An evaluation of the feasibility of gene network
reconstruction using current methods

Frick, Don Andreas

April 24th, 2005

Abstract

The question of how gene networks may be reverse engineered from experimental
data is one of the central questions in the field of genetics. Although many
approaches to the problem have been made, few have tried to evaluate the
difficulties and limits of possible solutions.

We use a specially designed network generation and simulation framework to
evaluate the difficulty of reconstructing gene networks using different algorithms.
The results are used to make a realistic estimate of the best reconstruction qual-
ity that can be expected when working with a limited amount of experimental
data.

Contents

1 Introduction
1.1 Motivation

1.2 Goals and context of the project
1.3 Biological background and terminology

1.4 Previous studies
1.4.1 Modelling
1.4.2 Reconstruction . . .
1.5 Graph theory terminology .

2 Reconstruction methods
2.1 Overview
2.2 Digraph generation

2.3 Wagner reconstruction algorithm
2.4 Wille reconstruction algorithm

2.4.1 Adaptation to binary

data.

2.4.2 Binary implementation of Wille algorithm

2.5 Testing procedure.

2.6 Wagner reconstruction and measurements

2.6.1 Variable error count
2.6.2 Variable node count
2.6.3 Variable edge count

2.7 Wille reconstruction and measurements

2.7.1 Variable node count

2.7.2 Variable number of expression data sets
2.7.3 Variable number of simulated updates per node

2.8 Wagner - Wille juxtaposition
3 Data requirements

3.1 Overview

3.2 Complexity

3.3 Testing procedure

34 Results.
3.4.1 Variable node count
3.4.2 Variable edge density

4 Conclusion

=N NN

-~

14
14
15
15
19
20
21
22
23
24
24
27
29
29
32
32
32
36
36
37
38
40
40
42

44

Chapter 1

Introduction

1.1 Motivation

The field of genetic research has seen dramatic advances in the last decade. One
of the hallmarks of this area of science is that researchers are gathering large
amounts of experimental data, but lack well established methods to process
and organize this information. For example, microarray experiments (Figure
1.1) yield data sets that cover a huge number of genes reacting to external
conditions in different ways. Although it is now commonly accepted that these
genes are organized in large networks of complex interactions that control and
drive the vital processes of cells, there is no known method to reliably reverse
engineer these interactions from experimental data. An accurate reconstruction
of the gene interaction network in an organism could give scientists a much
deeper understanding of the metabolic and regulatory processes that take place
in cells, with far-reaching consequences for the fields of biology, genetics and
medicine.

1.2 Goals and context of the project

There are many examples of studies that focus on the reverse engineering of
a particular genetic pathway or the purpose of certain genes in an organism
(e.g. [26], [8], [22], [30], [38]). Most of these studies employ algorithms that aid
in the analysis of unmodified experimental data, but the focus is generally on
an evaluation of the results and their implications from a biologist’s point of
view. While these reconstructions often have high practical relevance and are
of immediate use to biologists, they are less concerned with a general solution
to the question of how gene networks may be reverse engineered and simulated.

On the other hand, there are many papers that have investigated the problem
of reconstructing a network from incomplete information from a predominantly
mathematical perspective (e.g. [6], [28], [31], [41], [23], [3]). These studies are
largely concerned with graph theoretical questions and algorithms. While these

approaches are sound in theory, problems may arise when they are applied to
the imperfect and incomplete data gathered from experiments.

Finally, there is an abundance of papers studying the reverse engineering of
network topology, but few examples of papers that concern themselves with the
exact functions of the interactions - that is, to ask not only whether two genes
interact with each other, but also to quantify how they do so.

We believe that there is a gap between biologically inclined studies and
their mathematical counterparts. The purely mathematical problem of network
reconstruction from incomplete data is extremely complicated and remains a
field of intense research. It may prove helpful to consider the problem from a
slightly different point of view, namely that of a researcher confronted with a
real, but limited amount of data such as is available today. On the other hand,
we do not wish to focus on a given example to the point where the question of
network reconstruction in general is neglected.

This project has two primary objectives. The first is to apply two existing
network reconstruction algorithms to sets of simulated networks to examine how
and how well the reconstruction works. We will also study these algorithms on a
more theoretical level, to find how they react to certain network constellations.
By performing a set of simulations with varying conditions, we hope to expose
some of the important practical problems that arise when reconstructing gene
networks, and make some suggestions on how they may be solved.

In order to perform these reconstructions, we will introduce a gene network
model and design a framework that can generate networks and simulate their
dynamics. We will then adapt the chosen algorithms to our model to perform
the reconstructions and evaluations.

The second goal is to estimate the practical limits to reconstruction attempts
when one has a limited set of data available. Instead of assuming an unlimited
amount of data or examining the behavior of an algorithm when faced with small

a

o

L]]
S eOw
[]

FEOE 8Bd

Figure 1.1: Results of a microarray experiment: Rows are genes, columns are
external conditions.

amounts of errors and missing data, we will start with a number of measurements
that can reasonably be expected from state of the art experiments and attempt
to find the best reconstruction that is possible, independent of the algorithm
that is used. We are not aware of any existing studies that gauge the practicality
of network reconstruction in such a manner. To perform these estimates, we
will make use of the model and framework that were introduced for the first
objective.

e The first part of this thesis contains the background and motivation of
the project, a brief description of some of the previous work that has been
done in the field and some introductory information on genetics and graph
theory.

e The second chapter focuses on an examination of two network topology
reconstruction algorithms, with an explanation of how they function and
a set of simulated results to demonstrate their characteristics.

e In the third part, we consider the more general question of how much
information about a network can be gathered from a limited set of exper-
iments.

e The final chapter contains a summary of results and the conclusions we
have derived from them.

1.3 Biological background and terminology

This section will introduce some basic concepts and expressions from cell biology
and genomics. For a comprehensive introductory text, see [4].

A gene is defined as “a DNA region that controls a discrete hereditary char-
acteristic, usually corresponding to a single protein or RNA” (from [4]). Each
gene in a living organism will have a varying level of phenotypical expression,
which is essentially a measure of how active it is. Most genes, when activated,
will synthesize proteins; these proteins can in turn influence the activity of other
genes. This influence can take different forms; activation means that the prod-
ucts from one gene’s expression will enhance the expression levels of another
gene. For instance, an enzyme produced from one gene may increase the pro-
duction levels of an enzyme associated with another gene (Figure 1.2 A). The
counterpart, repression, means that if one gene is active, some genes influenced
by it will be less active. An example for this is a gene that produces a protein
that blocks access to a particular DNA sequence, preventing another gene from
being expressed (Figure 1.2 B).

A transcription factor is “a protein required to initiate or regulate tran-
scription in eucaryotes” (quote from [4]). For our purposes, this means that a
transcription factor will often have a comparatively high number of outgoing
edges in the network, since it influences the expression levels of many other
genes.

N @g—0O = 0—0
> O0—@ => O0—O

e = 9

Figure 1.2: Illustration of activation, repression and a more complex interaction,
active genes are black. Note that in case C, the activation and repression cancel
each other out.

There are also complex interactions that involve the inputs of several genes.
In these cases, a repressive effect can supersede an activation (as shown in
Figure 1.2 C) or vice versa. The entire set of genes and their interactions can
be modelled as a digraph (directed graph), where the genes are drawn as nodes
and the interactions are represented by directed edges. A sample digraph is
shown in Figure 1.3.

Such a set of genes and interactions is called a genetic network. In the di-
graph model, each node or gene is associated with a value that stands for its
current expression level. The expression level of a given gene can be influenced
by external factors, such as temperature and radiation, and by the expression
of other genes as described above. Some different methods for simulating inter-
actions between genes will be discussed in Section 1.4.

Microarray experiments provide the type of data that is most commonly
used in studies attempting the reconstruction of gene networks. These experi-
ments measure the expression levels of large numbers of genes in parallel, under
varying external conditions and internal changes. For instance, one might ex-
amine how the expression levels of a set of genes change as the organism grows,
or when it is exposed to direct sunlight, or kept in the dark. The types of
data that are immediately useful for the reconstruction of gene networks are
those from knockout or overexpression experiments and those from time series
measurements.

A Eknockout experiment essentially removes a gene from an existing network,
preventing it from ever being expressed. Doing so can help determine which
genes are influenced by the knockout, since their expression value in that par-

Figure 1.3: A digraph that represents a small gene network.

ticular experiment will often be different from the value in the unchanged case.
Overexpression follows the same principle, but forces a gene to a high expres-
sion value regardless of inhibition and enhancement, which again will have an
influence on some of the genes that are activated or repressed by it. Knockout
and overexpression experiments are both expensive and difficult to perform, and
will sometimes fail since they can seriously disrupt vital functions, which can
kill the host organism.

Some complex gene interactions can only be brought to light by perform-
ing double knockout (or overexpression) experiments. These special cases will
be examined in detail later on. The principle of the double knockout or over-
expression is the same as in the single counterpart, except that two genes are
altered at the same time. Double experiments are more difficult to execute, and
carry an increased risk of causing damage to the host organism.

Once a knockout or overexpression has been performed, one can detect which
genes are affected by the one that has been altered in the experiment. However,
it is not clear whether these interactions are direct or indirect, that is, whether
the change evident in the targets has propagated through other genes before
taking effect. One problem of topology reconstruction then lies in finding out
which genes are directly connected to each other.

As we shall see in the next chapter, this problem is simple if one is working
with sufficient amounts of experimental data, but much more difficult in practice
since available data is both scarce and unreliable. The problem of imposing the
correct functions on each node is similar in that it can easily be solved given
enough data, but is made difficult or even impossible by the limited number of

experiments that are normally available.

