
Master Thesis

Optimization of

Compact Set Membership Representation

for Distributed Computing

March 2005

Andreas Diener
andreas.diener@vis.ethz.ch

Professor:
Prof. Dr. Roger Wattenhofer, ETH Zurich

Supervisors:
Dr. Paul Hurley, IBM Research GmbH

Prof. Dr. Marcel Waldvogel, University of Konstanz

Acknowledgements

I am grateful to Marcel Waldvogel, Paul Hurley, and Roger Wattenhofer for enabling
and supervising this thesis. They provided all the help, support, and time needed
for successfully completing this work and were valued contact persons at all times.

Also, I would like to say thank you to Patrick Droz, Jeroen Massar, Sankara-
narayanan Sundararajan, Claudia Weber, Verena Diener, and Ulrich Diener who
supported me with their time and ideas as well as in many enriching discussions.

This thesis was carried out at

IBM IBM Research GmbH, Zurich Research Laboratory

Abstract

Bloom filters are widely used although not always optimal. Notably in appli-
cation areas where false negatives are bearable, other techniques can clearly be
better. This master thesis shows that at least for a specific area in the parame-
ter space Bloom filters are significantly outperformed even by trivial methods.
We provide an analysis, show that many application areas where Bloom fil-
ters are deployed do not require the strong ”no false negatives” policy, and
also examine application specific issues in a distributed web caching scenario.
We believe we have opened up a new perspective with which to approach the
subject and show that the unconditional use of Bloom filters is questionable.

Contents

1 Introduction 1
1.1 Related Work . 2
1.2 Chapter Overview . 3

2 Improved Coding 5
2.1 Problem Definition . 5
2.2 Bloom Filters . 6
2.3 Linear Optimization . 6

2.3.1 Motivation . 6
2.3.2 Defining the Optimization Problem 6
2.3.3 Stochastic Models . 7
2.3.4 Approach: Test Cases . 7
2.3.5 Approach: Mathematically Solving the Problem 8

2.4 Cropped Filter . 10
2.5 Cost of One-sided Error . 11
2.6 N-K Model . 13
2.7 Optimal Coding . 15
2.8 Hamming Distance and Hamming Distortion 16
2.9 Comparison of Different Methods . 16

2.9.1 Derivation of Distortion Formulas 17
2.9.2 Visualization of the Distortion 21

2.10 Cropped Bloom Filter . 23
2.11 Rate vs. Document Space . 25
2.12 Distortion vs. ρ . 26
2.13 Distortion for Huge and Realistic Document Spaces 28

3 Simulation and Application Specific Issues 31
3.1 Simulation Setup . 31

3.1.1 Correctness of the Lookup Results 31
3.1.2 Computation Time . 32
3.1.3 Workload . 32

3.2 Course of Action . 32
3.3 Implementing Compact Set Representation 33
3.4 Simulation Results . 34

4 Conclusions 39
4.1 Future Work . 39
4.2 Personal Experiences . 40

A Mid Thesis Report 41
A.1 Achievements . 41
A.2 Future Work . 42

i

ii Contents

B Summary 43

C Zusammenfassung 45

Chapter 1

Introduction

Bloom filters [Blo70] pop up everywhere in networking. In the last four years, the
original article from 1970 was cited in more than 51 publications from the ACM
alone. It’s the tool of first and last resort when looking at how to compactly store
set membership information in some form or another.
We posed the question as to whether better performance could be achieved; or
if different applications necessitated, or would benefit from other schemes for set
membership representation. This work shows that indeed Bloom may, in certain
circumstances, be far from optimal, and even very simple schemes may do better
and be more appropriate.
Many efforts have focused on enhancing Bloom filters, while one work [Mit01]
showed the benefit of compressing them. We take this one stage further and return
to the underlying goal - the compression of set membership information. This helps
in understanding the limitations (and also advantages) of Bloom filters and aids in
the derivation of other schemes that may be tailored to the particular networking
application.
Set membership representation is a data structure that stores information as to
whether an element is contained in a set or not. Compact set membership represen-
tations can significantly reduce the memory size necessary by trading off accuracy
for storage cost. By far the most prominent method is the aforementioned Bloom
filter. It, along with its derivatives and enhancements, is the sole method applied
in many network applications to date.
Bloom filters were first used to circumvent shortage of local memory and were mainly
applied in the area of databases. Today, they have regained attention in distributed
computing where communication cost is one of the limiting factors. They now serve
as both a method for storage as well as for set membership information exchange.
Some application areas of Bloom filters are listed below.

Distributed Caching Does another cache contain a document? [FCAB00]

Object Location in P2P Networks Keep a Bloom filter for the objects of every
other node in the network. [RK02]

Approximate Set Reconciliation Efficient calculation of SA − SB . [BCMR02]

Set Intersection Efficient finding of SA ∩ SB . [BHPW04]

The restriction of only having false positives is a strong characteristic, which, intu-
itively, should come at a price. When this characteristic is required or helpful, this
price may be worth paying. However, Bloom filters are so handy (and currently the
only kid on the block), that they seem to be used independently of such consider-
ations. Table 1 illustrates some of the most prominent application areas of Bloom

1

2 Chapter 1. Introduction

Application area [BM02] Necessity of one-sided error

Distributed caching No

Object location in P2P systems No

Approximate set reconciliation No∗

Resource routing No

Loop detection No∗

Flow detection Yes

Multicast Yes

Hyphenation exceptions Yes

Set intersection Yes

Differential files Yes
∗ False negatives preferable

Table 1.1: Necessity of restriction to only having false positives.

filters and the corresponding necessity of only having a one-sided error. A more
detailed description of these applications and their settings can be found in [BM02].
One application that does not rely on a one-sided error is distributed caching, where
validity of resources may expire and at the same time new ones become available on
the web. Here, the existence of both false positives and false negatives, while not
particularly cherished, are tolerable. The use of a set membership representation
restricted to one-sided error can be undesired.
In some applications, false negatives are even less costly than false positives. For
example, consider the problem of calculating set subtraction as part of approximate
set reconciliation. False positives are responsible for the faulty outcome, whereas
false negatives would simply cause some overhead.
These reflections are motivation for an analysis of different methods of compact set
membership representation. Thereafter, it is looked at how well the findings can
be applied in practice and finally a performance evaluation of a distributed cache
using different methods of set membership storage is carried out.

1.1 Related Work

During the past 35 years, the Bloom filter captivated many researchers and a mul-
titude of evolutions subsequently emerged. Most go in the direction of new func-
tionality, which is not the scope of this work. One example is the counting Bloom
filter [FCAB00], which introduces the ability to remove elements. Instead of a bit
array, the counting Bloom filter uses a small number of bits per entry to keep count
of the number of elements, incremented upon insertion and decremented upon dele-
tion. The bloomier filter [CKRT04] looks at a Bloom filter as a data structure for
compactly encoding a function. It extends the existing filter, which can only handle
set membership queries, in order to encode arbitrary functions. The Bloom filter
also became an integral part of more complex methods and algorithms. The at-
tenuated Bloom filter [RK02] for example uses Bloom filters for dynamic document
location.
The compressed Bloom filter by Mitzenmacher [Mit01] goes in the direction of per-
formance improvement, in the spirit of this work. It alters the Bloom filter in a way
that improves the accuracy for a given size using compression. Mitzenmacher looks

1.2. Chapter Overview 3

at Bloom filters as both a data structure to be used at proxies and as a message to
be passed between them. A new optimization problem is set up with the message
size as a newly introduced parameter. The compression rate of a compressed Bloom
filter depends on the size of the local Bloom filter and the number of hash functions
used.
In the context of image compression, Weidmann and Vetterli [WV01, WV99] study
spike processes and in particular the rate-distortion of sparse memoryless sources.
This can also be applied to the study of set representation, as explained later in
Chap. 2.
Two papers are associated with this thesis. [HDW05] investigates the general nature
of one-sided errors and presents the subject of lossy set membership representation
from an information theoretical viewpoint. [DHW05] focuses on practical aspects in
network applications and examines the use of alternative methods to Bloom filters.

1.2 Chapter Overview

The task description of this thesis targets at optimizing search in distributed net-
work storage and proposes hierarchical coding, improved coding, and exchange of
relevance information as possible ways to do so. Since promising results were found
in the area of improved coding, this master thesis focuses on this topic only.
The rest of this report is organized as follows.

Chapter 2, Improved Coding An analysis of existing and newly proposed cod-
ing schemes of compact set membership representation.

Chapter 3, Simulation and Application Specific Issues Performance evalu-
ation of a distributed cache scenario using different methods of compact set
membership representation.

Chapter 4, Conclusions Final conclusions summarizing the results and personal
experiences.

Appendix A, Mid Thesis Report A short intermediary report handed in after
three months.

Appendix B, Summary A summary of this thesis in English.

Appendix C, Zusammenfassung Eine Zusammenfassung dieser Arbeit in deut-
scher Sprache.

4 Chapter 1. Introduction

Chapter 2

Improved Coding

The chapter at hand documents an analysis of existing and new methods of com-
pact set membership representation. Emerging from an initial linear optimization
problem, the cropped filter is proposed as one trivial method that outperforms the
well known Bloom filter in at least some areas of the parameter space. While inves-
tigating possible reasons for this unexpected finding, the cost of an error restriction
to only false positives or only false negatives is discussed. A comparison of several
set membership representations with respect to distortion is given and illustrated
in several graphs.

2.1 Problem Definition

The problem of compact set membership representation is defined as follows. Con-
sider a set of objects G = {g1, g2, g3, ...} and a subset S ⊆ G. A compact set
membership representation of S is a data structure that stores information as to
whether an element is contained in S or not. In some applications, infrequent wrong
answers are bearable and the introduced space savings outweigh the disadvantage
of a small error probability.
The two possible basic errors are:

False Positive If an element is wrongly determined to be in S.

False Negative If an element is wrongly determined not to be in S (i.e. in G\S).

Compact set membership representations can have distinct characteristics. Bloom
filters make enumeration of the represented subset difficult. This quality and the
existence of false positives lead to some application scenarios:

Vote Controlling The social security numbers of the people who have already
casted their vote are inserted into a Bloom filter (or similar compact set
representation) which is then distributed to all polling stations. This Bloom
filter allows one to verify if a person has already voted. In the case of a positive
answer, a validation with a central instance storing the uncompressed list is
necessary to prevent false positives. One advantage of such an approach is
that it is not possible to enumerate the people who have voted using the
Bloom filter alone, thus introducing a level of privacy.

