
Porting TinyOS on to BTnodes

Attila Dogan-Kinali

Winter Term 2004/2005

Student Thesis SA-2005-07

Supervisors: Jan Beutel, Matthias Dyer, Prof. Dr. Lothar Thiele



Contents

1: Introduction 1

2: Related Work 3

3: TinyOS 5

3.1 nesC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.2 The Directory Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3 Boot Strapping and Hardware Initialization . . . . . . . . . . . . . . . 8

3.4 Platform Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.5 Toolchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4: Hardware Platforms 15

4.1 Mica2 Mote . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2 BTnode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.3 Differences between Mica2 and BTnodes . . . . . . . . . . . . . . . . . . 16

5: Latch Problems 19

6: TinyOS on BTnode 21

7: The TinyOS Standard Applications 23

7.1 Blink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

7.2 CntToLedsAndRfm and RfmToLeds . . . . . . . . . . . . . . . . . . . . 25

7.3 Surge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

8: Conclusion 27

i



Contents

ii



Figures

4-1 Mica2 Mote hardware structure . . . . . . . . . . . . . . . . . . . . . . . 15

4-2 BTnode hardware structure . . . . . . . . . . . . . . . . . . . . . . . . . 16

4-3 Detail view of the Latches . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5-1 Latch switching anomaly. After setting the latch input, latch enable is
asserted. The settling time for the latch output is over 400ms . . . . . 20

7-1 The Surge demo application running on a mixed network of Mica2
Motes (nodes 0, 1 and 2) and BTnodes (nodes 4 and 5). . . . . . . . . . 26



Figures

iv



1
Introduction

In recent days, more and more measurements are conducted in areas where no suf-
ficient infrastructure exist. Particularly for power supplies and for the transmission
of collected data. Wireless sensor networks can be of use in these situations. They
consist of small, low-cost devices that are deployed in large numbers in the target
area. These devices, also called nodes, organize themselves in a ad hoc network to
exchange messages containing measurements and other data. The receiver part is
commonly represented by a root or master node.

Nodes must not disturb their environment, and with it the measured data. They
have to be as unintrusive as possible which requires them to be as small as possible.
Because nodes must be present in large numbers, they must be as cheap as possi-
ble. These two constraints pose, among other things severe restrictions on the com-
putational power and radio transmission capabilities. Because of this and because
obstacles may be in the way, it’s not always possible that all nodes can directly send
their data to the desired receiver. But since they come in large numbers and the
distances between two adjacent nodes is small, the nodes themselves can be used to
relay messages from one to another.

Currently a number of universities are using different approaches to explore the
field of wireless sensor networks. These approaches do not only result in different
hardware architectures for the nodes, but also in different architectures of the oper-
ating systems running on these nodes. One of the big players in the field of operating
systems is TinyOS which is developed at the University of Berkeley.

TinyOS[5][16] was designed with modularity and scalability in mind. Both was
achieved by rigorously decomposing the operating system into small building blocks.
Trough this partitioning TinyOS became more a system frame work for embedded
applications than an operating system in the classical sense. But this partitioning is
what makes TinyOS scale, not only up, but also down to smaller devices. Various ap-
plications were developed using TinyOS, like area monitoring, location tracking[17]
or even small robots[3].
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Chapter 1: Introduction

The goal of this semester project at TIK1 was to evaluate TinyOS as an alternative
operating system on the BTnode[1][12] platform. The BTnodes, which were devel-
oped here at TIK are currently running BTnut, an Ethernut derived operating sys-
tem only. The main subjects were to find out whether and what TinyOS applications
can be run on BTnodes and how portable TinyOS is.

As a starting point, the TinyBT[8] project from the University of Copenhagen was
used. TinyBT is a port of TinyOS to the second revision of the BTnode platform,
never the less it includes also preliminary support for the in this project used,
newer BTnode revision. As strategy it was chosen to use various applications to
the new platform. By starting from simple applications that use only a small frac-
tion of TinyOS and going to more complex ones, more and more of TinyOS has been
ported.

