m Institut far

' . Technische Informatik und
Eidgendssische Technische Hochschule Ziirich Kommunikationsnetze
Swiss Federal Institute of Technology Zurich

Florian Suss

Service Discovery and Routing in
Mobile Ad Hoc Networks

Master’s Thesis
MA-2005-03

November 2004 until April 2005

Advisors: Vincent Lenders, Dr. Martin May
Supervisor: Prof. Dr. Bernhard Plattner

Abstract

A MANET represents a very dynamic network where no fixed infrastruc-
ture is available. Every node acts as a router and forwards packets for other
devices. In such networks, the communication protocols can not rely on cen-
tralized servers / services and must be able to adapt rapidly to the network
dynamics. The Communication Systems Group at ETHZ proposed a new
communication model for this type of networks that is inspired from the
properties of electric fields. In this thesis, a routing protocol based on the
proposed model was designed and implemented in C under Linux. Several
tools for using and testing the implementation were developed as well. All
important network scenarios like node mobility or failover were successfully
tested with different hardware and software components. The validation
tests show that the new service discovery and routing approach works well
in a real environment and that the protocol is implemented correctly.

ii

Kurzfassung

Als MANETS bezeichnet man sehr dynamische Netzwerke in denen keine fixe
Infrastruktur zur Verfiigung steht. Kommunikationsprotokolle in solchen
Netzwerken konnen nicht auf zentralen Servern / Diensten aufbauen und
miissen sich schnell an Veranderungen der Netzwerktopologie anpassen. Die
Communication Systems Group der ETHZ hat ein Modell fiir diese Art von
Netzwerken entwickelt, das sich an den Eigenschaften des elektrischen Feldes
orientiert. Basierend auf diesem Modell wurde in dieser Arbeit ein Routing
Protokoll entworfen und in C auf Linux implementiert. Verschiedene Tools
mussten entwickelt werden um das Protokoll zu benutzen und zu testen.
Alle wichtigen Szenarien wie Ausfallsicherheit und Mobilitat der Knoten
wurden mit verschiedenen Hardware und Software Komponenten erfolgreich
getestet. Diese Validierungstests zeigen, dass der neue Service Discovery und
Routing Ansatz in der realen Umgebung funktioniert und dass das Protokoll
korrekt implementiert ist.

iii

v

Contents

1 Introduction

2 MAgNETic Protocol Description
2.1 OVerviewo e e e
2.2 Building Routing Tables
2.2.1 Computing Potential Values
2.2.2 Set Forwarding Device
2.3 Queriesand Replies

3 Protocol Specification
3.1 Preliminaries oL
3.1.1 DataTypes oo it
3.1.2 Configuration Parameters
3.1.3 Packet Overview
3.2 MAgNETic Protocol Header
3.3 Message Types o v i it
3.3.1 Advertisement Message
3.3.2 Neighbor Exchange Message
3.3.3 Query Messageo
3.34 Reply Message
3.4 Communication Types
3.4.1 Communication Type: Unconfirmed
3.4.2 Communication Type: Acknowledged
3.4.3 Communication Type: Complete
3.44 ReplyRouting,
3.5 Message Handling
3.5.1 Service Advertisement Handling
3.5.2 Neighbor Exchange Handling
3.5.3 Query and Reply Handling

4 Implementation
4.1 Data Structureso
4.1.1 Routing Table

11
11
11
13
13
14
15
16
17
19
20
21
21
22
22
22
24
25
26
27

vi

CONTENTS

4.1.2 Neighbor List 32
4.1.3 Additional Data Structures 33

4.2 Networkingo 33
43 Threads o e 34
4.3.1 Receive Thread 35
4.3.2 Magnetic Thread 35
4.3.3 Timer Thread 35
434 Query Thread. 35
4.3.5 Interaction Thread 35
4.3.6 Communication between Threads 38
Tests 41
5.1 Environment 41
5.2 Functional Tests 42
Conclusion and Future Work 45
Using the MAgNETic Protocol 47
Al Imstallation 47
A2 Starting 48
A3 TImportant Files 48
Developed Tools and Applications 49
B.1 Management of Provided Services 49
B.2 Print Intern MAgNETic Protocol Data 50
B.3 Ping Applicationo o o 50
B.4 Send Query Application 51
B.5 MAC Address Filter Tool 51

List of Figures

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
5.3

Example: Building Potential Fields 7
Example: Set Next Hop Device 9
Packet Overview oo 14
MAgNETic protocol header 14
Advertisement Message 16
Neighbor Exchange Message 18
Query Message oo 19
Reply Message o it 20
Communication Type: Unconfirmed 22
Communication Type: Acknowledged 23
Communication Type: Complete 23
Distribution Range of a Reply Service Type 24
Advertisement Handling 25
Neighbor Message Handling 26
Raw Sockets 34
Receive Thread 36
Magnetic Thread 37
Timer Thread 37
Query Thread Lo 38
Interaction Thread 39
Communication between Threads 39
Long Chain 42
Failover L 43
Mobility 43

vii

viii LIST OF FIGURES

Chapter 1

Introduction

In the past, wireless mobile ad hoc networks have become more and more
popular in research. A mobile ad hoc network (MANET) is a temporary
network built without the aid of any established infrastructure or centralized
administration. If two nodes that are outside their wireless transmission
range want to communicate, they use intermediate nodes to forward packets
between them. All nodes act both as a host and as a router. Thus, in areas
with little or no communication infrastructure at all, users are still able to
communicate. Mobile ad hoc networks are characterized as follows:

e No fixed infrastructure is available. Every node participating in
the network must provide the basic functionality of communication
like routing and service discovery due to the absence of centralized
servers.

e Configuration and operation has to be self-organizing without any
human intervention.

e The network is very dynamic. Nodes may join and leave the network
with high frequency and they are expected to move.

Especially the very dynamic nature of a MANET makes service discovery
and routing a challenge. The routing algorithms used in the Internet work
well for their original design intention (end-to-end communication between
fixed locations), but are unsuitable with MANET characteristics. Addition-
ally, service discovery in the Internet relies on centralized infrastructure that
is not available in a MANET.

A new class of algorithms to solve the problem of service discovery and
routing in the field of mobile ad hoc networks is needed. Different ap-
proaches have been developed, for example the routing protocols proposed
by the IETF MANET working group ([7], [8], [9], [10]). They primarily
focus on the packet routing and therefore, on the flow of data from one node
to another. The primary assumption in such routing protocols is that the

2 CHAPTER 1. INTRODUCTION

destination address is known to the source node before sending the packet.
Thus, service discovery must be performed in advance as a separate task.
In MANETS, the service provider as well as the client is expected to move.
After looking up the network address, the nodes may change the locality
in the network, and that can cause different problems with the subsequent
packet routing. It is possible that, during the communication process, a bet-
ter suited service provider joins the network. In this case, the client should
notice the new situation and get access to the new service provider. Another
problem is that the intermediate nodes, that route the packets between a
client and a server, could leave the network or move around. Therefore, the
routing algorithm should be flexible to adapt to a continuously changing
network topology.

To circumvent these problems, the Computer Engineering and Networks
Laboratory [2] proposed a new approach (in the following called MAgNETic
Routing) in [3] and [4] that we believe better fulfills the communication
requirements of mobile hosts in ad hoc networks. The approach eases from
the end-to-end communication between two specific devices and introduces a
more flexible design. The client specifies a service type instead of a network
address in data packets. A service type represents a specific kind of service
(for example if a device has an external connection to the Internet, it is a
service instance of the service type ’'Internet Gateway’), provided by one
or several devices. Service discovery and packet routing is considered as a
single task. The routing is not any more achieved using network addresses
but with the service type. The challenge of such a new solution is to select
the optimal service provider.

The MAgNETic routing protocol can be viewed as a publish/subscribe
mechanism. In the publish part, all devices periodically advertise the service
types they provide. The advertisements serve to establish a potential field in
the network similar to the electrical field created by point charges (a service
instance represents a positive point charge). Note, that a potential field is
created for every service type. In the subscribe part, a client sends a request
that contains the desired service type. A request is considered as a negative
test charge and moves along the highest ascent of the potential field to the
closest service instance.

In previous work, the MAgNETic routing protocol was implemented in
the network simulator GloMoSim [6]. The results of the performance tests
with the simulator were very promising. So we decided to implement and
test the MAgNETic routing protocol in a real environment. The main tasks
of this master’s thesis were:

e MAgNETic routing protocol design. Work out the protocol spec-
ifications according to the published papers. The main objects are the

protocol messages and headers. The handling of incoming messages is
also part of the protocol design.

e Implementation. Deliver a complete implementation of the MAg-
NETic routing protocol. This includes the development of additional
tools and applications for testing and using the protocol functionality.

e Validation tests. Validate the implementation with functional tests.
Do all relevant tests to prove the functionality of the magnetic rout-
ing approach in a real environment as well as the correctness of the
implementation.

