
 - 1 -

EFFICIENT CONSTANT K-DOMINATING SET APPROXIMATION
SEMESTER THESIS

January 27, 2005

Author
Patrice Müller

patrice@student.ethz.ch

Supervisor
Thomas Moscibroda

moscitho@tik.ee.ethz.ch

Professor
Roger Wattenhofer

wattenhofer@tik.ee.ethz.ch

Abstract
Calculating a minimal dominating set is known to be NP-complete. It
would be nice to have an approximation which is not much bigger but
could be calculated much faster. In this paper an algorithm is pro-
posed which constructs a k-dominating set. It is mathematically
proved that the algorithm produces a constant approximation to the
MDS and terminates very quickly.

1 INTRODUCTION.. - 1 -
2 ALGORITHM.. - 1 -

2.1 DOMINATING SET... - 1 -
2.2 K-DOMINATING SET - 2 -

3 RELATED WORK... - 2 -
3.1 EXPECTATION ... - 2 -
3.2 HIGH PROBABILITY - 2 -
3.3 HIERARCHICAL ANALYSIS - 2 -

4 K-DOMINATING SET.. - 2 -
4.1 EXPECTATION ... - 2 -
4.2 HIGH PROBABILITY - 3 -
4.3 HIERARCHICAL ANALYSIS - 4 -

4.3.1 PHASE I ()log logn n→ - 4 -
4.3.2 PHASE II ()log log 1n → - 5 -
4.3.3 OVERALL BOUND................................ - 6 -

5 CONCLUSION .. - 6 -
6 FUTURE WORK ... - 6 -
ACKNOWLEDGMENTS.. - 6 -
REFERENCES... - 6 -

1 Introduction
In wireless ad-hoc networks collaboration among nodes is
an extremely important task. In small working environ-
ments with only a few nodes in the same transmission range
very simple and primitive algorithms like flooding can be
used. As the networks get bigger and more complex these
basic approaches to solving problems cannot be used any-
more.
There needs to be established an overlay network layer on
top of TCP/IP. Without it scalability and reliability cannot
be guaranteed. This paper is focusing on dominating sets in
unit disk graphs. There is already a lot of work available
dealing with dominating set problems. However a reliable
network might need to have more than just one dominator

per node. In this paper it is shown how a k-dominating set
with a constant approximationi can be constructed using
only local information.

2 Algorithm
The first algorithm presented below about constructing a
dominating set is taken from [1]. To extend the achieved
result from dominating set to k-dominating set the algo-
rithm was slightly modified.

2.1 Dominating Set
At the start-up of a node it needs to assign itself a random
number which will be its unique identifier UID in practice
if the randomization is using a large enough range of num-
bers. Starting with a small transmission range and in the
state of a dominating set every node queries all nodes in
range about their UID and selects the node with the highest
UID as its dominator. Selecting here means that the node
informs the selected node about its selection. The node
receiving this information must accept to become a domi-
nating node if it is not already in the dominating set. After
such a dominator being found and informed the selecting
node can remove its dominating state. In the special case
where the selecting node is also the node with the highest
UID then it will just remain in the dominating state.
For establishing a smaller dominating set the above de-
scribed selection process is applied recursively to all nodes
still in the dominating state. The transmission range is dou-
bled after every round and is of the form 2 logi

i nδ = ii, for
0i > . Initially every node is in the dominating set and

may fall out of it at any round. Thereafter the algorithm
stops on that node. Obviously certain nodes never drop out
of the dominating set or there would be no dominating set
at all. After loglog 1n − rounds the algorithm must stop and

i With constant approximation an approximation to the
minimal dominating set is meant. This approximation is
worse only by a constant factor to the MDS.
ii n is the total number of nodes in the maximum transmis-
sion range of the node executing the algorithm.

 - 2 -

the node will remain in the dominating set if no node with
higher UID was found. At the thn 1loglog − round the
transmission range is set to

log log 1 1 2nδ − = . After this round
no other node can cover all the nodes the processing node
was responsible for. Even the full transmission range can-
not be enough anymore to cover all non-dominating nodes.

