never raise an alert. To prevent this, the flowfudge parameter has been
added which allows to lower the alertscore value by the given amount if the algorithm works on
”low-volume” flow data.

4.2.2 Scoring

There are two different scoring methods implemented in the Fuzzy-Algorithm, a linear and an
exponential scoring scale. Both scoring methods calculate a score between 0 and 5, with 0 being
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the ”best” score or no significant deviation and 5 being the ”worst” score or massive deviation.
While scores higher than 5 can be produced by the calculations, they are capped at 5 which equals
to over 100% deviation from the comparing value in both the linear and exponential method.
These scores are calculated seperately for each of the lookback days the algorithm is comparing to.

The linear score simply assigns one point for each 20% increase in deviation from the current
observation. This results in a scoring scale as in Table 1.

Score Deviation
0 below 20%
1 between 20% and 40%
2 between 40% and 60%
3 between 60% and 80%
4 between 80% and 100%
5 over 100% deviation

Table 1: Linear scoring scale in Fuzzy algorithm

When scoring exponentially, the equation applied is

score = trunc((edeviation ∗ scale)− shift) (4.4)

and

scale =
maxScore + shift

e
(4.5)

deviation = abs((
oldvalue

newvalue
) − 1)

where deviation is the deviation between the old and the new observed value and scale a scaling
factor. The parameters are chosen such that the resulting score will be 5 when the deviation is
1 (meaning 100% deviation).

Parameters for exponential scoring

When using the exponential scoring method two new parameters become available, scale and
shift. These parameters can be adjusted to change the underlying exponential curve which assigns
scores according to the relative deviation. Scale can be calculated directly from the above equation
and shift can be used to select at which point (deviation) the score should switch from 0 to 1.
For example, if one wants to obtain a score of 1 starting at 20% deviation (y = 0.2), then
using the following equation (which can be developed by inserting equation 4.5 into 4.4) with
maxScore = 5:

shift =
maxScore ∗ ey − e

e − ey
(4.6)

Continuing the example, using y = 0.2 and maxScore = 5 and equation 4.6, the value 2.26386
for shift is obtained and the scale value then becomes 2.67223 when entering the value into 4.5.

The default values for scale and shift are 2.57515 and 2, respectively. This results in a scoring
as in Table 2.

Note that the parameter maxScore in above equations should be the same value as the linear
scoring method uses as maximum value in order for the two methods to remain comparable.
Linear scoring has a hard-coded maxScore of 5.
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Score Deviation
0 below 15.27%
1 between 15.27% and 44.03%
2 between 44.03% and 66.35%
3 between 66.35% and 84.58%
4 between 84.58% and 100%
5 over 100% deviation

Table 2: Exponential scoring scale in Fuzzy algorithm

4.2.3 Limitations

While the Fuzzy algorithm performs quite well given its simplicity, it has no real perception
of circadian rhythms and especially can not distinguish special holidays during weekdays. It
furthermore has some sort of asymmetry between week and weekend days because the latter
ones need a lot longer to adapt to a changed baseline, because only 2 out of 7 days are weekend
days and as such eligible for comparison. This becomes less problematic when there is fewer
variance between weekend and weekdays in the signal.

4.2.4 Pseudocode

The Fuzzy algorithm in pseudocode looks as follows:

uint val, oldval;
int score, qscore, j, windowcount;
double q;

int avg3at (timecode t) { // average over last 3 values to
return (valueat(t) + valueat(t-1) + valueat(t-2))/3;

}

val = avg3at(t);
j = 0; i = 1; // i counts days back, j counts days taken
while j < LOOKBACK do // compare with last 14 days of same type

if(daytype(t) == daytype(t-i*TAG)) {// same daytype (weekend, weekday)
oldval = avg3at(t-i*TAG);
j++; i++; // inc counters

} else {
i++;
continue; // jump next possible day

}
if(val == 0) { // special case, val == 0, no div zero!

if(oldval == 0) { // if oldval also 0 ok, otherwise assign
qscore = 0; // maxscore

} else {
qscore = 5;

}
} else {

q = oldval / val; // quotient
q -= 1; // minus 1
q = abs(q); // remove sign
if(USELINEAR == 1) {

qscore = floor(q * 5); // scoring qscore = | q -1 | * 5;
} else {

q = exp(q);
q *= scale;
qscore = floor (q - shift); // qscore = exp(| q - 1 |) *scale - shift;

} // exp levels see below
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if(qscore > 5) qscore = 5;
}
score += qscore;

end; //while

// now we have LOOKBACK days. Perfect would be score 0. We say score <= ALERTSCORE
// is ok. The rest is anomalous.
if((not weekend & score > ALERTSCORE) | // check if we need to boost ALERTSCORE

(weekend & score > ALERTSCORE + WEEKENDBONUS)) // for weekend
setalertat(t);

// alert window:
for i = 0 to ALERTWINDOW-1 do // check this and 4 last alertstatus
if(t-i hasAlert)

windowcount++;
end; //for
if(windowcount >= ALERTTHRESHOLD) // "3 alerts in window of 5"

raiseAlarm();
} //for
END

4.3 Lookback-Algorithm

Lookback is a second algorithm developed for this thesis. As the name implies it performs a look
back at past data. Similar to the Fuzzy algorithm, Lookback looks at observed values of the
same day-type and distinguishes weekdays from weekend days. In order to avoid false positives,
Lookback collects data in a window and calculates the median value so that occasional spikes
cannot distort the reading too much. The median value of such a window is stored in an array
and the deviation of each value in the window from this median is calculated and the largest
deviation is also stored for later use. The maximum deviation from the median in the window is
used as a reference point for the deviation to expect.

After the required amount of such Lookback operations and calculations were performed, the
median and maximum deviation values that were stored in an array are now used to compare to
the current data value. First, the median of the medians in the array is calculated and compared
against the current data value (which is not a single data point but also a median of the last data
values in a window). The deviation from the current value is then compared to the average of
the maximum deviations in the array. If it exceeds this average of maximum deviations, an alert
is logged and the current signal considered anomalous, otherwise the data is considered normal.

4.3.1 Parameters

Lookback only uses two parameters for its operation. The first one, lookback is shared with the
Fuzzy algorithm and selects the number of days of the same day-type to compare the current
value against. Second comes medwindow which specifies the size of the median-window that is
used for looking up the actual and older values. It is set by default to 5 which means that the
median value from 5 minute intervals are calculated and compared. The medwindow parameter
may be an even integer value in which case the two median values in the window are arithmetically
averaged and returned.

4.3.2 Limitations

Lookback like the Fuzzy algorithm, has no real notion of daily rhythms except the built-in
mechanism to compare the current value to other days’ values at the same time. Thus Loopback
cannot deal gracefully with holidays during the week either. Furthermore it has been found to
perform poorly on low volume signals with relative high variability such as the number of traffic
flows.
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4.3.3 Pseudocode

The Lookback algorithm in pseudocode looks as follows:

int getmedian(int start, int end) { // subroutine, calcs median between
int len = end-start; // interval values
array[len]; // create array of size
for i = 0 to len

array[i] = valueat(start+i); // store values
end; // for
sort(array); // sort array
if(odd(len)) // if odd number of values

return(array(len/2)); // return middle one (int div -> 3/2 = 1)
else

return((array(len/2) + array((len/2)+1)) / 2); // otherwise alg. average
} // of middle ones

int getaverage (array a) { // subroutine, calcs average over array
int len = a.size;
int val = 0;
for i = 0 to len

val += a[i]; // sum of all values in array
return (val/len); // return sum/number of values (= average)

}

void lookbackto(timecode t, median m, maxdev d) { // subroutine, calcs values
int dev = 0; int meddev = 0; // over past data
m = getmedian(t, t-(MEDWINDOW -1)); // select the median from t .. t-(medWindow-1)
for i = 0 to MEDWINDOW-1 do

meddev = abs(valueat(t-i) - m); // distance median - value
if(meddev > dev) // largest yet?

dev = meddev; // save largest deviation from median
end; //for
maxdev = dev; // set largest deviation from median

}

uint64 med[LOOKBACK]; // array of median values in the past
uint64 mdev[LOOKBACK]; // array of max deviation from median in the past
int j=0; int i=1; // count sucessful days
while j < LOOKBACK // until we have lookback many days

if(daytype(t) == daytype(t-i*TAG)) { // same daytype (weekend, weekday)
lookbackto(t-i*TAG, med[j], mdev[j]); // fill array
j++;

}
i++;

end; //while

uint64 median, deviation, confidence;

confidence = getaverage(mdev); // get the average of all max deviations seen
median = getmedian(med) // get the median of all medians seen in interval
deviation = abs(valueat(t)-median) // deviation between actual value from median of

// medians
if(deviation > confidence)

raiseAlarm();
END
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4.4 MinMax-Algorithm

The MinMax algorithm has been developed by Thomas Dübendorfer for the RespiG semester
thesis [26]. It is able to find local extrema in a noisy signal and had to be slightly adapted for
inclusion in this thesis due to the absence of negative values in our SMTP signal.