Time series experiments are used for the same purpose as knockout and
overexpression experiments; to find out which genes affect each other. However,
instead of directly altering the network and observing the changes, they rely on
natural fluctuations of expression levels that happen over time, or in response
to some external stimulus. Data gathered with this technique is slightly more
difficult to analyze, since all genes and their changes must be observed simul-
taneously and the changes in expression levels are often less pronounced. The
advantage is that in theory a much smaller number of experiments needs to be
made to collect enough data for reconstruction. Instead of having to perform
separate experiments for every gene, a comparatively small number of measure-
ments can yield sufficient data to reconstruct the network topology, since each
series of measurements can contain information on the behavior of large parts
of the network.

1.4 Previous studies

A number of studies concerning the reconstruction of gene networks are col-
lected and presented in [7] and [37]. Most of these reconstruction approaches
are qualitative, in that they focus on determining whether or not a link exists
between two given genes. If one wants to simulate the behavior of a network,
one has to go one step further and include information on the strength and type
of these interactions. Simulations, in turn, make it possible to gather data not
immediately available from experiments and verify the accuracy of a model (see
[9] and [8]).

1.4.1 Modelling

A large number of different network models have been introduced. In [7], the
existing modelling approaches are separated into several categories: The first
and largest includes all methods that use binary data and functions, with the
expression levels of the genes being either high or low, and boolean functions
used to simulate how genes react to their inputs. Boolean models have remained
popular since their introduction by Kauffman in [17]; there are many models
that are more detailed and more accurate, but the boolean approach is much
simpler, and in many cases it provides for a sufficiently good model.

The second possibility is to use continuous data to represent the state of each
gene. This is clearly more complex to design and takes more time to compute,
but has the potential to deliver much better approximations of real biological
networks. If the simulation is performed with discrete time steps, the states
of both these network types can be updated in a synchronous or asynchronous
manner, while differential equations allow simulations in continuous time. A
well developed continuous data model is described in [9], [8] and [10].

There are several approaches that can be made when reconstructing a net-
work with transition functions. One is to begin by rebuilding the topology,

which results in a simple directed graph, and then attach best fit functions on
the edges to simulate the interactions between the genes. Another less often
used option is to initially assume that all nodes are connected, and impose
best fit functions where many of the variables have no influence on the output,
effectively including information on the topology in the interaction functions
themselves, as done in [34] and [36].

Most network models can be extended with stochastic behavior to simulate
unexplained events and external influences on the biological system. An ele-
ment of randomness can be introduced in several different ways: One of them
assumes that any gene has a small chance of changing its expression level in
either direction, regardless of input. This is particulary easy to implement in a
boolean system, where the change corresponds to a flip from zero to one and vice
versa. The rationalization for these random changes is that external influences
(i.e. any effect not originating from the activity of another gene) can cause such
seemingly unprovoked changes of state. The second random extension modifies
the enhancing and inhibiting interactions between genes. These interactions
can be made to operate in a probabilistic manner, with the result depending
on both the activator or repressor genes and a random factor. This modelling
method is closer to the behavior of a genetic network than one using purely
deterministic functions. A summary of different statistical simulation methods
and an example of a statistical model can be found in [21], and an inference
method for a statistical model has been described in [15].

Finally, some researchers have constructed models using Bayesian networks,
directed graphs with probabilistic functions associated with the edges (see [14],
[28] and [39)]).

1.4.2 Reconstruction

Most reconstruction methods were designed to fit a particular model, which
makes it somewhat difficult to consider them on their own. In many cases,
they use statistical methods to find patterns in expression data from which
connections between genes may be inferred. Other attempts have been made
using graph theoretical methods (e.g. [19], [24]) and genetic algorithms (e.g.
(18], [33]).

While most reconstruction methods rely on mutant or time series exper-
iments and the data derived from them, some take advantage of additional
information. For instance, some gene interaction pathways of an organism may
already be known and can thus be directly integrated into the model, as sug-
gested in [26]. Some studies use qualitative knowledge of biological networks to
achieve a more accurate reconstruction; an example would be the higher average
outdegree associated with transcription factors as used by Qian in [29].

If for every gene in a network, one has determined the complete list of
other genes that are affected by it, that network can be reconstructed with a
high degree of accuracy, as suggested in [41] (this will be explained in detail in
Chapter 2). However, such complete information will rarely be available, since
for realistic networks with thousands of genes a huge number of experiments

would be required, which was shown in [2]. In addition to practical limits on
the number of experiments, errors in the gathered data can cause problems for
reconstruction attempts.

The reconstruction problem becomes more manageable when one is working
with a small number of genes. One way to force smaller gene counts is to
split a large network into smaller parts prior to reconstruction, as suggested in
[13] and [27]. When one divides a network in this manner, one assumes that
the network is composed of subnetworks (subgraphs) that are highly connected
internally, but have a comparatively small number of connections to the outside.
This not only reduces the computational complexity of the problem, but also
corresponds to the predictions of biologists concerning the structure of these
networks. However, the detection of these subnetworks is not necessarily a
simple task, and would effectively require knowledge of the topological structure,
the thing one is trying to achieve in the first place. In addition, errors that occur
in the initial segmentation step can have a large impact on the quality of the
final model.

1.5 Graph theory terminology

This section will introduce some basic terminology and concepts used when we
discuss graph theory in Chapter 2. The descriptions herein are intended to be
concise and illustrative; a mathematically precise and comprehensive treatment
of these concepts may be found in [11].

A graph G = {N, E} consists of a set of nodes (or vertices) N and a set of
edges E. A graph can be represented as a drawing, where the nodes appear as
circles and the edges are lines connecting the nodes. Each of the k elements of
N = {nq,ng9,...,nix_1,nk} has a single identifier, which in our case will be an
index between 1 and k, while each edge in E = {e;;;4,5 = (1...k)} is identified
by the indices of a pair of nodes from N: The two end points of the edge.

Most of our discussion will focus on directed graphs, or digraphs, where each
edge is assigned a direction. The first index of an edge e;; is its initial node,
while the second is the terminal node. The edge is said to be directed (or point-
ing) from n; to n;. This directionality is indicated by a marker at the end of
the edge that is attached to the terminal node. Positive or activating edges are
marked by an arrowhead, while negative or inhibiting edges have a crossbar. In
the matrix representation, positive and negative edges are marked by positive
and negative matrix values, respectively.

A subgraph is a graph G’ = {N’, E'} where the sets of nodes and edges are
subsets of the node and edge sets of another graph:

G={N,E}; NCN,E CE

Other than the set of two lists G = (N, E) and a drawing with lines and

edges, a graph may equivalently be described by a connectivity matriz, which
has the form M = {m(i,j); i € {1...k} j € {1...k}} where

mli,j) = 0 if there is no edge from n; to n;
)71 1 if there exists an edge from n; to n;

In an wundirected graph, on the other hand, all edges are assumed to be
bidirectional - if an edge e;; exists, then its counterpart e;; is automatically
included. It follows that a matrix representing an undirected graph will always
be symmetric.

A path is a non empty subgraph of the form

N ={ni,no,...,np_1,m1}; E={ei2,€23,...,e0-1)k}

where all the nodes are distinct. In other words, a series of directed edges
that can be traversed from beginning to end. The number of edges in a path is
its length.

The adjacency list is another way to represent a matrix. For each node n;
it lists the nodes n; that are connected through an outgoing directed edge e;;.

The accessibility list contains for each node n; the list of all other nodes that
can be reached by travelling along a path originating in n;. The accessibility
list can always be derived from the adjacency list, but the reverse is generally
not true.

The indegree of a node n; counts the number of directed edges e;; that point
into it, while the outdegree is the number of edges e;; originating from that node.

Cycles are special cases of paths that start and end at the same node. A loop
is a single edge e;; that starts and ends at the same node. Many genes are self-
regulating in a manner that corresponds to this construct, but since this effect is
impossible to detect using the experiments and methods presented in this paper,
we will assume that our graphs are free of them. The same goes for multiple
parallel edges that share the same start and end nodes: E = {...,e;;,€ij,...}

In a complete graph or subgraph, all pairs of nodes n;,n;; ¢ # j are con-
nected by edges e;; and ej;.

Strong Components are subgraphs where every node is in the accessibility
list of all other nodes. It follows that for every element n; there exists a directed

path to all elements n; € N. Cycles are clearly a subset of strong components.

According to Watts [44], a shortcut is a single edge e;; between two nodes n;
and n; that are already connected by at least one path of length larger than one.

10

Adjacency: Accessihility:

A:B A:B,C,D,E,F, G
B:C,D B:C,D,E F G
C: C:
B D:E D:EF G
E:G E EFG
F E G EFG
G E F E F G
Matrix:
A 0100000
B 0011000
C 0000000
D 0000100
E 0000001
F 0000100
G 0000010

Figure 1.4: Different representations of the same graph.

All of the elements described so far describe the topology of a network. In
order to simulate biological networks, we need to impose additional rules; in
this paper, they will generally be referred to as functions.

The state of a network at a time ¢ is a set of values V- = {v1,¢,v2.4, - - -, Uk—1,t, Vk,t }
where every value v; ; is associated with exactly one node n; and vice versa. In
our model, these values correspond to the expression values of a biological net-
work. When simulating the behavior of a node over time, we need to be able to
recalculate its value from the state of the rest of the network. This is done by
assigning a function

Vit+1 = fi('Ul,hUQ,t; ey Vi1, Vi 1ty - o+ 5 Uk—10t, 'Uk,t)

to each node. When a graph topology G = {N, E} is given, the function
belonging to a node n; is only dependent on the values of the nodes that are
connected to n; through incoming edges e;;; j # i.

