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Preface

Essentially, I’ve chosen this master thesis because of its variety: On one
side there was the challenge of implementing a newly proposed topology
control algorithm on a limited hardware platform, which requires simple
but efficient compromises to come along with the restrictions given by the
hardware platform.

On the other side there was the XTC topology control algorithm which
was mainly developed for network establishment, thus being of wide scope
for the development of own ideas concerning network maintenance. Hence,
this thesis was not only about the implementation of an algorithm on the
BTnode - for me, the theoretical aspects this thesis had to offer played a
key role in my decision as well.

Last, but not least, it was also the intuitive behavior of the XTC algo-
rithm: when drawing a sample constellation of unconnected network nodes,
having in mind to form a sparse but robust, connected network graph, I al-
ways end up in a solution quite similar to the XTC solution which is really
impressive.

I give my sincere thanks to my advisor, Matthias Dyer for his support
and encouragement, as well as for his guidance and distributions on my
thesis. I’m also very thankful to my co-advisor, Jan Beutel for his valuable
suggestions and encouragement.
My gratitude goes to the people at the TIK laboratory, especially to Prof.
Lothar Thiele who made this thesis possible.
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Abstract

With the XTC algorithm, a new, yet extremly simple topology control algo-
rithm for ad hoc networks has been proposed. In contrast to previously pro-
posed algorithms XTC is strictly local, does not require availability of node
position information, and proves correct also on general weighted graphs.
Additionally, XTC is targeted to resource constrained nodes which makes it
to one of the currently most realistic topology control algorithm available.

In this thesis, an adaptive variant of the XTC algorithm has been de-
veloped and implemented on the BTnode, an autonomous wireless commu-
nication platform based on a Bluetooth radio. Basically, the adaptiveness
is achieved by letting the nodes periodically establish links to unconnected
neighboring nodes that seem to be “better” than the set of the currently
chosen links. In the same way “bad” links are identified and closed. Al-
though inefficient in its rough draft, power consumption due to excessive
node activity can be reduced drastically by observing unestablished links.

On the basis of this implementation, the XTC topology control graph
hasy been successfully established within a larger deployment of 39 BTnodes
in an indoor environment. Additionally, it is shown that the XTC algorithm
implemented on a real-world platform is highly sensitive to fluctuating and
asymmetric link weigths, and that the strict locality of the XTC algorithm
gives the BTnodes a lot of trouble during network establishment in higher
density networks. Furthermore, since the XTC algorithm does not regard
scatternet formation explicitly, the correctness of the resulting topology con-
trol graph cannot be guaranteed without any further actions taken. Hence,
to solve these problems a lot of engineering efforts had to be taken which is
explained in this thesis.

viii



Chapter 1

Introduction

1.1 Motivation

In the research field of ad-hoc networking, various different algorithms have
been developed for reducing power consumption to guarantee maximal life-
time of the network nodes. Most of them are developed and evaluated in
theory, come along with a lot of of promising properties, and can be formu-
lated in a few lines of pseudo-code.

Anyhow, in practice an implementation of most of the algorithms pro-
posed has never been presented because it turned out that even the appar-
ently simplest algorithms would result in implementations way to complex
for currently available platforms. In fact, the simplicity of algorithm for-
mulations mostly is achieved by implicitly making assumptions that do not
hold in practice.

With the XTC algorithm, a new algorithm for network establishment
and topology control has been proposed that seems to be extremely sim-
ple. Furthermore, the algorithm promises to produce a mesh-like network
topology which seems to be a good compromise between connectivity and
sparseness. Thus, implementing a dynamically adapting variant of the XTC
toplogy control algorithm seems to be a very realistic approach to obtain an
implementation that covers all of our demands for topology control.

Basically, the target was to derive a dynamically adapting variant of the
available XTC algorithm and implement it on an existing platform to obtain
first results of both, the available XTC algorithm, as well as of the dynam-
ically adapting variant derived in this thesis, concerning their performance,
their limitations, as well as their behaviour and usability in a real-world
system.

Anyhow, the real challange of this thesis was to map an apparantly
simple topology control algorithm for ad-hoc networks onto an existing plat-
form, discovering the limitations of the algorithm, of the hardware platform,
and their interaction. As not expected, a lot of engineering effort had to be

1
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done to obtaine a well functioning, robust implementation of the XTC al-
gorithm.

1.2 Ad-hoc networks

A mobile ad-hoc network (MANET) is an autonomous system of mobile
nodes, (arbitrarily) connected by wireless communication links. In contrast
to e.g. today’s cellualar phone networks or wireless local area networks
(WLAN’s), mobile ad hoc networks do not make use of a backbone network
consiting of fixed centralized nodes. Messages are exchanged using only
the communication links between mobile nodes, i.e. messages between two
nodes are exchanged either directly or by making use of several relay nodes.

Mobile ad-hoc networks may operate in a stand alone fashion, that is the
mobile network nodes are able to establish and maintain a communication
network dynamically and without the need of human interaction. Thus,
in contrast to a fixed wireless network, a MANET can be deployed in any
geographical location, requiring minimum setup and administration costs.

1.2.1 Topology Control Algorithms

The primary target of a topology control algorithm is to establish connections
between mobile nodes in a way that the union of the links established form
a connected network. Additionally, the topology of the resulting network
shall be energy conserving, the lifetime of the network nodes by shall be
increased by “wisely” connecting the network nodes.

The most popular requirements upon the resulting network topology are:

1. Connectivity The network should be robust to link losses, that is if
a device leaves the network (e.g. due to power-down), the remaining
nodes should still be able to communicate.

2. Sparsness The resulting network graph should be sparse, that is the
number of links should be in the order of the number of nodes. Thus,
in general there’s a trade-off between sparseness and connectivity.

3. Low Degree Each network node has only a small number of commu-
nication links. In particular the maximum degree should be bounded
from above by a constant.

4. Avoidance of Long-Distance Links Instead of creating power consum-
ing long-distance communication links, messages should rather be routed
over several small (energy-efficient) hops.
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1.2.2 XTC Algorithm

The XTC algorithm [1] is an extremly simple, strictly local topology control
algorithm for mobile ad-hoc networks. In contrast to previously proposed
algorithms, the XTC topology control algorithm does not require availability
of node position information. Instead, XTC operates with a general notion
of order over the neighbor’s link qualities.

Figure 1.1: Mesh Character of XTC topology control graphs

Additionally, the resulting network topology is proven to be sparse, as
well as to have bounded degree. In fact, XTC promises to establish a sparse
network graph with mesh character as shown in figure 1.1, avoiding long-
distance communication links. This seems to be an excellent compromise
between connectivity and sparesness which makes XTC - together with its
simplicity - extremly attractive.

1.2.3 Bluetooth Networks: Scatternets

The basic unit of networking in Bluetooth is a piconet [2], consisting of
a master and from one to seven active slave devices, as shown in figure
1.2 a). The device designated as the master makes the determination of
the channel (frequency-hopping sequence) and phase (timing offset that is,
when to transmit) that will be used by all devices on this piconet.

A device in one piconet may also exist as part of another piconet and
may function as either a slave or master in each piconet. This form of
overlapping is called a scatternet (see figure 1.2 b).

Bluetooth scatternets come along with some restrictions:

1. A Bluetooth piconet is limited to consist of eight devices, i.e. a blue-
tooth master device may not be connected to more than seven slave
devices.
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(a)

Legend:

Master

Slave

Master/Slave

Slave/Slave

(b)

Figure 1.2: Bluetooth networks: Piconet (a), and multiple piconets con-
nected to a scatternet (b).

2. A Bluetooth device may not be part of more than four piconets, thus a
bluetooth device may not be a slave device of more than three different
master devices.

Therefore, a Bluetooth device is not able to maintain more than ten
connections at once, which means that network graphs with degree > 10
may not be established with Bluetooth devices.

1.3 The BTNode

The BTnode is an autonomous wireless communication and computing plat-
form based on a Bluetooth radio and a microcontroller (figure 1.3). It serves
as a demonstration platform for research in mobile and ad-hoc connected
networks. The BTnode has been jointly developed at the ETH Zurich by the
Computer Engineering and Networks Laboratory (TIK) and the Research
Group for Distributed Systems.

1.3.1 System Overview

The BTnode rev3 is a dual radio device compatible to the old BTnode rev2
and the Berkeley Motes. An overview of the BTnode system is given in
figure 1.4.

The BTnode rev3 features a Zeevo ZV4002 Bluetooth system support-
ing up to 4 independent Piconets and 7 Slaves and an additional Chipcon
CC1000 low-power radio. The system is built around an Atmel ATmega128l
microcontroller with an integrated battery case to house 2xAA cells and
extension connectors. The BTnode is built on a 4 layer PCB measuring
58.15x32.5mm.
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Figure 1.3: The BTnode

Figure 1.4: BTnode System Overview
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1.3.2 Nut/OS

The BTnodes run an embedded systems operating system from the open
source domain - the Nut/OS. Basically, Nut/OS is an intentionally sim-
ple real-time operating system for the Atmel ATmega128 microcontroller,
which provides a minimum of network oriented system services. It’s features
include:

• Non preemptive cooperative multi-threading

• events

• Periodic and one-shot timers

• Dynamic heap memory allocation

• Interrupt driven streaming I/O

1.4 Connection Manager

The connection manager is a software component running on the BTnodes,
which is responsible for the discovery of other nodes and the creation and
maintenance of a Bluetooth Scatternet. In other words, a connection man-
ager is just an implementation of a topology control algorithm.

Basically, the connection manager was intended to be part of the JAWS
application [6], but due to its simple interfaces it can be used by different
applications too.

As an example, the modular structure of the JAWS application is shown
in figure 1.5: each time the connection manager established / closed a con-
nection, the higher layer gets signaled by calling a callback function. This
callback function can be registered at the connection manager by the appli-
cation layer (in this case the transport layer).

1.5 Target

The target of this thesis was to develop a XTC based connection manager,
i.e. the XTC topology control algorithm should be implemented on the
BTnodes. On the basis of this implementation, the practical ability of the
XTC algorithm should be estimated. More precisly, this includes

1. an evaluation of its implementation complexity

2. testment of its properties in a real-world deployment

3. evaluation of its practical limitations
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Figure 1.5: JAWS Components

Since the XTC algorithm as published in [1] considers network estab-
lishment only, another important part of this thesis was to find solutions
for maintaining an XTC established network. More precisly, the XTC algo-
rithm had to be extended for that the topology of the network is adaptive,
that is the network should be be able to deal with

1. repositioning of network nodes

2. leaving devices (e.g. due to power-down)

3. entering devices

The original problem task is given in appendix C.

1.6 Related Work

In [7] a scalable topology control algorithm for deployment-support net-
works (DSNs) is presented which forms a tree-topology. Due to the topology
formed by this algorithm, explicit route calculations are not necessary since
there’s only one path between any two nodes. Anyhow, the tree topology
is not robust to link losses, and the number of relay nodes needed to send
a message from some node to a remote node may be excessively large since
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cycles are avoided. Furthermore, the topology algorithm proposed does not
abandon long-distance links.

In [9] several scatternet formation protocols for Bluetooth devices have
been proposed and evaluated. In fact, these evaluations are based upon
simulation results, but until today, none of the algorithms proposed has
been implemented in a real-world system.

1.7 Overview

This thesis is organized as follows. In chapter 2 an introduction to the XTC
algorithm as published by Wattenhofer at al. in [1] is given, including some
alternative interpretations of the XTC link selection procedure. During the
second chapter an iterative variant of the XTC algorithm is derived, which
is necessary for that the XTC algorithm can be mapped onto a hardware
platform that has to make use of neighbor discovery and connection estab-
lishment, as it is the case for the BTnode.

In the third chapter, a variant of the XTC algorithm is proposed that is
able to adapt the topology of the network dynamically if significant changes
occur (e.g. repositioning of some node). Furthermore, the problems arising
with asynchronous link weight updating, as well as the problem of link losses
are discussed.

Afterwards, an overview of the implementation is given (chapter 5. Im-
plementation details are given in the following chapter, which additionally
points out that implementation complexity of the adaptive XTC topology
control algorithm is not that low.

In chapter 7 we present the results obtained from with implementation,
while chapter 8 concludes this thesis.



Chapter 2

The XTC Topology Control
Algorithm

This chapter is all about the XTC Topology Control algorithm. In the first
section we give formal definitions of basic concepts used throughout this
thesis. Afterwards, the XTC topology control algorithm as published by
Wattenhofer et al. [1] gets introduced, followed by a summary of its most
important properties. To finish this introduction of the XTC algorithm, an
example is given in section 2.4.

In the last section of this chapter, we’re going to give some alternative
interpretations of the XTC link selection procedure. More precisely, we’re
going to show that in XTC

1. link selection can be done without storing any information received by

neighbor nodes,

2. a link is discarded only if a better common neighbor exists.

These interpretations are the basis for deriving the iterative XTC algorithm,
as well as the adaptive XTC algorithm presented in the following two chap-
ters.

9
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2.1 Preliminaries

The ad-hoc network before running the topology control algorithm is de-
noted as G = (E,V ), with V being the set of ad-hoc network nodes, and E
representing the set of communication links. There is a link (u, v) in E if and
only if the two nodes u and v can communicate directly. Running the XTC
topology control algorithm will yield a sparse subgraph GXTC = (V,EXTC)
of G, where EXTC is the set of remaining links.

In a weighted graph G = (V,E) every edge (u, v) ∈ E is attributed
a weight ωuv. When referring to a weighted graph, we assume that the
weights are symmetric: ωuv = ωvu. A completely unconnected weighted
graph G = (V,E) with E = ∅ is denoted by G0.

The nodes of a Euclidean graph are assumed to be located in a Euclidean
plane. Furthermore, the edge weight of an edge (u, v) is defined to be ωuv =
|uv|, where |uv| is the Euclidean distance between the nodes u and v. Note
that the definition of Euclidean graphs does not contain a statement on the
existence of certain edges.

A Unit Disk Graph is a Euclidean graph containing an edge (u, v) if and
only if |uv| ≤ 1.

2.2 Description

This section describes the XTC topology control algorithm as it was pub-
lished by Wattenhofer et al. in [1].

Basically, the XTC algorithm consists of three main steps:

I Neighbor ordering

II Neighbor order exchange, and

III Link selection.

In the first step each network node u computes a total order ≺u over all its
neighbors in a given network graph G. This order is intended to reflect the
quality of the links to the neighbors.

A node u will consider its neihgbors in G (in the third step of the algo-
rithm) according to ≺u ordered with respect to decreasing link quality: The
link to a neighbor appearing early in the order ≺u is regarded as being of
higher quality than the link to a neighbor placed later in ≺u

1. A neighbor
w appearing before v in ≺u is denoted as w ≺u v.

For illustration purposes in this thesis we assume that ≺u corresponds
to the order of the neighbor’s Euclidean distances from u.

1If two links are of equal quality, the link to the neighbor with smaller identity is
considered as the higher quality link
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XTC Algorithm

I Establish order ≺u over u’s neighbors in G

II Broadcast ≺u to each neighbor in G; receive or-
ders from all neighbors

III Select topology control neighbors:
1: Nu := {}; Ñu := {}
2: while (≺u contains unprocessed neighbors) {
3: v := least unprocessed neighbor in ≺u

4: if (∃w ∈ Nu ∪ Ñu : w ≺v u)
5: Ñu := Ñu ∪ {v}
6: else
7: Nu := Nu ∪ {v}
8: }

Figure 2.1: The XTC algorithm

In the second step the neighbor order information is exchanged among
all neighbors: a node u broadcasts its own neighbor order while receiving
the orders established by all of its neighbors.

During the third step, which does not require any further communica-
tion, each node locally selects those neighboring nodes which will form its
neighborhood in the resulting topology control graph, based on the previ-
ously exchanged neighbor order information. For this purpose, a node u
traverses ≺u with decreasing link quality: “Good” neighbors are considered
first, “worse” ones later. Informally speaking, a node u only builds a direct
communication link to a neighbor v if u has no “better” neighbor w that
can be reached more easily form v than u itself.

Although the XTC algorithm is executed at all nodes, the detailed de-
scription as shown in figure 2.1 assumes the point of view of a node v. The
lines with a leading small number from 1-8 define Step III) in more detail:
First, the two sets Ñu and Nu are initialized to be empty. Now the neighbor
ordering ≺u established in Step I), is traversed in increasing order (that is
in decreasing link quality). In Line 4 the neighbor order ≺v of the currently
considered neighbor v is examined: If any of u’s neighbors w already pro-
cessed appears in v’s order before u (w ≺v u) node v is included in Ñu (Line
5); otherwise v is added to Nu (Line 7).

After completion of the algorithm, the set Nu contains u’s neighbors in
the topology control graph GXTC .
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2.3 Properties

This section shall give a brief overview of the most important properties of
a resulting topology control graph GXTC . The theorems presented here are
adopted from [1]. Proofs and further details are not presented here - they
have to be gathered from [1].

Theorem 2.3.1 (Connectivity) Given a general weighted graph G, two
node u and v are connected in GXTC if and only if they are connected in G.
Consequently, the graph GXTC is connected if and only if G is connected.

This theorem simply states that a topology control graph GXTC will be
connected, i.e. it states that the resulting network will not be partitioned.

Theorem 2.3.2 Given a general weighted graph G, GXTC has girth 4, that
is, the shortest cycle in GXTC is of length 4.

This theorem is important because it ensures that the resulting topology
of GXTC is a good compromise between connectivity and sparseness: an
XTC topology control graph will contain cycles (thus improves robustness
of the network to link losses), but the cycle length is lower bounded.

Theorem 2.3.3 (Bounded Degree) Given a Unit Disk Graph G, GXTC

has degree at most 6.

The bounded degree property makes the XTC algorithm especially at-
tractive for topology controlling an ad-hoc networks consisting of BTnodes
since bluetooth devices are not able to connect to more than 10 neighbor
devices. Unfortunatly, it only holds for Unit Disk Graphs but not for general
weighted graphs.

2.4 An Example

The most easy way to understand the XTC Algorithm is by applying it on a
simple topology graph G as depicted in figure 2.2 a). To keep the following
example as simple as possible, we choose the euclidean distance between two
nodes as the quality measure of a link (the shorter the euclidean distance,
the better is the link quality).
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Figure 2.2: XTC: simple example

Applying the XTC Algorithm on the topology graph G shown in figure
2.2 a) - step by step - leaves to the following results:

1. First, each node establishes an order over its neighbor nodes as de-
picted in figure 2.2 b). As mentioned above, criteria of order estab-
lishment is the euclidean distance between two nodes. So if we take a
look at e.g. node d, we see that node a is closest to node d, followed
by node c which is closer to d than node b. This leads to the following
order:

≺d: a c b

The orders established by nodes a, b, and c will look like this:

≺a: b d c

≺b: a d c

≺c: d b a
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2. During the second step of the XTC Algorithm, each node sends the
order established to all its neighbor nodes. At the same time, each
node receives orders from its neighbor nodes and collects them. Thus,
the information collected e.g. by node a, choosing a tabular represen-
tation, will look like this:

≺a: b d c
a a d
d c b
c b a

Table 2.1: Information collected by node A after XTC step 2

The representation shown in table 2.1 has to be interpreted as follows:
the first row of the table represents the order established by node a
(indicated by the box around a), and each column represents the order
of the node in the corresponding header (e.g. the second row is the
order established by node d).