MinMax alternatingly searches for a local minimum and a local maximum. It first looks for a data
value that is a minimum. Whenever the current value is smaller than the smallest seen so far,
that value becomes a temporary minimum. When an observation occurs where the distance from
the last temporary value exceeds a specific threshold (in the other direction, i.e. positive when
currently searching for a minimum and vice versa), then the last temporary value is converted
into an extrema and the current value becomes the new temporary maximum. At this point the
algorithm switches and searches for a local maximum.

4.4.1 Parameters

The MinMax algorithm uses only one parameter, minmaxthreshold which defines the deviation
of the current value from the last found temporary value in order to turn the temporary extrema
into a permanent one. Note that there is currently no adaptation of the threshold value to the
magnitude of the input signal.

4.4.2 Limitations

Due to the MinMax algorithm’s internal function of defining values as temporary extremas and
either converting them to final extremas or discarding them later, it cannot work in a realtime
manner like the other algorithms. That is to say, the MinMax algorithm is always lagging behind
as it cannot decide instantly if the current value is an extrema value or not. This is a problem
inherent to the definition of a local extrema. It also does not really raise any alerts but it does
find spikes which generally appear like when a sudden increase of traffic flows during a DDoS
attack happens. As such, the MinMax algorithm can work together with the other algorithms
to decrease the false positive rate by contributing additional information.

Another difference to the other algorithms is the fact that the MinMax algorithm is not stateless.
It needs to know whether it is currently looking for a maximum or a minimum and it furthermore
needs to store the last temporary value (and time) encountered. All the other algorithms can
fetch their data from the archive of stored past data and/or calculate it using a mixture of the
current and past network data.

4.4.3 Pseudocode

The MinMax algorithm in pseudocode looks as follows:

MinMaxContext ctx; // context to store state
uint64_t currentValue, currentTime; // current observed value
ctx = getContext(); // get state

// better temporary value found ?
if(currentValue * ctx->findMax < ctx->temporaryExtremeValue * ctx->findMax) {

ctx->temporaryExtremeValue = currentValue; // put into state
ctx->temporaryExtremeTime = currentTime;

}
// check if threshold exceeded
if(abs(currentValue - ctx->temporaryExtremeValue) > MINMAXTHRESHOLD) {
// add extrema value to extremas, take new value as temporary

insertExtreme(ctx->temporaryExtremeValue, ctx->temporaryExtremeTime);
ctx->temporaryExtremeValue = currentValue;
ctx->temporaryExtremeTime = currentTime;
ctx->findMax *= -1; // and switch direction

}
END
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5 Implementation

This section describes the design and implementation of our network traffic anomaly detection
system. The system has been named ”Horus”.

5.1 About ’Horus’

Horus is the name of an ancient Egyptian deity. Unfortunately many deities and minor gods at
one time or another are associated with that name [27]. One prevalent description of Horus is
the battle against his uncle Seth, god of chaos and disorder. By defeating Seth in revenge for
the murder of his father, Horus became known as god of order [28]. Horus is often portrayed as
hawk-headed being or as a falcon. The symbol of Horus [29] depicted in Figure 5 is a stylistic
eye which may symbolize foresight. In later dynasties every Pharaoh was said to be the earthly
representation of the god Horus.

Figure 5: Symbol of Horus

Since the anomaly detection system’s job is to find the order in the chaos, the name of the god
Horus has been chosen for the program. The symbol of the eye is furthermore a fitting picture
for a monitoring system.

5.2 Design

Horus, the program that implements our anomaly detection system based on NetFlow data, has
been implemented in a way that allows it to either work as a stand-alone application processing
the input data from archived NetFlow files, its own preprocessed format or as an UPFrame
plugin, which can work on recorded or live data directly from the routers. These two different
modes of operation, called file mode and plugin mode respectively, are explained in Section 5.3.1.

Horus has been built with extendibility in mind. New modules and algorithms (for an explanation
of the differences of modules and algorithms, see Section 5.2.3) can relatively easily be added to
Horus. Section 5.3.5 explains the procedure to extend the functionality of Horus and the available
API functions. The design of Horus can be divided into the following distinct subsystems which
are explained in further details below:

Filter and IO: The filter and IO subsystem is responsible for retrieving the network traffic
data. This data is filtered so that only desired data records are being processed and stored
into the internal data structures.

Data storage: The data storage subsystem provides data structures and access methods for
the data. Part of the data is stored in memory only waiting for further processing, while
processed data needs to get stored on disk in order to be accessible later and for longer
periods of time.

Control: The control subsystem is the glue in Horus, making sure that all subsystems work
together. It initializes the program, reads the configuration and controls the execution of
the subsystems.

Modules and algorithms: In Horus, the processing of the data is being handled by different
modules which can be dynamically turned on or off. The output of these modules then is
being processed by one or more of the algorithms described in Section 4.
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Figure 6: Overview of the Horus program

Figure 6 gives a broad overview of Horus’s subsystems and their relation with each other. The
flow of the data is depicted in Figure 7. As can be seen, data processing of interesting data
(that is, data that is not filtered out) happens two times. The first processing is done by the
modules and happens just after a data record has been accepted by the filter. The modules then
in turn inspect the data record and add data to the respective aspect that they observe. At the
time of this writing, there are modules for counting bytes, packets and flows per minute. It is
also here, where the handling of long flows takes place. After passing through the modules, a
data record is no longer useful and the memory is freed. The modules however store the data of
their observed aspect in a special data structure. This structure, the bucket-list, is explained in
Section 5.3.2. It is the data in this structure which is subsequently fed to the algorithms and
stored for archiving purposes.

5.2.1 Filter and IO

The Filter and IO subsystem’s responsibility is to retrieve the data from a source and filter it
accordingly such that unwanted data records can be discarded at this early step not using any
more system resources. The filter looks at each incoming NetFlow data record which describes
one single traffic flow and either accepts the flow and passes it to the data storage subsystem
or ignores it, causing the memory of this record to be reused. At the moment the filter is hard
coded to only accept TCP packets. The TCP port of the packet the filter accepts can be set
through a configuration directive in the config file. By default, this is port 25 (SMTP). See
Appendix B for all the valid configuration settings in the config file. A traffic flow record passes
the filter if the flow describes a TCP data flow and the source or the destination port matches
the configured TCP port.

The subsystem accepts different types of input sources for retrieval of NetFlow data. Addi-
tionally, it also accepts a preprocessed special file format. In order to feed live data, UPFrame
[17] is required. Please see Appendix C about how to setup and use UPFrame with Horus.
In UPFrame mode Horus reads its data from shared memory directly from UPFrame. It
then sends each valid NetFlow data record to the filter. Records which are accepted by the
filter are then passed on to the different active modules for processing. This is called plugin mode.
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Figure 7: Flow of data through the Horus program

In order to test Horus or trying to find good parameters for the algorithms a reproducible
behaviour is needed. This cannot be accomplished using live network data due to the change in
input values and the time it requires to perform one single test run until enough input data has
been processed. Horus therefore also allows to work on archived NetFlow data. This mode of
operation is called file mode. Appendix E explains the different file formats that are accepted.
The files are essentially NetFlow UDP packets serialized and stored in binary format. They can
be bzip2 compressed or uncompressed. Uncompressed NetFlow files use more disk storage but
can be processed faster and with less CPU usage while compressed NetFlow files use less disk
storage but incur more CPU processing due to the compression and decompression. Both types
can be mixed freely in one run because Horus can distinguish the type of the input file. The
NetFlow data records stored in the NetFlow files are given over to the filter which accepts and
passes them on to processing if they match the filter criterion or rejects them which frees the
memory of the record.

Since processing of NetFlow files over a longer period of time such as a month can take a huge
amount of time due to the size of the NetFlow files, another type of input data is accepted
by Horus. By enabling the TextOutput -Module, Horus not only processes the data as it would
normally, but it also stores the result of the internal data structure into a text file called
outfile.txt. This file then contains all the data after filtering the input data and after processing
of this input data by the different modules, but before the data is analyzed by the algorithms.
Thus when such preprocessed data is again used as input file, Horus can skip the filter and
processing of a huge amount of data and directly build the internal data structure which then
can be analyzed. This means that a large amount of NetFlow files need to be processed only
once and can be directly stored in this intermediate format, which takes a lot less storage space
and subsequently less CPU time to analyze.

