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Abstract

When trying to monitor an area with a battery-operated sensor network
featuring nodes equipped with cameras, it is crucial use as little energy as
possible. This can be achieved by turning off cameras whenever possible
to improve network lifetime. This thesis shows how to efficiently model
the monitored area by so called ”virtual doors”, and pursues an approach
based on a constant frame rate for initial detection of objects combined
with wake-up calls between the network nodes. A measure in the form of a
miss rate is provided, based on which a decentralized Resource Manager can
determine the frame rate and wake-up times for each camera while taking
other knowledge into account, such as battery level of the nodes, signals
from a PIR sensor, or network congestion. The measures, frame rates and
wake-up times are eventually calculated for a real-world scenario with two
cameras, and then compared to actual data from the cameras.
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Chapter 1

Introduction and Motivation

Scientists, as well as security personnel, are often confronted with the task of
monitoring a designated area to acquire knowledge about objects that have
passed through that area. Whether this is a person walking in a hallway, a
bird returning to its nest to feed its offspring or a car driving around com-
pany grounds, this task is still mainly done with video cameras supervised
by humans. While the analysis of data from low data rate sensors, such as
light barriers, have been automated for decades, the automated analysis of
a video stream has been made possible in the last decade with the arrival of
readily available cheap computers with sufficient processing power. When
one considers the task of monitoring large areas with cameras, many of them
spread out and far from power outlets, adequate processing power has to be
available even at low energy consumption - leading to the new field of bat-
tery operated sensor networks. In such networks, it is crucial to save and
balance the use of energy wherever possible to enhance the lifetime of the
whole surveillance network.

Energy can be saved by using hardware with low power consumption as
well as by using energy efficient protocols for communication inside the sur-
veillance network [RSPS]. In camera sensor networks, the energy consumed
by sensing and processing is no longer negligible; on the contrary, it may
dominate the overall power consumption in a sensor node. Much energy
could be saved if the surveillance cameras and their processing computers
could be in sleep mode as long as the target scene remains unchanged. The
cameras would only turn on from time to time to see if an object has en-
tered their field of view. The cameras in the interior of an area covered by
cameras could reduce the rate at which they turn on to detect new objects,

1



2 CHAPTER 1. INTRODUCTION AND MOTIVATION

if they could rely on being woken up by their neighboring cameras when
objects are expected to enter their field of view. Of course, such ways of
conserving energy goes hand in hand with a growing number of objects not
being detected by the camera network and thus sacrificing quality of ser-
vice of the surveillance task. In many cases, a small loss in quality might
be justifiable if the network lifetime could be improved significantly, which
would in turn lead to an actual improvement of the overall quality of service.

This thesis is part of a NASA funded research project, called Meerkats,
that tries to combine detection as well as tracking of objects with many
cameras with non-overlapping fields of view in a very low power environ-
ment by finding an energy/quality trade off (see [BLM+]). The network’s
given tracking goal is to take at least one snapshot with each camera of
each object crossing its field of view. While it is part of the project to save
energy wherever possible, the scope of this thesis is to provide a yet to be
implemented Resource Manager with recommended camera snapshot times,
and a measure expressing the quality of the time estimations.

The Resource Manager1 will constantly weigh the measure with the re-
maining battery capacity of the network node, the needed level of quality
of service, network congestion, importance of certain regions and other fac-
tors to determine the exact time to resume from standby for each camera,
communication module or even for each processing unit. If a specific node
has the advantage of having more energy available than others, for instance
by being connected to a bigger battery, that node can be more generous in
allocating snapshots.

The measure provided to the Resource Manager will be called miss rate
and can be thought of as the percentage of objects that cross a specific cam-
era’s FOV without ever being photographed and will be defined formally in
chapter 4.

A good indicator of when to turn on a camera could be a signal from a
passive infrared sensor (PIR) that detects an approaching object before it
has arrived - given that the object emits detectable infra red rays. We will
now show reasons why purely PIR based turn-on times are suboptimal and
motivate a combination with the calculation based approach pursued in the

1The Resource Manager should not be thought of as a single process, but as a group
of collaborating processes running on the various sensor network nodes.
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rest of the thesis.

First, it’s not easily possible to trigger interrupts from external sensors
that resume the node from standby on all platforms. Assuming this was
possible, one has to be aware that the evaluation of PIR signals can take up
to 1 second until accurate information is available according to [ua]. When
objects are moving quickly and the fields of view of the cameras are small,
the signal from the PIR might not be available until after the object has
crossed the camera’s FOV.

If many objects were approaching the camera and PIR sensor, there
would be many snapshots showing the same objects repeatedly, which could
have been photographed with fewer snapshots. Repeated photos of the same
objects during the same passage of a camera’s FOV are a waste of energy, ac-
cording the definition of our surveillance task. Due to false positives, which
are inherent to PIR sensors (see [GJV+]), only a small amount of objects
are needed so that the the PIR sensor constantly triggers. In these cases,
snapshots should be taken at a constant frame rate, determined by the av-
erage time the objects will spend within the FOV of a camera. Chapter 4
calculates that frame rate which can be interpreted as the lowest frame rate
to guarantee a certain miss rate. The higher that frame rate will be, the
fewer objects will be missed and vice versa. This frame rate can also be
used as a worst-case scenario to benchmark the power consumption in the
mentioned high-traffic case.

The constant rate of chapter 4 could also be used to determine periodical
intervals after which the computer should resume from standby to read the
PIR sensor and then just use the PIR reading to decide whether to eventu-
ally turn on the camera.

For optimal results, the information from the PIR sensor would also
be handed to the Resource Manager and added as an additional criterion
that the Resource Manager takes into account when deciding on the final
snapshot times. This would result in an allocation of snapshots that are
sometimes calculation based and sometimes based on data from collaborat-
ing sensors.

In this thesis, we will just study the calculation based snapshots and
distinguish two types:
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• Recurring snapshots to detect new objects (discussed in chapter 4)

• Single snapshots that have been scheduled for a specific time when
previously detected objects are expected to be be in the field of view
(FOV) of the scheduled camera (discussed in chapter 5)

Throughout the thesis, we will use the term wake-up for recovering from
standby-mode for a snapshot of the second type. In other words, a cam-
era will wake up another camera. We refrain from using the term for the
self-scheduled, periodic snapshots of the first type. Instead, we speak of
periodically turning on the camera or resuming from standby.

Chapter 2 starts out with a short description of the hardware used in
the Meerkats project, which was also the hardware, that was in mind when
designing the camera scheduling policies. The chapter will then begin with
the contribution of this thesis by introducing the way the environment is
being modeled. Chapter 3 discusses related work. Chapter 4 addresses the
first type of wake-up with a function assigning a miss rate to a constant
frame rate. Chapter 5 addresses the second type of snapshots by assigning a
miss rate to a wake-up time. In chapter 6, these miss rates for given frame
rates and wake-up times are calculated for a real world example and com-
pared to the actual values obtained through a simulation run on data from
actual video streams. Chapter 7 concludes the thesis and provides starting
points for future exploration of the topic.



Chapter 2

Meerkats Hardware and the
Environment Model

The first section in this chapter gives an overview of the hardware in mind
when designing the energy scheduling policies. The remaining sections cover
the mathematical models for the surveillance environment consisting of cam-
eras and so called virtual doors, on which the calculations in chapter 4 and
5 will be based.