1Computer Engineering and Networks Laboratory (TIK) at the Department of Information Tech-
nology and Electrical Engineering of the Swiss Federal Institute of Technology (ETH) Zürich http:
//www.tik.ee.ethz.ch

2



2
Related Work

Various operating systems have been developed in the past for embedded appli-
cations. QNX[10], which is one of the most used operating systems for embedded
systems is a fully featured POSIX compliant real time operating system. Although
it was designed with embedded systems in mind, it does not scale down well to the
region of 8 bit systems used in wireless sensor networks. uClinux[9] is a derivative
of the Linux kernel optimized for systems without a memory management unit. It is
like QNX meant as a POSIX compliant operating system for small devices and has
similar properties in scalability.

nesC explores on the language side a component model which was made popular
by M. Flatt and M. Felleisen[13]. Although some research was conducted in this
field, only a few languages were developed and used. Most notable exception is the
Knit[11] language which is also an extension to the C language. Like nesC it was
designed for research in the operating system field, namely the OSKit Project[4] of
the University of Utah.
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Chapter 2: Related Work
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3
TinyOS

TinyOS has been developed as a component based operating system to experiment
with ad hoc wireless networks based on a hardware platform called ”Mica2 Motes”[2]
at the UC Berkeley. It uses an event driven approach, meaning that every process-
ing step is triggered by some kind of event. Every triggered ”task” is enqueued into
a worker queue and processed by the main loop until none is left. After that TinyOS
waits for the next event to occur. TinyOS is written in nesC[15][14], a C-based, com-
ponent model oriented language, and is also developed at Berkeley. To simplify the
building process, the whole operating system and the applications are built together
in one step. The nesC compiler combines all components of the application and op-
erating system and builds a C file which is passed to a C compiler.

3.1 nesC

Component model languages allow to decompose an application into building blocks.
These building blocks are connected together at compile time, using some handwrit-
ten description. Although generally speaking this works similar to the object ori-
entated approach it does not have the overhead of runtime decisions and does not
require memory management system as the components and their memory are in-
stantiated at compile time. This means that it is impossible to instantiate additional
components at run time though. Albeit this may seem like a severe restriction, it is
not as the target platforms are embedded systems with very limited resources that
do not allow the same programming style as on normal, bigger sized computers.

nesC splits the components of an application into the entities interface, configura-

tion and module. The interfaces define an abstract way of accessing different mod-
ules with a consistent calling convention comparable to the interfaces used in the
Java programming language. Configurations are instructions on how to wire the
used components together. Typically there is one configuration file for every com-
ponent interconnected to at least one other component. The module contains the
actual implementation of the component in a language that is basically C with addi-
tional keywords and case-related slightly modified semantics. These three entities
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Chapter 3: TinyOS

configuration LedsC {
provides interface Leds;

}
implementation
{

components PowerStateM, LedsM;
Leds = LedsM.Leds;
LedsM.PowerState −> PowerStateM;

}

Listing 3.1
tos/platform/pc/LedsC.nc

interface Leds {
async command result t init();
async command result t redOn();
async command result t redOff();
async command result t redToggle();
async command result t greenOn();
async command result t greenOff();
async command result t greenToggle();
async command result t yellowOn();
async command result t yellowOff();
async command result t yellowToggle();
async command uint8 t get();
async command result t set(uint8 t value);

}

Listing 3.2
tos/interfaces/Leds.nc

are, by convention, split into 3 different files, called <name>.nc for the interface,
<name>C.nc for the configuration and <name>M.nc for the module.

As an example the Leds component (Listing 3.1) provides routines to access the
LEDs of a node. The configuration file of it (LedsC.nc ) implements the Leds inter-
face and uses the PowerStateM and LedsM components. The internally used symbol
Leds references to LedsM and the LedsM.PowersState symbol, which denotes an
internal symbol of LedsM is connected to PowerStateM . The Leds interface def-
inition (Listing 3.2) states various function, or in this case command prototypes,
similar to header files in C. The module definition of the Leds component partly
shown in Listing 3.3 lists the implemented and used interfaces in the with brackets
enclosed block labeled ”module ”

The additional keywords and semantics allow the nesC compiler to perform simple
static race condition analysis.
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3.1. nesC

module LedsM {
provides interface Leds;
uses interface PowerState;

