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Chapter 1

Abstract

Recent developments in transmission and switching technologies create new opportunities to
converge data and telephony services. Given the emerging deployment of metropolitan Gigabit
Ethernets, one aspect of interest is to employ these networks to connect legacy PBX and GSM
base stations to the core telephony network. This protects investment in existing infrastructure
and creates new revenues for network providers. However, to make this happen, these networks
have to be configured in a way that customary QoS requirements for telephony can be met. This
is a crucial problem given that the data cross traffic in these networks is bursty. This burstiness
can cause excessive queuing delays and frame losses due to buffer overflows and is a widely
investigated phenomenon. Moreover, the burstiness of data traffic in these networks is known
to be self-similar over a wide range of time scales. This means that there is very little smooth
out when aggregating this traffic over time which in turn means that buffering has little effect in
mitigating the burstiness. However, it is also known that the burstiness is caused by the heavy-
tail in the distribution of transfer sizes which is known to be limited at sizes due to the limits
for file sizes in operating systems. Since Gigabit Ethernets operate at enormous transmission
rates, the problem whether metropolitan Gigabit Ethernet can accommodate the burstiness of
expected traffic patterns becomes real.

Therefore, in this thesis we conduct a simulation study to investigate whether TDM E1 tele-
phony traffic can meet the METRO Ethernet Forum’s QoS requirements for delay and loss when
transported over a metropolitan Gigabit Ethernet. As a simulation environment we use OPNET
Modeler which is widely used in industry and academia. To generate the data cross traffic,
we employ OPNET’s Raw Packet Generator and as well as a ON/OFF model which we have
implemented by ourselves.

In the network, we configure switches to use FIFO and tail drop. Varying the switch buffer
limitation by number of packets and by size (in terms of bytes), we find that even for data traffic
utilizations as low as 1 % there is little chance to meet the QoS requirements. When the switch
buffers are limited by the number of packets, none of our simulations of a bottleneck link could
meet the QoS requirements. When the switch buffers are limited by a size larger than 1 MB,
then QoS requirements could not be met in our simulations of a bottleneck link because of
too many late frames. Only when the switch buffers are limited by a size smaller than 1 MB,
QoS requirements could be met. The reason for this is the different size of the frames that
transport data and telephony traffic. Frames that transport data are as large as 1’500 bytes,
whereas frames that transport telephony traffic are as small as 78 bytes. This leads to a lock-out
phenomenon at the end of a saturated queue in a switch. This means there is still capacity for
one or more small frames that carry telephony traffic although there is no capacity left for large
frames that carry data traffic. However, we doubt that it is reasonable to rely on this effect when
employing metropolitan Gigabit Ethernets to transport telephony traffic. Therefore, we conclude
that it may be a good idea to have a closer look at the IEEE 802.1Q/p standards which offer
service priority when configuring metropolitan Gigabit Ethernets to transport telephony traffic.
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Chapter 2

Introduction

Currently, dedicated infrastructures are used to provide telephony and data services. The in-
frastructure for telephony services is entirely based on circuit-switching and for data services on
packet-switching technology. Available capacities for packet-switched (data) networks are cur-
rently largely expanding due to widespread use of optical transmission technologies. Then em-
ulation of telephony circuit-switching (circuit emulation (CE)) can enable to use packet-switched
networks to connect telephony equipment to the telephony core network. Circuit emulation is of
particular interest in emerging metropolitan Gigabit Ethernets, where existing PBX1 and GSM2

base stations can be connected. Presumably, this stimulates investments in these existing in-
frastructures and creates additional revenue for the data network service providers.

However, research on traffic patterns in Ethernets [6] [9] [8] suggests that circuit emulation
may have a Quality of Service (QoS) problem. Bursty patterns in the data traffic can cause ex-
cessive queuing delays and frame losses due to buffer overflows. The burstiness over a wide
range of time scales in wide-area and local-area network traffic is a widely investigated phe-
nomenon and can be described statistically using the notion of self-similarity. Self-similarity is
the property we associate with fractals: the object appears the same regardless of the scale at
which it is viewed. Self-similarity in communication networks is principally caused by the heavy-
tailed distributions of the transfer object sizes. In heavy-tailed distributions, the probability for
extremely large values is not negligible. However, measurements in communication networks
indicate that the tail of the transfer object size distribution deviates from a heavy tail at some
limit [8]. As a consequence, the self-similarity in data traffic and thus the burstiness is also
limited. Since Gigabit Ethernets operate at enormous transmission rates, the problem whether
metropolitan Gigabit Ethernets can be over provisioned to accommodate the burstiness of the
expected traffic becomes real.

Since measurements in local area and corporate networks show that average utilization rates
are as low as 1 % [15], this leads to the question if these networks are actually capable of accom-
modating the burstiness of the expected self-similar traffic and enable circuit emulation without
violating QoS requirements. The METRO Ethernet Forum [11] defines QoS requirements for
circuit emulation services in metropolitan Ethernet networks. They include boundaries on de-
lay, jitter and the total number of errored frames and can be used to exploit if simulated circuit
emulation traffic does meet the QoS requirements.

The QoS performance of circuit emulation traffic is expected to improve if service priority
is applied. The virtual LAN (VLAN) and traffic class standards IEEE 802.1Q/p [16] [17] enable
service priorization of dedicated traffic on the link layer (MAC layer). These standards can be
exploited to provide preferential treatment of circuit emulation traffic in Gigabit Ethernets and
thus improve its QoS. The objective of this post diploma thesis is to perform network simulation
studies to assess whether and under which conditions service priority is inevitable to enable
circuit emulation in metropolitan Gigabit Ethernets.

The problem is investigated with the aid of the discrete event simulation environment OPNET
Modeler. Workload data traffic and circuit emulation traffic of a E1 carrier are synthetically gen-
erated and sent over a metropolitan Gigabit Ethernet bottleneck network. Two self-similar data

1Private Branch Exchange. A privately owned telephone switch, often used in large corporations to provide inside
telephone connectivity and access to the Public Switched Telephone Network (PSTN).

2Global System for Mobile Communications. World’s most widely used mobile system.
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traffic models have been tested before using one of them in the simulations. The Raw Packet
Generator (RPG), a integrated function of OPNET Modeler, is identified to be inappropriate for
this work. The ON/OFF Model of Willinger [9] [8] is used instead to generate the self-similar
data workload in all simulations. This model exploits that the superposition of a large number
of independent on/off sources with heavy-tailed on- and/or off-periods leads to self-similarity in
the aggregated process.

Tests of 44 simulated traffic hours reveal that the results of this thesis strongly depend on
the applied buffer size and limitation methods in the switches, given that the buffer queues use
first-in-first-out (FIFO) queue scheduling and tail drop queue management algorithms. Large
buffer sizes (> ∼1 MB) introduce too much delay so that the QoS requirements are clearly
violated by exceeding the limit by almost three magnitudes. Small buffer sizes (< ∼1 MB) do
improve the QoS, but if the buffer capacity is limited by packets, the high number of dropped
frames also violates the QoS requirements. Only when the buffer capacity is limited by bits, the
circuit emulation traffic does meet the QoS requirements in the simulations of this work. In this
case, not a single circuit emulation frame is dropped during all simulation periods. The lock-
out phenomenon allows the circuit emulation traffic to monopolize queue space, preventing
data traffic from getting room in the queue. This phenomenon is the result of spatial effects:
the small circuit emulation traffic packets have a higher chance to be accommodated in the
saturated buffer than the about 20 times larger data traffic packets. However, we doubt that it
is reasonable to rely on this effect when employing metropolitan Gigabit Ethernets to transport
telephony traffic. Since the simulation environment OPNET Modeler does not support priority
service standards IEEE 802.1Q/p, no statement can be made if service priority enables circuit
emulation.

The thesis is structured as follows: chapter 3 introduces the reader to the problem of this
thesis. Chapter 4 contains background topics about random variables, heavy-tailed distributions,
data analysis, the ON/OFF Model, circuit-switching, differential services with virtual LAN and the
simulation environment OPNET Modeler. Chapter 5 explains the simulation design. Starting with
the topology, the workload traffic models for the circuit emulation and the self-similar data traffic
are introduced. Then, QoS requirements and other simulation parameters are elaborated. The
simulation results are presented and discussed in chapter 6. A outlook about further works is
finally given in chapter 7. In the appendix, the original problem, program codes and plots can be
found.



Chapter 3

Problem

Measurements in local area and corporate networks show that the average utilization rates are
as low as 1 % [15]. This enormous over-provisioning raises the question if it enables circuit em-
ulation. Research on provisioning of intra-nets to accommodate voice over IP (VoIP), real-time
and best-effort data suggests that without deploying diffserv1, intra-nets may need considerable
over-provisioning [3]. Service priority (diffserv), in contrast, can save capacities by reducing the
over-provisioning up to 62 %. Thus the objective of this post diploma thesis is to perform network
simulation studies with OPNET Modeler to asses whether and under which conditions service
priority is inevitable to enable circuit emulation on metropolitan Gigabit Ethernets.

The answer strongly depends on the traffic patterns of the workload data, the Quality of
Service (QoS) requirements of the circuit emulation traffic and the buffer size and management
in the switching nodes. To limit the scope of the thesis, the topology on the problem is modeled
as a metropolitan bottleneck network. All simulation run on the link (MAC) layer.

Bursty data traffic patterns can cause excessive queuing delays and frame losses due to
buffer overflows. The burstiness over a wide range of timescales in wide-area and local-area
network traffic is a widely investigated phenomenon and can be described statistically using the
notion of self-similarity. Self-similarity in communication networks is principally caused by the
heavy-tailed distributions of the transfer object sizes. In heavy-tailed distributions, the probability
for extremely large values is not negligible. However, measurements in communication networks
indicate that the tail of the transfer object size distribution deviates from a heavy tail at some limit
[8]. As a consequence, the self-similarity in data traffic and thus the burstiness is also limited.
One problem to deal with in this work is therefore how the anticipated self-similar workload
data traffic can be modeled to use it for the network simulation inputs. The simulation platform
OPNET Modeler already features a package to generate self-similar network traffic, called Raw
Package Generator (RPG). If this approach is appropriate must be clarified. Another option to
model self-similar data traffic is the ON/OFF data model. With this approach, the traffic can be
generated externally and then played into the network simulation. This method must also be
tested first.

Circuit emulation traffic is subject to high QoS requirements in terms of loss, delay and
jitter. Traditionally, switched circuits are used to meet these high service qualities. Suitable QoS
metrics and limits must be found to define QoS requirements in packet-switched metropolitan
communication networks for telephony services to determine if circuit emulation is possible.

Buffers in network switches absorb data bursts and transmit them during the ensuing bursts
of silence. Buffers can help to accommodate (bursty) self-similar data traffic in a network, but
they also affect the QoS of circuit emulation traffic. Different queue size limitations in buffers
may distinctive influence the QoS. What buffer sizes and limitation methods are inevitable to
enable circuit emulation on Gigabit Ethernets with or without service priority is another problem
attacked in this work.

1DIFFerentiated SERVices. Framework for delivering quality of service (QoS) in IP networks. Proposed standard
from the IETF working group.
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Chapter 4

Background

The simulated metropolitan Gigabit Ethernet network in this thesis transports two different types
of workload traffic: constant bit rate (CBR) circuit emulation (CE) traffic and variable bit rate
(VBR), self-similar data traffic. The modeling of the CE traffic is straight forward and will be
provided in the Design section 5.2. The modeling of the data traffic, in contrast, is quite difficult
and complex. The anticipated data traffic in this thesis represents all in a common network
transported data except the CE traffic. This data originates from traffic generated by computers
directly or indirectly connected to the observed network. It may has various origins, like WWW
traffic (HTTP over TCP), file transfers (FTP over TCP), real-time data (UDP), mail transfers
(SMTP and POP over TCP) and resource (files, printers, . . . ) sharing. Each of these individual
data traffics has its own characteristic in terms of its active/passive periods and transfered object
sizes.

One possibility to generate data traffic in a network simulation would be to record all the
traffic patterns1 transported in real network and replay it into the simulation. This approach has
various disadvantages. First, data recording in a network is not as easy as it may looks like. It
requires special software and hardware capable of reading, analyzing and storing the generally
huge amount of data. Further, a suitable network has to be found and permission granted. Not
everyone is delighted about someone ”sniffing” in all the data sent over a network. Second, the
data traffic to be replayed in the simulation is limited to the traffic patterns recorded in the real
network. In a simulation, one is generally also interested in how the observed variables respond
to changes of the input data. This enables researchers to draw additional conclusions about
the mechanism of the system and possible limitations. For instance, such changes could be
in the characteristics of active/passive periods or simply the average network utilization rate.
Introducing these variations in a real network where the traffic is recorded, can be very difficult.

Those reasons are the motivation to generate the data workload synthetically with a set
of suitable parameters to adjust the desired characteristics. Although the real world data traf-
fic may exhibit certain statistical properties like self-similarity, it is not completely predictable
and varies with time. Hence, random processes play a import role when generating synthetic,
self-similar data traffic. A detailed description of one approach, the ON/OFF Model, is given
in this Background chapter in section 4.7. To set the ground, the beginning of this chapter is
about statistics, data analysis, heavy-tailed distributions and self-similarity. A short introduction
to circuit-switching, Virtual LAN (VLAN) and network simulations, introducing the simulation en-
vironment of choice (OPNET Modeler), is then given at the end of this chapter.

4.1 Random Variables and their Distributions

A random variable is essentially a random number. There are discrete random variables that
can only take on a finite or at most a countably infinite number of values and there are continu-
ous random variables that can take on a continuum of values. Random variables are denoted in
this work by italic uppercase X and its i-th outcomes by indexed italic lowercase xi. All possible
outcomes of a random process is called sample space .

1For network simulations like in this work, the exact content of the data is not relevant, just the amount and the timing
- that’s what the word ”pattern” stands for.
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Besides the sample space, the probability that the random variable takes on a certain value
(in the sample space) is the other property that describes a random variable. More generally, a
function p(x) called probability mass function (pmf) or frequency function is used to define
all probabilities of all possible outcomes of a discrete random variable.

p(xi) = P (X = xi) (4.1)

In the case of a continuous random variable, the probability function is taken by a density
function f(x) and the probability that X falls in the interval (a, b) is the area under the density
function between a and b.

P (a < X < b) =
∫ b

a

f(x)dx (4.2)

From this equation it becomes clear - although it may seems strange - that the probability
that a continuous random variable X takes on any particular value is 0 because eq. 4.2 is zero
for the interval (a,a).

One fundamental property of the pmf is that the sum of probabilities of all values in the sam-
ple space must equal to one. The same property holds for the density function of a continuous
random variable. ∑

i

p(xi) = 1 (4.3)

∫ ∞

−∞
f(x)dx = 1 (4.4)

In addition to the probability mass function (pmf), it is sometimes convenient to use the
cumulative distribution function (cdf) of a random variable, which is defined to be

F (x) = P (X ≤ x), −∞ < x < ∞. (4.5)

Its complementary cumulative distribution function (ccdf) F (x) is

F (x) = P (X > x) = 1− F (x), −∞ < x < ∞. (4.6)

The probability mass function (pmf) of a discrete random variable and the density function
of a continuous random variable are also called distributions . There is a number of frequently
used distributions which are well known and named. Some of them are the Normal distribution,
the Binomial distribution, the Poisson distribution, the Exponential Density and the Pareto dis-
tribution. The last one falls into the category of the heavy-tailed distributions and is of special
interest for modeling and understanding self-similar data traffic. Heavy-tailed distributions are
introduced and discussed in the next sections.

4.2 Heavy-Tailed Distributions

Heavy-tailed distributions are also known as scale-invariant distributions [8]. A random vari-
able X has a heavy-tailed distribution if its ccdf F (x) obeys

F (x) = P (X > x) = 1− F (x) ∼ cx−α, 0 < α ≤ 2, c > 0, (4.7)

where a(x) ∼ b(x) is defined by the relation

lim
n→∞

a(x)
b(x)

= 1 (4.8)

and c is a positive constant. Parameter α is called tail index . For a heavy-tailed distributions,
α has to be in the range of 0 < α ≤ 2. The characteristic of a heavy-tailed distribution is that
its tail decays hyperbolically2 and therefore slowly. That is why the outcomes of heavy-tailed
distributed random variables show a extreme variability. Park et al. [8] explains well what a
heavy-tailed distribution means in practice:

2In contrast to the exponentially decreasing tail of a light-tailed Gaussian or Normal distribution.
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”Practically speaking, a heavy-tailed distribution gives rise to very large values with
non negligible probability so that sampling from such a distribution results in the bulk
of values being ”small” but a few samples having ”very” large values.”

As will be shown later, heavy-tailed distributions have big impacts on statistically processing
of its sample values.

4.3 Pareto Distribution

The Pareto distribution is the simplest and frequently used heavy-tailed distribution [8]. Its pmf
is

p(x) = αkα · x−α−1, k ≥ x, α, k > 0. (4.9)

Parameter α is called shape parameter . It can be shown that it equals to the tail index
of heavy-tailed distributions. The location parameter k is the smallest possible value of the
random variable x.

Figure 4.1: Pareto pmf with different shape parameters α and constant location parameter k = 1
for small x (normal scale).

Fig. 4.1 shows the Pareto pmf of eq. 4.9 with different shape parameters α in normal scale
for small x and fig. 4.2 in log-log scale for a large x. In those figures, the slowly decaying tail of
the distribution becomes visible. The influence of the location parameter k on the Pareto pmf is
shown in in fig. 4.3 (normal scale) and fig. 4.4 (log-log scale).

The cdf of the Pareto distribution is

F (x) = P (X ≤ x) = 1−
(

k

x

)α

(4.10)

and is illustrated in fig. 4.5 for different shape parameters α.
The inverse cdf function F−1 is well defined under the assumption that F is the cdf of a

continuous random variable and is strictly increasing on some interval I and that F = 0 to the
left of I and F = 1 to the right of I; I may be unbounded. For the Pareto distribution, the inverse
cdf is

F−1 = k(1− x)−
1
α . (4.11)

F−1 from eq. 4.11 can be used to obtain Pareto-distributed sample values with a random
random generator producing uniformly distributed random values in the interval [0,1]. If the
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Figure 4.2: Pareto pmf with different shape parameters α and constant location parameter k = 1
for large x (log-log scale).

Figure 4.3: Pareto pmf with different location parameters k and constant shape parameter α =
1.5 for small x (normal scale).
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Figure 4.4: Pareto pmf with different location parameters k and constant shape parameter α =
1.5 for large x (log-log scale).

Figure 4.5: Pareto cdf with different shape parameters α and constant location parameters k = 1
(normal scale).
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outcome of the uniformly distributed random generator is yi (to distinguish from xi - the Pareto-
distributed random variable), then the corresponding Pareto-distributed random value xi is

xi = k(1− yi)−
1
α . (4.12)

Fig. 4.6 shows the outcome of 10’000 Pareto-distributed random values xi obtained from eq.
4.12 and a random generator producing uniformly distributed random values yi in the interval
[0,1].

Figure 4.6: Outcome of 10’000 Pareto-distributed random variables with shape parameter α =
1.2 and location parameter k = 1.

Expected Value

The expected value E(X) or mean value µ of the Pareto distribution with pmf p(x) from eq.
4.9 is the integral

E(X) = µ =
∫ l

k

p(x) · x dx

=
∫ l

k

(αkα · x−α−1) · x dx

= αkα
[ x−α+1

−α + 1

]l

k

=
αkα

−α + 1
(l−α+1 − k−α+1) (4.13)

with the location parameter k as the lower and l the upper limit of the integral. If the maximum
of the random variable X is not limited, l is infinite and the expected value from eq. 4.13 can be
further simplified to

E(X) = µ = lim
l→∞

αkα

−α + 1
(l−α+1 − k−α+1)

=


αk

α−1 α > 1
0 α = 1
∞ α < 1

(4.14)

Given the shape parameter α > 1 and the mean value µ for the infinite distribution, the
location parameter k results from eq. 4.14.
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k =
µ(α− 1)

α
. (4.15)

In case of a limited distribution with maximum value l, no analytical methods are found to
solve eq. 4.13 for k. The numerical method to find the zero point of

α

−α + 1
(l−α+1kα − k)− µ = 0 (4.16)

is used to obtain k in this work.

Variance

The very bursty behavior of the Pareto distribution and generally all heavy-tailed distributions
becomes obvious in the statistical property of its variance σ2. It is infinite for 0 < α < 2.

V ar(X) = σ2 = E([X − E(X)]2) = ∞, 0 < α < 2 (4.17)

In the network context, primarily distributions with tail indices 1 < α < 2 and infinite variance
are of interest. Typically, α is in the range of 1.1...1.2 [8].