2.1 Hardware of the Meerkats Project

In the UCSC Meerkats project, the sensor network will be built of nodes us-
ing Crossbow Stargate computers running embedded Linux on Intel X-Scale
processors. These boards are equipped with PCMCIA wireless LAN cards
and Logitech Quickcam Pro 4000 webcams (similar hardware as used for the
Panoptes camera sensor network node, see [FCK+]). The webcam and the
wireless LAN card can individually be turned on and off, while the processor
features a sleep function which sends it to a standby mode for a specified
time. Table 2.1 gives an overview of the various states the Stargates can be
in and how much power is consumed in these states.1 (see: [BLM+])

1In order to put the processor into sleep mode, one must execute the utility sys suspend,
specifying the time the processor should be sleeping. To put the wireless card in sleep
mode, the utility to be used is cardctl suspend, while cardctl resume changes the wireless
card from sleep to idle. The mechanism we use to put the webcam in sleep mode is
to remove the corresponding modules from the kernel (rmmod usbohci- sa1111), while
to change the webcam from sleep to idle, we insert the corresponding modules (insmod
usb-ohci-sa1111).

5



6CHAPTER 2. MEERKATS HARDWARE AND THE ENVIRONMENT MODEL

State Processor Sensor Radio Storage Power(W)
Sleep sleep sleep sleep sleep 0.28
P-idle idle sleep sleep idle 0.56
P-active active sleep sleep idle 1.60
PR-idle idle sleep idle idle 1.27
PR-active active sleep idle idle 2.35
PR-rx idle sleep active idle 2.29
PR-tx idle sleep active idle 2.48
PRS-idle idle idle idle idle 2.00
PRS-active active idle idle idle 3.09
PRS-sens idle active idle idle 2.23
PRS-rx idle idle rx idle 2.94
PRS-tx idle idle tx idle 3.11
PS-idle idle idle sleep idle 1.28
PS-active active idle sleep idle 2.35
PS-sens idle active sleep idle 1.51
PT-read idle sleep sleep read 1.34
PT-write idle sleep sleep write 1.37
PRT-read idle sleep idle read 2.11
PRT-write idle sleep idle write 2.14
PST-read idle idle sleep read 2.10
PST-write idle idle sleep write 2.14
PRST-read idle idle idle read 2.81
PRST-write idle idle idle write 2.84

Table 2.1: Stargate energy consumption characterization ([BLM+]-Cintia
Margi)

The boards do not offer the possibility of being woken up from standby
mode by the communication core, but it would be possible to combine the
Stargate boards with Crossbow Motes [RSH], which are less powerful em-
bedded computers that consume less energy and offer low data rate com-
munication interfaces. These Motes could then wake up the Stargate board
via a reserved interrupt.

As long as the Stargate boards are not combined with additional hard-
ware, the decision of when to resume from standby mode has to be evaluated
before going into standby. Additionally, when we want to be able to send
messages between the nodes (i.e. for informing other nodes of approaching
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Figure 2.1: At time t, camera sees an object of interest. During the next
radio period, node sends wake-up signals to its neighbors and transmits the
image to the sink ([BLM+]-Jay Boyce)

Figure 2.2: At time t, the radio receives a camera wake-up message from
a neighbor. The Stargate turns on the webcam and begins taking pictures.
([BLM+]-Jay Boyce)

objects) all nodes have to share a certain time span when they are all awake
to interchange messages. On the other hand, the nodes also have to turn
on periodically to take snapshots in order to detect new objects entering
the monitored area. While this snapshot frame rate for the initial detection
of objects varies from camera to camera, the interval in which nodes in-
terchange messages has to be kept strictly synchronous between nodes by a
synchronized clock. Figure 2.1 shows how a webcam periodically takes snap-
shots and detects an object at time t. In the next radio interval it sends
a wake-up message to the other nodes and starts transferring the image of
the object to the sink. The wake-up message will be received by another
camera as shown in Figure 2.2. The wake-up is a message containing the
expected arrival time of the object. The receiving node then considers this
time when setting its next sleep interval to schedule an additional time to
turn on beside the ones already scheduled due to its own detection frame
rate.

Every node maintains timers for when to resume each device (e.g., cam-
era, wireless card). If these timers are large enough, the Stargate will begin a
timed sleep for the entire node to minimize energy usage. At any given point
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in time, a node will load only the modules corresponding to the peripherals
to be activated. However, the discrete influence of the radio synchronization
interval might lead to cases where the node can’t be turned on at the time
calculated. This influence will be covered in section 5.3.

2.2 Model of the Cameras

D2

D1

D3

D4

C1

C3

C2

Figure 2.3: Camera Placement and Modeling Flow of Objects with Virtual
Doors D1-D4

The layout of the cameras in the monitored area is obviously very impor-
tant for the performance of the overall system. [MD] and [ES] have studied
the problem of visibility analysis and optimal placement. In this work we
consider a sparse placement of cameras (as in [MM], [KJRS]) to maximize
the covered area. This means that, in practice, the FOV of two cameras will
seldom overlap.



2.3. MODEL OF MOVING OBJECTS AND VIRTUAL DOORS 9

Figure 2.3 depicts a top down view of a setup of 3 cameras in an open
space. We represent a camera’s FOV as a triangle,2 which approximates the
actual FOV assuming that the camera is not placed too high off the ground.
If the cameras are placed high (e.g. on the ceiling) pointing down, then the
ground area visible in the camera is of the form of a trapezoid, leaving an
uncovered area between the camera and the trapezoid. Depending on the
height of objects in comparison to the camera elevation, the objects will still
be partly covered by the cameras when moving from the trapezoid towards
the camera - making the perceived FOV again more triangular. The cam-
era’s FOV length is limited by the resolution of the camera, if not also by
some obstruction or by the fact that the camera is pointing down. As long as
the cameras don’t cover very large angular ranges, or are omnidirectional, a
triangle is a reasonable approximation even when the FOV is obstructed by
walls or trees. Figure 2.4 shows the whole set of parameters used to model
one camera.

2.3 Model of Moving Objects and Virtual Doors

Deciding on a model for moving objects, such as walking or driving people or
animals, is less straight forward. People and animals certainly change their
direction of movement frequently in the course of a long time span, like a
day, but when reducing the time span as well as the area under supervision
significantly, people tend to walk along straight lines to pursue an objective.
One can think of people walking in a hallway, along a road or straight to a
car in a big parking lot – to name a few examples that can be modeled well
by straight lines. In fact, even for a car in a wide curved section of a road,
a straight line is a good approximation for its movement.

The straight lines need to have starting points, which we will call virtual
doors. These can of obviously be physical doors through which people ap-
pear, but can also be any other place where objects begin their straight line
paths. Virtual thus refers to the more general concept of various straight
paths originating at a single point. When looking at a real world example
of an area under surveillance, one realizes that it doesn’t need that many
virtual doors and straight lines to approximate the most commonly taken

2The formulas in chapter 4 and 5 just contain the object’s crossing distance of a FOV
for a given walking path and can therefore be calculated for any shape of FOV. The
experiments and simulations in chapter 6 although are based on triangular fields of view.
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bc/2
bc/2

ac

f

l,v

xD, yD

xc, yc

l1

fD
l2

w

Figure 2.4: camera and door coordinates

walking paths. Indoors, people are often limited in their choices of move-
ment by hallway walls, and therefore are often compelled to walk along
straight lines and originate in a few places like physical doors or beginning
of hallways. But even outdoors, on an empty field or square, people tend
to originate from a few virtual doors that can range from a tree provid-
ing shadow to an ice cream stand or a road intersection. Depending what
the virtual door in reality refers to, the straight lines originating there are
limited to certain orientation angles. Using the example of the tree, the ori-
entation angles could be 360 degrees out of 360 degrees, while a virtual door
on a traffic lane probably would emit objects whose orientation angles vary
just a couple of degrees as cars are not likely to leave the road. The right
hand side of figure 2.4 includes a virtual door with one object crossing the
FOV of the camera. Appendix B recommends the vector-parameter-form
to model the various straight lines of the walking paths as well as the FOV
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triangle outlines and gives the formulas for their intersection points.