This report is organized as follows: Chapter 2 describes the functionality
of the MAgNETic routing protocol. Chapter 3 gives the detailed protocol
specifications with the definition of the protocol messages and the new packet
header as well as the message handling at a node. The major concepts of
the implementation like program execution in several threads are presented
in Chapter 4. In Chapter 5, the results of the validation tests are described.
Chapter 6 ends the report with an outlook on future work.

CHAPTER 1. INTRODUCTION

Chapter 2

MAgNETic Protocol
Description

This chapter gives a survey of the basic functionality and some major def-
initions of the MAgNETic service discovery and routing protocol. It is
described more detailed in [3] and [4].

2.1 Overview

Every device in the network may provide one or several services, in the
following called service types. A node providing a service type is a service
instance of this service type. Each service instance is associated with a
capacity that denotes the quantity of this service type the device offers. For
example, the capacity of the service type ’Internet Gateway’ indicates the
link capacity of the providers Internet connection.

In periodic advertisement messages, all devices advertise the service in-
stances they are providing. With these messages, all devices compute a
potential value for every service type existing in the network. The potential
values computed by the different devices build a potential field for every
service type.

To access a service instance, a client specifies a service type in a query
message that is forwarded using the potential field of the desired service
type. Every relaying device forwards the query message to the device in
range (neighbor) with the highest potential value for the desired service type
until the query message reaches a service instance. Hence, the query message
is routed along the highest ascent of the potential field to the optimal service
instance.

If a query message reaches a service instance of the desired service type,
the providing node may answer with a reply message that is routed back to
the query initiator. To send data to a service instance or from the service
instance back to the client, the data is attached to a query or reply message

6 CHAPTER 2. MAGNETIC PROTOCOL DESCRIPTION

(all data traffic is handled within these two message types).

The MAgNETic routing protocol uses the soft-state principle, all states
are stored with a timeout value. If a service instance leaves the network,
the periodic advertisement messages are not sent anymore and all devices
in the network remove this advertisement after a specific amount of time.

2.2 Building Routing Tables

To build up the routing tables, all devices periodically send two types of
messages: advertisement messages (only if the device provides at least one
service type) and neighbor exchange messages (sent by all devices). These
messages are used to compute a potential value as well as the forwarding
'next hop’ device for all service types.

2.2.1 Computing Potential Values

With the service advertisements, a device announces all provided service
instances and the corresponding capacities. Advertisement messages are
forwarded to all devices in the network. Each device collects all advertise-
ments and computes its potential values for all service types. Therefore, the
following distance function is used to compute the potential value of a single
advertisement:

ole,d) = <

d

The operands represent the capacity c¢ of the advertising service instance
and the distance d (for example the number of hops) from the service in-
stance.

If a node receives several advertisements announcing the same service
type, the potential values of the different advertisements are added up. The
resulting formula to compute the potential value for a service type with ¢
advertisement is:

¢(c,d) = Z%(Ci,dz’) =2 acl_z

A query message is routed along the highest ascent of the potential field
for the desired service type to a service instance. To guarantee that each
query message reaches a service instance, every service instance represents
a local maximum of the potential field. This is achieved by setting the po-
tential value of this service type at the providing device to oo if the actual
node is a service instance of the considered service type.

Figure 2.1 gives an example how to calculate the potential field of the
service type ’Internet Gateway’ with three service instances:

2.2. BUILDING ROUTING TABLES

o=1 ®=05 ®&=033 &=025

5.
d=1 »=0.5 d=inf ®=0.25
®=inf e
ST:'IG ST’IG
Cap: 1 Cap: 1

ST:'IG
Cap: 1

6.
®=1.83 ®=1.83 &=inf ®=1.59
d=inf e
ST:'IG ST:'IG
Cap: 1 Cap: 1

Figure 2.1: Example: Building Potential Fields

CHAPTER 2. MAGNETIC PROTOCOL DESCRIPTION

. The example network consists of 9 nodes with the shown connections
between them. Node 1 provides an Internet connection with band-
width 1 Mbit/s, thus it is a service instance for the service type ’In-
ternet Gateway (IG)’ and the bandwidth for example can be mapped
to the capacity of 1. The potential value ¢ for the service type 'IG’ is
set to infinite to guarantee a local maximum of the potential field at
this node.

. Device 1 periodically sends advertisement messages announcing the
service type 'IG’ broadcast to all devices in range. Device 2 receives
these messages, saves a copy and computes the potential value (1) for
the service type 'IG’.

. Device 2 forwards the advertisement message to all devices in range,
hence it is received by the nodes 1, 3 and 6. Device 1 already knows
this advertisement and drops it. Devices 3 and 6 use the received
message to compute the potential value (0.5) and forward it again
broadcast. Every service advertisement message is distributed this
way in the whole network.

. The potential field for service type 'IG’ with the single service instance
at node 1 is completely calculated.

. The devices 4 and 9 also provide the service type 'IG’ with capacity of
1 each. They set their potential value for service type 'IG’ to infinite
and start to send periodic advertisement messages into the network.

. Complete potential field for service type ’Internet Gateway’ and three
service instances at nodes 1, 4 and 9.

Such a potential field is built for every service type existing in the net-

work. If a service instance disappears, the potential field is automatically
recalculated considering the remaining service instances. This takes some
time until the stored advertisement times out and is removed.

2.2.2 Set Forwarding Device

The neighbor exchange messages, that contain the local potential values of
all service types are periodically sent broadcast to all devices in range. Every
device stores all neighbors and their potential values and sets the neighbor
with the highest potential value as forwarding device for every service type
in its routing table. Figure 2.2 gives an example how the forwarding device
is determined:

1. Consider the routing table of device 6. It contains the entries service

type (ST) and the corresponding potential value (P). To compute the

2.2. BUILDING ROUTING TABLES 9

®=1.83 ®=1.83 ®=inf P=1.59 ®=1.83 ®=1.83 ®=inf ®=1.59

®=inf ®=10.83 ®=6.33 ®=inf ®=3.83

ST’IG
Cap: 1

Figure 2.2: Example: Set Next Hop Device

forwarding device (F) for every service type, all devices periodically
send neighbor exchange messages. Device 6 receives these messages
(from devices 2, 3, 7 and 8) and stores all neighbors and their potential
values for all service types into a neighbor list.

2. For every service type, device 6 sets the neighbor with the highest po-
tential value as forwarding device. In this example, forwarding device
for service type ’'IG’ is device 7. Thus, an incoming query message
that searches for an Internet gateway at device 6 (or a query message
composed by device 6) is forwarded to device 7.

3. If the capacity of the service instance at device 1 switches from 1 to
10, the potential field changes with the first advertisement containing
the new capacity.

4. The potential value for service type 'IG’ at device 2 changes to 10.83
and at device 7 to 5.33. Therefore, the forwarding device at node 6
for the service type 'IG’ changes from device 7 to device 2.

MAgNETic routing forwards a query message in general toward a quan-
tity of service instances as shown in the first part of the example, but by
changing the capacity, a device can increase or scale down its influence to

10 CHAPTER 2. MAGNETIC PROTOCOL DESCRIPTION

the routing. If a neighbor node provides a service instance, a service query
searching for this service type is always forwarded to the corresponding
neighbor. If the potential values of two neighbors for a service type are
equal, the forwarding device is selected randomly.

2.3 Queries and Replies

To get access to a service instance, for example to send data through an
Internet gateway into the Internet, a node sends a query message. This
query message is routed according to the routing table entries (using the
computed potential field) to the optimal service instance.

Different applications have different communication requirements, for
example a sensor only needs to send data to a server while a client using an
gateway to access the Internet needs a permanent bidirectional routing path
to the Internet gateway. Therefore, three types for end-to-end communica-
tion between a client and a service instance exist:

e Unconfirmed. The communication type ’unconfirmed’ is used to
send data to a service instance and no reply is requested. Two subse-
quent query message may be delivered to different service instances of
the same service type.

e Acknowledged. When a service instance receives a query message
with communication type ’acknowledged’, it sends a reply message
back to the client. Thus, the client knows at which service instance the
sent query message arrived and that it actually reached one. Again,
an additional query message can be delivered to a different service
instance.

e Complete. The client establishes a permanent routing path to a
service instance and from now on always communicates with the same
service instance (using query messages).