3. In the third step, the nodes locally select the desired connections
among all the possible connections as described in the link selection
procedure (Step III in figure 2.1). From the point of view of a node u,
this is done by examining the orders received, starting with the order
of its “best” neighbor node (the first neighbor appearing in ≺u). So
in our example, from the point of view of node a, we first have to
examine the order of node b, which is the first column of table 2.1:

≺a: b d c
a a d
d c b
c b a

Reaching line 4 of the link selection procedure shown in figure 2.1
(Step III), we see that since the two sets Nu and Ñu are empty, there
cannot be a node w that appears before node a in the order ≺b of node
b. Therefore, we add node a to the set Nu:

Na = {b}, Ña = {}.
Frome the point of view of node a, the next “best” neighbor in ≺a,
is node d: The set Na ∪ Ña now contains node b, hence we have to
check if node b appears befor a in the order ≺d of node d. Using the
tabular representation introduced earlier, that is, starting from top
of the second column: if a appears before b we add d to Na, which
obviously is the case. This is shown in the table below:
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≺a: b d c
a a d
d c b
c b a

Thus, we now have:

Ña = {}, Na = {b, d}.

The next “best” neighbor appearing in the order ≺a of a is also the
last neighbor of a’s neighbor ordering: node c. The set Na ∪ Ña now
contains the nodes b and d, so we now have to check if b or d appears
before a in the order ≺c of node c, that is, starting from top of the
third column, we have to check if a appears before b and d:

≺a: b d c
a a d
d c b
c b a

As we can see, b, as well as d appear before a. Hence, we add c to the
set Ña which gives us:

Ña = {c}, Na = {b, d}.

The set Na now contains a’s neighbors in the topology control graph GXTC ,
that is the links (a, b) and (a, d) are part of the topology control graph
GXTC :

{(a, b); (a, d)} ∈ GXTC .

Executing the XTC link selection procedure on each node depicted in figure
2.2 a) will lead to the topology control graph shown in figure 2.2 d).
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2.5 Alternative Interpretations

In this section, we’re going to present alternative interpretations of the XTC
link selection procedure. We’re going to see that neither is the sequence of
processing the received orders relevant, nor is it necessary to store them. To
derive this alternative interpretations we’re going to take a closer look at
the link selection procedure of the XTC algorithm presented in section 2.2
(figure 2.1).

2.5.1 Sequence independent Link Selection

We start with a somewhat more complex example as the example presented
in the previous chapter: The constellation G0 of unconnected network nodes
before running the XTC algorithm on it is shown if figure 2.3 a).

b

a

c

d
e

f
g

(a)

b

a

c

d

e

f
g

(b)

Figure 2.3: XTC: another example

The information received by node d after XTC Step II is shown in table
2.2 below, and we are interested in the decision made by the XTC link
selection procedure about the link (d, e).

If we follow the XTC link selection procedure described in figure 2.1,
we have to process the orders received from neighbors f and b (that is
column one and two), before we can start processing order ≺e established
by node e (third column). Therefore, when we start examining the order ≺e

established by node e, the set Nd ∪ Ñd will contain the nodes f and b. Since
neither f , nor b appears before d in the order of e (third row in table 2.2),
we add e to the set Nd, which means that the link (d, e) will be part of the
resulting topology control graph GXTC .
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≺d f b e a c g
d d g c e e
e a c b a c
b f d d g d
g e a e d f
c c f g b a
a g b f f b

Table 2.2: Information collected by node d after XTC step II, corresponding
to the node constellation depicted in figure 2.3

It’s easy to see that if we are going to process an order received by some
node v, the set Nd ∪ Ñd always contains the nodes that are “better” than
node v in ≺d. Hence, by defining the set of superior nodes with respect to
v:

Sv,≺u := all neighbors that appear before v in the order ≺u,

we can reformulate the link selection procedure as follows:

Select topology control neighbors:
1: while (≺u contains unprocessed neighbors) {
2: v := some unprocessed neighbor in ≺u

3: if (∃w ∈ Sv,≺u : w ≺v u)
4: (u, v) /∈ GXTC

5: else
6: (u, v) ∈ GXTC

7: }

From the equivalent formulation of the XTC link selection procedure
shown above, it becomes clear that the sequence of processing the received
neighbor orders is not relevant. Furthermore, from the point of view of some
node u, deciding if a link (u, v) is part of GXTC can be done independent of
the orders received from the other neighbors.

2.5.2 Memoryless XTC

Since the sequence of processing the received neighbor orders is not rele-
vant and can be done independently, it is not necessary to store the received
orders. Instead, some node u can decide immediately after receiving a neigh-
bor order ≺v if the link (u, v) should be part of the XTC topology control
graph GXTC or not. This allows us to give a somewhat more “reactive”
interpretation of the XTC algorithm, shown in figure 2.4.

The advantages of the algorithm presented in figure 2.4 for implementa-
tion purposes are twofold:
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XTC Algorithm

I Establish order ≺u over u’s neighbors in G

II Broadcast ≺u to each neighbor in G

III Select topology control neighbors:
1: for (each received order ≺v) {
2: if (∃w ∈ Sv,≺u : w ≺v u)
3: (u, v) /∈ GXTC

4: else
5: (u, v) ∈ GXTC

6: }

Figure 2.4: Alternative interpretation of the XTC algorithm

1. By implementing the algorithm shown in figure 2.1 straight forward,
a node u would have to collect the neighbor orders of all neighbors
and would then start processing them in proper sequence. Hence,
we would have to make use of an inconvenient start condition like
“neighbor orders received from all neighbors”, which in practice may
result in a unwanted approximation, since a node does not know when
all orders have been received2.

By using the algorithm presented in figure 2.4, receiving a neighbor
order can be viewed as an event that may occur at any time upon
which a node has to react - either by adding the link to GXTC or not
(that is, keeping the link or closing it).

2. Some node u in GXTC can repeat the link selection process, i.e. if an
existing link (u, v) actually has to be in GXTC or not can be checked
by any node u at any time by sending the neighbor order to v. In
section 4.6.2 we’re going to see that this property is one of the key
properties needed to react upon changes in topology.

3. Implementing the algorithm shown in figure 2.4 results in a more mem-
ory efficient implementation than an implementation of the algorithm
presented in figure 2.1.

Because of its importance for the remainder of this thesis we reformulate
the second reason mentioned above again:

2A similar problem is discussed in section 3.2 where a node has to discover “all” neigh-
bor devices
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Observation 2.5.1 A link (u, v) that has to be removed from GXTC due
to a change in the topology graph G gets closed if either u or v resends its
updated order.

2.5.3 Better Common Neighbors

We are now going to give another interpretation of the link selection pro-
cedure of the algorithm shown in figure 2.4 again. More precisely, we only
rewrite the selection condition in line 2 of the selection procedure, as shown
in figure 2.5.

XTC Algorithm

I Establish order ≺u over u’s neighbors in G

II Broadcast ≺u to each neighbor in G

III Select topology control neighbors:
1: for (each received order ≺v) {
2: if (Sv,≺u ∩ Su,≺v �= ∅)
3: (u, v) /∈ GXTC

4: else
5: (u, v) ∈ GXTC

6: }

Figure 2.5: “Better common neighbor” interpretation of the XTC algorithm

Basically, this is the same formulation as before, but the link selection
condition of the algorithm shown in figure 2.5 is somewhat more intuitive
than the condition of the algorithm shown in 2.1.

Sv,≺u︷ ︸︸ ︷
≺u · · · v · · ·

...
}

Su,≺v

u
...

Table 2.3: Better common neighbor interpretation of the XTC link selection
condition

This is shown in table 2.3: the set Sv,≺u contains all the nodes that
appear before v in the order established by node u, that is all the nodes
appearing before node v in the header of the table. The set Sv,≺u contains
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all nodes that appear before node u in the order established by node v, that
is all nodes that appear before node v in the column with header v (starting
from the top). Thus, the link selection condition can be interpreted as
follows:

(u, v) /∈ GXTC , if a “better common neighbor” exists,

or equivalently:

(u, v) ∈ GXTC , if “no better common neighbor” exists.

To give an example here, we refer back to the node constellation shown
in figure 2.3 b): The link (d, a) is not part of the topology control graph
GXTC because there’s the “better common neighbor” b. The table below
shows how the “better common neighbor” can be identified in the table
representation of the link selection condition:

Sa,≺d︷ ︸︸ ︷
≺d: f b e a · · ·

c
}

Sd,≺ab
d
...

By underlining b, we’ve indicated that node b is the “better common node”
of the link (d, a) and thus is the reason for that the link (d, a) is not in
GXTC .

Note that multiple “better common neighbors” may be the reason for
that a link is not in GXTC , e.g. if we take a look at the link (d, c) in figure
2.3 b) the link selection condition using tabular representation looks like
this:

Sc,≺d︷ ︸︸ ︷
≺d: f b e a c · · ·

e }
Sd,≺ca

g
d
...

We conclude the results obtained from the considerations done here with
the following

Observation 2.5.2 An edge (u, v) is not in GXTC if and only if a better
common neighbor bu,v exists.



Chapter 3

Iterative XTC

The XTC algorithm introduced in the last section cannot be mapped directly
onto our hardware platform - essentially because of the following two reasons:

1. Before two Bluetooth devices are able to communicate, a connection
has to be established, and

2. before some Bluetooth device u is able to establish a connection to
some Bluetooth device v, the desired communication partner v has to
be discovered by device u.

Thus, before the XTC algorithm as published in [1] can be applied, we pre-
viously would have to established the completely connected network graph
G, which is not desirable1 Since this problem concerns not only Bluetooth
devices but also every hardware platform that has to do neighbor discovery
and connection establishement, we’ve decided to approach this problem on
the algorithmic level. Thus, we’re going to present a variant of the XTC al-
gorithm in this chapter, which establishes the topology control graph GXTC

in an iterative fashion - starting with the completely unconnected network
graph G0

In section 3.1 we integrate connection establishments into the XTC algo-
rithm shown in figure 2.5, section 2.5.3, while neighbor discovery is discussed
in section 3.2. The iterative XTC algorithm will be introduced in section
3.3, and section 3.4 concludes this chapter.

1in fact, with Bluetooth devices it is not possible to establish a completely connected
network graph G = (V, E) with V > 7.

21
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3.1 Connection Establishment

The XTC topology control algorithm as introduced in section 2.2 (figures
2.1, 2.4, and 2.5) starts with the completely connected network graph G. But
in practice we have to start with the completely unconnected network graph
G0. Usually, we do not want to establish the completely connected topology
control graph G before applying the XTC topology control algorithm - it is
desired to close “unwanted” links as soon as possible2. Therefore, we have
to include connection establishments explicitly into our formulation of the
XTC algorithm.

3.1.1 Simple Protocol

The straight-forward way of including connection establishments in our XTC
formulation of the XTC algorithm (figure 2.5) is presented in figure 3.1.
Using this formulation we obtain the most simple XTC protocol possible,
which is shown in figure (3.2).

XTC Algorithm

I Establish order ≺u over u’s neighbors in G0

II Broadcast ≺u to each neighbor in G0:
1: for (each neighbor node v in G0) {
2: if (≺v not yet received) {
3: establish connection to node v
4: send ≺u to node v
5: }
6: }

III Select topology control neighbors:
1: for (each received order ≺v) {
2: if (Sv,≺u ∩ Su,≺v �= ∅) disconnect
3: }

Figure 3.1: XTC: alternative formulation, including connection establish-
ment

A node u connects to one of its neighbor nodes u, and sends its order ≺u

established during XTC Step II) to it. The receiving node v then immedi-
ately processes the order received, and decides if the link established should
be kept or not (Step III). The link will be kept if the receiving node cannot
find a better common neighbor buv in the order received and its own order.

2because in practice a node may only have a fixed number of open connections at once
(e.g. the number of open connections with a BTnode is limited to 10)
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connect()

order

disconnect()

Figure 3.2: Simple XTC Protocol: time-line

If a better common neighbor can be found, the receiving node v will close
the link (u, v).

The condition in Step II), Line 2 ensures that a link (u, v) won’t be
established twice if the link (u, v) is not in GXTC : Assume that e.g. node
u established a connection to node v, which decided to close the connection
after receiving the order ≺u from node u. Since both, node u and node v
are executing Step II) of the XTC algorithm, node v would establish the
connection to node u again some moments later. But this is not necessary
because of the symmetry of the XTC algorithm: Node u is going to make
the same decision as node v, that is the connection will be closed again.
Thus, by introducing the condition in Line 2, we can save some unnecessary
connection establishments.

3.1.2 2-Way Handshake

It’s obvious that with regard to simplicity and efficiency we can’t do any
better than with the simple protocol presented before. Nevertheless, this
simple protocol comes along with some drawbacks:

Data Exchange The protocol depicted in figure 3.2 is unidirectional, i.e.
the active side is able to send information to the passive side (that is
sending the neighbor ordering plus some additional information if de-
sired), but the passive side may not in case of a disconnection. In other
words, if the receiving node decides to close the connection, there’s no
opportunity for it to give the initiator any further information (e.g.
why the connection was closed).

Information Hiding An application layer should only be signaled about
newly established connections if they are “wanted” (that is if they
should be in GXTC), thus connection establishments that are closed
by the passive side right after receiving the neighbor ordering should
be hidden from the application layer. To reach this, the passive side
at least has to send back an acknowledgment for that the active side
is able to signal the application layer.
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Eliminating these drawbacks can be reached using the 2-Way Handshake
protocol depicted in figure 3.3: a node u connects to one of its neighbor
nodes and sends its neighbor ordering to it as before. Instead of just closing
the link established or not, the receiving node sends back the result of the
link selection decision, i.e. if the link should be kept, the receiving node
sends back an acknowledgment to the sender (’ACK’ packet). Also, if the
receiving node decides that the link should be closed, the receiving node
informs the sender about its decision (by sending back a ’NACK’ packet),
thus the initiator of the connection request is going to receive a response in
any case.

connect()

order

disconnect()

ACK / NACK

Figure 3.3: XTC protocol: 2-Way Handshake

By making use of the 2-Way handshake protocol presented in figure 3.3
the problems mentioned before are solved: Since the receiving node sends
back a ’NACK’ packet to the initiator of the connection request, it is able
to add some additional information to the ’NACK’ packet, e.g. the reason
for its desire to close the connection3.

Furthermore, hiding the connection request from the application layer
can now be done by both parties: The initiating node informs the application
layer not before receiving the ’ACK’ packet, and the passive node right after
an ’ACK’ packet has been sent successfully.

3In section 4.6.2 we’re going to see that giving one of the better common nodes as a
reason for not acknowledging a connection request can be very useful for maintaining an
XTC network
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3.2 Device Discovery and XTC

The XTC topology control algorithm depicted in figure 2.1, as well as the
algorithm presented in the previous section (figure 3.1) implicitly make the
assumption that a given node u knows its neighborhood. That is, each node
u knows which neighbor nodes are present, as well as how to build a connec-
tion to each of its neighbors. In Bluetooth this assumption is not realistic
- a node u has to discover its neighborhood before the XTC algorithm can
be applied.

The straight forward approach of concerning neighbor discovery in our
XTC formulation would be to extend Step I) in the following way:

I Establish order ≺u over u’s neighbors in G0:
1: discover all neighbor devices of node u
2: establish order ≺u over neighbor devices found

The problem of a formulation like this is that a function called dis-
cover all neighbor devices() does not exist in practice: as we shall see, neigh-
bor discovery is a very costly and time consuming process, and it is not
possible to reliably discover “all” neighbors in a single discovery process -
a node has to discover its surrounding step by step. More precisely: doing
multiple consecutive neighbor discovery steps increases the probability of
discovering all neighbor devices that are actually present. We are going to
discuss this topic in more detail in section 6.1, chapter 6. The reason why
we point out this behavior here becomes clear if we take a look at a more
realistic formulation of XTC Step I:

I Establish order ≺u over u’s neighbors in G0:
1: until (all neighbors discovered) do {
2: discover new devices := Du

3: Uu := newly discovered devices
4: update neighbor ordering: ≺u = ≺u ∪ Uu

5: }

Line 2 indicates that the device has to start a new neighbor discovery
process. The neighbor discovery result Du may contain some devices that
were not discovered so far; we denoted this set by Uu:

Uu := {v ∈ Du : v /∈≺u}.
These newly discovered neighbor devices have to be added to the neighbor
ordering ≺u, which is done in Line 4. The first line indicates that each
node has to do several neighbor discovery steps in order that “all” neighbor
devices get discovered.

The problem mentioned above consists of the termination condition of
the while loop (Line 1): in practice, it is not possible to implement the
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condition “all neighbors discovered”, since a node u does not know the
number of neighbor nodes its neighborhood consists of. Therefore, we have
to replace this condition, e.g. by the condition “N neighbors discovered” or
the condition “N neighbor discovery steps performed”.

No matter how the termination condition gets chosen, the result is an
approximation of the XTC algorithm that may cause unpredictable errors,
as can be seen if we rewrite the whole XTC algorithm. This is shown in
figure 3.4: The termination condition of Step I) has been replaced by just
“some condition” which indicates that an approximation has to be made at
that point.

In contrast to the algorithm presented in figure 3.1, we slightly modified
Step II), which shall indicate that we can not guarantee that the order
established by a node u can be sent to each neighbor in G0, but instead is
sent to all neighbor nodes that were found during Step I (i.e. to all nodes
in ≺u).

XTC Algorithm

I Establish order ≺u over u’s neighbors in G0:
1: until (some condition) do {
2: discover new devices := Du

3: Uu := {w ∈ Du : w /∈≺u}
4: update neighbor ordering: ≺u = ≺u ∪ Uu

5: }
II Broadcast ≺u to each node v ∈≺u:

1: for (each node v ∈≺u) {
2: if (≺v not yet received) {
3: establish connection to node v
4: send ≺u to node v
5: }
6: }

III Select topology control neighbors:
1: for (each received order ≺v) {
2: if (Sv,≺u ∩ Su,≺v �= ∅) disconnect
3: }

Figure 3.4: Realistic formulation of the XTC algorithm, considering neigh-
bor discovery

Therefore, terminating Step I) to early may result in an incomplete
neighbor ordering, which in turn may result in a neighbor node in G0 that
is never going to receive the order established by u. Thus, the resulting
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topology control graph G′
XTC may contain not all links that should be part

of GXTC due to an insufficient neighbor discovery phase. In a worst case
scenario this may result in a partitioned network.

3.3 Iterative Network Establishment

In this section we’re going to present another variant of the XTC algorithm,
which does not include a stop condition for the neighbor discovery process.
Thus, the devices are infinitely looking for new neighbor devices, and as soon
as a new device appears it gets integrated into the existing topology con-
trol graph GXTC . By choosing this approach, the problem of undiscovered
neighbor nodes gets solved.

To derive this variant of the XTC algorithm, we simply combine steps
I) and II) of the XTC definition presented in figure 3.4 as follows:

I Broadcast ≺u to u’s neighbors in G0:
1: while (true) {
2: discover neighbor devices: Du

3: Uu := {w ∈ Du : w /∈≺u}
4: update neighbor ordering: ≺u:=≺u ∪ Uu

5: for (each node v ∈ Uu) {
6: if (≺v not yet received) {
7: establish connection to node v
8: send ≺u to node v
9: }
10: }
11: }

3.3.1 Incomplete neighbor order

Let’s consider the situation after a node u has done Step I) of the modified
XTC algorithm shown above once, that is, node u has sent its order to
each neighbor discovered in Line 1 of Step I). After the neighbor nodes have
processed the neighbor order ≺u received from node u, a connection to each
node v in ≺u either exists or not, depending on the decisions made by the
neighbor nodes that received ≺u.

Assume now, that node u will have discovered all of its neighbor devices
after executing the while loop shown above twice, but won’t have discovered
all of them after executing Lines 2-8 once. Thus, when executing the while
loop for the second time, node u discovers new nodes that were not contained
in ≺u (Line 2), i.e. the set Uu won’t empty (Line 3). Node u then updates
its neighbor order ≺u by adding each v in Uu to it (Line 4), establishes a
connection to the nodes in Uu (Line 7), and sends its updated neighbor order
≺u to them (Line 8).
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It’s clear that the XTC algorithm gets applied correctly to the nodes that
were in Uu (that is they get integrated correctly into the existing network).
But since the neighbor order ≺u has changed after executing Line 4 for the
second time, it is obvious that the neighbor order sent in the first step was
not complete, i.e. it did possibly not contain all the information needed to
let its neighbors do a “correct” decision. Thus, the resulting topology control
graph G′

XTC may differ from the desired topology control graph GXTC .
Let’s take a look at what steps have to be taken by node u for that

“wrong” decisions can be corrected.