2.2 K-Dominating Set
The same idea as above for building up a dominating set is
used to construct a k-dominating set. Every node chooses a
random number as its UID and starts with a small transmis-
sion range to find the k highest nodes. Those k nodes are
selected and must become dominators after getting notified.
If the node executing the algorithm itself is among the k
highest nodes then it will remain in the dominating set.
Otherwise it can remove its dominating state. If less than k
nodes are available in the current transmission range then
all available nodes will be notified to become a dominator
as this will be the best possible approximation to a k-
dominating set.
The same hierarchical technique as above for the dominat-
ing set algorithm is then applied on the remaining domina-
tors. The transmission range will be doubled every round
until the node is no longer a dominator or reaching

211loglog =−nδ as half of the maximum transmission range
and then the algorithm stops. At each step the k highest
nodes will be forced to the dominating set and the execut-
ing node will become a non-dominating node if it is not
among the k highest nodes.

3 Related Work
Many ideas for this paper’s work come from [1]. The fol-
lowing three subcategories were analyzed very carefully
and then modified and extended to proof the requested
properties for the k-dominating case. In all the analysis
squares are supposed to be the visible range of the wireless
devices. This is a method for simplifying the analysis. It
does not exactly match the actual transmission range which
would rather be an irregular circle depending on the nearby
environment. The squares could as well be replaced by
circles and the outcome of all the results would not be af-
fected up to a constant factor.

3.1 Expectation
To get the expected number of dominators after one step of
the dominating set algorithm the close proximity of one
visible range is analyzed. In Figure 4.1 the model for the
visible range in two dimensions is shown. It is assumed that
there are no more than m nodes in the visible range L of S
and that the side length of S is one half of the transmission
range.
Having this setup it was shown in [1] that the expected
number of dominators inside S is bound by ()mO . This is
a very important property as it shows a drastic reduction in
dominators by executing the dominating set algorithm to all
the nodes in L.

3.2 High probability
It was also shown that the reduction of nodes inside S holds
with high probability. To be more precise the probability
that S contains more than 1ln8 +mm dominators is

bounded by ()mmO ln1 . This means that there are more than
()mmO ln dominators in S with a very small probability

that goes towards zero quickly.
By knowing this the proposed algorithm guarantees a re-
duction in the number of dominators. Furthermore the cal-
culated expectation is more trustful by knowing the result
with high probability.

3.3 Hierarchical analysis
In the paper [1] it is said that the recursive algorithm will
eventually produce a constant approximation ()O d to the
minimal dominating set with d dominators by using at most
log log 1n − steps. To show this property the expectation of

()mO for one step was iterated on itself. This calculation
cannot be regarded as correct as the expected reduction of
the remaining dominators may change after one round of
execution. The first round is not and cannot be considered
to be independent from the following rounds. For analyzing
the hierarchical algorithm and showing a constant approxi-
mation of the minimal dominating set a different approach
needs to be used.

4 K-dominating set
Constructing a dominating set can be a very important task
in wireless ad-hoc networks. Generally there is no structure
among wireless devices as they can be located anywhere. In
certain areas the density may be very high and in other parts
it may be very sparse. Building up a dominating set can
help to solve problems like routing. The standard dominat-
ing set has the property that every node has at least one
node in its range as its dominator. If we consider using such
a dominating set for instance for solving a routing problem
it is easy to see that the whole system is not very fault toler-
ant. If the dominating set problem can be extended to be
more reliable even if nodes are unstable then problems may
be solved on top of this k-dominating environment by en-
suring a higher reliability.
The algorithm for constructing such a k-dominating set is
already given above. In this section it is to prove its proper-
ties. The first step is to show that the algorithm reduces the
amount of dominators. This is done by analyzing the ex-
pected number of dominators after the execution of one step
of the algorithm.
In a second analysis it is shown that not only the expecta-
tion holds but that a slightly higher result holds with high
probability. This proof is essential to be convinced that the
algorithm almost cannot be unfavorable.
In a third subchapter the whole algorithm using its hierar-
chical structure is analyzed. This leads to the final result
and does show that the proposed algorithm fulfills the
wanted requirements.