4.4 Summarizing Data

In the previous sections, the continuous Pareto distribution function is introduced in terms of its
mathematical and statistical properties. For network simulations, the Pareto distribution function
is only used indirectly to generate random outcomes of a Pareto-distributed variable. The fol-
lowing section gives a general overview how samples of data can be summarized with a special
focus on Pareto-distributed random variables.

Note: Many authors use the terms for the statistical properties of the distribution functions and
its sample outcomes interchangeable.

4.4.1 Arithmetic Mean

What the expected value is for a random variable’s distribution, is the arithmetic mean for a
sample of its outcomes and is denoted with a bar on top of the variable.

x̄ =
1
n

n∑
i=1

xi (4.18)

The relation of the arithmetic mean x̄ of n samples of a random variable X with expected or
mean value E(X) = µ is

E(x̄) = µ. (4.19)

The running arithmetic mean for 10’000 Pareto-distributed random variables from fig. 4.6
together with its expected value of 6 is illustrated in fig. 4.7.

4.4.2 Measures of Dispersion

The standard deviation σ of the distribution function is the standard deviation s for its sample
outcomes. The standard deviation is a measure of dispersion and gives a numerical indication
of the ”scatteredness” of a sample of numbers. It is the square root of the sample variance.
There are two common textbook definitions for the standard deviation s of a data vector X:

s =

√√√√ 1
n− 1

n∑
i=1

(xi − x̄)2 (4.20)
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Figure 4.7: Running arithmetic mean x̄ and expected value µ for 10’000 Pareto-distributed ran-
dom variables of fig. 4.6 with shape parameter α = 1.2 and location parameter k = 1.

and

s =

√√√√ 1
n

n∑
i=1

(xi − x̄)2, (4.21)

where n is the number of elements in the sample. Eq. 4.20 uses n − 1 as divisor. Its result
s is the square root of an unbiased estimator of the variance of the population from which X is
drawn, as long as X consists of independent, identically distributed samples. The divisor of eq.
4.21 is n. Its result s is the second moment of the sample about its mean.

4.4.3 Quantiles

The pth quantile (or ”p-quantile”) of the cumulative distribution function (cdf) F is defined to be
that value xp such that

F (xp) = p, (4.22)

or

P (X ≤ xp) = p. (4.23)

If F is the cdf of a continuous random variable and is strictly increasing on some interval I
and that F = 0 to the left of I and F = 1 to the right of I (I may be unbounded), then xp is
uniquely defined with the inverse cdf as

xp = F−1(p). (4.24)

For the Pareto distribution, the pth quantile xp is given by

xp = F−1(p) = k(1− p)−
1
α . (4.25)

The influences of the parameters α and k are shown in fig. 4.8 and 4.9. Quantile sizes
increase very fast for heavy-tailed distributions if p → 1. Names for special cases of p are listed
in table 4.1.

Example: If the first percentile (p = 0.01) of a data series containing packet delays in a data
network is 0.1 second (xp = 0.1 s), then 1 % of the data points are less or equal 0.1 second and
99 % of the data points are greater than 0.1 second.
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pth Quantile Quantile Name
0.5 median

0.25 lower quartile
0.75 higher quartile

k*0.01 k-th percentile

Table 4.1: Quantile names for special values of p.

Figure 4.8: Quantile sizes xp as a function of the pth quantile and shape parameter α of a Pareto
distribution with constant location parameter k = 1.

Figure 4.9: Quantile sizes xp as a function of the pth quantile and location parameter k of a
Pareto distribution with constant shape parameter α = 1.2.
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To apply the quantile measure to a sample of data, the data series has to be ordered first
for its increasing values as shown in fig. 4.10 for n = 10 samples. In this figure, the median (=
0.5-th quantile) is the 0.5 · n-th sample’s value (= 3) of the ordered series. That is, 50 % (= 5) of
the samples are less or equal to 3 and 50 % are larger than 3.

Figure 4.10: 10 unordered (left graph) sample values are ordered (right graph) to determine its
median (= 0.5-th quantile).

Quantile calculations are also useful to determine the expected maximum value of any ran-
domly distributed, finite series with cdf F (x). If the series consists of n values, then the expected
maximum value corresponds to the (n/n + 1)-th quantile of the cdf. The p-th quantile of the
Pareto distribution is given in eq. 4.25. Replacing the quantile size p by (n/n + 1) yields to

xp = F−1(p) = k(
1

n + 1
)−

1
α . (4.26)

Example: If a series contains 100’000 Pareto-distributed file sizes with location parameter k =
2′167 bytes and shape parameter α = 1.2, then the largest expected file size in the series is
30 MB.

4.5 Convergence of Statistical Properties of Heavy-Tailed
Distributions

4.5.1 Convergence of the Arithmetic Mean

Fig. 4.7 shows that the arithmetic mean x̄ of a population of Pareto-distributed random values
does not converge fast to the distribution’s expected value µ. Even with 10’000 samples as in
fig. 4.7, the arithmetic mean is just about 80 % of the expected value of 6. The slow conver-
gence of the arithmetic mean of a random variable that follows heavy-tailed distributions can
be understood quite easily: heavy-tailed distribution outcomes are characterized as exhibiting
many small observations mixed in with a few large observations. In such data sets, most of the
observations are small, but most of the contribution to the sample mean (or variance) comes
from the few large observations. Heavy-tailed distributions behave quite differently from the dis-
tributions more commonly used, such as the Normal distribution or the exponential distribution,
which have tails that decline exponentially (or faster). In contrast, because their tails decline
relatively slowly, the probability of very large observations, occurring when sampling random
variables that follow heavy-tailed distributions, is non-negligible.

The instability that is expected in simulations with heavy-tailed inputs may exhibit two fea-
tures: first, they will be very slow to converge to steady state and second, they will show highly
variable performance at steady state. Crovella and Lipsky [25] analyzed the behavior of the
arithmetic mean x̄ of Pareto-distributed random samples (sample mean). They formulated the
equation

|x̄n − µ| ∼ n
1

α−1 (4.27)
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which shows how slow the arithmetic mean x̄n converges to the expected value µ. If the tail
index α is close to 1, the arithmetic mean does not converge at all, reflecting the fact that the
mean is infinite.

Figure 4.11: Arithmetic mean distributions for 10’000 values, each calculated from n Pareto-
distributed random variables with α = 1.5, k = 1 and µ = 3.

Based on a Pareto-distributed random variable with α = 1.5, k = 1 and expected mean
µ = 3, fig. 4.11 is drawn by plotting the distribution of 10’000 arithmetic mean values for n
random variables. For larger samples sizes n the mean distributions converge slowly toward the
expected value µ.

Example: From fig. 4.11 can be read that if taking the arithmetic mean from 100 samples
(n = 100), most of these values will be 2.5, where the curve for n = 100 has its peak.

Crovella and Lipsky [25] also formulated a approximation to estimate how many samples n
are necessary, to ”highly likely” approximate the arithmetic mean to the expected values of its
distribution with a accuracy of k digits.

n ≥ c · 10
k

1− 1
α (4.28)

Supposing c ≈ 1, table 4.2 lists the necessary number of samples n to achieve k-digits
accuracy for different tail indices α. This table also shows that as α is close to 1, the number
of samples necessary to obtain convergence in the arithmetic mean explodes. Thus, it is not
feasible in any reasonable amount of time to observe steady state in simulation with Pareto-
distributed variables. Over any reasonable time scale, such simulations are always in transient
state when α is close to 1 and they also show high variability in steady state as analyzed in [25].

α n (k = 1) n (k = 2)
2.0 102 104

1.7 2.7 · 102 7.2 · 104

1.5 103 106

1.2 106 1012

1.1 1011 1022

Table 4.2: Number of samples necessary to achieve k-digit accuracy of the arithmetic mean x̄
to the expected value µ for different tail indices α.
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4.5.2 Convergence of the Quantile

Fiedler and Plattner [4] explored the convergence of quantiles of heavy-tailed object size dis-
tributions. From probability theory it is known that the object size quantile of a heavy-tailed
distribution converges to a normal distribution at rate n−

1
2 , where n is the sample size. This con-

vergence is fundamentally different from the convergence of the sample’s average (arithmetic
mean) object size to an α-stable distribution at rate n

1
α−1 (eq. 4.27), where α is the tail index

of the heavy-tailed object size distribution. The two convergence rates of the quantile and the
average are shown in fig. 4.12 on a log-log scale as a function of the sample size n.

Figure 4.12: Convergence rates of the quantile and the average for different tail indices α (log-
log scale).

As a consequence, the amount of time required to converge object size quantiles of interest
is magnitudes smaller than the amount of time required to converge the average object size.
Based on a Pareto-distributed random variable with α = 1.5, k = 1 and expected mean µ = 3,
fig. 4.13 is drawn by plotting the distribution of 10’000 median (= 0.5-th quantile) values for n
random variables. Comparing this plot with the distribution of the arithmetic mean in fig. 4.11,
the faster convergence of the quantile becomes visible (attention: different x-scales!).

4.6 Data Analysis

Any data, simulation inputs and outputs, is almost useless if not meaningfully interpreted for
properties of interest. Analysis methods discussed in this section can help to interpret data by
extracting the relevant information.

4.6.1 Model Validation

Regardless of the approach, validation is a key step before using results to draw conclusions
[19]. In fact, validation is a step that is performed repeatedly during the model development, as
one continues to add enhancements. By verifying fundamental behaviors of the model at each
step, one can maintain a high degree of confidence, and easily identify which particular changes
are responsible for new, unexplained behavior. In contrast, if many simultaneous changes are
made before examining the model’s behavior, it will be impossible to determine which changes
are responsible for certain observations, and to what extent each change has contributed.

Therefore, model validation is done for each change or enhancement of the project. Its re-
sults are not discussed in this work, unless they deviate from the expectations.



4.6 Data Analysis 23

Figure 4.13: Median distributions for 10’000 values, each calculated from n Pareto-distributed
random variables with α = 1.5, k = 1 and µ = 3.

4.6.2 Data Analysis Fundamentals

If model input data underlie random processes, every simulation run with a different seed3 for
the input data produces different output data (results). This is identical to the variations in real
systems where each measurement is different. Because the analyzed statistic may be subject to
fluctuation, the results of one simulated activity can not be completely trusted. How many total
samples are needed is a difficult question to answer. One of the reasons it is difficult is that this
depends on the variability of the quantity of interest. Confidence can be established for a set of
gathered samples by extracting a range from the samples and giving a likelihood that the real
average lies somewhere in that range. By real average is meant the value one would obtain if a
vast numbers of samples would be measured in the real system and computed their arithmetic
average. Therefore, gathering more samples enhances the confidence, but never provides a
100 % guarantee. To increase the certainty, the range of the seeking average value can be
increased, or more samples can be obtained.

While one can rely on its intuition to tell if enough samples have been obtained, or some
rules of thumb (many practitioners recommend the number 30 as a good number of samples
[19]), there are mathematical methods for determining confidence: confidence intervals. When
using confidence intervals, there is an important fact to be aware of concerning the relationship
between the samples: these samples must be independent. In other words, the fact that the first
sample was obtained should not influence the likelihood that the second sample would have
been obtained.

4.6.3 Variance-Time (V-T) Statistics

Self-similarity or Hurst parameter H captures the intuitive notion of burstiness in a mathemat-
ically rigorous manner. Its value lies in the range of 0.5 ≤ H ≤ 1, where 1 characterizes very
bursty traffic (perfect self-similar traffic) and 0.5 less bursty traffic (poisson traffic). A interesting
feature of self-similar traffic is that aggregating traffic, i.e. adding several self-similar traffics, pro-
duces not a smoother traffic but even burstier one [6]. Another conclusion from measured traffic
analysis in Leland et al. [6] is that burstiness of traffic increases as traffic intensity increases.

A self-similar time series has the property that when aggregated (leading to a shorter time
series in which each point is the sum of multiple original points), the new series has the same

3A seed can be interpreted as the initial state of a random number generator. Identical seeds lead to identical series
of random numbers.
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autocorrelation function as the original [6]. That is, given a (wide-sense stationary) stochastic
process

X = (Xt; t = 0, 1, 2, . . .), (4.29)

as the first series (m = 1) in fig. 4.14, the new m-aggregated series denoted

X(m) = (X(m)
k ; k = 1, 2, 3, . . .) (4.30)

is given for each m = 1, 2, . . . , X(m) by

X
(m)
k =

Xk·m−m+1 + . . . + Xk·m

m
; k = 1, 2, 3, . . . , (4.31)

summing for each m = 1, 2, 3, . . . the original series X over non-overlapping blocks of size
m as shown in fig. 4.14 for m = 2 in the second series and m = 4 in the third series.

Figure 4.14: Aggregation of time series for aggregation levels m at power of 2.

Then, if X is (exactly second-order) self-similar, the corresponding aggregated processes
X(m) have the same autocorrelation structure

R(m)(τ) = R(τ),m = 1, 2, . . . ; τ = 1, 2, . . . (4.32)

for all m. The autocorrelation function R(τ) is given by

R(τ) =
E[(Xt − µ)(Xt+τ − µ)]

E[(Xt − µ)2]
, τ = 0, 1, 2, . . . (4.33)

Note: This means that the series is distributionally self-similar: the distribution of the aggregated
series is the same (except for changes in scale) as that of the original.

The Variance-Time (V-T) Plot relies on the slowly decaying variance of a self-similar series.
The variance

V ar(X(m)) = E
(
[X(m) − E(X(m))]2

)
(4.34)

of X(m) is plotted against m on a log-log plot. A straight line with slope β greater than -1 is
indicative of self-similarity, and the Hurst parameter H is given by

H = 1− β

2
. (4.35)

Leland et al. [6] suggest to ignore the small values for m to estimate the degree of self-
similarity. Lamparter [20] describes the Variance-Time Plot for small time series not very reliable,
but when many data points are available (i.e. millions), this kind of data analysis is very useful
and delivers a quite accurate picture of the existent self-similarity.

In the Design section 5.5, the implementation of a Variance-Time Plot calculation in MATLAB
will be provided.
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4.7 The ON/OFF Model

Park and Willinger [8] and many other researchers in the area of self-similarity describe the
heavy-tailed transfer size distributions the most simple, distilled, yet high-level physical explana-
tion of network traffic self-similarity. In this section, a self-similar traffic model based on heavy-
tailed transfer object sizes is introduced, called the ON/OFF Model .

The ON/OFF Model of Willinger [9] [8] establishes that the superposition of a large number
of independent on/off sources with heavy-tailed on- and/or off-periods leads to self-similarity in
the aggregated process - a fractional Gaussian noise process - whose long-range dependence
is determined by the heavy-tailedness of the on- or off-periods. The model has its theoretical
foundation in a certain renewal reward process together with the empirical evidence of heavy-
tailed on/off durations.

The ON/OFF Model considers n independent traffic sources Xi(t), i ∈ [1, n], where each is
a 0/1 renewal process with independent and identically distributed on- and off-periods. This just
means that Xi(t) takes on the values 1 (”on”) and 0 (”off”) on alternating, non-overlapping time
intervals called on- and off-periods. Xi(t) = 1 is interpreted as there being a packet transmis-
sion. Thus, an on-period can be viewed as constituting a ”packet train”. Three of such on/off
sources and their superposition are depicted in fig. 4.15.

Figure 4.15: n = 3 on/off sources X1(t), X2(t), X3(t) and their aggregation S3(t) = X1(t) +
X2(t) + X3(t) (taken from Willinger [8]).

Let Sn(t) =
∑n

i=1 Xi(t) denote the super positioned traffic at time t and Yn(T ) =
∫ T

0
Sn(t)dt

the cumulative process. Yn(T ) measures the total traffic up to time T . If the on- and off-periods
are heavy-tailed distributed random variables and n and T are large, then Yn(T ) behaves
asymptotically as fractional Brownian motion and is long range dependent [8] [9] with Hurst
parameter

H =
3− α

2
(4.36)

where α is the tail index of the heavy-tailed on- and/or off-periods.

4.8 Circuit-Switching

Since the beginning of the telephony technology, its circuits have always been switched. Circuit-
switching means to physically connect both communication endpoints with a communication
line by switches. When a person places a telephone call, the switching equipment within the
telephone system seeks out a physical path all the way from the caller’s to the receiver’s tele-
phone. Circuit-switching has the advantage that both communication endpoints exclusively are
using the line and therefore a fixed bandwidth is guaranteed as long as the circuit is established.
One of the disadvantages is, if the communication partners are not exchanging any data (e.g.,
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nobody is talking on the phone), the line is idle and link capacity is wasted. In contrast to circuit-
switching, for data transport between computers another technique to share common resources
is mostly used, called packet-switching . More information about circuit- and packed-switching
can be found in general communication network books like Tanenbaum [12] or Peterson and
Davie [13].

In the past, transmission throughout the telephony system was completely analog. With the
emerging of digital technologies, all lines and switches are now digital, leaving the local loop,
that’s the two-wired connection between each subscriber’s telephone and the end office4, as
the last piece of analog technology in the system. In the end office, the analog signal arriving
from the local loop is converted to a digital signal. Because there are no high-fidelity claims to
the speech quality, a moderate sample rate of 8 kHz (e.g., samples are taken every 125 µs)
was chosen which is able to code analogue frequency of up to 4 kHz according to Shannon’s
sampling theorem. 8 bits = 1 byte are taken to represent the sampled value, resulting in a data
rate of 64 kbits/s = 8 kHz · 8 bits for one telephone channel.

The end office is just one place where calls are aggregated. Traditionally, the next aggre-
gation level is an area and then a entire country. Time division multiplexing (TDM) is used
to collect multiple calls and transmit them over one single line with sufficient capacity, like an
optical fiber. Outside North America and Japan, 32 channels are multiplexed to 1 single carrier,
the E1 CCITT5 standard. 32 · 8 bits = 256 bits is then the amount of data transmitted in a frame
of 125 µs and 256 bits · 8 kHz = 2.048 Mbps gives the gross data rate of a E1 carrier. Actually,
there are only 30 of the 32 channels used for voice traffic, the remaining 2 channels are used
for synchronization purpose and other control data. T1 is the name of the corresponding carrier
system in North America and Japan, multiplexing 24 voice channels with a gross data rate of
1.544 Mbps. TDM allows multiple E1/T1 carriers to be multiplexed into higher-order carriers.
The T multiplexing family is called 1.5 Mbit/s hierarchy and the E multiplexing family 2 Mbit/s
hierarchy [31]. The common name for both hierarchies is the Plesiochronous Digital Hierar-
chy (PDH) [31]. The T1 and E1 carrier are also called Nx64 kbit/s services [11], where N is the
number of channels and 64 kbit/s the bit rate of a single channel.

In this work, one E1 carrier is used to model CE traffic. Design section 5.2 provides a traffic
model for the E1 carrier in the network simulations.

4.9 Differential Service with Virtual LAN (VLAN)

Differential services allow to distinguish traffic flows and assigning them individual treatment.
In particular, dedicated traffic can be given preferential treatment. This is of special interest to
provide higher priority treatment to QoS sensitive traffic like circuit emulation traffic over QoS
non-sensitive traffic like best-effort data. In the light of this work, preferential treatment of CE
traffic could improve its QoS by reducing end-to-end delays and loss rates, the primary QoS
requirements for CE services (see section 5.4). End-to-end delay can be reduced by preferential
treatment of higher prioritized CE traffic in buffer queues. Losses mainly originate from packet
drops by buffer overflows. Preventing higher prioritized packets from dropping and deleting low
priority traffic instead, can reduce losses of the CE traffic.

One implementation of a differential service on the (Ethernet) link layer is the Virtual LAN
(VLAN) standard IEEE 802.1Q [16] together with the priority standard IEEE 802.1p [17]. The
name ”Virtual LAN” comes from the main purpose of a VLAN which is to decouple the logical
topology from the physical topology, but as a matter of fact, VLAN introduced something that is
surprisingly similar to a connection. The VLAN standard 802.1Q changed the Ethernet header.
The new format contains a VLAN tag. In order to make the new format compatible with old
Ethernet adapters, the VLAN fields are only actually used by the bridges and switches and not
by the individual user machines. New Ethernet adapter generally support the 802.11Q standard
and write themselves the VLAN ID in the tag. This way, VLAN supporting bridges and switches
can learn the VLAN topography and do not have to be individually programmed.

The new tag (see fig. 4.16), inserted between the source address and the length field of
the ”old” Ethernet header, is called Tag Control Information (TCI) . The user_priority field is

4The telephone company’s nearest concentration point, also called local central office.
5Commité Consultatif International Télégraphique et Téléphonique. The new name for this organization is ITU-TSS

(International Telecommunications Union - Telecommunications Standardization Sector).
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Figure 4.16: IEEE 802.1Q standard Tag Control Information (TCI).

three bits in length, interpreted as a binary number. It is therefore capable of representing eight
priority levels, 0 through 7. The use and interpretation of this field is defined in ISO/IEC 15802-3
[18].