3.3.2 Unconnected Nodes

Let’s consider a node v in ≺u that had no connection to u after processing
the while loop once. We now that

(u, v) /∈ G′
XTC , if (S′

v,≺u
∩ S′

u,≺v
�= ∅),

that is, a better common node bu,v exists. After executing Line 4 for the
second time, the new devices discovered on Line 2 (Line 3 resp) were added
to the neighbor order ≺u. But since the order ≺u only grows by adding some
new neighbor device x to it, the set Sv,≺u ∩ Su,≺v will still be not empty.
This is shown in the table below, where x is some newly discovered node:

Sv,≺u︷ ︸︸ ︷
≺u · · · bu,v · · · x · · · v · · ·

... }
Su,≺vbu,v

...
u
...

Informally speaking, discovering new neighbor nodes does not change the
fact that at least one better common neighbor bu,v exists which is the reason
for that the link (u, v) is not in G′

XTC . Hence, if a node u discovers new
neighbor devices, there’s no need for establishing new connections.

3.3.3 Connected Nodes

On the other side, we know that for each node v in ≺u that is connected to
u (i.e. (u, v) ∈ G′

XTC) the following condition holds:

(u, v) ∈ G′
XTC , if (S′

v,≺u
∩ S′

u,≺v
= ∅).

In this case, it might be possible that a node u discovers a new node x that
is “better” than a node v to which a connection exists (that is, x gets added
to the order ≺u before v), and hence the node x gets added to the set Sv,≺u .
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This may cause the set Sv,≺u ∩Su,≺v to be non-empty, and therefore will
cause the link (u, v) to be not in GXTC . This situation is shown in the table
below, where x is a newly discovered neighbor:

Sv,≺u︷ ︸︸ ︷
≺u · · · bu,v := x · · · v · · ·

... }
Su,≺vx

...
u
...

But since the link (u, v) was in G′
XTC after processing the while loop

once, a connection between u and v exists, thus the only thing that has to
be done by node u is to re-send its updated neighbor order ≺u to node v.
Node v then processes the updated neighbor order ≺u again, and terminates
the connection if necessary, that is if x actually became a better common
neighbor bu,v (see observations 2.5.1, 2.5.2 resp).

Informally speaking, “wrong decisions” due to an incomplete neighbor
order can be corrected by broadcasting the updated order to already con-
nected neighbors. Hence, a node u correctly integrates newly discovered
devices into the (partial) topology control graph if the XTC algorithm is
executed in the following way:

I Broadcast ≺u to neighbor devices:
1: while (true) {
2: discover neighbor devices: Du

3: Uu := {w ∈ Du : w /∈≺u}
4: update neighbor order: ≺u:=≺u ∪ Uu

5: for (each node v ∈ Uu) {
6: if (≺v not yet received) {
7: establish connection to node v
8: }
9: }
10: broadcast ≺u to each connected neighbor
11: }

3.3.4 Passive Neighbor Discovery

In the last sections, we derived a variant of the XTC algorithm that elim-
inates the problem of undiscovered neighbor nodes: since the nodes are
looking for new neighbor devices infinitely, each node will discover each of
its neighbors that are actually present after some (infinite) amount of time.
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In this section, we’re going to take a look at another problem that may arise
because of insufficient neighbor discovery. More precisely we’re going to take
a look at the following conflict:

• Node v discovers node u but u does not see v

The problem is obvious: since v discovered u, node u is some when going to
receive the neighbor order ≺v established by node v. To decide if the link
(u, v) has to be part of the topology control graph or not, node u has to
build the sets Sv,≺u and Su,≺v . But since u has not yet discovered node v,
node u won’t be able to build the set Sv,≺u and is thus not able to decide if
the link should be kept or not:

Sv,≺u := ?︷ ︸︸ ︷
≺u · · · v

... }
Su,≺vx

...
u
...

Basically, two different solutions exist for solving this problem:

Neighbor Ignoring Node u terminates the connection since it cannot find
node v in its neighbor order. At a later date, node u will discover node
v and the correct decision may be made then by node v.

Passive Neighbor Discovery Node u adds v to its neighbor order, and
decides immediately if the link should be kept or not.

The advantage of passive neighbor discovery compared to the first solution
is obvious: the link (u, v) gets established only once, hence by choosing the
second solution a connection establishment can be saved.

The drawback of passive neighbor discovery becomes clear if we write
out this solution in detail, i.e. if we modify the link selection process of the
XTC algorithm (Step III):

III Select topology control neighbors:
1: for (each received order ≺v) {
2: if (v /∈≺u) {
3: update neighbor order: ≺u=≺u ∪ v
4: broadcast ≺u to all neighbors
5: }
6: if (Sv,≺u ∩ Su,≺v �= ∅) disconnect
7: }
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Since the unknown device v gets added to the neighbor order ≺u (Line 3),
node u has to inform its neighbors about the changes occurred by sending
the updated order to each connected neighbor, as explained in the previous
subsection. Thus, the order sent by node v may cause a broadcasting of
the neighbor order ≺u, which may cause a lot of traffic (depending on the
number of neighbors that are connected to node u).

Nevertheless we choose the second solution for solving the conflict men-
tioned above because the second solution comes along with another inter-
esting advantage that becomes clear if we summarize the results obtained
so far, and write the XTC algorithm in its iterative form as derived during
this section. This is shown in figure 3.5.

Suppose that a network has just been established by running the iterative
XTC algorithm depicted in figure 3.5 on each network node. After some
amount of time, the resulting topology control graph G′

XTC is equal to the
topology control graph GXTC . Further assume that there’s an outstanding
observer who recognizes that G′

XTC equals GXTC and thus forces the nodes
to stop looking for new neighbor devices, i.e. they won’t execute the while
loop in Step I) of the iterative XTC algorithm shown in figure 3.5 anymore.

It’s clear, that if a new node x now gets added to the existing network,
the network would not be able to integrate the node correctly to the existing
network if we do not make use of passive neighbor discovery since the nodes
of the existing network do not look for new neighbor devices anymore.

Anyhow, by letting the nodes in the existing network passively discover
node x, proper integration into an existing network becomes possible. In
the next subsection we’re going to explain why this behavior is desired.
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XTC Algorithm

I) Broadcast ≺u to neighbor devices:
1: while (true) {
2: discover neighbor devices: Du

3: Uu := {w ∈ Du : w /∈≺u}
4: update neighbor order: ≺u:=≺u ∪ Uu

5: for (each new node w ∈ Uu) {
6: if (≺w not yet received) {
7: establish connection to node w
8: }
9: }

10: broadcast ≺u to all connected neighbors
11: }

II) Select topology control neighbors:
1: for (each received order ≺v) {
2: if (v /∈≺u) {
3: update neighbor order: ≺u=≺u ∪ v
4: broadcast ≺u to all neighbors
5: }
6: if (Sv,≺u ∩ Su,≺v �= ∅) disconnect
7: }

Figure 3.5: XTC: Iterative formulation

3.4 Conclusion

In this section, we’ve derived a variant of the XTC algorithm that does
neighborhood discovery and connection establishments in an iterative fash-
ion. Furthermore, the iterative XTC algorithm ensures that the resulting
topology control graph G′

XTC converges to the XTC topology control graph
GXTC after some (infinite) amount of time (depicted in figure 3.5. The guar-
antee that each node discovers all its neighbor devices and thus the resulting
topology control graph equals GXTC was gained gained by letting the nodes
repeatedly scan there neighborhood.

In practice, implementing the iterative XTC algorithm straight forward
results in a power consuming implementation, because neighbor discovery
is a very expensive operation. Therefore, it is desirable to advice the nodes
to stop executing the while loop (Step I, figure 3.5) of the XTC algorithm -
or at least to reduce its frequency - after the topology control graph equals
GXTC , and let the nodes only passively discover new devices (as explained
in the previous subsection), i.e. the nodes shall still run Step II) of the
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iterative algorithm (figure 3.5). Hence, we still need some condition that
switches the network nodes from this “active” state (executing Step II) into
a more “passive” state (i.e. stop executing Step I), or at least reducing the
frequency of executing Step I).

Therefore, the question arises what we’ve gained with the iterative ver-
sion of the XTC algorithm derived in this section, compared to the version
introduced in the last section (figure 3.4). The following list summarizes the
most important advantages of the XTC algorithm in its iterative formula-
tion:

Continuous Mode Change The iterative XTC algorithm allows doing a
“smooth” transition from neighbor discovery mode to non-discovery
mode. This can be reached by continuously reducing the frequency of
the while loop (Step I).

Background Neighbor Discovery Process Instead of turning neighbor
discovery mode completely off, it is possible to let the neighbor discov-
ery process run at a very low frequency after some predefined amount
of time. This can in fact be a good compromise to guarantee that the
resulting topology control graph converges to GXTC with reasonable
power consumption.

Passive Neighbor Discovery Passive neighbor discovery enables the net-
work to discover new nodes and integrating them correctly into the
network even if the nodes of the existing network are not looking for
new neighbor devices. Of course we could enable passive neighbor dis-
covery also for the algorithm shown in figure 3.4, but it is obvious that
the probability of adding the node correctly to the network will be
lower, since the probability of detecting all neighbor devices usually is
lower.

Controllability In practice, the assumption of an external observer is not
that inappropriate (e.g. observing the network by connecting one of
the nodes to a computer). The iterative variant of the XTC algorithm
can easily be extended to let an external observer turn on/off neighbor
discovering after the network has converged to GXTC . This is useless
in an implementation that uses a fixed number of neighbor discovery
steps.

Continuous Network Adjustment Another problem of the XTC algo-
rithm presented in figure 3.4 arises if the the network nodes are turned
on asynchronously: some nodes may still be in neighbor discovery
mode, while other nodes already switched to connection establishment
mode, thus the resulting topology control graph usually will contain
more links than the desired topology control graph GXTC and has to
be “cleaned up” at some time (as explained in section 3.3.3) too. In
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its iterative variant however, the XTC algorithm does this “clean up”
procedure after each neighbor discovery step, i.e. the “mistakes” done
are corrected continuously.

Connectivity Since the iterative XTC algorithm starts establishing the
first connections right after each neighbor discovery process, connec-
tivity gets usually achieved earlier.

Neighborhood Changes Consider some node u that moves from its initial
neighborhood into a completely different neighborhood, i.e. node u is
brought to an environment consisting of nodes not yet discovered by
node u. It’s obvious that a node running the XTC algorithm presented
in figure 3.4 is not able to react upon this situation, while the iterative
XTC algorithm is at least able to discover the unknown nodes of its
new surrounding. We’re going to discuss this in more detail in section
4.6.2



Chapter 4

Adaptive XTC

In this chapter we’re going to derive a variant of the XTC algorithm that is
able to adapt the network topology dynamically if the weights of the edges
in G are changing. The target was to obtain a network that is able to adapt
its topology if its nodes are re-arranged. Thus, we assumed that the network
is static most of the time, and changes in the link weights occur infrequently.
Section 4.1 explains the problem task in more detail, while in section 4.2
the basics of link weight updating is discussed. In section 4.3, a rough draft
of the approach chosen is given. This rough draft will be improved during
sections 4.4 and 4.5. A summery of the adaptive XTC algorithm obtained
is given in figure 4.12 and figure 4.13.

In our approach, link weight updating is not synchronized, thus we in-
troduce asymmetry in the network. The problems of asymmetry and the
countermeasures taken are presented in section 4.6.

Last but not least, the network should be able to deal with broken links
and leaving (malfunctioning) devices (e.g. due to power-down). Hence, link
and device losses are discussed in section 4.7.

35
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4.1 Adjusting the Network to G∗
XTC

Basically, if the node constellation changes, that is G changes, the topology
control graph GXTC may change as well, hence the topology control graph
established has to be updated. More precisely, if the topology graph G
changes to G∗, the topology control graph GXTC has to be adapted to the
topology control graph G∗

XTC that would be obtained by applying the XTC
algorithm on G∗.

But, given that each node u has its neighbor order up to date1, updating
the existing network GXTC to G∗

XTC is simple: Since each node always
“listens” for neighbor orderings from neighbor devices, the only thing that
has to be done is to exchange the current neighbor orderings among the
nodes. A receiving node v may then process the received order ≺u and
decide if the link (u, v) has to be closed, if it has to be established, or if it
simply has to be kept.

But since not all neighbors are connected directly, there are only two
possibilities to guarantee that each neighbor is going to receive the order of
each of its neighbors:

Broadcasting Each node u periodically broadcasts its updated neighbor
ordering to all nodes in the network. A receiving node v may then
decide if the link (u, v) has to be established / closed.

Connection trials Each node u periodically establishes connections to its
unconnected neighbors and sends its updated neighbor order ≺u to
them. A receiving node v may then decide if the link (u, v) should be
kept or closed.

The main problems of both solutions are obvious: The second solution re-
sults in a lot of unnecessary connection establishments, especially if we as-
sume that G changes slowly. On the other side, by periodically broadcasting
neighbor orders, unnecessary connection establishments can be avoided, but
the network gets flooded with a lot of unnecessary packets. Furthermore,
controlling broadcast packets in cyclic networks needs a lot of effort. Thus,
none of the two solutions is efficient in its rough draft.

Anyhow, this thesis focuses on the second solution mentioned above. The
main reason is that a node u may prevent a lot of unnecessary connection
establishments by simply observing changes in its neighbor ordering ≺u

resulting from a change in the topology of G. How a node u has to observe
its order will be part of the following sections. After elaborating this solution
we’re going to give additional reasons for the choice made here at the end
of this section.

1i.e. each node immediately adjusts its neighbor order according to the new topology
of G∗
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4.2 Getting the Link Quality

To update the neighbor order ≺u, a node u has to update the link qualities of
all its discovered neighbors in ≺u. Getting the link quality of an edge (u, v)
in GXTC is simple: it can be read directly from the existing connection.
Anyhow, a node u may obtain the link quality of a link (u, v) that is not
in GXTC (i.e. a connection to node v does not exist) only in two different
ways2:

• by establishing a connection to the neighbor node v and reading the
link quality,

• or by neighbor discovering, a node u obtains the weights of all edges
to the discovered neighbor device.

This thesis focuses on updating the neighbor order by neighbor discovering
for the following reasons:

1. Updating the neighbor order ≺u after each neighbor discovery step
can be integrated easily into the iterative XTC algorithm introduced
in section 3.3 in figure 3.5.

2. As mentioned in section 3.4 we do not come around continuous neigh-
bor discovering for that a node u is able to integrate itself properly into
a new surrounding (i.e. it has to be able to add new neighbors to its
order). Furthermore, letting the discovering process (Step I in figure
3.5) run in background at a low frequency increases the probability
of integrating new nodes correctly into the existing network. Thus,
we can now use this background process additionally for updating the
neighbor ordering.

3. Using a low frequency for updating the neighbor ordering should be
sufficient, as well as efficient with regards to the assumption that the
topology of G0 is quasi-static.

4. With Bluetooth, connection establishment (paging) and device discov-
ery (inquiry) are resembling processes with regards to power-consumption.
But since a single inquiry yields the link weight of all discovered de-
vices, it seems to be more efficient to do a single inquiry than to page
each neighbor device.

Necessity of updating unconnected Links

No matter which of the above mentioned strategy gets chosen, updating the
link quality of unconnected nodes is a power consuming process: Neighbor

2In fact, this is hardware dependent, hence this statement holds for the BTnodes used
in this thesis, but may not hold in other systems
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discovering, as well as connection establishment (i.e. paging in Bluetooth)
are time consuming and costly processes. Therefore, the question arises if it
is not possible to come along without updating the quality of unconnected
links (e.g. by observing links in G∗

XTC only).
The answer is no, as can be seen from the example depicted in figure

4.1: In figure 4.1 a) a network established with the XTC algorithm is shown.
The edge (a, c) is not in GXTC because there exists the better common node
ba,c := b.

Figure 4.1 b) shows what happens if an obstacle gets placed between
nodes b and c: The link weight ωbc increases (in Bluetooth: the RSSI at node
c decreases), until the link weight ωbc becomes worse than the weight of the
edge (a, c). Thus, from the point of view of node c, node a will appear before
b in its neighbor ordering ≺c, which can be observed by continuously reading
the link quality of the link (b, c). This change in the neighbor ordering ≺c

causes the link (a, c) to be in GXTC , as well as the removal of (b, c) from
GXTC .

b
a

c

1

2

1

2

1
2

(a)

b
a

c

1

2

1

2

2
1

(b)

Figure 4.1: Link closing due to an obstacle

Note that until now, there was no need for node c or node d to update
the weight ωac of the edge (a, c) since it did not change. But after removal
of the obstacle, the weight of (a, c) will regain its initial value. But since
neither node c nor node d is going to observe it, none of the involved nodes
is able to bring back the topology control graph to its initial state.

4.3 Approach

We are now going to present the approach chosen in this thesis to derive an
adaptive variant of the XTC topology control algorithm. As discussed in the
previous section, a node u running the algorithm will adapt the (partially)
established topology control graph GXTC to changes in the topology of G
after each neighbor discovery.
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A node u adapts to the topology control graph G∗
XTC by updating its

neighbor order ≺u and by reacting accordingly to the changes observed.
More precisely, by observing changes in its neighbor order ≺u a node u will
evaluate:

1. new candidates: edges (u, v) that are not in GXTC but that come into
question to be in G∗

XTC , and

2. outdated candidates: established links (u, v) that come into question
to be not in G∗

XTC (i.e. that have to be closed).

Afterwards, the node u will establish a connection to each new candidate
and send its updated order ≺∗

u to it. Likewise, node u will send its updated
order ≺∗

u to each evaluated outdated candidate.

4.3.1 Rough Draft

A rough draft of this solution is given in figure 4.2: Before starting a new
neighbor discovery step (Line 4), a copy of the current neighbor order ≺∗

u

is established (Line 3), and the sets Cu and Ru are initialized to be empty
(Line 2).

XTC Algorithm

I) Broadcast ≺u to neighbor devices:
1: while (true) {
2: Ru := {}, Cu := {}
3: copy neighbor ordering: ≺u:=≺∗

u

4: discover neighbor devices: Du

5: for (each node v ∈ Du) {
6: if (v ∈≺u) {
7: update neighbor order ≺∗

u according to ω∗
uv

8: }
9: else ≺∗

u:=≺∗
u ∪ v (idv, ωuv)

10: }
11: Cu :=get new candidates(≺∗

u,≺u)
12: Ru :=get outdated candidates(≺∗

u,≺u)
13: apply changes(Ru, Cu)
14: }

Figure 4.2: Adaptive XTC: Approach

From Lines 5-10 the current neighbor order ≺∗
u gets updated according

to the neighbor discovery result Du obtained in Line 4: if the node v can be
found in the outdated neighbor order ≺u, the neighbor order gets updated
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according to the new weight ω∗
uv of the edge (u, v) found during neighbor

discovery (Line 7). If a node v in Du was not yet known (i.e. v cannot be
found in ≺u), the node gets added to the neighbor order, that is its Id and
the weight of the edge ωuv are stored in the neighbor order (Line 9).

Afterwards, the updated neighbor order ≺∗
u gets compared with the copy

of the initial order ≺u: On Line 11 the set Cu is established that contains the
new candidates evaluated. Outdated candidates are evaluated and added to
the set Ru at Line 12.