4.1 Expectation
At a first step to analyze the algorithm for k-dominating
sets the reduction in dominators is calculated. To do this
one round of the algorithm is taken a close look at. In
Figure 4.1 the model used can be seen. The expectation for
the number of dominators inside S after one round is calcu-
lated. All the areas are squares to simplify the setup. The
side lengths are equal to 1/2. There is a central area S and a
neighboring area S'. In total there are eight equal neighbor-

 - 3 -

ing areas to S. Therefore only one neighboring area needs to
be analyzed in relation to the central area. The other seven
neighboring areas do have the exact same properties.

Figure 4.1: Visible range L of S

First the number of nodes nominated from inside S must
be examined. The side length of S is assumed to be half the
transmission range of the nodes executing the algorithm.
Due to this fact all the nodes residing inside S are mutually
visible. Every node knows about all the other nodes’ pres-
ence and also knows all their UIDs. The algorithm nomi-
nates from every node k nodes to become their dominators.
As a result of the mutual visibility no more than k nodes
inside S can become dominators from nodes within S.
(4.1) 1E k≤
Second the number of nodes nominated from outside S
must be examined. Let x be the number of nodes in S and y
inside S'.
 , 'x S y S= =
Any node p S∈ can be nominated by a 'q S∈ only if p has
its UID within the k-largest of q's visibility. The random
selection of UIDs at the beginning of the algorithm gives a
uniformly distribution of UIDs on S and S'. Therefore the
probability for node p being within the k-highest nodes of
q's visibility is

(4.2)
1

kP
y

≤
+

.

Having x nodes in S the expected number of nodes nomi-
nated in S from S' is

(4.3) 21 1
xkE

y
≤

+
.

Those points are nominated to be dominators from points in
S'. As there are y points in S' there is an absolute maximum
of nominated points inside S from points 'q S∈ of

(4.4) 22E yk≤ .
With the two expectations

21E and 22E the overall expecta-
tion for nominated points from S' can be calculated. The
variable m is the total number of nodes in L before the algo-
rithm starts.

(4.5)

()

2

as , 0

min ,
1

min ,
1

1 1

x y

xkE yk
y

xk y
y

k x y

k m

≥

⎛ ⎞
= ⎜ ⎟+⎝ ⎠

⎛ ⎞
= ⎜ ⎟+⎝ ⎠

≤ + + −

<

To get the total expectation the nodes nominated from in-
side and those nominated from outside of S must be added.
There are 8 equal squares around S. A new constant c is
used to simplify the equation.
(4.6) 1 28

8

E E E

k k m

c m

= +

< +

<

From this result the upper bound of expected dominators
after one round can be seen easily. It is

(4.7) ()E O m≤ .

4.2 High probability
In this subchapter a stronger bound than the expectation is
shown. By knowing only the expectation the distribution of
all the possible cases remains unknown. It would be nice if
almost all the possibilities were close to the expectation. In
this case the expectation seems to be a very reasonable
bound. But what if the distribution is not so favorable?
There might be a very high probability for almost no reduc-
tion in dominators and a high probability of a very good
reduction. If the algorithm happens to produce the unfavor-
able reduction it doesn’t help much to know about the ex-
pectation since a good reduction is aimed at. Showing a
good reduction with high probability is much more con-
vincing that the proposed algorithm works with all circum-
stances and at all times.
As a first step to get a high probability bound the probabil-
ity that the number of nodes nominated in S from S' can
reach a certain benchmark s is calculated. Once this func-
tion is evaluated a benchmark can be searched. This
benchmark will be somewhere above the number in expec-
tation and must lead to a very low probability.
The probability that s (or more) points in S can be nomi-
nated from S' is needed. To get this probability the two
areas S and S' are analyzed in detail.
Lemma 4.1: Out of the s+k-1 highest nodes in 'S S∪ at
least s must be in S for S' being able to nominate s or more
dominators in S.
Proof: If there are less than s of the s+k-1 highest nodes in
S than the nodes in S' have no possibility to nominate s
dominators in S. They are forced to select more nodes in S'
as their dominators. If the s nodes in S are chosen from a
smaller group than the s+k-1 highest nodes not all the pos-
sibilities for having selected s dominators in S are covered.
This comes from the fact that each node in S' chooses the k
highest nodes as dominators. Therefore it is possible that a
node chooses the first k-1 dominators in S' and the kth domi-
nator in S. For this reason the s+k-1 highest group must be
considered.