The communication types 'acknowledged’ and ’complete’ are answered
with a reply message. In order to deliver this reply message back to the
client, a new service type (called reply service type) is needed because there
is no client network address that can be used to forward the reply message.
The reply type is randomly generated, hence the client acts as the only
service instance of this new generated service type. As for regular service
types, the reply service type is advertised in the network and the potential
field to forward reply messages is established.

Chapter 3

Protocol Specification

This chapter describes the MAgNETic routing protocol specifications in de-
tail. This includes the MAgNETic protocol header, the specific MAgNETic
protocol messages and the message handling at a node.

3.1 Preliminaries

3.1.1 Data Types

The MAgNETic protocol introduces some new data types. The following
list describes the most important ones:

e UID

Every service instance and application creates a 128 bit unique identi-
fier (UID) on start up. This random generated number acts as service
identifier and as a 'port number’ to distinguish the different applica-
tions running at a device. The UID is with high probability unique in
the whole network. The probability to get 2 equal UIDs when creating
them randomly is

1 -39
p(UID) = UIDy) = g ~ 2.94- 10

In a network with 10’000 nodes, each creating 100 UIDs, the probabil-
ity of having a collision (two equal UIDs) is still very low (2.94-10733).
If it happens nonetheless, the protocol functionality is not affected be-
cause the UIDs are not used to route packets, but it is possible to get
undeterministic outcomes, for example that two different service in-
stances are treated as the same. If an instance detects that its UID is
used by another one, it should delete its UID and randomly generate
a new one.

11

CHAPTER 3. PROTOCOL SPECIFICATION

e Service Type

A service type is a 128 bit number that uniquely defines the kind of
service a service instance provides. Two different categories of service
types exist:

— Well-defined service types
If the first 96 bit of a service type are equal to 0, this service
is called a well-defined service type. The remaining 232 service
types are reserved for specific services. These service types for
common services such as printers for example could be allocated
by a specific organization.
The number of different well-defined service types is limited to
232 but that is more than 4 billion and should satisfy the demand
for service types for a long time.

— Random generated service types
A device can compose new service types, for example for ser-
vices that were not defined before or to establish a new routing
path between two devices (see section 3.5.3, created on start up).
Therefore, a random service type is created by setting the last
32 bits to zero and randomly generates the first 96 bits. The
probability to get two equal random service types is

1
p(RST, = RSTy) = -z ~ 1.26- 10~

2

Hence, it is a very rare event to choose two equal random service
types even in large networks (with several thousand devices). If
by accident two clients choose the same random service type, that
can cause trouble with routing. A packet could be forwarded to
the wrong device while the intended destination device does not
get the expected packet. In the worst case, the application has
to create a new random service type and start communication
again.

e Capacity
Every service type is associated with a capacity value (16 bit integer).
The capacity denotes the ’amount’ of this service type a service in-
stance offers. For example, the capacity of the service type 'Internet
Gateway’ could denote the bandwidth of the service instance’s Internet
connection.

e Potential Value

The potential value (32 bit floating point) is computed with all received
advertisement messages of a service type using the distance function
(section 3.1.2).

3.1. PRELIMINARIES 13

3.1.2 Configuration Parameters

The MAgNETic protocol provides several configuration parameters to define
its behavior. The values currently set allow a stable execution but need not
to be the optimal selection.

e Distance Function

To calculate the potential field, a distance function is used that com-
putes the potential value given the capacity ¢ and the distance d
(number of hops) from the service instance of a received service ad-
vertisement message. The current implementation uses the function
¢(c,d) = 5. The potential of a service type at a node is calculated by
adding up the potentials of all advertisement with this service type.
The resulting function is: ¢(c,d) = 3 pi(ci,di) = 3 -
7 2

It is topic of future work to evaluate well suited distance functions
for different use cases, for example the function ¢(c,d) = 7= could be
used, where k is the parameter to change.

e Protocol Parameters (set in file . /source/defines.h)

— SERVICE_AD_RATE (7 seconds). Defines the time period until

a new advertisement message is sent.

— NEIGHBOR_EXCHANGE_RATE (10 seconds). Defines the time
period until a new neighbor exchange message is sent.

— SERVICE_AD_TIMEOUT (40 seconds). An advertisement is
deleted after this time if no update was received.

— NEIGHBOR_TIMEOUT (60 seconds). If no new neighbor ex-
change message arrives within this time, the neighbor is deleted
from the neighbor list.

— QUERY_RESEND_TIMEOUT (5 seconds). Time to wait until
an unacknowledged query message is resent.

— MAX_QUERY_RESEND (3). Defines the maximum number of
trials to send a query message if no reply is received. Afterwards,
the query message is dropped.

3.1.3 Packet Overview

Figure 3.1 shows the composition of a MAgNETic routing packet. The first
part is the MAC header which is processed by the network adapter. It
consists of the network addresses of the sender and the receiver and a type
value (16 bit). The type value defines the higher level protocol, currently
the value (0x08 0xff) denotes that it is a MAgNETic packet.

14 CHAPTER 3. PROTOCOL SPECIFICATION

MAC Header | MAgNETic Header | Payload :|

Figure 3.1: Packet Overview

0 15 31
Version| Res. Type Message Length
Fragment Identifier Flags Fragment Offset
Timeto Live TOS Header Checksum

Figure 3.2: MAgNETic protocol header

Subsequent to the MAC header, the MAgNETic header (see section 3.2)
follows. The payload, following the MAgNETic header, consists of one of the
four possible MAgNETic message types (see section 3.3) and an arbitrary
amount of data. The maximum length of a packet is limited by the MTU
(maximum transfer unit) of the link.

3.2 MAgNETic Protocol Header

The MAgNETic protocol header is very similar to the IP header [5] with
the major difference that no network addresses are included. It contains the
following fields (figure 3.2):

e Version (4 bit). Version of the protocol, currently 1.
e Reserved (4 bit). Reserved for further use.

o Packet Type (8 bit). MAgNETic type of the packet, defines the subse-
quent payload. Currently, for different packet types exist (see section
3.3):

Type 1: MG_SERVICE_AD: Advertisement Packet

Type 2: MG_NEIGHBOR EXCHANGE: Neighbor Exchange Packet
Type 3: MG_SERVICE_QUERY: Query Packet

— Type 4: MG_SERVICE REPLY: Reply Packet

e Message Length (16 bit). Length of the payload (MAgNETic packet
and optional data, without the MAgNETic and the MAC header).

3.3. MESSAGE TYPES 15

e Fragment Identifier (16 bit). Random number to identify the frag-
ments of the same message. If no fragmentation is used, the fragment
identifier is set to 0.

e Fragmentation Flags (3 bit). Three fragmentation flags can be set
(according to the IP protocol):

— R: Reserved, must be 0.

— DF: Do not Fragment, set to 1 if the packet can not be frag-
mented. Currently unused.

— MF: More Fragments, set to 1 if at least one more fragment fol-
lows, set to O if this is the last fragment of the message.

Currently only the third flag (MF) is considered.

e Fragmentation Offset (13 bit). Offset of this fragment in the entire
packet (in blocks of 8 bytes).

e Time To Live (8 bit). To avoid endless loops in the network, a time
to live field is included. The composer of a packet sets this field to an
initial value (currently 32) and every time a packet is forwarded, the
TTL is decremented by 1. A packet will not be forwarded if its TTL
equal to 0 after decrementing.

e Type of Service (8 bit). Currently unused (set to 0).

e Header Checksum (16 bit). The header checksum serves to check if
the MAgNETic header was correctly transmitted. The MAgNETic
protocol uses exactly the same function to compute the checksum as
the IP protocol [5].

The fragmentation is used when a relaying node provides more than
one network interface with different MTUs (Maximum Transfer Units). It
is possible that a packet received from one network interface needs to be
forwarded out of the other interface with a smaller MTU. If the packet size
exceeds this smaller MTU, it is necessary to split the packet into several
fragments. The goal of an implementation is to use fragmentation as less
as possible. If all devices limit the packet size to 1’500 bytes (MTU of an
Ethernet), fragmentation should not be necessary at all.

3.3 Message Types

To keep routing tables and service information of all devices in the network
up to date, each device periodically sends two types of messages: advertise-
ment messages and neighbor exchange messages. These messages are sent

16 CHAPTER 3. PROTOCOL SPECIFICATION

0 15 31
Number of Advertisements (n) Reserved Version
(Advertisement 1) Service Type
128 hit
UID Service Instance
128 hit
Capacity Sequence Number
Distance Advertisement Lifetime
: :
| |
| |
(Advertisement n) Service Type
128 bit
UID Service Instance
128 hit
Capacity Sequence Number
Distance Advertisement Lifetime

Figure 3.3: Advertisement Message

broadcast to all devices in range. An advertisement message contains in-
formation about the service types provided by the transmitting device and
is forwarded in the entire network, the neighbor exchange message contains
the actual routing table (all potential values) of a device and is sent to all
devices in range.