Figure 4.17: Correspondence between traffic types and default user_priority (ISO/IEC 15802-3
standard [18]).

The forwarding process may provide more than one transmission queue for a given bridge
port. Frames are assigned to storage queue(s) on the basis of their user_priority using a traffic
class table that is part of the state information associated with each port. The list in fig. 4.17
indicates, for each possible value of user_priority, the corresponding value of traffic class that
shall be assigned. Priority value 0 represents the lowest value of user priority, and 7 the highest
value. Queues correspond one-to-one with traffic classes.

4.10 Network Simulation Environment

Simulation Modeling is becoming an increasingly popular method for network performance anal-
ysis. Generally, there are two forms of network simulation: analytical modeling and computer
simulations . The first method is a mathematical analysis that characterizes a network as a set
of equations. The main disadvantage is its simplistic view of the network and inability to simu-
late the dynamic nature of a network [30]. Thus, the study of a complex system always requires
a discrete event simulation package, which can compute the time that would be associated
with real events in a real-life situation [30]. Software simulator is a valuable tool especially for
today’s network with complex architectures and topologies. Designers can test their new ideas
and carry out performance related studies without ”trial and error” hardware implementations.

A typical network simulator can provide the programmer with the abstraction of multiple
threads of control and inter-thread communication. Functions and protocols are described either
by finite-state machine, native programming code, or a combination of the two. A simulator typi-
cally comes with a set of predefined modules and user-friendly graphical user interfaces (GUIs).
Some network simulators even provide extensive support for visualization and animation.
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4.10.1 OPNET Modeler

For the network simulations in this thesis, the commercial software OPNET6 Modeler R©Release
10.5A PL3 (Build 2570) [19] is given in the assignment as the network simulator of choice. A
educational-use license has been purchased permitting exact one active simulation runtime and
giving access to OPNET online support. For all simulations, a standard desktop computer with
AMD Athlon XP 2800+ (2.07 GHz) CPU, 1 GB RAM and 80 GB hard disk running operation
system Window XP (SP2) is employed.

OPNET (Optimized Network Engineering Tool) Modeler was originally developed at MIT and
introduced in 1987 as the first commercial network simulator. OPNET provides a comprehensive
development environment for the specification, simulation and performance analysis of commu-
nication networks. A large range of communication systems from a single LAN to global satellite
networks can be supported. Discrete event simulations are used as the means of analyzing sys-
tem performance and their behavior. The following are some of OPNET Modeler’s key features
(taken from http://www.opnet.com/products/modeler/home.html):

• Most scalable and efficient simulation engine, enabling the fastest simulation runtimes
using advanced acceleration techniques for wired and wireless models.

• Hierarchical network models . Manage complex network topologies with unlimited sub-
network nesting.

• Object-oriented modeling . Nodes and protocols are modeled as classes with inheritance
and specialization.

• Clear and simple modeling paradigm . Model the behavior of individual objects at the
”Process Level” and interconnect them to form devices at the ”Node Level”; interconnect
devices using links to form networks at the ”Network Level”. Organize multiple network
scenarios into ”Projects” to compare designs (see fig. 4.18).

• Finite state machine modeling of protocols and other processes.

• Wireless, point-to-point, and multi point links . Link behavior is open and pro-
grammable. Accurately account for delay, availability, bit errors, and throughput character-
istics of links. Incorporate physical layer characteristics and environmental effects using
a library that includes enhanced TIREM, Longley-Rice, and Free Space, or interface with
custom propagation models.

• Total openness . APIs for program-driven construction or inspection of all models and
result files. Easily integrate existing code libraries into your simulations. Source code pro-
vided for all standard models.

• Integrated analysis tools . Comprehensive tools to display simulation results. Easily plot
and analyze time series, histograms, probability functions, parametric curves, and confi-
dence intervals. Export to spreadsheets or use XML.

• Import data from text files, XML, and popular tools from Cisco, HP, NetScout, BMC, Con-
cord, Sniffer, Infovista, MRTG, cflowd, tcpdump, and others.

• Comprehensive library of detailed protocol and application models . Including Multi-
Tier Applications, Voice, HTTP, TCP, IP, OSPF, BGP, EIGRP, RIP, RSVP, Frame Relay,
FDDI, Ethernet, ATM, 802.11 Wireless LANs, MPLS, PNNI, DOCSIS, UMTS, IP Multicast,
Circuit Switch, MANET, Mobile IP, IS-IS, and many more. Provided as FSMs with open
source code.

• . . . and network devices : The Standard Model Library includes hundreds of vendor spe-
cific and generic device models including routers, switches, workstations, and packet gen-
erators. Quickly assemble your own device models using the "Device Creator." Aggregate
traffic from LANs or ”Cloud” nodes.

• Windows NT, 2000, XP, and UNIX . Models can be shared across hardware and platforms
transparently without modification.

6OPNET Technologies, Inc. OPNET is a registered trademark of OPNET Technologies, Inc., 2004

http://www.opnet.com/products/modeler/home.html
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Figure 4.18: Hierarchical modeling structure of a ”Project” (top) in OPNET Modeler.



Chapter 5

Simulation Design

Before running network simulations to investigate the problems identified in chapter 3, the entire
simulation setup has to be designed, tested and analyzed. The network simulator of choice,
given in the assignment, is OPNET Modeler. OPNET Modeler is a widely used commercial
discrete event simulator. More details about OPNET Modeler is given in the Background chapter
in section 4.10.1. The following sections describe how the problem is attacked and provide
solution proposals which are used in the simulations.

5.1 Topology

The topology for all simulations is given in the assignment and is a metropolitan Gigabit Ethernet
bottleneck network. The bottleneck link may be viewed in a more general sense, since many
have argued that there is always a single bottleneck link on any network path which is usually
not fast moving [28]. The networks simulations are limited to the physical and the link (MAC)
layer.

Figure 5.1: Bottleneck topology for all network simulations with OPNET Modeler.

The network technology for all simulations is switched Gigabit Ethernet with optical links
(1000BaseX) running at 1 Gbps. In switched Ethernets, all links are full-duplex and no medium
contention takes place. The bit error rate (BER) of optical fibers are almost zero. This is in favor
of the focus of this work which lies on frame losses due to buffer overflows rather than due
to transportation errors. The propagation delays to and from the bottleneck link to the sending

30
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and receiving nodes shall be negligible compared with the delay over the bottleneck link itself.
Hence, as shown in fig. 5.1, 10 m access links to the bottleneck switches are chosen and 1 km
for the bottleneck link. Frame bursting is disabled for all network adapters.

The variable bit rate (VBR) source node VBR_source sends variable, best effort workload
data traffic (see section 5.3) to the VBR destination node VBR_sink. The constant bit rate
(CBR) source node CBR_source sends CE traffic (see section 5.2) of a E1 carrier at constant
bit rate to the CBR destination node CBR_sink. At the bottleneck entry switch_1, VBR and the
CBR traffic are concentrated on a shared link - the bottleneck link. At the other side of the shared
link, the bottleneck exit switch_2 splits off the VBR and CBR traffic and sends each one to its
destination node. Because in a switched Ethernet there is no competition for the medium (full-
duplex), all simulations are done with traffic in only one direction to keep the simulation effort at
a minimum without loosing any important model characteristic.

5.2 Circuit Emulation Traffic Generation

The circuit emulation (CE) traffic originates from connection-oriented, circuit-switching tele-
phony services. A general introduction to circuit-switching is given in the Background chapter in
section 4.8. This section provides a specific model for a E1 carrier representing the CE traffic in
the simulations.

Knowing the E1 carrier properties from section 4.8, the next step is to send it over a Gigabit
Ethernet. Since the delay has to be kept as small as possible, it’s certainly better to take each
individual E1 carrier packet of 125 µs and send it immediately instead of accumulating them to
fill a Ethernet frame up to its maximum payload size of 1’500 bytes. Because the Ethernet frame
should also make it through network (IP) layer routers, a IP header of 20 bytes is first attached to
the E1 packet of 32 bytes, giving 32 bytes + 20 bytes = 52 bytes payload for the Ethernet frame,
just 6 bytes more than the minimum Ethernet payload size of 46 bytes. In a switched, full-duplex
Gigabit Ethernet there is no medium contention possible. Therefore, the IEEE 802.3z standard
for carrier extension (padding the normal frame to 512 bytes) is not necessary. The Ethernet
adapter attaches then a total of additional 26 bytes (14 bytes header + 4 bytes checksum +
8 bytes preamble) to the 52 bytes of payload, resulting in 78 bytes for one entire Ethernet frame
carrying 32 channels E1 telephone traffic of 125 µs (fig. 5.2). This leads to a gross data rate of
78 · 8 bits· 8 kHz = 4.992 Mbps. In the case of a VLAN topology, 2 more bytes (from TCI) are
added to the Ethernet header, increasing the frame size to 80 bytes and the gross data rate to
5.120 Mbps. The results of these calculations are briefly summarized in table 5.1.

Figure 5.2: Ethernet frame carrying 32 channels E1 telephone data of 125 µs.

No. of channels 32
E1 frame size 32 bytes

Ethernet frame size (without VLAN) 78 bytes
Ethernet frame size (with VLAN) 80 bytes

Ethernet gross data rate (without VLAN) 4.992 Mbps
Ethernet gross data rate (with VLAN) 5.120 Mbps

Frame length 125 µs

Table 5.1: Characteristics of a E1 carrier running over Ethernet with IP header.

Taking into account the 96 interframe bits, total 720 bits (without VLAN) are send over a
Gigabit Ethernet to transport 32 bytes of telephone data which gives a ”transport efficiency” of
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only 36 %. This may look like a waste of link capacity, but in consideration of the enormous
capacity of 1 Gbps of the Gigabit Ethernet, it still uses only moderate 0.5 % of the total link
capacity.

5.3 Data Traffic Generation

In the Introduction (chapter 2), the workload data traffic is identified to be bursty within a wide
range of time scales. The mathematical notion for this property is long-range dependency or
self-similarity. For the network simulations with OPNET Modeler, different approaches are pos-
sible to generate self-similar traffic. They are characterized by the location of the generation
process (inside or outside OPNET Modeler), the mathematical model (including the parameter
set) and the involved layers of the standard model. The following methods are considered in the
network simulations to generate self-similar data traffic:

• Heavy-tailed statistics : In most places where statistical properties can be chosen in OP-
NET Modeler, heavy-tailed distributions are among the selection. This model can be ap-
plied on the link, network, transport and application layer.

• Application traffic models : OPNET Modeler includes a set of models for generating
traffic based on standard applications such as FTP, HTTP, voice, and e-mail. This model
is restricted to the application layer.

• Raw Packet Generator (RPG): Built-in OPNET traffic source model that generates self-
similar traffic. This model can only be applied on the link and the network layer.

• Scripted file playback : External files (with self-similar data traffic) can be used as
”scripted” input data. This method can be used on the link, network, transport and ap-
plication layer.

All of these methods are discussed in more detail in the next sections.

5.3.1 Heavy-Tailed Statistics

In the distribution dialog box, heavy-tailed distributions such as Pareto and Weibull can be
used to model self-similar traffic patterns. Unfortunately, these heavy-tailed distributions are
restricted to a given set of parameters. For the ethernet_ip_station node traffic generation, these
distribution parameters are as in fig. 5.3 Packet Inter-Arrival Time and Packet Size. Unlimited
number of rows can be added, each defining a independent traffic source. The totally generated
traffic is the superposition of all traffic sources in every row.

There exist models to generate parameterized self-similar data traffic by superposing inde-
pendent Bernoulli sources [24] or Lognormal distributions [23]. The main problem with these
models is to find the right parameters to achieve the desired characteristic of the superposed
traffic. This approach is not followed in this work in favor of the RPG and the scripted ON/OFF
Model.

5.3.2 Application Traffic Models

OPNET Modeler includes a set of models for generating traffic based on standard applications
such as FTP, HTTP, voice, and e-mail. The generic custom application model can also be used
to represent a broad range of applications (such as multi-tier ERP transactions) that do not
correspond to the traffic patterns of standard network applications. These traffic models are
based on a server-client architecture and represent what is closest to a real scenario. Bursty
data traffic can be generated in numerous ways. For example, the object size distribution of the
page property in the HTTP application can be selected to be heavy-tailed.

Tremendous complex profiles can be set up, each containing infinite numbers of applications.
Every application consists of (infinite) numbers of tasks and every task of (infinite) numbers of
phases. Additionally, there are many more parameters for the serving nodes like CPU perfor-
mance and cache sizes. All together, dozens of parameters can and must be selected to set
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Figure 5.3: Traffic generation parameters of a ethernet_ip_station node

up a running simulation. This makes this approach complicated to generate well-defined self-
similar data traffic. Furthermore, it only supports UDP and TCP transport protocols. Simulations
directly over the Ethernet data link layer or IP network layer like in the simulations in this project
are not possible. Therefore, this approach is also not followed in this work.

5.3.3 Raw Packet Generator (RPG)

The Raw Packet Generator (RPG) is a traffic source model implemented in OPNET Modeler
that generates self-similar traffic. According the documentation, the RPG model can be used to
generate any types of self-similar (background) traffic. The RPG module can be used over the
network (IP) and link (MAC) layer of the standard model. A variety of Fractal Point Processes
(FPPs), based on a research paper by Ryu et al. [14], are implemented in the RPG model. For
more information see 17–RPG Model User Guide in the Standard Models User Guide of [19].

In the Project Editor, the RPG Object Palette (fig. 5.4) contains all available RPG nodes.
The ethernet_rpg_station node runs directly over Ethernet, the ethernet_rpg_wkstn node over
IP. The RPG Traffic Generation Parameters of a ethernet_rpg_wkstn node are shown in fig.
5.5. Promoted parameters are made globally configurable and can be easily changed for each
simulation run. The following FPPs are integrated in the RPG (to be selected in the Arrival Pro-
cess Name of fig. 5.5): ”Sup-FRP”, ”PowON-PowOFF”, ”PowON-ExpOFF”, ”ExpON-PowOFF”,
”Fractal Power-Law Filter”, ”Exponential Rectangular Filter” and ”Fractal Rectangular Filter”.

Figure 5.4: RPG Object Palette.
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Figure 5.5: RPG Traffic Generation Parameters of a ethernet_rpg_wkstn node.

For the simulations in this work, only the ”PowON-ExpOFF” and ”PowON-PowOFF” arrival
processes are of interest. Because the ”PowON-PowOFF” model does not allow to set the
Peak-to-Mean Ratio, only the ”PowON-ExpOFF” function is considered for the simulations. The
”PowON-ExpOFF” model is characterized by the following RPG Traffic Generation Parameters:

• Average Arrival Rate (AAR) : Defines the average arrival rate for the aggregate traffic
that is generated by all sources of the arrival process. For the ”PowON-ExpOFF” model,
it is defined in packets/s. Together with the Packet Size it specifies the average generated
traffic.

To achieve an average network utilization of 1 % (see section 5.8), the product of (Packet
size + IP header + Ethernet header) and Average Arrival Rate must give 1 % of 1 Gbps for
the Gigabit Ethernet, i.e. 10 Mbps. Since the Packet Size (1’004 bytes) with IP header
(20 bytes) is set to the constant value of 1 kB, the Average Arrival Rate results with

10 Mbps
(1 kB+26 byte)·8 to be 1’190.

• Hurst Parameter (H) : Defines the Hurst characteristic of the self-similar traffic source.
This parameter determines the shape parameter for the Pareto distribution.

As a reference value 0.90 is taken for all simulations for reasons discussed in section 5.7.

• Fractal Onset Time Scale (FOTS) : Used with the Hurst characteristic to determine the
location parameter for the Pareto distribution. It is the smallest time unit from which the
power-law behavior or fractal begins to appear.

This value depends on the Ethernet traffic characteristic and lies usually between 0.1 ms
and 1 s. A rule of thumb says the self-similar traffic starts at time scales of the dimension
of the round-trip time (RTT). In this work, the RTT is approx. 0.1 ms.

• Source Activity Ratio (SAR) : Defines the percentage of time that at least one of the
independent on/off traffic sources is active. The range is from 0 to 100.

This parameter is difficult to determine. Many people recommend values around 75 %.
Simulation results shall give further indications.
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• Peak-to-Mean Ratio (P2MR) : Defines the ratio of peak traffic rate (bursts) over the mean
traffic rate. The range is from 1 to infinity. This parameter should be used to adjust the
desired variance of the generated traffic.

The considered target of the (normalized) variance in this work should be higher than
10. With a trial-and-error method the P2MR shall be adjusted to reach the appropriate
variance.

• Packet Size : Size of generated packets in bits. It is specified by a probability density
function (pdf). Together with the Average Arrival Rate it defines the average generated
traffic.

For this work, only constant packet sizes between 26 and 1’480 bytes (46 and 1’500 bytes
with added IP header) are of interest. Packets smaller than 46 bytes would automatically
be padded to the minimum packet size of 46 bytes, packets bigger than the Ethernet Max-
imum Transfer Unit (MTU) of 1’500 bytes would be fragmented into several consecutive
packets adding additional load to the network with its additional headers. Therefore, the
Packet Size including the IP header of 20 bytes is more or less freely chosen somewhere
in the upper region of its range to be 1 kB = 8’192 bits. Subtracting the IP header of
20 bytes, gives 8’032 bits for the Packet Size.

• Destination Information : Specifies the destination node of the traffic generated by the
arrival process.

In all simulations, a single data source (VBR_source node) sends its traffic over a bottle-
neck link to a single data destination node. Therefore, the destination for all simulations is
the data sink (VBR_sink) node.

• Start Time : Specifies when the arrival process starts generating traffic.

In this work, data traffic should be present during the entire recorded simulation period.
Since data logging is started after 10 seconds, this parameter is given the fix value of
5 seconds for all simulations, allowing the system 5 seconds for stabilization before data
is captured for analysis.

Data traffic generation simulation results with the RPG are presented and discussed in the
Results section 6.1. Since the results show that the RPG is not suitable for the simulations in
this work, it is not employed for the main network simulations.

5.3.4 Scripted File Playback

For the Packet Generation Arguments of a ethernet_station node, the Interarrival Time and the
Packet Size can be read from a external file. The model reads in the file and replays its content
line by line in cyclic order, that is when the last line is read, the process continues reading at the
first line again. To specify such an input file, the ”scripted” Distribution name must be selected
as in fig. 5.6 for the Packet Generation Arguments. One has to be careful not to have multiple
devices in the network using the same file, otherwise events may get synchronized. A scripted
file can automatically be generated with a external program.

Figure 5.6: Input file ’arrival1.csv’ selected for the scripted distribution of the Interarrival Time.

In this work, the ON/OFF Model, introduced in the Background chapter in section 4.7, is
taken to generate self-similar data traffic with a MATLAB script to write the files ’arrival.csv’ with
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the interarrival time series and ’size.csv’ with the file size series. The implementation of the
ON/OFF Model in the MATLAB code traffic_gen.m is explained in the next section.

Data traffic generation simulation results with the scripted file playback using the ON/OFF
Model is presented and discussed in the Result section 6.2. The results show that the ON/OFF
Model is suitable for the simulations in this work and is employed for the main network simula-
tions.

Implementation of the ON/OFF Model

In this section, the implementation of the ON/OFF Model as a self-similar data traffic source in a
MATLAB script is explained. With this traffic generation model, n traffic sources send files which
sizes are heavy-tailed (Pareto) as well as the waiting times between two consecutive files. This
ON/OFF Model deviates from the ON/OFF Model by Willinger [9], introduced in the Background
chapter in section 4.7, in two aspects: first, the number of sources n is finite and second, the
file sizes are superposed rather than the traffic flows. In other words, a file is always send at the
speed of the link. If two or more sources send a file at the same time (X1(t) and X2(t) in fig.
5.7), the superposed traffic is not sent faster (X ′(t) in fig. 5.7), but the file size is increased and
consequently the transmission time (X ′′(t) in fig. 5.7).

Figure 5.7: Superposed traffic flows X ′(t) and transmission times X ′′(t) of two traffic sources
X1(t) and X2(t).