S

'S

2
1

2
3

L

 - 4 -

Figure 4.2: Distributing the s+k-1 highest nodes

Knowing Lemma 4.1 the probability can be calculated by
analyzing the combinations. The number of possibilities for
choosing the s points in S is

(4.8)
x
s

⎛ ⎞
⎜ ⎟
⎝ ⎠

.

The number of possibilities for choosing the k-1 points in S'
is

(4.9)
1

y
k
⎛ ⎞
⎜ ⎟−⎝ ⎠

.

The number of possibilities for choosing the s+k-1 highest
points among the nodes 'S S∪ (containing x,y nodes re-
spectively) is

(4.10)
1

x y
s k

+⎛ ⎞
⎜ ⎟+ −⎝ ⎠

.

At this point the probability can be written by using

#number of 'good' cases
#number of total cases

which leads to the equation

(4.11)
()()
()

1

1

1

s k

i s

x y
s k ii

p
x y

s k

+ −

=
+ − −

=
+

+ −

∑
.

In the above equation the top part adds up all the possibili-
ties for having more than s nodes in S out of the s+k-1
highest nodes. The lower part counts all the possibilities for
placing the s+k-1 highest nodes among the x+y nodes of

'S S∪ .
By testing the probability of equation (4.11) a fast degrada-
tion can be observed. Using the same asymptotical bound
as in [1] for the proof with high probability then also the
same low probability is found. It was proofed by Thomas
Moscibroda that with an exponentially small probability

(4.12) log

1
mp

m
≤

a maximal bound of

(4.13) ()()max log , 2O m m k

exists as m gets large. By knowing this result the proposed
algorithm for the k-dominating set seems to be very assur-
ing to decrease the number of dominators inside S signifi-
cantly with one step. When the number of nodes is high the
resulting number of dominators will be logm m< with
very high probability. The number of dominators can al-
ways reach 2k which is just a constant number and can be
assumed to be small.

Now an upper bound with high probability was shown. This
bound is just a little higher than the value in expectation.
Due to this fact the algorithm performs well in all practical
cases.

4.3 Hierarchical Analysis
In this section the whole k-dominating set algorithm is
analyzed. In the previous sections only one step of the algo-
rithm was executed. The whole process continues though
by doubling the transmission range after each round and
proceeding with the remaining dominators. In [1] only the
expectation of dominators was recursively calculated to
show a constant approximation at the end. This calculation
is misleading as consecutive rounds are not fully independ-
ent.
For the mathematical analysis in this section the high prob-
ability result is used. All the possibilities combined with
their number of remaining dominators are added up. This
will give the final expectation of dominators under a high
probability condition after the algorithm terminates.
The reduction in dominators from n down to a constant
approximation is divided into 2 phases. In Figure 4.3 it can
be seen that the first phase reduces the dominators to a
log log n approximation and the second phase brings the
algorithm to its stop at a constant approximation.

Figure 4.3 Hierarchical algorithm divided into 2 phases for

mathematical analysis

4.3.1 Phase I ()log logn n→

Starting from a total number of n dominatorsi in the whole
environmentii the number gets reduced at each step with a
high probability. Still there remains a slight possibility that
the number doesn’t get reduced very much. At the begin-
ning there are

0n n= dominators and after the ith round
there remain in dominators. For round 1i + only the 'good'
()+ cases up to round i are of interest. As soon as a 'bad'
()− case happens the execution stops for the analysis and
counts the number of dominators before the 'bad' case.
Following the first 3 rounds are listed.
Round 1
()−

log
0

1
onp

n
=

 1 on n≤

i Remember that at the beginning of the k-dominating set
algorithm all nodes are marked to be in the dominating set
and remain dominators until they are not nominated any-
more at some round.
ii At this stage the interest of the analysis is on all nodes in a
square with a side length of half the maximal transmission
range and not only on same specific area S anymore. Only
this analysis will lead to the desired constant overall ap-
proximation.