}
implementation
{

uint8 t ledsOn;

enum {
RED BIT = 1,
GREEN BIT = 2,
YELLOW BIT = 4

};

void updateLeds() {
LedEvent e;
e.red = (( ledsOn & RED BIT) > 0);
e.green = (( ledsOn & GREEN BIT) > 0);
e.yellow = ((ledsOn & YELLOW BIT) > 0);
sendTossimEvent(NODE NUM,

AM LEDEVENT, tos state.tos time, &e);
}

async command result t Leds.init() {
atomic {

ledsOn = 0;
dbg(DBG BOOT, ”LEDS: initialized.\n”);
updateLeds();

}
return SUCCESS;

}
[...]
}

Listing 3.3
tos/platform/pc/LedsM.nc
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Chapter 3: TinyOS

configuration Blink {
}
implementation {

components Main, BlinkM, SingleTimer, LedsC;
Main.StdControl −> SingleTimer.StdControl;
Main.StdControl −> BlinkM.StdControl;
BlinkM.Timer −> SingleTimer.Timer;
BlinkM.Leds −> LedsC;

}

Listing 3.4
apps/Blink/Blink.nc

3.2 The Directory Structure

The TinyOS distribution consists beside of the so called ”tos ” directory, which con-
tains the whole operating system and all platform definitions also some standard ap-
plications (apps ) which serve as examples on how to use different parts of TinyOS.
The tos directory itself consists of the platform independent operating system part
(system ), common interface definitions (interfaces ), a library with commonly
used functions (lib ), platform dependant hardware definitions and access driver
functions (platform ) and definitions for the different sensor boards that can be
used in combination with the motes (sensorboards ).

The shipped interface definitions cover a wide range of available hardware for wire-
less sensor systems (ADC, UART, I2C, Timer, . . . ), some abstraction for commu-
nication classes (byte level abstraction, packet level abstraction) and for various,
often used software systems (scheduler, resource controller, routing, memory man-
agement).

The system directory contains generic implementations of various hardware com-
ponents (ADC, I2C, Clock), hardware independent core functions (CRC, framing,
logger, operating system initialization) and a few utility components.

Various high level functions are provided trough ”libraries” in the lib directory.

Files in the different directories are superseded by files with the same name in other
directories. But this functionality is not documented.

3.3 Boot Strapping and Hardware Initialization

The boot up of a simple application like for example Blink (Listing 3.4, see also
Section 7.1), which uses only very few components follows a simple scheme. The
boot up process of TinyOS starts in system/RealMain.nc (Listing 3.6) calling
hardwareInit() which is connected to HPLInit (Listing 3.7) via the Main com-
ponent (Listing 3.5). HPLInit does nothing but call TOSHSET PIN DIRECTIONS()
from hardware.h (Listing 3.8, see also Section 3.4) which calls macros to set the di-
rection registers of the AVR microcontroller. After calling Pot.init() which initial-
izes the potentiometer module, StdControl.init() and StdControl.start()
are called. These are commandos that dispatch to all connected modules. In this case
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3.3. Boot Strapping and Hardware Initialization

configuration Main {
uses interface StdControl;

}
implementation
{

components RealMain, PotC, HPLInit;

StdControl = RealMain.StdControl;
RealMain.hardwareInit −> HPLInit;
RealMain.Pot −> PotC;

}

Listing 3.5
tos/system/Main.nc

module RealMain {
uses {

command result t hardwareInit();
interface StdControl;
interface Pot;

}
}
implementation
{

int main() attribute ((C, spontaneous)) {
call hardwareInit();
call Pot.init (10);
TOSH sched init();

call StdControl.init();
call StdControl.start();

nesc enable interrupt();

while(1) {
TOSH run task();

}
}

}

Listing 3.6
tos/system/RealMain.nc
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Chapter 3: TinyOS

module HPLInit {
provides command result t init();

}
implementation
{

// Basic hardware init.

command result t init() {
TOSH SET PIN DIRECTIONS();
return SUCCESS;

}
}

Listing 3.7
tos/platform/btnode3 2/HPLInit.nc

// LED assignments

TOSH ASSIGN PIN(RED LED, A, 2);
TOSH ASSIGN PIN(GREEN LED, A, 1);
TOSH ASSIGN PIN(YELLOW LED, A, 0);