The effect of the different superposition can be interpreted as a smoothing of peaks or put
it differently, low-pass filtering of the superposed traffic. The simplification can be justified with
the characteristics of real networks: link speeds are always limited and traffic peaks from many
sources are filtered out by the buffers in the sending processes of traffic aggregation points such
as network switches. Besides, it is in favor of the CE traffic because data traffic peaks can only
decrease the QoS of the CE service but never increase it. In the light of the simulation results,
this can also be formulated as follows: if the CE traffic does violate the QoS requirements with
the traffic model discussed here, then it would also do it with Willinger’s (original) model and the
QoS is even expected to be worse. The following parameters are inputs of the model

• Link capacity

• Average link utilization

• Shape parameter α of file size Pareto distribution

• Shape parameter α of waiting time Pareto distribution

• Average file size

• Maximum file size

used to calculate the location parameters k of the file size and waiting time Pareto distri-
butions. Eq. 4.15 is used to determine the location parameter k of the unlimited waiting time
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distribution and the numerical method from eq. 4.16 to calculate k of the limited file size distri-
bution. The maximum files size are limits in end systems such as the 4 GB file size limit inherent
to most popular operating systems (OS). The Microsoft Windows OS, for instance, operates
on three file systems with different file size limits: FAT16 and FAT32 with 4 GB and NTFS with
16 TB (Terabyte) limit. The average file size is 12 kB for all simulations with the ON/OFF Model
according the paper from Feldmann et al. [38].

An open question is how large the number of sources n has to be. Willinger [9] states n has
to be ”large” in order that the resulting, superposed traffic becomes long range dependent with
Hurst parameter H = (3−α)

2 . Student paper [36] gives indications that n must be higher than
10’000. Therefore, 100’000 sources are taken in this thesis. Higher number of sources start to
cause problems with the soft- and hardware used for the simulations.

The MATLAB code traffic_gen.m in appendix D.2 generates random outcomes of the
proposed ON/OFF traffic model. The traffic trace is then written into two files (file- or packet sizes
and interarrival times) which the simulation software OPNET Modeler reads in as ”scripted” data
source. Unfortunately, the scripted data source in OPNET Modeler can not read waiting times
between sent files but only interarrival times, that is the time between the sending start of two
consecutive files as shown in fig. 5.8.

Figure 5.8: Difference between waiting time and interarrival time in a traffic flow.

Additionally, the traffic superposition algorithm only works with on- and off-times, but not with
file sizes and off- or interarrival times. Therefore, there is no by-passing of the transformation
from file sizes to transmission times and vice versa. The exact transformation would make the
calculations considerably more complicated because the sending time of each file has to be cal-
culated by fragmenting the file into frames of maximum and minimum sizes and adding headers
and interframe gaps. The ON/OFF Model implementation in MATLAB code traffic_gen.m
does therefore the following simplification: for the average sized file, a exact transformation from
file size to transmission bits is done and the ratio (file size)/(transmission bits) used to transform
all file sizes to transmission bits and the inverse ratio to transform any transmission bits back
to file sizes. The relation of transmission bits to transfer time is given by (transmission bits)/r,
where r is the transmission rate.

Example: If the average file size is 12 kB, the IP header 20 bytes, the Ethernet overhead
26 bytes and the interframe gap 96 bits as in this work, the exact number of transmission bits is
102’480 which leads to a ratio (file size [byte])/(transmission bits [bits]) of 8.33984375. The factor
8 comes from the byte-to-bit transformation and the digits after the point from the overhead and
eventually the padding to the Ethernet minimum payload.

Because most files are smaller than the average sized file, this simplified transformation
produces slightly too small transmission times for a entire file population. This is due the fact
that the overhead ratio (including padding to minimum payload) is generally larger for small
files. Nevertheless, the simplification can be justified with the back-conversion from transmission
times to file sizes, which uses the same (inverse) ratio and therefore neutralizing to a large
extend the introduced error. The error is only then not neutralized, when two or more small file
transmissions are superposed to one larger transmission, but with average network utilization
rates considered in this work of around 1 % (see section 5.8), these events are very seldom.

The traffic trace generation for a substantial number of traffic sources runs fairly quickly in
MATLAB because it is purely matrix operation. Matrix calculations run fast in MATLAB (= MATrix
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LABoratory) because it is specially designed to do so although it is a high-level programming
language. The superposition of the traffic traces from all sources, in contrast, is not a matrix
operation but a loop, which runs very slowly if the number of sources and the traffic trace length
become large. Thus the superposition calculations are written in C-code (see appendix E.1).
MATLAB features a special function called ”MEX-file” to integrate compiled C-code in the form
of a dll-file (MS Windows) as if it was a generic MATLAB function.

Use (X_file, X_arrival)=superpos(X_on,X_off,t_tot_min) to call the C-code
from MATLAB. The compiled C-code ”superpos.dll” has to reside in the same file directory as
the calling MATLAB m-file. This code takes the sorted vectors X_on and X_off with on- resp.
off-times of any number of traffic sources and returns the on- and interarrival-durations (X_file
and X_off ) of the superposed traffic up to time t_tot_min . Fig. 5.9 shows an example of two
superposed source traces.

Figure 5.9: Superposition of two traffic traces from two sources with C code superpos.c . (High
utilization rates are used for illustrating purpose.)

OPNET Modeler’s standard settings of the ethernet_ip_station node for the attributes IP/IP
Processing Information/Memory Size (bytes) is 16 MB. This memory size has to be increased
to allow files (or packets) larger than 16 MB to be processed and transmitted correctly. Although
this limit can be set to any value, 256 MB can be recommended because files exceeding this limit
can not be handled anymore by the process ip_traf_gen , causing the program to abort. Thus
the MATLAB code traffic_gen.m has been modified to by-pass that limitation: whenever a
file size larger than 256 MB shows up, it is split into consecutive files of max. 256 MB with zero
waiting time in between.

Simulation results with the scripted file playback using the ON/OFF traffic model are pre-
sented and discussed in the Result chapter in section 6.2.

5.4 Quality of Service (QoS)

Quality of Service (QoS) is the totality of features of a service that influences its ability to satisfy
given needs. What these needs are and what metrics and limits are suitable to measure these
features to determine the QoS of the CE traffic is the subject in this section.

5.4.1 Delay and Jitter

CE traffic contains primarily voice data of telephone conversations (fax and other analog or dig-
ital data services is the other data). Both conversation partners expect to be able to converse in
such a way that one person can respond to something said by the other and be heard almost im-
mediately. Applications such as circuit emulation that are sensitive to delay, are called real-time
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applications. Non-real-time applications, in contrast, can work without guarantees of timely de-
livery of data. They include most popular applications like Telnet, FTP, e-mail, Web browsing,
and so on. The data transmitted by these applications are call ”traditional” or ”best-effort” data.
The workload data traffic in this work belongs to that category and therefore does not claim for
any QoS requirements. CE traffic, however, requires certain boundaries on the packet delay to
ensure a ”good” service. Therefore, delay is a QoS metric for CE traffic.

Jitter is the variance of delay in a connection. The problem is that audio devices or
connection-oriented systems (e.g. ISDN1 or PSTN2) need a continuous stream of data [33].
In order to compensate for this, CE terminals and gateways implement a jitter buffer that collect
the packets before relaying them onto their audio devices or connection-oriented lines, respec-
tively. An increase in the jitter buffer size decreases the likelihood of data being missed but
also has the drawback that it increases delay of a connection. If the delivery time of a packet
exceeds the length of the receiver’s jitter buffer, then this packet ”arrives too late” with respect
to its intended play-out time, and will be discarded. Consequently, the speech carried in this
packet is lost for the decoding process. This ”packet loss” impairs speech transmission quality
[32]. Therefore, jitter is also a QoS metric for CE traffic.

The total delay of the CE traffic in a network topology like in fig. 5.1 consists of propagation ,
transmission and queuing delays . In the next sections, these delays are further explained
with a special focus on the simulations in this work. The total delay experienced by a frame from
point to point is often also called latency .

Propagation Delay

Signal propagation delays over links (due to distance) are an important cause of communica-
tion delays. In OPNET Modeler, the propagation delay can be set ”Distance Based” (propaga-
tion delay will be determined based on the distance between the two nodes) or with a fixed
time attribute. In the ”Distance Based” case, additionally the attribute Propagation Speed must
be specified. The speed of propagation in coaxial cable is known to be equal to 0.65·c, in un-
shielded twisted pair to 0.59·c and in optical fibers to 0.68·c, where c is the speed of light in
vacuum (299’792’458 m/s). The minimum propagation speed for worst case analysis is 0.585·c.

In this work, all propagation delays are based on fixed time values rather than on ”Distance
Based”. This way, communication nodes can freely moved around on the project background
without affecting any propagation delays. For the bottleneck link of the network simulation topol-
ogy in fig. 5.1, the propagation delay is set to 50 µs which corresponds to a distance of 10 km
for the optical link. The bottleneck ingress and egress link propagation delays are very short
compared with the bottleneck link, so 10 m is the choice derived for these optical links with the
fixed propagation delays set to 0.05 µs. All propagation delays together from the source nodes
to the sink nodes are 50.1 µs for both types of traffic, CE frames from the CBR source and data
traffic from the VBR source.

Transmission Delay

Transmission delay is the second form of delay incurred by each packet as it is sent over a link.
Transmission delay is the amount of time between the start of processing of the first bit to the
completion of processing of the last bit.

Because the simulated network in fig. 5.1 is collision free, there are no additional delays
introduced due to resent frames after experienced collisions. The OPNET model makes use of
the data rate attribute of the transmitting channel and the length of the transmitted packet. A CE
traffic frame consists of 720 bits (see section 5.2) that are to be transmitted over the 1 Gbps link.
The transmission delay at every processing node is therefore 0.72 µs. OPNET’s switch models
are not supporting cut-through3 technology, so any frame sent from source to sink node in the

1 Integrated Services Digital Network
2Public Switched Telephone Network
3LAN switches can be characterized by the forwarding method that they support. In the store-and-forward switching

method, the LAN switch copies the entire frame into its onboard buffers and computes the cyclic redundancy check
(CRC). The frame is discarded if it is erroneous. If the frame does not contain any errors, the LAN switch looks up the
destination address in its forwarding, or switching, table and determines the outgoing interface. It then forwards the frame
toward its destination. With the cut-through switching method, the LAN switch copies only the destination address into
its onboard buffers. It then looks up the destination address in its switching table, determines the outgoing interface, and
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network is processed 3 times (CBR_source, switch_1 and switch_2), introducing total 2.16 µs
of transmission delay.

Queuing Delay

Queuing delays occur when data is made to wait for resources to become available, typically a
communications link or a processor. This type of delay can in some cases account for the ma-
jority of a frame’s end-to-end delay from its source to its destination node. Most queuing delay
in OPNET occurs within the node domain, in either queue or transmitter modules. Transmit-
ter modules incorporate a FIFO queue scheduling for frames to wait while frames that arrived
before them complete transmission. Queue modules use a process model to determine when
frames should be dequeued and forwarded. Therefore, the process domain is also involved in
determining queuing delays.

Queuing delays are the only delays of the CE traffic in this work’s simulated network that
depend on the (variable) workload data traffic. When no data traffic is sent, the total end-to-
end delay of a CE frame is at its minimum of 55.972 µs as shown in the Results chapter in
section 6.3. Subtracting the propagation delay (50.1 µ) and the transmission delay (2.16 µs), the
minimum queuing delay in the network results to be 3.712 µs, which accounts for the processing
delays of all nodes of the given network. In the simulation setup of this work, CE and data traffic
is sent independently over a 1 Gbps link to the bottleneck entry node switch_1. As long as the
incoming traffic at the switch_1 is less than the output link’s capacity (which is also 1 Gbps), no
relevant queues build up in this node and the delay of the CE traffic is constant at it’s minimum
value of approx. 56 µs.

If the VBR source sends continuously, the queue grows at the rate of the output link’s ex-
ceeding capacity which is equal to the CBR traffic rate of 624’000 bytes/s. With growing queue
size, also the delay increases. It takes 5.76 ms to send 624’000 bytes of CE traffic which also
stands for the delay increase per second. If the maximum acceptable jitter in the CE traffic re-
ceiving node is 10 ms, according the MEF QoS requirements (see next section 5.4.3), then after
1.736 s the buffer size has increased that much that the introduced delay does exceed 10 ms.
At this point, the buffer would be filled with 1.033 MB of data. Therefore, if the VBR source
node sends for more than 1.736 s continuously, CE traffic frames start to arrive too late to be
accommodated in the receiver node’s jitter buffer and are discarded. To occupy the link for at
least that time, a file at the VBR sending node needs to be at least 199 MB. This corresponds to
the 0.99999895-th quantile of the ON/OFF Model’s file size distribution or in other words, only 1
out of 0.96 million files is expected to be 199 MB or larger. With a file flow of 100 files/s for the
reference parameters in table 6.2, this is supposed to happen every 2.7 hours on an average.

The findings in the previous paragraph can also be extended to a general Gigabit Ethernet
topology: if the added queue length in all the buffers of all nodes that a CE traffic frame passes
on its way from its sender to its destination node is more than 1.033 MB, then the introduced
queuing delay is more than 10 ms. If some frames make it through the network without queuing
delays, then the MEF QoS limits for jitter (10 ms) may prevent the CE traffic to fulfill the QoS
requirements.

Hence, the simulations in this work, two buffer sizes are of interest: more than 1.033 MB
and less than 1.033 MB. For reasons of convenience, 1 MB and 2 MB are taken if the buffer is
limited by bits and 500 or 1’000 packets if it is limited by packets.

5.4.2 Losses

In networks, packets are sometimes lost or damaged due to buffer overflows or transmission
errors. If the transported data is audio information, one lost sample or packet can be interpolated
from the surrounding samples with relatively little effect on the perceived audio quality [13]. If
more samples are lost, above all consecutive samples, the quality declines to the point that the
audio becomes incomprehensible. A substantial part of the CE traffic is real-time voice data.
Therefore, losses can negatively affect the QoS of CE traffic. Similar statements may be also
true for other telephony services than audio.

forwards the frame toward its destination. A cut-through switch provides reduced latency because it begins to forward
the frame as soon as it reads the destination address and determines the outgoing interface. (Taken from CISCO
Systems’ online Internetworking Technology Handbook on http://www.lsiinc.com/univercd/cc/td/doc/cisintwk/ito_doc/.)

http://www.lsiinc.com/univercd/cc/td/doc/cisintwk/ito_doc/
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One may oppose that there exist technologies (like the TCP transport protocol) to detect lost
or damaged packets that are then retransmitted. These services are called reliable. As long as
the total delay including the retransmission is less than the playback point, the QoS is actually
not reduced. But generally, detection and retransmitting delays are too large so that for real-time
applications these reliable services are generally not used. The network technology in this work
is Gigabit Ethernet on the link layer. This layer does not support a reliable service.

In the simulation setup of this work, losses mainly originate from buffer overflows in the
bottleneck entry node switch_1 (fig. 5.1). Losses due to transmission errors are negligible small
and buffer overflows in other nodes do not occur unless the simulation setup is badly configured.
The point of buffering in the network is to absorb data bursts and to transmit them during the
(hopefully) ensuing bursts of silence. This is essential to permit the transmission of bursty data
[35]. OPNET Modeler’s switch queues use first-in-first-out (FIFO) queue scheduling and tail
drop queue management algorithms like most of the QoS unaware equipment today [34]. Tail
drop is the traditional technique for managing router queue lengths. It sets a maximum length
for each queue, accept packets for the queue until the maximum length is reached, then reject
(drop) subsequent incoming packets until the queue decreases because a packet from the
queue has been transmitted. This technique is known as ”tail drop”, since the packet that arrived
most recently (i.e., the one on the tail of the queue) is dropped when the queue is full. This
method has served the Internet well for years, but it has two important drawbacks [35]:

1. Lock-Out : In some situations tail drop allows a single connection or a few flows to mo-
nopolize queue space, preventing other connections from getting room in the queue. This
”lock-out” phenomenon is often the result of synchronization or other timing effects.

2. Full Queues : The tail drop discipline allows queues to maintain a full (or, almost full) status
for long periods of time, since tail drop signals congestion (via a packet drop) only when
the queue has become full. It is important to reduce the steady-state queue size, and this
is perhaps queue management’s most important goal.

OPNET Modeler allows to set limits on the bit and packet capacity for every queue, but this
feature is not documented in OPNET Modeler’s manuals and by default, these limits are set to
infinity. The technical support of OPNET provided the following procedure to set limits on the
queue sizes:

1. Go to the process model ethernet_mac_v2.pr.m

2. Go to the Interfaces Menu → Process Interfaces

3. Go to the Subqueue attribute and click on the initial value of this attribute

4. If you are not using etherchannel, then ethernet only uses the first subqueue (first row)
to queue the packets coming from the higher layers. You can set a finite value for the bit
capacity or packet capacity or both. This will make the queue size for all ethernet nodes
finite.

Now, the question arises if the queues should be limited by packets or bits. RFC 2309 [35]
states that Internet routers set a maximum queue length in terms of packets. However, it is not
clear how queue lengths in real Ethernet switches are generally limited. Leaving this subject
open, simulations with queue sizes limited by bits and simulations with queue sizes limited by
packets are done. Bit capacity limitation is what can be called ”best case scenario” for the CE
traffic. If the queues are limited by bits, a consequence of tail-dropping is when the queue is
almost full, small frames have a bigger chance to be accommodated than large frames (see
fig. 5.10) This phenomenon does implicitly give higher priority to small frames from not being
dropped and belongs to the lock-out drawbacks of tail-dropping.

In the standard simulation setup in this work, every CE traffic frame needs 78 bytes (without
VLAN) of buffer space to be stored in a queue. The data traffic consists primarily of maximum
size frames of 1’526 bytes. These frames are almost 20 times larger than the CE traffic frames
(see fig. 5.10). Therefore, it is justified to assume that in case of a bit limitation of the buffer, data
traffic frames are dropped more frequently than CE frames. Hence, limiting bits or bytes rather
than packets is in favor of CE traffic’s QoS.
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Figure 5.10: Small CE frames have higher chances to be accommodated in saturated buffers
with bit capacity limitation than large data frames.

5.4.3 QoS Requirements for CE Traffic

In the sections before, QoS metrics have been identified and discussed with a focus on this
work’s simulations. This section is about limits on these metrics to qualify if the QoS is accept-
able or not. This section starts with an general overview about delay requirements of voice traffic
and then introduces a proposal based on the METRO Ethernet Forum (MEF) requirements for
CE services over Metro Ethernet Networks (MEN).

Overview

ITU-T’s recommendation G.114 [32] provides end-to-end limits for mean one-way delay of voice
traffic, independent of other transmission impairments (see table 5.2).

One Way Delay [ms] Description
0–150 Acceptable for most user applications.

150–400 Acceptable provided that administrations are aware
of the transmission time impact on the transmission
quality of user applications.

>400 Unacceptable for general network planning purposes;
however, it is recognized that in some exceptional
cases this limit will be exceeded.

Table 5.2: ITU-T’s G.114 [32] recommendation on one-way voice delay.

Cisco Systems [29] classifies a cumulative transmission delay of up to 160 ms as ”high qual-
ity” as shown in fig. 5.11. Both guidelines refer to the delay from one far end to the other far end,
including all delays introduced on the entire path. For voice data, this end-to-end transmission
delay is also called ”lip-to-ear” or ”mouth-to-ear” delay.

Figure 5.11: Cisco Systems’s [29] recommendation on cumulative transmission path delay.

The simulated metropolitan network in this work contributes just a portion to the total end-to-
end delay of the CE traffic. Thus the delay introduced by the network must be smaller than the
total acceptable end-to-end delay. An approach for QoS requirements for Voice over IP (VoIP)
on IP intra-nets provides Fiedler et al. [3]. They defined three requirements from the practice:
one for the end-to-end delay and the other two for packet loss. 50 ms is defined as an upper
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limit for end-to-end network delay. Successive losses of packets are grouped into outages. They
are usually perceived as a crackling sound at the receiver’s side. The requirements on outages
is defined as follows: the number of outages must not exceed 5 per minute and the durations of
an outage must not exceed 50 ms.

Metro Ethernet Networks (MEN)

The approach of Fiedler et al. [3] is not applicable to the CE traffic transported over a metropoli-
tan packet-switched network as in this work because VoIP is a different service than circuit
emulation. VoIP typically originates and terminates at the network sending resp. receiving node.
Circuit emulation services, in contrast, use the network only as intermediate transportation path
from the telephone service origin to its destination. For the metropolitan network portion, the
upper delay limit can therefore just be a fraction of the cumulative, end-to-end delay limit. The
same holds for losses. The METRO Ethernet Forum (MEF) outlines requirements of CE ser-
vices over Metro Ethernet Networks (MEN) in its Technical Specification MEF 3 [11]. For US
standards, it generally adapts the ANSI T1.510-1999 requirements and for Europe the ITU-T
G.826 (02/99) [31] recommendation to address the specific need of MEN.