A probabilistic boolean network assigns a set of multiple functions to each
node, one of which is randomly selected every time the state of that node is

updated.

According to [36], an input variable is considered fictitious if it has no effect
on the output of the function. Therefore, if in a boolean function

11

flxr.o o1, L xpyr - xn) = far o0 21, 0, g1 - .- Tp)

the variable zj, is considered to be fictitious. The functions assigned to our
nodes do not contain any fictitious variables as these would have been equivalent
to a non existent edge, making an accurate reconstruction impossible.

12

13

Chapter 2

Reconstruction methods

2.1 Overview

In this chapter we will examine two algorithms, proposed by Wagner [41] and
Wille [45] for use in reconstructing gene networks. Our goal is to investigate how
they work and evaluate their performance using data gained from simulations.
A series of tests will be used to assess the characteristics of each algorithm.

To perform these tests, we defined a gene network model and designed a
framework that generates random simulated networks. The data from these
networks was then used to perform the reconstructions.

The network is represented by a directed graph with no loops e; ; that start
and end at the same node. While such interactions are believed to exist in gene
networks, they have no measurable effect on the types of data we derive during
simulation. In addition, there may be only one instance of any given edge e; ;
(i.e. no edge lists of the form F = {...¢; ,€; ,...}).

We decided to use a binary data model for the process. Each node is as&gned
a boolean value to represent its state at any given point of time. If the gene’s
normalized expression value is higher than a certain threshold, we consider it
to be activated (1), otherwise it is inactive (0). Each node also has a fixed state
function that produce a single boolean value from the set of boolean states read
from activating or repressing nodes.

Updates are performed in discrete time steps, either synchronously (where
the states of all nodes change simultaneously) or asynchronously.

As suggested in [35], this model is simple but accurate enough to simulate
basic network behavior. It is also the type of model used by the Wagner algo-
rithm. We modified the algorithm by Wille, which was originally designed to
work with continuous data, to function with our binary model.

14

2.2 Digraph generation

The directed graphs used in these tests were generated using the methods sug-
gested in [25], similar to those used by Wagner in [40] and [41]. Each node is
given randomly generated in- and outdegree values, the distributions of which
are determined by the constants x and 7. The degrees of the nodes have a
power-law distribution, with the probability of a node having a degree of k
being

pe =k~ Te k"

To calculate the in- or outdegree of a node, we generate a value with the
distribution e /%

k=14 floor(—k*In(l —1))

where r is a randomly generated variable in [0, 1). This value is then accepted
with a probability of p,.. = k~7; if it is rejected, new values are generated until
one is accepted.

Once in- and outdegree values have been generated for all nodes, the totals
of both these values may have to be adjusted to be equal. In the next step,
each node is considered to have a number of in- and outgoing stubs equal to its
in- and outdegree. These stubs are connected with randomly selected partners,
which completes generation of the digraph.

The mean and variation of in- and outdegrees can be adjusted by modifying
kx and 7, but when using the method as presented above, the degree values
cannot be smaller than 1. This results in graphs that always have cycles, which
may not necessarily be correct from a biological perspective. Therefore, we
performed most experiments with a minimal degree value of 0.

2.3 Wagner reconstruction algorithm

The first reconstruction method that we will examine was proposed by Andreas
Wagner in [40] and [42]. As input, it requires the complete accessibility list of a
graph, so for each node it must be given a list of all nodes that can be reached
by following a path along the outgoing edges. The algorithm produces a graph
that conforms to the given accessibility list while having the smallest number
of edges; such a graph with a minimal edge count is also called parsimonious.

As shown in [41], for any given accessibility list ACC there exists exactly
one most parsimonious graph that conforms to ACC. Wagner’s algorithm is
capable of finding this graph, provided that the accessibility list is error free
and has been derived from an acyclic digraph.

A simple explanation of the algorithm’s reconstruction procedure follows.
It is initially assumed that the adjacency list of the network is identical to its
accessibility list. As shown in Figure 2.1, this will introduce a large number of
false edges, since indirect relations are complemented with all possible direct

15

C i=COn T

[y o S

Figure 2.1: A sample digraph and the graph directly derived from its accessi-
bility list.

connections. The algorithm then traverses the network, seeking the longest
possible paths that can be used to fulfill the connectivity requirements of the
accessibility list, and pruning all the connections that do not belong to these
paths. If the graph is free of cycles, the only connections that need to be
removed are shortcuts, edges between two nodes which are connected by at
least one longer path of two or more edges (Figure 2.2). The result is the most
parsimonious graph that fulfills the requirements of the accessibility list, and
a very good approximation of the real network. Proofs and a more detailed
explanation of the procedure can be found in [41].

If we assume that the given accessibility lists are complete and correct, there
are only two situations where Wagner’s algorithm will yield an incorrect result.
The first is the aforementioned shortcut. In this case, the single edge path will
always be removed when Wagner’s algorithm rebuilds the most parsimonious
graph. The reason for this behavior is simple: Before the algorithm begins
pruning the initial graph that is derived from the accessibility list, every path of
length larger than one is supplemented with a corresponding shortcut between
the initial and terminal nodes. The basic assumption underlying Wagner’s al-
gorithm is that very few of these redundant connections actually exist. On the
other hand, if such a shortcut does show up, it is impossible to distinguish from
an indirect path just by looking at an accessibility list.

The second case is far more important in terms of possible errors: The basic
version of Wagner’s algorithm cannot determine whether any of the possible
edges inside a strong component exist or not. To circumvent this problem, each
subnetwork that is a strong component is represented by a single node. The
only things known about these subnetworks is which nodes they contain, and
that they are all connected to each other by at least one cycle; in effect, we must
assume that they are completely connected subgraphs. Since a single cycle is
enough to create such a situation, the reduction made in these cases is often a
source of many false positive errors. The minimal number of edges for a cycle
of n nodes is n — 1, but a strong component with the same nodes will have a
total of n? edges.

16

D> A
E C E>D B A>BCDE
I:> B>CD
c>D
D D>
E C E>D
A
B A>BCDE I:> D
B>CD
c>D
D> A
E C E> B A>BCDE
B>CD
E> C>D
D D>
E C E>

Figure 2.2: Shortcuts added to digraphs: Note that completing the two edge
shortcut AED has an effect on the accessibility list, while the single edge shortcut
AD does not.

In fact, it is impossible to reconstruct a strong component of three or more
elements using only the information from the accessibility list or the data gained
from single mutant experiments. The accessibility list is clearly of little use,
since a strong component by definition consists of a group of genes that are all
contained in each other’s respective accessibility lists.

The ineffectuality of single mutant experiments can be explained as follows:
Since a strong component must contain at least one cycle, every change that
propagates through the subgraph can reach every one of the other nodes. This
in turn means that every interaction that is observed (e.g. n; has an activating
effect on n;) could have propagated directly or indirectly. Contrast this with a
case of a non looped path, where mutations of nodes closer to the end do not
affect the expression values of nodes near the beginning (Figure 2.3).

The only way to gather definite information that can yield additional in-
sight in the topology of strong components is by performing double knockout
or overexpression experiments. By altering the expression values of two genes
in the same experiment, it is possible to isolate the relation between two par-
ticular genes, and thus find out whether they interact with each other directly
(see Figure 2.4. However, even this method is limited to solving single cycles.
If a strong component contains more than one cycle, one would have to mutate
three or more genes at once to gain any useful information. However, the sit-
uation is not quite as hopeless as it may appear to be: All these observations
only apply to a binary data model and reconstruction from accessibility lists.

17

Kngckout

f:;/@E>
2 ® X

Figure 2.3: Effect of a strong component on expression data: In the first case
the strong component makes it impossible to tell how the external change prop-
agated. In the second case one can infer the order of influence.

Continuous expression values or other forms of data can be used to solve the
strong component problem more efficiently.

A further thing to note about Wagner’s algorithm is that it requires a large
amount of data for an accurate reconstruction. In order to determine the full
accessibility list of a set of genes, one has to perform several knockout and
overexpression experiments for every one of them. Since the genomes of most
known organisms contain thousands of genes, this is generally not feasible. The
performance of the algorithm using limited or faulty data has been examined
and found to be quite good in [42], but the ratio of false or missing data in those
tests was less than 10%.

Two extensions to the algorithm have been proposed in [40]. The first takes
into account the sign of each edge - whether it activates or represses its target
- and uses this information to find shortcuts that have the opposite effect of a
longer path and thus cannot safely be removed. Shortcuts that have the same
sign as a parallel path are considered redundant and are deleted, just as before.
The additional information required - whether a given interaction is activating
or repressing - is trivial to derive from experimental data when determining the
accessibility lists.

The second extension is used to get more detailed knowledge about the
topology of strong components, using double mutant data as described above
and shown in Figure 2.4. A large drawback of this method is that double mutant
experiments have a higher cost associated with them, both in labor time and in
increased risk of damaging the organism. In addition, the number of experiments
required to solve a strong component increases with the square of the number of
genes in that strong component, since every possible combination of two genes
has to be tested out. If the strong component contains more than one cycle, the
number of experiments increases even further.

In the reconstructions presented in this chapter, we have used the original

18

Knockout

Knockout
B Cc
Knockout
c C> .

Figure 2.4: Method for reconstruction of a strong component. The single loop
is broken by removing gene A, which allows us to observe the effects of altering
gene B.

version of the Wagner algorithm, without the added extensions.