// ChipCon control assignments

TOSH ASSIGN PIN(CC CHP OUT, A, 6);
TOSH ASSIGN PIN(CC PDATA, D, 7);
TOSH ASSIGN PIN(CC PCLK, D, 6);
[...]

void TOSH SET PIN DIRECTIONS(void)
{

TOSH MAKE CC CHP OUT INPUT();
[...]
TOSH MAKE CC PALE OUTPUT();
TOSH MAKE CC PDATA OUTPUT();
TOSH MAKE CC PCLK OUTPUT();
TOSH MAKE SPI OC1C INPUT();

}

Listing 3.8
tos/platform/mica2/hardware.h
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3.4. Platform Definitions

[...]
bool TOSH run next task ()
{

nesc atomic t fInterruptFlags;
uint8 t old full ;
void (∗func)(void);

fInterruptFlags = nesc atomic start();
old full = TOSH sched full;
func = TOSH queue[old full].tp;
if (func == NULL)
{

nesc atomic end(fInterruptFlags);
return 0;

}

TOSH queue[old full].tp = NULL;
TOSH sched full = (old full + 1) & TOSH TASK BITMASK;

nesc atomic end(fInterruptFlags);
func();

return 1;
}

void TOSH run task() {
while (TOSH run next task())

;
TOSH sleep();
TOSH wait();

}

Listing 3.9
tos/system/sched.c

SingleTimer.StdControl and BlinkM.StdControl . After enabling interrupts,
TinyOS enters its main loop in which it calls TOSHrun task() from sched.c (List-
ing 3.9) repeatedly. This function processes all pending tasks in the queue until none
is left and sleeps afterwards until an IRQ occurs.

3.4 Platform Definitions

The platform directory contains a subdirectory for each supported hardware plat-
form, where files specific to this platform can be found. Two files have to be present
at least in each platform definition, hardware.h and .platform .

.platform (Listing 3.10) is a perl script used by the nesC compiler to set several
architecture specific options, parameters for the C compiler and internal variables.
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Chapter 3: TinyOS

@opts = (”−gcc=avr−gcc”,
”−mmcu=atmega128”,
”−fnesc−target=avr”,
”−fnesc−no−debug”);

push @opts, ”−mingw−gcc” if $cygwin;

@commonplatforms = (”btnode3 2”);

Listing 3.10
tos/platform/btnode3 2/.platform

#define TOSH ASSIGN PIN(name, port, bit) \
static inline void TOSH SET ##name## PIN() \

{sbi(PORT##port , bit);} \
static inline void TOSH CLR ##name## PIN() \

{cbi(PORT##port , bit);} \
static inline char TOSH READ ##name## PIN() \

{return 0x01 & (inp(PIN##port) >> bit);} \
static inline void TOSH MAKE ##name## OUTPUT() \

{sbi(DDR##port , bit);} \
static inline void TOSH MAKE ##name## INPUT() \

{cbi(DDR##port , bit);}

#define TOSH ASSIGN OUTPUT ONLY PIN(name, port, bit) \
static inline void TOSH SET ##name## PIN() \

{sbi(PORT##port , bit);} \
static inline void TOSH CLR ##name## PIN() \

{cbi(PORT##port , bit);} \
static inline void TOSH MAKE ##name## OUTPUT() \

{;}

Listing 3.11
tos/platform/btnode3 2/avrhardware.h

It is executed by ncc which is the first step of the nesC compiler.

hardware.h (Listing 3.8 and Listing 6.1) is used to assign functions to the pins of
the microcontroller. The macros TOSHASSIGN PIN and TOSHASSIGN OUTPUTONLYPIN
which are defined in avrhardware.h (Listing 3.11) and are used for this. These two
macros define functions to set, clear, read the pin, to make it an output or to make it
an input port. These functions are called at boot time trough TOSHSET PIN DIRECTIONS()
and various components providing access to the hardware and thus need the sym-
bolic names of the associated pins. TOSHSET PIN DIRECTIONS() is often not only
used to set the directions of pins but also to do some preliminary initialization of the
hardware before the first TinyOS components are used.

The platform directory contains also components to access hardware features and
I/O subsystems specific to the hardware platform, like the components for the vari-
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3.5. Toolchain

ous radio modules, ADCs, EEPROMs, special timers and the like. This directory is
also used to mask components in the system and lib directories, if special imple-
mentations are required, like for example the LedsC component for the PC archi-
tecture.