The main difference between the MEF 3 specification [11] and the ITU-T G.826 [31] recom-
mendation is that the later document distinguishes between errored frames and lost (or defect)
frames. An errored frames contains one or more bit errors. On a E1 carrier, for example, one bit
error affects only one of the 32 channels. If the traffic is voice data, and depending if the errored
bit is in the higher or lower order of the 8 bit voice samples, the effect on the voice quality may
be small. In contrast, the Ethernet detects a bit error with very high probability due to the 32 bit
CRC Error Detecting Code (EDC) and discards the entire frame. This leads to a complete in-
formation loss for the duration of one frame length for all channels and consequently to a burst
of bit errors in the reconstructed E1 carrier. Therefore, a bit error in the CE traffic, as modeled
in this work and in the MEF specification [11], has a distinct influence on the QoS performance
than in the constant bit rate digital paths used in the ITU-T G.826 recommendation [31]. Exactly
at this point is where the MEF paper [11] goes beyond the ITU-T or ANSI recommendations: it
does the conversion from bit errors to frame losses, resp. Frame Error Ratio (FER) . The FER
is defined as the total number of lost frames over the total number of frames sent [11]. The
following effects lead to the loss of or discarding of a frame: frame loss, excessive frame delay
or jitter and any bit error in the data stream (which will appear as lost frames).

The MEF uses the equation FER = ES/(CE frame rate), where ES is the Errored Second
which is defined in [31] as a one-second period with one or more errored frames or at least
one defect. This conversation has the following two consequences: first, when ITU-T G.826 [31]
”accepts” a frame error, MEF [11] ”accepts” a entire frame loss. This is certainly a weakening
of ITU-T’s requirements. Second, maybe to compensate that weakening, MEF converts limits
from the one-second period metric ES to a FER, which is defined over the entire measurement
period. This is a implicit assumption that not more than one bit error occurs within any one-
second period. Therefore, frame error bursts are higher weighted in the MEF metric.

The MEF also converts Severely Errored Second (SES) 4 to FER. Since the resulting FER
limits are less strict for small ”packing densities” (the CE traffic in this work has the smallest
possible ”packing density” of 1) than the FER limit from the ES conversion, only the last limit is
relevant in this work. This FER limit (from the ES conversion) is derived by the MEF as follows:
they use the ES Ratio (ESR) limit for a international digital Hypothetical Reference Path (HRP)
of 27’500 km from table 1 in ITU-T G.826 [31], which is 0.04, take 17.5 % of it according [31] to
get the national portion of it, which is then 0.007. If only one E1 frame is put into one Ethernet
frame (”packet density” is 1) as in this work’s simulations, the FER is 0.007 divided by the CE
frame rate of 8’000 which results to be 8.75·10−7.

The MEF [11] also provides limits on frame delay and jitter. Frame exceeding these limits
will be treated as lost and contribute to the FER. In order to avoid the need for voice echo
cancellation, the frame delay across the MEN for an emulated circuit SHOULD5 be less than
25 ms [11]. Additionally, the CES between the two CES end points SHOULD be capable of

4A one-second period which contains ≥ 30 % errored frames or at least one defect. SES is a subset of ES [31].
5This key word has to be interpreted according RFC 2119: ”SHOULD” means that there may exist valid reasons in

particular circumstances to ignore a particular item, but the full implications must be understood and carefully weighed
before choosing a different course.
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functioning correctly with a frame jitter of up to 10 ms [11].
For the network availability metrics, MEF uses the worst case of the ITU-T G.826 [31] defi-

nition: the ”unavailable state” is entered at the start of a period of 10 consecutive seconds with
at least one lost CE frame per second. The ”available state” is resumed at the start of a period
of 10 consecutive seconds without any CE frame losses [11]. The availability ratio SHALL6 be
99.95 % or better [11].

The MEF metrics and limits for a ”packet density” of 1 and 8’000 packets per second can be
summarized as follows:

• The Frame Error Ratio (FER) must not exceed 8.75·10−7.

• The Frame Error Ratio (FER) is the total amount of lost CE frames over the total amount
of sent CE frames within the measurement period.

• CE frames delayed more than 25 ms are treated as lost frames.

• CE frames exceeding the jitter limit of 10 ms are treated as lost frames.

• CE frames dropped by any network node are treated as lost frames.

• The availability ratio must not exceed 99.95 %.

• The ”unavailable state” is entered at the start of a period of 10 consecutive seconds with
at least one lost CE frame per second. The ”available state” is resumed at the start of a
period of 10 consecutive seconds without any CE frame losses.

As long as the minimum delay is less than 15 ms (as in this work’s simulations, see section
5.4.1), then the jitter limit of 10 ms ”dominates” over the delay limit of 25 ms. For simulation
durations and network utilization rates considered in this work, there will always be CE frames
passing the network at its minimum (end-to-end) delay of 55.972 µs. Therefore, CE frames
delayed more than 10.055972 ms are treated as lost frames in this work and contribute to the
FER. Availability consideration are beyond the scope of this work. So, the revised MEF metrics
and limits for the simulations in this work can be summarized as follows:

• The Frame Error Ratio (FER) must not exceed 8.75·10−7.

• The Frame Error Ratio (FER) is the total amount of lost CE frames over the total amount
of sent CE frames within the measurement period.

• CE frames delayed more than 10.055972 ms are treated as lost frames.

• CE frames dropped by any network device are treated as lost frames.

5.5 Simulation Data Analysis

5.5.1 Data Traffic Analysis

The MATLAB code trace_analysis.m in appendix D.1 reads in a data file containing traffic
flow data (called ”traffic trace”) captured by the simulation software OPNET Modeler. The data
must be recorded in the ”bucket mode”, i.e. stochastic information for small time intervals. The
code then generates a Variance-Time (V-T) Plot (see section 4.6.3 for theoretical background)
for the traffic trace and also draws the time series in two multi-plots: the aggregated traffic traces
for different aggregation levels and the traffic trace at different time scales (time fraction traces).
Least square line fit, featuring out layer rejection and interval selection, generates a line through
the data points in the V-T Plot. The Hurst parameter H is then derived from the line’s slope with
eq. 4.35.

For practical purposes, the aggregation levels are always at power of two as in fig. 4.14. This
way, the points in the Variance-Time Plot are equally spaced and calculation time and memory
usage is reduced. The variance is normalized to make it independent from the unit quantity.

6 This key word has to be interpreted according RFC 2119: ”SHALL” means that the definition is an absolute require-
ment of the specification.
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The two multi-plots with the aggregated time series and the traffic traces at different time scales
are line plots, i.e. all data points are interconnected by lines. Bar plots, i.e. every data point is
visualized by a bar, do required too much memory space in MATLAB but would look somewhat
”nicer”.

An example of the V-T Plot is shown in fig. 5.12. The analyzed traffic trace contains one
million data points captured in 0.01 second time intervals (”smallest time unit”) as can be seen
at the x-label. Data points which lie too far away from the linear approximation (out layers) are
excluded from the least-square line fit and are drawn with a ”x”, whereas the other points used
for the least-square line fit are depicted with a ”+”. The estimated Hurst parameter H, calculated
from the fitted line’s slope β, is shown in the plot title. X- and y-scales are equal to simplify
comparison between different V-T Plots. The normalized variance from the unaggregated trace
can be read from the first data point at log10(m) = 0 which is in the example of fig. 5.12 approx.
101.2 = 16.

Figure 5.12: Variance-Time Plot generated with MATLAB code trace_analysis.m for exam-
ple traffic trace.

Fig. 5.13 shows an example of a traffic trace at different aggregation levels. The x-labels
show the aggregation level m and the corresponding time units. As mentioned earlier, the data
points are interconnected by lines rather than drawn in the bar-style.

The last plot generated with the MATLAB code trace_analysis.m is the multi-plot at
different time scales in fig. 5.14. The first plot illustrates the original traffic trace from the file and
is identical with the first plot from fig. 5.13. From this plot’s x-scale can be seen that the data file
contains one million points and the interval time is 0.01 seconds, which gives a length of 10’000
seconds of the traffic trace. The plots below show one tenth of the time from the plot above.
All plots start at the same point. So, if the first plot shows 10’000 seconds of a traffic trace, the
next plot below shows only the first 1’000 seconds, the third plot 100 seconds and the last plot
10 seconds from the original traffic trace. This magnifier behavior is emphasized in fig. 5.14 by
additional lines. These time fraction plots give a good visual impression about the traffic shape.

5.5.2 QoS Analysis

To measure the QoS performance of the CE traffic according the in section 5.4 elaborated met-
rics and requirements, the MATLAB code qos_analysis.m is written. This code in appendix
D.3 reads in two data files and requires a couple of parameters as inputs.

The first input file, named ’rb_output_file_delay.txt’, contains the delays of each CE frame
received at the CBR_sink node exceeding a adjustable threshold. The threshold attribute al-
lows to reduce the amount of captured data. During a frequently used simulation duration of
10’000 s, 80 million CE traffic frames pass the network. Recording the delay of each frame
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Figure 5.13: Multi-plot with different aggregation levels generated with MATLAB code
trace_analysis.m for example traffic trace.
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Figure 5.14: Multi-plot with different time scales generated with MATLAB code
trace_analysis.m for example traffic trace.
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would produce a file of approx. 2.7 GB. By choosing a appropriate threshold, this data amount
can be reduced by magnitudes. For instance, the 1 ms threshold leads for the same simulation
duration to file sizes of approx. 6 MB. Given that the CE frame frequency and total simulation
duration is provided as input parameters, this selective data reduction does not impair the ap-
plied QoS metrics and can therefore be justified. The threshold feature is not part of OPNET
Modeler’s standard distribution. Rainer Baumann, this thesis’ co-supervisor, modified the OP-
NET source code to add the threshold attribute for frame delays. This feature can be enabled
by setting the new traf_gen.rb_stat_delay attribute of the ethernet_ip_station node to ”1”. The
other new attribute traf_gen.rb_delay_threshold specifies the threshold value. When enabled,
the resulting data is automatically written into OPNET Modeler’s binary directory ’C:\Program
Files\OPNET\10.5.A\sys\pc_intel_win32\bin’.

The second input file, named ’rb_output_file_drop.txt’, contains queue drop information
of specified network adapters. In particular, it lists the source and destination information
for all dropped frames. This makes it possible to associate dropped packets with a traf-
fic flow. This feature has also been added by Rainer Baumann because OPNET Mod-
eler does not support it. Without this functionality, it would not be possible to distinguish
dropped data frames from dropped CE frames. The new feature can be enabled for any in-
terface X by setting the new mac_X.rb_drop_mode node attribute to ”1”. When enabled, the
resulting data is automatically written into OPNET Modeler’s binary directory ’C:\Program
Files\OPNET\10.5.A\sys\pc_intel_win32\bin’. To associate now the dropped frames with a
traffic flow, MATLAB code qos_analysis.m just requires the node IDs of the traffic’s corre-
sponding source and destination nodes.

5.6 Service Priority in OPNET Modeler

Only when having started working with OPNET Modeler, we realized that the software does not
support VLAN with service priorities (standard IEEE 802.1Q/p [16] [17]). The technical support
of the software vendor did confirm that this feature is missing in the current version 10.5A of
OPNET Modeler. Therefore, one of the mayor objective of this thesis, if circuit emulation requires
service priority, can not be answered in this work.

5.7 Hurst Parameter

The Hurst parameter H is introduced in the Background chapter in section 4.6.3. To select ap-
propriate values of H for the data traffic in the simulations, estimates originated from measure-
ments of real LAN traffic are considered. Many people have done traffic analysis and estimated
Hurst parameters so far. They conclude that real, live data traffic on LANs exhibit Hurst param-
eter in the range of 0.70 to 0.98. The early measurements in the years from 1989 to 1992 in
Leland et al. [7] are a important guideline. Their estimates of the Hurst parameter of Ethernet
LAN traffic are around 0.9.

For this study, measurements of Oliver Lamparter [20] are taken as reference. The data was
recorded on September 2002 at the connection to the ISPSS7 network of the service provider
Swisscom. The traffic of more than 5.5 hours originates from 255 LAN-interconnections, al-
lowing companies to interconnect their local networks over the backbone of Swisscom. The
estimated values of the Hurst parameter are for a number of estimating methods in the a range
of 0.90 to 0.95.

Thus for the synthetic workload generation in this work a Hurst parameter of 0.90 is taken as
the target value of the resulting data traffic. Applied to the ON/OFF Model in section 5.3.4, the
shape parameter α of the underlying Pareto distribution is 1.2, obtained from eq. 4.36.

5.8 Network Utilization Rate

The burstiness over different time scales, expressed with the Hurst parameter, is one important
property of the synthetic data workload. The average network utilization rate is another one.

7Internet Protocol Standard Service. Internet protocol platform of Swisscom.
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Like the Hurst parameter, it should be a realistic value, i.e. the average network utilization rate
for the simulation of the synthetic workload should be chosen similar to rates in comparable, real
networks. Estimates of Odlyzko [15] are taken in this work. Odlyzko investigated utilization rates
of private and corporate data networks and their implications. His estimates for the average
utilization rates of such networks are consistent with recent measurements and are as low as
1 % [15]. He provides evident reasons for this surprisingly low value.

The main cause of this low utilization rate is to satisfy user needs for low latency rather than
high link efficiency [15]. Average throughput is basically irrelevant. It is only the peak rate that
matters. This phenomenon became more emphasized as link capacities grow enormously over
the past few years whereas the hardware drastically decreased in price. If prices come down,
users will optimize for higher quality transmission and thereby lower utilizations. Lightly utilized
resources became inexpensive enough compared to the value people place on its availability
and their time. Low utilization rates of corporate networks are not a sign of waste, but of the
value of high quality data communications and of the complexity of running networks. Odlyzko
[15] hereby disproves the common misconception that that the ”bursty nature of data traffic” is
the culprit behind low utilization rates of data networks.

5.9 Simulation Time

As discussed in section 4.5, statistical properties of heavy-tailed distributed random variables
converge very slowly. Thus simulations with heavy-tailed random variables as input parameters
also converge slowly and show high variability in steady state [25]. This difficulties, inherent in
simulations with heavy-tailed inputs, are likely to be particularly great when tail index α is less
than about 1.7 [25]. Crovella et al. [27] and Fiedler et al. [4] report that the average object size
and the distribution of output statistic that depend on all moments of the heavy-tailed object
size distribution does not converge during practically feasible simulation periods. Therefore, the
simulation remains in transient state for all periods. This statement also holds for finite heavy-
tails as long as the tail is ”sufficient long” [4].

The synthetic data traffic of the ON/OFF Model in this work (see section 5.3.4) is based
on a heavy-tailed object size distribution with tail index α = 1.2 and with limited tail which can
be considered as ”sufficient long”. Therefore, convergence within practically feasible simulation
periods of the output statistics can not be expected. Distributions and confidence intervals of
these statistics from a number of identical simulation periods with different seeds enable to
draw a better picture of the results than any resulting statistical value of one single simulation
period. Of course, the simulation times should never the less be that long to reach steady state
as close as possible to keep the confidence intervals as small as possible. This objective can
not only reached by increasing the simulation time but also by choosing appropriate statistics.
As shown in section 4.5, using quantiles instead of arithmetic mean values significantly reduce
the interval of confidence. Quantiles do not depend on the extreme tail of the distributions and
are further better suited to describe numerous properties, such as latency for QoS guarantees
of web services [4].

The simulation duration with the ON/OFF Model as input parameters can be estimated. To
reach steady state of the simulation, the average object sizes of the object size distributions of
the simulation inputs have to converge [2]. Table 5.3, taken from page 91 of Fiedler [2], lists
required sample size to reach 5 % accuracy for different tail indices without and with a object
size limit of 2.1 GB.

Tail Index α Average (w/o limit) Average (2.1 GB limit)
1.1 2.0 · 1014 1.4 · 1012

1.2 6.4 · 107 6.1 · 106

1.3 4.3 · 105 2.9 · 106

Table 5.3: Sample sizes at various tail indices α to achieve 5% accuracy. (Taken from Fiedler
[2])

With the results from table 5.3, it is possible to estimate the required simulation duration with
the ON/OFF Model from section 5.3.4 as simulation input. The ON/OFF Model in this work is
built from sources sending Pareto-distributed object sizes (or files) with shape parameter α = 1.2



50 CHAPTER 5. SIMULATION DESIGN

(section 5.7) and 4 GB limit. With the average network utilization rate of 1 % according section
5.8 and a average file size of 12 kB, about 100 objects are sent per minute on an average
(average file flow). From table 5.3 can now be read that the required object sample size to reach
5 % accuracy is somewhere between 6.1 ·106 (2.1 GB limit) and 6.4 ·107 (no limit). These values
divided by the average file flow give a required simulation duration somewhere between 17 and
178 hours to reach 5 % accuracy in the simulations of this work. Because the 4 GB limit is not
magnitudes away from the 2.1 GB limit in table 5.3, the value is expected to be closer to 17 than
178 hours. Thus 28 hours are taken in the next paragraph for further calculations.

With the given hard- and software in this diploma thesis, simulation periods of 10’000 s (2.8
hours) are feasible. The statistical values of interest from one simulation period (say T ) allow to
be retrieved from multiple (say n) simulation periods T as if it was one simulation with a extended
period of n · T . Therefore, approximately 10 simulation periods of 10’000 s, corresponding to
one period of 28 hours, are necessary in the network simulations to reach 5 % accuracy. The
actual number of simulation runs of 10’000 s is 16 for all tested configurations in this work,
giving cumulated 44 simulated hours. Therefore, it is justified to assume that accuracy of the
simulation results is 5 % or better. Dividing the total simulation period in a number of small
periods has a also a advantage: a set of statistical values originated from all individual small
simulation periods reveals addition information by its distribution and confidence interval.



Chapter 6

Simulation Results

In the previous Design chapter 5, the simulation setup is explained and tools to generate self-
similar data traffic and to analyze simulation results are introduced. In this chapter, results from
simulations are presented and discussed.

6.1 Data Traffic Generation with the Raw Packet Generator
(RPG)

OPNET’s RPG package is introduced in the Simulation Design chapter in section 5.3.3 and its
parameters for the simulation defined. In the next sections, the influence of each individual, rel-
evant parameter in table 6.1 of the RPG is analyzed in detail. For all simulations, the parameters
in table 6.1, explained in the Simulation Design chapter in section 5.3.3, are taken as reference.
No more than one parameter is changed for each individual simulation run. Only the variation of
that parameter is separately mentioned. All other parameters are constant according table 6.1.
All simulation lengths are 1’000 seconds. With a ”bucket size” of 0.001 seconds, 1 million trace
logs are generated and analyzed. The Variance-Time Plot in fig. 6.1, the aggregated traces in
fig. 6.2 and the time fraction traces in fig. 6.3 are produced with the reference parameters from
table 6.1 and serve as reference plots. The use of only one seed can be justified because it is
taken for all simulations. Running all simulations with a identical seed does exclude dependen-
cies of the random generator and exhibits better the influence of the input parameters.

Parameter Name Abbreviation Value
Hurst parameter H 0.90

Fractal Onset Time Scale FOTS 0.0008 s
Average Arrival Rate AAR 1190
Peak-to-Mean Ratio P2MR 100

Source Activity Ratio SAR 75
Simulation length - 1’000 s

Smallest sample interval ”bucket size” 0.001 s
Seed - 127

Table 6.1: Reference parameters for the Raw Packet Generator of OPNET Modeler.

6.1.1 Peak-to-Mean Ratio (P2MR)

The first RPG parameter analyzed is the Peak-to-Mean Ratio (P2MR). The P2MR should control
the absolute value of the variance. If the peaks are higher while keeping the mean constant, the
variance increases and vice versa. But the P2MR parameter has not the effect on the traffic
generation as one would expect. Although the variance increases for P2MR values of 50, 100
to 200, it decreases again at the value of 1’000. The (normalized) variance of the unaggregated
traffic traces (log10(m) = 0) can be read from the V-T Plots in appendix F.1.1 and fig. 6.1. It is
0.5 for P2MR = 50, 0.7 for P2MR = 100, 1.8 for P2MR = 200 and 1.4 for P2MR = 1’000. Also

51
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Figure 6.1: Variance-Time Plot of traffic generated with the Raw Packet Generator (RPG) and
reference parameters.

Figure 6.2: Aggregated traffic traces of traffic generated with the Raw Packet Generator (RPG)
and reference parameters.
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Figure 6.3: Time fraction traces of traffic generated with the Raw Packet Generator (RPG) and
reference parameters.
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interesting is that, although the variance slightly increases for P2MR = 50 to 200, the peaks in
the traffic for P2MR = 50 are higher than for P2MR = 200. A P2MR of 10’000 is also tested
without any results because the RPG refuses to generate any packets. For even higher values,
packets are generated again.