2.3.1 Object Emission Times at a Virtual Door

For a single virtual door, we expect that the average number of objects
emitted in each time unit is equal to a constant λ. The object emission
times at each virtual door are then draws from a Poisson process with that
parameter λ. The probability that k objects were actually emitted during
the time interval T is

pλ(k, T ) = e−λT (λT )k

k!
(2.1)

2.3.2 Speed of an Emitted Object

While different objects, especially when coming from different virtual doors,
can differ a lot in the speed in which they move, the actual speed of a single
object doesn’t change much while it moves on a straight line and is assumed
to be constant. The knowledge about the speed of all objects from a single
virtual door will be expressed as a truncated Gaussian distribution (2.2) with
mean µv and standard deviation σv. We define the speeds to be positive
and express objects moving in the opposite direction by an angle 180 degrees
apart instead of a negative speed. We thus truncate the v ∈ ]−∞; 0[ part
of the Gaussian and scale it so that the total probability remains 1.

pv(v) =
1√

2πσv

e
− (v−µv)2

2σ2
v · 1

1− ∫ 0
−∞

1√
2πσv

e
− (v−µv)2

2σ2
v dv

(2.2)

Using the error function from appendix A.1, we can shorten this to

pv(v) =
1√

2πσv

e
− (v−µv)2

2σ2
v · 1

1− 1
2(erf( −µv√

2σv
) + 1)

(2.3)

∫ ∞

0
pv(v)dv = 1 (2.4)

This distribution will be used in chapter 4 for objects coming from vir-
tual doors as well as in chapter 5 for the speed of detected objects that are
assumed to cross the field of view of another camera.
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v

pv(v)

0 mv

Figure 2.5: Truncated gaussian for the probability distribution of the speed

2.3.3 Angular Range of all Objects Leaving the Door

We assume that all paths originating from a virtual door are contained
within an angular sector of angle ΦD (Fig. 2.4). In the next two subsections,
we provide two different distributions that are suitable for modeling object
emission angles φ.

Uniform Distribution

The uniform distribution is well suited when there is very little to no infor-
mation about the emission angles at all, which is expressed as large angular
sectors φD close to 360 degrees. In that case, the uniform distribution deliv-
ers similar results to a Gaussian distribution with a large uncertainty; but
with less mathematical overhead, pφ(φ) will be a constant. The uniform
distribution is also a good choice for smaller angles when the distribution
really is close to uniform.

pφ(φ) =
1

φD
(2.5)

Double Truncated Gaussian Distribution

For more advanced modeling of the probability of walking angles, we could
also use a truncated gaussian distribution. While the distribution for speeds
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was solely truncated on one end in section 2.3.2, the distribution for the
angles has to be truncated on both ends and then scaled so that the integral
over the interval [0; 2π] remains one. We use appendix A.1 again to express
the integral over the normal curve using the error function.

j

pj(j)

0 m
j 2p

Figure 2.6: Truncated gaussian for the probability distribution of the apex
angle

pφ(φ) =
1√

2πσφ

e
− (φ−µφ)2

2σ2
φ · 1

1
2 [erf(2π−µφ√

2σφ
)− erf( 0−µφ√

2σφ
)]

(2.6)
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Chapter 3

Related Work

The following brief report overviews in this chapter are presented in the
form of extensions to this thesis instead of alternatives, because there has
not been any work published so far that tries to capture objects with a single
snapshot or a small number of snapshots while considering energy consump-
tion. The mentioned papers in this chapter complement references to other
research throughout this thesis.

[YHS] addressed energy saving in general sensor networks that have over-
lapping sensing areas. Besides turning off sensors to save energy at locations
that are covered by multiple sensors, [YHS] also provides a way to vary the
robustness of the whole sensing task between areas by using the signals of
several or just single sensors, which is referred to as differentiated surveil-
lance. In contrast to our objective of surveillance where a single snapshot
of a each moving object is regarded as complete coverage, the cited paper
strives to cover each point of the monitored area at least with one sensor
for 100% of the time. This paper could therefore be combined with our
work in a remarkable way. Our approach addresses camera layouts with
non-overlapping fields of view. To include overlapping field of view cameras,
we could use [YHS] to combine several overlapping cameras to create some-
thing we could call a virtual camera with a FOV that is the combined FOV
of all the overlapping cameras. Our algorithm would then be used to decide
when to turn on which virtual camera and [YHS] would be used to decide
which of the cameras within the virtual camera eventually should be turned
on.

When a surveillance task requires multiple cameras, objects often look

15
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very different among the snapshots due to the various artificial and natural
lighting conditions the cameras are surrounded by. [PD] uses color calibra-
tion between the cameras and stores the video streams not by camera, but
by object.

After a snapshot has been taken, it should be compressed before sent it
to any further node. [WA] shows that, contrary to popular belief, maximum
compression before transmission does not always provide minimal energy
consumption, especially in the case of dense sensor networks with complex
signal processing algorithms. An algorithm is proposed that selects the op-
timal image compression parameters to minimize total energy dissipation
given the network conditions and image quality constraints. [MLN] comes
up with an energy dissipation model, which could also help the Resource
Manager to decide on how much local preprocessing should be done before
transmitting information.

If the tracking objective is met by only sending the detected objects loca-
tion to a central node and not the snapshots taken, localized prediction [XL]
could reduce the energy consumed even further after applying the approach
of chapters 4 and 5. The central node, as well as each other node, predict
the path of the objects taken and send messages to the central node when
the taken path deviated from what was predicted - reducing the number of
long distance transmissions.

The assumption of objects following straight lines between non-overlapping
FOV’s is also done in [RDD] to calculate the camera calibration parame-
ters (location and orientation of the camera, as well as angular range and
resolution). Not addressing energy awareness, many snapshots are taken of
each object in order to record when and where the same objects appear in
different cameras, and with that information the calibration parameters can
be calculated.

In [DB], objects are tracked between non-overlapping fields of view of
uncalibrated cameras by a learning Markov Model. This approach is based
on manually identifying the same objects in several cameras to teach the
algorithm the probabilities, with which objects move from one camera to
another. Knowing this probability helps to identify the redetected objects,
but does not contain any information about when the object is going to
appear in the other cameras. One could imagine though, that the appear-
ance times would be learned as well. While our approach can be applied in
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any new environment by precalculating frame rates and wake-up times from
the geographical knowledge of the virtual doors and camera positions, [DB]
requires a learning phase.
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Chapter 4

Frame Rate for Initial
Detection

We refer to an object slipping through the field of view without being pho-
tographed as a miss. The higher the frame rate at which the nodes turn
on to take snapshots to detect new objects, the smaller the probability of a
miss. It is therefore very application dependent as to what is regarded as
the optimal frame rate. An infinite frame rate would certainly lead to the
lowest probability of a miss, but is technically not feasible and high frame
rates consume too much power in an energy constrained network of cameras.
Assuming we would know the rate at which a miss occurs for a given frame
rate, the former rate could be included in a cost function together with avail-
able energy at a node and other factors. The Resource Manager could then
find the optimal frame rate by minimizing that cost function. We begin this
chapter with the definition of this miss rate and a few events to express it
formally. The next sections then calculate the miss rates associated to the
frame rates in a single and multidoor environment.