3.5 Toolchain

The compilation of TinyOS requires the avr-gcc and nesC toolchain to be installed.
As this can be quite a hassle due to the dependency on specific versions. Thus it’s
suggested to use the packages provided on the TinyOS website.

nesC has been implemented as a wrapper around gcc using a few scripts written in
perl. As its development is inseparable related to TinyOS, it has some dependencies
on the existance of certain files and structures. Though there is a remark in the
ncc manpage on how to call the nesC compiler in an enviroment outside TinyOS,
it is not clear how well this will work due to the lack of proper documentation of
the inner working of the nesC compiler. Also some of its configuration options are
set in the beginning of the ncc file, which may lead to strange error messages if not
set properly. The installation of nesC will only succeed if everything is in place as it
expects it to be and thus the procedure should be followed exactly as it is described
on the website[6], otherwise strange errors will occur.
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4
Hardware Platforms

In this project only two of the various available hardware projects were used. One
of them is the ”Mica2 Mote” developed at the University of Berkeley being the main
development platform for TinyOS. Secondly BTnode revision 3 was used, developed
at TIK.

4.1 Mica2 Mote

The ”Mica2 Mote” (Figure 4-1) which was developed as a replacement for the older
”Mica Mote”, is a node build around an Atmel ATmega128L 8 bit microcontroller
and features an ChipCon1000 low power radio module, and a 512 kB Flash module.
Beside the general purpose I/O pins it also has two serial interfaces (UART).

4.2 BTnode

BTnode family started out as a pure, all-in-one BlueTooth module but became a
fully featured dual radio wireless networking platform. Its newest member, the

ChipCon 1000

512kB Flash 3 LEDs

Atmel ATmega128

Serial I/O

GP I/O

Figure 4-1
Mica2 Mote hardware structure
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Chapter 4: Hardware Platforms

ChipCon 1000Serial I/O

GP I/O

Latch

BlueTooth

4 LEDs Power Supply

Atmel ATmega128

240kB SRAM

Figure 4-2
BTnode hardware structure

BTnode revision 3 does not only come equipped with a BlueTooth module, but also
features a ChipCon1000 module in a very similar configuration as the ”Mica2 Motes”.
Around an Atmel ATmega128L microcontroller, the mentioned ChipCon1000 low-
power radio module, a Zeevo ZV 4002 BlueTooth module, 4 LEDs and various I/O
interfaces (Figure 4-2). 240 kB of banked SRAM1 are available, of which 60 kB are
always visible and can be used with out any modifications of the application. The
BTnode allowes to completely shutdown all radio modules by a switch in their power
lines, which gives additional power saving opportunities.

4.3 Differences between Mica2 and BTnodes

Platform BTnode revision 3 Mica2 Mote

BlueTooth Zeevo ZV4002 no

Low-power radio CC1000 CC1000

Data Memory 64 kB 4 kB

Storage 180 kB SRAM 512 kB Flash

LEDs 4 3

Serial ID no yes

Debug UART UART0 UART0, UART1

Connector Molex 15 Pin or Hirose DF17 40 Pin Hirose DF9 51 Pin

Regulated power
supply

yes, 2xAA cells or DC input no

Switchable power
for radios and exten-
sions

yes no

Table 4-1: BTnode revision 3 hardware details compared to the Mica2 Mote.

1the lowest 4 kB of each bank are masked by the internal SRAM
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4.3. Differences between Mica2 and BTnodes

ATmega128 Address/Data
multiplexing
Latch

SRAM

G

D Q A[7:0]

D[7:0]

A[15:8]

PG2

PA[7:0]

PC[7:0]