Electronic Money The ID numbers of valid, unspent electronic money are avail-
able for download in form of a Bloom filter. The fairly high probability that
false money is identified as such and the unpredictability thereof prevents
abuse.

5

6 Chapter 2. Improved Coding

License Plate Scanning Police men carry a portable device containing a Bloom
filter of suspicious license plate numbers. Space savings, the awareness of
the existence of false positives, and the impossibility of an enumeration are
advantages compared to storing the list directly.

2.2 Bloom Filters

A prominent method of compact set membership representation is the Bloom filter
[Blo70] that was invented by Burton Bloom in 1970. It consists of an array of bits,
initially all set to zero. To insert an element, several hash functions with range
over the bitmap are calculated. The bits corresponding to the hash function output
are set to one. Set membership is ascertained by performing an AND operation
on all the bits stored at the indices that equal the hash values of the requested
element. The property of the filter that stands out is the production of one-sided
errors in membership determination. An inserted element will always be correctly
ascertained as being a member of the set. Bloom filters do not produce any false
negatives. The flip-side is that elements not in the set may falsely be determined as
belonging to the set - a so-called false positive. This is because all hash functions
could map to values that were previously set to one.

2.3 Linear Optimization

2.3.1 Motivation

Bloom filters are one method for lossy set membership representation. In search for
alternative and possibly better methods we looked at the problem from a general
and abstract viewpoint. We hoped to be able to profit from and incorporate findings
in the area of general data compression. Bloom filters allow for false positives but
no false negatives. If a method is allowed to contain both false positives and false
negatives, it might be possible to fundamentally improve the compression rate.

2.3.2 Defining the Optimization Problem

We try to find an optimal method of compact set membership representation by
solving an optimization problem. For simplicity, the first approach is carried out in
Z2. The problem having an optimal method of compact set membership represen-
tation as solution is defined as follows. Consider the finite set of possible documents
G = {g1, ..., gn} with |G| = n. Let S be a subset of G. Let x ∈ Zn

2 with gs ∈ S
iff xs = 1, thus a vector containing the output of the characteristic function of S.
Let y ∈ Zm

2 be a lossy representation of the set S. In general, y = f(x) for some
function f . Let the recovery of x be x̂ = f−1(y). Thus, y can be considered a lossy
compression of x with its approximate recovery given by x̂.
Consider the case where f and f−1 are linear and

Ax = y

and
By = x̂.

A and B are m× n and n×m 0-1 matrices.
No false negatives exist if xs = 1 ⇒ x̂s = 1 ∀s ∈ S.
No false positives exist if x̂s = 1 ⇒ xs = 1 ∀s ∈ S.
The number of mistakes is the Hamming distance between x and x̂.

d(x, x̂) = xT x̂

2.3. Linear Optimization 7

2.3.3 Stochastic Models

In this optimization problem the document space is restricted to be finite. Two
basic probabilistic models for constructing the subset that is to be represented are
the following.

Bernoulli Model Pr (x ∈ S) = ρ. Let

x =

X1

X2

...
Xn

with Xi as Bernoulli random variable i.e. Pr (Xi = 1) = ρ.

N-K Model |S| = k known and all set membership combinations are equiprobable
– i.e. permutations with k 1’s in n positions are possible.

We start off with the Bernoulli model, later look at the N-K model and analyze the
differences.

2.3.4 Approach: Test Cases

In order to get a feeling for the problem, some exemplary test cases were solved.
This was done by a brute force approach using the Matlab function below.

function [] = linoptimize(n,m)
% optimizes over all linear lossy set representations
% finds the transformation matrices A, B that minimize
the distortion
% size of document space = n
% size of compressed vector y = m

% initialize minDist to the maximum possible value
minDist = n; minA = 0; minB = 0;

% try all possible A matrices
for i = 0:1:((2^(n*m))-1)

% try all possible B matrices
for j = 0:1:((2^(n*m))-1)

A = dec2binmat(i,n,m);
B = dec2binmat(j,m,n);
avg = getaveragedistortion(A,B,n);
if avg < minDist

minDist = avg; minA = A, minB = B
end

end
end

Unfortunately, the above algorithm proves to be quite inefficient, i.e. for values
n = 5 and m = 4 execution time exceeds 20 hours! But it correctly solves the small
examples and each produces lots of resulting matrices that optimize the problem.
The optimization for values n = 3 and m = 2 produces 18 results. They include
following matrices A and B:

dist = 0.1 A =
[
0 0 1
0 1 0

]
B =

0 0
0 1
1 0

8 Chapter 2. Improved Coding

dist = 0.1 A =
[
0 0 1
0 1 1

]
B =

0 0
1 1
1 0

dist = 0.1 A =
[
0 1 0
0 0 1

]
B =

0 0
1 0
0 1

dist = 0.1 A =
[
0 0 1
1 0 0

]
B =

0 1
0 0
1 0

dist = 0.1 A =
[
0 1 0
1 0 0

]
B =

0 1
1 0
0 0

These results seem to obey certain patterns that lead to the following hypotheses:

• The identity matrix filled up with zeros is part of the result set.

• All matrices A that result from column permutations of a matrix A that
minimizes the Hamming distance combined with the appropriate matrix B
also minimize the Hamming distance.

• A ∗B = I.

• All optimal matrices have full rank.

2.3.5 Approach: Mathematically Solving the Problem

The linear optimization problem is, given x, determined by matrices A and B such
that the Hamming distance between x and x̂ is minimized. In this section we
mathematically derive the linear transform that minimizes this Hamming distance.
In other words, we determine A and B such that E[d(x, x̂)] = E[d(x,BAx)] is
minimized. In this instance, the problem is limited to having all elements of A and
B in Z2 (i.e. 0-1 matrices).
First, we look at E[X ⊕ Y], for X and Y random variables.

E[X ⊕ Y] =
∑

x∈{0,1}

∑

y∈{0,1}
x⊕ y Pr (X = x, Y = y)

=
∑

(x,y)∈{(0,1),(1,0)}
x⊕ y Pr (X = x, Y = y)

= Pr (X = 0, Y = 1) + Pr (X = 1, Y = 0)

which also is intuitively what one would expect.
Each output Yi from the filter is

Yi =
n∑

j=1

aijXj .

2.3. Linear Optimization 9

Then

X̂i =
m∑

k=1

bikYk

=
m∑

k=1

n∑

j=1

bikakjXj .

Since expectation is linear, we can write

E[d(x, x̂)] =
n∑

i=1

E[Xi ⊕ X̂i]

=
n∑

i=1

Pr (Xi = 0, X̂i = 1) + Pr (Xi = 1, X̂i = 0)

=
n∑

i=1

Pr (Xi = 0, 1 =
m∑

k=1

n∑

j=1

bikakjXj)

+ Pr (Xi = 1, 0 =
m∑

k=1

n∑

j=1

bikakjXj).

(2.1)

We consider the case n = 3 and m = 2.
For i = 1 we get

Pr (X1 = 0, 1 =
2∑

k=1

3∑

j=1

b1kakjXj) + Pr (X1 = 1, 0 =
2∑

k=1

3∑

j=1

b1kakjXj). (2.2)

We analyze the ’double sum’ of the first term and get

2∑

k=1

3∑

j=1

b1kakjXj =

= b11a11X1 + b12a21X1 + b11a12X2 + b12a22X2 + b11a13X3 + b12a13X3

= X1(b11a11 + b12a21) + X2(b11a12 + b12a22) + X3(b11a13 + b12a23)
= X2α1 + X3β1 + X1γ1

where

α1 = b11a12 + b12a22

β1 = b11a13 + b12a23

γ1 = b11a11 + b12a21.

For the Bernoulli random variable Xi we derive the probabilities

Pr (X1 = 0) = 1− ρ

Pr (Xiα1 = 0) = 1− ρα1

Pr (Xiα1 = 1) = ρα1.

(2.3)

Going back to (2.2) and applying Baye’s rule

Pr (AB) = Pr (A | B) ∗ Pr (B)

10 Chapter 2. Improved Coding

as well as (2.3) we get

Pr (X1 = 0, 1 =
2∑

k=1

3∑

j=1

b1kakjXj) =

= Pr (X1 = 0) ∗ Pr (1 =
2∑

k=1

3∑

j=1

b1kakjXj) | X1 = 0)

= (1− ρ) Pr (1 = X2α1 + X3β1 + 0)
= (1− ρ)(Pr (X2α1 = 0, X3β1 = 1) + Pr (X2α1 = 1, X3β1 = 0))
= (1− ρ)((1− ρα1)ρβ1 + ρα1(1− ρβ1))

= ρ(α1 + β1)− ρ2(2α1β1 + α1 + β1) + ρ3(2α1β1).

After repeating these steps for all terms of (2.1) we find the closed formula for the
Hamming distance

E[X ⊕ Y] =
3∑

i=1

ρ3(2αiβi − 4αiβiγi) + ρ2(2αiγi + 2βiγi − αi − βi) + ρ(1− γi)

where

α1 = b11a12 + b12a22

β1 = b11a13 + b12a23

γ1 = b11a11 + b12a21.

α2 = b21a11 + b22a21

β2 = b21a13 + b22a23

γ2 = b21a12 + b22a22.

α3 = b31a11 + b32a21

β3 = b31a12 + b32a22

γ3 = b31a13 + b32a23.

Minimizing this expression for all possible elements of A and B we get the same
results for the case r = 3 and m = 2 as with the brute force approach discussed in
Sect. 2.3.4 and therefore suspect this formula to hold without explicit proof.

2.4 Cropped Filter

Resulting from the hypothesis that the identity matrix filled up with zeroes mini-
mizes the linear optimization problem, the cropped filter is proposed.

y = Ax =

0 · · · 0

I
...

...
0 · · · 0

 ∗

X1

X2

...
Xn

 =

X1

X2

...
Xm

Put in words, the compact representation of the document vector x is simply its
first m bits.

2.5. Cost of One-sided Error 11

The reconstruction of the cropped filter is then given by

x̂ = By =

I

0 · · · 0
...

...
0 · · · 0

∗

X1

X2

...
Xm

 =

X1

X2

...
Xm

0
...
0

for ρ ≤ 0.5

and

x̂ = By =

I

0 · · · 0
...