Additionally to these periodic update messages, two other message types
are provided: query messages and reply messages. A client sends a query
message to get access to a service instance of the desired service type. When
a device receives a query message for a service type that it provides, a reply
message is sent back to the client.

3.3.1 Advertisement Message

In order to avoid too much control overhead, several service descriptions can
be collected in an advertisement message. Therefore, an additional header
is prepended to the single service advertisements. This header contains the

3.3. MESSAGE TYPES 17

following fields (figure 3.3):

e Number of Advertisements (16 bit). Number of single advertisements
(n) included in this message.

e Reserved (8 bit). Reserved for further use.

e Version (8 bit). Version of the service advertisement message (current
version: 1).

The n advertisements are appended to the message header, each consist-
ing of the following fields:

e Service Type (128 bit). Service type of the provided service.
e UID Initiator (128 bit.) UID of the providing service instance.

e Capacity (16 bit). Capacity of this service type provided by the service
instance.

e Sequence Number (16 bit). Sequence number of the advertisement.
Every time a device sends a advertisement message, it increments the
sequence number of this advertisement. The sequence number is used
to detect duplicate advertisements, for example if the same advertise-
ment arrives twice over different paths.

e Distance (16 bit). Distance (number of hops) to the service instance.

o Advertisement Lifetime (16 bit). Value to limit the distribution range
of an advertisement. The service instance sets the advertisement life-
time (currently to 8) and every node decrements the lifetime before
forwarding the advertisement. An advertisement with lifetime equal
to 0 is used to compute the potential value but not forwarded any
more.

For further improvements, collecting several received advertisements and
forward them in a single advertisement message reduces the overhead traffic
in the network by a remarkable amount. This technique, described in [3] is
topic of future work.

3.3.2 Neighbor Exchange Message

Neighbors periodically exchange their potential values for all service types
among each other. With the potential values of all neighbors in range, a
device can build up its routing table. For every service type, the neighbor
with the highest potential value is set as forwarding device to route query
message.

18

CHAPTER 3. PROTOCOL SPECIFICATION

15

31

"Address’ Sender
128 bit

Sequence Number

Number of Service Types (n)

Service Type 1
128 bit

Potential of Service Type 1

Service Type 2
128 bit

Potential of Service Type 2

Service Typen
128 hit

Potential of Service Typen

Figure 3.4: Neighbor Exchange Message

3.3. MESSAGE TYPES 19

0 15 31

Service Type
128 bit

UID Service Instance
128 bit

Reply Service Type
128 bit

UID Client Application
128 bit

Hop Count Query Type Distr. Range Reserved

Data (optional)
arbitrary length

Figure 3.5: Query Message

The neighbor exchange message starts with a short header to denote the
number of service types and corresponding potential values included in this
packet (figure 3.4):

e ’Address’ Sender (128 bit). Reply service type of the distributing
device (see section 3.4.4).

e Sequence Number (128 bit). The sequence number is incremented with
every change of the routing table. If a device remains in a stable state
with no change of potentials, the sequence number remains the same.
The receiving device can check the sequence number to determine if
any potentials in this neighbor’s routing table have changed.

e Number of Services (16 bit). Number of service types in the message.

All service types currently existing in the sender’s routing table are ap-
pended to this header, each beginning with the Service Type (128 bit) fol-
lowed by the Potential Value (32 bit).

For further improvements, the link quality to each neighbor could be
saved and considered before forwarding a query message.

3.3.3 Query Message

A client sends a query message to access a service instance. The query mes-
sage is routed (according to the potential field of the service type) through
the network to a device that provides the specified service type. A query
message contains the following fields (figure 3.5):

20

CHAPTER 3. PROTOCOL SPECIFICATION

0 15 31

Reply Service Type
128 bit

UID Client Application
128 bit

Hop Count Query Type Reserved

Data (optional)
arbitrary length

Figure 3.6: Reply Message

Service Type (128 bit). Service type to search for.

UID Service Instance (128 bit). UID of the service instance. Set to 0
if not known when sending the query.

Reply Service Type (128 bit). If the client asks for a reply (query type
2 or 3), a reply service type is used to route back the reply message
(for more details, see section 3.4.4).

UID Client Application (128 bit). UID of the application that sends
the query. Used to deliver a reply to the application.

Hop Count (8 bit). Distance (number of hops) to the client.

Query Type (8 bit). The query type defines the behavior of sender,
intermediate nodes and receiver of the query message (see section 3.4).

Distribution Range (8 bit). Limits the range a reply service type is
advertised in the network. If the distribution range is set to 0, a reply
message is forced to take the same route as the query message. For
more details, see section 3.4.4.

Reserved (8 bit). Reserved for further use.

Data (arbitrary length). A service query message contains data of
arbitrary length. To determine the length of the appended data, the
field message length in the MAgNETic header (see section 3.2) is used
(data length = message length - size of query message without data).

3.3.4 Reply Message

A service instance receives a query message from a client and decides what
action to take. One possibility among others (see sections 3.4 and 3.5.3) is

3.4. COMMUNICATION TYPES 21

to send a reply message back to the client. The reply message contains the
following fields (figure 3.6):

e Reply Service Type (128 bit). The reply service type is used to forward
the reply packet back to the client.

e UID Client Application (128 bit). UID of the client application to
deliver the reply.

e Hop Count (8 bit). Distance (number of hops) from the service in-
stance.

e Query Type (8 bit). The query type defines the behavior of sender,
intermediate nodes and receiver of the reply message (see section 3.4).

e Reserved (16 bit). Reserved for further use.

e Data (arbitrary length). A reply message contains data of arbitrary
length.

3.4 Communication Types

Considering the end to end communication between a client and a service
instance, different kind of applications need varying action of the participat-
ing nodes. To satisfy the different requirements, the MAgNETic protocol
provides three communication types (also called query types):

e Type 1: Unconfirmed
e Type 2: Acknowledged
e Type 3: Complete

The communication type is set in the field query type in the query
message (section 3.3.3) or reply message (section 3.3.4). Depending on the
communication type, the intermediate devices execute different tasks while
forwarding a query or reply message (detailed description in section 3.5.3).

3.4.1 Communication Type: Unconfirmed

The communication type unconfirmed can be used for example to send sen-
sor data to a service instance. As shown in Figure 3.7, a client sends a query
to a service instance using the advertised service type. The receiving service
instance delivers the query to the corresponding application and no further
action is taken. The client does not know the identity of the receiving ser-
vice instance and has even no guarantee that the query message actually
reached a service instance. Also, subsequent messages can be delivered to
different service instances if the potential field changed in the meantime.

22 CHAPTER 3. PROTOCOL SPECIFICATION

Client Service
Instance

Query

Service Type

! Data !

Figure 3.7: Communication Type: Unconfirmed

3.4.2 Communication Type: Acknowledged

If the client needs a reply to the query message, it uses the communication
type acknowledged. The receiving service instance answers with a reply
message that among other fields contains its UID (see figure 3.8). Therewith,
the service instance is uniquely identified.

The client generates a new service type reply type as a random service
type (section 3.1.1). A new potential field for the service type reply type is
established. The service instance sends the reply message to a provider of
the service type reply type. Because the client is the only service instance for
that reply type, the reply message will be routed back to the client. Again,
there is no guarantee that two subsequent query messages arrive at the same
service instance.

3.4.3 Communication Type: Complete

Communication type complete serves to establish a permanent routing state
between two devices (see figure 3.9). Unlike with type acknowledged, two
new service types (reply type 1, reply type 2) and therefore two new potential
fields are used. After the set-up phase with one query message each, the
client has established a stable routing state to a service instance. Henceforth,
the two devices communicate with each other using the two new reply service

types.

3.4.4 Reply Routing

The client (query types 2 and 3) and the service instance (query type 3)
use a random service type reply type that is distributed in the network with
an advertisement message. Therewith, the potential field for the reply type

3.4. COMMUNICATION TYPES

Query

Service Type

Reply Type

! Data

Client Service

Instance

Reply

Reply Type

\/

Data

Figure 3.8: Communication Type: Acknowledged

Query

Service Type

Reply Type 1

! Data

Reply

Reply Type 2

! Data

Service
Instance

Client

Query

Reply Type 1

Reply Type 2

A,

Data

Figure 3.9: Communication Type: Complete

24 CHAPTER 3. PROTOCOL SPECIFICATION

Figure 3.10: Distribution Range of a Reply Service Type

is built. Because establishing the potential field possibly takes too much
time to route back the reply message (if the reply message arrives before
the routing table entry is updated), a device that forwards a query message
composes a routing table entry for the reply type: it sets the node that the
query message was received from as forwarding device for the reply type. If
the reply message arrives before the potential field is established, it takes
the same path as the query message back to the client.