D

GPB5

Auxilary
Latch

O0

O7

O6

O5

O4

O3

O2

O1

60k

Blue LED

BT Power Switch

CC1000 Power Switch

I/O Power Switch

Red LED

Yellow LED

Green LED

BT Reset

60k 60k 60k

Figure 4-3
Detail view of the Latches

The differences between the ”Mica2 Motes” and BTnodes are mainly, that the BTn-
odes not only carries a ChipCon1000 low power radio but also a BlueTooth module.
The external SRAM provides, even when the additional banks are not used, addi-
tional 60 kB of memory, so that the full adress range of 64 kB can be used, even
without any modification of the application. There are also two latches to multi-
plex two ports of the microcontroller (Figure 4-3). The ”Address/Data multiplexing
Latch” is used to multiplex port PAas data and the lower half of the address lines for
the SRAM. The gate pin of this latch is connected to the pin PG2of the ATmega128
which is directly controlled by the internal adress generation unit, whenever the
address range of the external SRAM is accessed. The ”Auxilary Latch” multiplexes
the upper half of the address lines of the SRAM with the LEDs, the power switches
and the reset pin of the BlueTooth module.
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5
Latch Problems

As noted in the previous section, the BTnodes contains two latches to multiplex
ports of the microcontroller. As the ”Address/Data multiplexing Latch” controlled
by the microcontroller directly is of no concern in this paper it wil not be refered
anymore. Instead, the ”Auxilary Latch”, which multiplexes the upper half of the ad-
dress lines of the external SRAM and among other things the LEDs, will be refered
as ”latch” only. As this port is also used for the adress lines of the external SRAM,
the latch will be intransparent most of the time in normal operating mode. Hence
every time either one of the LEDs or power switches are accessed the latch has to
be put into transparent mode and switched back to intransparent afterwards1.

While porting the Blink application (see Section 7.1) it was seen that the LEDs did
not work as expected. Particularily, that the LEDs after being switched on, could not
be switched off again. Further investigation showed that the LEDs worked properly
when the latch was always transparent or the transparent gate time was very long.
It was found that the reason for this was an unexpectedly high settling time of the
latch outputs when doing a transition of the output pin from high to low. Figure 5-1
shows a measurement of this behaviour. In the test setup the latch output pin was
set to high at the beginning. Before asserting Latch Enable, the input pin was set to
low. As can be seen, it takes several 100 milliseconds until the latch output settles
to low. Measurements on different BTnodes showed a variation of this settling time
between 200ms and 700ms. Due to the limited access to the latch on the circuit
board not all relevant signals could be measured, hence the cause of this strange
behaviour is still unclear.

As no hardware solution could be found, it was choosen to set the latch permanently
into transparent mode on start up. Although this renders the external SRAM mod-
ule useless, it is of no importance for this project as the TinyOS port does only use
the 4 kB of internal RAM.

1Note that during this operation any access to the external SRAM has to be avoided
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Chapter 5: Latch Problems

Figure 5-1
Latch switching anomaly. After setting the latch input, latch enable is asserted. The settling

time for the latch output is over 400ms
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6
TinyOS on BTnode

Although the current BTnodes are similar to the ”Mica2 Motes”, they are not com-
pletely the same. Thus there is some work required to port the existing code to
the new architecture. This was also used as an oppurtunity to test the portability of
TinyOS, although it is only a partial test, due to the similarity to an already existing
platform.

As a starting point for porting the preliminary btnode3 2 platform definition from
the TinyBT project of the University of Copenhagen was used. This platform defi-
nition was originaly written by Jan Beutel for a short test during the development
of the current BTnode generation and thus only necessary steps to get a compil-
ing system were performed. Most of the platform specific settings are collected in
hardware.h (Listing 6.1). The most notable change in this file, beside the different
pin definitions, is the special handling for the latch which has to be enabled to set
one of the LEDs or to toggle one of the power switches of the radio modules. But,
due to hardware problems of unknown origin, this had to be partially disabled (see
Section 5).

At the beginning of hardware.h the TOSHASSIGN PIN macro is called to give the
ChipCon1000 and latch control pins symbolic names. Setting any pins of the latch
requires some care, as always all 8 pins are set at the same time. This is taken
care of by the set latch() function. It allows to set a single bit of the latch by
giving its position and the new value. The current status of the latch is stored in the
latch status() variable. Because the TinyOS components expect functions with
certain names to access the LEDs a couple of wrappers around set latch are de-
fined. At the bottom of hardware.h is the TOSHSET PIN DIRECTIONS() function
which is used at boot up to do a preliminary initialization of the pin direction reg-
isters of the microcontroller. It first initializes all registers with zeros, which sets
all pins to the input mode and then calles the above defined functions to make the
appropirate ones to output pins.