Let’s denote the presence of a moving body originating from door d in
the area under surveillance as the event X1

d . If the body enters the i–th
camera FOV (FOVi), we will say that the event F 1

i,d occurred. Every time
a body from door d circulating in the area covered by the network enters
the i–th camera’s FOV and is not detected, we will say that a miss event
for camera i occurred, denoted by M1

i,d. A miss then does not refer to an
empty snapshot, but to an object of which a snapshot has never been taken
of. Note, that according to this definition, object B in figure 4 is never
considered a miss, while object A could lead to a miss when no snapshot
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was taken while it was in the FOV.

A

B

Figure 4.1: About the definition of a ”miss for A and B”

More in general, one may consider the case of n bodies from door d
circulating in the network (event Xn

d ), r of which enter the FOVi at some
point (event F r

i,d), with the i–the camera missing k of the body in its FOV
(event Mk

i,d). Mk
i,d is independent of Xn

d given F r
i,d since objects outside the

camera’s FOV cannot be detected anyway:

P (Mk
i,d|F r

i,d, X
n
d ) = P (Mk

i,d|F r
i,d) (4.1)

We will further assume that P (Mk
i,d|F r

i,d) is binomial. In other words,
each miss event is independent from each other so that there is an equal
chance for each miss to happen no matter how many already happened.
This makes sense in the case of ”rare events”, that is, when two bodies are
unlikely to appear at the same time in the same FOV. We will also pos-
tulate that P (F r

i,d|Xn
d ) is binomial, a reasonable assumption in the case of

independently moving bodies.

Using these events, we now define the miss rate. This miss rate will be
a measure of performance of a camera node. We define it as the ratio of
the expected numbers of miss events to the expected number of bodies from
door d in the network (miss rate or MRi,d):

MRi,d =
E[Mi,d]
E[Xd]

(4.2)

where E[·] represents the expectation operator. Let PM |F = P(M1
i,d|F 1

i,d)
and PF |X = P(F 1

i,d|X1
d). Using the total probability theorem, and remem-
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bering that the conditional distributions of interest are binomial, we can
write:

E[Mi,d] =
∑

k

kP(Mk
i,d) (4.3)

=
∑
n

∑
r

∑

k

P(Mk
1,d|F r

i,d)P(F r
i,d|Xn

d )P(Xn
d )

=
∑
n

∑
r

E[M |F r
i,d]P(F r

i,d|Xn
d )P(Xn

d )

=
∑
n

∑
r

rPM |F P(F r
i,d|Xn

d )P(Xn
d ) =

= PM |F
∑

n

E[F |Xn
d ]P(Xn

d ) = PM |F PF |XE[Xd]

Hence, from 4.2 and 4.3, we maintain that:

MRi,d = PM |F PF |X (4.4)

We will now calculate the right hand side factors of (4.4) for objects from
door d crossing the FOVi when snapshots are taken at a constant frame rate
for the initial detection of the objects.

4.1 Miss Rate in a Single Door Environment

Fig. 2.4 shows a scenario with a single camera place near a door or an area
of relatively high flow of objects. It is likely that this camera will be the
first node that can detect a person walking through that door (assuming
that there would be other cameras farther away). We modeled the times
the persons walk through the door by a Poisson point process of unknown
density λ as given in (2.1).

According to our model, persons walk through the door in a rectilinear
motion, with constant, but unknown velocity v and orientation φ that can
be modeled by suitable probability distributions pv(v) and pφ(φ) as given
in chapter 2. Note that prior information on the velocity is often available
(e.g. the average speed of walking). We further assume that the orienta-
tion and the velocity of motion are statistically independent. As shown in
Fig. 2.4, the direction of motion φ determines the length l1(φ) of the path
from the door to FOVi, and the length l2(φ) of the path overlapping FOVi.
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Together with the velocity v, these path lengths determine the amount of
time t1(φ, v) = l1(φ)/v that it takes to go from the door to FOVi, and the
amount of time t2(φ, v) = l2(φ)/v the moving person will be within FOVi.

Let Φ be the set of orientations that overlap FOVi as shown in figure
4.2.

t2<Ti

t2<Ti

t2>Ti

a

b

c

b

Ff
D

Door D

Camera C

Figure 4.2: Areas and angles of interest when an object originates from a
door and crosses the field of view of a camera at a given speed.

Then:

PF |X =
∫

φ∈Φ
pφ(φ) dφ (4.5)

The probability PM |F of misdetection, given that the person walks into
the camera’s FOV, depends on the image acquisition policy of the camera.
Under periodic image acquisition, like the case with the frame rate for initial
detection, a person walking through FOVi is not detected if, for some m:

mTi < tin < tout < (m + 1)Ti (4.6)
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where tin = t0 + t1(φ, v) is the time the person enters FOVi, tout =
t0 + t1(φ, v) + t2(φ, v) is the time the person exits FOVi, and t0 is the time
the person walks through the door. Since t0 is, by hypothesis, an outcome of
a Poisson process and thus equally likely to be at any time, we can calculate
the probability that the condition in (4.6) is verified with the help of figure
4.2 and 4.3.

t

t
2

T
i

Figure 4.3: calculating probability of miss from crossing interval (solid blue)

In the areas of figure 4.2 where t2 > Ti no miss can happen as the object
spends more time in the camera FOV triangle than the frame rate interval is
(object c) and by definition, object a is not a miss either. However, objects
b can lead to a miss. For such objects, given a speed v, the crossing time at
a certain angle is t2(φ, v) and is marked as a bold interval on the time line in
figure 4.3. The vertical lines represent the detection snapshots taken every
Ti seconds. We see that the second object (second bold interval) just arrived
exactly after a snapshot was taken and is thus just missed. The probability
of an object being missed is

Ti − t2
Ti

(4.7)

Condition (4.6) is therefore satisfied for angles φ in Φ with a probability
of

1− min(t2(φ, v), Ti)
Ti

(4.8)

.
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Hence by applying the theorem of total probability twice:

PM |F =
∫

φ∈Φ

∫

v
pv(v)

(
1− min(t2(φ, v), Ti)

Ti

)
dv pφ(φ) dφ (4.9)

Fig. 4.4 shows the relationship between the snapshot period Ti and the
miss rate MRi,d for the situation in Fig. 4.5. This relation should be con-
tained in a look–up table to save power by not computing the various inte-
grals. The Resource Manager can then use this look–up table to decide on a
suitable snapshot rate for the camera the look–up table was calculated for.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1
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M
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i

Figure 4.4: Miss rates for initial detection of an object given a frame rate

In practice, the parameters needed to estimate the miss rate are known
only with a certain degree of approximation. These parameters include the
location and orientation of the camera, as well as the statistical distribution
of orientation and velocity. The hypothesis of rectilinear motion at con-
stant speed may not always be accurate. However, uncertainty about the
camera geometry can be taken into account by suitably modifying (4.5) and
(4.9). Likewise, uncertainty about the actual distributions of v and φ can
be modeled by increasing the variance of the model distributions.
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situation map with camera triangle (right star) & walking person range (left star)

Figure 4.5: Top down view of camera FOV and virtual door for fig. 4.4

4.2 Miss Rate in a Multiple Door Environment

We now consider an environment that is modeled by multiple doors as was
shown in figure 2.3. Note that adding cameras to the environment is not
incorporated by changing any of the formulas shown so far, instead, each
camera will have its own miss rate – frame rate curve solely based on the
doors around it. In the last section, we defined the miss rate for door d in
(4.2). We now extend this to include multiple (n) doors.