To limit the range a reply type is distributed in the network, the field
distribution range in the query message (see section 3.3.3) is used. Figure
3.10 shows the distribution of a reply service type with distribution range
of 1:

e A client sends a query message to a service instance.

e (Client, service instance and all relaying nodes send an advertisement
for the service type reply type with an advertisement lifetime of 1,
which specifies the distribution range.

e Therefore, the reply type is distributed in the range of 1 hop from the
path of the query message (the region inside the dashed line).

Note, that the current implementation does not allow to use the dis-
tribution range. The reply types are advertised by the initiator (client or
service instance) and sent broadcast with the default advertisement lifetime.

3.5 Message Handling

Advertisement and neighbor exchange messages are used to build up the
routing tables, while query and reply messages are used to access a service
instances and to send data. This section describes the handling of incoming
MAgNETic messages at a node.

3.5. MESSAGE HANDLING 25

-l get next
advertisement

\i
check servicetype

new
known

\i
check UID drop advertisement

store and forward new
advertisement [

known seq < seq

new old V
check sequence
number

seq = S

new old

hopsnew < I"]Opsold Y

check number of
hops

hOpSnE‘W >= hopsold

Figure 3.11: Advertisement Handling

3.5.1 Service Advertisement Handling

Because all advertisement messages are sent broadcast in the network, it is
possible that a device receives several times the same advertisement. In this
case, the duplicate message is dropped. If the advertisement is new, the
device has to update its routing table and store the advertisement. All new
advertisements need to be forwarded broadcast to all devices in range with
one exception: if the advertisement lifetime (see section 3.3.1) is equal to 0,
the advertisement timed out and is dropped. The advertisement lifetime is
set to an initial value at the service instance (actually 32) and decremented
by every device before forwarding. Therewith, it is possible to limit the
distribution range of an advertisement in the network.

The handling of an incoming advertisement is shown in figure 3.11. If
the service type of the received advertisement does not exists in the device’s
routing table, the advertisement is stored and forwarded. If the service type
is already known, the UID of the service instance is checked. A new UID
denotes that the existing entry with this service type in the routing table
results from a different service provider of the same service type. Therefore,
the advertisement is stored and forwarded.

If both service type and UID are known, it is about another copy of an
existing advertisement. The device then compares the received advertise-
ment to the stored one. If the sequence number is higher, the advertisement

26 CHAPTER 3. PROTOCOL SPECIFICATION

= get next neighbor
exchange message

Y
check neighbor

"address’
-
add / update known

neighbor services Y _
and routing infos S o~ 4] check sequence S0 0, <= B, drop message

»

set new timeout [number > set new timeout

Figure 3.12: Neighbor Message Handling

is newer and therefore replaces the old one; the new advertisement is stored
and forwarded. If the sequence number is smaller, the received advertise-
ment is dropped. If the sequence numbers are equal, the same advertisement
arrived twice over different paths, hence the number of hops is considered.
If the new advertisement took a shorter path to this device (less hops),
it replaces the old advertisement. Otherwise, the received advertisement
message is dropped.

3.5.2 Neighbor Exchange Handling

Every device periodically sends neighbor exchange messages that contain all
service types and the corresponding potential values existing in the routing
table. A device stores all neighbors and their potential values for all service
types in a neighbor list. If a neighbor disappears, the corresponding data
is deleted after a timeout time. The neighbor exchange message contains a
sequence number that shows the status of the information: every time an
entry in the local routing table changes, the sequence number is incremented.

The handling of an incoming neighbor exchange message is shown in
figure 3.12. First, the neighbor’s address (the reply service type) is checked.
If this neighbor is already known, the sequence number in the message is
checked and the message is dropped if the new sequence number does not
exceeds the stored one.

If either the neighbor is new or the sequence number denotes a change in
the neighbor’s routing table, the receiving device has to execute the following
tasks:

e Add the neighbor to the neighbor list if it is a new neighbor.
e Update the neighbor’s potential values for all service types.

e Update the local routing table if necessary: for every service type,

3.5. MESSAGE HANDLING
Type 1 Type 2 Type 3
unconfirmed acknowledged complete
Sending a send query send query send query
Query save in list save in list
send ad send ad

(reply type)

(reply type)

Forwarding a
Query

forward query

forward query
set routing infos
send ad

(reply type)

forward query
set routing infos
send ad

(reply type)

Receiving a

— application

— application

— application

Query compose reply compose query
save in list

Sending a send reply (send query)

Reply complete list

send ad
(new reply type)

Forwarding a
Reply

forward reply

(forward query)
set routing infos
send ad

(new reply type)

Receiving a
Reply

— application
remove from list

— application
complete list

Table 3.1: Query and Reply Handling

27

the neighbor with the highest potential value is set as forwarding de-
vice. The device checks for all service types in the neighbor exchange
message if the forwarding device needs to be changed.

e Set a new timeout value for this neighbor. If no new neighbor exchange
message is received within this time, the neighbor is deleted from the
neighbor list.

3.5.3 Query and Reply Handling

A client sends a query message to get access to a service instance. The
query type (see section 3.4) determines the behavior of all involved devices
(client, service instance and relaying nodes). Table 3.1 summarizes the main
tasks for a device when sending, forwarding or receiving a query or a reply
message. The following paragraphs describe the tasks in detail:

e Sending a Query

The MAgNETic protocol gets an instruction from an application to

28

CHAPTER 3. PROTOCOL SPECIFICATION

send a query message (with data appended) to a service instance of
a specific service type. It sends the message to the neighbor with the
highest potential value for the desired service type (according to the
routing table). If no routing table entry exists for this service type,
the application is notified and the query message is dropped.

Query types 2 and 3: The query is stored in the query list to
control if a reply message arrives. If no reply arrives within a specific
time, the query message is sent again. If still no reply arrives after
a specific resend trials, the failure is reported to the application and
the query message is dropped. A service advertisement for the service
type reply type is sent to establish a potential field to route back the
reply message.

Forwarding a Query

After receiving a query message, a device checks if the desired service
type is provided by itself. If not, the query message is forwarded to
the neighbor with the highest potential value for this service type. If
no routing table entry for the desired service type exists, the query
message is dropped.

Query types 2 and 3: The relaying node sets the device from that
the query message was received as forwarding device for the service
type reply type. With this routing table entry, it is guaranteed that
the reply message is routed back to the client even if it arrives before
the potential field for the service type reply type is established. To
limit the distribution range of the service type reply type (see section
3.4.4), all relaying nodes send an advertisement for the service type

reply type.

Receiving a Query

If the device provides the desired service type, the query message and
the appended data is delivered to the corresponding application.

Query type 2: Every query message of type 2 has to be acknowledged
with a reply message. Thus, the device composes a reply message and
sends it back to the client.

Query type 3: The device sends a new query message back to client,
that contains a new service type new reply type. Both the reply type
and the new reply type are saved in the query list and used further on
for the communication between this service instance and the client.

Sending a Reply

Query type 2: The service instance sends a reply message back to
the client

3.5. MESSAGE HANDLING 29

Query type 3: A new query is sent as an answer to a query message
with query type 3. The service instance sends an advertisement for
the new service type new reply type.

e Forwarding a Reply

Query type 2: The reply message is forwarded using the reply type
entry in the routing table.

Query type 3: The new query message is forwarded using the reply
type entry in the routing table. To limit the distribution range of the
service type new reply type (see section 3.4.4), all relaying nodes send
an advertisement for the service type new reply type.

e Receiving a Reply

Query type 2: The reply message and the appended data is delivered
to the corresponding application and the entry in the query list is
deleted (a connection using query type 2 is complete after receiving a
reply message).

Query type 3: The query message and the appended data is delivered
to the corresponding application. The query list entry is completed
with the new reply type. Further on, the client and the service instance
communicate using the reply type and the new reply type.

Note, that the current implementation does not allow to use the dis-
tribution range of an advertisement (see section 3.4.4). The reply service
types are advertised only by the initiator (client or service instance) with the
default advertisement lifetime. Hence, when forwarding a query or a reply
message (type 2 or 3), the relaying nodes do not send an advertisement.

30

CHAPTER 3. PROTOCOL SPECIFICATION

Chapter 4

Implementation

This chapter describes the basic considerations of the MAgNETic routing
protocol implementation. The implementation follows the following design
principles:

e Platform independent. Written in ANSI C.
e Non blocking. Execution in several threads.

e Direct link-layer access. Network access with raw sockets without
going through the TCP/IP stack.