Finally, the node u reacts upon the changes observed by sending its
updated order ≺∗

u to each candidate found on Lines 11-12, that is node u
will establish a connection to each v in Cu and send its updated order to it.
Likewise, node u will send its updated order ≺∗

u to each node contained in
the set Ru.

Note that Step II) needs not be adjusted for the moment.

4.3.2 Targets

As mentioned before, the main target of the adaptive formulation of the
XTC algorithm is that the current topology control graph GXTC converges
to G∗

XTC . This will certainly be the case if all edges (u, v) adjacent to u
are “checked” after each update of the neighbor order, i.e. if all uncon-
nected nodes are considered as new candidates, and all connected nodes are
considered as outdated candidates. This can be reached by implementing
the functions get new candidates() and get outdated candidates() as shown
in figure 4.3.

XTC Algorithm

get new candidates(≺∗
u,≺u):

1: C := {}
2: for (each unconnected node v ∈≺∗

u) {
3: C := C ∪ v
4: }
5: return C

get outdated candidates(≺∗
u,≺u):

1: R := {}
2: for (each connected node v ∈≺∗

u) {
3: R := R ∪ v
4: }
5: return R

Figure 4.3: Adaptive XTC: Unoptimized candidate evaluation
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Secondly, the adaptive XTC algorithm should be efficient with regards
to power consumption. Mainly, this can be reached by reducing unnecessary
node activity, that is

• saving unnecessary connection establishments,

• and reduce excessive order exchange.

In other words, we are interested in minimizing the sets of candidates (i.e.
the sets Ru and Cu in figure 4.2) before calling the apply changes() by op-
timizing the functions get new candidates() and get outdated candidates().
Thus, in an optimal scenario, the set Ru will only contain the links (u, v)
that actually have to be closed, i.e.

Ru := {v ∈≺∗
u: (u, v) ∈ GXTC ∧ (u, v) /∈ G∗

XTC},

whereas the set Cu will only contain the links (u, v) that actually have to
be established, i.e.

Cu := {v ∈≺∗
u: (u, v) /∈ GXTC ∧ (u, v) ∈ G∗

XTC}.

4.4 Optimization by Exclusion

In this section we’re going to present how neighbor nodes in ≺u can be ex-
cluded from both, the set of new candidates, as well as of the set of outdated
candidates with certainty. This can be reached by a simple comparison of
the neighbor order ≺u before the update occurred and the updated neighbor
order ≺∗

u.

4.4.1 Excluding connected neighbors

Let’s start with the simpler case: a node v in ≺u to which a connection
exists (i.e. (u, v) ∈ GXTC). Since the link (u, v) is in GXTC , we know
that the set Sv,≺u ∩ Su,≺v is empty before updating the neighbor order ≺u,
i.e. no better common neighbor exists. Thus, in tabular representation, the
situation before updating the neighbor order ≺u looks like this:

Sv,≺u︷ ︸︸ ︷
≺u · · · v · · · x · · ·

... }
Su,≺vx

...
u
...
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where node x indicates that common neighbors may exist, but none of these
neighbors is a better common neighbor buv since (u, v) ∈ GXTC .

Assume now, that after updating the neighbor order ≺u, node x appears
before v in the updated neighbor order ≺∗

u. Given that the neighbor order
of v did not change, and the link selection decision would be repeated, the
link (u, v) would have to be removed from GXTC , since the set S∗

v,≺u
∩Su,≺v

would now contain x, thus would not be empty anymore. This can be seen
from the tabular representation shown below:

S∗
v,≺u︷ ︸︸ ︷

≺∗
u · · · x · · · v · · ·

... }
Su,≺vx

...
u
...

Hence, if some node x appears before a connected node v in the updated
order ≺∗

u that did not appear before v in ≺u, it may be possible that the link
(u, v) has to be closed, i.e. the connected node v is an outdated candidate.
Thus

Observation 4.4.1 A connected node v in ≺∗
u is an outdated candidate if

and only if
∃x ∈ S∗

v,≺u
: x /∈ Sv,≺u .

4.4.2 Excluding unconnected neighbors

We’re now going to take a look at nodes v to which some node u has no
connection, i.e. the set Sv,≺u ∩ Su,≺v is non-empty. Hence, at least one
common better neighbor buv exists before updating the neighbor order:

S∗
v,≺u︷ ︸︸ ︷

≺∗
u · · · buv · · · v · · ·

... }
Su,≺vbuv

...
u
...

Assume that after updating the neighbor order, node v appears before the
better common neighbor buv in ≺∗

u thus, given that buv was the only better
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common node of the link (u, v), the link (u, v) has to be added to GXTC

thus in this case, a connection to node v has to be established.
Thus, whenever some node x appears after an unconnected node v in

the updated order ≺∗
u but appeared before v in ≺u, it may be that x was a

better common neighbor buv of the edge (u, v) and hence the link (u, v) has
to be established, i.e. the neighbor v is a new candidate. In other words:

Observation 4.4.2 A unconnected node v in ≺∗
u becomes a candidate if

and only if
∃x ∈ Sv,≺u : x /∈ S∗

v,≺u
.

4.4.3 Conclusion

Integrating the ideas of exclusion into our formulation of the adaptive XTC
algorithm presented in figure 4.2 to reduce node activity can now be done by
writing out the functions get new candidates() and get outdated candidates()
in more detail as shown in figure 4.4.

XTC Algorithm

get new candidates(≺∗
u,≺u):

1: C := {}
2: for (each unconnected node v ∈≺∗

u) {
3: if (v /∈≺u) C := C ∪ v
4: else if (∃x ∈ Sv,≺u : x /∈ S∗

v,≺u
) C := C ∪ v

5: }
6: return C

get outdated candidates(≺∗
u,≺u):

1: R := {}
2: for (each connected node v ∈≺∗

u) {
3: if (∃x ∈ S∗

v,≺u
: x /∈ Sv,≺u) R := R ∪ v

4: }
5: return R

Figure 4.4: Network maintenance: Reducing node activity by exclusion

It’s clear that the optimized evaluation functions presented in figure 4.4
reduce node activity compared to the evaluation functions presented in figure
4.3. As an example consider the network depicted in figure 4.5. Assume that
the position of node b changes as indicated in the figure. If the nodes would
make use of the unoptimized evaluation functions shown in figure 4.2, node
a would establish a connection to both, node y and node c after the next
neighbor discovery operation has been executed.
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b

a

x

c

y

b’

Figure 4.5: XTC maintenance with exclusion: an example

But by applying the principle of exclusion (i.e. the nodes make use of
the optimized evaluation functions presented in figure 4.4), the unnecessary
connection establishment to node y gets saved, since the set Sy,≺a does not
change when the position of b changes.

b

a

x

c

y

x’

Figure 4.6: XTC maintenance with exclusion: second example

Nevertheless, preserving unnecessary connection establishments by ex-
clusion is a matter of luck and depends strongly on the actual situation and
the occurring topology changes. This is shown in figure 4.6, that shows the
same network as in the previous example (figure 4.5) but a different change
in topology. Since x is nearest to node a, node x appears before node y, as
well as before c in ≺u. After the change in topology occurred (that is the
position of x changed), both, node y, as well as node c will appear before
x. Hence node a will establish the links (a, y) and (a, c) because x cannot
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be found in the set S∗
y,≺a

, as well as in the set S∗
c,≺a

. Informally speaking,
node a will establish the links (a, y) and (a, c) because node x may possibly
have been a common better neighbor.

You may have noticed that in the discussion above we only considered
how unnecessary connection establishments can be saved. This is because
unnecessary connection establishments is the more severe problem than ex-
cessive order exchange: the expense of a connection establishment is several
times higher than the cost of sending a packet to a connected neighbor
device. Thus, although the exclusion principle does not really decrease ex-
cessive order exchange considerably, we are not going to make any efforts to
reduce it further.

4.5 Better Common Neighbors

We are now going to introduce a concept that allows a node u to reduce the
set of new candidates Cu further, and hence to preserve a lot of unnecessary
connection establishments. This can be obtained by extending the principle
of exclusion of unconnected neighbors.

The problem of the exclusion principle presented in section 4.4 is that
a node u has to establish a connection each time a neighbor may possibly
be a common better neighbor buv, i.e. every time a node x disappears from
the set Sv,≺u an unnecessary connection establishment occurs if at least one
different common better neighbor exists. An example is given below, where
x and y are both better common neighbors, thus the disappearance of one
of them from the set Sv,≺u (in this case y) does not cause an inclusion of
(u, v) in G∗

XTC .
Sv,≺u︷ ︸︸ ︷

≺u · · · x · · · y · · · v · · ·

S∗
v,≺u︷ ︸︸ ︷

≺∗
u · · · x · · · v · · · y · · ·

... }
Su,≺v

x
...
y
...
u
...

From the table above it becomes clear that a connection to some uncon-
nected neighbor v actually has to be established (i.e. if (u, v) ∈ G∗

XTC) not
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before all common better neighbors disappeared from Su,≺v . Hence, if an
unconnected pair (u, v) focuses only on one of them, a node u can save a lot
of unnecessary connection establishments.

4.5.1 Concept

The idea is quite simple: when a node v receives a neighbor order ≺u and
v decides to close the connection, the nodes u and v agree upon one of
the common better neighbors. Instead of just storing the pair {idu, ωuv}
in the neighbor ordering ≺v, node v additionally stores the better common
neighbor buv chosen, i.e. node v stores the triple {idu, ωuv, buv in its neighbor
ordering. Node v will then not establish the link (u, v) until the better
common node buv has disappeared from the set Su,≺v . In other words: if
the edge (u, v) is not in GXTC , node v will not establish the link until node
u appears before buv in its updated neighbor order ≺∗

v.
If also node u stores the triple {idv , ωuv, buv} in its neighbor order, and

if node u also establishes the link (u, v) not before v appears before buv

in ≺v, unnecessary connection establishments can be saved. Thus, we can
introduce the evaluation function shown in figure 4.7 which reduces the set
of new candidates Cu by making use of the better common neighbor concept.

XTC Algorithm

get new candidates(≺∗
u):

1: C := {}
2: for (each unconnected node v ∈≺∗

u) {
3: if (v ≺∗

u buv) C := C ∪ v
4: }
5: return C

Figure 4.7: Adaptive XTC: improved evaluation function for reducing the
set of new candidates

Note that the function shown in figure 4.7 does only depend on the up-
dated neighbor ordering ≺∗

u, that is the set C can be established without
the knowledge of the initial neighbor order ≺u. To reach this, we have to
ensure that also new nodes found during neighbor discovery can be deter-
mined in the updated neighbor order. But this is already the case: for a
newly discovered edge (u, v) adjacent to u, no better common neighbor buv

has been determined, hence the condition on Line 3 in figure 4.7 will also
be true for newly discovered devices.
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4.5.2 Example

An example is given in figure 4.8: Assume that nodes a, x, and b do not
change their positions, but that node c periodically changes its position as
indicated. If the nodes would make use of the evaluation function presented
in figure 4.4, node a would unnecessarily establish a connection, each time
node c moves to the position c′, respectively the link (a, b) would unneces-
sarily be established by node a each time node c moves from position c′ to
the position c.

c

a x

b

c’

Figure 4.8: XTC maintenance: Saving unnecessary connection establish-
ments by choosing a common better neighbor

But by making use of the evaluation function introduced before (figure
4.7), node x is the better common neighbor for both, link (a, c), as well as
for link (a, b). Thus node a does neither establish the link (a, b) nor the
link (a, c) if the position of c varies, since neither b nor c appears before the
better common neighbor x in ≺a. In the same way it can be shown that also
b, as well as c do not establish a connection to node a as the position of c
varies. Thus no unnecessary connection will be established in the situation
depicted in figure 4.8, as it should be.

4.5.3 Adjusting XTC Step II

For that the sender of the neighbor order ≺u is able to store the common
better neighbor buv, the receiving node v has to tell node u who is the
better common neighbor. Thus, to be able to make use of the concept
introduced before, we have to make use of the 2-way handshake protocol
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depicted in figure 3.3. Hence we have to adjust Step II) in figure 4.2 of the
XTC algorithm as shown in figure 4.9.

XTC Algorithm

II) Select topology control neighbors:
1: for (each received packet) {
2: switch (packet type) {
3: case (order packet ≺v)
4: if (v /∈≺u) {
5: update neighbor order: ≺u=≺u ∪ v
6: broadcast ≺u to all neighbors
7: }
8: if (Sv,≺u ∩ Su,≺v �= ∅) {
9: choose better common node buv ∈ (Sv,≺u ∩ Su,≺v)

10: store better common node buv in ≺u

11: send ’NACK’ packet to v
12: }
13: else {
14: send ’ACK’ packet to v
15: inform application layer
16: }
17: case (’NACK’ packet)
18: store better common node buv in ≺u

19: disconnect
20: case (’ACK’ packet)
21: inform application layer
22: }
23: }

Figure 4.9: Adaptive XTC: making use of better common nodes

Basically, a receiving node u now has to distinguish three different packet
types: received neighbor order ≺v, ’ACK’ packets, and ’NACK’ packets, as
indicated in the Lines 2, 3, 17, and 20.

If a neighbor order ≺v is received, the receiving node u decides if the
link (u, v) should be in GXTC or not (Line 8). If the connection has to be
closed, the receiving node u has to choose a common better node x from the
set Sv,≺u ∩Su,≺v (Line 9), write it to the neighbor order (Line 10), and send
back a ’NACK’ packet including the Id of the better common neighbor buv

chosen.
If a node u receives a ’NACK’ packet, it stores the better common neigh-

bor buv in its neighbor ordering ≺u, and closes the connection (Lines 18-19).
If a ’ACK’ packet is received, node u only has to inform the application
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layer (Lines 20-22), which has also to be done if a node u has decided to
keep a connection (Line 15).

In order to enable passive neighbor discovery as explained in section
3.3.4, Lines 4-7 ensure that a received neighbor ordering ≺v can be processed
even if the sending node v has not been discovered so far.

4.6 Asymmetry

In practice, another problem arises because the nodes of an established net-
work do not update their neighbor order synchronously. This leads to asym-
metric edges (u, v), that is node u assigns another weight to the link as node
v does. In this section, we’re going to show that severe problems may arise
due to asymmetric links, and what can be done against it.

4.6.1 The Problem

The problem that arises due to asymmetric links can be shown by a simple
example, depicted in figure 4.10. Figure 4.10 a) indicates that at some time
a change in topology occurs, i.e. the quality of the link (a, c) increases.
Assume now, that node c will be the first node that updates its neighbor
ordering after the change in topology occurred.

b

a
c

c’

(a)

b

a
c

c’

(b)

b

a

c’

(c)

b

a

c’

(d)

Figure 4.10: Asymmetry: An example

Thus, before updating, the order ≺c looked like this:

b
≺c: b a
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where the letter b above a indicates that node b is the better common neigh-
bor bac of the link (a, c), and the box around b indicates that a connection
to it exists. After updating, the order ≺∗

c looks like this:

b
≺∗

c: a b

Since node a now appears before the better common neighbor bac := b of the
edge (a, c), node c will establish a connection to node a. Furthermore, node
c will send its updated order to node b, since a new node (node a) appears
in the set S∗

b,≺c
.

After establishing the connection to node a, node c will send its updated
order ≺∗

c to node a. Node a will immediately process the received order,
and decides if the connection should be kept or not. Since node a has not
yet observed the change in topology, the link selection decision in tabular
representation will look like this (see figure 4.10 b):

≺a: b c
a
b

thus node a will decide to keep the link (a, c).
Next, node c will send its updated neighbor order to node b which will

not cause the closing of the link (b, c) as can be seen from the tabular
representation below:

≺b: c a
a
b

Thus, after node c has reacted upon the changes in topology, the network
will result in the temporary, completely connected network depicted in figure
4.10 c). Thus

Observation 4.6.1 Theorem 2.3.2 does not hold if the topology graph G
consists of asymmetric links.

It is clear that after node a has observed the change in topology, and
adjusted its links as well, the topology control graph will converge to the
topology control graph shown in figure 4.10 d). But since the frequency of
adapting the network to changes in topology is usually very low in order that
power consumption can be reduced to a minimum (as explained in section
3.4), and due to the fact that asynchronous updating cannot be avoided3,
the network may stay a long time in the state shown in figure 4.10 c).

That this may be a severe problem - especially in larger networks - is
shown in figure 4.11: Figure 4.11 a) shows an XTC network before the

3in fact, asynchronous updating is desired, as we shall see in section 6.1



CHAPTER 4. ADAPTIVE XTC 51

indicated change in topology occurred, and figure 4.11 b) shows the network
after only node c has observed the changes in its neighborhood and adjusted
its links accordingly.

b

a

d

c’

e

c

(a)

b

a

d

c’

e

(b)

Figure 4.11: Asymmetry: Another example

The problem of a (temporary) topology control graph as depicted in
figure 4.11 b) is twofold:

1. Unnecessary power consumption because the excess links are kept
longer than necessary.

2. The unnecessary links produce a lot of overhead for the transport layer.

4.6.2 Solution

Solving the problem of asymmetry is straight forward: each time some node
u updates its neighbor order (i.e. the weights of all adjacent edges (u, v) in
≺u), u has to inform its neighbors about the changes occurred, which can be
done by broadcasting the updated neighbor order to each neighbor device
in ≺u. The neighbors may then update the link weight ωuv as well.

This ensures that all established links (u, v) ∈ GXTC will be symmetric,
before doing the link selection decision, that is before executing Lines 8-16
of the adaptive XTC algorithm Step II) depicted in figure 4.9.

Asymmetry in edges (u, v) that are not in GXTC are no problem, as
long as both parties are not willing to establish the link. But as soon as
the link (u, v) is established by either node u or v, asymmetry can easily be
eliminated in the same way right after the order packet arrived.

Hence the straight forward way would be to insert the following piece of
pseudo-code between Lines 7 and 8 in XTC Step II (figure 4.9:
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8: else {
9: read link weight ω∗

uv

10: update ≺u according to ω∗
uv

11: }

But since the neighbor order may change by updating the link weight
ωuv, probably some new connections have to be established, or the updated
neighbor order has to be sent to another neighbor node. Thus the complete
solution will look as summarized in figure 4.12 and figure 4.13.

To save some space, as well as to point out the communities of Step
I) and Step II), we introduced the function update neighbor order() which
executes Lines 5-10 in Step I) of the adaptive XTC algorithm presented in
figure 4.2. The function is written out in more detail in figure 4.13.

It’s now easy to see that adjusting the network to changes in topology
is done in two ways:

1. after a neighbor discovery operation (Step I, Lines 4-7)

2. each time a neighbor ordering ≺v is received (Step II, Lines 4-6)

The only difference is that in Step I) the whole neighbor order gets updated
to the current state of the topology graph G, whereas in Step II) only the
link weight ωuv of a single neighbor node v gets updated.

Note that instead of calling the get outdated candidates() function the
neighbor order is broadcasted to all neighbors at Line 9 (execution of the
broadcast is done in Line 10) in XTC Step I), in comparison with the adap-
tive XTC algorithm presented before (figure 4.4). As mentioned above, this
is necessary to cancel asymmetry.