As an example, several months of NetFlow data totalling over 2 Terabyte of NetFlow files has
been converted to an intermediate file which was only a bit over 1 megabyte large. Subsequent
analysis of the data then took approximately 30 minutes, while the same analysis over the original
files took 22 cluster nodes more than 2 days. It is therefore recommended to work with the
intermediate file format for offline analysis whenever possible in order to save time and disk
storage space.
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5.2.2 Data storage

Horus has two main processing steps and consequently two different types of data to process and
store. The first step of processing occurs when the modules are processing the individual flow
records that passed the filter. The modules thereby collect data which they store in a special
data structure, the bucket-list. This list normally only exists in the memory of Horus but can
be stored to disk by enabling the TextOutput -Module. The data structure holding this data is
described in more detail in Section 5.3.2.

The data is then fed to the algorithms which have to decide whether an alarm condition is
present or not. For this decision some of them need to access past data. The output of the
algorithms along with the data from the modules is collected in intervals of one minute and
stored in a RRD archive. RRD stands for round-robin database and is a special database that
never grows in size. Instead the amount of data to be stored must be set and RRD then populates
the data in the database by filling up slots. Once all slots are full, RRD overwrites the oldest
entry. There are also possibilities to consolidate data together in longer intervals such that the
data is available for a limited period in full resolution (which is called a primary data point or
PDP) but for a much longer time the average, maximum, minimum or last value of several PDP’s.

The data in the round-robin databases can be manipulated by a suite of programs called
”RRDTool”[16]. More details about the use of RRDs can be found in Section 5.3. Internally
RRDs are used to store the output of the algorithms and the observed aspect values for some
weeks. This allows the algorithms at any time to look back to the situation some days ago for
comparison or calculation of deviations. The data of the RRDs are generally only present on
disk and are not stored for longer periods in main memory. Each access to data stored in a RRD
causes the database file on disk to be opened and read. The overhead and resource consumption
of the repeated access on these files has not been proven to be a problem. More details about
the resource usage can be found in Section 5.4.

Some of the algorithms also put internal states into separate RRDs, so that the number of missing
data points or an internal variable at any given time can be read out later. Furthermore, each
algorithm puts at least one variable into an RRD which defines whether the algorithm raises
an alarm or not. These variables can be read out and processed independently from Horus by
another program.

5.2.3 Modules and algorithms

As there are two different processing steps of the input data, there are two distinct types of
program code that process the data. These two types are called Modules and Algorithms.

Modules

Modules are little pieces of code that can be switched on and off after compilation of the Horus
program by setting the corresponding values in the configuration file. Modules can be thought
of as plugins within Horus, though they cannot be loaded dynamically after compilation at this
point. It is not difficult to insert a new Module into Horus. The process is detailed in Section 5.3.5.

The job of Modules is to process the raw NetFlow data records that passed the filter into some
aggregated value, which we call aspects. One example of this is the bpcount-Module which
counts bytes and packets of the NetFlow records and stores these values into a bucket-list in
one minute intervals. Since NetFlow data records can arrive late, special processing is needed
for these long-flows. This process is explained in more detail in Section 5.3.3.

The data values the Modules produce as output are stored in a bucket-list. Each entry in the list
corresponds to one time interval with a size of 60 seconds. This means that for example the num-
ber of bytes for all traffic flows that occurred during the same minute are summed up and stored
together in the same bucket-list entry. Modules are free to calculate more than one aspect at the
same time. For example, the Module bpcount counts the number of bytes and packets in one pass,
while the Module flowcount only counts flows. In order to not mix different aspects, a Module
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has to allocate or reserve space in the bucket-list. This process is explained in more detail in 5.3.2.

A Module does not necessarily need to process NetFlow data records. Modules get called by
Horus and passed each NetFlow record that passed the filter but this data can be ignored.
Later, Modules are called again to process the bucket-list entry for a specific minute. The
TextOutput -Module is a special Module that does ignore all NetFlow data records, but stores
the entire contents of the bucket-list entry in to a text file. MemoryLogger is another special
Module which does nothing else than checking the amount of memory currently in use by Horus
and storing that value into a round-robin database.

Modules need to conform to some basic interface by providing a small set of function calls, which
are recorded in a special structure by Horus. Each Module gets called once upon initialization and
once upon finalization, before Horus terminates. The remaining functions are called by Horus
whenever a new NetFlow record that passed the filter is encountered (there are actually two
different function calls, one for short and one for long flows) or when a bucket-list entry is to
be processed which are again two different calls, once for an entry that is at most 3 minutes
older than the newest entry and once for each entry that is older than 15 minutes. Details about
this behaviour is found in Section 5.3.3. A Module can perform any arbitrary action during its
runtime. It can furthermore allocate and use a new RRD, register a new aspect in the bucket-list
or disable itself (or another Module). The possible actions are outlined in Section 5.3.5 and the
API is detailed in Appendix D.

Algorithms

The algorithms were described previously in Section 4 and are executed by the Modules on
their respective aspect. An algorithm takes the current time code as input and retrieves the
calculated value for that current time. It then proceeds to perform its calculations and stores
the resulting output in a round-robin database. It is possible to select exactly which of the four
implemented algorithms work on what aspects. This can be configured by setting the correct
values in the configuration file. See Appendix B for details.

The Holt-Winters algorithm is an exception to this rule since it has been built directly into
RRDTool2 and inserting the processed value from a Module is sufficient to initiate the Holt-
Winters forecasting algorithm for the value at the insertion time.

5.2.4 Control

The rest of the functions not already described above can be summed up under the control
subsystem. This part of Horus performs the setup of all necessary data structures, parses the
command line arguments given and reads in a configuration file with additional configuration
directives. Arguments and parameters are then sanitized where necessary, followed by the
preparation of the subsystems and activation of the necessary Modules conforming to the actual
configuration. Finally processing starts in the manner as given by the command line arguments.

Other duties of the control subsystem are the interface to the round-robin database system
through the use of an API library which provides functions to create, read and update data in
the RRDs, as well as necessary management functionality so as not to lose track of any used
resource. Going hand in hand is the memory management using function hooks to track and
prevent excessive memory use. Horus can be configured to never exceed a specific amount of
memory and it will not allow any subsystem to allocate more than this limit. When memory
consumption reaches a level 1 megabyte short of the hard limit, warnings are issued. If a memory
allocation fails due to overdrawing the limit, a special function call is performed which may be
used to free less important memory. This function is currently not used but is available.

The memory management also provides functions to retrieve the amount of currently used
memory, which can conveniently be used to check if there is a resource leak anywhere in the
code of a Module or Algorithm. Additionally, functions are provided to access the configuration

2starting with the development version 1.1.x
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directives of the configuration file and for logging fatal and non-fatal errors into the error-logfile
maintained by Horus. Please see Appendix D for a detailed list of available API functions and
their explanations.

5.3 Implementation details

In order to manage and store the incoming data efficiently, Horus aggregates the aspect output
of the Modules into entries of its internal block-list structure, like described in Section 5.3.2
below. Such an entry represents an interval of one minute. This means that Horus works with
a resolution of one minute. This is also the interval that data gets stored in the RRDs. The
number describing the entry is the time point at which this one minute interval starts in the
standard Unix epoch format. We call these values timecode within Horus. Since the epoch
format counts seconds, two consecutive timecodes differ exactly by a value of 60 (seconds) from
each other.

The use of RRD as a storage medium for data has some consequences. For one, RRD does
aggregate and consolidate data values, if they are not arriving in the same interval as was
foreseen at creation time of the RRD archive. This is why Horus always inserts data into RRDs
at exact timecode intervals. Furthermore, RRD overwrites old data that exceed the preset
amount of slots. This has the effect that if more than a certain amount of values have been
inserted, old data is overwritten and lost. At the time of this writing, the RRD archives store
90 days of values (129600 data points in minute resolution).

Another peculiarity of RRD is that it can optionally consolidate several data points into one
single data point of smaller resolution. While this feature is not used in Horus, this has the con-
sequence that RRD never allows to insert data with a timecode value of x, if data has previously
been inserted at timecode y and x ≤ y. Consequently, data must always be inserted in strict as-
cending order. If data is missing at any one point, RRD returns NaN, not 0 or an arbitrary value.