...
0 · · · 0

∗

X1

X2

...
Xm

 =

X1

X2

...
Xm

1
...
1

for ρ > 0.5.

x̂ consists of the first m bits of x which are represented in the cropped filter y and
a maximum likelihood decoding of the remaining positions that we do not have any
further information about. For ρ ≤ 0.5 they are set to 0, for ρ > 0.5 to 1.
When using cropped filters, the resulting compression is not very impressive, but
one can combine this approach with an additional compression step by first using
the linear optimal method, cropped filters, and thereafter applying a compressor in
order to reduce the size of the transmitted message.
The following illustrates this process. The document space with size n is trans-
formed to a intermediary lossy representation y of size q using a cropped filter. y
is then compressed to y

′
which is of size m.

x
A−→ y

compress−−−−−−→ y
′

We assume that we have an optimal compressor, that is, we assume that our cropped
filter of size q can be compressed down to only qH(ρ) bits, where

H(ρ) = −ρ log2 ρ− (1− ρ) log2 (1− ρ)

is the entropy function. This compressor therefore uses H(ρ) bits on average for
each bit in the original filter.
In practice, near-optimal compressors exist. Arithmetic coding for example requires
on average less than H(ρ) + ε bits per character for any ε > 0 given suitably large
strings. Going from the cropped filter to the compressed cropped filter is a similar
step than going from the Bloom filter to the compressed Bloom filter as described
in [Mit01].

2.5 Cost of One-sided Error

This section addresses the inevitable price that has to be paid when using methods
with a one-sided error. We derive the rate-distortion curve when no false negatives
are permitted under the assumption of an input conforming to a Bernoulli process.

12 Chapter 2. Improved Coding

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Size of compact set representation [bits]

D
is

to
rt

io
n

General lower bound
Lower bound with only false positives
Bloom filter
Compressed cropped filter

Figure 2.1: Theoretical error bound and theoretical error bound for methods only having
false positives.

In order to prevent the existence of false negatives we define the distortion metric
as follows.

d(x, x̂) =

0, x = x̂,

1, x = 0, x̂ = 1,

∞ x = 1, x̂ = 0.

The input X is a Bernoulli-ρ random variable with ρ ≤ 1
2 and X̂ is the output of

any coder. We first derive f(x, x̂) = Pr (X = x, X̂ = x̂), the joint distribution of X
and X̂. In order to have no false negatives and thus a finite distortion, f(1, 0) = 0.
f(0, 1) is the only remaining constellation contributing to the distortion and must
therefore be equal to the entire distortion f(0, 1) = D. Since the total probability
Pr (X = 1) = ρ, we know that f(1, 0) + f(1, 1) = ρ and find f(1, 1) = ρ. Since
Pr (X = 0) = f(0, 0) + f(0, 1) = 1− ρ, we find f(0, 0) = 1− ρ−D. Thus, the joint
distribution is

f(x, x̂) =
[
1− ρ−D D

0 ρ

]
.

Note that Pr (X̂ = 0) = 1− ρ−D and Pr (X̂ = 1) = D + ρ.

−H(X|X̂ = 0) =
f(0, 0)

Pr (X̂ = 0)
log2

f(0, 0)
Pr (X̂ = 0)

+
f(1, 0)

Pr (X̂ = 0)
log2

f(1, 0)
Pr (X̂ = 0)

= 0 + 0 log2 0 = 0,

taking the standard convention that 0 log2 0 = 0, since this is true at the limit.

−H(X|X̂ = 1) =
f(0, 1)

Pr (X̂ = 1)
log2

f(0, 1)
Pr (X̂ = 1)

+
f(1, 1)

Pr (X̂ = 1)
log2

f(1, 1)
Pr (X̂ = 1)

=
D

D + ρ
log2

D

D + ρ
+

ρ

D + ρ
log2

ρ

D + ρ
.

2.6. N-K Model 13

Thus,

−H(X|X̂) = D log2

D

D + ρ
+ ρ log2

ρ

D + ρ

and

I(X; X̂) = H(X)−H(X|X̂)

= −ρ log2 ρ− (1− ρ) log2 (1− ρ) + D log2

D

D + ρ
+ ρ log2

ρ

D + ρ

= −(1− ρ) log2 (1− ρ) + D log2 D − (D + ρ) log2 (D + ρ)

from which the following theoretically reachable rate at a distortion consisting of
only false positives results.

R(D) =

{
−(1− ρ) log (1− ρ) + D log D − (D + ρ) log (D + ρ), D ≤ 1− ρ,

0, otherwise.
(2.4)

In a similar manner we find the theoretically reachable rate at a distortion consisting
of only false negatives to be

R(D) =

{
−ρ log ρ + D log D − (1− ρ + D) log (1− ρ + D), D ≤ ρ,

0, otherwise.

The lower bound of (2.4) for methods restricting possible errors to only false posi-
tives is plotted in Fig. 2.1. The lower bound for general methods without restriction
on the error will be derived later in Sect. 2.9.1. One can clearly see that especially
for small sizes of the compact set representation, more bits are necessary to reach
a given distortion compared to when using methods with no restriction on error.
One can also see that the Bloom filter is close to the lower bound for one-sided
error methods and that the compressed cropped filter is close to the general lower
bound. As a result of the significant difference of the two bounds, the cropped
filter’s performance is below the lower bound of methods restricted to a one-sided
error which proves that for most sizes of the representation and an equiprobable
set membership of ρ = 0.2, the compressed cropped filter performs better than any
one-sided error method such as the Bloom or the compressed Bloom filter.
A more in-depth analysis of lossy set membership representation from an infor-
mation theoretical viewpoint can be found in a companion paper to this report
[HDW05].

2.6 N-K Model

In [WV99] and [WV01] Weidmann and Vetterli describe the rate-distortion behavior
of sparse memoryless sources. The subsequent section summarizes their findings and
relates their work to the problem of compact set membership representation.
The notion of multiple spikes corresponds exactly to the problem of set representa-
tion in the N-K model as described in Sect. 2.3.3. A multiple spike is a source that
emits a vector of length N with K bits set to 1 – the so-called spikes – and the rest
to 0. For given N and K there are

(
N
K

)
such binary vectors. The rate-distortion

function of such a source consists of a linear as well as a nonlinear part. The linear
part is

R(D) = (D −K) log2 β0, D(β0) < D < K

14 Chapter 2. Improved Coding

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distortion* = distortion / K

R
at

e*
 =

 r
at

e
/ l

og
(n

oc
ho

os
ek

(N
, K

))

N = 32

K = 2

K = 4

K = 6

K = 8

K = 10

K = 13

Figure 2.2: Rate-distortion function in the N-K model for a fixed document space of
N = 32 and K = 2, 4, 6, 8, 10, and 13 elements. The curves contain a linear (dashed) and
a non-linear (solid) segment.

where β0 is the solution to the equation

K∑

d=0

wdβ
2d −

(
N

K

)
βK = 0

where

wd =
(

K

d

)(
N −K

d

)
, d = 0, . . . ,K.

The parametric expression for the information rate-distortion curve for 0 < β < β0

is given by

D(β) =
K∑

d=1

bd2d,

R(β) = log2

(
N

K

)
+

K∑

d=0

bd log2 bd −
K∑

d=0

bd log2 wd

for

bd =
wdβ

2d

∑K
d′=0 wd′β2d′

, d = 0, . . . , K.

Figure 2.2 shows the information rate-distortion curves for N = 32 and different K.
One can see that for small K/N the linear segment dominates the rate-distortion
behavior and in applications of set representation, K/N is typically very small. As
a result of this close to linear behavior of R(D), we can construct a near optimal
encoding: encode one part of the spikes exactly with the necessary rate for a lossless
encoding of log

(
N
K

)
and do not encode the rest at all using a rate of 0. This encoding

results in a linear R(D) behavior and it can be seen above, that for small K this

2.7. Optimal Coding 15

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Distortion

R
at

e

N = 100
K = 8
p = 8/100

Rate distortion in Bernoulli model
Rate distortion in N−K model

Figure 2.3: Comparison of rate-distortion curves for the Bernoulli and the N-K model.
The two curves are not the same but stay very close.

is very close to the rate-distortion and therefore almost optimal. This encoding
corresponds to the cropped filter in the N-K model.
The Bernoulli and the N-K model are in many ways similar but they still do reveal
some fundamental differences as it is shown in the expressions for the information
rate-distortion. In Fig. 2.3 the information rate-distortion curves in the N-K model
as well as the Bernoulli model are shown for N = 100 and K = 8 or ρ = 8/100
respectively. In order to indicate that these rate-distortion curves also stay close
together for realistic values of N , here the entropy for N = 232, K = 10 000, and
ρ = 10 000/232:

H(Bernoulli) = NH(ρ)
= 201550

H(N-K model) =
(

N

K

)
H

(
1(
N
K

)
)

= 201541

This difference is less than 50 ppm.

2.7 Optimal Coding

It can be shown for the Bernoulli model with small ρ, that the compressed cropped
filter is asymptotically optimal. Namely, that the normalized rate-distortion func-
tion is asymptotically linear as ρ goes to 0 [WV01, WV99]. The normalized rate-

16 Chapter 2. Improved Coding

distortion function for the normalized Hamming distortion d = D
ρ is given by

R(d)
H(ρ)

= 1− H(ρd)
H(ρ)

= 1− ρd log (ρd) + (1− ρd) log (1− ρd)
ρ log (ρ) + (1− ρ) log (1− ρ)

,

from which

lim
ρ→0

R(d)
H(ρ)

= 1− lim
ρ→0

d log (ρd)− d log (1− ρd)
log (ρ)− log (1− ρ)

= 1− lim
ρ→0

d/ρ + d2/(1− ρd)
1/ρ + 1/(1− ρd)

= 1− d.

This shows that if we normalize the rate and the distortion by their maxima, H(ρ)
and ρ, respectively, the rate-distortion function becomes linear for sparse sources
(ρ → 0). Rate and distortion are fixed values for a certain instance of the set
membership representation problem. The fact, that the rate-distortion becomes
linear for small ρ and the fact, that the cropped filter is linear, give an intuitive
reason for the optimality of the cropped filter for ρ → 0. In reality, ρ is typically
extremely small.

2.8 Hamming Distance and Hamming Distortion

The Hamming distance between two bit-vectors is the number of symbols that
disagree. The Hamming distortion is the Hamming distance per symbol, thus a
normalized Hamming distance.
The Hamming distance and at the same time the Hamming distortion of two ele-
ments x and x̂ is given by

d(x, x̂) =

{
0 if x = x̂,

1 if x 6= x̂.

For this measure, the expected distortion is equivalent to the probability of a mis-
take. Consider a bitmap x = x1, ..., xn of size n constructed from a set S, where
each xi is set to 1 if xi ∈ S and zero otherwise. Similarly associate a bitmap x̂ with
a set Ŝ. The expected distortion between the two is then

d(S, Ŝ) =
1
n

n∑

i=1

d(xi, x̂i).

So the distortion between two sets is the average of the per symbol distortion of the
individual elements.