6.1.2 Hurst Parameter (H)

Simulations are run with two different Hurst parameters H: 0.02 higher and 0.02 lower than the
reference value of 0.90. According to the definition of the Hurst parameter (see section 4.6.3),
one would expect the slope in the V-T Plot for H = 0.88 slightly more and for H = 0.92 less
falling than the reference slope in fig. 6.1. As shown in the V-T Plots in appendix F.1.2, the Hurst
parameters remain almost unchanged, but the higher the Hurst parameter, the earlier the curve
starts falling from the fitted straight line. This means that the traffic’s self-similarity is restricted
to smaller time scales when the Hurst parameter of the RPG is increased.

6.1.3 Source Activity Ratio (SAR)

The Source Activity Ratio (SAR) is increased and decreased by absolute 5 % from the reference
value of 75 %. The influence of the SAR to the RPG output in theory is difficult to understand.
The major impact one would maybe expect is on the absolute values of the (normalized) vari-
ance: a smaller SAR may cause the source to send more traffic in less time and therefore
increase the variance. But simulation results show a clear trend: decreasing the SAR increases
the Hurst parameter H and vice versa (see V-T Plots in appendix F.1.3). For SAR = 70 %, the
estimate of H is 0.94, for the reference (SAR = 75 %) 0.86 and for SAR = 80 % it is 0.83. The
change of the absolute variance can be neglected.

6.1.4 Fractal Onset Time Scale (FOTS)

The Fractal Onset Time Scale (FOTS) should influence the smallest time scale when the traffic
becomes self-similar. FOTS = 1 and FOTS = 0.1 do not work (simulation remains at packet
generation start with 100 % CPU workload and does not progress). In the V-T Plot, the start
of self-similar traffic shape is visible where the curve’s slope starts to increases after falling at
the beginning. In appendix F.1.4 there is a very good example for FOTS = 0.0001 s: the curve
falls from log10(m) = 0 (0.001 s) to log10(m) = 1 (0.01 s) of the x-axis at a slope of approx. -1,
indication for a Hurst parameter H of 0.5 and not self-similar traffic (poisson distributed). Then,
at log10(m) = 1 (0.01 s), the curve becomes almost horizontal, indicating highly self-similar
traffic with a Hurst parameter close to 1. This example also shows that the FOTS has not the
influence on the RPG as expected: the FOTS is decreased and traffic becomes self-similar at
higher time scales. On the other hand, when FOTS is increased to 0.002 seconds, the traffic
shows self-similarity right from the smallest time interval of 0.001 s.

6.1.5 Conclusion

In theory, OPNET’s RPG package seems to be a attractive option to easily generate anticipated
self-similar data traffic. There are just a few input parameters to describe the main attributes
of a self-similar traffic pattern. However, simulation results reveal that the RPG model does not
perform as written in the RPG user guide. Changing the RPG input parameters will not always
have the expected effect on the output of the model. Certain input parameter combinations even
let the RPG model ”crash”: the simulation runs very quickly because the RPG produces no traf-
fic at all or the simulation holds at the beginning of RPG traffic generation with 100 % CPU load.
There is a complex relation between the input parameters and the generated traffic. Sometimes,
the only way to get the desired output is a trial-and-error method. These effects make it nec-
essary to check the RPG output to make sure the traffic fits the desired characteristics. Other
OPNET users are reporting similar problems, like the Katholieke Universiteit Leuven in Belgium
[21], which participates in OPNET’s University Program.

Another problem of the RPG for the network simulations in this thesis is that the (normalized)
variance is small for short time scales. For the aggregation level 0 (= 0.001 s), for instance, the
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normalized variance is 0.7 in normal scale. This is because the generated traffic does only
occupy the link for very short periods. As can be seen from the traffic trace in fig. 6.3, there is
no time interval of 0.001 s (= ”smallest time unit”) where the RPG source sends its traffic at full
speed. Since the size of all packets is constant 1 kB, this yields to a maximum packet flow of
117’702 packets/second. But non of the peaks in fig. 6.3 are higher than 20’000. These traffic
patterns are not what can be observed in real networks. If any node sends a object over the
network, it sends it at maximum link speed. If the object is large, it occupies the link completely
up to several seconds.

For all these reasons, the RPG approach to generate the self-similar data traffic in the simu-
lations of this work is not further followed. The scripted file playback with the ON/OFF Model is
better suited as will be shown with simulation results in the next section.

6.2 Data Traffic Generation with scripted ON/OFF Model

After OPNET’s Raw Packet Generator (RPG), the scripted file playback (see section 5.3.4)
with the ON/OFF Model of section 5.3.4 is taken as self-similar data traffic source for network
simulations in OPNET Modeler.

The ON/OFF Model performs very well in the simulations. Because the traffic generation is
done by a self-written MATLAB code, the model is completely transparent in contrast to OP-
NET’s RPG. The ON/OFF Model consists of sufficient parameters to tune the traffic source to
a variety of desired behaviors. The main advantage of this model over the RPG is that the vari-
ance for small time scales of the generated traffic is much higher. This is because the source
sends its data in less time but at higher speed than the RPG. The weakness of this model is the
decaying variance at higher aggregation time scales.

If not mentioned separately, the parameters in table 6.2 are taken as reference for the sim-
ulations. The choice of these parameter is explained in the Simulation Design chapter, section
5.3.4.

Parameter Name Abbreviation Value
Shape parameter of file size distribution αS 1.2

Shape parameter of waiting time distribution αT 1.2
Average file size Savrg 12 kB

Maximum file size Smax 4 GB
Number of sources n 100’000

Average link utilization ravrg 1%
Simulation length - 10’000 sec

Smallest sample interval ”bucket size” 0.01 sec
Seed - 0

Table 6.2: Reference parameters for the ON/OFF Model.

The file size sample in fig. 6.4 shows the expected characteristic of a heavy-tailed distribu-
tion: most of the files are small and a few are very large. Because these large files contribute
considerably to the sample’s arithmetic mean, most of the approx. 1.7 million files are less than
the Pareto distribution’s expected mean of 12 kB. The location parameter k, and therefore the
smallest file size, is 2’167 bytes. The largest file in fig. 6.4 is 369 MB - much smaller than the
upper limit of 4 GB. Nevertheless, it is very close to the largest expected file of 319 MB for this
sample size obtained with the method described in section 4.4.3.

The running arithmetic mean of the same file size population as in fig. 6.4 is shown in fig.
6.5. The arithmetic mean over the entire sample population is 12.3 kB, slightly higher than the
12 kB of the expected value. The high variation of the running arithmetic mean for small num-
bers of files is typical for heavy-tailed distributions. The upwards step between the 400’000th
and the 500’000th file in the running mean reflects the influence of the two largest files of the
sample population. Because the Pareto distribution is limited at 4 GB, the arithmetic mean does
converge faster to the expected value than the unlimited distribution would do. This is mainly
due to the increased location parameter k. It is 2’167 bytes for the limited distribution and would
be 2’048 bytes for the unlimited distribution.
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Figure 6.4: File size distribution with ON/OFF Model and reference parameters.

Figure 6.5: Running arithmetic mean of file size distribution with ON/OFF Model and reference
parameters.
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The average waiting time (OFF period) between two consecutive file transfers results from
the link capacity and the average utilization rate. It is 1’025 s for one of the total 100’000 sources
or 10.1 ms if only one source would generate the same amount of traffic. The OFF periods are
shown in fig. 6.6. The maximum value of all periods is 3.2 s.

Figure 6.6: Off-period distribution with ON/OFF Model and reference parameters.

Because the OFF period distribution is unlimited, the running arithmetic mean does not con-
verge fast as can be seen in fig. 6.7. Consequently, the arithmetic mean remains below the
expected value - even for large sample sizes like 1.7 millions. Shorter waiting times lead to
higher utilization rates. This is exactly what can be observed with the ON/OFF Model and sim-
ulation periods of 10’000 s. The traffic generated with the reference parameters from table 6.2
does therefore have a larger average utilization rate of 1.72 %. The utilization could be corrected
to fit exactly the reference value of 1 %, but the idea is to approximate the reference parameters
for a simulation period of infinite length.

Figure 6.7: Running arithmetic mean of off-period distribution with ON/OFF Model and reference
parameters.

A deeper insight into the generated traffic characteristic allow the time fraction traces of fig.
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F.10 in appendix F.2.1. These plots show clearly that the link is working many times for at least
10 ms periods (smallest statistical time interval = ”unit”) at its full capacity close to 1 Gbps.

The aggregated traffic traces of fig. F.11 in appendix F.2.2 exhibit the decaying variance with
increasing aggregation levels m. Considering that the y-scale in the figure is smaller for higher
aggregation levels, the traffic variation becomes smoother as the aggregation increases. A bet-
ter view of the variance as a function of the aggregation levels m gives the V-T Plot in fig. 6.8.
The normalized variance decreases linearly for small aggregation levels up to the aggregation
that corresponds approximately to the sending time of the largest file, which is 3.2 s in this ex-
ample. The estimated Hurst parameter, derived from the linear curve fit as shown in the title
of the V-T Plot in fig. 6.8, is 0.85. The expected Hurst parameter with the ON/OFF Model and
reference parameters is 0.90.

Figure 6.8: Variance-Time Plot of traffic from ON/OFF Model with reference parameters.

The data traffic discussed so far is obtained from only one seed for a simulation duration of
10’000 s. The V-T Plots and the Hurst parameters from 16 different seeds, giving cumulated 44
simulated hours, are analyzed and its results depicted in table 6.3.

A interesting finding from table 6.3 is that the Hurst parameter is higher for larger maximum
file sizes. This relation can be better seen if the Hurst parameters and the maximum file sizes
are plotted against each other as in fig. 6.9.

The V-T Plots for the traffic of all seeds in table 6.3 are packed into fig. 6.10. This multiple
V-T Plot exhibits that for all seeds the variance trend is linear up to aggregation levels m of 2 (=
1 s) to 3.5 (= 32 s). This corresponds to the sending time for the smallest resp. the largest file in
column Max. File [MB] in table 6.3. The V-T Plot further leads to the assumption that for smaller
aggregation levels, not shown in fig. 6.10 (less than 0.01 s), the V-T Plots for all seeds become
similar.

The multiple V-T Plot with recorded traffic over one second periods in fig. 6.11 continues 4
more decades to the left (smaller time scales) where the V-T Plot in fig. 6.10 ended. It shows the
expected, high (normalized) variance of more than 10 at small time scales (1 µs), which remains
almost constant up to aggregation periods of 10 to 100 µs, demonstrating the self-similar traffic
characteristic with a Hurst parameter close to 1. Then, between 10 to 100 µs and 1 ms, the
curves start falling and continue in the V-T Plot of fig. 6.10.

6.3 Circuit Emulation Traffic Delay

The theoretical background of traffic delay is already given in section 5.4.1 of this report. In this
sections we have a look at the simulation results of CE traffic delay when CE and data traffic
are sent over the bottleneck link of the simulation topology in fig. 5.1.
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Seed Max. File [MB] Utilization [%] Hurst Parameter [-]
0 369 1.71 0.85
1 1’366 1.84 0.90
2 619 1.69 0.86
3 149 1.63 0.78
4 224 1.63 0.80
5 271 1.66 0.83
6 135 1.59 0.77
7 2’300 1.98 0.92
8 690 1.71 0.86
9 496 1.69 0.83

10 198 1.61 0.79
11 641 1.74 0.87
12 741 1.75 0.86
13 388 1.62 0.80
14 232 1.66 0.83
15 4’005 1.99 0.94

Avrg.: 798 1.72 0.84

Table 6.3: Max. file sizes, average utilization rates and Hurst parameters H with the ON/OFF
Model and reference parameters for 16 different seeds.

Figure 6.9: Maximum file sizes and their corresponding estimated Hurst parameters H with the
ON/OFF Model and reference parameters for 16 different seeds.
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Figure 6.10: Multiple Variance-Time Plot with the ON/OFF Model and reference parameters for
16 different seeds.

Figure 6.11: Multiple Variance-Time Plot with the ON/OFF Model and reference parameters for
small time scales (1 s periods).
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As long as the incoming traffic at the bottleneck link entry switch_1 is less than the output
link’s capacity, no queues build up in this node and the delay of the CE traffic is constant at it’s
minimum value of approx. 56 µs as can be seen in the delay trace end in fig. 6.12.

Figure 6.12: CE traffic delay when VBR_source sends one file of 106 bytes.

Before feeding the simulation with self-similar data traffic, the CE traffic delay is observed in
a simulation with a special traffic pattern. For the data traffic, just one file of 106 bytes (≈ 1 MB)
is chosen. All buffers are of unlimited size. The VBR source sends the file at full link speed to
switch_1. At the same switch, also the CE traffic arrives continuously and both traffic flows have
to be sent over the bottleneck link to switch_2. Because the source link from the VBR_source to
the switch_1 transports data at its full capacity - the same capacity as the bottleneck link - the
switch is not capable of sending the CBR and the VBR traffic over the bottleneck link without
building up a queue at the sending interface. Queuing frames lead to additional delay. This is
exactly what happens with the CE traffic shown in fig. 6.12. To send 106 bytes over a Gigabit
Ethernet link takes a little more than 8 ms. During this time, the CE traffic delay ramps up. This
delay is introduced by the growing queue size of the switch’s sending buffer as shown in fig.
6.13. The delay and the queue size increases are consistent with the theoretical considerations
in section 5.4.1, which are 5.76 ms per second for the delay and 624’000 bytes/s for the queue
size.

Figure 6.13: Switch_1 sending queue size when VBR_source sends one file of 106 bytes.

The delay of the VBR traffic grows linearly as shown in fig. 6.14 because the delay counter
starts to work as soon as the entire file is passed to the network layer. The queuing delays are
very small compared to the transmission delay.
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Figure 6.14: VBR traffic delay when VBR_source sends one file of 106 bytes.

6.4 Circuit Emulation Traffic Loss

Theoretical considerations and general information about data losses is already given in section
5.4.2 and 5.4.3. In this section, we focus on simulation results of CE traffic losses when CE and
data traffic are sent over the bottleneck link of the topology in fig. 5.1. How the buffer queue
builds up in switch_1 is already discussed in the previous section 6.3. This section is about
what happens when the buffer is full and starts to overflow.

Fig. 6.15 shows a common situation of a simulation in this work, where the buffer runs out
of free space and works at its saturation point. The small variations in the queue size come
from CE frames that are entering or leaving the queue whereas the large variations come from
enqueued or dequeued large data traffic frames. One interesting observation is that the queue
size just jumps between a few, repeating states. This synchronization effect leads to the lock-out
phenomenon and allows a flow to monopolize queue space (see section 5.4.2). As a matter of
fact, in the example of fig. 6.15, only data traffic frames are dropped and not a single CE frame.
The lock-out phenomenon in the simulations in this work is expected to especially prevent CE
frames from dropping when the queue size is limited by bits rather than by packets, because the
CE frames are much smaller than the majority of the data traffic frames (see also section 5.4.2).
Simulations with self-similar data traffic according the ON/OFF Model and reference parameters
from table 6.2 actually reveal that the lock-out phenomenon is in massive favor of the CE traffic
when the queue size is limited by bits. During 88 simulation hours, buffer overflows occur many
times - with 1 MB buffer space but also with 2 MB. 99’822 frames are totally dropped, but not a
single CE frame is among them - only data traffic.

If the buffer capacity is limited by packets, the probability that CE frames are dropped is much
higher. Small frame sizes is no longer a advantage in the ”battle” for buffer space. Only timing
effects may still allow one traffic flow to monopolize buffer queues. Simulation results with self-
similar data traffic show a interesting result: when the buffer capacity is limited by 500 packets,
during 44 simulation hours, 61’298 data frames and 29’709 CE frames are dropped, giving a
ratio of 0.485 of dropped CE frames to data frames. The same simulation shows a different
result when the buffer is limited by 1’000 packets: 47’403 data frames and only 193 CE frames
are dropped, giving the ratio of 0.004. These results make clear that timing effects can have a
big impact on the drop rate of a traffic flow and that it can be difficult to predict them. Fig. 6.16
shows the queue length of a buffer, limited by 500 packets, operating at its saturation point. The
queue size does vary differently than in the case of a bit capacity limitation (see fig. 6.15).

6.5 Quality of Service (QoS)

Simulation results of the QoS performance of the CE traffic is the subject in this section. The
employed CE traffic model of a E1 carrier is explained in section 5.2 and the synthetic ON/OFF
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Figure 6.15: Queue size of switch_1 when buffer with 8’388’608 bit (= 1 MB) limit is saturated.

Figure 6.16: Queue size of switch_1 when buffer with 500 packet limit is saturated.
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workload data traffic model in 5.3. The reference parameters of the ON/OFF Model are accord-
ing table 6.2 and the network topology is shown in fig. 5.1. QoS metrics and requirements are
taken from the METRO Ethernet Forum (see section 5.4.3). The simulation time for one seed is
always 10’000 s (= 2:47 h). For each switch buffer size limitation of 1 MB, 2 MB, 500 packets and
1’000 packets, 16 simulation runs are done with different seeds, giving cumulated 44:27 hours of
simulated traffic time for each setup. The data traffic performance results are already presented
and discussed in previous section 6.2.

6.5.1 Buffer Limitation by Bit Capacity

The simulation results for 1 MB buffer capacity limitation in table 6.4 can be summarized as
follows: the CE traffic does fulfill for all tested seeds and the cumulative simulation period the
QoS requirements. One reason is because the buffer size is small and therefore no frames
can possibly be delayed more than 10 ms, which is the applied delay, resp. jitter limit. The
maximum delay for 1 MB buffer size is 8.53 ms. When frames exceed the jitter limit, they would
be discarded at the CE traffic receiving node. The total number of these frames is listed in
column Delayed CE Frames in table 6.4 and its value is always 0. The second reason for the
good QoS performance is because no CE frames are dropped due to buffer overflows (column
Dropped CE Frames). In 14 of the total 16 runs the buffer queue reaches at least once its
limit and frames are dropped, but without exception data frames. Over all simulation runs, total
53’907 data frames are dropped. The reason for that finding lies in the lock-out phenomenon
and is introduced in the Simulation Design section 5.4.2 and analyzed, based on simulation
results, in the Result section 6.4.

Seed Dropped Data Frames Dropped CE Frames Delayed CE Frames QoS
0 1’176 0 0 +
1 7’639 0 0 +
2 2’080 0 0 +
3 0 0 0 +
4 295 0 0 +
5 755 0 0 +
6 0 0 0 +
7 13’594 0 0 +
8 3’001 0 0 +
9 1’336 0 0 +

10 121 0 0 +
11 3’263 0 0 +
12 2’714 0 0 +
13 692 0 0 +
14 487 0 0 +
15 16’754 0 0 +

Total: 53’907 0 0 +

Table 6.4: QoS performance of CE traffic with ON/OFF Model and reference parameters for 16
different seeds and 1 MB switch buffer limitation.

If the switch buffer limitation is increased to 2 MB, the QoS performance of the CE traffic
is completely different. This is because when the queue size exceeds the theoretical limit of
1.033 MB (see section 5.4.1), the introduced delay does also exceed the jitter buffer time limit
on the receiving side. Therefore, frames arrive too late and would be discarded. The numbers
of discarded CE frames due to jitter buffer time violations are listed for each simulation run
in column Delayed CE Frames of table 6.5. These values contribute to the Frame Error Ratio
(FER). The applied FER limit 8.75·10−7 corresponds to 70 errored CE frames per simulation run
of 10’000 s or 1’120 errored CE frames for the cumulative period to fulfill the QoS requirements.
In all simulation runs, where the queuing delays increase at least once to 10 ms, the CE traffic
does not pass these QoS requirements (column QoS of table 6.5). This is the case for 13 of
the total 16 simulation runs or 81 %. If all 16 simulation runs are taken together as if it was one
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long, cumulative run of 44:27 h, the FER would be 6.7·10−4 for the entire period - still far over
the QoS requirement. As in the simulations before with 1 MB switch buffer, no CE frames are
dropped (column Dropped CE frames of table 6.5) and therefore do not contribute to the FER
value. But as one would expect, the amount of dropped data frames is reduced from total 53’907
to 38’915 due to the buffer enlargement.

Seed Dropped Data Frames Dropped CE Frames Delayed CE Frames QoS
0 129 0 15’891 -
1 5’275 0 122’178 -
2 1’150 0 31’102 -
3 0 0 0 +
4 0 0 1’736 -
5 0 0 8’655 -
6 0 0 0 +
7 12’220 0 228’198 -
8 1’625 0 47’125 -
9 648 0 20’742 -

10 0 0 0 +
11 1’246 0 49’502 -
12 1’648 0 39’997 -
13 4 0 9’739 -
14 0 0 3’628 -
15 14’970 0 280’088 -

Total: 38’915 0 858’581 -

Table 6.5: QoS performance of CE traffic with ON/OFF Model and reference parameters for 16
different seeds and 2 MB switch buffer limitation.