k-1 s

S’ S

phase I phase II

log log nn 1

 - 5 -

()+
log

0

11
onp

n
= −

 1 logo on n n≤
Round 2
()− see Round 1

()+−
1log log

0 1

1 11
on np

n n
⎛ ⎞⎛ ⎞

= −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 2 logo on n n≤

()++
1log log

0 1

1 11 1
on np

n n
⎛ ⎞⎛ ⎞

= − −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 2 1 1logn n n≤
Round 3
()− see Round 1
()+− see Round 2

()+ + −
1 2log log log

0 1 2

1 1 11 1
on n np

n n n
⎛ ⎞⎛ ⎞⎛ ⎞

= − −⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

 3 2n n≤

()+ + +
1 2log log log

0 1 2

1 1 11 1 1
on n np

n n n
⎛ ⎞⎛ ⎞⎛ ⎞

= − − −⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

 3 2 2logn n n≤
From the above first 3 rounds it is now easy to deduce the
expected number of dominators for the 'bad' cases in the
first phase. To do this the sum of the probabilities multi-
plied with the number of dominators of all the cases with a
'bad' finishing round must be calculated. To simplify the
calculation the probabilities are augmented a little bit. In-
stead of using the true and high probabilities of having the
'good' cases before the aborting 'bad' case, those probabili-
ties are set to 1. Using this simplification the expected
number of dominators from the first phase can be calculated
by

(4.14)
log log loglog

log log 1
0 0

1[1]
i i

i i

i

n n n n
i

n n
i ii i

S

nE Phase
n n

> >

−
= =

= =∑ ∑

Now two properties must be show for the function (4.14) to
receive a constant expectation. First it must be shown that
the term iS is sufficiently small and second it must be
shown that there are not too many additions.

Lemma 4.2:
1log log

log logi in n S
n

> ⇒ <

Proof: For a in that is large enough it is true that

log 1 1in − > . As n is not a constant log login n> can be
assumed to meet the previous requirement. Out of this fol-
lows immediately that

log 1

1 1 1
log logii n

i i

S
n n n−= < < .

Lemma 4.3: There are only ()log logO n steps in applying

logi in n recursively to itself until the result is smaller or
equal to log log n .
Proof: Using Maple it was shown that the number of recur-
sions is growing proportionally slower than log log n for

3 6 2010 ,10 ,10n = . The number of recursions with 1000 nodes
is 11 and log log(1000) 1.93≈ . This means there are about 6
times more recursions as with log log n . Due to the structure
of the functions analyzed they have no discontinuities and
will not change their behavior in the large. Therefore the
number of recursions is bound as Lemma 4.3 says.
Now the expectation for the first phase can be calculated
using function (4.14) leading to the final expectation of the
first phase

(4.15) ()
log log

0

log log[1] 1
log log

c n

i
i

c nE Phase S O
n=

≤ < ≤∑ .

As shown for Lemma 4.3i 6c ≤ is true if 310n ≥ . Therefore
the above result proofs that the number of dominators from
phase 1 is bound by ()1O .

4.3.2 Phase II ()log log 1n →

For the second phase as seen in Figure 4.3 the number of
dominators must be reduced from log log n to 1. As the
analysis here is continued from the previous result the num-
ber of dominators is log log n≤ .
At this stage when the number of dominators is getting
fewer then the probability for 'bad' cases is getting bigger. It
is not possible just to sum up all the cases as in the first
phase or the expected number of dominators from the sec-
ond phase will be too high. To proceed the second phase is
divided into X rounds. As it would be nice to have the algo-
rithm achieve the constant approximation within log log n
rounds the maximum number of rounds is set to
(4.16) log logX n≤ .
Each round now has a failure rateii of

(4.17)
[] ()log

1

1 1 , 3
2i im

i

i i

P failure m
m
m m+

= < ≥

=
.

Out of this equation follows immediately the success rate at
each round which is equals to

(4.18)
[] ()

1

1 , 3
2

log

i

i i i

P success m

m m m+

≥ ≥

=
.

From here on the second phase is divided into 2 cases. The
first one is that there are 4X≤ successful rounds on the
total of X rounds. The second case is the one with 4X>
successful rounds. For solving the first case the Chernoff
bound is very helpful.
Chernoff bound:

(4.19) () 2

1P E e δ µδ µ −≤ − ≤⎡ ⎤⎣ ⎦

Applying the Chernoff bound to the first case the probabil-
ity for having 4X≤ successful rounds can be calculated
with

i For the numerical analysis the logarithm to the base 10
was used.
ii The failure rate is equal to the probability of having a 'bad'
case in that particular round.