We recommend to familiarize yourself with RRD first before trying to extend Horus or reading
data out of the RRD files Horus’ algorithms create and use. More information about the function
of RRD can be found at the official homepage [16].

Horus writes its RRD files into the configured work directory (or the current directory, if
none is given). The RRD file names should be self describing. A capital ”H” in the name
signifies an RRD file of high precision, ie one that contains the data after the 15 minute period
in which long flows are included and a capital ”L” hence signifies the lower precision. Low
precision data gets processed and written when a new element with a timecode that lies 4
minutes ahead is added to the bucket list. This allows a short reaction time at the cost of
the contributing data of long flows that span more than 3 elements and could not yet be recorded.

The RRD files can be queried independently by other programs. This can be used to get the
actual status of Horus, since an alarming system has not been included (yet). In order to find
the alert conditions, the data sources defined in Table 3 are available.

5.3.1 Modes of operation

There are two basic modes in which Horus can be running, file mode and plugin mode.

In file mode, Horus is pulling the flow data from files by either reading NetFlow files or the
already preprocessed data from its own intermediate format. Whenever Horus reaches the end of
the file(s), it finishes processing by flushing the remaining data from the internal data structure
to the Modules and exits afterwards.

When in plugin mode, Horus is running as an UPFrame plugin, retrieving NetFlow data over the
framework out of shared memory. Since there is not really an ”end” of data, Horus does never
stop until it is forcefully terminated. While in plugin mode, the parameter -n | –no-flush to
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Algorithm type DS-name Explanation
Holt-Winters FAILURES (CF-Type) Set to 1 if too many observations exceeded the

confidence intervall in a window
Fuzzy alert Set to 1 if an alert (score exceeded alert score)

has been reported
Fuzzy walert Set to 1 if too many alerts within the alert win-

dow have been encountered
Fuzzy missing Set to 1 if there was data missing, so the result

is expected to be skewed
Lookback alert Set to 1 if an alert has been reported by the

Loopback algorithm
Lookback missing Set to 1 if there was data missing, so the result

is expected to be skewed
MinMax extrema Set to 1 if an exremum was detected

Table 3: Defined data sources in the round robin database files

prevent data from being handed to the Modules until all files has been processed is consequently
meaningless.

5.3.2 Data structures

There are two important data structures in Horus, the global configuration structure
HORUS CONFIG which is available3 under the global symbol name ”config” and a special

linked-list which is called bucket-list.

The configuration data accessible under ”config” contains all the flags and parameters that can
be manipulated by the command line arguments such as the debuglevel and the list of input
files to process.

At the core of data processing in Horus lies a special linked-list called bucket-list. This list,
which is accessible through the global configuration structure stores the aspect data of the
Modules. The bucket-list stores list entries which are sorted according to their time value.
This means that there exists exactly one list entry per minute of flow data encountered. At
the front of the list are the newest entries (the entries with the highest time value) while the
oldest entries are located at the rear of the list. See Figure 8 for an overview of the lists structure.

Figure 8: Structure of the bucket-list

The list maintains pointers to the oldest and newest entries as well as two special pointers
3when including global.h
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to the entries at the position which are (according to the time value in the entries) 3 and 15
minutes past the newest entries. These pointers are used to decide when data is to be sent to the
Modules for the second round of processing where the algorithms are used to detect anomalies.
The 3 minute pointer is internally called the ”low-resolution” pointer since it is likely that the
entry at the 3 minute position does not yet contain information about newer long-flows. Such
flows while being active at this time, have not yet terminated and are therefore not reported
yet. Conversely, the pointer at the 15 minute position is called the ”high-resolution” pointer as
at this time all flow data has been received. Note that the exact maximum time a router holds
back to report long flows depends on the router’s configuration and can most likely be changed.
In order to work correctly with Horus, the router(s) active timeout value at which long, still
active flows are reported must not exceed 15 minutes.

When Horus is actively processing network flow data, the list is growing with every new
minute interval encountered and the list entries are removed automatically again, when
they have been processed by a call to the Modules’ high-precision ”store” function. This means
that unless the -n | –no-flush parameter has been given, the list will grow to 15 elements at most.

A list entry contains fields in an array where Modules store the data of their observed aspects
in the minute interval equal to the entries’ time value. To allow several aspects to be handled
without unwanted mixing or static allocation, Modules are required to request and reserve their
storage space. Appendix D explains how this can be accomplished.

5.3.3 Handling of long flows

We call network traffic flows that span more than one entry in the bucket-list ”long flows”.
Long flows require special processing, depending on the aspect that is being worked on. In
some cases this is trivially easy, in others more effort is needed. For example when counting
flows, we only need to increment the counter for each entry in the bucket-list that is covering
the time interval, during which the network flow was active. However, if we want to count the
bytes of the flow, we need to distribute the overall amount from the NetFlow record among
all the bucket-list entries during the flow’s duration. Since we only have the information about
the total amount of bytes (and packets), we assume that the flow sent data with a fixed
average speed. Thus, the amount of bytes transmitted per minute interval is calculated and
summed up. There is a special treatment for the first and last entry of the bucket-list to add
only a fraction of the full minute interval, if the flow did not start exactly at the minute boundary.

The bpcount -Module found in src/bpcount.c performs this distribution of a network flow’s bytes
and packets over several bucket-list entries, while the solution in the flowcount -Module in
src/flowcount.c simply adds the counter of the proper entries.

In order to retrieve the exact start time of a flow, the router’s uptime from the NetFlow header
files must be used and special treatment taken, since that value wraps around approximately
every 40 days. Luckily, this speciality has already been taken care of by the NetFlow-tools
package from the DDoSVax team.

This is the reason why every Module needs to implement two functions, one for normal, short
flows and one for long flows. As a test run with special code has shown, there are relatively
few long flows with significant size. Table 4 shows the distribution of long flows compared by
their size. The data used to create this statistic is a random selection of 4 hours of NetFlow
data and a full run over archived data during the Sobig.F outbreak consisting of 270 GBytes of
compressed data in 1130 files each spanning an hour.

Since processing of long flows can be far more complex than that of normal flows, Horus by
default only calls the long flow handling code of Modules if the flow is at least 100 KBytes large.
Thus using less processing resources at the cost of a slight error by not distributing the data of
smaller flows over all appropriate bucket-list entries. This default value can be overridden by
the -t or –threshold command line argument. Setting it to 0 causes Horus to perform the long
flow handling on all flows that span more than one bucket-list entry, any other value will set
the limit under which a long flow will be accounted for by the single flow handling code which
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stores the aspects of the flow in one single bucket-list entry.

Size Longflows (4 random) Percentage Longflows (Sobig.F) Percentage
0 .. 1 KB 431557 90.57% 10494834 63.63%
1 KB .. 10 KB 34817 7.31% 4416527 26.78%
10 KB .. 100 KB 5972 1.25% 602427 3.65%
100 KB .. 1 MB 2427 0.51% 893114 5.41%
1 MB .. 1740 0.37% 86655 0.53%
total 476513 100% 16493557 100%

Table 4: Distribution of long flows according to size

5.3.4 Configuration

The configuration and parameters of Horus can be influenced by the command line arguments
when executing the Horus binary and configuration directives read from a configuration file.
First the arguments given on the command line are evaluated, afterwards the configuration file is
parsed. A different location and name of the configuration file can be specified with the -c <config
file> argument. If an illegal value has been given as an command line argument, execution
stops immediately. When giving no argument at all, a short usage is printed giving all available
command line arguments. Giving –help or -? as only argument will cause Horus to print an ex-
planation of its parameters. Appendix A lists and explains all available command line arguments.

Once the command line arguments have been processed, a configuration file is read. If it has not
been explicitly set by the -c command line argument, the file horus.conf in the current directory
is used. Note that directives in the configuration file can overwrite command line arguments.
Currently this is the case with the -w <directory> argument and the config.workdir directive
which both set the working directory where Horus will store and use its output data files. The
full list and explanation of available configuration directives for the configuration file can be
found in Appendix B.

5.3.5 Extending Horus

Horus can be extended by adding new Modules and Algorithms. In order to facilitate work,
an easy to use API is being provided by Horus. The details of which can be found in Appendix D.

A new algorithm can be added simply into src/algo.c. In order to be used by the Modules
however, each Module must be changed to actually take advantage of any new algorithm. This
is preferably being done optionally, controlled by a configuration directive in the config file. It
is important to remember that algorithms basically work stateless. They are called by Modules
and can receive data such as the actual bucket-list entry, but otherwise don’t have any state
at all. If a new algorithm needs to preserve state, that must be stored either in its own RRD
(probably distinct for each Module that uses the algorithm) or using some other, own mechanism.