A guide for installing and starting the MAgNETic protocol and the de-
veloped tools is given in the appendix.

4.1 Data Structures

The most important data structures are the Routing Table (contains all
routing infos as well as all received advertisements) and the Neighbor List
(with all neighbors and their potential values for all service types).

4.1.1 Routing Table

The main data structure of the MAgNETic routing protocol is the routing
table. To guarantee a fast access, it is organized as a hash table, currently
of size 64. The hash value is computed with the service type. Collisions in
the hash table (service types that result in the same hash value) are stored
in a list with the following entries:

struct services_list

{
uid service_type; // service type
float potential; // potential value

31

32 CHAPTER 4. IMPLEMENTATION

// set to 1 if this node
// provides service type
unsigned char next_hop_mac[6]; // forwarding MAC address
float next_hop_capacity; // potential value at

// forwarding neighbour
struct ad_list * advertisements; // list with all ads
// of this service type
// pointer to next entry

int own_service;

struct services_list * next;

The MAgNETic protocol stores all received advertisements in the routing
table. If a new advertisement arrives or an existing one times out, the poten-
tial value of the corresponding service type is recalculated. To complete the
routing table entry, the MAgNETic protocol chooses the forwarding 'next
hop MAC’ address and the corresponding 'next hop capacity’ value from
the neighbor list.

4.1.2 Neighbor List

Using the incoming neighbor exchange messages, every device stores all
neighbors in the neighbor list with the following entries:

struct nb_list

{
uid neighbor_uid; // UID of this neighbor
unsigned char mac[6]; // MAC of this neighbor
short sequence_number; // sequence number
struct timeval timeout; // timeout value
struct nb_services * nb_services // list with all service
// types and potentials
// in the neighbor’s
// routing table
struct nb_list * next; // pointer to next entry
}

The sequence number serves to check if any potential value in the neigh-
bor’s routing table changed (every device increments its neighbor exchange
sequence number with every change of its routing table). The neighbor entry
contains a list with all service types and the corresponding potential values
in the neighbor’s routing table. This information is used to set the neighbor
with the highest potential value as forwarding device in the routing table
(for every service type). If no new neighbor exchange message is received
within a specific time, the neighbor is deleted from the list.

4.2. NETWORKING 33

4.1.3 Additional Data Structures

Some more data structures are required, the most important are:

e Timer List. Contains all pending timers, each with a timeout time
and a handling value that defines the required handling routines.

e Query List. The query list contains all open routing paths from this
device to others. When a device sends a query to a service instance
or receives one as a service instance from a client, it composes a query
list entry to control the communication between the two devices. As
soon as the communication between these two devices is finished, the
query list entry is removed.

e Fragments List. Fragmented packets are saved in the fragments list
until all fragments of a message arrived. Only if a message is complete,
it is delivered to the corresponding thread. This list is cleaned from
incomplete messages periodically.

e Own Services List. This list contains all service types provided by
this device and the corresponding capacity.

4.2 Networking

On start up, the user defines the network interface to use. Normally, this is
a wireless LAN network interface, but also a LAN interface can be used, for
example for testing and debugging. To get access to a network interface, a
socket [11] to the network interface is opened. All MAgNETic packets are
of the following structure (see section 3.1.3):

e MAC header
e MAgNETic header

e Payload (arbitrary length)

Instead of using the TCP/IP stack, the MAgNETic protocol uses an
own MAgNETic header. A raw socket is opened to communicate with the
network interface. Therewith, it is possible to access the data link layer
directly and skip the IP and TCP layers (see figure 4.1).

The network interface delivers all received packets to the raw socket.
Thus, the MAgNETic protocol has to check itself if the received packet is
a MAgNETic packet or drop it otherwise. A specific value (currently 0x08
0xff) in the type field of the MAC header indicates that the received packet
actually is a MAgNETic packet.

34

4.3

CHAPTER 4. IMPLEMENTATION

MAgNETic protocol

raw socket

Y

Datalink

Y Network

Figure 4.1: Raw Sockets

Threads

The MAgNETiIc protocol starts five threads at the beginning, each respon-
sible for a specific type of tasks:

Receive thread: Receives the packets from the network interface and
either forwards them to another device according to the routing table
or delivers them to the corresponding thread for further handling.

Magnetic thread: Gets all advertisement and neighbor exchange
messages from the receive thread and uses them to build up the routing
table.

Timer thread: Responsible for all periodic action: sends periodic
advertisement and neighbor exchange messages and continuously re-
moves old data.

Query thread: Handles all query and reply messages and is also re-
sponsible for the communication between the MAgNETic protocol and
the appropriate applications (service instances and service consumers).

Interaction thread: Waits for a user input and executes the de-
sired action, used to access a service instance (send a query) and for
debugging tasks.

The main advantage of using different threads is to execute several tasks
in parallel (or pseudo-parallel if there is in fact just one processor available).
Therefore, a task will not block another. For example, the packet forwarding
should be executed as fast as possible and not be blocked by a less important
(and not time critical) task like periodic cleaning up. Using several threads,
the forwarding of a packet needs not to wait until the cleaning up task has
finished and can be executed in parallel. In the following, the threads are
illustrated in more detail and the communication between them is briefly
outlined.

4.3. THREADS 35

4.3.1 Receive Thread

Figure 4.2 shows the routines of the receive thread. It first initializes the
network interface and then waits in an endless loop for incoming packets.
If a packet arrives, the thread tests if it actually is a MAgNETic packet
and checks it for integrity. According to the routing table, the packet is
either forwarded to another device or it is intended for this node. Then, the
fragmentation reassembly is carried out if necessary. The packet identifier
defines the further handling: advertisement and neighbor exchange messages
are delivered to the magnetic thread, query and reply messages to the query
thread.

4.3.2 Magnetic Thread

The magnetic thread is responsible for the maintenance of the routing table
and the neighbor list. Figure 4.3 shows the cycle of the magnetic thread:
it gets all advertisement and neighbor exchange messages from the receive
thread and handles them according to the description in section 3.5.1 (ad-
vertisement message) and section 3.5.2 (neighbor exchange message) respec-
tively. Then the magnetic thread waits for the next message.

4.3.3 Timer Thread

On start up, the timer thread sends the first advertisement message (if the
device provides at least one service type) and sets all needed timer: an
advertisement send timer to resend the advertisement message, a neighbor
exchange send timer to distribute the neighbor exchange message and all
actualization timer to periodically check data for timeout. Then the thread
starts waiting for the next timeout and handles the required tasks (see figure
4.4). For all periodic action, a new timer with the same handling tasks is
set.

4.3.4 Query Thread

The query thread (see figure 4.5) gets all query and reply messages from the
receive thread. If a query message is received, the appended data is stored in
a file (at the moment, there is no application attached to a provided service
type). If desired (see section 3.5.3), a reply message is sent back to the
client. If a reply message is received, the appended data is delivered to the
application that sent the corresponding query message.

4.3.5 Interaction Thread

As shown in figure 4.6, the interaction thread handles all user inputs. Using
a pipe, an application asks for an action. Possible actions at the moment are

36

Init:

initialize interfaces

Y

CHAPTER 4. IMPLEMENTATION

(wait for next packet

(blocking)

forward packet
(routing table)
no: drop packet 1
no
check if itisa yes check if packet
MAgN ETic packet isfor this device
yes
Y
add to fragments | yes test if packetis
list fragmented
Y
no check if packet is
complete
yes no
Y
deliver to query reassemble
thread packet
query / reply message
Y \i
deliver to get packet
magnetic thread ad/ nb message identifier

Figure 4.2: Receive Thread

4.3. THREADS

Init: initialize communication structures
initialize routing table
\
wait for next message get message
(blocking) identifier

37

handle service

\i

handle neighbor
exchange

(see section 3.3.1)

service ad

neighbour exchange

Figure 4.3: Magnetic Thread

Init:

send first service advertisement
set advertisement send timer
set neighbour exchange send timer
set all periodic actualization timer

wait for next timeout
(blocking)

j—>

get timeout handler

advertisements

(see section 3.3.2)

if desired:

collect ads

Y

forward ads

if necessary

no

execute handling
tasks

Y

set new timeout
if necessary

\

test if another timer
did timeout

Figure 4.4: Timer Thread

38

CHAPTER 4. IMPLEMENTATION

Init:

initialize communication structures

\

wait for next message get message query - P
((blocking) identifier save datain file

reply
Y \i
deliver datato send reply message
application (if desired)

Figure 4.5: Query Thread

(see appendix B): send a query message, write out intern data (for example
the routing table), change the provided services or use MAC address filtering.
The interaction thread processes the desired task and waits for the next user
input.