MRi =
E[Mi,d] + E[Mi,2] + ... + E[Mi,n]∑

d E[Xd]
=

∑
d E[Mi,d]∑
d E[Xd]

(4.10)

with the expected number of objects coming out of door d in time span
Ts

E[Xd] = λd · Ts (4.11)

E[Mi,d] remains to be calculated according to (4.3), which is repeated
here:
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E[Mi,d] = PM |F PF |X · E[Xd] (4.12)

Keeping the job of the Resource Manager in mind, which will receive
the miss rate MRi based on which it has to find a different frame rate for
each camera that balances quality of service, battery life and other factors,
we could extend (4.10) to account for the fact, that not all doors might
be equally important. One could imagine a hallway with a very secret
laboratory and a restroom. Therefore, we add weights wd for the doors

MRw
i =

∑
d wd · E[Mi,d]

Wd
∑

d E[Xd]
(4.13)

with

Wd =
∑

alld

wd (4.14)

The miss rate then partly loses its physical interpretation but becomes
a measure MRw

i that gives different doors different weights.

4.3 Learning Environment Parameters after De-
ployment

Depending on how many snapshots the Resource Manager decides to take
after an object was detected and how advanced the object recognition algo-
rithm is implemented, the speed and exact walking path of the object could
be recorded. The distributions for pφ(φ) and pv(v) could then be constantly
adjusted based on the recorded data using a receding horizon reaching back
a certain time or a number of objects that crossed the FOV.

With good path detection and a model with relatively few doors, the
objects could be allocated to a door they probably originated from. Based
on this allocation, the λd parameters of the doors could be learned. Looking
at equation (4.9), we see that the miss rate for the single door case is inde-
pendent of λd and learning the parameter wouldn’t make sense in that case.
In contrast, the miss rate (4.10) for the multiple door case is dependent on
λd, using it to specify the influence of each door on the miss rate. Of course,
the weighted miss rate (4.13) would also profit from a learned λd.



Chapter 5

Wake-up Strategies for
Neighboring Cameras

After an object has been detected in one of the snapshots taken at the con-
stant frame rate for initial detection of chapter 4, it makes sense to use this
information to wake up neighboring cameras at times, when the detected
object is expected to appear in their field of view. This time is calculated
from the information recorded by the camera which saw the object last (i-
th), general expectation about object behavior, and the known location and
orientation of neighboring cameras. In fact, this process of waking up neigh-
boring cameras should continue to take place as woken up cameras detect
the object, so that each camera continues to hand off the object to its neigh-
boring cameras.

Taking all available information into account, the Resource Manager
needs to decide: (1) which (if any) nearby cameras need to be alerted; (2)
how many snapshots each of such cameras should take; (3) what are the
optimal times for the snapshots. Intuitively, if a very reliable prediction
of the body’s motion could be made, only the camera whose field of view
will be intersected next by the body’s path should be alerted, and just one
snapshot should be taken at any time the body is within this field of view.
Due to uncertainty in our knowledge of the precise camera and moving body
geometry, this prediction will be only approximate, meaning that more than
one cameras might have to be alerted, and more than one snapshot might
have to be taken.

If the i-th camera, after initially detecting an object, was able to take
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a couple of snapshots, we can estimate the actual speed, walking direction
and also the location where the object was last seen in the i-th camera. The
location is used to calculate the distance the object has to move to reach the
neighboring cameras and from the distance the time that takes. But even
if that information was not available, in a case where the previous camera
was just able to take one single shot of the object and might not have been
able to exactly localize the object within its FOV, we’d still know that the
object was somewhere in the FOV at the time of the snapshot, at a speed
that the objects are expected to have due to their nature (people, cars...)
with a uniform probability for the direction.

Our strategy is to compute, for each nearby camera of index j, the miss
rate MRj as a function of the number of snapshots Nj it will take, and
of the times tj = {tj,1, . . . , tj,Nj} at which the snapshots are taken. For
each value of Nj , the times tj that minimize the corresponding miss rate
can be computed, resulting in the optimal (decreasing) sequence of values
MRj(Nj). Based on this knowledge, the Resource Manager can allocate the
number and time of snapshots to be taken by each camera, balancing the
need for a low miss rate with the available energy at each node.

Note that besides these snapshots, the woken-up cameras still take the
recurring snapshots calculated in chapter 4 to detect so far unseen objects
that may have been missed by the nearby nodes. No matter in which of the
two types of snapshots an object was seen, the node continues to inform its
neighbors.

In the next section, we will calculate the miss rates for single snapshot
times in a particular camera, given the position at a certain time and the
probability distribution for speed and angle the object is moving. The fol-
lowing section tries to reduce the chance of missing the object in the woken
up camera by allocating two snapshots.

5.1 Allocation of a Single Wake-up Shot

We will assume that the location of the body at time t0 is known exactly,
that the body is moving with rectilinear motion at constant speed, and that
the distribution of velocity, pv(v) and of orientation, pφ(φ) of motion are
modeled as a truncated gaussian and uniform distribution, respectively, as
given in Chapter 2 and used in Chapter 4. Figure 5.1 shows a scenario with a
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FOVi

FOVj

Figure 5.1: Waking up neighboring cameras. An object has been detected
at time t0 by sensor i, which estimated that the body most likely continues
its movement within the angular sector marked by the dashed lines.

camera i and j. Note the similarity of the parameters describing the objects
position and movement at the point the object was last seen versus position
and movement parameters at the virtual door. We remember equation (4.4)
from chap. 4:

MRi,j = PM |F PF |X

and define an analogue miss rate for the wake-up times, but with differ-
ently defined factors:

MRj(Nj) = PM |F PF |X (5.1)

If no snapshot is taken by the j–th camera in response to the event
detected by the i–th camera, then
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MRj(0) = PF |X (5.2)

which is the probability that the body will cross FOVj at some point,
and can be computed as by (4.5). To compute MRj(1), we first need to
express the miss rate as a function of the snapshot time tj,1. This requires
computing the probability that the times tin and tout, at which the body
enters and exits FOVj , are both before or both after tj,1. In symbols:

tout < tj,1 or tin > tj,1

and therefore

PM |F = P(tout < tj,1) + P(tin > tj,1) (5.3)

Using the same symbols as in chap. 4, we observe that:

P(tout < tj,1) = P(t0 + t1 + t2 < tj,1) (5.4)

=
∫

φ∈Φ

∫

v
P(t1(φ, v) + t2(φ, v) < tj,1 − t0) · pv(v)pφ(φ) dv dφ

Remembering that t1(φ, v) = l1(φ)/v and t2(φ, v) = l2(φ)/v we maintain
that:

P(tout < tj,1) =
∫

φ∈Φ

∫ ∞

l1(φ)+l2(φ)
tj,1−t0

pv(v)pφ(φ) dv dφ (5.5)

Likewise,

P(tin > tj,1) =
∫

φ∈Φ

∫ l1(φ)
tj,1−t0

0
pv(v)pφ(φ) dv dφ (5.6)