Integrating a new Module requires a few steps more. Modules should be implemented in their
own file and therefore need to be added to the Makefile in order to be compiled automatically.
Modules need to conform to some basic interface, which means that they have to implement
6 different functions. The function prototypes are defined in global.h and are also listed and
explained in Appendix D. Since Horus does not support dynamic loading of Modules, they
need to be known to Horus at compile time. This means that a special registration function
in the new Module needs to be called by horus.c during runtime. This function then fills in
a MODULE structure where the 6 necessary function calls are registered. By adding this
structure to the global list of Modules, the new Module then becomes known to the system and
can be used. The file src/foo.c contains a dummy Module that does not perform anything but
can be used as an example on how to populate the module structure. The registration function
needs to be known to Horus, so a forward declaration should be added to horus.h, where all
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current modules’ registrations are placed. The call to this registration function then takes place
in src/horus.c in the registerModules function. Due to the way the Modules add themselves to
the list, the first called Module will become the last one in the chain of execution. The exact
chain is being printed to the console when running Horus with a debuglevel of 6 or higher.

The aforementioned Module src/foo.c is a good reference on the basic usage of the interface for
adding a Module to the system. src/textoutput.c furthermore performs some simple processing
of data by writing the contents of a bucket-list entry to a text file and src/memlog.c uses an
RRD to store current memory usage. To understand the processing of raw network flow data
into aspects and perform distribution of data over several entries for long flows, a close look at
src/bpcount.c and flowcount.c is recommended, both of which perform long flow handling in a
different way. For starters, it is recommended to only process flows which do not span multiple
time intervals, which is easier to understand and implement.

5.4 Resource usage

One of the requirements for the implementation was the efficient resource usage for operation
under tight resource constraints. Horus has been implemented carefully such that memory usage
stays low (generally near 1 MB, unless the -n | –no-flush command line argument has been
given). The memory usage of Horus can be monitored by turning on the MemoryLogger -Module,
which stores the current memory usage of Horus once per processing of a bucket-list entry
(which happens once per minute normally) into an RRD. Memory usage can furthermore be
limited in Horus directly which will prevent it to use more than the given amount of RAM.

CPU usage varies depending on the mode of operation. Since the plugin mode for UPFrame has
been implemented late in the thesis, no comparison values are available. However when looking
at the resource usage when Horus runs in file mode where it processes data as fast as it can
(under full CPU utilization) the measurements show that Horus is mainly bound by I/O limits.
For example, processing 24 hours of NetFlow files comprising of 3.3 GByte bzip2 compressed
data took 35 minutes and 57 seconds. This means that Horus is faster by a factor of 40 compared
to real-time. The factor can be improved by processing uncompressed NetFlow files, then
equaling to 10 GBytes which Horus processes in 5 minutes and 12 seconds (factor 277 compared
to real-time). The system which ran Horus was a AMD Athlon XP 2800+ with 1 GByte of RAM.

By letting Horus process data from its intermediate fileformat, we can bypass the NetFlow I/O,
the filter and the processing of the raw data into aspects by the Modules. What remains is a
performance measure of the algorithms and the cost of storing and accessing that data into the
RRDs. Measuring the time of processing the data read from the intermediate file took only 11
seconds (under full CPU utilization). This can be used as a measure of comparison between
CPU usage for processing and I/O. As can be seen, data processing is taking less than 5 % of
the time compared to a full run on NetFlow files read from disk (uncompressed). This should
provide ample reserves for processing in near real-time. Once near real-time processing is no
longer possible, the step to convert the raw network flow data into aspects could be moved to a
dedicated system.
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6 Evaluation

For evaluation, Horus was fed archived data from known worm events and also from weeks
with no known anomalies. It was revealed quickly, that each single algorithm used found the
signal anomalous at times where no alert should have been reported. These false positives could
be suppressed by combining the output of several algorithms and only consider an anomalous
situation when at least 3 raise an alert condition.

Figure 9: Plot of Sobig.F outbreak. Combined output of Holt-Winters, Fuzzy and Loopback

Figure 10: Output from Holt-Winters of Sobig.F outbreak

Figure 11: Output from Fuzzy of Sobig.F outbreak. There is some missing data prior to te
outbreak.

Figures 9 - 12 show a plot of the combined output of the Holt-Winters, Fuzzy and Lookback
algorithms and each algorithm separately on data during the Sobig.F outbreak using the bytes
per minute aspect. It can be clearly seen that each individual algorithm produces a lot more
alerts than all of them combined.

Performing the same analysis over a week of normal traffic as can be seen in Figures 13 - 16,
again the combined algorithms produce an acceptable result but the individual algorithms by
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Figure 12: Output from Lookback of Sobig.F outbreak. There is some missing data prior to the
outbreak.

Figure 13: Plot of one week normal traffic. Combined output of Holt-Winters, Fuzzy and Loop-
back

Figure 14: Output from Holt-Winters of one week normal traffic

Figure 15: Output from Fuzzy of one week normal traffic
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Figure 16: Output from Lookback of one week normal traffic

themselves are classifying too much traffic as anomalous.

When feeding incomplete data to Horus, the detection rate deteriorates fast. Figure 17 shows
the combined output of the Holt-Winters, Fuzzy and Lookback algorithms on data from only
one router (of four total). The algorithms are not able to detect the outbreak on Tuesday.
Inspecting the signal it is however not really possible for a human either to find the time of the
outbreak without prior knowledge of the exact date and time.

Further results revealed that the packet aspect showed much similarity to the byte aspect, albeit
at a much lower magnitude. It showed almost the same large variability though which made it
a poor choice to use. Using the flow aspect, we observed that the Fuzzy algorithm often stayed
very close to the alert threshold only seldom exceeding it for short amount of times during
anomalous conditions. We then added another parameter to the Fuzzy algorithm (flowfudge)
which lowers the alertscore a bit when working on the flow aspect. With this small change,
detection rate could be improved.

We also found that the Lookback algorithm performed very poorly on the flow aspect. It
produced a huge amount of false positives, declaring detection of an anomalous signal almost all
the time. On the other hand, the flow aspect proved to be a good input signal for the MinMax
algorithm to detect sudden spikes. We then decided to turn Lookback off and MinMax on for
the flow aspect by default.

A peculiarity that has been found is that the Holt-Winters algorithm, while generally be well able
to adapt to the usage pattern, seems to have trouble with a steep raise we observed in the morn-
ings of work days. As can be seen in Figure 18, Holt-Winters is reporting anomalous behaviour
on every morning. We attribute this form of the signal to the fact that the people using this
network being almost uniformly punctual which reflects in an almost simultaneous start of usage.

Unfortunately we had to find out towards the end of the thesis, that RRDTool which has been

Figure 17: Plot of mydoom outbreak with incomplete data from only one router
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Figure 18: Plot of Holt-Winter unable to cope with a steep usage increase during morning hours

used to plot the graphics, tends to suppress information. With our resolution of one data point
per minute and a resulting amount of 1440 points per day, RRDTool is prone to average or
suppress data when plotting larger periods of time (such as a week). The main problem is the
fact that the graphical representation of an alert, which is a vertical line in the plot, can also
be suppressed. The result is that there are more alerts during the period of a plot than actually
painted. So we have currently more false positives than expected. The problem can be mitigated
somewhat by creating a moving window for the alerts and selecting good parameters for the
length of the window and the amount of alerts encountered before raising a ”real alert” that
notifies a human operator. Still, the false positive rate is too high.
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7 Summary and Outlook

During this Diploma thesis, an UPFrame plugin named Horus has been developed. It is capable
to read in network flow data delivered via UPFrame in near real-time from live routers or to
process archived data read from disk. The constraints of careful resource usage in terms of
required processing power and memory utilization have been met. Through close observation of
resource usage during the implementation phase, a memory leak in the Holt-Winters algorithm
in the used development version of RRDTool has been found and fixed4.

Horus implements two data processing Modules which observe three different aspects of the
network flow data and four Algorithms to analyze the resulting aspect data. This results in 12
different combinations that can be used in order to detect anomalies. Not all of them have been
proven useful.

Problems encountered during this thesis range from badly documented APIs to the very noisy
signal to start with. The input data makes it hard to find good parameters and the sheer amount
of data caused long delays until the result of one run was available. This led to the development
of the intermediate format which sped up cycle times tremendously.

While the system basically works, there are still too many false positives in order to provide a use-
ful tool for backbone operators. More work is certainly needed to reach the initially set high goals.