4.3.6 Communication between Threads

The different threads execute independent tasks, but sometimes they need
to communicate among themselves. Figure 4.7 shows the necessary thread
interactions.

e The receive thread gets the packets from the network interface and de-

livers them to the corresponding thread (magnetic or query thread).
Thus, two unnamed pipes are created with the receive thread on the
write end and the magnetic or query thread on the read end. The
magnetic and query threads are blocked until the receive thread de-
livers a packet to them by writing the memory address of the packet
into the pipe. Then, the magnetic or the query thread handles the de-
livered packet while the receive thread waits for the next packet from
the network interface.

An indirect communication between the threads takes place using the
routing table. The magnetic thread is responsible for composing the
routing table entries while the receive, query and interaction threads
use it to get the forwarding MAC address to send a packet.

4.3. THREADS

Init: initialize communication structures
(shared memory, communication pipes)

Y

wait for user input
(blocking)

MAQgNETic Implementation

39

»| handle request

for example:
write out the routing table
or send a query message

Figure 4.6: Interaction Thread

Timer Thread

Unnamed Pipe

A

Receive Thread Unnamed Pipe

Query Thread

Unnamed Pipe

S

1

Interaction Thread

Magnetic Thread

Named Pipe
y Shared Memory y y

Ll

Applications

Figure 4.7: Communication between Threads

40

CHAPTER 4. IMPLEMENTATION

e The timer thread needs no communication with other threads with one

exception: the query thread can set an additional timer to resend a
query message if no answer was received within a specific time interval.
To set the additional timer, an unnamed pipe is used.

The communication between the interaction thread and a tool or ap-
plication (see appendix B) is implemented with a shared memory area
to deliver data and a named pipe to inform the magnetic protocol that
there is some work to do. The interaction thread is blocked until an
application writes an instruction to the pipe.

The query thread sends a signal to the corresponding application if a
reply arrived. The received data is delivered using the shared memory
area. If a query message arrives for a service instance, the data is
written to a file and a reply is sent automatically if desired, because at
the moment, there are no application running that provide the service

types.

Chapter 5

Tests

The performed tests serve to validate the implemented code and to prove
that the MAgNETic routing model works in a real environment.

5.1 Environment

The MAgNETic protocol was implemented in C under Linux. It was tested
with the following hardware and software components:

e Kernel. The basic system was Debian Linux. The implementation
was tested on the two kernels 2.4.24 and 2.6.10.

e Compiler. As compiler, the GNU project C compiler (gcc) versions
2.95.4 and 3.3.5 were used.

e Wireless Interfaces. The implementation was tested with a wireless
LAN adapter bases on an Intersil Prism 2.5 chipset (Intersil Corpo-
ration Prism 2.5 Wavelan chipset (rev 01)). This interface works
with the orinoco_pci driver (orinoco_pci.o kernel module). The wire-
less LAN adapter is set into the ad hoc mode and all devices of the
same MANET are given the same network cell number (ESSID). No
problems occurred while running the code using an interface adapter
with a Prism 2.5 chipset.

Tests with another wireless LAN adapter that uses an Atheros chipset
(Atheros Communications, Inc. AR5212 802.11 abg NIC (rev 01)) did
not work properly. This interface was set up with the ath_pci.ko kernel
module. As soon as a packet with a unicast destination address is sent
to another device, the interface adapter starts to produce continuous
hardware interrupts, and after a few seconds the computer crashes and
needs to be rebooted.

41

42 CHAPTER 5. TESTS

| o
cie @ ® ® ® nstce

Query

y

A

Reply

Figure 5.1: Long Chain

e Number of devices.

— 4 Laptops IBM R32
— 1 Laptop IBM T42 (not working properly)
— 1 Desktop Computer

e Software Tools. The code was tested using the valgrind [13] debug-
ging tool (version 2.2.0). The subversion [14] concurrent versions tool
(version 1.0.8) was used for archiving the source code.

5.2 Functional Tests

If possible (up to 3 devices in a row), the tests were performed with real dis-
tances between the devices. For the bigger scenarios, the address filter tool
(described in appendix B.5) was used. In the following, the most important
tests are described:

e Long Chain

Figure 5.1 shows the scenario with all devices in a row. The client
sends a query message over four hops to a service instance and waits
for a reply message. This scenario works without problems with 5
devices in a row using the MAC filter tool as well as with a chain of 3
devices with real distances.

e Failover

Another scenario is shown in figure 5.2: when a relaying node leaves
the network, the other nodes must adapt to the new topology. A query
message is sent from the client (node 1) to the service instance (node
5) using the relaying nodes 2 and 3. Then, node 3 leaves the network.
Thus, a subsequent query message to the same service instance needs
to be redirected using node 4.

The principle functionality of this test works fine but the actualization
of the routing table needs too much time (waiting until the old neigh-
bor times out and then set the new forwarding address). In future, this

5.2. FUNCTIONAL TESTS 43

S

. Service
Client
0 % Instance

Figure 5.2: Failover

New Service

/ Instance

. Service
Client 0 9 9 Instance

Figure 5.3: Mobility

can be improved by implementing the following: if the query is sent to
a neighbor that is not in range any more, the wireless interface should
answer with a transmission fail message. As soon as this message is
received, the protocol can remove the disappeared neighbor from the
neighbor list, set a new forwarding address for the corresponding ser-
vice type and immediately send the query message again to another
device.

e Mobility

In scenario mobility (see figure 5.3), a service instance is replaced by
another that just joined the network. The client (node 1) sends a
query message to the service instance (node 5). At a later time, node
4 providing the same service type as node 5 (with the same capacity)
joins the network and is closer to the client. Therefore, a subsequent
query message from the client will be forwarded to device 4 instead of
device 5. This scenario was tested successfully.

The scenarios above represent the most important test cases that can
be arranged with 5 devices. During the implementation, there was ongoing
testing necessary to see if the code works correctly. Furthermore, the sce-
narios above just demonstrate test cases with query and reply messages. Of
course, also the building of the potential fields and the routing tables with
advertisement and neighbor exchange messages was tested continuously but
is not described in detail.

44

CHAPTER 5. TESTS

Chapter 6

Conclusion and Future Work

The goal of this master’s thesis was to implement and test the MAgNETic
routing protocol in C under Linux. The main tasks and their realization
were the followings:

e MAgNETic routing protocol design.

All necessary protocol messages and the MAgNETic protocol header
are designed according to the model in the papers [3] and [4]. The first
part (advertisement and neighbor exchange messages to build up the
potential fields and the routing tables), described in detail in [3], was
realized. No exact description existed for the second part (query and
reply messages to search for a service and to send data). The complete
design principles for this part were developed.

e Implementation of the designed protocol.

The major part of the work was the implementation of the MAgNETic
protocol. The basic concepts are the use of raw sockets for network
access and to use different threads to guarantee a non blocking program
execution. Especially because of the several threads, debugging was
quite a challenging task. All applications and tools that were necessary
to use and test the protocol (for example a tool to read out all intern
data structures or a ping application to send a query message and wait
for a reply) had to be developed as well.

The basic functionality is implemented, but some tasks remain for
future work: collecting advertisements in a node and forward them
together to reduce the control traffic overhead in the network (de-
scribed in [3]) is not yet implemented. Another open topic is the
implementation of the distribution range limitation for reply service
types (see section 3.4.4). An important part of future work is to define
and implement an API for applications representing a service instance.

45

46 CHAPTER 6. CONCLUSION AND FUTURE WORK

Currently, all provided service types are read in from a file. The MAg-
NETic protocol handles incoming query messages by automatically
sending reply messages.

e Validation with functional tests.

The implementation was tested using different hardware and software
components. All relevant scenarios like failover or mobility were ar-
ranged. These tests demonstrate that the implementation works cor-
rectly and that the MAgNETic routing approach suits the require-
ments of the real environment. However, with a testing environment
of five devices, it was not possible to perform complete evaluation tests.

A problem that occurred was that the implementation did not work
using a wireless LAN adapter based on an atheros chipset (see section
5.1). Sending an unicast frame to another device results in endless
hardware interrupts and causes a crash of the entire computer. How-
ever, this is a minor issue and can easily be handled by using a wireless
LAN adapter with a working chipset.

This implementation is a next step towards a testing environment to
evaluate the performance of the MAgNETic service discovery and routing
approach. It is topic of future work to set up a testbed with more nodes, for
example using small devices like PDA’s. The devices could be carried from
test persons on their normal job over a long time. The code was not tested
on PDAs, but we believe that porting it to PDAs should not be a major
problem.