But on the other hand, in Step II), Line 18 the updated neighbor order is
only sent to the neighbors necessary (as explained in section 4.4). Thus, the
broadcast to cancel asymmetry, started by some node u will only propagate
to nodes that are affected “directly” by the changes observed by node u.
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XTC Algorithm

I) Broadcast ≺u to neighbor devices:
1: while (true) {
2: Ru := {}, Cu := {}
3: copy neighbor ordering: ≺u:=≺∗

u

4: discover neighbor devices: Du

5: for (each node v ∈ Du) {
6: update neighbor order(≺∗

u, v)
7: }
8: Cu :=get new candidates(≺∗

u)
9: Ru := all connected neighbors in ≺u

10: apply changes(Ru, Cu)
11: }

II) Select topology control neighbors:
1: for (each received packet) {
2: switch (packet type) {
3: case (order packet ≺v)
4: Ru := {}, Cu := {}
5: read link weight ω∗

uv

6: copy neighbor ordering: ≺u:=≺∗
u

7: update neighbor order(≺∗
u, v)

8: if (Sv,≺u ∩ Su,≺v �= ∅) {
9: choose better common neighbor buv ∈ (Sv,≺u ∩ Su,≺v)

10: store better common neighbor buv in ≺u

11: send ’NACK’ packet to v
12: }
13: else {
14: send ’ACK’ packet to v
15: inform application layer
16: }
17: Cu := get new candidates(≺∗

u)
18: Ru := get outdated candidates(≺∗

u,≺u)
19: apply changes(≺u, Ru, Cu)
20: case (’NACK’ packet)
21: store better common node bu,v in ≺u

22: disconnect
23: case (’ACK’ packet)
24: inform application layer
25: }
26: }

Figure 4.12: Adaptive XTC, Part A
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XTC Algorithm

update neighbor order(≺u, v):
1: if (v ∈≺u) {
2: update neighbor order ≺u according to ωuv

3: }
4: else ≺u:=≺u ∪ v (idv , ωuv, buv := ∅)

get new candidates(≺u):
1: C := {}
2: for (each unconnected node v ∈≺u) {
3: else if (v ≺u buv) C := C ∪ v
4: }
5: return C

get outdated candidates(≺∗
u,≺u):

1: R := {}
2: for (each connected node v ∈≺∗

u) {
3: R := R ∪ v
4: }
5: return R

apply changes(R,C):
1: for (each v ∈ C) {
2: establish connection to v
3: send ≺u to v
4: }
5: for (each v ∈ R) {
6: send ≺u to v
7: }

Figure 4.13: Adaptive XTC: functional parts
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4.7 Link Losses

This section deals with an important issue in ad hoc networking: connec-
tion / device losses. The effects of both, a connection loss, as well as of a
device loss are obvious: the remaining topology control graph G∗

XTC may
be unconnected. This is shown in figure 4.14.

y

Net 1
Net 2

Figure 4.14: Link Loss: Losing node y (e.g. because of a power down) results
in an unconnected topology control graph

In this section we’re going to take a look at which actions have to be
taken by the remaining nodes for that the remaining control graph can be
brought to a connected state again.

Connection Losses vs. Device Losses

Usually, the network nodes may not distinguish between a connection loss
and a device loss4, i.e. from point of view of a node u only a link loss is
observed.

To distinguish between link losses and device losses the following can be
done: after some node u observes a link loss it tries to re-establish the lost
link. If reconnection fails, it is assumed that the neighbor device is not able
to respond anymore, i.e. will be interpreted as a device loss, that is the
device is considered as malfunctioning.

To consider link / device losses, we extend the previous formulation
of the XTC algorithm by Step III) as shown in figure 4.15. In case of a
connection loss, the observing node u tries to reconnect to the previously
connected device y, as mentioned above. If reconnection fails, the link loss
is interpreted as a device loss, hence the neighbor device has to be removed
from the neighbor order ≺u (Line 4).

Device Losses

We are now going to take a closer look at the consequences that arise if
a node leaves the network. From point of view of the network, the device

4at least the BTnode may not
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XTC Algorithm

III) Link Losses:
1: for (each lost link (u, y)) {
2: create connection to y
3: if (error) {
4: remove y from ≺u

5: }
6: else send order to y
7: }

Figure 4.15: XTC: Link Losses

is “lost”, that is it can’t be used as a relay node for sending messages to
remote devices.

An example of a device loss is given in tabular representation below,
where node y is removed from the G, and thus will not appear in ≺∗

u any-
more:

Sv,≺u︷ ︸︸ ︷
≺u · · · y · · · v · · ·

S∗
v,≺u︷ ︸︸ ︷

≺∗
u · · · v · · ·

Let’s consider if the removal of node y implies that a new connection to
some node v in ≺u has to be established (if no connection to v exists), or if
an existing connection to some node v has to be closed.

If a connection to node v exists (Sv,≺u ∩ Su,≺v = ∅)it’s obvious: by the
removal of a node y the size of the set Sv,≺u decreases (i.e. |S∗

v,≺u
| < |Sv,≺u |),

thus the set S∗
v,≺u

∩ Su,≺v will be empty as well. Thus,

Observation 4.7.1 Given that some neighbor device y ∈≺u is lost, the
removal of y from ≺u won’t cause any further connection closings.

If no connection to node v exists, we know from section 4.5 that there’s
no need for establishing the link (u, v) as long as v ≺u bu,v. Thus, only links
(u, v) that were not in GXTC because y was the better common neighbor
have to be established.

Observation 4.7.2 given that some neighbor device y ∈≺u is lost, the re-
moval of y from ≺u causes connection establishments to all neighbor nodes
v ∈≺u with bu,v = y.

Therefore, we extend the formulation of the XTC algorithm by Step III)
which considers device losses as shown in figure 4.16.
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XTC Algorithm

III) Link Losses:
4: for (each lost link (u, y)) {
5: create connection to y
6: if (error) {
6: remove y from ≺u

6: C := get new candidates(≺u)
6: apply changes(C, R := ∅)
7: }
6: else send order to y
7: }

Figure 4.16: XTC: Reacting upon Device Losses

Announcing Device Losses

At first glance, reacting upon device losses seems to be very simple. But
the real challenge in dealing with device losses is not about how a node u
has to react when observing a device loss, it is more about assuring that all
of the nodes involved get informed about the device loss. This can be seen
from the example shown in figure 4.17.

Net 1 Net 2

ya c

c d

(a)

Net 1 Net 2

a c

c d

(b)

Figure 4.17: Asymmetry: Another example

Consider the network depicted in figure 4.17 a). Node y is the node
that ensures that the topology control graph is connected. Note that the
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link (c, d) is not established because of node bcd = y. Furthermore, assume
that the links (a, c) and (c, d) are not established because better common
neighbors can be found in Net 1 (Net 2 respectively).

Figure 4.17 b) shows the resulting topology control graph GXTC if node
u would not have been part of G0. In this case, the link (c, d) is established
because there is no common better neighbor. In contrast to figure 4.17 a),
the link (a, c) is not part of the topology control graph GXTC because both,
node c, and node d are better common neighbors of (a, c).

Thus, by removing node y from the topology control graph shown in
figure 4.17 a), we’re going to receive the topology control graph depicted in
figure 4.17 b) if each node applies the device loss procedure shown in figure
4.16.

But the problem is obvious: since only nodes a and c are able to observe
the loss of device y directly, these nodes have to inform the remaining nodes
about the device loss for that, in this case, the link (c, d) gets established by
node c or node d. Thus in general, we can make the following

Observation 4.7.3 After observing a device loss, the observing nodes have
to inform the remaining nodes about the device loss observed.

Solution

The problem of announcing a device loss is similar to the problem of bringing
an updated neighbor ordering to all known neighbors, as discussed in section
4.1. But this time, we’re going for the broadcast solution, because it is fast
and can be implemented efficiently.

A rough draft of the solution is given in figure 4.18. The idea is quite
simple: when observing a device loss (Step III, Line 4), the observing node u
calls the function remove neighbor() which is shown in more detail in figure
4.19: The observing node u sends a ’DEV LOSS’ packet, containing the Id
of the lost device to all of its connected neighbor devices and establishes
new connections if necessary (Lines 3-4 in figure 4.19).

The remove neighbor() will then be executed recursively: Each receiving
node of the ’DEV LOSS’ packet is going to execute the remove neighbor()
function as well, thus the receiving node will send the ’DEV LOSS’ packet
to all its connected neighbors as well. As soon as a node u receives a
’DEV LOSS’ packet of a neighbor that cannot be found in its neighbor
ordering ≺u, it stops forwarding the packet.

Conclusion

1. In section 4.1 a node u has to distribute its neighbor order ≺u to all
of its neighbor devices due to some changes in topology. The problem
mentioned here is familiar. In fact, to ensure that the topology control
graph will be connected after a device loss, all neighbors of the lost
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XTC Algorithm

II) Select topology control neighbors:
1: for (each received packet) {
2: switch (packet type) {
...

25: case (’DEV LOSS’ packet)
26: if (lost device y ∈≺u) remove device(≺u, y)
29: }
30: }

III) Link Losses:
1: for (each lost link (u, y)) {
2: create connection to y
3: if (error) {
4: remove device(≺u, y)
5: else send order to y
6: }

Figure 4.18: XTC: Link Losses, completed

remove neighbor(≺u, y):
1: remove neighbor y from ≺u

2: send ’LINK LOSS’ packet to all connected neighbors
3: C := get new candidates(≺u)
4: apply changes(C, R := ∅)

Figure 4.19: Reacting on device Losses
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node y have to be informed about its removal from the topology graph.
But since a loss device of some device y can only be observed by its
connected neighbor devices, it is not guaranteed that the observing
devices are able to reach all former neighbors of node y directly.

2. One of the reasons why we did not go for the broadcast solution in
section 4.6.2 was because the broadcast solution comes along with a
lot of traps in cyclic networks. But in this case, the broadcast can be
implemented easily and efficiently as described in this subsection.



Chapter 5

Implementation

In this chapter an overview of the implementation of the adaptive XTC
algorithm - the connection manager - is given. In section 5.1 the adaptive
XTC algorithm derived during the last chapters is summarized. Section 5.2
gives an overview of the architecture chosen.

The interfaces of the connection manager are explained in detail in sec-
tion 5.3, while section 5.4 essentially gives an overview of the different packet
formats used. Tools and methods that were used for debugging are intro-
duced in section 5.5.

5.1 The Algorithm

The algorithm implemented in this thesis is summarized in figures 5.1 to
5.3. Basically, this is the adaptive XTC algorithm obtained from the con-
siderations during the previous chapter.

5.1.1 Part I: Edge Updating & Link Establishment

Part I) of the XTC algorithm (figure 5.1) will be executed forever: In Line
2, the sets Ru and Cu are initialized to be empty. In Line 3 a node u
does a device discovery and writes the pair {idv , ω

∗
uv} of the devices found

to the set Du. From Line 4-6, the node examines each of the neighbor
devices found, and updates the neighbor list accordingly by calling the up-
date neighbor order() function.

This function is shown in more detail in figure 5.2: if a the neighbor
node v passed cannot be found in ≺u, a new entry is created. If the device
was already in ≺u, the neighbor list will be updated, according to the new
weight ωuv of the edge (u, v).

In Line 7 of Step I) the function get candidates() gets called, which
evaluates to which unconnected neighbor device a connection has to be es-
tablished, given the updated neighbor order ≺u. This function is described

61
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in more detail in figure 5.2, for further details refer to section 4.5. The nodes
evaluated by the function get returned and stored in the set Cu (Line 7, Step
I).

After evaluating new candidates, all currently connected nodes are added
to the set R to cancel asymmetry, as described in section 4.6.

Afterwards, the function apply changes() gets called, which establishes
a connection to each new candidate (i.e. to all nodes ∈ Cu) found in Line
7, and sends the updated order to them. Additionally, it the updated order
≺∗

u is sent to all connected neighbors.
Note that in comparison to the formulation presented in figure 4.12 no

copy of the neighbor order before updating will be established, since this is
not needed.

5.1.2 Part II: Link Selection

The second part of the adaptive XTC topology control algorithm is respon-
sible for processing received packets, as well as to decide upon the packets
received if the link (u, v) shall be kept or closed.

Lines 2-22 basically correspond to the 2-way handshake protocol ex-
plained in section 3.1.2 plus the extensions to cancel asymmetry when re-
ceiving a neighbor ordering as explained in section 4.6, that is with each
neighbor ordering ≺v received, a node u reads the current link weight ω∗

uv

and updates its neighbor ordering ≺u accordingly (Lines 4-6 in Step II).
After updating there may be new candidates / outdated candidates

among all edges adjacent to node u, which are evaluated at Lines 6 and
7. Processing the candidates evaluated is done in Line 16.

From Lines 7-15, Step II) the receiving node u actually decides if the
link (u, v) should be kept or not. In case of a ”negative” decision (Lines
7-11), node u determines the better common neighbor bu,v, and informs the
sending node v about its decision made by sending a ’NACK’ packet back to
v, containing the Id of bu,v (refer to section 4.5 for further details). In case
of a “positive” decision, the receiving node u simply sends back an ’ACK’
packet (Lines 12-15).

To cancel asymmetry, a node u updates the weight ωuv of a link (u, v)
with each received order packet at Line 5 (refer to section 4.6 for further
details).

5.1.3 Part III: Link Losses

The third part of the adaptive XTC algorithm is responsible for reacting
upon link / device losses.

For each link loss observed, the observing node tries to re-establish the
connection (Line 2). If reconnecting is not successful, the neighbor device is
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considered as malfunctioning, and thus has to be removed from the neighbor
ordering (Lines 3-5).

A proper removal of some neighbor y from ≺u is obtained by calling
the remove neighbor() function (Line 4), which is depicted in more detail
in figure 5.3: The removal of y from ≺u (Line 1), may cause edges (u, v)
to become new candidates, which is determined at Line 3. A connection
to each device evaluated will be established by calling the apply changes()
functions (Line 4).

As explained in section 4.7, device losses have to be announced because
they may not be locally solvable. Therefore, a ’DEV LOSS’ packet is sent
to all connected neighbors (Line 2).
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XTC Algorithm

I) Broadcast ≺u to neighbor devices:
1: while (true) {
2: R := {}, C := {}
3: discover neighbor devices: Du

4: for (each node v ∈ Du) {
5: update neighbor order(≺u, v)
6: }
7: C :=get candidates(≺u)
8: R := all connected neighbors in ≺u

9: apply changes(≺u, R,C)
10: }

II) Select topology control neighbors:
1: for (each received packet) {
2: switch (packet type) {
3: case (order packet ≺v)
4: R := {}, C := {}
5: update neighbor order(≺u, v)
6: C := get candidates(≺u)
7: R := get outdated candidates()
8: if (Sv,≺u ∩ Su,≺v �= ∅) {
9: choose better common node buv ∈ (Sv,≺u ∩ Su,≺v)

10: store better common node buv in ≺u

11: send ’NACK’ packet to v
12: }
13: else {
14: send ’ACK’ packet to v
15: inform application layer
16: }
17: apply changes(≺u, R,C)
18: case (’NACK’ packet)
19: store better common node bu,v

20: disconnect
21: case (’ACK’ packet)
22: inform application layer
23: case (’DEV LOSS’ packet)
24: if (lost device y ∈≺u) remove device(≺u, y)
25: }
26: }

III) Link Losses:
1: for (each lost link (u, y)) {
2: create connection to y
3: if (error) {
4: remove device(≺u, y)
5: else send order to y
6: }

Figure 5.1: Implemented XTC algorithm
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XTC Algorithm: Evaluation Functions

update neighbor order(≺u, v):
1: if (v /∈≺u) {
2: ≺u=≺u ∪ v (idv , ωuv, buv := ∅)
3: }
4: else {
5: update ≺u according to w∗(u, v)
6: }
7: return R

get candidates(≺u):
1: C := {}
2: for (each unconnected node v ∈≺u) {
3: if ((v ≺u bu,v) | (bu,v = ∅)) C := C ∪ v
4: }
5: return C

get outdated candidates():
refer to appendix ??

Figure 5.2: Implemented XTC algorithm, Evaluation Functions

XTC Algorithm: Apply Functions

apply changes(≺u, R,C):
1: for (each v ∈ C) {
2: establish connection to v
3: send ≺u to v
4: }
5: for (each v ∈ R) {
6: send ≺u to v
7: }

remove neighbor(≺u, y):
1: remove neighbor y from ≺u

2: send ’DEV LOSS’ packet to all connected neighbors
3: C := get new candidates(≺u)
4: apply changes(C, R := ∅)

Figure 5.3: Implemented XTC algorithm, Apply Functions
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5.2 Architecture Overview

Figure 5.4 shows the main components the implementation consists of. Ba-
sically, the components can be divided into three parts:

1. Functional Parts (Threads): The functional parts execute the XTC
algorithm as shown in figure 5.1. They are represented by “clouds”.

2. Global Data Structures: The global data structures of the implementa-
tion are labeled as ’neighbor order’, ’send buf’, ’con buf’, and ’inqres’.

3. Data Access Functions: Usually threads do not access global data
structures directly - they make use of special data access functions. In
figure 5.4 these functions are represented by a small box labeled with
the name of the function. A thread that makes use of a specific data
access function is indicated by a dashed arrow.

PKT_RCV

CM_INQ

CON_MGR

con_event_buf

neighbor_order

con_buf

send_buf

update_order()

get_candidates()

remove_node()

inqres

wait_queue_add()

Figure 5.4: Implementation: Architecture

5.2.1 Functional Parts

The functionality of the XTC algorithm was divided into four smaller func-
tional parts, as shown in figure 5.4.
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’CM INQ’ Thread The ’CM INQ’ thread (inquiry thread) is permanently
executing Step I) of the XTC algorithm presented in figure 5.1. For up-
dating the neighbor order and getting the new candidates the inquiry
thread calls the data access functions update order() and get candidates().

’CM PKT RCV’ Thread The ’CM PKT RCV’ (packet receiving) thread
is permanently executing Step II) of the XTC algorithm in figure 5.1.
Thus, the packet receiving thread is most of the time just waiting for
incoming packets, which then are processed immediately correspond-
ing to Step II) of the XTC algorithm (figure 5.1.

’CON MGR’ Basically, the ’CON MGR’ (connection management) thread
is the implementation of the apply changes() function shown in figure
5.3. The nodes of the set C (see figure 5.3) are contained in the
’con buf’ data structure, the nodes of the set R in the ’send buf’ data
structure (see next subsection). Thus, the connection management
thread simply tries to close / establish new links corresponding to the
nodes contained in the buffers ’send buf’, and ’con buf’.

If a link (u, v) cannot be established, the neighbor v has to be re-
moved from ≺u (see below). This is done by calling the function
remove neighbor(), which corresponds to the remove neighbor() func-
tion shown in figure 5.3.

’con evt buf’ The ’con evt buf’ (connection event buffer) thread gets ac-
tive each time a connection change occurs (e.g. if a new connection
was established by some remote device, or if a connection to a neighbor
device was lost). Essentially, this thread informs the application layer
when connections get closed (refer to section 5.3), and executes Step
III) of the XTC algorithm presented figure 5.1. Instead of executing
Step III) directly, the connection event buffer thread simply adds the
node v of the lost link (u, v) to the ’con buf’ by making use of the
function wait queue add().

5.2.2 Data Structures

The implementation of the XTC algorithm consists of the following global
data structures:

neighbor order The neighbor order ≺u of a node u. Basically, the neigh-
bor order structure is just a sorted list who’s elements are neighbors
(see below).

neighbor A neighbor node v that is in ≺u. Basically, a neighbor element
consists of the Id of the neighbor node v, the weight ωuv of the link
(u, v), and the better common neighbor bu,v (if there is any).
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inqres An array to which the discovered neighbor devices found during
neighbor discovery are written to. Hence, the inqres array corresponds
to the set Du in the algorithm shown in figure 5.1.

con buf The set of candidates C. A linked list FIFO queue, containing
neighbor elements was chosen to implement the set C.

send buf The set of outdated candidates R. A linked list FIFO queue,
containing neighbor elements was chosen to implement the set R.