2.4 Wille reconstruction algorithm

The second algorithm used in this comparison was proposed by Wille in [45].
A first fundamental difference with the Wagner algorithm is that it operates on
sets of expression values gained from microarray experiments. While a mini-
mal number of expression value sets is required to get reasonable results, the
algorithm was designed to operate on whatever amount of data is available.

The reconstruction method is based on graphical gaussian models and uses
partial correlation coefficients to calculate the likelihood of an edge existing
between two nodes, with the null hypothesis being that the nodes are not directly
connected. Simply put, when considering any pair of nodes n; and nj, the
algorithm determines whether the values of these nodes are strongly correlated
in the given experimental data. It also considers all other nodes ny; k # i,j to
find out if a correlation can be explained with an indirect path running through
ng. If two nodes have highly correlated values that are probably not the result
of an indirect connection (i.e. the null hypothesis is probably false), an edge is
drawn between them.

Thus, the algorithm is capable of distinguishing between direct and indirect
connections. It is theoretically capable of resolving strong components and
nodes with multiple incoming or outgoing edges. However, the accuracy in all
these cases depends on the type and amount of data that is supplied. In general,
we have observed that nodes with multiple incoming or outgoing edges can pose
a problem.

The sequence of edges in a path can be correctly identified since changes
propagating along them will affect the levels of association between each pair

19

=

Figure 2.5: An anomaly propagating through a path or a strong component will
tend to increase the correlation of directly connected nodes.

of genes; while all nodes in the chain will have highly correlated values, the
correlations between those that are directly connected will be slightly higher
than the correlations between indirectly linked nodes (Figure 2.5). A node
with multiple inputs or outputs is a more difficult case; multiple inputs can
result in complex functions where the effective correlation between two directly
connected genes is significantly lower than usual. In a two input AND function,
for example, the correlation between the separate inputs and the output is on
average only 75%. Compare this with a single input NOT function, where in
the absence of errors, the input and output values have an absolute correlation
of 100%.

2.4.1 Adaptation to binary data

The algorithm was originally designed to operate using real, continuous data.
Some modifications were necessary to allow the use of the binary data generated
by our network model. In particular, the partial correlation coefficients cannot
be calculated in the same manner as with continuous values since the assumption
of the test data having a multivariate normal distribution no longer applies.

When using continuous expression values, the partial correlation coefficients
Tijix can easily be determined from the simple correlation coefficients r;; by
using the formula

Toy — Toz * Tyz

T e

Our implementation uses Fisher’s exact test to calculate the partial correla-
tion coefficients from binary data. This test relies on a contingency table that
counts the occurrences of every possible combinations of states that a group of
three nodes can assume. A sample contingency table is shown in Table 2.1; since
each of the three node can assume two states, there are 23 possible configura-
tions. The value of 15 in the top left of the first table indicates that the three
nodes assumed the states 000 in 15 of the observed experiments. The total sum
of 47 across all elements of both tables is the number of all observations that
have been made.

The basic version of Fisher’s exact test only produces useful results with
a large number of observations. As a rule of thumb, each state should be

20

151
3]2

2| 14
119

Table 2.1: A sample contingency table. High values across diagonals (such as
the 15 and 14 in this case) suggest a strong correlation between two nodes.

represented at least five times. This is not the case in the table shown in Figure
2.1, and was generally not the case in our simulated data sets. The networks we
generated often had states that never occurred due to a particular constellation
of functions and edges. In addition, the small number of experiments used for
some of the simulations made it very likely that some of the elements of the
contingency table would be too small.

To solve this problem, we used an ezxact conditional test to calculate the
likelihood of the null hypothesis in each case. The result is similar to that of a
Fisher’s exact test, but the procedure, while more complicated, is not affected
by small sample sizes.

A detailed treatment of these concepts may be found in [12].

2.4.2 Binary implementation of Wille algorithm

The final procedure we used to apply Wille’s reconstruction method to binary
expression data is as follows: For every combination of genes n;,n;; i # j, we
examine each possible third gene nj and determine the maximum p - value

Dij,max = max(pij\ld k 7& Za])

To calculate these values, we first derive the contingency tables from the
expression data sets. We then determine the horizontal and vertical marginal
values - the number of cases in which a node has a certain state. To continue
the example shown in Table 2.1, the first vertical marginal value is 15+ 1 = 16,
meaning that node ¢ was in the state 1 in 16 of the observed expression value
sets. We then find all contingency tables that conform to these horizontal and
vertical margins, and determine the probability of each of these tables, which is
given by:

R C
L [Tiz: nise! Hj:l N !

R 1 C
o1 k! T2 Hj:l miji!

Pr(M|Hy) =

where R is the number of rows, C' the number of columns and L the number
of lines in the contingency table. Expressions of the form n;,; are contingency
tables that have been summed up along the axis that has been marked by a
“+7 sign.

ps; is then the sum of the probabilities of all permutated tables whose prob-
ability is smaller than that of the original table. p;;mas is simply the largest
pi; when all possible third nodes k£ are considered.

21

The p;j,mae are then compared to a threshold value that is modified accord-
ing to the False Discovery Rate procedure presented in [5]. This method, also
known as the linear step up multiple comparison procedure, is designed to limit
the number of false positive results. For convenience, we will rename the set of
Dij,max - Values to pi ...py,, where m = N! is the number of possible e; ;; i # j.
The level a step up procedure is then performed as follows:

1. Put the set of p; - values in ascending order: p; < p2 < ... < pp.

2. Find the largest p; that is below the sliding threshold ¢; = 2

m

3. If such a p; < t; exists, reject the null hypotheses HY, HY, ... ,Hlo.

It is possible to begin comparing p - values from either end of the list; the
results will not always be the same, but the difference is generally minimal.

If the null hypothesis is rejected for a given p;jmas, an edge e; ; is inserted
in the graph.

2.5 Testing procedure

For our experiments, we generated sets of random digraphs with varying edge
and node counts, using the method described in Section 2.2. Each network was
then used to generate a set of data of the form used by the one of the reconstruc-
tion algorithms - either a set of accessibility lists or a collection of expression
values - to perform a reconstruction using the corresponding algorithm.

The accessibility lists used by the Wagner algorithm can directly be derived
from the connectivity list of the digraph.

For the generation of the expression values, each node had to be assigned
a binary function to determine its output from the values of its n input nodes.
While one could select a random member from the set of all binary functions
with n non-fictitious variables, we do not believe that doing so will lead to an
appreciable increase in the accuracy of the model. Instead, we assumed the
functions to be a combination of AND / OR statements, which also coincides
with biological models where other combinations (like XOR) are rarely, if ever,
found.

After constructing a network topology and imposing functions on it, the
complete network was given a random starting state and asynchronously up-
dated to generate output states for the Wille algorithm. A fixed total number
of updates was given, and for each of these updates a random node was selected
to have its state recalculated. On average, each node was updated three to five
times, independent of the size of the network. According to our observations,
that is sufficient for almost all networks to reach a stable state where perform-
ing further updates does not lead to a significant change in expression values or
reconstruction accuracy.

After performing a set of simulations (the number of which depended on
the experiment being made), we had an equal number of expression value sets
which were then used to rebuild the network with the Wille algorithm.

22

A suggestion that immediately comes to mind would be to simulate time
series data by performing step by step updates starting from a random state.
Our experience shows that this does not work within the confines of the model
that we are using. If one performs asynchronous updates, the separate changes
are often too small and isolated to be observable, while nodes that by chance
have identical states will be falsely correlated since they do not change. On the
other hand, performing synchronous updates will cause many nodes to change
states, but will also take the network into a quasi-stable state after very few
steps; the changes after that point are at best oscillations between two very
similar states. This can lead to extreme situations where all but one or two
of the elements of a contingency table are zero, which severely reduces the
reconstruction accuracy of the Wille algorithm.

It is for these reasons that we generated a random starting state for each
new set of gene expression values. A large number of the final network states
were still identical, but the frequent occurrence of a particular state is useful
information for the Wille algorithm, and some anomalies from the starting state
remain to the end. The reconstructions function well as long as the expression
values contain a minimum amount of random aberrations.

The results of the reconstruction attempts were measured by their sensitivity
and specificity scores, as in [19]. If Niriginas is the number of edges in the
original network, Ny econstructed 18 the edge count of the reconstructed network
and Nyatches the number of edges that are present in both networks, then the
measures are calculated as

L Nmateh
sensitivity = 100 ¥ ——=2
original
and
p Nmatches
speci ficity = 100 ¥ —— 222
Nreconstructed
respectively.

The sensitivity represents the fraction of false negative errors, edges that
exist but do not appear in the reconstructed model. The specificity on the
other hand stands for the number of false positive errors, edges that appear in
the reconstructed model but do not exist in the original network.

In almost every case, we made a set of 100 measurements for each data point.
The box plot displays mark the top and bottom percentile of each distribution
with a horizontal bar, and the 25th and 75th percentile with the edges of a
notched box. The notch marks the median value of each measurement, and
outliers are represented by crosses.

2.6 Wagner reconstruction and measurements

As can be seen in Figure 2.8, the algorithm results generally exhibit a very
high sensitivity but have varying levels of specificity. The high sensitivity is due

23

to the algorithm’s ability to detect all necessary edges, with the exception of
shortcuts as explained above. Since a missed shortcut is the only way a false
negative type error can occur, sensitivity values are generally above 90%. On the
other hand, the low specificity levels are due to the algorithm’s interpretation
of strong components as complete subgraphs, which leads to a large number of
false positives. Randomly generated graphs with lower average in- and outdegree
values had a lower likelihood of containing cycles that cover many nodes, and
thus were easier for the algorithm to reconstruct correctly. The requirement
that each node have at least one incoming and outgoing edge has a particulary
large negative effect on specificity scores, since it forcefully introduces a large
number of cycles.