Testing with large testbeds causes a few new problems: the tests need
to be analyzed. The logfiles of all devices provide plenty of data and should
be analyzed automatically with some test tools. To arrange performance
measurements, a time synchronization between the devices would be a huge
advantage. However, this is not a simple task. For example, an approach for
clock calibration [12] developed at the Computer Engineering and Networks
Laboratory could be used.

Appendix A

Using the M AgNETic
Protocol

This section shows how to install and run the MAgNETic protocol as well
as the developed tools.

A.1 Installation

The code was developed for Linux. We tested the implementation with the
Debian Linux kernels 2.4.24 and 2.6.10.

Installing the MAgNETic Protocol

Copy all files from the CD to an arbitrary directory. To compile, a GNU
project C compiler (gcc) is required (tested versions 2.95.4 and 3.3.5). Change
to the directory source and run the Makefile:

/home/user/magnetic/source# make

If desired, the debug mode and the logfiles to write can be set before com-
piling in file ./source/defines.h.

Installing the Tools

To install the developed tools, run the script compile_tools in the directory
tools:

/home/user/magnetic/tools# compile_tools

47

48 APPENDIX A. USING THE MAGNETIC PROTOCOL

A.2 Starting

Setting up the Wireless LAN Interface

Set the wireless LAN interface to ad-hoc mode and select a cell number
(essid). The cell number (for example ’testnet’) must be the same for all
participating devices. This can be done for example using the linux wireless
tools (many wireless LAN drivers support these commands):

/home/user/magnetic# iwconfig wlan mode ad-hoc
/home/user/magnetic# iwconfig wlan essid testnet
/home/user/magnetic# ifconfig wlan up

Starting the MAgNETic Protocol

Start the MAgNETic protocol with the command magnetic in the directory
source and select the network interface to use. The process must be started
with root privileges.

/home/user/magnetic/source# magnetic wlan

Starting the Tools

Start the desired tool with the appropriate command (detailed description
of all tools in appendix B):

/home/user/magnetic/tools# modify_services
/home/user/magnetic/tools# show_magnetic_data
/home/user/magnetic/tools# ping_service
/home/user/magnetic/tools# send_query
/home/user/magnetic/tools# reload_mac_filter

A.3 Important Files

All possible logging information is written to the following files:

./source/log/all_packets // logs all packets
./source/log/corrupted_packets // logs all wrong packets
./source/log/whole_packets // logs the whole packets
./source/log/neighbors // logs all neighbors

A list of all provided services and all data that arrived for these service
instances can be found in:

./services/services.cfg // all provided services
// and capacity
./services/received_data // received data

Appendix B

Developed Tools and
Applications

This section describes all developed tools and applications. Appendix A
describes how to install the tools. Before starting any tool or application,
check that the MAgNETic protocol must be running at the node. The tools
must be started with root privileges.

B.1 Management of Provided Services

Purpose

The tool to manage the provided services is used to add, change or delete
provided service instances. The provided service instances are written to the
file ./services/services.cfg (service type and capacity) and delivered to the
MAgNETic protocol with every change. For these service instances, no ap-
plication is running in the background. The MAgNETic protocol currently
simulates an application that reacts to query messages and sends a reply.

Usage

Command to start the tool to manage provided services:
/home/user/magnetic/tools# modify_services
Select what to do next:

Select Action: 1: Show Provided Services

2: Add a Service Instance

3: Delete a Service Instance

4: Modify the Capacity of a Service Instance
9

: Exit

49

50 APPENDIX B. DEVELOPED TOOLS AND APPLICATIONS

B.2 Print Intern MAgNETic Protocol Data

Purpose

The tool to print intern MAgNETic data is basically used for debugging and
testing. It allows to see intern data (routing table, neighbor list, etc.) at
runtime. To reconstruct what happened before, have a look at the logfiles.

Usage

Command to start the printout tool:
/home/user/magnetic/tools# show_magnetic_data
Select the data to print:

Select Action: 1: Print Routing Table

2: Print all Advertisements

3: Print provided Services List
4: Print Neighbour List
5: Print Statistics
9: Exit

B.3 Ping Application

Purpose

The ping application sends a query message of type 2 (acknowledged, see
section 3.4) to a service instance of the desired service type and waits for a
reply message. Consider that the subsequent query messages need not to be
answered by the same service instance. Currently, the MAgNETic protocol
answers all queries with query type acknowledged with sending back the
payload data. In further implementations, the applications acting as service
instances should implement the ping reply themselves.

Usage
Command to start the ping application:
/home/user/magnetic/tools# ping_service

Then select the service type to ping. Magnetic sends query packets to the
optimal service instance of the given service type until you stop the ap-
plication (use CTRL-C) or MAX_PACKETS (defined in the file ping_service.h)
packets are sent.

B.4. SEND QUERY APPLICATION 51

B.4 Send Query Application

Purpose

The send query application sends a query message type 1 (unconfirmed, see
section 3.4) to a service instance of the desired service type. The service
instance stores the received data in the data file.

Usage
Command to start the send query application:
/home/user/magnetic/tools# send_query

Then select the service type to search for and the data to append to the
query (currently 4 bytes of data are appended).

B.5 MAC Address Filter Tool

Purpose

For testing and debugging, it is an advantage to select the packets that a
device should receive. With the MAC address filter tool, the packets with a
specific source address are dropped.

Usage

Write the MAC addresses of the incoming packets to filter into the file
./tools/denied _mac.cfg, for example:

00 20 e0 8e dd 75
00 20 e0 8e dc eb
00 20 e0 8e dd 89

Check that the option MAC_FILTER in the file . /source/defines.h is set to
allow the MAC address filter option. Then start the program

/home/user/magnetic/tools# reload _mac_filter

to read the new addresses to filter with the MAgNETic protocol. From
now on, all incoming packets from a device with one of the specified source
addresses will be dropped. To disable the filtering of packets, simply delete
the file . /tools/denied mac.cfg and start ./reload.mac_filter again.

52 APPENDIX B. DEVELOPED TOOLS AND APPLICATIONS

Bibliography

[1]

2]

[3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

Swiss Federal Institute of Technology Zurich
http://www.ethz.ch, April 2005.

Computer Engineering and Networks Laboratory
http://www.tik.ee.ethz.ch, April 2005.

Vincent Lenders, Martin May, and Bernhard Plattner. Service Discov-
ery in Mobile Ad Hoc Networks: A Field Theoretic Approach. To appear
in the IEEE International Symposium on a World of Wireless, Mobile
and Multimedia Networks (WoWMoM), Taormina, Italy, June 2005.

Vincent Lenders, Martin May, and Bernhard Plattner. Towards a New
Communication Paradigm for Mobile Ad Hoc Networks. TIK Report
203, ETH Zurich, Switzerland, August 2004.

Jon Postel. DoD Standard Internet Protocol. IETF RFC 760, January
1980.

Xiang Zeng, Rajive Bagrodia, and Mariio Gerla. “GloMoSim: A Li-
brary for Parallel Simulation of Large-scale Wireless Networks,” in Pro-
ceedings of the 12th Workshop on Parallel and Distributed Simulation
(PADS ’98), Banff, Alberta, Canada, May 1998.

Charles E. Perkins, Elizabeth M. Belding-Royer, and Samir R. Das. “Ad
Hoc On-Demand Distance Vector (AODV) Routing,” IETF Internet
Draft, draft-ietf-manet-aodv-12.txt, November 2002.

Thomas Clausen and Philippe Jacquet. “Optimized Link State Routing
Protocol,” IETF Internet Draft, draft-ietf-manet-olsr-11.txt, July 2003.

David B. Johnson, David A. Maltz, Yih-Chun Hu, and Jorjeta G.
Jetcheva. “The Dynamic Source Routing Protocol for Mobile Ad Hoc
Networks (DSR),” IETF Internet Draft, draft-ietf-manet-dsr-09.txt,
April 2003.

Tan D. Chakeres, Elizabeth M. Royer, and Charles E. Perkins. ”Dy-
namic MANET On-demand Routing Protocol,” TETF Internet Draft,
draft-ietf-manet-dymo-00.txt, Februar 2005

53

54 BIBLIOGRAPHY

[11] W. Richard Stevens, Bill Fenner, and Andrew M. Rudoff. UNIX Net-
work Programming: The Socket Networking API. Pearson Education,
Inc, Boston, 2004.

[12] Philipp Blum and Georg Dickmann. Precise Dely Measurements in
Wired and Wireless Local Area Networks. Tik Report 175, ETH Zurich,
Switzerland, July 2003.

[13] Valgrind: x86 Linux Debugging Tool.
http://www.valgrind.org, April 2005.

[14] Subversion: Version Control System.
http://subversion.tigris.org, April 2005.