5.2.3 Data Access Functions

The most important data access functions the functional parts make use of
are the following:

update order(≺u, idv , ωuv) The update order() function updates the or-
der ≺u, given the Id of a node v and the updated weight ωuv of the
link (u, v) as shown in figure 5.2. Instead of collecting the outdated
candidates R and returning them to the calling thread, the outdated
candidates evaluated are added directly to the ’send buf’.

get candidates(≺u) The get candidates() function evaluates new candi-
dates by inspecting the neighbor order ≺u passed as described in figure
5.2. Instead of collecting the new candidates C and returning them to
the calling thread, the new candidates evaluated are added directly to
the ’con buf’.

remove neighbor(≺u, idy) The remove node() function removes node y
from the neighbor list ≺u, as shown in figure 5.2. It is exclusively
called by the connection management (’CON MGR’) thread.

wait queue add(&wait buf, v) The wait queue add() function adds a neigh-
bor element to the FIFO queue specified by &wait queue, that is either
to the ’send queue’ or the ’con queue’.

wait queue remove(&wait buf, v) The wait queue remove function re-
moves an element from the queue specified. Usually, this function is
called by the connection management thread if a node v has been pro-
cessed successfully (i.e. a connection to v has been established, or the
neighbor order has been sent to v successfully.

5.2.4 Thread Timing

This section shall give a brief overview of when, and how often the threads
shown in figure 5.4 are executed.
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Inquiry Thread

The inquiry thread periodically executes Step I) of the XTC algorithm shown
in figure 5.1. As discussed in section 3.4, it makes sense to decrease the
frequency of executing the while loop after a few cycles for that excessive
power consumption can be reduced. On the other hand, a node should
discover all of its neighbor devices as soon as possible right after power-up
for that it can be integrated as fast as possible into the topology control
graph.

cycles

tp

Ninit

Ntrans

T p,min

T p,max

Figure 5.5: Controlling the period of the inquiry thread

Therefore, the period of the inquiry thread can be controlled as shown
in figure 5.5: After power-up, the update period will be set to Tp,min. After
executing the while loop in Step I) of the XTC algorithm Ninit times, the
period of executing Step I) will be increased after each cycle, until the max-
imal period Tp,max has been reached. To control the slope of the period, the
number of transition steps Ntrans can be controlled as well.

Since these parameters directly affect the behavior of the network during
establishment, these parameters have to be available right after power-up.
For that the user is able to control these parameters they can be written
directly into the EEPROM of the BTnode from where they are read right
after power-up. Additionally, they can be adjusted at runtime using the
terminal (see section 5.3).

Packet Receiving Thread

The packet receiving thread is signaled by the BT Stack each time a packet
from a connected neighbor device arrives. Thus the packet receiving thread
gets woken up randomly.

Connection Event Buffer

As the packet receiving thread, the connection event buffer is signaled ran-
domly with each occurring connection event.
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’Connection Management Thread

The connection management thread is woken up each time a change in the
neighbor ordering occurred, that is if one of the following events occur:

1. After the inquiry thread has updated the neighbor order

2. After a packet was received from a neighbor device

3. If a link loss was observed.

Since all of these events are observed from other threads, these threads
have to wake up the connection management thread as described in the
next section. Also, active time points of the ’CON MGR’ thread are not
deterministic.

5.2.5 Thread Interaction

Basically, the implementation makes use of three different mechanisms for
controlling interaction of the four threads presented in figure 5.4. These are:

’con mgr start’ Event Each time a new connection has to be established
(i.e. each time a new candidate has been determined), the connection
management thread has to be woken up for that it starts to empty
the ’con buf’ and the ’send buf’. This can be done by posting the
’con mgr start’ event. As can be seen from the XTC algorithm (fig-
ures 5.1 to 5.3), all of the remaining threads have to call the ap-
ply changes() function, thus all of the remaining threads may post the
’con mgr start’ event.

’data mutex’ Since all threads have to access the data structures shown
in figure 5.4, and since all threads (except the inquiry thread) do more
or less have to access that data at random times, the data structures
are kept consistent by making use of mutual exclusion.

’bt module mutex’ The BTnode is not able to establish a connection to
another device during neighbor discovery. But the packet receiving
thread, as well as the connection event buffer wake up the ’CON MGR’
thread each time a significant change in the local order was observed.
For that the inquiry thread cannot be interrupted and vice versa, an-
other mutex is used that grants access to only one of the two threads.

5.2.6 Thread Contexts

The reason for the introduction of the connection management thread is as
follows:



CHAPTER 5. IMPLEMENTATION 71

A connection establishment may take a long time1. Hence, a thread call-
ing the apply changes() will be blocked for a very long time, depending on
the number of connection establishments that have to be done (i.e. depend-
ing of the number of nodes contained in the ’con queue’. Hence, if e.g. the
packet receiving thread would call the apply changes() function, it would
not be able to process incoming packets during connection establishment.
Since these packets are buffered in the lower level BT Stack (refer to section
5.3, a buffer overflow could not be avoided2.

It’s clear that by introducing the connection management thread to-
gether with the send queue and the connection queue, buffer overflows can
be avoided.

5.3 Interfaces

An overview of the interfaces our implementation of the XTC algorithm
makes use of is given in figure 5.6. As can be seen from figure 5.6, a layered
approach has been chosen for providing an interface for applications.

Connection Manager

Application

Con Event Buffer

CM_INQ CON_MGR CM_PKT_RCVcon table
change cb

Stack

BT Stack

CONDISCON

l2cap_acl_cb

Service CM

Figure 5.6: Connection Manager: Interfaces

Hence, an application, making use of the XTC implementation provided
in this thesis consists of the following four components:

Application The application itself.
1up to several seconds, as we shall see in section 6.2
2the same problem occurs with connection events
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Connection Manager The implementation of the adaptive XTC algo-
rithm presented in figures 5.1 to 5.3. The connection manager informs
the application each time a reliable connection has been established,
i.e. the application is not informed before the link has been acknowl-
edged by both parties. Likewise, the application is informed only if a
reliable connection was closed (i.e a previously acknowledged connec-
tion was closed).

BT Stack The Bluetooth stack. It calls the higher layers if a connection
event (e.g. a new connection has been established / closed) occurs, or
if a packet from another device has been received.

Con Event Buffer Receives connection events from the BT Stack, stores
them in a FIFO queue and signals an Event to the higher Layer. This
enables a short execution time of the callback function running with
the high priority of the BT Stack thread.

5.3.1 Application Interface

This section shall give an overview of the application interface provided by
the connection manager.

Initialization

To make use of the connection manager, the application has to initialize the
connection manager by calling the con mgr init() function. This function
essentially initializes the connection manager stack, i.e. the global variables
needed by the connection manager.

Callback Registration

For that the connection manager is able to inform the application about
connection events, a callback function has to be registered that is called by
the connection manager each time a reliable connection has been established
or closed. This can be done using the con mgr register rel con change cb()
function.

A more detailed view of when the connection event callback is called is
given in figure 5.7: in case of a new connection establishment, the application
is signaled not before either an ’ACK’ packet has been received, or an ’ACK’
packet has been sent successfully. Hence, it’s the packet sending thread that
announces reliable connections (refer to section 5.2.1, figure 5.1, and figure
5.4).

The closing of a reliable connection is announced right after the BT
Stack (the Con Event Buffer resp.) signaled a disconnection event (refer
to figure 5.6. The connection manager signals the application layer only if
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the disconnection event triggered by the Con Event Buffer affects a reliable
connection.

connect()

order

disconnect()

ACK / NACK CON
CON

DISCON DISCON

Figure 5.7: Calling the rel con change cb() callback

Parameter Settings

An application may control the connection manager at runtime by setting
various parameters. An overview of the parameters and their effects is given
in table 5.1.

Connection Info Packet

An application may be interested in the neighbor order established by the
connection manager. For that the neighbor order can be obtained also from
remote devices, we decided to make this information available in form of a
packet called the Connection Info Packet (CIP). This packet may be ob-
tained by the application by calling the con mgr fill con info() function.

Entries BT Addr1 State1

RSSI1 BT Addr2 State2

RSSI2 . . .

Figure 5.8: Format of an order packet

The packet format is shown in figure 5.8: The first byte corresponds to
the number of neighbors that actually can be found in the neighbor order
≺u of some node u. Then, an entry for each neighbor device v is made,
containing the following information:

1. BT Addr (6 Bytes) The BT address of the neighbor device v,

2. State (1 Bytes) The current connection state. Possible values may be:

0: Unconnected
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Param Function Description
Tp,max cm set ai min period() Sets the minimal period of the inquiry

thread as described in section 5.2.4, fig-
ure 5.5.

Tp,max cm set ai max period() Sets the maximal period of the inquiry
thread as described in section 5.2.4, fig-
ure 5.5.

Ninit cm set ai init() Sets the number of initial inquiries done
by the inquiry thread as described in sec-
tion 5.2.4, figure 5.5.

Ntrans cm set ai trans() Sets the number of inquiries done by the
inquiry thread during transition phase as
described in section 5.2.4, figure 5.5.

σTinq cm set ai max dev() Maximal deviation of the inquiry period.
Used to prevent inquiry collisions (refer to
section 6.1 for more details).

Tinq cm set ai time() Sets the duration of an inquiry (i.e. neigh-
bor discovery process).

ai cm set autinq() Turns on / off automatic inquiry.
∆RSSIid cm set rssi id() Defines the minimal RSSI difference

needed for that the weights of two differ-
ent links are not considered as equal (refer
to section 6.4) for further details).

∆RSSIth cm set rssi update() Defines the minimal RSSI difference
needed for that the weight of a link ωuv

is updated (refer to section 6.4 for further
details).

Ncon cm set max cons() Defines the maximal number of connec-
tion tries done by the ’CON MGR’ thread
before considering the neighbor as not re-
sponsive.

σTcon cm set con max per() Maximal wait time before a new connec-
tion is established. Used to reduce con-
gestion (refer to section 6.3, section 6.4
respectively).

Tcpen cm set con coll pen() Wait time after a page collision occured
(refer to section 6.2.2).

Tv cm set vis time() Wait time between an inquiring and pag-
ing (refer to section 6.4)

α cm set lpf alpha() Low pass filter coefficient α (refer to sec-
tion 6.5)

β cm set lpf beta() Low pass filter coefficient β (refer to sec-
tion 6.5)

Table 5.1: Connection Manager Paramters
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1: Connected, my role MASTER

2: Connected, my role SLAVE

3. RSSI (1 Bytes) The weight of the edge (u, v), measured by node u
(i.e. the RSSI value measured by node u).

5.3.2 User Interaction

For user interaction, the BTnut OS provides a thread called the terminal
thread. Basically, this thread is just an implementation of a simple command
line interface to the BTnode, which allows the user to interact with the
BTnode via a terminal.

The connection manager provides several terminal commands for:

• setting the parameters introduced in section 6.5.2

• writing the parameters introduced in section 6.5.2 to the EEPROM

• easy debugging

To make use of the terminal commands provided by the connection man-
ager, an application has to:

1. initialize the terminal thread (refer to the online API of the Nut OS
[8]).

2. initialize the connection manager, as explained in section 5.3.1.

3. register the commands at the terminal by calling the con mgr register cmds()
function.

A summary of the commands provided by the connection manager is
given in appendix A.

5.3.3 Organization

To improve maintainability, the source code was divided into four different
files. An overview is given in the table below:
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File Description
con mgr xtc.c
con mgr xtc.h

Implementation of the connection manager.

srtd list.c
srtd list.h

Implementation of an indexed sorted list, using pointers. It
was tried to implement the sorted list in a somewhat “object-
oriented” fashion, thus, the implementation of the sorted list
provided should not only be usable for the implementation of
the neighbor order - it should be usable for other applications
as well.

wait queue.c
wait queue.h

Implementation of a FIFO wait queue / Stack in form of a
linked list. As well, this implementation should be usable for
other applications as well.

cm cmds.c Implements the terminal commands for controlling / debug-
ging the connection manager. Refer to section 5.3.2 and 5.5
for further details.

5.4 Communication

As mentioned before, a node communicates with its neighbor as defined by
the 2-way handshake protocol introduced in section 3.1.2. In this section
we’re going to give an overview of the different packet formats used.

5.4.1 Order packet

After establishing a connection to a neighbor node v, the initiating node u
sends its order ≺u to the neighbor node v. The format of an order packet
is shown in figure 5.9, a description of the fields it consists of can be found
in table 5.2.

Type masters RSSI neighs BT
Address BT Address

BT Address . . .

Figure 5.9: Format of an order packet

5.4.2 ’ACK’ Packet

Sent as a response to a received order packet. Indicates that the link over
which the packet was received has to be in GXTC and thus has to be kept.
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Field Size Description
Type 1 Byte Type of this packet. Set to ’ORDER’.
Masters 1 Byte Number of master devices. Needed for

ressource sharing (refer to section 6.7).
RSSI 1 Byte The RSSI value measured by the sender

of the order packet (corresponds to the
weight ωuv). Needed for cancelling asym-
metry as described in section 6.6.

Neighs 1 Byte Number of neighbor devices the order con-
sists of.

BT Address Neighs ·
6 Bytes

Id’s of the neighbor devices of the neigh-
bor order. A bluetooth Id has a length of
6 bytes.

Table 5.2: Fields of an order packet

The ’ACK’ packet only consists of the ’Type’ field, which is set to ’ACK’.

5.4.3 ’NACK’ Packet

A ’NACK’ packet is sent as a response to a received order packet. Indicates
that the link over which the packet was received should be closed. The
format of an ’NACK’ packet is shown in figure 5.10, a description of the
fields it consists of is given in table 5.3.

Type Reason Better Common Neighbor

Figure 5.10: Format of a ’NACK’ packet

5.4.4 ’DEV LOSS’ Packet

A ’DEV LOSS’ packet is sent after a device loss was observed. A ’DEV LOSS’
consists of a type field and the BT address of the lost node, as shown in
figure 5.11

Type Lost Device

Figure 5.11: Format of a ’DEV LOSS’ packet
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Field Size Description
Type 1 Byte Type of this packet. Set to ’NACK’.
Reason 1 Byte The reason why the connection should be

closed. Usually, the reason is that the link
should not be in GXTC . A summary of
further reasons is given in table 5.4 below.

Better
Common
Neighbor

6 Bytes If the reason for connection closing is set
to ’CON RQST NOT ACCEPTED’, the
BT address of the better common neigh-
bor can be found in this field.

Table 5.3: Fields of a ’NACK packet

Reason Description
CM CON NOT ACCEPTED Connection not accepted due to

XTC link selection criteria
CM RESOURCES EXHAUSTED Indicates that connection should

be closed because there are not
enough resources available to keep
it.

CM ROLE SWITCH FAILED Indicates that connection cannot
be kept because a necessary role
switch failed

Table 5.4: Reasons for not acknowledging a connection



CHAPTER 5. IMPLEMENTATION 79

5.5 Debugging

Basically, debugging was done using three different techniques: by mak-
ing use of the terminal, by assigning LED patterns to the most important
operations the Bluetooth device, and by making use of the JAWS GUI.

5.5.1 The Terminal

Error messages and operating states are printed to the terminal (refer to
section 5.3.2). Additionally, it is possible to execute the XTC algorithm
step by step by making use of several terminal commands. An overview can
be found in appendix A.

5.5.2 LED Patterns

For that operation states of the nodes can be observed without making use
of the terminal (for which a node has to be attached to a computer), they are
represented by different LED Patterns. An overview is given in the following
table:

Pattern Description
green Inquiring
yellow Connecting
red Role Switching
green & yellow Packet receiving thread is active
blue & red Sending order packet to a neighbor device
“Knight Rider” Reliable connection has been established

5.5.3 Jaws-GUI

The most important tool used for debugging was the JAWS GUI that comes
together with the JAWS application [6].

Essentially, the JAWS application automatically forms a connected net-
work of Bluetooth devices (using the connection manager), and provides
services for transparent ad-hoc connections from a host device to a number
of target devices. A graphical user interface to these services is given by the
JAWS GUI, which additionally provides a graphical representation of the
network. A snapshot of the JAWS GUI is given in figure 5.12.

To establish the graphical representation of the network established by
the connection manager, the JAWS GUI simply collects the connection info
packets of all nodes in the network.
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Figure 5.12: JAWS GUI: Snapshot



Chapter 6

Implementation Issues

This chapter gives an overview of several measures that had to be taken for
that the mapping of the adaptive XTC algorithm onto the BTnode platform
became possible. Hence, this chapter covers the problems occurred during
implementation of the algorithm and the countermeasures taken, which shall
point out that implementation complexity is bigger than maybe expected
after reading the few lines of pseudo-code of the initial XTC algorithm in-
troduced in section 2.2, figure 2.1. Furthermore, the missing details of the
implementation overview presented in the previous chapter are explained
here.

Section 6.1 covers the problem of the inquiry operation in Bluetooth
devices, while section 6.2 deals with the connection establishment procedure
in Bluetooth. In section 6.3 it is shown that the performance of network
establishment is poor if several devices are trying to establish a connection
at the same time. Finally, section 6.4 discusses network establishment in
more detail.

The measures taken to reduce sensitivity of the adaptive XTC algorithm
are explained during section 6.5. Afterwards, the countermeasures taken due
to asymmetric link weight measurements are explained.

In section 6.7 it is explained how the adaptive XTC algorithm tries to
bypass the restrictions given in Bluetooth scatternets, while in section 6.8
the consequences of a bounded neighbor order are discussed.

81
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6.1 Inquiring

The Bluetooth devices used in this thesis come along with the following
restriction: if a device is inquiring (i.e. doing neighbor discovery), the device
is not able to respond to inquiries done by other devices. In other words:
if two BTnodes are inquiring at the same time, they won’t discover each
other.

The resulting problem for our connection manager is obvious: if each
device is executing the adaptive XTC topology control algorithm depicted
in figure 5.1 using the inquiry thread timing shown in figure 5.2.4, and if we
would power up the nodes of an unconnected network exactly at the same
time, none of the nodes would discover its neighbor nodes at any time.

To solve this problem, we introduced the parameter σTinq , which is the
maximal value a random variable tdev can take. More precisely, tdev is a
uniformly distributed random variable in the interval [−σTinq ,+σTinq with
mean zero. By adding tdev to the current period Tp of the inquiry thread,
inquiry phases of neighbor devices get distributed randomly in time. This
is shown in the digram in figure 6.1.

t

T p

σTinq
σTinq

Tinq

Figure 6.1: Random inquiry timing

It’s clear that by increasing σTinq the probability of detecting “most of”
neighbor devices increases, but also the setting of the inquiry duration Tinq

plays an important role. Thus, the settings of the parameters Tp, Tinq, and
σTinq essentially determine how fast the nodes of an unconnected network
are going to discover their surroundings.
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6.2 Paging

The process of establishing a connection to another device is a quite complex
process in Bluetooth, and is called paging. For that a Bluetooth device is
not paging infinitely if the desired communication partner is not responsive,
the paging process will be stopped after some predefined amount of time
tpage

1. Thus, in Bluetooth, if a device v is not able to respond to a paging
device u, a page timeout occurs at device u.

6.2.1 Inquiring vs. Paging

The first problem of paging in Bluetooth is the following: if a device is
inquiring, it is not able to respond to a paging device. Thus, in case of
a page timeout, the paging device is not able to distinguish if the desired
communication partner is actually malfunctioning and not able to respond,
or if the remote device was just doing an inquiry.

From an algorithmic point of view, it is clear that a malfunctioning
device has to be interpreted as a device loss, and needs to be removed from
the neighbor order for that the network is connected (as explained in section
4.7). But if a node is not able to distinguish between a malfunctioning device
and an inquiring device, a lot of actually perfectly functioning devices would
be removed from the neighbor order as well.

Of course, the connection to a previously removed, well-functioning de-
vice will be established at some late date since the inquiry thread is going to
(re)discover the device repeatedly. But the removal, as well as the addition
of a device to (from) the neighbor order produces a lot of unnecessary over-
head. Thus, something has to be done to preserve the removal of functioning
devices from the neighbor order in case of a page timeout, i.e. something has
to be done to distinguish between an inquiring device and a malfunctioning
device.