2.9 Comparison of Different Methods

When analyzing applications that use compact set membership representations,
it is necessary to know the probability of a membership query being answered
incorrectly, thus the probability of an error. We use the Hamming distortion as
described above that precisely expresses this probability of error for the subsequent
analysis and comparisons.

2.9. Comparison of Different Methods 17

In order to express the distortion of compact set membership representations and to
compare the existing methods to the theoretical distortion limit, a clearly defined
model is needed. The model usually described when talking about Bloom filters
allows for an infinite document space whereas in the model for cropped filters a
bounded but arbitrarily big amount of possible document IDs is allowed. These
differences make it challenging to compare the two.
To understand the basic case, as well as for simplicity of analysis, the first approach
considers the case where the probability of an element being in a set is independently
and identically distributed. This corresponds to the Bernoulli-ρ model as described
in Sect. 2.3.3. Such a model may be appropriate, when identifiers are composed of
a hash of the entire space.
Neglecting any possible correlation in the input will show Bloom filters in a better
light performance-wise than they otherwise would. This is because Bloom filters
inherently neglect any correlation by hashing it out.
Further, we assume a finite, enumerable space of possible elements containing the
IDs 1..n. m is the number of bits of the compact set representation.

2.9.1 Derivation of Distortion Formulas

We now derive the expected distortion D for several techniques of compactly rep-
resenting the subset S as well as the absolute lower bound using the information
rate-distortion function.

Bloom Filter

Since our model describes a bounded document space, we apply the Bloom filter
on a bounded document-ID space. This approach is reasonable in many distributed
systems since document IDs are often defined as some hash value of the whole
document projecting them into a bounded space or are restricted to a value smaller
than 232 or 2128 by the application.
First, we look at the false positive rate of Bloom filters [BM02]. After inserting k
documents into a Bloom filter of size m using h hash functions, the probability of
one bit still set to zero is:

Pr (Bit still 0) =
(

1− 1
m

)hk

The false positive rate is defined as the probability that for a document not inserted
in the Bloom filter, all bits for all h hash functions are set to one. This equals to
the probability of h random bits being set to one:

Pr (False positive) = (1− Pr (Bit still 0))h

=

(
1−

(
1− 1

m

)hk
)h

≈
(
1− e−hk/m

)h

We analyze the expected Hamming distance. In the Bernoulli model we do not
know how many elements are actually contained in the Bloom filter. We therefore
have to use conditional probabilities and sum up all possible occurrences for K being
the random variable for the actual size of the subset.

18 Chapter 2. Improved Coding

E [d(x, x̂)] = E

[
n∑

i=1

d(Xi, X̂i)

]

=
n∑

k=0

Pr (K = k)E

[
n−k∑

i=1

d(Xi, X̂i)|K = k, Xi = 0

]

=
n∑

k=0

Pr (K = k)E

[
n−k∑

i=1

d(0, X̂i)|K = k, Xi = 0

]

=
n∑

k=0

Pr (K = k)
n−k∑

i=1

E
[
d(0, X̂i)|K = k,Xi = 0

]

=
n∑

k=0

Pr (K = k)
n−k∑

i=1

Pr (X̂i = 1|K = k, Xi = 0)

=
n∑

k=0

Pr (K = k)(n− k) Pr (False positive|K = k)

=
n∑

k=0

(
n

k

)
ρk(1− ρ)(n−k)(n− k) Pr (False positive|K = k)

According to [BM02], the expected error rate is minimized for h = m
k ln 2 hash

functions. In practice, an integer number must be chosen, usually h = bm
k ln 2c, as

this requires less computation.
Therefore it follows that the normalized distortion is

DBloom =
n∑

k=0

Pr (K = k)
n− k

n
Pr (False positive|K = k)

=
n∑

k=0

(
n

k

)
ρk(1− ρ)(n−k) n− k

n

(
1− e−hk/m

)h

.

Compressed Bloom Filters

Using compressed Bloom filters, we can in theory achieve a false positive rate arbi-
trarily close to (0.5)

m
k by letting the number of hash functions go to 0 or infinity

[Mit01].
In analogy to the derivation of the distortion for Bloom filters, we find the distortion
for compressed Bloom filters to be:

Dcompressed Bloom =
n∑

k=0

Pr (K = k)
n− k

n
Pr (False positive|K = k)

=
n∑

k=0

(
n

k

)
ρk(1− ρ)(n−k) n− k

n

(
1
2

)m
k

(2.5)

2.9. Comparison of Different Methods 19

Cropped Filter

For a cropped filter, we have the following expected Hamming distance for ρ ≤ 0.5:

E [d(x̂, x)] = E

[
n∑

i=1

d(Xi, X̂i)

]

= E

[
n−m∑

i=1

d(Xi, 0)

]

=
n−m∑

i=1

E [d(Xi, 0)]

=
n−m∑

i=1

Pr (Xi = 1) = (n−m)ρ

For the expected Hamming distance as above and a total number n of decoded bits
we have a distortion of:

Dcropped =
n−m

n
ρ

Compressed Cropped Filters

Assuming an optimal compression algorithm, a cropped filter of size q can be com-
pressed into a compressed cropped filter of size m as described by

m = qH(Bit of the cropped filter) = qH(ρ).

Therefore, we can describe q as

q =
m

H(ρ)
.

To find the distortion, we first look at the expected Hamming distance

E [d(x, x̂)] = E

[
n∑

i=1

d(Xi, X̂i)

]

= E

[
n−q∑

i=1

d(Xi, 0)

]

=
n−q∑

i=1

E [d(Xi, 0)]

=
n−q∑

i=1

Pr (Xi = 1) = (n− q)ρ.

Therefore, the distortion is

Dcompressed cropped =
n− q

n
ρ

=
n− m

H(ρ)

n
ρ

=
nH(ρ)−m

nH(ρ)
ρ =

(
1− m

nH(ρ)

)
ρ.

20 Chapter 2. Improved Coding

Cropped Filter With No False Negatives

In order to find the cost of an additional method having a one-sided error, we use the
trivial method of the cropped filter to construct a filter that has no false negatives.
One must decode all unknowns to one in order to omit any false negatives. We
analyze the expected Hamming distance:

E [d(x, x̂)] = E

[
n∑

i=1

d(Xi, X̂i)

]

= E

[
n−m∑

i=1

d(Xi, 1)

]

=
n−m∑

i=1

E [d(Xi, 1)]

=
n−m∑

i=1

Pr (Xi = 0) = (n−m)(1− ρ)

For the expected Hamming distance as above and a total number n of decoded bits
we have a distortion of

Dcropped no false negatives =
n−m

n
(1− ρ).

Compressed Cropped Filter With No False Negatives

As with the cropped filter, we can also apply an additional compression step here.
As for the above description for compressed cropped filters the equation

q =
m

H(ρ)

holds. To find the distortion, we first look at the expected Hamming distance:

E [d(x, x̂)] = E

[
n∑

i=1

d(Xi, X̂i)

]

= E

[
n−q∑

i=1

d(Xi, 1)

]

=
n−q∑

i=1

E [d(Xi, 1)]

=
n−q∑

i=1

Pr (Xi = 0) = (n− q)(ρ− 1)

Therefore, the distortion is

Dcompressed cropped no false negatives =
n− q

n
(ρ− 1)

=
n− m

H(ρ)

n
(ρ− 1)

=
(

1− m

nH(ρ)

)
(ρ− 1).

2.9. Comparison of Different Methods 21

We note that the difference between the ’compressed cropped filter’ and the ’com-
pressed cropped filter with no false negatives’ is a constant factor of

4 =
ρ− 1

ρ
.

Lower Bound

We find an absolute lower bound that defines how big the rate of a communication
must be in order to be able to transmit a given amount of information at a given
fidelity [Ber71]. The function defining this bound is called the information rate-
distortion function and can also be used to determine how much information about
a source can be transmitted using a given rate. The rate R is the number of bits in
the encoded sequence per bit from the input. In other words, it is the compression
ratio. When the distortion is zero, the source may be encoded losslessly. According
to [CT91], the information rate-distortion function for a Bernoulli-ρ source with
Hamming distortion is given by

R(D) =

{
H(ρ)−H(D), 0 ≤ D ≤ min {ρ, 1− ρ},
0, D > min {ρ, 1− ρ}

and therefore the lowest achievable distortion is given by

Dlower bound =

{
H−1 (H(ρ)−R(D)) , 0 ≤ R ≤ H(ρ),
0, R > H(ρ)

where H(ρ) is the entropy of a Bernoulli-ρ source, namely that H(ρ) = −ρ log ρ−
(1− ρ) log (1− ρ).

2.9.2 Visualization of the Distortion

The distortions of the methods of compact set membership representation deduced
above as well as the lower bound are plotted in Fig. 2.4 for one fixed scenario.
Several points spring to mind when looking at this graph:

• At around 352 bits, the curve denoting the lower bound hits the x-axis. This
indicates, that for bigger sizes of the set membership data structure, lossless
encoding is possible. All the same, some methods produce unnecessarily high
error rates in this region.

• There clearly is a gap between the lower bound and the performance of a
Bloom filter.

• The cropped filter with no false negatives performs rather poorly compared
to the Bloom filter.

• The compressed cropped filter has a linear curve and touches the information
rate-distortion function in the points for m = 0 and D = 0.

• As expected after studying the cost for having an only one-sided error, the
methods that do not have a restriction on the error perform significantly better
with respect to the distortion.

• The compressed cropped filter has the lowest expected error probability.

22 Chapter 2. Improved Coding

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Size of compact set representation [bits]

D
is

to
rt

io
n

General lower bound
Bloom filter
Compressed Bloom filter
Cropped filter
Compressed cropped filter
Cropped filters with no false negatives
Compressed cropped filter
with no false negatives

Figure 2.4: Distortion for different methods of lossy set membership representation for a
document space of n = 500 and a set membership probability of ρ = 0.2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distortion

R
at

e

Rate distortion function R(D)
R(D) with no false positives
R(D) with no false negatives
Bloom filter
Compressed Bloom filter
Cropped filter
Compressed cropped filter
Cropped filters
 with no false negatives
Compressed cropped filter
 with no false negatives

Figure 2.5: Rate as a function of the distortion for different methods of lossy set mem-
bership representation for a document space of n = 300 and a set membership probability
of ρ = 0.4.

2.10. Cropped Bloom Filter 23

In information theory, rates are usually expressed and plotted as a function of the
distortion of an encoding. According to [Say96], the rate of an encoding is defined
as the average number of bits per symbol, thus R = K

N for an encoding of an original
sequence of length N into a compressed sequence of length K. Using this definition,
we find the rate as

R =
m

n
.