Putting it all together, we get

MRj(1) = PF |X ·
∫
φ∈Φ

(
∫∞

l1(φ)+l2(φ)
tj,1−t0

pv(v)pφ(φ) dv +
∫ l1(φ)

tj,1−t0

0 pv(v)pφ(φ) dv

)
dφ (5.7)

As mentioned above, the parameters used to describe an object and its
location where it was last seen within FOVi and from which its path to
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Figure 5.2: The miss rate as a function of the time tj,1 at which a single
snapshot is taken by the camera. The best wake-up time is around 2.8
seconds.

the next camera was calculated, are the same as used for describing virtual
doors. Therefore, we can use the same setup of fig. 4.5 as in the last chapter
to plot MRj(1), which is shown in fig. 5.2 as a function of tj,1. In this case
the lowest miss rate is MRj(1) = 0.63 at a wake-up time of 2.8 seconds.
Despite minimizing this function leads to the optimal wake-up time, it can
be useful to provide not just that single time, but the whole function to the
Resource Manager to better handle the following case: It is very likely that
several snapshots intended for different objects would be scheduled close to
each other as objects often move in groups and also because wake-up calls
will arrive from various neighboring cameras. If MRj(1) has a flat minimum,
the Resource Manager could decide to wake up the camera at a time with
slightly higher than optimal miss rate to substitute the newly scheduled
and previously scheduled snapshots with a single snapshot. The number
of wake-ups would be reduced and therefore energy saved at a just slightly
higher miss rate.
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5.2 Allocation of Two Wake-up Snapshots

The case of two snapshots (tj,1 < tj,2) can be dealt with in a similar fashion.
In this case, the j–th camera misses the moving body if any one of these
disjoint events occur:

tout < tj,1 or tj,1 < tin < tout < tj,2 or tin > tj,2

The probability of the first and of the third event above can be easily
computed as in the single snapshot case. As for the second event, it is easy
to see that:

P(tj,1 < tin < tout < tj,2) (5.8)

=
∫

φ∈Φ

∫

v
P

(
v <

l1(φ)
tj,1 − t0

and v >
l1(φ) + l2(φ)

tj,2 − t0

)
·

·pv(v)pφ(φ)dv dφ

=
∫

φ∈Φ

∫ l1(φ)
tj,1−t0

l1(φ)+l2(φ)
tj,2−t0

pv(v)pφ(φ)dv dφ

with the understanding that the last integral is null whenever l1(φ)+l2(φ)
tj,2−t0

>
l1(φ)

tj,1−t0
.

The optimal tj,1, tj,2 are shown in Fig. 5.3 for the same camera setup of
Fig. 4.5. The best miss rate using two time instants (MRj(2)) is equal to
0.43, which, as expected, is less than the best MRj(1) of 0.63.

For maximal efficiency, the optimal wake-up times should be stored in
look-up tables in each camera for a set of likely parameters.

5.3 Constraints Due to Periodic Communication
Intervals

We remember from chapter 2 that the cameras can just communicate in syn-
chronized time intervals due to the inability to receive messages in standby
mode. This constraint didn’t have any influence on taking snapshots at
the frame rate of chapter 4 as the snapshot wake-up times are periodic and
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Figure 5.3: The miss rate as a function of the two times at which snapshots
are taken by the camera. The graph was mirrored to also include the cases
tj,1 > tj,2

known in advance by all cameras themselves. What will happen is just that
the cameras will go to sleep for shorter times than would be necessary for
the communication intervals alone. Waking up other nodes instead, at times
calculated in this chapter, is just possible if these times are later than the
first communication interval after detection. Given an interval Tc between
communication slots, the moment of detection is equally likely to be at each
moment within Tc as the frame rate for initial detection and communication
don’t need to be in synch. We therefore have an equal probability for any
value between 0 to Tc seconds of duration t after which (4.4) is valid. Before
that moment, PM |F = 1 due to the late arrival of the wake-up message. The
miss rate is then solely PF |X . Combined with the cases where the wake-
up message arrives in time, the miss rate for the one snapshot case now
considers network influences and is

MRnwj(1) =

{
MRj(1) for t1 ∈ [Tc;∞]
q for t1 ∈ [0;Tc]

(5.9)

with
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q =
∫ Tc

0

1
Tc

{
MRj(1) for t1 ∈ [t;Tc]
PF |X for t1 ∈ [0; t]

dt (5.10)

and with t1 as the independent parameter of MRnwj(1).



Chapter 6

Multi-Door Application and
Verification

The last two chapters have shown how to calculate the miss rates, based
on which the Resource Manager can choose frame rates and wake-up times
for each camera. All miss rate plots so far were calculated for an imaginary
environment with one camera and one door, and were not comparable to
actual data from real cameras. In this chapter, we will model the entrance
of the Baskin Engineering II building at UCSC with multiple doors and
place two cameras as shown in fig. 6.1. We then verify the calculated miss
rates with data obtained from the actual cameras (fig. 6.2 shows a sample
snapshot taken by each camera). The coordinates of the doors and cameras
are given in table 6.1.

all objects v = 1.28; σv = 0.3
C1 Xc = 0.41; Y c = 2.10; αc = 14; βc = 38; w = 12
C2 Xc = 0; Y c = 1.54; αc = 77; βc = 38; w = 2.6
D1 Xd = 0; Y d = 10.33; 45 < φ < 170; λ = 1/91
D3 Xd = 6.4; Y d = 10.8; 200 < φ < 300; λ = 1/60
D5 Xd = 1.28; Y d = 0; 340 < φ < 30; λ = 1/166
D6 Xd = 2.43; Y d = 13; 160 < φ < 200; λ = 1/203

Table 6.1: Parameters used for simulation of Baskin Engineering II entrance
(4 door model)

Note that the two elevators visible in the snapshots are represented by a
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D1
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D3
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C2

Figure 6.1: Top down view of camera placement and doors at entrance of
E2 Building

single virtual door (D6). This was done to demonstrate that the concept of
virtual doors introduced in chapter 2 can not only be used to place virtual
doors where there are no real doors, but also to model multiple real doors
with one virtual door, where applicable.

In section 6.1, the miss rates are calculated for various frame rates and
wake-up times and then compared to actual values obtained through sub-
sampling of the snapshots in section 6.2. We then refine the environment
model by adding two additional virtual doors and achieve more accurate
miss rate estimations. Eventually we combine the constant frame rate for
initial detection of objects with wake-up notifications to reduce the miss rate
even further.

6.1 Estimated Miss Rates

Figure 6.3 displays the frame rate – miss rate relation for both cameras as
calculated with the formulas in chapter 4 using Matlab. The reason that
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(a) (b)

(c) (d)

Figure 6.2: Sample snapshots of camera 1 (a & b) and camera 2 (c & d)
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Figure 6.3: Miss rates for given frame rates at camera 1 (a) and camera 2
(b)

the miss rate is not 1 at a frame rate of 0 frames per second is that objects
not going through the FOV of that camera are not regarded as miss events
according the definition. In other words, the second factor of equation (4.4)
is one and the first factor determines the value seen at 0 frames per second.
Looking at the curve for camera 1, the Resource Manager would probably
choose a frame rate somewhere between 0.2 and 0.3 for a good energy qual-
ity trade off.