Most of the other files in the platform definition are coppied from either the Mica2
or TinyBT definitions and adjusted to the small differences of the BTnode revision 3.
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Chapter 6: TinyOS on BTnode

[...]
// ChipCon control assignments

TOSH ASSIGN PIN(CC CHP OUT, E, 7); // chipcon CHP OUT

TOSH ASSIGN PIN(CC PDATA , D, 7); // chipcon PDATA

TOSH ASSIGN PIN(CC PCLK , D, 6); // chipcon PCLK

TOSH ASSIGN PIN(CC PALE , D, 5); // chipcon PALE

TOSH ASSIGN PIN(LATCH SELECT, B, 5);
[...]

/∗ set leds and power functions ∗/

unsigned char latch status;
/∗ set function, not irq safe ∗/

void set latch(int pos, int bit)
{

unsigned char mask = 1;
mask <<= pos;
latch status = (latch status & ˜mask) | (bit ? mask : 0);
outb(PORTC, latch status);

// latch is always enabled due to hardware problems

// TOSH SET LATCH SELECT PIN();

// TOSH wait(); // wait a short while until the latch is updated

// TOSH CLR LATCH SELECT PIN();

}

static inline void TOSH SET YELLOW LED PIN() {set latch(2,1);}
static inline void TOSH CLR YELLOW LED PIN() {set latch(2,0);}
#define TOSH MAKE YELLOW LED OUTPUT()
static inline void TOSH SET GREEN LED PIN() {set latch(3,1);}
static inline void TOSH CLR GREEN LED PIN() {set latch(3,0);}
#define TOSH MAKE GREEN LED OUTPUT()
static inline void TOSH SET RED LED PIN() {set latch(1,1);}
static inline void TOSH CLR RED LED PIN() {set latch(1,0);}
#define TOSH MAKE RED LED OUTPUT()
static inline void TOSH SET EXTRA LED PIN() {set latch(0,1);}
static inline void TOSH CLR EXTRA LED PIN() {set latch(0,0);}
#define TOSH MAKE EXTRA LED OUTPUT()
// CC1000 power control

static inline void TOSH SET CC PWR PIN() {set latch(5,1);}
static inline void TOSH CLR CC PWR PIN() {set latch(5,0);}
void TOSH SET PIN DIRECTIONS(void)
{

outp(0x00, DDRA);
outp(0x00, DDRB);
outp(0x00, DDRD);
outp(0x02, DDRE);
outp(0x02, PORTE);
TOSH MAKE LATCH SELECT OUTPUT();
TOSH SET LATCH SELECT PIN();
TOSH SET CC PWR PIN();

}

Listing 6.1
tos/platform/btnode3 2/hardware.h
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The TinyOS Standard Applications

Before any applications can be compiled for TinyOS a few settings have to be done.
Foremost, the TOSDIRenviroment variable has to be set to the location of the ”tos ”
directory (e.g. TOSDIR=$HOME/src/tinyos-1.x/tos ).

The compilation of one of the standard applications is done by switching into the
directory in apps directory, eg apps/Blink and executing the make command with
the desired platform as a parameter (e.g. make btnode3 2). This will create a file
main.exe in a platform specific subdirectory of the build directory.

For the next step, the programming of the BTnode, the AVRISP enviroment variable
has to be set to the serial interface to which the programmer is connected to (e.g.
AVRISP=/dev/ttyS0 ). The targed is programmed by calling make install with
the platform as parameter (e.g. make install btnode3 2). Note that the applica-
tion is compiled once again when executing this command.

7.1 Blink

The Blink (Listing 3.4) application is a version of the well known ”Hello World” pro-
gram for a hardware architecture that does not have any character output. It is a
simple application that only sets up a timer to toggle a LED on and off. Thus it is not
much more than an example application to show that TinyOS really runs on a given
platform. The configuration (Listing 3.4) connects the four used components, the
Main , BlinkM (Listing 7.1), SingleTimer and LedsC together. Listing 7.1 shows
that the module provides the StdControl interface and uses the interfaces Timer
and Leds . Upon boot up the command StdControl.init() will be called which
initializes the Leds module. The later called command StdControl.start() sets
the timer to trigger an event every second. This timer will then call the event
Timer.fired which toggles the red LED.
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module BlinkM {
provides {

interface StdControl;
}
uses {

interface Timer;
interface Leds;