7.1 Outlook

Some ideas on how to improve the detection rate of Horus or Horus itself that surfaced during
this thesis are listed below:

• Finding and implementing better aspects which more clearly expose anomalies.

• Finding and implementing better algorithms which adapt to the traffic rhythm and have a
low false positive rate.

• When an alert is raised, start a program that tries to verify the claim independently and
using more resource demanding analysis techniques. For example if a sudden increase in
SMTP traffic flows is detected, an external program could look at all the NetFlow traffic
during the event interval and try to find out what the exact source of the spike was.

• Trying to reduce the amount of parameters needed by changing the algorithms to find the
best values themselves.

• Adding caching mechanism to reduce disk I/O for lookups in the RRDs.

• Adding the ability to change configuration during runtime.

• Adding a configurable alarming system.

7.2 Thanks

I would like to thank my tutors, Thomas Dübendorfer and Arno Wagner for their great support
during the work on this thesis. Thanks also go out to Tobi Oetiker, creator of RRDTool
which the author has been using for a long time outside of this thesis’ scope and to Jake
Brutlag who implemented the Holt-Winters forecasting algorithm in the development branch of
RRDTool. A great help were the templates from Lukas Ruf [5] which were used to create this
documentation. I wish to further thank Urs Steiner for proof-reading and helpful hints as well as
all the people that were working at G.69 for the fun discussions and gossiping at the dining table.

4see http://www.ee.ethz.ch/~slist/rrd-developers/msg01380.html
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A Parameters

There are several command line arguments that can be passed to Horus. A short list of all
available arguments will be printed when Horus is executed with no arguments given:

pc:~$ ./horus
Usage: horus [-d|--debuglevel <num>] [-l|--reclimit <num>]

[-o|--output outputfile.txt] [-e|--every <N>] [-p|--p-offset <N>]
[-m|--memlimit <num>MBytes] [-n|--no-flush] [-t|--threshold <num>Bytes]
[-x|--textfile] [-q|--quiet] [-c|--config-file other.conf]
[-w|--workdir <dir>] [-?|--help] [--usage]
[OPTIONS]* -f <files to process>

Using the –help or -? argument causes Horus to display and explain each argument in a more
verbose manner.

The following list details all available parameters and their effect:

Short Long Argument-Type Explanation
-d –debuglevel Integer 0..30 Sets the debuglevel in Horus. The higher the

value, the more verbose the messages printed
to the console are. Defaults to 5 which prints
only few messages. Set to 2 or 1 to suppress
all but errors. To furthermore suppress errors
being printed to the console, also set -q.

-l –reclimit Integer 1..x When in file mode, aborts processing of the
current file after having processed that many
records. This can be used to quickly check some
functions.

-o –output String filename This is an old method of producing some data
in a special text format which was used during
development. Should not be used anymore.

-e –every Integer 2..x When in file mode, this causes Horus to not
process every single file, but only every Nth file.
This mechanism can be used to process a large
amount of data on several machines in parallel.
Use together with the -p | –p-offset argument.

-p –p-offset Integer 0..[every-1] With this argument, the offset of the Horus pro-
gram can be set. This is used in conjunction
with the -e | –every argument. For example,
when -p is set to 0 and -e to 2, this program
instance will process all the odd files in given
as input, starting with the first then the third,
etc. If -p is set to 1, it will move its offset by this
amount and thus process all even files starting
with the second, then the fourth and so on.

-m –memlimit Integer 1..x Sets the amount of memory in Megabytes that
Horus may use up maximally. If this value is
set too low, Horus will most likely abort in
the middle of processing. Default value is 2
(Megabytes). Under normal conditions, Horus
will not need much more than 1 MB. When us-
ing argument -n | –no-flush the usage can in-
crease much.
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-n –no-flush None Flag to switch a special mode in Horus. When
no-flush is set, the internal bucket-list is not
processed by the modules and algorithms un-
til the last input file has been fully read and all
records have been stored in the bucket-list. This
overrides the normal behaviour where bucket-
list entries are given to the Modules after at
most 16 minutes. Can be used whenever there
are several distinct files with data during the
same period that should be aggregated (when
having separate files for each router, for exam-
ple).

-t –threshold Integer 0..x Sets the threshold for long flows. A flow with
fewer than that many bytes will be handled as
if it were a short flow. Defaults to 100 KBytes
(102400). Set to 0 if all flows that span more
than one minute interval are to be handled by
the long flow code.

-x –textfile None Flag to indicate that the input file is not a Net-
Flow data file but a text file containing data in
the intermediate format and needs to be pro-
cessed differently. Note that when using -x only
one single file is processed, no matter how many
are given on the command line.

-q –quiet None Flag to indicate that non-critical errors are not
logged to stderr. This behaviour is overridden
when Horus cannot write to its error logfile.
Does not lower verbosity of Horus’ messages.
Use -d | –debuglevel to suppress those. Note that
without this parameter, Horus complains if it
cannot find its RRD files for the first time and
needs to create them.

-c –config-file String filename Reads the configuration from an alternative
config file. Default uses horus.conf in the cur-
rent directory.

-w –workdir String directory Sets the work directory where Horus stores its
database files. This does not change where Ho-
rus reads the configuration file or input files to
process from. Default is the current directory.

-f None String filenames The file(s) to process. Can be any amount of
files Horus is to process. Implicitly switches file
mode on.

-u –upframe-dir String directory Switches Horus into plugin mode and selects the
directory for use with the UPFrame fifo’s.

-? –help None Prints a list of all command line arguments.

Table 5: All available command line arguments in Horus

As an example, the following line starts Horus in file mode parsing the file mydoom-parsed.txt in
the current directory as an intermediate file and stores all its output in the /tmp directory.

pc:~$ ./horus -d 2 -f mydoom-parsed.txt -x -w /tmp

The following line starts Horus with more verbose message output to process all the files in the
/data/netflow directory and storing the output in /tmp/processed while not allowing to use more
than 10 Megabytes of memory.

pc:~$ ./horus -d 7 -m 10 -w /tmp/processed -f /data/netflow/*
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B Configuration

The configuration file (by default horus.conf ) can contain directives to configure the behaviour
and parameters of Horus. It is read in by Horus after the command line arguments have been
parsed but before any processing of data starts.

The directives in the configuration file are name/value pairs, separated by the equality character
(”=”) and are stored in an internal hash-table. They are directly accessible through the
API (see Section D). Leading and trailing spaces are removed from the name and the values.
Where a simple yes/no answer is required, the value 0 corresponds to ”no”and the value 1 to ”yes”.

In order to see which values are stored under which names in the internal hash-table, set the
debuglevel of Horus to at least 9 which will cause all pairs to be printed to the console. On
debuglevel 10, Horus will furthermore display all the lines it ignored in the configuration file.

Table 6 on page 39 lists the names that have already been defined and used by Horus. Any
number of additional entries can be added and queried by use of the API.

An example output of Horus when called with debuglevel set to 9 and using a non-empty con-
figuration file:

pc:~$ ./horus -d 9
DEBUGLEVEL = 9, limit = 0, output = [(null)], infilecount=0
parsing config file [horus.conf]
inserting [enable.dummy]=[no] into hashtable
inserting [enable.bpcount]=[Yes] into hashtable
inserting [enable.flowcount]=[1] into hashtable
inserting [enable.textoutput]=[0] into hashtable
inserting [enable.memorylogger]=[no] into hashtable
inserting [enable.bpcount.dofuzzy]=[yes] into hashtable
inserting [enable.bpcount.doloopback]=[yes] into hashtable
inserting [enable.bpcount.dominmax]=[no] into hashtable
inserting [enable.flowcount.dofuzzy]=[yes] into hashtable
inserting [enable.flowcount.doloopback]=[no] into hashtable
inserting [enable.flowcount.dominmax]=[yes] into hashtable
inserting [config.portNum]=[25] into hashtable
inserting [config.algo.lookback]=[7] into hashtable
inserting [config.fuzzy.alertscore]=[14] into hashtable
inserting [config.fuzzy.flowfudge]=[5] into hashtable
inserting [config.fuzzy.weekendbonus]=[6] into hashtable
inserting [config.fuzzy.alertwindow]=[5] into hashtable
inserting [config.fuzzy.alertthreshold]=[3] into hashtable
inserting [config.fuzzy.uselinear]=[No] into hashtable
inserting [config.fuzzy.scale]=[2.57515] into hashtable
inserting [config.fuzzy.shift]=[2] into hashtable
inserting [config.lookback.medianwindow]=[5] into hashtable
inserting [config.minmax.threshold]=[2500] into hashtable
parsed text file [horus.conf], processed 104 lines, inserted 23 pairs into hashtable
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Configuration directives
Name Type Explanation
enable.<modulename> Yes/No Switches the named Module on or off.
enable.<modulename>.dofuzzy Yes/No Switches the Fuzzy algorithm on the data of the

named Module on or off.
enable.<modulename>.dolookback Yes/No Switches the Lookback algorithm on the data

of the named Module on or off.
enable.<modulename>.dominmax Yes/No Switches the MinMax algorithm on the data of

the named Module on or off.
config.portNum Integer Selects the port for the filter. Set to 25 to let

the filter pass all data to and from TCP port
25 (smtp).