Clearly, the largest problems facing Wagner’s reconstruction method are the
high input data requirements and the inability to resolve cyclical formations
without additional experiments. The more advanced version of Wagner’s algo-
rithm is able to solve cycles, but requires a very large number of double knockout
experiments to be performed. We will explore these requirements in chapter 3.

The following subsections each explore a set of measurements where the
effects of one specific parameter were examined. Unless noted otherwise, we
used networks with 100 nodes and average in- and outdegrees of 1.

2.6.1 Variable error count

In this set of experiments, shown in Figure 2.6, we inserted a variable number
of errors into the accessibility lists derived from the digraphs. The probability
of errors ranges from 10% to 90%. We only inserted false negative type errors,
since those were observed to be by far more common when deriving accessibility
lists from expression data, as shall be shown in chapter 3.

The sensitivity plot shows a slight difference in slope, with the change occur-
ring around the 40% error probability mark. Beyond this point, the sensitivity
values show an almost linear degradation, with the mean values nearly mirroring
the error probability. This suggests that no significant reconstruction is taking
place anymore; any additional edges that are removed have a fixed likelihood
of introducing a single false negative error, but have no other effect on the re-
constructed network. The low specificity values in the 30% to 90% error region
support this suggestion; the fraction of identified edges that actually exist in
the original graph is roughly constant, reflecting the original ratio between the
edge count of the adjacency list and the accessibility list.

In conclusion, the results suggest that no significant reconstruction with the
Wagner algorithm can be expected if the likelihood of a false negative type error
rises beyond 30%.

2.6.2 Variable node count

For these measurements, the results of which are shown in Figure 2.7, a set
of random graphs with a varying number of nodes was generated. The other

24

T
-
|
|
|
|
1
|
0.4

probability of false negative error per acc entry
probability of false negative error per acc entry

T

1

|
L

+

|
0.1

I

|

|

|

|

|

|
-

|
0.1

o o
o ~ © n < @ o ~ © w < ™
= =

uaosad ul AyAnisuss waasad ur Ayoyads

Figure 2.6: Sensitivity and specificity of Wagner algorithm when reconstructing
graphs with varying probability of error in accessibility data.

25

=

|
1000

T
—

|

|

|

|
.

+

+

+

+

|
1000

4,,
=
T
¥
1
400

nodes in graph (Wagner)
nodes in graph (Wagner)

4',
[—
.

+
|
300

{IH 1 {E fffffff { 8
AR e

[
© o o 9o 9 o o o
QA

o o o o
o (=2} © ~ © n < @ o ~ © w < ™
= =

uaosad ul AyAnisuss waasad ur Ayoyads

Figure 2.7: Sensitivity and specificity of Wagner algorithm when reconstructing
graphs with varying node count.

26

parameters, mostly concerned with controlling the average number of edges per
node, were kept constant throughout.

The sensitivity values are consistently high, and go up slightly with increas-
ing network size. The reason for this probably lies in a lower likelihood for
shortcut type connections. As the network grows larger, there are many more
candidates for a single edge to connect to, so having two paths starting and
ending at the same nodes becomes increasingly rare, which in turn reduces the
false negative rate of the reconstruction.

Specificity generally shows large variations that get slightly smaller with
larger node counts, which is due to the larger numbers reducing the likelihood
of unusual configurations that would have caused strongly deviating values.

The mean specificity values remain relatively stable while decreasing slowly,
perhaps due to the possibility of increasingly large strong components as the
networks grows. However, the general stability of these values suggests that
strong components do not become a significant problem.

We can conclude that network size does not have a large impact on the
accuracy of reconstructions performed with Wagner’s algorithm. At this point,
it should be noted that the algorithm executes very quickly - a network with a
thousand nodes can be processed in a few seconds of CPU time.

2.6.3 Variable edge count

This set of measurements, shown in Figure 2.8, was performed with a fixed
network size and a variable number of average edges per node. The last two
measurements in this series, marked with a “+”, were made with graphs where
each node had a minimum in- and outdegree of one. In all other cases, the
minimum was zero.

The Wagner algorithm clearly performs better on sparse networks, since both
sources of errors, shortcuts and strong components, are less likely to occur. The
drop in specificity values, from an average of over 90% to around 10%, is due to
the false positive errors strong components introduce; as the number of edges
increases, the probability of having a strong component rises, and as mentioned
earlier, the number of errors in a strong component with n elements can be as
large as n? —n + 1.

This effect is particularly clear in the last two data points, where the mini-
mum of one incoming and outgoing edge per node forces the generation of strong
components that dramatically lower specificity values.

Sensitivity is generally high, but falls off slightly as edge density increases.
This effect can be attributed to an increase of shortcut type edges. The slight
increase in sensitivity as the average edge count increases to 2.8 and 3.4 and
the two very high values at the end can be attributed to the strong component
phenomenon: When a large part of the graph consists of strong components,
each edge contained within them is automatically assumed to be detected cor-
rectly. As one can see from the specificity values, these numbers are somewhat
deceptive; the results in these cases may not be very useful.

27

T
|
|
1
|
21
average edges per node (Wagner)
T
+
¥
—t
|
2.1
average edges per node (Wagner)

:
+
1
0.4
==
L
¥
1
0.4

o o
o ~ © n < @ o ~ © w < ™
= =

uaosad ul AyAnisuss waasad ur Ayoyads

Figure 2.8: Sensitivity and specificity of Wagner algorithm when reconstructing
graphs with varying average edge count per node.

28

The Wagner algorithm clearly performs best when confronted with sparse
graphs, where the edge to node ratio is low. The presence of large strong
components, which can be caused by a single loop that covers many nodes, is
particularly detrimental to the accuracy of the results.

2.7 Wille reconstruction and measurements

Figures 2.10 and 2.9 are representative for reconstructions performed with Wille’s
method: The specificity is uniformly high, meaning that almost all results gained
are correct.

Sensitivity results show more variation, which means that in many cases, an
edge from the original graph will not appear in the reconstructed network. The
reasons for this are twofold: Firstly, the algorithm is very strict in measuring
correlations between the expression values of two genes. Thus, it will prefer
false negative type errors to false positives by design.

The second reason that we have observed in experiments using small sim-
ulated networks is that nodes with several incoming or outgoing edges are a
source of errors. As explained earlier, a node with several incoming edges will
often have a much lower correlation with its input values than a single input
node.

As before, we have performed a set of experiments with each one focusing
on a particular parameter that is varied to observe its effect. Unless noted
otherwise, the network had a size of ten nodes, each node had an average in-
and outdegree of one, and the number of expression data sets generated was
100, with an average of three updates performed per node during simulation.

2.7.1 Variable node count

The results of these experiments, where Wille’s algorithm was used to recon-
struct networks of varying size, are shown in Figure 2.9. The number of edges
per node stays constant throughout.

It would have been interesting to make measurements with much higher node
counts; however, our version of the algorithm took a significant amount of time
to execute, which limited the size of the networks we were able to work with.
This is in no small part due to the need to calculate a large number of factorials
when performing Fisher’s exact test; the original version using continuous values
may be significantly faster.

In the limited range we tested, we can observe a slight decrease in sensitiv-
ity for all but the smallest networks. The values do not change significantly
after that, suggesting that the algorithm may not be particularly susceptible to
changes in node count. Specificity stays at 100% throughout, with no visible
changes.

29

I I I I I I I I I I I I I I I I I
= + - - —«{ + -8 e —43
o o
= H‘—— ——{ -3 (- -3
o o
= + + - - ——«{ —4 - —19
@ @
B B
€ €
= =
o o
S S
@ Q
° k<3
o =]
< c
B ‘7777 777‘{ Bk . 18
= r———— ———{ -1 — A+ -1
-4 | |- ==== «{ —+9 o+ o+ -39
| | | | | | | | | | | | | | | | | |
o o o o o (=] o o o o o o o o o (=] o o o o o o
g © @ ~ © ®» ¥ & & o g & ® R & B ¥ & & =
uaosad ul AyAnisuss waasad ur Ayoyads

Figure 2.9: Sensitivity and specificity of Wille algorithm when reconstructing
graphs with varying node count.

30

|
|
|
1
|
100

uaosad ul AyAnisuss

Figure 2.10: Sensitivity and specificity of Wille algorithm when reconstructing

10—
0

data set count (Wille)

I I I I I I I I
o
(i + -8
N
(=3
— -HifH-- -5
=
o
=+ -3
B
L o
(2]
L o
~N
| | | | | | |
o o o o (=] o o o o o o
E‘ (= [c5) ~ © w < o N —

waasad ur Ayoyads

networks using a varying number of expression data sets.

31

data set count (Wille)

2.7.2 Variable number of expression data sets

Figure 2.10 shows the results of experiments performed with a varying number
of generated expression data sets. Network size and characteristics were con-
stant. In other words, we were attempting to find out how Wille’s reconstruction
algorithm responds to varying amounts of input data.

As with the network size, an increase in the number of data sets leads to
much longer execution times. However, in this case a limit such as we used is
somewhat justifiable, since the number of expression data measurements that
can currently be performed is also strongly limited.

A increased number of experiments clearly improves the accuracy of the
results. The requirement to perform a hundred or more experiments may seem
restrictive, but this number is mitigated since our binary model introduces a
considerable lack of information. We believe that similar accuracy levels could
be attained with fewer experiments when using continuous data sets.

2.7.3 Variable number of simulated updates per node

In Figure 2.11, we have recorded the results of reconstructions performed on data
sets where a variable average number of updates was performed on each node
during simulation. The updates were performed in a random, asynchronous
manner, but as mentioned earlier, networks showed a tendency to gravitate
toward quasi-stable states quickly. This is mirrored in the sensitivity values,
where no clear trends are visible beyond three updates per node.