The rates of all discussed methods over the distortion is plotted in Fig. 2.5. This
graph is basically the same as in Fig. 2.4 but with normalized and swapped axes
and therefore allows the same insights.

2.10 Cropped Bloom Filter

As a result of the feedback from the mid-thesis-presentation, a possible adaptation
of Bloom filters to the case where false positives and false negatives are allowed was
analyzed. As illustrated in Fig. 2.6, the document space is divided into parts A and
B. The elements belonging to the subset in part A are inserted into a Bloom or
compressed Bloom filter whereas the elements in B are ignored and thus become
false negatives. In order to avoid the optimization of finding the best size of A and
B for given parameters, we choose numerous different sizes for A and B and for
each size of the final filter take the minimal distortion of all.
The distortion for a partition such that |A| = r and |B| = n − r is derived as
follows. K represents the number of elements belonging to the subset in part A of
the document space.

E [d(x, x̂)] = E [d(xA, x̂A)] + E [d(xB , x̂B)]

E [d(xA, x̂A)] =
r∑

k=0

Pr (K = k)E [d(xA, x̂A)|K = k]

=
r∑

k=0

Pr (K = k)(r − k) Pr (False positive|K = k)

=
r∑

k=0

(
r

k

)
ρk(1− ρ)(r−k)(r − k) Pr (False positive|K = k)

E [d(xB , x̂B)] = |B|ρ = (n− r)ρ

Then, the distortion is:

D =
∑r

k=0

(
r
k

)
ρk(1− ρ)(r−k)(r − k) Pr (False positive|(K = k)) + (n− r)ρ

n

The reason for the distortion of the Bloom and the compressed Bloom filter be-
ing so large for small filter sizes is the vast amount of false positives generated.
The cropped Bloom filter does not exhibit this characteristic since its distortion
is bounded by ρ. A cropped Bloom filter could always code no information which
would results in a distortion D = ρ using a maximum likelihood decoder.
Figure 2.7 shows the distortion behavior of the cropped Bloom filter using a regular
Bloom filter and one using a compressed Bloom filter to store membership infor-
mation about the elements in part A. The dotted bright lines show the distortion
each for a particular partition of the document space. The solid black line is the
minimum of all, thus representing a cropped Bloom filter using regular Bloom fil-
ters. The dashed black line uses compressed Bloom filters instead of regular ones
and therefore yields a slightly smaller distortion. We note the following:

24 Chapter 2. Improved Coding

Document

space

A Br

Insert into Bloom filter,

use available space

optimally.

Do not insert.

Figure 2.6: Partition of the document space for the cropped Bloom filter.

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Size of compact set representation [bits]

D
is

to
rt

io
n

General lower bound
Bloom filter
Compressed Bloom filter
Cropped filter
Compressed cropped filter
Cropped Bloom filter 1/10
Cropped Bloom filter 2/10
Cropped Bloom filter 3/10
Cropped Bloom filter 4/10
Cropped Bloom filter 5/10
Cropped Bloom filter 6/10
Cropped Bloom filter 7/10
Cropped Bloom filter 8/10
Cropped Bloom min
Cropped compressed Bloom min

Figure 2.7: The cropped Bloom filter is an adaptation of the classical Bloom filter to
prevent the extreme growth of the distortion for small sizes of the data structure. The
distortion of a cropped Bloom filter is plotted for a document space of size n = 500 and a
document probability of ρ = 0.2.

2.11. Rate vs. Document Space 25

0 50 100 150 200
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Size of document space

R
at

e

General lower bound
Bloom filter
Compressed Bloom filter
Cropped filter
Compressed cropped filter

Figure 2.8: Behavior of the rate for a changing size of the document space, a fixed distor-
tion of D = 0.5, and a fixed document probability of ρ = 0.2. After some inconsistencies for
very small document spaces, the rate is constant for all plotted methods of set membership
representation.

• The curve of the cropped Bloom respectively compressed cropped Bloom filter
is tangent to the curve of the Bloom respectively the compressed Bloom filter.

• As the cropped Bloom filter is no longer restricted to having a one-sides error,
its distortion for m = 0 equals to ρ.

• The cropped Bloom filter does not reach the minimal possible distortion as
indicated by the general lower bound and it performs worse than the simple
compressed cropped filter.

2.11 Rate vs. Document Space

An interesting consideration is how the rate behaves over a changing size of the
document space for a given distortion. This is all the more necessary, since up to
now, only small document spaces were taken into account. Figure 2.8 illustrates
the rate behavior for the discussed methods of set membership representation and
a fixed distortion of D = 0.05. We note that after some unevenness for very small
document spaces, the rates are approximately constant.
The values for the Bloom and the compressed Bloom filter had to be calculated
numerically. The other curves were derived from the equations in Sect. 2.9.1:

Cropped Filter

R =
m

n
=

n− Dn
ρ

n
= 1− D

ρ

26 Chapter 2. Improved Coding

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

Probability of a document to be in the subset

D
is

to
rt

io
n

General lower bound
Lower bound with no false positives
Lower bound with no false negatives
Bloom filter
Compressed Bloom filter
Cropped filter
Compressed cropped filter
Cropped filters with no false negatives
Compressed cropped filter with no false negatives

Figure 2.9: Behavior of the distortion for a changing document probability, a fixed size
of the data structure m = 50, and a fixed document space n = 1000. The symmetries
of methods having only false positives vs. methods having only false negatives are nicely
exhibited.

Compressed Cropped Filter

R =
m

n
=

nH(ρ)
(
1− D

ρ

)

n
= H(ρ)

(
1− D

ρ

)

General Lower Bound

R(D) =

{
H(ρ)−H(D), 0 ≤ D ≤ min {ρ, 1− ρ},
0, D > min {ρ, 1− ρ}

As one can see, all these functions do not depend on the document space. The rates
of the cropped filter, the compressed cropped filter, and the lower bound of the
rate for a given distortion are therefore independent of the document space. Also
noticeable is the fact that the Bloom filter’s rate is greater than one. In order to
reach a distortion of only 0.05 in this setting, the Bloom filter needs to have a rate
greater than one in order to anticipate false positives.

2.12 Distortion vs. ρ

The previous section investigates the behavior of lossy set membership represen-
tations when the size of the document space changes. Here, we want to see how

2.12. Distortion vs. ρ 27

the distortion behaves for a changing document probability while the size of the
set representation and the size of the document space remain fixed. Again, we use
the equations in Sect. 2.9.1 and find formulas for the distortion depending on the
probability of a document being in the set. For the lower bounds with one-sided
error, numerical methods were needed.

Bloom Filter

D =
n∑

k=0

(
n

k

)
ρk(1− ρ)n−k n− k

n

(
1− e

−hk
m

)h

for h = m
k ln 2.

Compressed Bloom Filter

D =
n∑

k=0

(
n

k

)
ρk(1− ρ)n−k n− k

n

(
1
2

)m
k

Cropped Filter

D =
n−m

n
ρ

Compressed Cropped Filter

D = 1− m

nH(ρ)
ρ

Cropped Filter With No False Negatives

D =
n−m

n
(1− ρ)

Compressed Cropped Filter With No False Negatives

D =
(

1− m

nH(ρ)

)
(1− ρ)

General Lower Bound

D = H−1
(
H(ρ)− m

n

)

In Fig 2.9 we observe much symmetry. The lower bound with no false positives
mirrors the lower bound with no false negatives, the cropped filter with no false
negatives mirrors the cropped filter with no false positives, and the lower bound
itself is symmetric. The center of the symmetries is the vertical line where ρ = 0.5
in all cases.
As in previous plots, the compressed Bloom filter is close to the rate-distortion
function with no false negatives and the compressed cropped filter for ρ < 0.5
respectively the compressed cropped filter with no false negatives for ρ > 0.5 is
very close to the general lower bound. The later distance is biggest for ρ = 0.5 and

28 Chapter 2. Improved Coding

Area of Application Approximate Size

ISBN 1010 ≈ 233

EAN (European Article Number) 1013 ≈ 243

Social security number 109 ≈ 230

Telephone number 1010 ≈ 233

Member number of a club < 104 ≈ 213

Bank account number 109 ≈ 230

Postal code 105 ≈ 216

Passport number 107 ∗ 26 ≈ 228

Internal book reference number of a library < 107 ≈ 223

IEEE membership number 109 ≈ 230

ACM membership number 107 ≈ 223

RFID 264

Numbering human beings 7 ∗ 109 ≈ 233

On demand organizations and virtual teams < 103 ≈ 210

URLs 1024 byte ≈ 28000

Numbering documents available on the internet 8 ∗ 109 ≈ 233

Table 2.1: Application areas of compact set membership representations and the corre-
sponding size of the document space.

becomes smaller towards the extremes ρ = 0 and ρ = 1. For small values of ρ, the
compressed cropped filter yields the smallest distortion.
Again, these results can be interpreted as an evidence that the Bloom filter is
close to optimal if a one-sided error is required but that other methods such as
the compressed cropped filter can be better for solving the general set membership
representation problem.
If one combines the lower bound with no false positives and the lower bound with
no false negatives to form a general one-sided lower bound, the distortion of the
resulting curve has two maxima at around ρ = 0.15 and ρ = 0.85 and becomes
smaller towards ρ = 0, ρ = 0.5, and ρ = 1. This shows that the price paid for a
one-sided error heavily depends on ρ.

2.13 Distortion for Huge and Realistic Document
Spaces

Until now we have analyzed various characteristics of different lossy set membership
representations using relatively small document spaces (< 200). For realistic appli-
cations, the document space is around 216 or 2128. In Tab. 2.1 possible document
identifiers in current realistic application areas of compact set representation as well
as their sizes are listed.
The distortion behavior for Bloom and compressed Bloom filters contains a binomial
factor that depends on the size of the document space which is not practical to
calculate for values above 220. We use Stirling’s approximation [Mac03, Bla03] to
render this formula computable. The subsequent analysis is limited to compressed
Bloom filters since Bloom filters can be seen as a special case of the compressed
version. We start with (2.5)

2.13. Distortion for Huge and Realistic Document Spaces 29

D =
n∑

k=0

(
n

k

)
ρk(1− ρ)(n−k) n− k

n

(
1
2

)m
k

.

The subsequent approximation is derived from Stirling’s approximation of the fac-
torial function [Mac03]

(
n

k

)
≡ n!

(n− k)!k!

w 2nH(k
n)− 1

2 log2 [2πn n−k
n

k
n].