Basically, there are two different approaches:

Retries Instead of removing the neighbor device directly from the neighbor
order after a page timeout occurred, a device tries to establish the
connection again some moments later.

Page Timeout Increase By choosing tpage � Tinq, a connection can be
established even if the desired communication partner is inquiring.

Note that both approaches have an effect on the reaction time of the
network in case of a device loss, since a link loss discovering device tries to
re-establish the broken link before considering the device as malfunctioning.
A more detailed discussion of the two possibilities presented will be done in
section 6.4.

1refer to [2] for further details
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6.2.2 Paging vs. Paging

Another problem of paging is the following: a paging device is not able to
respond to paging devices. Thus, if two devices are paging to each other at
the same time, both devices end up with a page timeout. Thus, it is clear
that in this case re-paging is not useful - the two devices are going to collide
again.

Hence, the only way to solve this problem is the following: one of the
two devices has to wait, and let the other device establish the connection.
Fortunately, this can be done easily, since the devices know the Id of each
other. Thus, the device with the lower Id waits for some predefined amount
of time Tcpen, while the device with the higher Id pages the device with the
lower Id immediately again.

6.3 Congestion

If we take a look at the adaptive XTC algorithm shown in figure 5.1, and
take into account that paging devices are not able to answer to paging
devices, another problem is obvious: since each device has to establish a
lot of connections, it is not avoidable that a paging device tries to page a
device that is either paging as well or doing an inquiry. Hence, after a while,
all devices are paging at the same time thus none of them will be able to
establish a connection.

An Example

An example is given in figure 6.2. Consider e.g. the third device, which
is the first device that has done its inquiry. Hence, it starts to establish
connections to each new candidate. At first, the third device establishes
a connection to device 1, which is no problem since device 1 is idle. Next,
device 3 tries pages device 2, which is not able to respond, because it is doing
an inquiry. Here, we’ve chosen tpage ≈ Tinq, thus a page timeout occurs.

Afterwards, device 3 pages device 5, which is doing an inquiry. Although
there would be enough time for device 5 to respond to device 3 after the
inquiry is done, a page timeout will occur, because device 5 immediately
starts paging to device 1 after the inquiry. Note that after a while, most
of the devices are paging, thus none will be able to establish a connection
anymore.

Minimal Visibility Time

To solve this problem, another parameter was introduced: the minimal vis-
ibility time Tv. This parameter defines how long a device has to be visible
for that other devices are able to establish a connection to it. Hence, the
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Figure 6.2: Congestion and resulting page timeouts: an example

device has to sit idle for that amount of time, that is it will neither page
another device, nor doing an inquiry during that amount of time.

A device is made visible each time the device has paged another device or
done an inquiry. Thus, if a page timeout occurs at some device v, neighbor
devices paging v should be able to establish the connection because v sits
idle for Tv after the page timeout occurred. This will at least avoid that at
some time all devices are paging and thus none of them would be able to
establish a connection.

Avoiding Congestion

To avoid, or at least to reduce congestion, a relaxed timing scheme has to be
applied, that is congestion can only be reduced significant if paging collisions
are reduced.

Therefore, the parameter σTcon has been introduced, which is familiar
with the parameter σTinq introduced in section 6.2: instead of just being
visible for Tv between two connection establishments, each device extends
the visibility time by some random amount of time trand. The maximal
value trand can take is equal to σTcon .

Thus, in the same way as we’ve tried to avoid inquiry collisions between
neighbor devices, we try to avoid page collisions between neighbor devices,
and thus reduce congestion, by distributing paging phases of neighbor de-
vices randomly in time.
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6.4 Network Establishment

From the discussion during the last section, it’s clear that network establish-
ment in XTC is a quite complex process with a lot of different parameters
that have to be chosen carefully for that network establishment becomes
possible at all.

Basically, for that network establishment is proper and fast, a device has
to establish a connection to each of its neighbor devices as soon as possible.
Thus, from point of view of some device v being idle is not efficient. But
from an outstanding point of view, v should be visible for other devices for
“most of the time” for that congestion can be reduced / avoided. Hence,
there’s a trade-off in choosing the parameters σTcon , σTinq , and Tv.
To reduce congestion, we have to:

1. Increase σTcon ,

2. decrease the page timeout,

3. decrease the number of connection establishment retries,

4. avoid the removal of well-functioning devices from ≺u.

But to avoid the removal of well-functioning devices from ≺u, we have to:

1. Increment the number of retries,

2. increment the page timeout

Therefore, another parameter Ncon has been introduced which defines
the number of page trials that are done before a device is considered as
malfunctioning and thus is removed from the neighbor order. Note that we
did not introduce another parameter for the page timeout since it can be
chosen by making use of the HCI functions provided by the BT Stack [8].

The approach chosen in this thesis to obtain a fast network establish-
ment phase was to preserve the removal of well-functioning devices from ≺u

efficiently. Thus, we’ve decided to choose the page timeout tpage � Tinq,
and set the number of page trials Ncon to 2.

Setting Ncon to 2 only reduces the removal of well-functioning devices
from ≺u if “direct” paging collisions are avoided, that is if the probability
of two devices paging each other at the same time is minimal. This can
be reached by applying a relaxed timing scheme, that is by choosing σTcon

generously. To solve the resulting conflict of “direct” paging collisions, Tcpen

was set to ≈ tpage.
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6.4.1 Relaxed Timing Scheme

The timing scheme chosen in this thesis can be summarized as shown in fig-
ure 6.3: The first time line corresponds to the timing of the inquiry thread,
while the second time line corresponds to the timing of the connection man-
agement thread. Idle times of the device are drawn by a dashed line, while
the times the device is busy are drawn bold.
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Figure 6.3: Connection Manger Timing Scheme

Basically, two consecutive inquiries are separated in time by the current
value of Tp which can be chosen by the user / the application as explained in
section 5.2.4, figure 5.5. To preserve inquiry collisions, a random amount of
time is added to Tp who’s maximal value is defined by σTinq . To guarantee
visibility of the device after / before an inquiry, the device waits for Tv, thus
the device is at least visible for Tp + Tv + trnd between two inquiries.

To reduce congestion, connection establishments to two different devices
are separated by some random amount of time trnd with maximal value
σTcon . Note that basically, the inquiry thread “interrupts” the connection
management thread, that is although some connection establishments have
to be done, an inquiry will be done if the inquiry thread is “ready” (that is
Tp + Tv + trnd has been exhausted).

Since an inquiring device is not able to page another device at the same
time (and vice versa), an inquiry can be delayed because the device is still
paging. This is indicated by the arrows in figure 6.3, and can be reached by
making use of the ’bt module mutex’ explained in section 5.2.5.

6.5 RSSI Fluctations

During first experiments with the first implementations, it turned out that a
static network did not settle down, i.e. the topology control graph actually
changed almost after every inquiry done by some node.

The main reason for this behavior is twofold:

1. the quality measure of a link provided by the Bluetooth device on the
BTnode is extremely fluctuating, as shown in more detail in section
7.2, chapter 7.
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2. the adaptive XTC algorithm is quite sensitive to fluctuating link qual-
ity measures.

The solution considered in this thesis to prevent a static network from un-
necessary node activity are presented in this section.

6.5.1 Sensitivity of the XTC Algorithm

In practice every link quality measure shows some fluctuations, thus an
important property of every algorithm is its sensitivity to inaccuracies of its
inputs.

The example in figure 6.4 shows that the adaptive XTC algorithm is
sensitive also to minimal fluctuations of some link quality measure. In fact,
in a worst case scenario the topology control graph of the simple node con-
stellation in figure 6.4 changes after each inquiry done by one of the network
nodes.
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Figure 6.4: Sensitivity of the XTC algorithm: An example

6.5.2 Low pass filtering

It’s clear that a more stable RSSI value can be obtained by low pass filtering
the RSSI values obtained from different inquiries.

Therefore, the connection manager provides a simple IIR filter. The
filter can be controlled by adjusting the filter coefficients α and β, which
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can be written to the EEPROM. The filter output yk is given by

yk =
α · yk−1 + β · xk

α + β
,

where yk−1 corresponds to the filter output of the previous step, and the
input of the filter (the currently measured RSSI value) is denoted by xk.

It’s clear that by filtering RSSI values, the reaction time of the network
in case of a change in topology is increased. Note that if this behavior is not
desired, filtering can be turned off at any time by setting α = 1 and β = 0
(see also section ).

6.5.3 Id Mode

In the XTC algorithm, if two links are of equal quality the link to the
neighbor with lower Id is considered as the “better” link. The idea of the Id
mode was to establish the neighbor order in case of links with comparable
link quality depending on the identities of the corresponding neighbor nodes,
that is if the difference of the quality notion of two links is smaller than a
predefined constant, the link corresponding to the neighbor with smaller Id
will be considered as the “better” link. More precisely:

if (|ωuv − ωuw| > ∆RSSIid)
v ≺u w, if (ωuv < ωuw)

else
v ≺u w, if (idv < idw)

Thus, by setting ∆RSSIid appropriately, the neighbor order won’t change
if links of comparable qualities are slightly fluctuating and therefore sensi-
tivity is reduced.

Unfortunately, it turned out that the constant ∆RSSIid has to be chosen
very generously for that unnecessary node activity in a static network can
be reduced significant. The problem of this is that by choosing ∆RSSIid

to big, the nodes of a neighborhood consider the link corresponding to the
node with the smallest identity as the “best” link (i.e. the node with the
smallest id appears in one of the first positions in the neighbor orders of
its neighbors). Therefore, a lot of links will be established to nodes with
a small Id, and hence the resulting network topology has “star” character
rather than the desired mesh character.

6.5.4 Updating Threshold

To preserve the desirable mesh character of the resulting topology control
graph and to reduce sensitivity at the same time, a further approach has
been considered: instead of making the neighbor order robust to link weight
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fluctuations (which is actually done by the Id mode approach explained
before), we tried to virtually stabilize the current quality of a link.

This can be done by introducing a threshold value for updating: the
current link weight ωuv won’t be updated as long as the new link weight ω∗

uv

measured does not change significant. More precisely:

if (|ωuv − ω∗
uv| > ∆RSSIth)

ωuv = ω∗
uw

else
ωuv = ωuw

It’s obvious that by setting the threshold ∆RSSIth appropriately, the
neighbor order will not change if links of comparable qualities are slightly
fluctuating and therefore sensitivity is reduced.

The main advantage of this approach compared to the Id mode solution
is that if some links are of comparable quality, none of the corresponding
nodes is forced to be the “best” node - the sequence of slightly differing links
is rather established randomly, depending on the first RSSI value measured.
Therefore, the maximal degree of the resulting network is reduced compared
to the maximal degree of a network making use of the Id mode solution.

6.5.5 Separated RSSI Update

As can be seen from the measurements of the RSSI done in section 7.2
(chapter 7), the fluctuations of the link weight of un-established links (RSSI
value obtained from an inquiry result) are quite bigger than the fluctuations
of the RSSI values read from an existing link.

Thus, another step taken to reduce sensitivity of the topology control
graph was to update the link weight of connected edges separately. More
precisely, instead of getting the updated link weight of an existing connection
from the inquiry result, a node u reads the new link weight from the existing
connection. This is done right after a neighbor discovery step (Line 3 in
figure 5.1.

This leads to a more stable RSSI value of established links, and thus
reduces sensitivity of the whole network.

6.6 Asymmetry

In practice, the assumption of a symmetric link quality measure does not
hold. Although asymmetry of the RSSI is contained, we know from chapter
4, section 4.6 that even slightly differences in the link quality measure cancel
the validity of property 2.3.2 (section 2.3) of the XTC algorithm.

To avoid this problem, we have to proceed exactly in the same way as
in section 4.6: asymmetry has to be canceled from the network after each
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update. Thus, to cancel asymmetry due to inaccuracies of the RSSI value
measured, the nodes have to balance the RSSI value measured after each
update.

This can be done by simply sending the RSSI value measured with each
order sent. The receiving device will then update its neighbor order accord-
ing to the RSSI value measured by the sending device instead of reading the
RSSI value from the existing connection.

6.7 Bounded Resources

As mentioned in the introduction, building networks with Bluetooth devices
(scatternets) comes along with some restrictions:

1. A bluetooth device is not able to maintain more than ten connections
at once.

2. A bluetooth device may only be a slave device of three different master
devices.

Thus, if some device v is a slave device in three different piconets, some
other device u won’t be able to establish a connection to node v since there
are not enough resources available.

In their publication [1], Wattenhofer et al. did an average-case eval-
uation of the bounded degree property (theorem 2.3.3), which shows that
the maximal degree number ranges from 4 to 5. Therefore, by just running
the adaptive XTC algorithm presented in figure 5.1, it may be that some
connections cannot be established, due to the restrictions mentioned above.
In this section we’re going to present the approach chosen in this thesis for
solving the problem of bounded resources.

6.7.1 Target

The target is to extend the XTC topology control algorithm for that the
nodes of the (partial) topology control graph GXTC are visible for paging
devices at any time. The reason why we want to guarantee visibility of the
nodes at any time is twofold.

First of all, the resulting topology control graph shall be accessible by
newly appearing nodes. More precisely, a node that shall be integrated to
an existing XTC network shall be able to establish a connection to each
device of the network. This is needed for that new nodes can be integrated
properly into an existing network.

Secondly, not ensuring visibility during network establishment, would
increase the congestion problem mentioned in section 6.3 further.

Thus, to guarantee visibility of a node at any time, a slave device in
three different piconets has
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• either to become a master device in one of the three piconets, by doing
a role switch,

• or to close the connection if no role switch can be done

as soon as possible. The situation where a role switch is not possible because
resources are exhausted is shown in figure 6.5.

u v

Figure 6.5: Exhausted Resources

6.7.2 Approach

The approach chosen to obtain the desired topology control graph as men-
tioned above can be divided into two different parts:

1. local resource sharing during establishment : During network establish-
ment, the nodes change the roles if necessary and possible. Suppressed
links, i.e. edges that should be in GXTC but could not be kept due to
exhausted resources, are marked.

2. global resource sharing : After network establishment, a global back-
ground process tries to distribute the available resources among the
nodes, for that edges marked during network establishment can be
established.

The reason for separating our solution into these two processes is twofold.
First of all, the problem cannot be solved completely locally, as can be seen
from the example shown in figure 6.6: assume that the links among nodes
a, b, and c were established while the links among nodes u, v, and w are
established at the same time. If now the link (a, u) should be established,
e.g. node a must know that it is possible to switch roles with node c.

Secondly, since existing connections may be closed at a later date (e.g.
due to a previously undiscovered better common neighbor), it may be that a
lot of marked edges can be established during network establishment. Thus
by simply marking the desired edges they can be added to GXTC by local
resource sharing, as well as by global resource sharing.
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Figure 6.6: Bounded Resources: The necessity of global resource sharing

6.7.3 Local resource sharing

The idea of local resource sharing is quite simple: with each order packet
sent, the sending device u includes the number of its master devices in the
packet. The receiving device v may then decide if a role switch should be
done or not. In fact, a role switch will only be done in one of the situations
depicted in figure 6.7.

u v

(a)

u v

(b)

u v

(c)

Figure 6.7: Resource sharing by role switches

If a link (u, v) has to be kept (as a result of the XTC link selection
procedure), but it is not possible to do a role switch, the receiving node v
sends back a ’NACK’ packet to the sending node u, indicating that a role
switch was not possible due to low resources by setting the ’reason’ field
of the ’NACK’ packet to ’CM CON RQST RESOURCES EXHAUSTED’
(refer to section 5.4 for details). Afterwards node u as well as node v know
that the edge (u, v) should have been kept but that there were not enough
resources available.



CHAPTER 6. IMPLEMENTATION ISSUES 94

Counting Master Devices

To enable resource sharing, the devices have to count the number of master
devices. This is done in the con table change cb() callback. More precisely,
from point of view of some node u, the number of master devices has to be
incremented with each incoming connection. Furthermore, the number of
master devices is incremented each time node u switches from master mode
to slave mode.

Recovering suppressed links

If a link (u, v) cannot be kept due to low resources, nodes u and v have to
mark the edge (u, v) for that they know that as soon as some resource is freed
the link (u, v) has to be established since it should be in GXTC . Observing
resource freeing can be done in the contable change cb() by observing role
switches and disconnections.

For keeping track of suppressed links, we make use of another FIFO
wait queue in our implementation, to which the adjacent neighbor v of a
suppressed link (u, v) can be added. Whenever a ressource because of a
disconnection or a role switch is freed, an internal callback function gets
called, which moves the neighbor v corresponding to the suppressed link
(u, v) from this FIFO queue to the connection buffer.

6.7.4 Global Resource Sharing

The idea of global resource sharing was the following: a global background
process shall share the available resources among the nodes of the topology
control graph. Suppressed links are then established automatically with
every resource freed, as explained before.

During verification of local resource sharing with the BTnodes, running
the adaptive XTC topology control algorithm, it turned out that network
establishment went fine without doing any global resource sharing, that is
the resulting topology control graph contained no suppressed links in lower
density networks (up to 12 nodes).

Finding an efficient mechanism for global resource sharing seems to be
not that simple, and since local resource sharing seems to work fine, we did
not integrate global resource sharing in our connection manager. Hence, this
is something that has to be done in a future work if local resource sharing
should reach its limitations in higher density networks.

6.8 Bounded Neighbor Order

In an implementation, the neighbor order will be of fixed size, since memory
is limited. Therefore, another problem arises in high density networks: nodes
have to be discarded from the neighbor order.
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It’s obvious that in a worst case scenario the resulting topology control
graph may be partitioned since it is not possible for some node to determine
which of the nodes in its order are necessary to guarantee connectivity. Fur-
thermore, discarded neighbor nodes will appear in a later inquiry result
again, and since a node won’t have any information about the previously
discarded node anymore, the node is considered as a yet unknown neigh-
bor node again. This will considerably increase unnecessary node activity
because of the successive additions / removals of neighbor nodes from the
neighbor order.

Since the neighbor order can be stored quit efficiently (that is a mini-
mum of memory is needed for storing the parameters of a neighbor node),
the straight forward approach is to increase the size of the neighbor order
dynamically.
But it’s obvious that by increasing the neighbor order the complexity in-
creases, that is the bigger the neighbor order, the more initial connections
have to be established which increases the problem of congestion (refer to
section 6.3 for further details).

The only countermeasure taken in this thesis to prevent a neighbor order
overflow was by decreasing the range of the devices “by hand”: we simply
filtered nodes with an RSSI value bigger that RSSImin out of the inquiry
result. The parameter RSSImin can be controlled by making use of the
terminal, as well as by writing it to the EEPROM (see section 6.5.2).

To really solve the problem of neighbor order overflows, it would be a nice
feature to let a node dynamically adjust the parameter RSSImin depending
on the density of its neighborhood.



Chapter 7

Results

7.1 Network Establishment

In a first experiment, we randomly distributed 39 BTnodes running the
adaptive XTC algorithm in the third floor of the electrical engineering build-
ing in Zurich. Target of this experiment was to get an impression of the
topology graph established by a larger amount of BTnodes in a real-world
indoor environment.

7.1.1 Parameters

Parameter Value
Tp,max 10 sec
Tp,max 1 min
Ninit 3
Ntrans 4
σTinq 10 sec
Tinq 3 sec
ai on
∆RSSIid 0
∆RSSIth 8
Ncon 2
σTcon 10 sec
Tcpen 4 sec
Tv 4 sec
α 1
β 3

7.1.2 Results

The automatically established network together with the floor plan is shown
in figure 7.1, the network graph obtained from the JAWS GUI is shown in

96
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figure 7.2.
As expected, the graph is connected, and the shortest cycles are of length

4. The mean degree is very low (≈ 1, 2), but also the maximal degree of the
network is only 5. Furthermore, there are no excessive, power-consuming
long-distance links.