}
}

command result t StdControl.init() {
call Leds.init ();
return SUCCESS;

}
command result t StdControl.start() {

// Start a repeating timer that fires every 1000ms

return call Timer.start(TIMER REPEAT, 1000);
}
command result t StdControl.stop() {

return call Timer.stop();
}
event result t Timer.fired()
{

call Leds.redToggle();
return SUCCESS;

}
}

Listing 7.1
apps/Blink/BlinkM.nc
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7.2. CntToLedsAndRfm and RfmToLeds

configuration CntToLedsAndRfm {
}
implementation {

components Main, Counter, IntToLeds, IntToRfm, TimerC;

Main.StdControl −> Counter.StdControl;
Main.StdControl −> IntToLeds.StdControl;
Main.StdControl −> IntToRfm.StdControl;
Main.StdControl −> TimerC.StdControl;
Counter.Timer −> TimerC.Timer[unique(”Timer”)];
IntToLeds <− Counter.IntOutput;
Counter.IntOutput −> IntToRfm;

}

Listing 7.2
apps/CntToLedsAndRfm/CntToLedsAndRfm.nc

configuration RfmToLeds {
}
implementation {

components Main, RfmToInt, IntToLeds;

Main.StdControl −> IntToLeds.StdControl;
Main.StdControl −> RfmToInt.StdControl;
RfmToInt.IntOutput −> IntToLeds.IntOutput;

}

Listing 7.3
apps/RfmToLeds/RfmToLeds.nc

7.2 CntToLedsAndRfm and RfmToLeds

CntToLedsAndRfm (Listing 7.2) and RfmToLeds (Listing 7.3) together form an ap-
plication to test the radio subsystem of TinyOS. CntToLedsAndRfm counts upwards
and shows the number in binary form on the LEDs. Additionaly the number is send
over the radio interface out. RfmToLeds recieves the packets, extracts the number
and displays it the same way on the LEDs. Although these applications are still very
simple, they use a substantial part of TinyOS over the instanciated components.

7.3 Surge

The Surge application builds up an ad hoc network of motes to transmit measur-
ment data from the nodes to the root node which is connected to a PC that displays
the data (Figure 7-1). In this case it was used to demonstrate that it is possible
to communicate between Mica2 motes and BTnodes when using the ChipCon1000
module.

Because the BTnode platform does not have any available sensor boards yet, every
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Figure 7-1
The Surge demo application running on a mixed network of Mica2 Motes (nodes 0, 1 and 2)

and BTnodes (nodes 4 and 5).

component using it had to be removed from the Surge application. In partuicular
the Sounder component had to be removed completely removed. The Photo com-
ponent, which acesses a photo sensor on the sensorboard was replaced by the RSSI
ADC, which measures the signal strength of the ChipCon1000 module. Therefor the
ADCCcomponent was used and the SurgeM.ADC was connected to ADCC.ADC[TOSADCCCRSSI PORT]
instead of Photo .
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8
Conclusion

Porting TinyOS on to the BTnode platform was conducted in several steps. During
this work a few of the standard applications could be successfully run. Although
this port is still incomplete because only the subsystems controlling the LEDs and
the ChipCon1000 were ported, alread quite a few applications can be run just by
compiling them for the btnode3 2 platform.

Because sensorboards are not yet available for the BTnodes it is not possible to use
applications that require one of them. For those either a special sensorboard for the
BTnodes or an adapter to an existing one has to be build. Same goes for applications
that use the on board EEProm of the ”Mica2 Motes” which was replaced by an SRAM
module. Although it should be straight forward to write an interfacing component
to use the SRAM as storage this was not done yet. Due the volatile nature of SRAM
applications requiring a permanent storage of data have to deal with additional
difficulties. These can be either solved by providing a fall back power supply to the
BTnodes or attaching a non-volatile memory as storage. The additional 60 kB of
memory of the BTnodes could allow to test applications that need a data such as
dynamic routing algorithms and the like. The dual radio nature of the BTnodes
could also lead to interesting applications where communication between BlueTooth
enabled consumer electronics is required or can simplifiy the data aquisition as PCs
and laptops with BlueTooth become more and more common.
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