Now we can approximate the distortion of the compressed Bloom filter

D w
n∑

k=0

2nH(k
n)− 1

2 log2 [2πn n−k
n

k
n]ρk(1− ρ)n−k n− k

n

(
1
2

)m
k

.

Full of expectation the formula was typed into Matlab but we unfortunately were
stranded once more. Matlab approximates values like 21000 with infinity and 0 ∗
21000 = 0 ∗ inf = NaN is then regarded as not being a number!
An old but apparently not outdated approach worked: use of logarithms.

D w
n∑

k=0

2nH(k
n)− 1

2 log2 [2πn n−k
n

k
n]ρk(1− ρ)n−k n− k

n

(
1
2

)m
k

=
n∑

k=0

2nH(k
n)− 1

2 log2 [2πn n−k
n

k
n]+k log (ρ)+(n−k) log (1−ρ)+log (n−k)−log (n)−m

k

It now is easily and quickly possible to plot graphs for ranges up to 220. Figure 2.10
shows the distortion behavior for a document space of n = 216. Since the curves
resemble straight lines, the interesting part which is marked with a rectangle is
shown enlarged in Fig. 2.11.
The vertical dotted black line marks the entropy of the problem in the Bernoulli
model i.e. to the right of this line lossless compression is possible.
We see that the main characteristics identified while analyzing distortion behavior
in small document spaces also hold for the big and realistic ones. With respect to
distortion in the Bernoulli model, the compressed cropped filter is the most accurate
one for a given size of the data structure. The Bloom filter exhibits a huge distortion
for small sizes of the data structure that can be explained through the existence
of many false positives in this area. But also for a size bigger than the entropy,
the Bloom filter has some distortion even though lossless coding is theoretically
possible.

30 Chapter 2. Improved Coding

0 1 2 3 4 5 6

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Size of compact set representation [bits]

D
is

to
rt

io
n

Compressed Bloom filter
Cropped filter
Compressed cropped filter
Lossless coding barrier

Zoom

Figure 2.10: Distortion for different methods of lossy set membership representation for
a document space of size n = 216 and a set membership probability of ρ = 0.001. The
zoomed-in graph of the interesting area can be found in Fig. 2.11.

0 500 1000 1500 2000 2500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

Size of compact set representation [bits]

D
is

to
rt

io
n

Compressed Bloom filter
Cropped filter
Compressed cropped filter
Lossless coding barrier

Figure 2.11: Enlargement of interesting area of Fig. 2.10.

Chapter 3

Simulation and Application
Specific Issues

3.1 Simulation Setup

In order to test the behavior and applicability of the introduced methods of compact
set representation, a trace-driven simulator of a distributed cache system was de-
veloped. One of the reasons for choosing a distributed caching environment was the
fact that this problem does not rely on one-sided error. As previously mentioned,
in a web environment, existing documents can disappear and new ones can appear
at any time. Thus, the existence of false positives and false negatives is inherent
to the scenario. Other reasons for choosing this scenario are its simplicity and the
use of Bloom filters in existing distributed cache systems such as Summary Cache
[FCAB00] which was then implemented in Squid v1.1.14 [Squ05].
The goal of the simulation is to compare the influence of different compact set
membership representations on the response time in a distributed caching environ-
ment. The key component under study is the set representation a proxy keeps for
its knowledge of the documents available in remote proxies that are part of a dis-
tributed cache. The performance of such a distributed cache using Bloom filters,
compressed Bloom filters, one using cropped filters, and one using cropped filters
combined with a frequency strategy is measured and compared.
The goal in a caching system is to minimize the response time. Since the focus of
this evaluation is on the representation of documents, we only look at metrics of this
subsystem that have an influence on the overall response time of the system. These
are the correctness of the lookup results and the computation time per lookup.

3.1.1 Correctness of the Lookup Results

A false positive, namely a remote cache hit even though the remote cache does
not contain the document, causes an additional superfluous request to the nearby
cache. A false negative, namely a remote cache miss even though the remote cache
contains the document, causes a request to the internet where a request to a nearby
remote cache would have been sufficient. We define

• Cost of a request to the internet: cInt

• Cost of a request to a remote cache: cLoc.

31

32 Chapter 3. Simulation and Application Specific Issues

And therefore

• Additional cost of a false positive: cLoc

• Additional cost of a false negative: cInt− cLoc.

3.1.2 Computation Time

The computation time has a direct influence on the total response time. Different
methods of compact set membership representation cause variations in computation
time for lookup operations. A prediction of the computation time would be:

Compressed copped filter
> Compressed Bloom filter

> Bloom filter
> Cropped filter.

In networked applications, computation time is not the bottleneck, and we thus
consider it negligible in comparison to network operations caused by false positives
and negatives.

3.1.3 Workload

The workload plays a very important role in the whole system because it determines
the theoretically possible hit and miss rate of the cache. It should meet several
criteria [Jai91]:

Representativeness The workload should be close to real-life and there should be
some correlation between the requests. Studies suggest it may obey a Zipf-like
distribution.

Repeatability A workload should be such that the results can be reproduced
easily.

Timeliness A workload should reflect the current usage patterns especially if this
changes over the years.

The workload used was a trace of a real web-proxy. It is a sanitized log file from
the CA*netII, Canada’s coast to coast broadband research network, available at
http://ardnoc41.canet2.net/cache/. This workload meets most of the above men-
tioned criteria. The data available was monitored in September 1999 and might
therefore be slightly outdated and not perfectly reflect the patterns of cache re-
quests of today and in the future, but all we were able to obtain.
We considered the information available at a node of the distributed cache to be
uncorrelated to the others. If it was correlated, one could benefit from schemes as
the Slepian-Wolf Coding [SW73].

3.2 Course of Action

One simulation phase consists of three stages illustrated in Fig. 3.1.

(1) Learning Phase In the beginning, 10 000 HTTP requests are sent to Cache
A which stores the corresponding answers.

(2) Compress and Send Cache A creates a representation for all the identifiers
of the stored resources and sends it to Cache B.

3.3. Implementing Compact Set Representation 33

Cache B
Cache A

(3)

1 1 1

(2)

1 1 1A:

(1)

A:

Figure 3.1: Setup of the distributed cache simulation.

(3) Query Phase 90 000 HTTP requests are sent to Cache B. Using the represen-
tation of the documents at Cache A, a check is made to see if a document is
available from Cache A. The number of wrong answers is stored for different
methods of set representation.

3.3 Implementing Compact Set Representation

The implementation of Bloom filters is straightforward. The URL of the HTTP
request is taken as a string and the hashes calculated.
With cropped filters and compressed cropped filters, there are some implementation
questions. One issue is that URLs can generally have a length of 1024 bytes and
that storing this amount for each URL is not feasible. However, there are numerous
possibilities for reducing the size of the label stored for each element:

Hash Function One approach is to use a hash function on the URLs to reduce the
label size. This has the significant disadvantage of introducing hash collisions.
The optimal size of such a hash value is determined with an optimization
problem. In the optimum, a change in size of the hash range causes a change
of collision probability that is equal to the marginal gain of an additionally
stored document.

URL Compression This approach for reducing the label size assumes that URLs
generally contain redundancy that can be removed using a compression scheme
such as an LZ77/78-based coder or arithmetic coding.

Unlike Bloom filters, cropped filters have the choice of which elements to store.
A clever strategy of which elements to pick can, depending on the nature of the
queries, strongly improve the performance. If an incorrectly represented element
is requested multiple times, one false conclusion causes several errors. Conversely,
elements never requested by the application do not cause any error in this case.

Pick the First Few This is the cheapest method regarding computation cost. An-
other advantage is that the compact representation can be entirely constructed
very quickly and is first available at other nodes.

Pick the Best Compressible Items This method causes the cropped filter to
contain the most elements. When no information about the nature of the
requests is available, this method produces the smallest expected error rate.
However, it can be quite time consuming to find the best compressible items,
it might even be np-complete.

34 Chapter 3. Simulation and Application Specific Issues

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Size of hashed values [bits]

In
c
o
r
r
e
c
t

r
e
su

lt
s

False Positives False Negatives

Figure 3.2: Influence of the hash rage size on the correctness of the lookup results in a
distributed cache.

Pick the High Important Ones Using information or a prediction of the nature
of the queries, the elements can be chosen cleverly in order to produce the
lowest error. In a distributed cache environment, we would choose the ele-
ments that have the highest expected request frequency per storage bit in the
compact representation. Other optimization metrics are conceivable such as
download time, resource consumption, frequency of requests, temporal local-
ity, or site locality.

3.4 Simulation Results

As mentioned in the previous section, there are several ways to implement a cropped
filter. One possibility of reducing the label size, originally consisting of the entire
URL, is to use a hash function. We examine the behavior of the resulting errors
for different sizes of the hash range. Here, the set representation simply stores the
outcome of the hash function for every request until a size of 40 000 bits is reached.
The incorrect results for 90 000 subsequent requests can be found in Fig. 3.2. The
trade-of collisions vs. size of a label is evident. We have an optimal collision to
space consumption rate of around 20 bits for this specific setup.
The approach of compressing the original URLs using an existing compression
scheme produces unfavorable results although the achievable compression rate is
around 87%. Table 3.1 reveals the compression possibilities using WinZip. Hashing
into a space of 32 bits yields a much better compression rate of around 99.3% and
is practical for the given setting, since there are almost no collisions at all.
Unfortunately, the compressed cropped filters could not be implemented as de-
scribed in Sect. 2.4. The close to optimal compression of a vector consisting of more
than 220 bits (depending on its construction) is not easily achievable. Therefore,
we directly store the indexes of the bits set to 1 or, in other words, the document
identifiers. Compressing them using existing compressors yields little gain only and
is therefore abandoned.

3.4. Simulation Results 35

Number of URLs Size of compressed file Compression rate

50 URLs 1.28 Kbyte 53%

100 URLs 2.24 Kbyte 60%

200 URLs 4.06 Kbyte 62%

300 URLs 5.62 Kbyte 65%

1 000 URLs 8.13 Kbyte 87%

10 000 URLs 88.32 Kbyte 85%

Table 3.1: Benefit of compressing URLs using WinZip c© 9.0 SR-1.

In the subsequent simulation, the following methods of compact set representation
are compared:

• Cropped Filter Stores the hash values of the requests using a hash range
of 20 or 32 bits, whatever yields fewer errors depending on the size of the
compact set representation. The elements are stored in their request order
until the filter size is reached.

• Frequency Cropped Filter It is the same as a cropped filter but stores the
elements that are most frequently requested first.

• Bloom Filter Deployed in its original version as described in [Blo70].