Visibility

A nice view of the established network is given in figure 7.3, which was also
obtained from the JAWS GUI: not only the links established (bold lines)
are shown, but also the links of the unit disk graph (remaining lines).

Note that from figure 7.3 the solid walls separating the two corridors
are clearly identifiable: nodes positioned on opposite floors do not see each
other - except nodes 00:f9 and 00:33 which is reasonable since they are only
separated by an air space.

Resource Sharing

Note that the line connecting nodes 00:43 and 00:69 in figure 7.3 does not
correspond to an existing link: this is a link that could not be establishes be-
cause of exhausted resources (refer to section 6.7 for details) during network
establishment. In fact, if the link would be established, the corresponding
nodes would close it immediately again since the links (00:d9, 00:43) and
(00:d9, 00:69) are preferred.
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Figure 7.1: Network established by distributing 39 BTnodes randomly in an
indoor environment
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Figure 7.2: JAWS GUI representation of the network depicted in figure 7.1
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Figure 7.3: Implementation: Architecture
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7.2 RSSI Measurement

In this measurement, we’ve measured the RSSI value against the distance
obtained from two BTnodes that were in line of sight. The RSSI value was
measured in two different ways: in a first step we’ve measured the RSSI value
obtained from an inquiry, and in a second step we’ve measured the RSSI
obtained from an established connection. For each distance we’ve repeated
the measurement ten times.

7.2.1 Results

The results are shown in figure 7.4. Each diagram shows the RSSI value
measured against the distance of the two nodes. The boxes indicate the
deviation of the mean value, which is marked by the dash inside of a box.
Minimal and maximal values measured are marked by a small “T”.

Considering only the mean values of the plots, the result is quite re-
markable. Although not a straight line, it’s observable that the RSSI value
decreases with increasing distance as desired.

7.2.2 Conclusion

The deviation, as well as the minimal (maximal resp.) values measured
indicate that the RSSI value is extremely fluctuating when getting it from
an inquiry. Thus, by obtaining the RSSI value from a single inquiry result,
it’s not possible to get information about the distance between two devices.
Or, put the other way round, it’s hard to position BTnodes in a way that
RSSI value differences obtained are significant.

Another problem is obvious: since the XTC algorithm is quite sensitive
to fluctuating link quality measures (refer to section 6.5), it’s impossible to
stabilize even a static network.
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Figure 7.4: RSSI measurements
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7.3 Reducing Sensitivity

In this section, we’re going to show that the approaches presented in section
6.5 do solve the problem of sensitivity but each of it comes along with
disadvantages.

7.3.1 RSSI Threshold

In a first experiment, we’ve investigated how big the updating threshold
∆RSSIth has to be chosen for that the resulting network topology of a
static node constellation remains stable, while the IIR filter was disabled.

This was done by placing 12 BTnodes randomly in the students labora-
tory, turning them on, and counting the number of total connection estab-
lishments during 20 minutes. This was repeated for four different values of
∆RSSIth. The parameter settings are given in the table below.

Parameter Value
Tp,max 10 sec
Tp,max 1 min
Ninit 3
Ntrans 4
σTinq 10 sec
Tinq 3 sec
ai on
∆RSSIid 0
∆RSSIth varying
Ncon 2
σTcon 10 sec
Tcpen 4 sec
Tv 4 sec
α 1
β 0

Results

The results are shown in figure 7.5. It can be seen that for small values of
∆RSSIth, the network won’t stop adjusting its topology due to the fluc-
tuating RSSI values measured. It turns out that the threshold ∆RSSIth

has to be chosen quite generously for that the topology of the network re-
mains stable. In fact, the network topology seems to be stable not until
∆RSSIth ≥ 16.
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Figure 7.5: Number of total connection establishments against time, for
different values of ∆RSSIth. Low pass filter is off.

Conclusion

The problem is obvious: if we choose ∆RSSIth ≈ 16, we dramatically quan-
tize the possible link qualities: In fact, a node won’t be able to distinguish
more than approximately three different link qualities1, that is, from point
of view of some node u, the quality ωuv of some link (u, v) is either “good”,
“medium”, or “bad”.

Hence, the idea of adapting the network topology due to changing link
qualities to conserve energy slightly depreciates. But still, “bad” links (i.e.
long-distance links) can be avoided if there is a better neighbor to which at
least a link of “medium” quality exists.

7.3.2 Filtering

This measurement is identical to the measrement done in the previous sub-
section, that is we again measured the number of total connection establish-
ments against the RSSI threshold ∆RSSIth. But this time we filtered the
RSSI values measured by setting α = 1, and β = 3. The parameter setting
is given in the table below.

1if we assume that the maximal RSSI value that can be measured is ≈ −45 and the
maximal value ≈ −85
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Parameter Value
Tp,max 10 sec
Tp,max 1 min
Ninit 3
Ntrans 4
σTinq 10 sec
Tinq 3 sec
ai on
∆RSSIid 0
∆RSSIth varying
Ncon 2
σTcon 10 sec
Tcpen 4 sec
Tv 4 sec
α 1
β 3

Results

The results of the measurement are shown in figure 7.6. In contrast to the
previous measurement, the network topology remains constant by choosing
∆RSSIth ≈ 8. Note that it takes quite a long time until the IIR filter is in
steady state (up to 6-7min).
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Figure 7.6: Random inquiry timing
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Conclusion

By low pass filtering the RSSI values obtained from the inquiry results,
the number of distinguishable link qualities can be slightly increased. More
precisely, by assuming the RSSI values measured to be in [−45,−85], it is
possible to distinguish approximately five different link qualities.

7.4 Network Setup Time

In this section we’re going to show that the relaxed timing scheme explained
in section 6.4 is necessary for that the BTnodes are able to establish connec-
tions to each of their neighbor nodes if node density is high. Additionally,
the network setup time was measured against node density.

7.4.1 Relaxed Timing

In this measurement, we’ve measured the network setup time in a higher
density network against the maximal connection establishment period σTcon .
This has been done by placing 15 Btnodes randomly on a table, and starting
them with a synchronous reset. For each σTcon the setup time was measured
three times. The target was to show that by the applying the relaxed timing
scheme, the problem of congestion can be solved.

Parameter Value
Tp,max 10 sec
Tp,max 1 min
Ninit 3
Ntrans 4
σTinq 10 sec
Tinq 3 sec
ai on
∆RSSIid 0
∆RSSIth 90
Ncon 2
σTcon varying
Tcpen 4 sec
Tv 4 sec
α 1
β 0

Results

In figure 7.7, the averaged network setup time against σTcon is depicted. By
choosing σTcon between 6 to 10 seconds, everything is fine, and the network
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establishment time is around 200 seconds. But by decreasing σTcon , network
establishment time increases dramatically up to ≈300 to 400 seconds.
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Figure 7.7: Network establishment time against σTcon with a node density
of 15.

Conclusion

This measurement shows that by choosing σTcon to low, network establish-
ment increases dramatically because of congestion.

7.4.2 Setup Time Measurement

In this measurement, we’ve measured the network setup time against node
density. This has been done by placing Btnodes randomly on a table, and
starting them with a synchronous reset. For that it was possible that each
BTnode was able to establish a connection to each neighbor device, σTcon

had to be set to 20 sec2.

2when decreasing σTcon the nodes were not able to do all of the necessary connection
establishments. In fact, strange behavior of the nodes has been observed in a network
with a density of 18, which seems to trace back to an error in either the BT Stack or the
Bluetooth module.
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Parameter Value
Tp,max 10 sec
Tp,max 1 min
Ninit 3
Ntrans 4
σTinq 10 sec
Tinq 3 sec
ai on
∆RSSIid 0
∆RSSIth 90
Ncon 2
σTcon 20 sec
Tcpen 4 sec
Tv 4 sec
α 1
β 0

Results

In figure 7.8, the averaged network setup time against σTcon is depicted.
Instead of being a linear function of density, the averaged network setup
time seems to have exponential character. The reason for this may be that
the probability of paging collisions increases with increasing node density.
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Figure 7.8: Network establishment time against node density, with σTcon =
20sec
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Conclusion

As can be seen from figure 7.8, the performance of network establishment
is rather poor, especially in higher density networks. Obviously, to improve
the network setup time in lower density networks, σTcon can be decreased.

But with decreasing σTcon network setup time in higher density networks
increases. Thus, to improve performance of network establishment further,
it seems to be necessary to make approximations, that is a node does only
establish connections to a predefined number of neighbor nodes. But the
problem of such approximations is obvious: in a worst case scenario, the
resulting topology control graph may be partitioned.



Chapter 8

Conclusion

In this thesis, an adaptive variant of the XTC algorithm has been developed
and implemented on the BTnode. It was shown that the implemented algo-
rithm has successfully established the XTC topology control graph within a
larger deployment of 39 BTnodes in an indoor environment.

It was shown that the strict locality of the XTC algorithm gives the
BTnodes a lot of trouble during network establishment in higher density
networks. To solve this problem, a relaxed timing scheme has been applied,
which enabled correct network establishment with up to 18 BTnodes. Nev-
ertheless, the implementation performs bad during network establishment
in higher density networks. Thus, to improve the performance in higher
density further, approximations are inevitable.

Furthermore, in higher density networks, the common limitations in
Bluetooth scatternets come into play. Hence, the available resources are
shared locally to increase the degree of the correctness achieved, but this
does not completely solve the problem - to guarantee the correctness of
the resulting topology control graph, the implementation would have to be
extended by a global resource sharing algorithm.

When testing the ability of dynamic adaption, it turned out that dynamic
adaption led to excessive node activity even in a static deployment and
became rather a problem than a desired feature. The reason for this behavior
are the extremely fluctuating link quality measure provided by the BTnode,
as well as the high sensitivity of the XTC algorithm. By low pass filtering
the link quality measure obtained and by introducing an updating threshold,
unnecessary node activity could be reduced. As a result, a BTnode is able
to distinguish approximately five different link quality intervals.

Last, but not least, the XTC algorithm looses one of its key properties in
case of asymmetric link qualities, that is it cannot be guaranteed that cycles
of girth 3 are avoided. In this thesis, asymmetry was successfully canceled
by continuously calibrating the link weights measured.

Hence, although being one of the most simple topology control algorithm

110
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available, a lot of engineering efforts had to be taken in order to obtain
correctness of the resulting topology control graph. In fact, compared to the
10 lines of pseudo code that were used by Wattenhofer at al. to formulate
the XTC algorithm, the implementation of the adaptive XTC algorithm
presented in this thesis ended up in approximately 2000 lines of C code (not
including the various library and system functions used, as well as the HCI
Interface functions that are provided by the BT Stack).
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Terminal Commands

All terminal commands provided by the connection manager are executed
by typing “cm” plus the desired command connection manager command.
An overview is given in the table below.

Command Parameters Description
inq - does an inquiry of duration Tinq,

writes the inquiry result to the ’inqres’
struct, and updates the neighbor or-
der accordingly.

inqres - prints out the latest inquiry result.
neighbors - prints out the neighbor order.
con <index> establishes a connection to the neigh-

bor that is at position index in the
current neighbor order, and sends the
current order to it.

check <index> sends the current neighbor order to
the neighbor with index index

conbuf - prints out the neighbors contained in
the ’con buf’

sendbuf - prints out the neighbors currently
contained in the ’send buf’

blocked - prints out the currently blocked neigh-
bors, that is neighbors to which a
XTC link should be established but
there are not enough resorces avail-
able.

masters - prints out the current master devices
rc - prints out the connection handles of

the currently established reliable con-
nections

112
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Command Parameters Description
autinq [0|1] turns on/off automatic inquiry
debug [0|1] turns on/off debug mode
aitime <value> sets the duration Tinq of an inquiry to

value seconds
aimin <value> sets the minimal inquiry period Tp,min

to value seconds (refer to section
5.2.4)

aimax <value> sets the maximal inquiry period
Tp,max to value minutes (refer to sec-
tion 5.2.4)

aistart <value> sets the number of initial inquiries
Ninit to value (refer to section 5.2.4)

aitrans <value> sets the number of transitional in-
quiries Ntrans to value (refer to section
5.2.4)

aidev <value> sets the maximal inquiry period devi-
ation σTinq to value seconds (refer to
section 6.1)

rssi <value> sets the updating threshold ∆RSSIth

to value (refer to section 6.5).
idmode <value> sets the minimal RSSI difference

∆RSSIid needed for that two differ-
ent link qualities are not considered as
being equal to value (refer to section
6.5).

cperiod <value> sets the maximal wait time σTcon be-
tween two connection establishments
to value seconds (refer to section 6.3).

cerradd <value> sets the wait time Tcpen after a page
collision occurred to value seconds (re-
fer to section 6.2).

cvis <value> sets the minimal visibility time Tv to
value seconds (refer to section 6.3).

ctries <value> sets the maximal number of connec-
tion trials Ncon to value (refer to sec-
tion 6.4).

ptime <value> writes the page timeout to the EEP-
ROM. After restart, the page timout
wil be set to value seconds.
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Command Parameters Description
lpfa <value> sets coefficient α of the low pass IIR

filter (refer to section 6.5.2).
lpfb <value> sets coefficient β of the low pass IIR

filter (refer to section 6.5.2).
maxneighs <value> writes the maximal size of the neigh-

bor order to the EEPROM. After
restart, the maximal size of the neigh-
bor order is set to value (refer to sec-
tion 5.2).

inqdevs <value> writes the maximal size of the inquiry
result to the EEPROM. After restart,
maximal number of devices some node
u is going to look for during inquiring
value (refer to section 5.2).

eepreset - Sets the parameters in the EEPROM
to its default values.
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EEPROM Parameters

Most of the parameters explained in section 5.3 can be written to the EEP-
ROM. Setting a parameter that is stored in the EEPROM can be done with
the terminal using the syntax:

cm <cmd> <value> 1

where <cmd> is the command to set the desired parameter, <value> is the
according value, and the terminating ’1’ ensures that the value passed is
written to the EEPROM.

To reset the EEPROM to its default values, use the terminal command
eepreset (refer to appendix A. The following table gives an overview of
the parameters that are stored in the EEPROM, its default values, and the
corresponding terminal command.

Parameter Default Value Command
Tinq 3 sec aitime
Tp,min 10 sec aimin
Tp,max 1 min aimax
Ninit 3 aistart
Ntrans 4 aitrans
σTinq 10 sec aidev
∆RSSIth 12 rssi
∆RSSIid 0 idmode
σTcon 10 sec cperiod
Tcpen 4 sec cerradd
Tv 4 sec cvis
Ncon 2 ctries
tp 7 sec ptime
α 1 lpfa
β 3 lpfb
Nneighs 15 maxneighs
Ninq 15 inqdevs
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JAWS - Scatternets with BTnut

Introduction

Figure 1: BTnode rev.3 Figure 2: Example of a Bluetooth Scatternet

A sensor network is a collection of small, low-resource devices that are distributed in the physical environment.
Due to cost and flexibility issues, it is often assumed to be a wireless sensor network (WSN) consisting of
a large number of sensor nodes. Each of these nodes collects sensor data, and the network collaboratively
provides high-level sensing results.

One key challenge of sensor networks is the formation and maintenance of a connected network that provides
a reliable data transport. To form such a network with Bluetooth implies the formation of Scatternets [6] (Fig. 2.
The recent increase in research interest has led to many new algorithms [5, 7] for the formation of Bluetooth
Scatternets. However, very few have been implemented and tested on real devices.

The BTnode rev.3 [1] (see Fig.1) is a very recent plattform for the development of sensor–network applications
and protocols. It has two radio interfaces: a Bluetooth radio provides relatively high bandwith, while the
second radio is for low-rate and low-power operation. Recently, a new system software [2] for the BTnode rev.3
has been released, that is based on the Ethernut embedded OS [3].

JAWS [4] is an application initially designed for the older BTnode rev.2, that has now been ported for the BTn-
ode rev.3. It contains a straight–forward Scatternet–formation algorithm. The BTnodes running JAWS form
automatically to a tree network. This network is further used to provide virtual serial connections. Due to the

1
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Figure 3: JAWS Components

modular structure of JAWS (Fig. 3), the Connection Manager component, which implements the algorithm can
be independently replaced.

The current implementation has following limitations:

• The topology formed is a tree. There is only one route from a source to its destination. If this link fails,
this destination (and the whole subtree) are disconnected from the network.

• The connection manager algorithm implies that all devices periodically inquire for device discovery.
However, an inquiry on the new BTnode hardware suspends all data transport for the duration of the
inquiry (typically 2-4 sec.).

XTC [7] is a simple, yet effective algorithm, that can be used for Scatternet formation and that is targeted to
resource constrained nodes such as the BTnode.

Problem task

The goal of the project at hand is to evaluate different Scatternet formation algorithms, to select one for
implementation on the BTnodes and to obtain qualitative and quantitative measures on the performance.

Teilaufgaben

1. Erstellen Sie einen Projektplan und legen Sie Meilensteine sowohl zeitlich wie auch thematisch fest.
Erarbeiten Sie in Absprache mit dem Betreuer ein Pflichtenheft.

2. Machen Sie sich mit den relevanten Arbeiten im Bereich Sensornetze und Scatternets formation ver-
traut. Führen Sie eine Literaturrecherche durch. Suchen Sie auch nach relevanten neueren Publikationen.

3. Arbeiten Sie sich in die Softwareentwicklungsumgebung der BTnodes ein. Machen Sie sich mit den er-
forderlichen Tools vertraut und benutzen Sie die entsprechenden Hilfsmittel (online Dokumentation,
Mailinglisten, Application Notes).

2
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4. Machen Sie sich mit der JAWS Applikation vertraut. Schauen Sie sich insbesondere die Schnittstelle zum
Connection Manager an. Arbeiten Sie sich in die Grundlagen von Bluetooth ein. Wesentlich für diese
Arbeit ist vor allem das HCI Interface und alles was das Device Discovery und Connect betrifft.

5. Implementieren Sie einen ausgewählten Scatternet formation algorithm auf den BTnodes rev.3. Testen
Sie Ihre Implementierung mit einem Testbed von 10–30 BTnodes.

6. Definieren und messen sie relevante Charakterisiken Ihrer Implementierung. Führen Sie ein systematis-
ches Parameter-Tuning durch.

7. Dokumentieren Sie Ihre Arbeit sorgfältig mit einem Vortrag, einer kleinen Demonstration, sowie mit
einem Schlussbericht.

Durchführung der Semesterarbeit

Allgemeines

• Der Verlauf des Projektes Semesterarbeit soll laufend anhand des Projektplanes und der Meilen-
steine evaluiert werden. Unvorhergesehene Probleme beim eingeschlagenen Lösungsweg können
Änderungen am Projektplan erforderlich machen. Diese sollen dokumentiert werden.

• Sie verfügen über PC’s mit Linux/Windows für Softwareentwicklung und Test. Für die Einhaltung der
geltenden Sicherheitsrichtlinien der ETH Zürich sind Sie selbst verantwortlich. Falls damit Probleme auf-
tauchen wenden Sie sich an Ihren Betreuer.

• Stellen Sie Ihr Projekt zu Beginn der Semesterarbeit in einem Kurzvortrag vor und präsentieren Sie die
erarbeiteten Resultate am Schluss im Rahmen des Institutskolloquiums Ende Semester.

• Besprechen Sie Ihr Vorgehen regelmässig mit Ihren Betreuern. Verfassen Sie dazu auch einen kurzen
wöchentlichen Statusbericht (EMail).

Abgabe

• Geben Sie zwei unterschriebene Exemplare des Berichtes spätestens am 30. Mai 2005 dem betreuen-
den Assistenten oder seinen Stellvertreter ab. Diese Aufgabenstellung soll vorne im Bericht eingefügt
werden.
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