It is interesting to note that all attempts to perform reconstruction on data
that was generated through synchronous updates failed rather badly, with sensi-
tivity values close to zero. Contrast that with the data at hand, where perform-
ing up to twenty updates per node has no detrimental impact on the accuracy
of the results. We believe that the reasons for this behavior are twofold: First,
the network state is far less likely to get stuck in a stable state that resembles
a local minimum, where synchronous updates only cause a transition from A
to B and back again. Secondly, the random nature of the asynchronous up-
dates is clearly quite useful in this case, since it allows small inconsistencies to
propagate through the network, which is the indicator the Wille algorithm uses
to determine the order of a series of connected edges in a path. This type of
random information is of course easier to obtain from sets of continuous valued
expression data.

2.8 Wagner - Wille juxtaposition

Figure 2.12 shows the results of some networks that were reconstructed using
first the Wagner and then Wille algorithm, with varying edge counts per node.

The results obtained with Wille’s reconstruction clearly have very high speci-
ficity values, even when the edge density rises to levels where many strong
components must be expected. Sensitivity, on the other hand, is rather low.
Wagner’s reconstruction has very good sensitivity values, but specificity quickly

32

T

|

|

|

Il

|

|

|

|

|

|

i

\
20

T
+
+
+

\
20

—————————————— 9 = —t9
e e T | q =t + —+9
———————————— «{ —H9 =+ -9

average updates per node (Wille)
average updates per node (Wille)

-4 | === - «{ — < 4+t + — <

-4 | |- «{—m = -+ —

——————————————— ~ - + + —~

— i i -~ — + o+ — e
| | | | | | | | | | | | | | | | | |

o o o o o (=] o o o o o o o o o (=] o o o o o o

g & ® = & B ¥ & & g & ® R & B ¥ & & =

uaosad ul AyAnisuss waasad ur Ayoyads

Figure 2.11: Sensitivity and specificity of Wille algorithm when reconstructing
graphs with varying number of simulated updates per node.

33

I
|
|
.
|
Wagner 3.4
T
+
+
+
T
+
e+
|
|
T
.
|
Wagner 3.4

T
|
|
|
|
.
|
Wagner 2.6
[
+
¥
+
|
|
|
|
|
.
|
Wagner 2.6

I
|
|
1
+
|
Wagner 1.6
I
|
|
|
|
|
|
1
|
Wagner 1.6

I
|
|
|
|
|
|
|
1
|
Wagner 1.0

graph type index

T
|
1
|
Wagner 1.0

graph type index

T T T
+
T
L .
! +
| -1
g ‘
— g‘
| |
| | —+
Wille 1.6 Wille 2.6 Wille 3.4
T T T
- I I
| |
+ L L
n
+
+
| | |
Wille 1.6 Wille 2.6 Wille 3.4

o o
P -
= + — — -——-—4- o =+t + o+ —o
3 2
| | | | | | | | | | | | | | | | | |
o o o o o (=] o o o o o o o o o (=] o o o o o o
g & ® = & B ¥ & & g & ® R & B ¥ & & =
uaosad ul AyAnisuss waasad ur Ayoyads

Figure 2.12: Sensitivity and specificity of Wagner and Wille algorithms when
reconstructing graphs with varying edge counts.

34

degrades as edge numbers (and thus, the likelihood of strong components) in-
crease.

There are several reasons why no direct comparison should be made between
the algorithms examined in this chapter. Wagner’s reconstruction method relies
on the full and correct accessibility list of the network being available although
it does have some tolerance to errors in the data. Wille’s algorithm on the
other hand operates on raw gene expression data gained from experiments,
which in most cases contain far too little information to reconstruct a complete
accessibility list. In addition, our experiments assume that this data has been
binarized, which causes a further loss of information. Finally, Wille’s algorithm
reconstructs a network model with undirected edges, which makes it difficult to
compare the results to those of Wagner, which have directed edges.

However, the experiment does offer some perspective on the results shown in
this chapter; the two algorithms show large differences in many areas. Wagner’s
works very well on networks of almost arbitrary size, but suffers with high edge
counts and has a tendency to include false positive results. Wille’s reconstruc-
tion method operates well on highly connected networks and can operate on
raw expression date, but requires large amounts of CPU time to process large
networks and will often ignore some edges completely if they are not strongly
represented in the given data.

35

Chapter 3

Data requirements

3.1 Overview

In this chapter, we will consider the following questions: How many gene ex-
pression experiments must one perform to get a reasonably good reconstruction
of a gene network? And if we are limited to a given number of experiments,
what is the best reconstruction one can expect to make?

To answer these questions, we will make use of the model and framework
from the previous chapter. A similar boolean model was used by Akutsu and
Kuhara, who have determined the upper and lower bounds on the number of
experiments required for perfect reconstruction of gene regulatory networks in
[1]. Their results are summarized in Table 3.1.

The results are rather discouraging since the genes in a full network number
in the thousands, while the number of experimental data sets available are
typically counted in tens or hundreds. However, these are strictly theoretical
worst case results; the goal of this chapter is to examine some scenarios that
fall between the extremes.

| Constraint | Lower bound | Upper bound |
No constraint Q(2C-D/2) [O(n2" 1)
Indegree < D Q(nP) O(n?P)
Indegree < D & all genes are
AND-nodes (OR-nodes) Q(nP) O(nP+!
Indegree < D & Acyclic Q(nP) O(nP)
Indegree < 2 & all genes are
AND-nodes (OR-nodes) &
no inactivating edges Q(n?) O(n?)

Table 3.1: Worst case number of experiments required for perfect reconstruction
of networks with n genes [1]

36

3.2 Complexity

When calculating the minimal number of experiments needed for an accurate
reconstruction, there are two basic factors that come into play: The complexity
of the network, and the usefulness of the experiments that are made. Akutsu
and Kuhara consider the cases of easy and difficult to construct networks, but
assume that the experiments will always be of a worst case type. That is, of
all possible experiments that can be made, the next one will always be the one
that adds the least possible information to the recreation of the network.

An alternate point of view is that one can have knowledge of either the pres-
ence or the absence of a given interaction. In the beginning, nothing is known
of any of the edges. As one performs experiments and deduces interactions from
them, knowledge of these direct interactions is added to the model. However,
while the presence of an edge can often be inferred from the results of a sin-
gle experiment, knowledge of the absence of an edge generally requires a much
larger number of tests.

For example, a single mutant experiment can yield very strong evidence for
the existence of a particular edge e; ; if a change in node n; evokes a change
in n; while the states of all other nodes remain the same. But to disprove the
existence of said edge in our binary model, one would have to observe the results
of every possible combination of input values, where every node except for the
end point of the edge e; ; must be considered to be an input. In the worst case,
the node n; must be assumed to have an input function of the form

Vg1 = fi (V16,028 Vjm 1,6, Vj 1ty - -+ UN—1,8, UN2)

where its expression value is influenced by all other nodes in the network.
To conclusively prove that the parameter v;; has no influence on the output
value vj ¢, all 2N =1 expression value combinations of an N node network must
be tested individually. This corresponds to the “worst possible experiment”
problem explained above.

The problem can be mitigated to a certain degree if one uses combinatorial
design testing (see [20] and [32]) to limit the number of experiments that need
to be made. If one assumes that the indegree of any given node cannot exceed
a given value D, one can construct a series of tests that contain all possible
combinations of states for every possible set of D nodes from the network.
This results in a much smaller set of experiments that need to be performed.
The main disadvantage is that this method cannot detect functions with more
than D variables; however, it is suggested in [43] and [16] that the number of
connections per gene follows a power-law distribution, so this is probably the
case for the majority of nodes in real gene networks.

The sparsity of real world networks is also beneficial in a more direct way
since we can expect good results from focusing on the presence of edges while
ignoring the proof of absence aspect.

Clearly, what has been said in the last few paragraphs also applies to the
reconstruction of the functions of individual genes. It is for this reason that

37

we have not discussed the reverse engineering of activation functions. A binary
input function is not fully defined unless all possible combinations of input
values have been tested out. If we are given a set of binary expression values,
the functions will almost always be over- or underdefined. Thus, while it is
possible to find a function that is the closest possible fit to the given data, one
cannot expect to perform any extrapolation.

Most of the problems just described are artifacts of the binary data model
that we are using and are mitigated when one performs reconstructions using
continuous data. Since a continuous expression value contains much more in-
formation than a binary one, it should be possible to achieve similar levels of
accuracy with a lower experiment count. For example, it is probably easier to
determine the nonexistence of a certain edge with continuous expression data,
since it is possible to observe state changes that would be too small to cause a
transition from one binary state to another.

The number of required experiments can be lowered further by making use
of previously gained knowledge of the network during the reconstruction, and
by fine tuning the reconstruction method with heuristics that take advantage of
the idiosyncrasies of gene networks (e.g. transcription factors in [29]).

Ideally, an algorithm would be able to suggest an experiment that con-
tributes a large amount of information to a network reconstruction (see [46]).
Our observations suggest that the usefulness of a single mutant or overexpres-
sion experiment depends heavily on the state of the network that it is performed
on. The same experiment can yield more or less information depending on the
initial states of the genes that are being observed (Figure 3.1). This means that
a suggestion for a good experiment must indicate both the gene to perturb, and
the initial state of the network.

3.3 Testing procedure

The approach made by Akutsu and Kuhara is primarily concerned with theo-
retical limits. Our goal is to explore values between the extremes, in the hope
that the results will provide a useful yardstick for researchers who are designing
reconstruction algorithms that work with limited amounts of data.