For being able to calculate the miss rates for varying wake-up times
according to chapter 5, we need to specify a point from where the distance
to the other field of views are calculated. This point is the location where
the object was last seen before it left the field of view of the camera it
was detected in (FOVi). To conserve energy, the wake-up times should be
stored in a look-up table for various object detection locations. At a later
stage in the Meerkat project, there will be software available that, given the
camera parameters, automatically detects moving objects in the snapshots
and determines their position in world coordinates. For our experiments
though, we will not have any information about object location and therefore
choose in each FOV, an average location of where objects were last seen
(table 6.2). Figure 6.4 shows the miss rates MRj calculated in Matlab for
the two cameras waking each other up. As the FOV of the first camera is
so much bigger than the one from the second camera, the range of wake-
up times with a similarly good miss rate is intuitively expected to be much
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Figure 6.4: Miss rates when camera 1 wakes up camera 2 (a) and vice versa
(b)

larger for the second camera waking up the first camera than the first waking
up the second. The expected behavior is clearly visible in fig. 6.4.

Cam last seen in X Y Angular Range v σv

C1 2.03m 4.50m 0 - 360◦ 1.28m/s 0.3
C2 1.28m 2.54m 0 - 360◦ 1.28m/s 0.3

Table 6.2: Coordinates of last detection

6.2 Measured Miss Rates and Refined Estimations

For comparing the curves calculated with Matlab to curves obtained when
analyzing the same scenario in reality, we took snapshots at a frame rate of
5 frames per second with each camera. This frame rate was high enough
that no person was able to cross the FOV without being in at least one snap-
shot. The way the cameras were set up, all objects entering the area under
surveillance were captured by at least one camera. As mentioned above,
automatic object localization was not yet available in Meerkats, therefore
this task had to be done by hand. For this reason, the recording run had
to be kept relatively short at a bit more than 30 minutes, producing 9200
snapshot images. Analyzing these snapshots manually, we generated a list
of the form shown in table 6.3. The value -1 stands for ”not detected in that
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Figure 6.5: Miss rates from simulation for given frame rates at camera 1 (a)
and camera 2 (b)

camera”. The object location coordinates were not recorded, but the times
the object entered and left the FOV.

object originating door cam 1 in cam 1 out cam 2 in cam 2 out
1 1 337 367 -1 -1
2 2 342 365 370 375
3 5 368 408 361 364
4 4 691 713 718 724
5 1 723 740 -1 -1
6 4 806 820 826 832
... ... ... ... ... ...

Table 6.3: Beginning of collected data at Baskin Engineering II entrance

6.2.1 Frame Rate for Initial Detection

To simulate taking snapshots at different frame rates for initial detection
of objects in the exact same environment, table 6.3 was subsampled with
a Java program simulating frame rates of any value between 5 frames per
second and 1 frame every 40 seconds for each camera. The resulting real
miss rates are displayed in figure 6.5.
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While the calculated miss rates for the frame rates were quite accurate
for the first camera, the estimation for the second camera is far from ac-
ceptable. We recognize that the frame rates, at which the gradient of the
miss rate changes the most, correspond well between the computation in
Matlab and the Simulation, but the absolute value of the miss rates for the
second camera differ a lot. All real objects moving to the lower part of figure
6.2 eventually crossed the second camera due to the hallway walls. In the
Matlab calculation though, many of these objects did not cross the second
camera and walked straight through where in reality a wall would be. This
happened because we assumed the object movement angles distribution cov-
ers uniformly all paths between walking from door 1 to 3 or 1 to 6 while the
actual distribution would be multi-modal. This flaw in the chosen model for
the Baskin Engineering II can be corrected by replacing virtual door 1 with
two virtual doors with way smaller angular ranges. We define a new virtual
door 1 for the people going to door 3 and a virtual door 2 for people going
towards door 6. In an analog way, we replace virtual door 3 by two virtual
doors, one for objects going to door 1 and one for objects going to door 6.
The improved, 6-door, model now accounts for the fact that objects can’t
walk a path in between the two directions due to the hallway walls.

all objects v = 1.28; σv = 0.3
C1 Xc = 0.41; Y c = 2.10; αc = 14; βc = 38; w = 12
C2 Xc = 0; Y c = 1.54; αc = 77; βc = 38; w = 2.6
D1 Xd = 0; Y d = 10.33; 60 < φ < 110; λ = 1/123
D2 Xd = 0; Y d = 10.33; 160 < φ < 175; λ = 1/460
D3 Xd = 6.4; Y d = 10.8; 255 < φ < 290; λ = 1/80
D4 Xd = 6.4; Y d = 10.8; 190 < φ < 205; λ = 1/307
D5 Xd = 1.28; Y d = 0; 340 < φ < 30; λ = 1/166
D6 Xd = 2.43; Y d = 13; 160 < φ < 200; λ = 1/203

Table 6.4: Parameters used for simulation of Baskin Engineering II entrance.
Improved model with 6 doors.

Table 6.4 contains the coordinates of the enhanced model with 6 doors
and figure 6.6 the new miss rate plots. The miss rate curve for camera 1
is now even more close to the curve from the experiment, but the curve for
camera 2 is, despite better than calculated with the 4-door model, far lower
than the actually measured values. This difference can partly be explained
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Figure 6.6: Miss rates for given frame rates at camera 1 (a) and camera 2
(b) using the improved environment model with 6 doors

by the difficult case of the small camera 2 located far from most doors, but
could also come from a too high actual miss rate, as the latter is based on
the relatively small simulation run including only the 70 objects in the 9200
frames captured.

6.2.2 Wake-up of Neighbor Camera

For comparing the calculated miss rates at different wake-up times to real
world data, the frame rate of the camera to be woken up was set to 0 and
the one from the camera which initially detects the object, was set so high,
that all objects were detected. For each detected object, a wake-up call was
simulated and checked whether exactly the expected object was in the FOV
of the woken up camera at the time of the wake-up. Figure 6.7 shows the
miss rates MRj for different wake-up times. The optimal wake-up times
according the calculated curves in 6.4 are very close to the real ones from
6.7, but their absolute value differs a lot.

This can be explained by the fact that our model has no knowledge about
the direction the detected objects will continue their movement. In table 6.2
we specified an angular range of 0−360◦. In contrast, the people walking in
the real hallway were limited to a small angular range around 0 and around
180 degrees. We will now reduce the angular range to improve the absolute
value of the miss rate. We assume, that once an object is detected, there is
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Figure 6.7: Miss rates from simulation when camera 1 wakes up camera 2
(a) and camera 2 wakes up camera 1 (b)

each a 50% chance that the object moves in one of the two directions of the
hallway. As there are just 2 cameras set up, just one of the two directions
bears the possibility that the object crosses the other camera’s FOV. Table
6.5 shows the object detection points with the refined angular ranges and
fig. 6.8 the new miss rate plots. The plots were scaled with 0.5 to account
for the fact that just 50% of the objects take a path in the specified angular
range.

Cam last seen in X Y Angular Range v σv

C1 2.03m 4.50m 170 - 185◦ ∗ 1.28m/s 0.3
C2 1.28m 2.54m 300 - 20◦ ∗ 1.28m/s 0.3

Table 6.5: Coordinates of last detection and reduced angular range of move-
ment. * Objects also choose opposite paths, but they can’t lead to a miss
as they don’t intersect a camera.