config.algo.lookback Integer Sets the number of days that Lookback and
Fuzzy algorithms look back to.

config.fuzzy.alertscore Integer Sets the alert threshold (max score) for the
Fuzzy algorithm.

config.fuzzy.flowfudge Integer Sets the amount by which the alert threshold
is lowered when the Fuzzy algorithm processes
the flow aspect.

config.fuzzy.weekendbonus Integer Sets the amount by which the alert threshold is
increased on weekends.

config.fuzzy.alertwindow Integer Sets the size of the alert window for the Fuzzy
algorithm.

config.fuzzy.alertthreshold Integer Sets the number of alerts in the alert window
in order to raise an alert condition in the Fuzzy
algorithm.

config.fuzzy.uselinear Yes/No Selects the scoring mode for the Fuzzy algo-
rithm. If set to ”yes”, linear scoring is used, ex-
ponential otherwise.

config.fuzzy.scale Double Sets the scale value for exponential scoring in
the Fuzzy algorithm. See Section 4.2.2 for a de-
tailed description of this value.

config.fuzzy.shift Double Sets the shift value for exponential scoring in
the Fuzzy algorithm. See Section 4.2.2 for a de-
tailed description of this value.

config.lookback.medianwindow Integer Sets the size of the median-window in the Loop-
back algorithm.

config.minmax.threshold Integer Sets the threshold of the MinMax algorithm.

Table 6: Configuration directives
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C Using UPFrame

In order to use Horus in plugin mode where it acts as a plugin for the UPFrame framework, you
need to start Horus with the command line argument -u | –upframe-dir and give the directory
where the UPFrame FIFO queues reside.

When in plugin mode, Horus will not process any additional input files and will also not
abort processing as long as UPFrame’s mgmt process is still attached. To test the UPFrame
functionality, the netflow replay programm provided with Horus in the tools directory can be
used. Download UPFrame [17] and compile it first. Note that the library libupframe.so.0 must be
available to Horus. Configure the mgmt and writer as detailed in the UPFrame documentation.
Afterwards, a NetFlow file can be sent through UPFrame using as follows:

pc:~$ ./netflow_replay -f ./netflowfile1.dat -i 127.0.0.1 -p 19991

This will send the content of the NetFlow file as UDP packet stream to localhost (127.0.0.1) to
UDP port 19991. If configured correctly, a writer instance of UPFrame receives the packets and
hands it to UPFrame, which will in turn send it to Horus in plugin mode.

Special care has to be taken that UPFrame is working correctly and that FIFO pipes have the
correct modes so that Horus can access them. If the above test is working, Horus is able to
receive live network data from routers sent to UPFrame.
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D API

Horus exposes many API functions in order to extend functionality easily. The following listing
is an overview of the most important structures and API functions grouped by the file where it
is defined. The header file of the source file generally has a verbose explanation as well. There
are more functions than those detailed here. This is an excerpt of which functions are most
likely useful to anyone who wishes to extend the functionality of Horus by adding Modules or
Algorithms.

D.1 Structures

D.1.1 Config

The config structure is defined in global.h. It contains fields for access to the runtime arguments
given to Horus and some other internal structures.

int DEBUGLEVEL Defines the debuglevel the program runs at. The
lower the less debug data should be printet to
the console.

FILE *out Old pointer to an output file. Should no longer
be used.

int limit Holds the number of records that should be pro-
cessed in file mode, when working on NetFlow
files before aborting or 0.

int filecount Holds the number of input files on the command
line.

uint64 t longThreshold Defines the amount of bytes that a flow needs to
exceed in order to undergo long flow processing.

uint16 t portNum The port number which the filter uses to decide
whether to accept a NetFlow record or not.

BLOCKLIST *bucketlist Pointer to the bucket-list. See also Section 5.3.2.
char * workDirectory The work directory where all non-input data

files should be stored.
char * configFile The filename of the configuration file.
struct filename str *infilelist List of filenames for reading.
struct filename str *outffilelist List of filenames for writing.
char * memfail Static buffer for storing an emergency message

in case of memory exhaustion.
int p every Holds the parameter of the -e command line

argument.
int p mod Holds the parameter of the -p command line

argument.
int Xnoflush Flag whether to flush the bucket-list during pro-

cessing or at the end of reading input data.
int textmode Flag to indicate that the file to read from is in

intermediate format and not a NetFlow file.

Table 7: Configuration structure
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D.1.2 Module

The module structure contains information about a specific Module. Otherwise it is in essence
just a linked list, defining the order of execution of the Modules.

char *name Name of the Module. Does not need to be the
same as the file the Module is defined in.

int enabled Whether or not this Module should be enabled
and used or not.

struct MODULE *next Pointer to the next Module following or NULL.
The next entries define the function pointers

see global.h for the definition
moduleInit initFunc The function to call upon initialization, before

starting any processing of data.
closeAction closeFunc The function to call upon finalization, before

Horus exits the process.
processSingle singleFunc The function which performs the processing of

a flow record as single flow.
processLong longFunc The function which performs the processing of

a flow record as long flow.
storeElementLowPrec storeLowPrecision The function which analyses and stores the data

of a bucket-list element of low precision (after
3 minutes).

storeElementHighPrec storeHighPrecision The function which analyses and stores the data
of a bucket-list element of high precision (after
15 minutes).

Table 8: Module structure

D.2 Functions

D.2.1 Blocklist

blocklist.c contains the functions for manipulation of a blocklist. The bucket-list as described in
Section 5.3.2 is such an instance.

1. Functions for list entries:

alloc element Returns an allocated and cleared entry-element for a blocklist.
clear element Clears the content of a list entry.
print element Prints the content of a list entry to a string buffer.
add value to element Automatically sums up a value to a specific index in an entry.

2. Functions for list:

alloc list Returns an allocated and empty blocklist.
print list Prints the list’s header data to a string buffer.
iterate list Prints the list’s entrys’ timevalue to a string buffer.
add in front Adds an entry to the list in front (if possible).

add element Adds an entry to the list at the correct position.
remove oldest Removes and returns the oldest entry in the list.
remove element Removes and returns the specified entry in the list, if it exists.
fetch element Retrieves the specified entry from the list, if it exists.
get element for time Returns an entry with the specified time value. If it existed in the

list, it is returned. Otherwise a new, empty entry is created, added to the list and
returned.
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getBlocklistMaxNumIndex Returns the amount of counters an entry has.

registerName Registers a name (for an aspect) in the list and returns the index.

getIndexForName Returns the (formerly registered) index for a given name.

getNameAtIndex Returns the name that was registered for the given index.

D.2.2 Config

config.c contains the functions for querying the configuration file’s directives. See also Section B
for further information.

getValueFor Returns the value of the specified key as string if it occurs in the hash-table
containing the configuration files name/value pairs.

isEnabled Convenience function which returns a true constant if the specified key was found
in the hash-table with a value equal to ”1” or ”yes” (case insensitive). See config.h for the
defined constants that this function may return.

D.2.3 Elog

elog.c contains functions to log into Horus’ error.log.

logError Logs a non-critical error message into error.log.

logError2 Logs an error message to error.log and allows optionally to abort execution of Horus.

logPError Similar to logError2 but appends the output of errno. Replaces perror().

setErrorQuiet Selects whether or not errors are logged to the console also or not. Critical errors
which cause execution of Horus to abort are always logged to the console’s standard error
stream.

D.2.4 Memory

memory.c contains functions to track usage of memory in Horus and to prevent too much memory
to be allocated by intercepting the alloc() calls.

get used memory Returns the amount of currently used memory.

get max memory Returns the amount of memory that has been allocated and not returned
to the operating system.

get configured max memory Returns the amount of memory that can be allocated at most.

get free memory Returns the amount of memory that can be allocated until the memory
library will refuse to allocate more.

init memory setting Sets the amount of memory that the library is willing to allocate.

print status Prints a short string with the amounts of used, free and limit of memory.