The network model we use here is identical to the one from the previous
chapter: A digraph with no loops or multiple edges, with a binary function
assigned to each node with incoming edges and a single binary variable to rep-
resent the state of each node. Network simulation was performed with random
asynchronous updates.

The goal was to find the average reconstruction accuracy when one has to
work with a limited number of expression data sets. The first step, then, was to
generate this limited number of data sets. Each of the data sets was assumed
to be a single mutant or overexpression experiment, i.e. a network where one of
the nodes is locked into a state of 0 or 1.

A simulated network without alterations will tend to gravitate toward one of
very few stable states, similar to local minima. Simulating external influences

38

A D I$ A

C C
Overexpression
B B
A D I$ A
C C
Overexpression

Figure 3.1: Top: A favorable initial state, where an overexpression experiment
reveals many interactions. Bottom: The same network, with an unfavorable
starting state that yields no information.

with random changes to the states of individual nodes does not prevent this from
happening. Thus, in the confines of our model, overexpression and knockout
experiments are the best way to generate data containing useful information.

One can alter two or more genes in a single experiment to gain additional
information about a network, but the procedure is expensive and the pool of
possible gene combinations is often prohibitively large. Since we wanted to put
a strict limit on the number of experiments that were performed and did not
even come close to exhausting the number of possible single mutant cases, we
decided to work without multiple mutant data.

Each simulated single mutant or overexpression experiment was performed
starting from a stable initial state. The network was then updated, with one
node kept fixed in its altered state. This procedure is an approximation of how
experiments are performed on real networks, and should be sufficiently accurate
as long as the starting states correspond to the stable states of the real network.

The final state was then compared to the starting point; any nodes whose
expression values had changed were put in the accessibility list of the mutated
or overexpressed gene (Figure 3.2). By combining the information from several
such experiments, a partial accessibility list representation of the graph can be
constructed.

Why an accessibility list and not a finished digraph? The reason for this
was mentioned in the previous chapter: It is impossible to reliably determine
the inner structure of a strong component using only data from single mutant

39

c Cc

Figure 3.2: Reconstruction of accessibility list by performing an overexpression
experiment on gene A. Since the state of C is changed, the edge e4 ¢ can be
inferred. There is no evidence of ec p.

or overexpression experiments. In many cases a subset of the interactions inside
a strong component can be detected, but there is no guarantee that all of them
can identified correctly.

However, in the absence of strong components, a complete accessibility list
yields enough information for a nearly perfect reconstruction of the original
digraph using the Wagner algorithm. The largest source of errors for the Wagner
algorithm - the strong component - is a moot point in this case. Furthermore, we
have seen that the sensitivity of reconstructions performed with the the Wagner
algorithm deteriorates almost proportionally with the ratio of false negative type
errors in the accessibility lists. We therefore suggest that, when using only single
mutant or overexpression data, the accuracy with which the accessibility lists
can be reconstructed is a good approximation of the best possible reconstruction
of the original digraph.

3.4 Results

Graphs 3.3 and 3.4 show sensitivity and specificity ratios of accessibility list
reconstructions using single mutant or overexpression data. Each single mea-
surement was performed as described in Section 3.3; one data point in the graph
represents the mean value of 100 independent measurements.

In both plots, the specificity values quickly approach 100% and remain steady
after that. False positives are clearly only a problem with very small experiment
counts. It is for this reason that we focused on false negative type errors when
examining the error tolerance of the Wagner reconstruction algorithm in the
previous chapter.

3.4.1 Variable node count

Figure 3.3 shows measurements using graphs with varying node counts and an
average of two edges per node. As the size of the graph increases, sensitivity

40

sjuawuadxa Jo Jequinu
0s 14 or ge og 14

(4

ST

0T

[L I I I I
0S

S¢—o—
0 ——
ST ——
0T —+—
sapou §

0s Sy or s€ og se

o—o—6—o—6—6-0-0090°

*
AR

0T

(4

og

ov

0s

09

0oL

08

06

00T

0T

(74

oe

o

0s

09

oL

08

06

00T

usdsad ui Ayoyioads

uaosad ul AyAnisuss

Figure 3.3: Sensitivity and specificity of accessibility list reconstruction, variable

experiment count.

41

values drop dramatically; This is a consequence of the increased number of edges
that comes with the larger network. The main conclusion that can be made is
that the single mutant or overexpression experiments we performed only serve
to reveal a relatively small, fixed number of interactions that does not grow with
the network. For big networks, a much larger amount of data must be collected
for an accurate reconstruction.

The plot of the smallest networks yield some additional information. After a
certain point, adding more experimental information to the pool does not lead
to a noticeable increase in sensitivity. Beyond this point, the probability that a
new experiment will add relevant information is very low.

Sensitivity values top out around 60% in the best case. The remaining 40% of
the edges are difficult, but not necessarily impossible to detect. Most of them are
in strong components; since these subgraphs consist of nodes that are accessible
from all other nodes in the subgraph, they introduce a large number of indirect
interactions that cannot always be found with single mutant or overexpression
experiments.

Another cause for false negatives is that some network areas may gravitate
toward stable states that make it particularly unlikely that a given interaction
will be found (see Figure 3.1). If none of the stable states of the network make
it possible to detect a particular edge, the only way to find it with our single
experiments is to force the network into a different, possibly unstable starting
state, perhaps by introducing external influences.

3.4.2 Variable edge density

Figure 3.4 contains the results of measurements made with networks containing
ten nodes and a variable number of average edges per node. The sensitivity
values show little variation with differing edge densities. It appears that the
number of edges detected with each experiment is roughly proportional to the
overall edge density.

It is hard to tell how the increased number of strong components in the
denser graphs affects the sensitivity values. The sensitivity values are clearly
lower for the denser graphs, but the effect is much weaker than expected. One
explanation for this is that at high edge counts, the possible edges inside a
strong component are more likely to be filled out, which makes them easier to
detect using single mutant or overexpression type experiments.

Interestingly, these incomplete reconstructions of the accessibility lists may
sometimes lead to more accurate final graphs than the complete versions. Direct
interactions have a good chance of being detected by our method, which is
desirable. On the other hand, indirect connections have a good chance of being
ignored, which is actually beneficial in this case since strong components often
introduce a huge number of them, regardless of how many edges actually exist.
A fully connected strong component has the same accessibility list as one that
contains only a single loop. The missing entries of the accessibility list will
reduce the quality of the Wagner reconstruction, but not as much as the false
positives caused by a large strong component.

42

~
S
{3
°
5
(7
=
g
3 A<
]
£
oo
© o™ < W0
J[JV%?O
<
o
[}
o
8

number of experiments
1
25
number of experiments

e
N
lw
£
1o
S
— 0
L | | | | L | | | | | | | | | =
[=] i=3 o o o (=] (=] o o o o o o [=} o (=}
a (= © ~ © 9‘ o © ~ ©o n < o N -
uaosad ul AyAnisuss usdsad ui Ayoyioads

Figure 3.4: Sensitivity and specificity of accessibility list reconstruction of net-
works with varying experiment count.

43

Chapter 4

Conclusion

We have introduced a binary network model and designed a simulation frame-
work that generates random networks and their expression data. Using this
framework, we have examined the properties of two gene network reconstruc-
tion algorithms, one of which was changed to accommodate our data model.

The results suggest that the two algorithms complement each other in their
strong and weak points. They also show that the accuracy of any reconstruction
attempt depends heavily on the features of the network.

Using our model, we went on to approximate the quality of reconstruction
that can be expected when one is working with a given, limited amount of infor-
mation. The sensitivity of these reconstructions is low, especially for networks
with a medium or large numbers of nodes. Although these values can probably
improved by making use of heuristic methods and previously gained knowledge,
there is a clear limit to what can be achieved with a given set of expression
values.

In [19], Kyoda and Morohashi suggest that a model using continuous values
is superior to the more commonly used boolean type. We agree with this sen-
timent, not least because it might yield more accurate information using tests
similar to the ones we performed here. The pure boolean model introduces many
artifacts and degenerate cases that should not be a problem when working with
real expression data.

44

Acknowledgments

I would like to extend thanks to my supervisors, Amela Prelic and Stefan Bleuler,
and Professor Eckart Zitzler for their patience and advice. I would also like to
thank Anja Wille, for a large part of this thesis would not have been possible
without the help she offered.

45

List of Tables

2.1 Sample contingency table 000

3.1 Worst case reconstruction requirements, by Akutsu

46

List of Figures

1.1 Sample microarray e
1.2 Basic gene interactions
1.3 Sample digraph
1.4 Graph representations

2.1 Digraph rebuilt from accessibility list
2.2 Shortcutsin graphs. L oo
2.3 Effects of strong components
2.4 Reconstruction of strong component
2.5 Willespecial cases
2.6 Wagner sensitivity and specificity, error probability
2.7 Wagner sensitivity and specificity, node count
2.8 Wagner sensitivity and specificity, edge count
2.9 Wille sensitivity and specificity, node count
2.10 Wille sensitivity and specificity, number of expression data sets .
2.11 Wille sensitivity and specificity, updates per node
2.12 Comparison of Wagner and Wille reconstruction results

3.1 Favorable and unfavorable initial states for experiments
3.2 Accessibility list reconstruction from experiment
3.3 Accessibility list reconstruction, variable node count
3.4 Accessibility list reconstruction, variable experiment count

47

—= Oy Ot W

Bibliography

[1]

T. Akutsu, S. Kuhara, O. Maruyama, and S. Miyano, Identification of gene
requlatory networks by strategic gene disruptions and gene overerpressions,
Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (1998), 695-702.