Comparing fig. 6.8 to the measured values of fig. 6.7, we see that the
calculated miss rates are now much closer to the actual values than was the
case in fig. 6.4. The improvement comes from the reduction of the angular
range in the object-detection-points to values that account for the hallway
walls. One should be aware that the angular ranges used for the calculation
are still average values and not yet the values of the actual objects detected.
With automatic localization and tracking available in the detecting cameras,
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Figure 6.8: Miss rates when camera 1 wakes up camera 2 (a) and vice versa
(b) using the improve environment model with reduced angular range of
movement

this angular range could be narrowed even more, reducing the difference
between the calculated miss rates and the measured values even further.

6.2.3 Combination of Constant Frame Rate with Wake-up
Notifications

Figure 6.9 shows how a lower miss rate at given frame rate can be achieved
by combining the constant frame rate for initial detection of objects with
wake-up notifications. The quality of the wake-ups depends on the frame
rate of the camera issuing the wake-up calls, as it can’t wake up another
camera when it didn’t detect the object itself due to a too low frame rate.
Therefore, we have set the camera issuing the wake-up calls to a frame rate
high enough, so that no objects were missed in that camera. Figure 6.9
shows the miss rate in the woken up camera 1 (a) and 2 (b). The lighter
curves show again the same data as was shown in 6.3, which are the miss
rates without wake-up calls. The darker curves include wake-ups. We see,
that when the woken up camera already takes snapshots at a high frame
rate, the wake-ups can’t lead to detecting many objects that would have
been missed without the wake-ups. The lower the frame rate, the bigger the
influence of the wake-up notifications, until at a frame rate of 0 frames per
second, the only detections happen due to the wake-ups. The reason for the
miss rate of the light curve at a frame rate of 0 not being 1 is again that ob-
jects not crossing the FOV of the woken up camera are not considered misses.
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Figure 6.9: Miss rates from simulation with and without wake-up (black vs
blue, respectively). (a) cam 2 wakes up cam 1, (b) vice versa



46CHAPTER 6. MULTI-DOOR APPLICATION AND VERIFICATION



Chapter 7

Conclusion and Future Work

This thesis approached power reduction in camera sensor networks for sur-
veillance by separating the tasks of initially detecting an object, and in-
forming other cameras about objects in the area. To model the area under
surveillance, the concept of virtual doors was introduced with which it is
possible to model environments as different as open spaces and hallways.
The times, at which objects appear through virtual doors were modeled as
a poisson point process while speed and direction of movement were modeled
by truncated gaussian and uniform distributions. Chapter 4 assigned a miss
rate to each frame rate used to initially detect new objects. This miss rate is
a measure, based on which a Resource Manager can choose a frame rate for
each camera while optimizing a cost/utility function containing several cri-
terions such as available energy at each node. Chapter 5 provided an analog
measure for wake-up times. The concept was applied to a real environment,
the entrance of Baskin Engineering II at UCSC, for which the measures,
frame rates and wake-up times have been calculated and compared to val-
ues obtained through subsampling data from the actual snapshots.

While the experiment at the Baskin Engineering II entrance provided
first results, an experiment with far more than 9200 pictures could be done
to compare the calculated values to more averaged measurements, as soon as
the automated object extraction and localization is finished in the Meerkats
project. The concept could also be applied to objects that tend to change
their movement far more, like animals, or far less, like cars on a road as
shown in 7.1. On a one way street, one camera could solely rely on the
wake-up calls and don’t take any initial detection snapshots at a constant
frame rate. These photos are from another simulation run done for this
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(a) (b)

(c) (d)

Figure 7.1: (a) & (b): Camera 1. (c) & (d): Camera 2

thesis on the UCSC campus. The car experiment contains more snapshots
than the one of the Baskin Engineering Entrance demonstrated in chapter
6, but way less uncertainty and variety in movement angle, which is why the
concept was presented with the latter scenario to show the influence of the
model accuracy.

In the experiments, all camera FOV triangles were assumed to be equi-
lateral, while, especially when the view is blocked by walls in a non rec-
tangular way, general triangles would be a more close approximation. This
would only require changes in the Matlab program calculating the crossing
distance of the triangle. Going even further, when using cameras with large
angular ranges, even a general triangle becomes inadequate and would have
to be replaced by FOV sectors or even circles in the case of omnidirectional
cameras.

The results showed, that the concept can be applied to real environ-
ments, and that it bears the potential to save a lot of energy by reducing
the number of snapshots taken in a significant manner (i.e. 0.3 frames/s
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compared to 25 frames/s for camera 1 in chap. 6). Combining the frame
rate for initial detection with inter-camera wake-ups, the necessary number
of snapshots for a given miss rate can be reduced even further.

Even with simple environment models, optimal wake-up times can be
calculated accurately and the lowest frame rate values identified, to which
the frame rates can be reduced without significant loss of photographed
objects. In scenarios with virtual doors placed far from cameras with small
fields of view, accurate absolute values of the calculated miss rates depend
on detailed modeling of the object movement paths.
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Appendix A

Improving Simulation Speed

A.1 Expressing Integral over Normal Curve as a
Function of the Tabulated Error Function

erf(y) =
2√
π

∫ y

0
e−t2dt (A.1)

normµ,σ(x) =
1

σ
√

2π
e

(x−µ)2

2σ2 (A.2)

substitute t = x−µ√
2σ

x = t
√

2σ + µ;
dt

dx
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1√
2σ

(A.3)
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=
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2
(erf(

a− µ√
2σ

) + 1)] (A.7)

Exchanging the integral (Matlab quadl function) with the difference of
these two error functions reduced the calculation time by approximately a
factor of 2.
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Appendix B

Useful Representation of
Model Geometry

In chapter 4 and 5 we will need to know the time (and therefore the distance)
an object coming from a virtual door spends in the FOV of a camera as well
as the time it takes to reach it. We therefore have to intersect the straight
walking lines coming from the virtual doors with the camera FOV triangles.
In order to do that, we have to choose a parametrization of the FOV as well
as of the straight walking path. As the directions on most lines in figure
2.4 do have a physical meaning (walking direction on the straight line, FOV
borders away from the camera), we decided for the vector-parameter-form
to represent the straight lines and make use of the sign of the parameter.
On the straight walking path, the point with the parameter equal to 0 is
the virtual door, while positive values will represent the path the object
took. Similarly, two of the 3 straight lines used to represent the camera
FOV interconnect at the position of the camera at a parameter value of 0.
The triangle of the field of view is then expressed as 3 lines of the form

(
x
y

)
=

(
xi

yi

)
+ λi

(
sin(γi)
cos(γi)

)
(B.1)

where i are the corner points and the directions γi (0◦ , north) are cho-

sen that positive parameter values for λi make the point
(

x
y

)
follow the

side of the camera FOV triangle instead of immediately going away from it.

The following formulas calculate the parameter values λ1 and λ2 at the
intersection of two such straight lines (straight walking line and one of the
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3 lines of the camera FOV triangle). There is of course no such point when
the two lines are parallel.

[
λ1 = sin γ2·(y2−y1)+cos γ2·(x1−x2)

sin γ2·cos γ2−sin γ1·cos γ1

λ2 = x1−x2+λ1cosγ1

sin γ2

]
(B.2)

These formulas B.2 are just valid for γ2 > 0, for a γ = 0 the following
formulas have to be used.

[
λ1 = sin γ2·(y2−y1)+cos γ2·(x1−x2)

sin γ2·cos γ2−sin γ1·cos γ1

λ2 = y1−y2+λ1cosγ1

cos γ2

]
(B.3)

Knowing the maximal possible values for λi where the line goes beyond
the FOV triangle, it is easy to find out whether the intersection happened
at the FOV or on an undefined part of the line.
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