D.2.5 RRDlib

rrdlib.c contains the functions for manipulation of RRD files. It is the most complex library
in Horus. Before using these functions, make sure you understand how RRD actually works.
Information on RRD can be found at the RRDTool page [16].

In order to access a round robin database stored in an .rrd file on disk, it is required to create
a context first. These contexts are stored in a hash-table and can be requested later once they
have been created. Each context stores some information about the underlying RRD data file.
The filename of the underlying RRD data file is the context name with an appended ”.rrd”.

1. Functions for manipulation of RRD contexts:
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createContext Creates and returns a RRD context known under the given name. If the
context has already been created, it is returned.

getRRDContextFor Returns a RRD context that has previously been created under the
given name.

destroyContext Destroys the context and removes it from the internal table.

2. Functions for accessing RRD data:

getRRDInfo Returns an info structure with the data similar to calling ”rrdtool info <rrd-
file>”. See rrd tool.h for the type definition.

printRRDinforec Convenience function that prints out the info structure to stdout.

getRRDLast Returns the timecode when the underlying RRD file was last updated. The
output is equivalent to ”rrdtool last <rrdfile>”.

createRRDFile Creates a new RRD file that gets store to disk.

updateRRD Inserts fresh data into the RRD.

fetchSingleRRDValue Fetches one single value from an RRD at the given timecode.

freeRRDDataLine Convenience function that frees all memory occupied by the resulting
structure of a fetchSingleRRDValue call.



E File formats 45

E File formats

There are two file formats used in Horus: The NetFlow binary format, referred to as ”NetFlow
files” and the intermediate format as defined and used by Horus.

E.1 NetFlow File format

The NetFlow file format is simply the payload data of the UDP packets stored on disk. There
is no conversion of the data. The specification of the NetFlow format can be found at Cisco’s
NetFlow page [15]. Each packet contains a flow header, followed by a number of flow records.
The exact number of flow records can be read out of the header’s count field.

E.2 Intermediate File format

The intermediate file format as used and defined by Horus is a text file. Each line starting with
a ”#” mark is considered a comment and ignored. The first non-comment line must contain a
specially formatted entry in the form of:

T:<number of counters>:<counter name 1>:<counter name 2>:...

Where T is the literal character ”T” and the fields are separated by colons. The second field
contains a number specifying the amount of identifiers following. Afterwards the names of the
counters are listed with the exact same string as used to register an entry in the bucket-list
as detailed in Section 5.3.2. This allows Horus to assign the different counters to the correct
Modules even if the order is not the same or some of the fields are not used because the
corresponding Module is disabled in the current configuration.

Following this special line are all data lines, starting with the timecode in epoch format and all
the specified counters, divided by a colon character. The following example shows the first few
lines of a valid file in intermediate format:

## output from horus
# field 1 is timestamp in epoch format
# field 2 is byte-counter
# field 3 is packet-counter
# field 4 is flow counter
T:3:byte-counter:packet-counter:flow counter
1059696960:29515:21:1
1059697020:5048435:10346:732
1059697080:7972505:26889:2900
1059697140:8174508:27471:2698
1059697200:11208744:35404:3399
1059697260:5660822:24393:2771

The format is easy enough to manipulate the data from hand or by the use of small scripts.
Also concatenating several intermediate files into one single file can be done without complex
processing.
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F Original problem description

Following is a copy of the original task description for this diploma thesis.

F.1 Introduction

The problem

Internet attacks such as massive worm spreading events or denial of service attacks have increased
in frequency and impact over the last few years. Attacks that involve several thousand hosts are
a reality today.

The setting

In the context of the project DDoSVaX5 a long-term (>1 year) archive of flow-level Internet
backbone border traffic data in the form of Cisco NetFlow v5 records was established. In several
offline analyses of Internet attacks, characteristic patterns that possibly could be used for online
detection were obtained. An online traffic data analysis framework named UPFrame and several
near-realtime plugins were already developed and successfully used to detect worm outbreaks.

F.2 The Task

The usage patterns of certain protocols (such as the amount of e-mail traffic in bytes per hour)
show a clearly visible daily rhythm. In case of an attack, this rhythm is disturbed.
The task of the student is split in four major subtasks.

Related Work

A search for publications about algorithms that can be used to track and model seasonal or
rhythmic changes in somewhat noisy measurements against a time-line is conducted. Inputs
from research about technical measurements in various fields (medicine, weather, network traffic,
electricity etc.) and also established economic algorithms (stock market etc.) should be consid-
ered.

Specification of anomaly detection algorithms

A small set of promising algorithms for tracking seasonal changes in noisy measurements will
be selected, adjusted, extended and/or newly developed. An already existing robust algorithm
developed by T. Dübendorfer that detects relative minima and maxima in a noisy signal will also
be studied and extended for seasonal anomaly detection.
For each algorithm a specification is written and the algorithm’s strengths and limitations are
analysed and described. The algorithms should be flexible enough to allow for tracking measure-
ment values and fluctuations at different orders of magnitudes. Anomalies that must be detected
are spikes (momentary high values), surges (prolonged high values), faults (momentary blackout),
blackouts, sags (momentary low values) and brownouts (prolonged low values). In addition, the
seasonal behaviour and deviations from “normal” must be characterized with parameters that
are easy to interpret and understand.
The algorithms will be evaluated and tested on network traffic of a restricted set of specific
services (e.g. SMTP, HTTP). They must be flexible enough to recognize a “normal” seasonal
traffic rhythm and adapt to it. After an adaptation or learning phase, they must be able to
detect anomalies in the network traffic of such a service.

UPFrame plugin for NetFlow data

After familiarizing with the DDoSVax cluster “Scylla”, the archived CISCO NetFlow traffic data
and “UPFrame”, a near-realtime plugin will be developed that incorporates the specified algo-
rithms.
For efficient measurements and tests, the plugin must support reading input data through the
UPFrame framework as well as directly from the file system. The output produced by the plugin

5See http://www.tik.ee.ethz.ch/~ddosvax/
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in the form of log files will be further processed by independent tools that interact with the user
of the plugin. For graphical plots, tools such as gnuplot or RRD can be used. The developed
plugin will be released under GPL.
As the plugin will run under tight resource constraints (CPU, RAM) in near real-time, special
attention will have to be paid to efficient resource use. It must be possible to restrict the plugin
to a fixed amount of RAM usage.

Validation and Parametrization

It is important to reduce false positives in anomaly detection. Therefore a large set of measure-
ments will be carried out with archived DDoSVax NetFlow data. Special attention will have to
be paid to outbreak phases of e-mail worms such as Sobig.F or Mydoom.A. A cross-validation on
“normal” traffic without outbreaks of larger worms or large network incidents is also vital. This
will help to validate, parametrize and optimize the algorithms.

F.3 Deliverables

The following results are expected:

1. Related work survey A short but precise survey that explains current approaches in the
field of tracking and modelling measurements exhibiting seasonal behaviour.

2. Specification of various seasonal algorithms A specification and analysis of at least three
different algorithms that proved useful for tracking seasonal measurements and detecting
anomalies in the network traffic of a restricted set of specific services (e.g. SMTP, HTTP).

3. UPFrame plugin A near-realtime implementation of the seasonal anomaly detection al-
gorithms. The code should be documented well enough such that it can be extended by
another developer within reasonable time.

4. Diploma thesis documentation A concise description of the work conducted in this thesis
(task, related work, environment, algorithms, measurements, results and outlook). The
survey and the specification of the algorithms ms are also part of this main documentation.

Further optional components are:

• Alarming mechanisms for important anomalies detected
• Further analysis of the real cause of detected anomalies
• Generalizations of the algorithms used

Presentations and Dates

There will be one informal intermediate presentation before the end of the first half of the total
thesis duration. At the end of the thesis, a presentation will have to be given at TIK that states
the core tasks and results of this thesis. If important new research results are found, a paper
might be written as an extract of the thesis and submitted to a computer network and security
conference. This diploma thesis starts on October 25th, 2004 and is finished on February 24th,
2005. It lasts 4 months in total.

Contacts

Tutor: Thomas Dübendorfer, duebendorfer@tik.ee.ethz.ch, +41 1 632 71 9 6, ETZ G95
Co-Tutor: Arno Wagner, wagner@tik.ee.ethz.ch, +41 1 632 70 04, ETZ G95
Supervisor: Bernhard Plattner, plattner@tik.ee.ethz.ch, +41 1 632 70 00 , ETZ G89
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