6.5.2 Buffer Limitation by Packet Capacity

If the buffer size of switch_1 is limited by packets, the QoS requirements are only met for one of
the tested seeds but for none of the cumulative periods. Simulations are run with 500 and 1’000
packet limits. 500 packets is so small that no CE frames can possibly be delayed more than
the 10 ms limit. Therefore, this scenario is comparable with the 1 MB buffer size limitation in
previous section. But, in contrast to the bit capacity limitation, many CE frames are dropped. As
shown in table 6.6, the number of dropped CE frames (column Dropped CE Frames) is about
half of the dropped data frames (column Dropped Data Frames). This is a interesting result
since the data traffic source sends about 10 times more frames per time than the CE source. If
the drop probability was the same for both traffic flows, then also the drop rate for the data traffic
should be about 10 times higher. Because it is not, the lock-out phenomenon works against
the CE traffic. But in this cause, timing and not spatial effects allow one traffic flow to partially
monopolize the buffer queue.

If the queue size limit is increased to 1’000 packets, a lot of CE frames arrive too late at the
receiver’s jitter buffer as in the simulation with 2 MB capacity limitation in previous section. The
number of these discarded frames, listed in column Delayed CE Frames of table 6.7, is much
higher than the dropped frames. Therefore, the delay dominates the QoS statistic. Another
interesting observation is the ratio of dropped CE to data frames is much lower than with the
500 packet limitation. This indicates that the lock-out phenomenon is now working for the CE
traffic. This further shows how unpredictable the underlying effects are.

6.5.3 Summary of all Buffer Limitations

The simulation results of the QoS performance for all 16 seeds and all buffer size limitations is
summarized in fig. 6.17. Additionally, on the second y-axes the largest file size is drawn for every
seed. Because the number of dropped and delayed frames are spread over many magnitudes,
the values are drawn in logarithmic scale. The QoS limit for the total number of errored CE frame
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Seed Dropped Data Frames Dropped CE Frames Delayed CE Frames QoS
0 1’732 832 0 -
1 8’524 4’137 0 -
2 2’955 1’428 0 -
3 243 112 0 -
4 733 349 0 -
5 1’235 599 0 -
6 91 42 0 +
7 13’923 6’767 0 -
8 3’366 1’631 0 -
9 1’653 798 0 -

10 339 164 0 -
11 3’850 1’857 0 -
12 3’474 1’681 0 -
13 898 431 0 -
14 1’303 632 0 -
15 16’979 8’249 0 -

Total: 61’298 29’709 0 -

Table 6.6: QoS performance of CE traffic with ON/OFF Model and reference parameters for 16
different seeds and 500 packet switch buffer limitation.

Seed Dropped Data Frames Dropped CE Frames Delayed CE Frames QoS
0 721 6 15’825 -
1 6’728 28 122’005 -
2 1’612 7 31’049 -
3 0 0 0 +
4 0 0 1’736 -
5 299 5 8’620 -
6 0 0 0 +
7 13’137 46 228’060 -
8 2’546 11 47’022 -
9 1’108 3 20’693 -

10 0 0 0 +
11 2’580 17 49’351 -
12 2’107 5 39’946 -
13 464 3 9’690 -
14 33 1 3’624 -
15 16’068 61 279’916 -

Total: 47’403 193 857’537 -

Table 6.7: QoS performance of CE traffic with ON/OFF Model and reference parameters for 16
different seeds and 1’000 packet switch buffer limitation.

per seed (70) is the dashed line labeled ”QoS Limit”. The number of errored CE frames is the
sum of dropped and delayed CE frames, represented by the top value of every bar.

Fig. 6.17 allows a new insight into the relation of the largest file size to the number of errored
frames: there are generally more errored frames when the maximum file size is larger and vice
versa. This also shows that the maximum-sized file is the main cause for the errored frames.
Another result from the comparison of different buffer size limitations is that the total number of
errored frames for 2 MB and 1’000 packet buffer limitations are almost equal because not the
dropped, but the delayed frames dominate the errored frame statistic.

The distributions of the number of errored frames per seed for all buffer capacity limitations is
depicted in fig. 6.18. Because the number of seeds is only 16, there are actually too few seeds
to draw founded conclusions like confidence intervals or distribution shapes. One can probably
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Figure 6.17: QoS performance of CE traffic with ON/OFF Model and reference parameters for
16 different seeds and different switch buffer limitations.

speculate that the distributions for the 2 MB and 1’000 packet buffer limits are heavy-tailed.

Figure 6.18: Distributions of errored frames per seed with ON/OFF Model and reference param-
eters for different switch buffer limitations.

Fig. 6.19 shows the results for the cumulative simulation period, i.e. all 16 simulation runs of
10’000 s with different seeds are cumulated to one period of 160’000 s (= 44:27 h). For buffer
size limitations of 2 MB, 500 and 1’000 packets, the number of errored frames is 1 to almost 3
magnitudes higher than the QoS limit (1’120). Only in the case of 1 MB buffer size limitation, the
QoS requirements are clearly fulfilled with zero errored frames. fig. 6.19 also shows one more
time that no CE frames are dropped in the case of bit capacity buffer limitation. This certainly
reflects the expected lock-out phenomenon because of spatial effects, but the result is probably
over-estimated because the data traffic consisted mainly of maximum-sized frames.
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Figure 6.19: QoS performance of CE traffic with ON/OFF Model and reference parameters for
cumulative period and different switch buffer limitations.



Chapter 7

Outlook

The main subject that could not be investigated in this thesis is the CE traffic performance with
service priority. This is because OPNET Modeler 10.5A does not (yet) support service priority
standard IEEE 802.1Q/p [16] [17]. If future versions of the software are supporting it, further
simulations can be done to investigate also that subject.

All network simulations in this thesis are run with FIFO queue scheduling and tail drop queue
management to control buffer spaces. Simulation results show that tail-dropping allows in some
situations a single traffic flow to monopolize queue space, preventing other connections from
getting room in the queue. This lock-out phenomenon is observed intensified if the queue ca-
pacity is limited by bits rather than by packets. Spatial effects did massively prioritize the small
CE frames from not being dropped in saturated switch buffers. Further works could include
a market analysis of common queue scheduling and management algorithms in commercial
switches. Depending on these results, extended simulations with different algorithms, like active
queue management with Random Early Drop (RED) could eventually be done.

The ON/OFF Model is employed for all workload data simulations in this thesis. Since the
data traffic model does delicately influence the CE traffic performance, other self-similar data
traffic models could be considered for future works. Also recorded data from real networks could
be played into the network simulations.
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Chapter 8

Summary

In the Simulation Design chapter of this thesis, a solution proposal to the given problem is
elaborated. It is a framework of a OPNET Modeler Project for the network simulations and a
combination of MATLAB and C codes to generate the simulation input data and to analyze the
simulation results. OPNET Modeler is a widely used commercial discrete event simulator for
communication networks. The integrated Raw Packet Generator (RPG) of OPNET Modeler is
first tested and identified to be inappropriate to generate self-similar data traffic for the simula-
tions in this work. The second approach is the ON/OFF traffic model from Park and Willinger [9]
[8]. MATLAB code generates with the ON/OFF Model workload data traffic and writes it to files.
The network simulation environment OPNET Modeler then reads these files as ”scripted” input
data. Quality of Service (QoS) requirements are derived from the METRO Ethernet Forum [11]
to measure the circuit emulation performance.

Tests of 44 simulated traffic hours reveal that the results of this thesis strongly depend on the
applied buffer size and limitation methods in the switches, given that the buffer queues use first-
in-first-out (FIFO) queue scheduling and tail drop queue management algorithms. Large buffer
sizes (> ∼1 MB) introduce too much delay so that the QoS requirements are clearly violated
by exceeding the limit by almost three magnitudes. Small buffer sizes (< ∼1 MB) do improve
the QoS, but if the buffer capacity is limited by packets, the high number of dropped frames
also violates the QoS requirements. Only when the buffer capacity is limited by bits, the circuit
emulation traffic does meet the QoS requirements in the simulations of this work. In this case,
not a single circuit emulation frame is dropped during all simulation periods. The lock-out phe-
nomenon allows the circuit emulation traffic to monopolize queue space, preventing data traffic
from getting room in the queue. This phenomenon is the result of spatial effects: the small circuit
emulation traffic packets have a higher chance to be accommodated in the saturated buffer than
the about 20 times larger data traffic packets. However, we doubt that it is reasonable to rely on
this effect when employing metropolitan Gigabit Ethernets to transport telephony traffic. Since
the simulation environment OPNET Modeler does not support priority service standards IEEE
802.1Q/p, no statement can be made if service priority enables circuit emulation. The conclu-
sion is therefore that without service priority, circuit emulation in metropolitan Gigabit Ethernets
is very difficult or eventually not possible.
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Appendix A

Timetable

Date Tasks / Milestones
2004-11-03 Start of diploma thesis. Hand-over of task description and software.
2004-11-17 First simple network simulations runnable.
2004-11-22 Time schedule discussed with advisers.
2004-12-01 First self-similar data traffic analysis available (Variance-Time Plot).
2004-12-08 First simulation results with the Raw Packet Generator (RPG) available.
2004-12-17 Start of implementation of new self-similar traffic model (ON/OFF Model).
2005-01-09 Hand-in of intermediate report.
2005-02-01 First Quality of Service analysis available.
2005-02-17 All simulations results available and data analysis finished.
2005-02-25 Hand-in of final report and CD-ROM with produced software.
2005-03-04 Presentation of thesis to Communication Systems Group at TIK of ETH Zürich.

Table A.1: Time schedule of diploma thesis
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Appendix B

Original Problem

B.1 Introduction

Currently, dedicated infrastructures are employed to provide telephony and data services. The
infrastructure for telephone services is entirely based on circuit-switching technology. The in-
frastructure for data services, in contrast, is based on packet-switching technology. In the
near future, available capacities for packet-switched networks will be largely expanded due to
widespread deployment of optical transmission technology. Then emulation of telephony circuit-
switching (”circuit emulation”) can enable to use packet-switched networks to connect legacy
telephony equipment to the telephony core network. This is of particular interest in emerging
metropolitan Gigabit Ethernets where existing PBX and GSM base stations can be connected.
Presumably this protects investments in existing infrastructure and creates additional revenue
for service providers.

Figure B.1: Circuit Switching.

Figure B.2: Emulation of Circuit Switching in MANs.

However, research on traffic patterns in Ethernets [8] [6] suggests that circuit emulation may
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have a Quality of Service (QoS) problem. The bursty patterns of data traffic can cause excessive
queuing delays and frame losses due to buffer overflows. Due to the self-similar nature of the
data traffic in Ethernets, the negative effect of these burstiness patterns can hardly be alleviated
with buffering. Willinger et al. [6] gives indications that the underlying reason of this burstiness
is the heavy tail in the size distribution of data transfers. This means that the distribution follows
a power law for x → ∞ with an exponent less or equal to two. Formally, this can be expressed
as

1− F (x) ∼ x−α, α ∈ (0, 2] (B.1)

where F (x) is the cumulative distribution function (cdf) and a(x) ∼ b(x) is defined by the
relation

lim
x→∞

a(x)
b(x)

= 1 (B.2)

We further denote that the distribution has infinite variance since α < 2.
Recent measurements indicate that the tail of the transfer size distribution usually only fol-

lows this power law for four of five decades (see Park and Willinger [8]). Hence, the tail deviates
from a heavy tail at some limit. This limit is induced by limits in end systems such as the 4 GB
file size limit inherent to most popular operating systems. As a consequence, the self-similarity
in data traffic and thus the negative effects of burstiness are also limited. Moreover, line speeds
of access links also limit traffic burstiness. Since Gigabit Ethernets operate at enormous line
speeds, the problem whether metropolitan Gigabit Ethernets can be over-provisioned to ac-
commodate the burstiness of the expected traffic becomes real.

With this provisioning issue being unclarified, major equipment vendors [37] recommend to
assign dedicated virtual LANs (VLANs) for VoIP and CE traffic. This is a first step to enable pref-
erential treatment to CE traffic since the IEEE 802.1Q VLAN standard [16] requires to support a
priority field in the VLAN header. This priority field in turn can be used to implement preferential
treatment of VoIP and CE traffic in Ethernet switches.

B.2 Assignment

B.2.1 Objectives

The objective of this post diploma thesis is to perform network simulation studies with OPNET
[19] to assess whether and under which conditions service priority is inevitable to enable circuit
emulation (CE) on Gigabit Ethernets. Much of the simulation methodology can be taken from
Fiedler’s IWQoS’01 paper [3] on provisioning DiffServ Intra-Nets. Feldmann’s paper on the dy-
namics of IP traffic [5] can serve as a starting point in workload generation. The impact of the
following parameters on the simulation results should be given special attention:

• Traffic burstiness properties and limits thereof. Particularly limits in the size distribution of
transfer sizes.

• Traffic composition (data traffic versus CE traffic).

• Overall network utilization.

To limit the scope of the thesis, the impact of the network topology on the problem should
not be given special attention. We think it is justified to focus on simulating CE over a bottleneck
link. This bottleneck link may be viewed in a more general sense, since many have argued that
there is always a single bottleneck link on any network path which is usually not fast moving
[28].

Statistical significance of simulation results has to be explicitly shown, e.g. with normality
tests, before conclusions are drawn from simulation results. This is necessary since simula-
tions with workloads generated from heavy-tailed distributions inherently require an extremely
large amount of input to reach stable state and show a large variability in stable state [27]. For
methods on how to draw conclusions from transient simulations see Fiedler’s IWQoS’03 paper
[4].
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B.2.2 Tasks

• Read the intro of the Park Willinger book on self-similar network traffic and performance
evaluation [8]. This is to get an overview on notions such as self-similarity, long-range de-
pendence, heavy-tailed distributions, their interrelations and their application in the char-
acterization of network traffic.

• Get familiar with OPNET Modeler [19] as a simulation environment.

• Set up a simple implementation of workload generation for both data traffic and CE traffic
in this environment.

• Implement and run a simple simulation of CE over a bottleneck link.

• Develop evaluation concepts to assess the quality of the CE in your simulation based on
the documents of the METRO Ethernet Forum [11].

• Vary the parameters in the workload generation as well as the traffic composition and
overall network utilization and measure the quality of the CE.

• Document your implementations, evaluation procedures and results.

B.2.3 Deliverables and Organization

• If possible, student and adviser meet or telephone on a weekly basis to discuss progress
of work and next steps. If problems/questions arise that can not be solved independently,
the student should not hesitate to contact the adviser anytime.

• At the end of the third week, a detailed time schedule of the thesis must be given and
discussed with the adviser.

• In regular intervals (e.g. every two or three months) intermediate reports are due. These
reports are linked to a short discussion of 15 minutes with the professor and the adviser.
The student has to talk about the major aspects of the ongoing work including results,
problems and remaining work.

• At the end of this thesis, a presentation of 15 minutes must be given either in telecon-
ference or during the communication systems group meeting. The presentation should
carefully introduce settings and background of the work. Moreover, it should contain an
overview of the major results and conclusions of the work.

• All reports may be written in English or German. The final report must contain a sum-
mary, the assignment and the time schedule. Its structure should include an introduction,
a methods/design section, a results section and a conclusion section. Moreover, the final
report should include a complete documentation of all produced software. Related work
must be correctly referenced. See http://www.tik.ee.ethz.ch/∼flury/tips.html for more tips.
Three hard copies of the final report must be delivered to TIK.

• Any software which is produced in relation with this thesis needs to be delivered including
complete source code and documentation before ending the thesis. Moreover, the PDF
and the complete source code employed to generate the final report including data to
draw the figures also have to be delivered. Preferred format for delivery is a CD ROM.

http://www.tik.ee.ethz.ch/~flury/tips.html


Appendix C

Configuration

Parameter Setting
Shape parameter α of Pareto-distributed file
sizes

1.2

Shape parameter α of Pareto-distributed off-
times

1.2

Number of on/off sources 100’000
Average network utilization rate 1 %
Average file size 12 kB
Maximum file size 4 GB
OPNET packet size limitation 268’435’456 bytes
Seeds 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,

15
Traffic duration 10’000 s

Table C.1: Configuration of the ON/OFF Model (MATLAB script).

Parameter Setting
Hurst parameter H 0.90
Fractal Onset Time Scale FOTS 0.0008 s
Average Arrival Rate AAR 1190
Peak-to-Mean Ratio P2MR 100
Source Activity Ratio SAR 75
Seed 127
Traffic duration 1’000 s

Table C.2: Configuration of the Raw Packet Generator (OPNET Modeler).
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Parameter Setting
Switch buffer capacity limitation 1 MB, 2 MB, 500 packets, 1’000 packets
Switch buffer queue scheduling algorithm firs-in-fist-out (FIFO)
Switch buffer queue management algorithm Tail drop
Switch forwarding method store-and-forward
Network technology Switched Gigabit Ethernet (full-duplex)
Link technology 1000BaseX (optical)
Frame bursting disabled
Bottleneck link propagation delay 50 µs
Access link propagation delays 0.05 µs
Attribute Processing Information/Memory
Size(bytes) for the ethernet_ip_station node

256 MB

CE frame delay threshold for data logging 1 ms
Data logging start 10 s
”Bucket size” for data traffic probe 0.01 s

Table C.3: Configuration of network simulation environment (OPENT Modeler).

Parameter Setting
Minimum end-to-end delay 55.972 µs
Maximum acceptable jitter 10 ms
Frame Error Ratio (FER) limit 8.75·10−7

Availability ration limit 99.95 %
Number of transmitted CE frames per second 8’000

Table C.4: Configuration of Quality of Service (QoS) assessment (MATLAB script).

Parameter Setting
Aggregation levels n n = 2i , i = 1, 2, 3, . . .
Maximum square deviation from least square
linear line fit

0.05

Table C.5: Configuration of Variance-Time Plot (MATLAB script).