• Compressed Bloom Filter To our knowledge, compressed Bloom filters
have not been implemented yet. We use their lower bound of false positives
to find one for the total number of expected errors.

The size of the compact set membership representations is limited to 40 000 bits,
the learning phase consists of 10 000, and the enquiry phase of 90 000 requests. The
simulation was executed 20 times using a different trace in each run. The results
can be found in Fig. 3.3.
For filter sizes up to 40 Kbits, all different implementations of the cropped filter
outperform the Bloom filter as well as the compressed Bloom filter which exhibit
a huge distortion. For filter sizes from 60 to 300 Kbits, the (compressed) Bloom
filter produces less errors than a cropped filter and above 300 Kbits, both methods
become error-free. There seems to be a critical size below which the amount of false
positives of a Bloom filter becomes really large. This is not astonishing since it uses
at least one hash function and after inserting around 10 000 elements into an array
of comparable size, we expect most bits to be set to one which in turn causes lots
of false positives.
Comparing the different versions of the cropped filter, one can clearly see that
choosing the elements to be inserted into a cropped filter with a frequency strat-
egy significantly reduces the resulting mistakes compared to just inserting the first
requested elements. The difference is biggest for filter sizes around 40 Kbits.
The Bloom filter does not take advantage of specific knowledge about the nature of
the requests. However, it automatically exploits the correlation between the inputs
and the requests. Consider the possible false positives that could arise from an
URL insertion into the Bloom filter. It is extremely likely, that these strings are
not proper URLs and would thus never be requested. This results in lower false
positives than if all inputs were equiprobable.
Depending on the application, it is sometimes desirable to represent some elements
with a low error probability and in doing so decreasing the average error rate. This
is a major advantage of the cropped filter.

36 Chapter 3. Simulation and Application Specific Issues

0

1000

2000

3000

4000

5000

0 50000 100000 150000 200000 250000 300000
Size of compact set representation [bits]

In
co

rr
ec

t
re

su
lt

s

Cropped Frequency Cropped

Bloom Compressed Bloom

78867, 35722

86155, 86155

Figure 3.3: Fidelity of lookup results in a distributed cache using different methods of
compact set representation. The error bars reflect the 95% confidence intervals.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1000 10000 40000 80000 100000 200000 300000

Size of compact set representation [bits]

In
co

rr
ec

t
re

su
lt

s

Cropped 20 Bit Cropped 32 Bit

Frequency Cropped 20 Bit Frequency Cropped 32 Bit

i

Figure 3.4: The difference between the (frequency) cropped filter using a hash range of
20 bits and one using a hash range of 30 bits. The error bars reflect the 95% confidence
intervals.

3.4. Simulation Results 37

Figure 3.4 illustrates the differences of a 20 bit hash range compared to a 30 bit
hash range. The frequency cropped filter using 20 bits is better than the one
using 32 bits up to a filter size of 100 Kbits. For a filter size of 200 Kbits, the
effect of hash collisions becomes predominant and the 32 bits hash range is clearly
favorable. This behavior can be explained with hash collisions that start to carry
weight when the overall error becomes small for larger representation sizes. For
smaller representation sizes, the fact that using a small hash range allows for more
elements to be stored is predominant. When working without a frequency strategy,
this effect is slightly shifted to the right and the 32 bits hash range is the better
method for sizes above 300 Kbits.
Although the cropped filter does not perform as well as one would expect when
looking at its theoretical performance in the Bernoulli model, it has a significantly
lower error rate than a Bloom filter for some sizes of the compact set representation.
Looking at the difference between the theoretical model in Chap. 2 and the simu-
lation results, we conclude that the (compressed) cropped filter is especially good
if the input set is uniformly distributed and the elements have a reasonably small
label, when the document space is small. If a prior transformation is necessary, it
should be minimized with respect to the loss of information e.g. collisions.
Using one hash function for reducing the document space is basically a special case
of the Bloom filter, one with just one hash function. However, the Bloom filter
typically uses an optimal amount of hash functions to prevent collisions and is
therefore superior. It combines the two steps of reducing the document space and
representing a set while optimizing the overall loss.
Cropped filters have a distinct advantage. Using a cropped filter, further messages
containing information about more elements and thus resulting in more accuracy can
easily be provided at any time whereas a Bloom filter needs to be fully constructed
before transmission.

38 Chapter 3. Simulation and Application Specific Issues

Chapter 4

Conclusions

Previously, compact set membership representation implied the use of Bloom fil-
ters. However, analysis shows that using Bloom filters means paying a large price
for only false positives. The trivial method of storing some elements’ identifiers
and ’cropping’ the information about the rest yields better error probabilities in
the Bernoulli model and there might be other, more sophisticated methods. We
therefore conclude that the use of Bloom filters is not optimal in every case and
that it is worth considering alternatives before using them. This result may further
be strengthened or weakened depending on the relative cost of false positives and
false negatives.
Bloom filters remain strong when the application requires or benefits from restrict-
ing possible errors to false positives and when no a priori information is known
about the type of the queries the filter will subsequently be used for. The cropped
filter, on the other hand, is adaptable to incorporate such information. They can
also be interpreted as erasure codes. Instead of simply guessing that all elements for
which we have no information are not in the set, this information could be registered
as missing - an erasure. Furthermore, their simplicity allows subsequent refinement
of the fidelity by sending information of additional elements.
The master thesis at hand intends to open a new perspective in looking at compact
set membership representation from an information theory viewpoint. I hope that
such considerations propagate into the systems world and lead to more custom-made
set membership data structures.

4.1 Future Work

Much future work remains. An open issue is the optimal and practical encoding
of the cropped filter. A coding scheme being able to efficiently compress sparse
and extremely big bit-vectors to a size close to the vector’s entropy is needed. Our
analysis uses equiprobable set membership as input model. Other input models with
correlation as for example a Markov or hidden Markov model can be investigated.
In our simulations, we considered the data available at each cache independent
of each other, thus we did not yet exploit a possible correlation that may exists
between the content of different caches. One could use schemes as the Slepian-Wolf
Coding [SW73]. Also, a framework to build methods of compact set membership
representation matching application specific tolerance for false positives and false
negatives would be very useful. Furthermore, future work includes a more in-depth
analysis of the effects of reducing the global set using hash functions. The optimal
size of the hash range depends on application specific settings such as the number
of elements in the subset and the cost of a collision.

39

40 Chapter 4. Conclusions

4.2 Personal Experiences

From the beginning, my motivation for this work was extremely high. First of all,
this was the first time for me as an ETH student that I was able to conduct open
research and to push knowledge into a direction that did not exist before. This
was especially challenging since neither me nor my supervisors knew how far and
in what exact direction this work would lead during my six months thesis. Another
reason for my motivation was the surrounding at the IBM research laboratory. After
getting to know to ETH for more than four years and working part-time as a work-
student for IBM Switzerland, it was exciting to experience an industrial research
lab and to see both the differences to research at university and the differences to
working in industry. Last but not least, the fact that the topic of optimizing com-
pact set membership representation for distributed computing nicely combines my
primary interests in distributed systems and in information theory, was reason for
motivation.
During the first two months and every now and then during the rest of my thesis,
I read books, papers, and reports. While working on the analysis and the cropped
filter, it was surprising to me how irregular progress in research is. Sometimes I
contributed more to the progress of my thesis during a bus ride home or before
going to bed than in several days of sitting in front of the computer.
Having three supervisors at the same time was not always easy. It was challenging
to comply with all expectations and it meant some additional administrative effort.
On the other hand, I was able to profit from numerous advice and talking with
more people about the same issues opened different perspectives and viewpoints.
Help and coaching is probably one of the main ingredients to a successful thesis.
I am proud that there are two scientific publications emerging from this work and
this is due to the guidance I’ve experienced. The past six months went by very
quickly and I definitely learned a lot.

Appendix A

Mid Thesis Report

A.1 Achievements

I started my master thesis here in Rüschlikon on the 7th of September 2004. First,
I was introduced to the Research Lab and set up my working environment. My task
description included a wide range of possible focus areas and allowed for explorative
research.
Throughout my work I was in close contact with my advisers Marcel Waldvogel, Paul
Hurley, and Roger Wattenhofer with which regular meetings were held. The follow-
ing subsections summarize the work done and goals achieved in the past months:

September

• Introductory reading of numerous papers.

• Started looking at the problem of finding the best linear method for lossy but
compact set representation in order to optimize search in distributed network
storage.

• Wrote some smaller simulations with Matlab.

October

• Theoretically solved the problem of linear compact set representation for a
small test case. The following hypothesis resulted: In the linear case, the
identity matrix filled up with zeros is as good as one can get.

• Further tested the above hypothesis with simulations in Matlab.

• Prepared and discussed further time plan as well as first outline of report.

• Read about information theory, distortion, and rate-distortion.

• Compared various existing as well as our ’new’ method of compact set repre-
sentation with respect to the expected bit error probability (= distortion).

• Agreed on giving a talk about ”Compressed Bloom Filters” by Mitzenmacher
and ”The Bloomier Filter” by Chazelle, Kilian, Rubinfeld, and Tal in the IBM
Research Lab on 5.11.2004.

• Thoroughly read the two papers and prepared slides.

41

42 Appendix A. Mid Thesis Report

November

• Mid-thesis-presentation at ETH.

• Gave talk on Bloom Filters and Other Compact Set Representations at IBM
Research Lab.

• Found parametric expressions for plotting rate vs. distortion graphs of bloom
filters, compressed bloom filters, cropped filters, and compressed cropped fil-
ters. Rate vs. distortion graphs are commonly used in information theory
opposed to the previous graphs that plotted the size of compact set represen-
tation vs. the bit error probability. I also corrected some mistakes (use of
conditional probability instead of expectation).

• Examined related work by Claudio Weidmann and Martin Vetterli. With its
help I was able to plot the rate-distortion for the deterministic case when the
exact number of documents in a subset is known.

• Continued writing the report.

• As result of the feedback from the mid-thesis-presentation I analyzed a pos-
sible adaptation of bloom filters to the case where false positives and false
negatives are allowed.

December

• Added information rate-distortion curves for the cases where only false posi-
tives and only false negatives are allowed.

• Reviewed the paper ”On Conspiracies and Hyperfairness in Distributed Com-
puting” by Hagen Völzer for the ICDCS conference.

A.2 Future Work

As I have experienced in the first part of my thesis it is always difficult to predict
the future and to foresee where things will lead. However, the following tasks are
firmly scheduled:

• Finish the chapter on the theoretical part of improved coding that contains
all work and insights gained in the previous three months.