Tatsuya Akutsu, Satoru Kuhara, Osamu Maruyama, and Satoru Miyano,
A system for identifying genetic networks from gene expression patterns
produced by gene disruptions and overexpressions, Genome Inform. (1998).

Tatsuya Akutsu, Satoru Miyano, and Satoru Kuhara, Inferring qualitative
relations in genetic networks and metabolic pathways, Bioinformatics 16
(2000), no. 8, 727-734.

Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith
Roberts, and Peter Walter, Molecular biology of the cell, 4 ed., Garland
Science, 2002.

Y. Benjamini and Y. Hochberg, Controlling the false discovery rate: A
practical and powerful approach to multiple testing, J. Roy Stat Soc (1995).

Tianjiao Chu, Clark Glymour, Richard Scheines, and Peter Spirtes, A sta-
tistical problem for inference to requlatory structure from associations of
gene expression measurements with microarrays, Bioinformatics 19 (2003),
no. 9, 1147-1152.

Hidde de Jong, Modeling and simulation of genetic regulatory systems: a
literature review, Journal of computational biology 9 (2002), no. 1, 67-103.

Hidde de Jong, Johannes Geiselmann, Grégory Batt, Céline Hernandez,
and Michel Page, Qualitative simulation of the initiation of sporulation in
bacillus subtilis, Bulletin of mathematical biology 66 (2004), 261-299.

Hidde de Jong, Johannse Geiselmann, Céline Hernandez, and Michel Page,
Genetic network analyzer: qualitative simulation of genetic requlatory net-
works, Bioinformatics 19 (2003), no. 3, 336-344.

Hidde de Jong, Jean-Luc Gouzé, Céline Hernandez, Michel Page, Tewfik
Sari, and Johannes Geiselmann, Qualitative simulation of genetic regulatory

48

[16]

[17]

[18]

[19]

[20]

networks using piecewise-linear models, Bulletin of Mathematical Biology
66 (2004), 301-340.

Reinhard Diestel, Graph theory, 2 ed., Springer Verlag, 2000.

D. Edwards, Introduction to graphical modelling, 2e ed., Springer Verlag,
2000.

Ronaldo F. Hashimoto, Seungchan Kim, Ilya Shmulevich, Wei Zhang,
Micheal L. Bittner, and Edward R. Dougherty, Growing genetic regulatory
networks from seed genes, Bioinformatics 20 (2004), no. 8, 1241-1247.

Dirk Husmeier, Sensitivity and specificity of inferring genetic regulatory
interactions from microarray experiments with dynamic bayesian networks,
Bioinformatics 19 (2003), no. 17, 2271-2282.

Ivan lossifov, Michael Krauthammer, Carol Friedman, Vasileios Hatzivas-
siloglou, Joel S. Bader, Kevin P. White, and Andrey Rzhetsky, Probabilistic
inference of molecular networks from noisy data sources, Bioinformatics 20
(2004), no. 8, 1205-1213.

H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, and A.-L. Barabdsi, The
large-scale organization of metabolic networks, Nature 407 (2000), 651—
654.

S.A. Kauffman, Metabolic stability and epigenesis in randomly constructed
genetic nets, Journal of theoretical Biology (1969).

Shinich Kikuchi, Daisuke Tominaga, Masanori Arita, Katsutoshi Taka-
hashi, and Masaru Tomita, Dynamic modeling of genetic networks using
genetic algorithm and s-system, Bioinformatics 19 (2003), no. 5, 643-650.

Koji M. Kyoda, Mineo Morohashi, Shuichi Onami, and Hiroaki Kitano, A
gene network inference method from continuous-value gene expression data
of wild-type and mutants, Genome Informatics 11 (2000), 196-204.

L.V. Lejay, D.E. Shasha, P.M. Palenchar, A.Y. Kouranov, A.A. Cruik-
shank, M.F. Chou, and G.M. Coruzzi, Adaptive combinatorial design to
explore large experimental spaces: approach and validation, Systems Biol-
ogy (2004).

Linyong Mao and Haluk Resat, Probabilistic representation of gene regula-
tory networks, Bioinformatics 20 (2004), no. 14, 2258-2269.

Luis Mendoza and Elena R. Alvarez-Buylla, Dynamics of the genetic reg-
ulatory network for arabidopsis thaliana flower morphogenesis, Journal of
theoretical Biology 193 (1998), 307-319.

Thomas Mestl, Erik Plahte, and Stig W. Omholt, A mathematical frame-
work for describing and analysing gene regulatory networks, Journal of the-
oretical Biology 176 (1995), 291-300.

49

24]

[25]

[26]

(28]

[29]

[30]

[31]

[35]

Akihiro Nakaya, Susumu Goto, and Minoru Kanehisa, Fztraction of corre-
lated gene clusters by multiple graph comparison, Genome Informatics 12
(2001), 44-53.

M.E.J. Newman, S.H. Strogatz, and D.H. Watts, Random graphs with ar-
bitrary degree distributions and their applications, Physical Review E 64
(2001), no. 2.

Irene M. Ong, Jeremy D. Glasner, and David Page, Modelling regulatory
pathways in e. coli from time series expression profiles, Bioinformatics 18
(2002), no. Suppl. 1, S241-5248.

Dana Pe’er, Aviv Regev, Gal Elidan, and Nir Friedman, Inferring sub-
networks from perturbed expression profiles, Bioinformatics 17 (2001),
no. Suppl. 1, S215-5224.

Bruno-Edouard Perrin, Liva Ralaivola, Aurélien Mazurie, Samuele Bottani,
Jacques Mallet, and Florence d’Alché Buc, Gene networks inference using
dynamic bayesian networks, Bioinformatics 19 (2003), ii138-ii148.

Jiang Qian, Jimmy Lin, Nicholas M. Luscombe, Haiyuan Yu, and Mark
Gerstein, Prediction of regulatory networks: genome-wide identification of
transcription factor targets from gene epression data, Bioinformatics 19
(2003), no. 15, 1917-1926.

Dmitry A. Rodionov, Inna Dubchak, Adam Arkin, Eric Alm, and
Mikhail S. Gelfand, Reconstruction of requlatory and metabolic pathways
in metal-reducing §-proteobacteria, Genome Biology 5 (2004), no. 11.

Ilya Schmulevich, Edward R. Dougherty, Seungchan Kim, and Wei Zhang,
Probabilistic boolean networks: a rule-based uncertainty model for gene reg-
ulatory networks, Bioinformatics 18 (2002), no. 2, 261-274.

Dennis E. Shasha, Andrei Y. Kouranov, Laurence V. Lejay, Micheal F.
Chou, and Gloria M. Coruzzi, Using combinatorial design to study regu-
lation by multiple input signals. a tool for parsimony in the post-genomics
era, Plant Physiology 127 (2001), 1590-1594.

Ando Shin and Hitoshi Iba, Construction of genetic network using evolu-

tionary algorithm and combined fitness function, Genome Informatics 14
(2003), 94-103.

I. Shmulevich, E.R. Dougherty, and W. Zhang, From boolean to probabilistic
boolean networks as models of genetic regulatory networks, Proceedings of
the IEEE 90 (2002), no. 11, 1778-1792.

I. Shmulevich and W. Zhang, Binary analysis and optimization-based nor-
malization of gene expression data, Bioinformatics 18 (2002), no. 4.

50

[36]

37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

I. Shmuulevich, A. Saarinen, O. Yli-Harja, and J. Astola, Computational
and statistical approaches to genomics, Kluwer Academic Publishers, 2002.

Paul Smolen, Douglas A. Baxter, and John H. Byrne, Modeling transcrip-
tional control in gene networks—methods, recent results and future direc-
tions, Bulleting of Mathematical Biology 62 (2000), 247-292.

Zhengchang Su, Phuongan Dam, Xin Chen, Victor Olman, Tao Jiang,
Brian Palenik, and Ying Xu, Computational inference of regulatory path-
ways in microbes: an application to phosphorus assimilation pathways in
synechococcus sp. wh8102, Genome Informatics 14 (2003), 3—13.

Yoshinori Tamada, SunYong Kim, Hideo Bannai, Seiya Imoto, Kousuke
Tashiro, Satoru Kuhara, and Satoru Miyano, FEstimating gene networks
from gene expression data by combining bayesian network model with pro-
moter element detection, Bioinformatics 10 (2003), no. Suppl. 2, ii227—
ii236.

Susannah G. Tringe, Andreas Wagner, and Stephanie W. Ruby, Enriching
for direct regulatory targets in perturbed gene-expression profiles, Genome
Biology 5 (2004), no. 4.

Andreas Wagner, How to reconstruct a large genetic network from n gene
perturbations in fewer than n? easy steps, Bioinformatics 17 (2001), no. 12,
1183-1197.

Andreas Wagner, Reconstructing pathways in large genetic networks from
genetic perturbations, Journal of Computational Biology 11 (2004), no. 1.

Andreas Wagner and David Fell, The small world inside large metabolic
networks, Working papers, Santa Fe Institute, July 2000, available at
http://ideas.repec.org/p/wop/safiwp/00-07-041.html.

D.J. Watts, The structure and dynamics of small world networks, Ph.D.
thesis, Cornell University, 1997.

Anja Wille and Philip Zimmermannm, Sparse graphical gaussian modeling
of the isoprenoid gene network in arabidopsis thaliana, Genome Biology 5
(2004).

Changwon Yoo and Gregory F. Cooper, An evaluation of a system that
recommends microarray experiments to perform to discover gene-regulation
pathways, Artificial Intelligence in Medicine 31 (2004), 169-182.

o1