Appendix D

MATLAB Code

D.1 trace_analysis.m

% This MATLAB code reads in a data file containing traffic flow data
% (called ’traffic trace’) captured by the simulation software OPNET. The
% data must be recorded in the ’bucket’ mode, i.e. stochastic information
% for small time intervals. The code then generates a Variance-Time Plot
% for the traffic trace and also visualizes the time series in two multi-
% plots: the aggregated traffic traces for different aggragation levels and
% the traffic trace at different time scales (time fraction traces). Least
% square line fit generates a line through the data points in the Variance-
% Time Plot and the Hurst parameter is derived from the line’s slope.
% Philipp Sager, 2005-02-19.
%********************** parameter definition ******************************

clear all;
% path and name of data file [string]:

file=’C:\...\traffic.txt’;
% data unit [string]:

unit=’throughput [bits/sec]’;
% number of ignored header lines in data file [-]:

n4=8;
% number of multi-plots [-]:

n3=4;
% aggregation levels for aggregated traces multi-plot (exponent of 2) [-]:

n5=4;
% max. square deviation from least square linear fit for V-T Plot [-]:

dmax=0.1;
% min. time for self-similar traffic (for Hurst paremeter calc.) [s]:

t_min=0.009;
% max. time for self-similar traffic (for Hurst paremeter calc.) [s]:

t_max=1.8;
%********************** start of calculations *****************************
% Reads ASCII files that contain rows of space separated values. The
% resulting data is placed into an variable with the same name as the file
%(without the extension):

fid=fopen(file,’r’);
A=textscan(fid,’%f %f’,’headerlines’,n4,’treatasempty’,’#N/A’);
fclose(fid);

% removal of fields containing ’NaN’ values:
A=[A{1},A{2}]; A(isnan(A(:,2)),2)=0;

% number of samples:
n=size(A,1)

% first timestamp in data:
tmin=A(1,1)
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% last timestamp in data:
tmax=A(n,1)

% smallest time interval:
delta_t=A(2,1)-A(1,1)

% plot first aggregated trace:
A=A(:,2)’; l=1;
aggregate=figure();subplot(n3,1,l);
plot(A,’k’); title(’Aggregated traces’);
xlabel([’time units, unit = ’,num2str(delta_t),’[s]’,

’; aggregation level m = 1’])
ylabel(unit); grid on; box on; yscale=ylim; axis([0 n yscale]);

% plot timefraction traces:
figure
for i=1:n3

subplot(n3,1,i); plot(A,’k’)
if i==1

title(’Time fraction traces’)
end
xlabel([’time units, unit = ’,num2str(delta_t),’[s]’])
ylabel(unit); grid on; box on;
yscale=ylim; axis([0 n yscale]); axis([0 n/10^(i-1) yscale])

end
% normalized variance:

mu=mean(A); var=mean((A/mu-1).^2);
% result matrix A2:

A2(1,1)=1; A2(1,2)=var;
% calculating aggregated time series and their normalized variances:

k=0; n
while n>=4

k=k+1;
A=(A(1:2:n-1)+A(2:2:n))/2;
n=size(A,2)

% normalized variance:
var=mean((A/mu-1).^2);

% result matrix A2:
A2(k+1,1)=2^k; A2(k+1,2)=var;

% plot aggregated traces:
if (k==n5 * l & l<n3)

l=l+1;
figure(aggregate)
subplot(n3,1,l); plot(A,’k’)
xlabel([’time units; unit = ’,num2str(delta_t * 2^k),’ [s];’,

’ aggregation level m = ’,num2str(2^k)])
ylabel(unit); grid on; box on; yscale=ylim; axis([0 n yscale]);

end
end

% evaluation of slope and Hurst parameter h with least-square method:
A2=log10(A2);
A2pos_init=A2(A2(:,1)<=log10(t_max/delta_t)&A2(:,1)>=log10(t_min/delta_t),:);
A2neg_init=A2(A2(:,1)>log10(t_max/delta_t) | A2(:,1)<log10(t_min/delta_t),:);
P=polyfit(A2pos_init(:,1),A2pos_init(:,2),1);

% calculate deviations from linear fit to all points:
dA2=(A2pos_init(:,2)-(P(1) * A2pos_init(:,1)+P(2))).^2;
dA2pos=dA2; A2neg=[]; A2pos=A2pos_init;
while sum(dA2pos>=dmax)>0

A2pos=A2pos_init(dA2<dmax,:);
A2neg=A2pos_init(dA2>=dmax,:);
P=polyfit(A2pos(:,1),A2pos(:,2),1);
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dA2=(A2pos_init(:,2)-(P(1) * A2pos_init(:,1)+P(2))).^2;
dA2pos=(A2pos(:,2)-(P(1) * A2pos(:,1)+P(2))).^2;
max(dA2pos)

end
A2neg=[A2neg_init;A2neg]

% calculation of Hurst parameter h from slope P(1):
h=1+P(1)/2

% variance-time plot:
figure
if size(A2neg,1)==0

plot(A2(:,1),P(1) * A2(:,1)+P(2),’--k’,A2pos(:,1),A2pos(:,2),’+k’)
else

plot(A2(:,1),P(1) * A2(:,1)+P(2),’--k’,A2pos(:,1),A2pos(:,2),’+k’,
A2neg(:,1),A2neg(:,2),’xk’)

end
title([’Variance-Time plot; estimated Hurst parameter H = ’,

num2str(h,’%1.2f’)]);
xlabel([’log10(m) [-]; ’,’smallest time unit = ’,num2str(delta_t),’ [s]’]);
ylabel(’log10(var) [-]’); axis equal; grid on; box on;
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D.2 traffic_gen.m

% This MATLAB code generates two files containing series of file sizes and
% interarrival times according to the ON/OFF traffic model. The files can
% then be used as inputs for a ’scripted’ data source in the simulation
% environment OPNET. The ON/OFF Model generates files which sizes are
% heavy-tailed distributed (Pareto) with a maximum limit and unlimited
% heavy-tailed distributed (Pareto) waiting times.
% Philipp Sager, 2004-12-27.
%********************** parameter definition ******************************

clear all;
% file name for file inter-arrival times [-]:

file_arrival=’C:\...\arrival.csv’;
% file name for file sizes [-]:

file_size=’C:\...\size.csv’;
% maximum file size [byte]:

s_max=4294967296;
% shape parameter of file size pareto distribution [-]:

alpha_file=1.2;
% shape parameter of off time pareto distribution [-]:

alpha_off=1.2;
% ethernet bandwith [bits/s]:

r=1e9;
% average network utilization rate [-]:

util=0.01;
% average file size [byte]:

s_avrg=1.2288e4;
% ethernet overhead size (preamble+SoF+addresses+length field+check-sum) [byte]:

p_eth=26;
% maximum ethernet payload size (ethernet MTU) [byte]:

p_max=1500;
% minimum ethernet payload size [byte]:

p_pad=46;
% ethernet interframe gab [bits]:

p_interframe=96;
% ip header size [byte]:

p_ip=20;
% approx. length of traffic trace [s]:

t_max=1300;
% OPNET packet (file) size limitation [bytes]
% (Node attribute "IP/IP Processing Information/Memory Size (bytes)"):

s_opnet=268435456;
% seed of random generator:

seed=0;
%********************** start of calculations *****************************
% resets the state of the random generator to its initial seed:

rand(’state’,seed);
% average traffic flow [bits/s]:

r_avrg=util * r;
% maximum size of ethernet payload without ip header (fragment size of files):

p_frag=p_max-p_ip;
% time to send maximum sized ethernet frame:

t_frame=(8 * (p_max+p_eth)+p_interframe)/r;
% traffic generated with average sized file [bits]:

p_file=fix(s_avrg/p_frag) * ((p_max+p_eth) * 8+p_interframe);
s_remain=mod(s_avrg,p_frag);
if s_remain ~= 0

% padding of payload to minimum size:
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if s_remain < (p_pad-p_ip)
s_remain=p_pad-p_ip;

end
p_file=p_file+((s_remain+p_ip+p_eth) * 8+p_interframe);

end
% avrg number of files (int) to generate traffic trace of length t_max [-]:

n_max=round(t_max * r_avrg/p_file);
% average file flow [files/s]:

n_avrg=r_avrg/p_file;
% num. calc. of file size location param. k to fit s_avrg and s_max [byte]:

f=@(k)(alpha_file/(1-alpha_file)) * (k^alpha_file) *
s_max^(1-alpha_file)-k)-s_avrg;

k_size=fzero(f,s_avrg)
% calculation of off time location parameter k to fit r_avrg [s]:
% time to send average sized file:

t_file=fix(s_avrg/p_frag) * t_frame;
s_remain=mod(s_avrg,p_frag);

% padding of payload to minimum size:
if s_remain < (p_pad-p_ip)

s_remain=p_pad-p_ip;
end
if s_remain ~= 0

t_file=t_file+((s_remain+p_ip+p_eth) * 8+p_interframe)/r;
end;
k_off=((1-n_avrg * t_file)/n_avrg) * (alpha_off-1)/alpha_off

% generating file size vector:
% generating n_max uniformly (0...1) distributed random values:

rdm=rand(1,n_max);
% calc. file size vector with inverse cdf 1-(k/x)^alpha of pareto function:

X_file=k_size * (1-rdm).^(-1/alpha_file);
% removing file sizes > s_max and rounding to nearest integer:

X_file(find(X_file>=s_max))=[]; X_file=round(X_file); n_max=size(X_file,2);
% plot file sizes:

plot([1:n_max],X_file,’k’); title(’file sizes’);
xlabel(’file number i [-]’);ylabel(’file size Xi [byte]’);
grid off; box on; yscale=ylim; axis([0 n_max yscale]);

% generating off time vector:
% generating n_max uniformly (0...1) distributed random values:

rdm=rand(1,n_max);
% calc. off time vector with inverse cdf 1-(k/x)^alpha of pareto function:

X_off=k_off * (1-rdm).^(-1/alpha_off);
mean(X_off)

% total length of off times [s]:
t_off=sum(X_off)

% transformation of off times to inter-arrival times:
t_on=0;
for i=1:n_max

t_file=fix(X_file(i)/p_frag) * t_frame;
s_remain=mod(X_file(i),p_frag);

% padding of payload to minimum size:
if s_remain < (p_pad-p_ip)

s_remain=p_pad-p_ip;
end
if s_remain ~= 0

t_file=t_file+((s_remain+p_ip+p_eth) * 8+p_interframe)/r;
end;
t_on=t_on+t_file;
X_off(i)=X_off(i)+t_file;
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end
% total length of generated traffic [s]:

t_total=sum(X_off)
% average utilization rate of generated traffic [%]:

util_eff=t_on/t_total
% plot file sizes vs. sending time:

figure; plot(cumsum(X_off),X_file,’k’)
title(’file trace’);xlabel(’time [s]’); ylabel(’file size [bytes]’);
grid off; box on; yscale=ylim; axis([0 t_total yscale]);

% split files >s_opnet into consecutive files of size s_opnet
% (OPNET packet size limitation):

a=find(X_file>s_opnet);
for i=1:size(a,2)

’File too large for OPNET:’
X_file(a(1))
n_complete=fix(X_file(a(1))/s_opnet);
s_partial=mod(X_file(a(1)),s_opnet);
if mod(X_file(a(1)),s_opnet) ~= 0

X_file=[X_file(1:a(1)-1),linspace(s_opnet,s_opnet,n_complete),
s_partial,X_file(a(1)+1:end)];

X_off=[X_off(1:a(1)-1),linspace(0,0,n_complete),X_off(a(1):end)];
else

X_file=[X_file(1:a(1)-1),linspace(s_opnet,s_opnet,n_complete),
X_file(a(1)+1:end)];

X_off=[X_off(1:a(1)-1),linspace(0,0,n_complete-1),X_off(a(1):end)];
end
a=find(X_file>s_opnet);

end
% write vectors to comma separated vector files:

csvwrite(file_arrival,X_off’);
csvwrite(file_size,X_file’);
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D.3 qos_analysis.m

% This MATLAB code reads in two files: ’file_drop’ contains queue drop
% information and ’file_delay’ CE traffic delays. With the file content
% together with the defined parameters, the code calculates QoS metrics
% and evaluates if the recorded CE traffic does fulfil the defined QoS
% requirements.
% Philipp Sager, 2005-02-04.
%********************** parameter definition ******************************

clear all;
% simulation log start [s]:

t_start=10;
% simulation log end [s]:

t_end=10010;
% number of sent CE frames per second [1/s]:

f=8e3;
% minimum end-to-end delay [s]:

delay_min=55.972e-6;
% maximum tolerated jitter [s]:

t_jitter=0.01;
% Frame Error Ratio (FER) limit [-]:

FER_limit=8.75e-7;
% availability ratio limit [-]:

avail_limit=0.9995;
% path and name of data file with drop statistic:

file_drop=’C:\...\rb_output_file_drop.txt’;
% path and name of data file with drop statistic:

file_delay=’C:\...\rb_output_file_delay.txt’;
% number of discarded header lines in data files [-]:

n_header=1;
% ID of VBR traffic source [INTEGER]:

id_vbr_src=9;
% ID of VBR traffic sink [INTEGER]:

id_vbr_dst=8;
% ID of CBR traffic source [INTEGER]:

id_cbr_src=6;
% ID of CBR traffic sink [INTEGER]:

id_cbr_dst=7;
% ID of dropping process [STRING]:

id_proc_drop=’top.gigabit_ethernet.switch_1.mac_0’;
% ID of delay measuring process [STRING]:

id_node_delay=’top.gigabit_ethernet.CBR_sink’;
%********************** start of calculations *****************************
% reading of drop statistic in ’file_drop’:

fid=fopen(file_drop,’r’);
if fid~=-1 % can open the file

A=textscan(fid,’%f %d32 %d8 %d8 %s %s’,’headerlines’,n_header);
fclose(fid);

% put cells into arrays:
T_drop=A{1}; ID_drop=A{2}; SRC=A{3}; DST=A{4}; PROC=A{5}; MSG=A{6};
clear A;

% select only entries logged from process ’id_proc_drop’:
T_drop=T_drop(find(strcmp(PROC,id_proc_drop)));
ID_drop=ID_drop(find(strcmp(PROC,id_proc_drop)));
SRC=SRC(find(strcmp(PROC,id_proc_drop)));
DST=DST(find(strcmp(PROC,id_proc_drop)));

% select only entries sent from VBR traffic source:
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T_drop_VBR=T_drop(find(SRC==id_vbr_src));
% select only entries sent from CBR traffic source:

T_drop_CBR=T_drop(find(SRC==id_cbr_src));
ID_drop=ID_drop(find(SRC==id_cbr_src));

% remove simulation start offset:
T_drop_VBR=T_drop_VBR(find(T_drop_VBR>=t_start));
T_drop_VBR=T_drop_VBR-t_start;
T_drop_CBR=T_drop_CBR(find(T_drop_CBR>=t_start));
T_drop_CBR=T_drop_CBR-t_start;

else % can not open the file
T_drop_CBR=[];
T_drop_VBR=[];

end
% number of dropped frames [-]:

n_drop_CBR=size(T_drop_CBR,1)
n_drop_VBR=size(T_drop_VBR,1)

% reading of delay statistic in ’file_delay’:
fid=fopen(file_delay,’r’);
A=textscan(fid,’%f %d32 %f %s’,’headerlines’,n_header);
fclose(fid);

% put cells into arrays:
T_delay=A{1}; ID_delay=A{2}; DELAY=A{3}; NODE=A{4}; clear A;

% select only entries logged from node ’id_node_delay’:
T_delay=T_delay(find(strcmp(NODE,id_node_delay)));
ID_delay=ID_delay(find(strcmp(NODE,id_node_delay)));
DELAY=DELAY(find(strcmp(NODE,id_node_delay)));

% remove simulation start offset:
ID_delay=ID_delay(find(T_delay>=t_start));
DELAY=DELAY(find(T_delay>=t_start));
T_delay=T_delay(find(T_delay>=t_start));
T_delay=T_delay-t_start;

% quantile calculation with compensation for not recorded delays < threshold:
quant=quantile(DELAY,1-FER_limit * ((t_end-t_start) * f)/size(DELAY,1)) * 1000
plot(sort(DELAY))

% calculate number of lost frame due to jitter limit violation [-]:
T_delay=T_delay(find(DELAY>(delay_min+t_jitter)));
ID_delay=ID_delay(find(DELAY>(delay_min+t_jitter)));
DELAY=DELAY(find(DELAY>(delay_min+t_jitter)));
n_delay=size(DELAY,1)

% calculate total Frame Error Ratio (FER) [-]:
FER=(n_drop_CBR+n_delay)/((t_end-t_start) * f)
if FER>=FER_limit

’Frame Error Ratio (FER) exceeds limit!’
end

% calculation of availability ratio:
LOSS=sort([T_drop_CBR;T_delay]);
if size(LOSS,1)==0

LOSS=[0,0];
end
n_bad=1; % number of consecutive one-second periods with at least one loss
n_good=0; % number of consecutive one-second periods with no losses
t=LOSS(1); % begin of (first) one-second period with losses
t_unavail_start=t; % start time of unavailable status
t_unavail=0; % accumulated duration in unavailable status
i=2; % go to second loss
while i<=size(LOSS,1)

if LOSS(i) < t+1; % more than one loss in one-second period
i=i+1; % go to next loss
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else
t=t+1;
if LOSS(i) < t+1 % next one-second period with loss

n_bad=n_bad+1
n_good=0;
if n_bad == 10 % enter in unavailable status

t_unavail_start=t+1; % store start of unavailable status
end

else % next one-second period without loss
n_good=n_good+1
if n_bad >= 10 % actual status is unavailable

if n_good == 10 % enter in available status
t_unavail=t_unavail+(t+1-t_unavail_start);
n_bad=0; n_good=0; % reset

% initialize like a new start:
if i < size(LOSS,1)-1

t=LOSS(i);
n_bad=1;
i=i+1;

else
break

end
end

else % actual status is available
n_bad=0; % reset
if i < size(LOSS,1)-1

t=LOSS(i)
n_bad=1;
i=i+1;

else
break

end
end

end
end

end
t=t+1;
if n_bad>=10 % unavailable status at end of loss serie

if t+10 > t_end-t_start
t_unavail=t_unavail+(t_end-t_start-t_unavail_start+10);

else
t_unavail=t_unavail+(t-t_unavail_start+10);

end
end
avail= 1-(t_unavail/(t_end-t_start))
if avail <= avail_limit

’Availability is less than limit!’
end
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C-Code

E.1 superpos.c

/ * MATLAB MEX-File. Use * /
/ * (X_file, X_arrival)=superpos(X_on,X_off,t_tot_min) * /
/ * to call from MATLAB. * /
/ * The compiled C-code "superpos.dll" has to reside in the same file * /
/ * directory as the calling MATLAB m-file. * /
/ * This code takes the sorted vectors ’X_on’ and ’X_off’ with on- resp. * /
/ * off-times of any number of traffic sources and returns the on- and * /
/ * interarrival durations (’X_file’ and ’X_off’) of the superposed * /
/ * traffic up to time ’t_tot_min’. * /
/ * Philipp Sager, 2005-02-01. * /

#include "mex.h"

/ * The gateway routine * /
void mexFunction(int nlhs, mxArray * plhs[],

int nrhs, const mxArray * prhs[])
{

/ * Declare variables. * /
double * pX_on, * pX_off, t, * pX_arrival, * pX_file;
unsigned int dim, n=0, i_off=1, i_on=1;
double t_on=0, t_start=0, T_on[1000];

/ * Check for proper number of input and output arguments. * /
if (nrhs != 3) {

mexErrMsgTxt("Three input arguments required.");
}
if (nlhs > 2) {

mexErrMsgTxt("Too many output arguments.");
}

/ * Check data type of input argument. * /
if (!(mxIsDouble(prhs[0]))) {
mexErrMsgTxt("Input array must be of type double.");
}
/ * Check the dimensions of X_on * /
dim = mxGetN(prhs[0]);

/ * Create a matrix for the return argument * /
plhs[0] = mxCreateDoubleMatrix(1, dim, mxREAL);
plhs[1] = mxCreateDoubleMatrix(1, dim, mxREAL);
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/ * Assign pointers to the various parameters * /
pX_on = mxGetPr(prhs[0]);
pX_off = mxGetPr(prhs[1]);
t = mxGetScalar(prhs[2]);
pX_file = mxGetPr(plhs[0]);
pX_arrival = mxGetPr(plhs[1]);

/ * Do the actual computations * /
while ( * pX_off <= t || n > 0)
{ if ( * pX_on < * pX_off) / * a source starts sending * /

{ n++; / * increment no. of parallel sending sources * /
T_on[n]= * pX_on; / * store n-th ON time * /
if(++i_on <= dim) / * not very last source starts sending * /
{ if ((n==1) && ((t_start+t_on) <= * pX_on))

{ / * first source starts sending and t_on not

* overlapping with this sending period * /

* pX_arrival++= * pX_on-t_start; / * write interarrival time * /
t_start= * pX_on; / * store new sending start * /

}
pX_on++; / * go to next ON time * /

}
else / * very last source starts sending * /
{ if ((n==1) && ((t_start+t_on) <= * pX_on))

{ / * first source starts sending and t_on not

* overlapping with this sending period * /

* pX_arrival= * pX_on-t_start; / * write interarrival time * /

* pX_on = * pX_off;
}

}
}
else / * a source stops sending * /
{ t_on=t_on+ * pX_off-T_on[n]; / * add sending time from that source * /

n--; / * decrement no. of parallel sending sources * /
if(++i_off <= dim) / * not very last source stops sending * /
{ if (n==0 && ((t_start+t_on) < * pX_on))

{ / * last source stops sending and t_on not

* overlapping with this sending period * /

* pX_file++=t_on; / * write sending time * /
t_on=0; / * reset sending time * /

}
pX_off++; / * go to next OFF time * /

}
else / * very last source stops sending * /
{ * pX_file=t_on; / * write sending time * /

break; / * exit while-loop * /
}

}
}
return;
return;

}
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Plots

F.1 Raw Packet Generator

F.1.1 Peak-to-Mean Ratio (P2MR)

Figure F.1: Variance-Time Plot with RPG and P2MR = 50.
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Figure F.2: Variance-Time Plot with RPG and P2MR = 200.

Figure F.3: Variance-Time Plot with RPG and P2MR = 1’000.
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F.1.2 Hurst Parameter (H)

Figure F.4: Variance-Time Plot with RPG and H = 0.88.

Figure F.5: Variance-Time Plot with RPG and H = 0.92.
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F.1.3 Source Activity Ratio (SAR)

Figure F.6: Variance-Time Plot with RPG and SAR = 70 %.

Figure F.7: Variance-Time Plot with RPG and SAR = 80 %.
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F.1.4 Fractal Onset Time Scale (FOTS)

Figure F.8: Variance-Time Plot with RPG and FOTS = 0.0001 s.

Figure F.9: Variance-Time Plot with RPG and FOTS = 0.002 s.
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F.2 ON/OFF Model

F.2.1 Time Fraction Traffic Traces

Figure F.10: Time fraction traffic traces with ON/OFF Model and reference parameters.

F.2.2 Aggregated Traffic Traces
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Figure F.11: Aggregated traffic traces with ON/OFF Model and reference parameters.
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