• Analyze different methods of compact set membership representations in dif-
ferent scenarios.

• Derive rules when to best apply which method of compact set membership
representation.

• Complete the report of my master thesis and prepare for the final presenta-
tions.

Finally, I would like to use this opportunity to wish Marcel Waldvogel all the best
for his new position as a professor at the university of Konstanz.

Appendix B

Summary

Set membership representation is a data structure widely used in a great variety of
applications. It stores information as to whether an element is contained in a set or
not. Compact or lossy set membership representations can significantly reduce the
memory usage, but introduce an error rate. The method of first and last resort used
today is the Bloom filter dating back to 1970 and having the strong characteristic
of only producing false positives.
The goal of this thesis is to optimize compact set membership representations.
This is done by first carefully analyzing the existing method and later proposing
the compressed cropped filter that outperforms the Bloom filter in at least some
area of the parameter space.
In the initial analysis, the rate-distortion curve for the general set membership prob-
lem for equiprobable set membership is derived. It defines an absolute lower bound
of the error rate. A comparison of this lower bound to the performance of the Bloom
filter shows that there is lots of room for improvement. Further investigating the
reason for the Bloom filters performance being poorer than expected, we quantify
the cost of only having a one-sided error using a rate distortion function for the
case when only false positives are allowed. And indeed, the loss of performance can
for a large part be explained by this restriction to only false positives.
We introduce the cropped filter, a method of compact set representation without
restriction on the nature of errors. The output of a source that emits a 0 for every
element not contained in the set and a 1 for every element contained in the set is
stored until the maximum size of the data structure is reached. Information about
the remaining elements is not stored. The resulting lossy representation contains
perfect information about the stored area of the document space and uses a maxi-
mum likelihood estimation for the remaining documents. The compressed cropped
filter goes one stage further and compresses the output of the source using a close
to optimal compressor such as arithmetic coding. We find that the resulting error
rate is close to the absolute lower bound for compact set representation assuming
equiprobable set membership.
To test the behavior and applicability of the introduced methods, we use a trace
driven simulator of a distributed cache system. For small sizes of the data structure,
the cropped filter produces fewer incorrect results than the Bloom filter. When
choosing the elements that are stored in the cropped filter with a frequency strategy,
the result is further improved. However, the cropped filter does not perform as well
as one would expect when looking at the theoretical performance derived in the
initial analysis. Possible explanations include the non equiprobable distribution of
the URLs, a correlation between the stored and the requested elements, and the
necessity of reducing the document space, in our simulation performed using a hash
function.

43

44 Appendix B. Summary

This work opens a new perspective in looking at compact set representation from an
information theory viewpoint and questions the prevailing religious attitude towards
Bloom filters.

Appendix C

Zusammenfassung

Die Speicherung von Mengenzugehörigkeitsinformationen gelangt in vielen Applika-
tionen zur Anwendung. Kompakte oder verlustbehaftete Speicherung von Mengen-
zugehörigkeit erlaubt eine drastische Verringerung des benötigten Speicherbedarfs
und hat eine verhältnismässig geringe Fehlerrate zur Folge. Für diesen Zweck wird
zurzeit fast ausschliesslich der so genannte Bloomfilter verwendet, der im Jahre 1970
erfunden wurde und welcher die möglichen Fehler auf falsch positive beschränkt.
Das Ziel dieser Masterarbeit ist die Verbesserung der Methoden zur Speicherung
von Mengenzugehörigkeitsinformationen. Zuerst wird der bestehende Bloomfilter
analysiert und anschliessend der Cropped-Filter eingeführt, welcher ersteren unter
gewissen Bedingungen übertrifft.
In der anfänglichen Analyse wird die Rate-Distortion-Kurve für die allgemeine Spei-
cherung von Mengenzugehörigkeitsinformationen bei gleichwahrscheinlicher Men-
genzugehörigkeit hergeleitet. Diese Kurve stellt eine absolute untere Schranke der
Fehlerrate dar. Wird diese untere Schranke mit dem Verhalten des Bloomfilters ver-
glichen, ist eine grosse Differenz ersichtlich, welche auf Verbesserungs- möglichkeiten
schliessen lässt. Auf der Suche nach Gründen für die oben erwähnte Differenz gelang
es uns, die Kosten für die Beschränkung der möglichen Fehler auf nur falsch positive
mit einer Rate-Distortion-Kurve für Methoden mit nur falsch positiven Fehlern zu
quantifizieren. Und tatsächlich, ein Grossteil der Performanz-Einbusse des Bloom-
filters ist dem einseitigen Fehlerverhalten zuzuschreiben.
Der Cropped-Filter wird als Methode eingeführt, welche das Fehlerverhalten nicht
beschränkt. Der Output einer Quelle, welche für jedes in der Menge enthaltene
Element eine Eins und für jedes nicht enthaltene Element eine Null ausgibt, wird
direkt gespeichert, bis der zur Verfügung stehende Speicherplatz aufgebraucht ist.
Informationen über die restlichen Elemente werden verworfen (engl.: to crop =
abschneiden). Die entstehende verlustbehaftete Mengenrepräsentation enthält alle
Informationen über den gespeicherten Bereich des Dokumentenraums und für Ele-
mente im verbleibenden Raum wird eine Maximum-Likelihood-Schätzung verwen-
det. Der komprimierte Cropped-Filter geht einen Schritt weiter und komprimiert
den Output der oben erwähnten Quelle mit einem möglichst perfekten Kompressor
wie z.B. Arithmetischem Codieren. Die resultierende Fehlerwahrscheinlichkeit ist
nahe an der Rate-Distortion-Kurve für die allgemeine Speicherung von Mengen-
zugehörigkeitsinformationen bei gleichwahrscheinlicher Mengenzugehörigkeit.
Um das Verhalten und die Anwendbarkeit der beschriebenen Methoden zu evalu-
ieren, wurde ein Simulator eines verteilten Caches erstellt. Für Datenstrukturen
der Mengenzugehörigkeit von kleiner Grösse schneidet der Cropped-Filter mit einer
kleineren Fehlerrate ab als der Bloomfilter. Wenn man zusätzlich die Elemente,
welche im Cropped-Filter fehlerfrei gespeichert werden, mit einer Frequenzstrate-
gie auswählt, wird das Resultat abermals verbessert. Dennoch ist das Verhal-

45

46 Appendix C. Zusammenfassung

ten des Cropped-Filters nicht so gut wie die anfängliche Analyse erwarten liess.
Mögliche Gründe sind die nicht gleichwahrscheinliche Verteilung der URLs, eine
Korrelation zwischen den gespeicherten und den abgefragten Elementen sowie die
Notwendigkeit, die Grösse des Dokumentenraums zu verkleinern. Letzteres wurde
in der Simulation mit einer Hash-Funktion gemacht.
Die vorliegende Masterarbeit soll neue Perspektiven eröffnen, indem sie Datenstruk-
turen verlustbehafteter Mengenzugehörigkeit aus dem informationstheoretischen
Standpunkt beleuchtet und mit den gewonnen Erkenntnissen den vorbehaltlosen
Einsatz von Bloomfiltern in Frage stellt.

Bibliography

[BCMR02] John Byers, Jeffrey Considine, Michael Mitzenmacher, and Stanislav
Rost. Informed content delivery across adaptive overlay networks. In
Proceedings of ACM SIGCOMM, pages 47–60, Pittsburgh, Pennsivania,
USA, October 2002.

[Ber71] Toby Berger. Rate Distortion Theory: A Mathematical Basis for Data
Compression. Prentice-Hall, Englewood Cliffs, NJ, USA, 1971.

[BHPW04] Daniel Bauer, Paul Hurley, Roman Pletka, and Marcel Waldvogel.
Bringing efficient advanced queries to distributed hash tables. In Pro-
ceedings of IEEE LCN, November 2004.

[Bla03] Richard E. Blahut. Algebraic Codes for Data Transmission. Cambridge
University Press, Cambridge, UK, 2003.

[Blo70] Burton H. Bloom. Space/time trade-offs in hash coding with allowable
errors. Communications of the ACM, 13(7):422–426, 1970.

[BM02] Andrei Broder and Michael Mitzenmacher. Network applications of
bloom filters: A survey. In Proceedings of the 40th Annual Allerton
Conference on Communications, Control, and Computing, pages 636–
646, 2002.

[CKRT04] Bernard Chazelle, Joe Kilian, Ronitt Rubinfeld, and Ayellet Tal. The
bloomier filter: An efficient data structure for static support lookup
tables. In Proceedings of the Fifteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 30–39. Society for Industrial and Applied
Mathematics, 2004.

[CT91] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory.
John Wiley & Sons, Inc., Hoboken, NJ, USA, 1991.

[DHW05] Andreas Diener, Paul Hurley, and Marcel Waldvogel. Bloom filters in
networking: One size fits all? Research Report RZ-3591, IBM, 2005.

[FCAB00] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z. Broder. Summary
cache: A scalable wide-area web cache sharing protocol. IEEE/ACM
Transactions on Networking, 8(3):281–293, 2000.

[HDW05] Paul Hurley, Andreas Diener, and Marcel Waldvogel. Lossy set com-
pression: Bounds and algorithms. Research Report RZ-3592, IBM,
2005.

[Jai91] Raj Jain. The Art of Computer Systems Performance Analysis. John
Wiley & Sons, Inc., Hoboken, NJ, USA, 1991.

47

48 Bibliography

[Mac03] David J. C. MacKay. Information Theory, Inference, and Learning
Algorithms. Cambridge University Press, Cambridge, UK, 2003.

[Mit01] Michael Mitzenmacher. Compressed bloom filters. In Proceedings of
the Twentieth Annual ACM Symposium on Principles of Distributed
Computing, pages 144–150. ACM Press, 2001.

[RK02] Sean C. Rhea and John Kubiatowicz. Probabilistic location and routing.
In Proceedings of INFOCOM 2002, 2002.

[Say96] Khalid Sayood. Introduction to Data Compression. Morgan Kaufmann
Publishers, Inc., San Francisco, CA, USA, 1996.

[Squ05] Squid. Squid web proxy cache. http://www.squid-cache.org/, 2005.

[SW73] David Slepian and Jack K. Wolf. Noiseless coding of correlated infor-
mation sources. IEEE Transactions on Information Theory, IT-19:471–
480, July 1973.

[WV99] Claudio Weidmann and Martin Vetterli. Rate-distortion analysis of
spike processes. In Proceedings of DCC’99, 1999.

[WV01] Claudio Weidmann and Martin Vetterli. Rate distortion behavior of
sparse sources. Technical report, EPFL, October 2001.