 - 6 -

(4.20)
1

84 211
4 2 2

XXX XP E P E e e
−− ⋅⎡ ⎤⎡ ⎤ ⎛ ⎞≤ = ≤ − ≤ =⎜ ⎟⎢ ⎥⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦

.

Using the above probability the expected number of domi-
nators from the first case can be calculated. To simplify the
calculation the worst case is taken where no reduction has
taken place since reaching log log n dominators. Therefore
the expectation is

(4.21) [] 81 log log
X

E case e n
−

≤ ⋅ .
As X was bound by the assumption in (4.16) the above
equation can by simplified as follows.

(4.22)

[]

()

()

log log
8

1
8

8

1 log log

log log log
log log

log
1

n

E case e n

n n
n

n
O

−

−

≤ ⋅

= ⋅

=

≤

Now it is also shown that the first case of the second phase
bounds the number of dominators by ()1O .
It remains to show that the second case doesn’t leave too
many dominators either. Continuing with the dominators
reduced to log log n≤ the algorithm executes and due to the
precondition there are more than 4X rounds. These 'good'
rounds all lower the number of dominators to

1 logi i im m m+ = . It was shown that the recursive applica-
tion of the above implicit reduction function can be bound
with an exponentially decreasing explicit function
(4.23) 3 4log , 5504m m m m≤ ≥ .
This makes it possible to use the explicit function for esti-
mating the upper bound of expected remaining dominators
for the second case. The probability is just set to 1 as this
will lead to a sufficiently small bound.

(4.24)

[] ()()()

()()

()()

()()

()

4

log log

1 4

4

3 4

3 4

log

log

log
4

2 1 log log

log log (I)

log log , 0.2876

log log

log (II)

1 (III)

X

n

kn

n

n

E case n

n

n k

n

n
O

−

≤ ⋅

=

= ≈ −

≤

≤

≤

In the above calculation for the second case several proper-
ties were used. These properties are listed here.
(I) 4 log logX n≤

(II) 4log log logn n≤

(III) ()1 1XX O≤
With (4.24) it is show that the second case of phase 2 re-
duces the number of remaining dominators below the
bound of ()1O .

4.3.3 Overall bound
Due to the split up of this hierarchical analysis the individ-
ual parts need to be combined to get the overall bound for
the whole algorithm. The total process was divided into 3
different parts. In the first phase the possible dominators
due to failures were estimated. In the second phase two
cases had to be considered. The first case is unfavorable as
it has few successful rounds. The number of possible domi-
nators still stays small as the possibility for this unfavorable
case is relatively small. The last case is the 'good' case
when there are many favorable rounds. In this case it is
almost obvious that the number of dominators gets reduced
as desired. Summing up all the expectations the overall
bound is found by
(4.25) () () () ()

4.15 4.22 4.24

1 1 1 1E O O O O≤ + + = .

5 Conclusion
In this paper it is shown how a k-dominating set can be
constructed using only local information. The proposed
hierarchical algorithm performs this task and it could be
shown that it achieves an overall bound of ()1O dominators
in each unit disk square of side length 1/2. Suppose a
minimal dominating set contains d dominators in the whole
environment. The proposed hierarchical algorithm can
cover the whole environment with 4d unit squares of side
length 1/2 and all of them having ()1O dominators. It fol-
lows immediately that this paper's algorithm constructs a k-
dominating set using only local information with an ()O d
approximation to the optimal dominating. The time require
for execution of the algorithm can also be bound asymptoti-
cally. Both phases of the hierarchical analysis terminate in

()log logO n . Therefore the total algorithm also terminates
in ()log logO n .

6 Future work
The mathematical analysis of this paper focuses mainly on
the asymptotical bound. Certain functional transformations
can only be realized when the number of nodes is very big.
It may be necessary for future work to analyze the algo-
rithm in detail on a 'reasonable' number of nodes depending
on the required application.

Acknowledgments
For the supportive and indispensable suggestions I would
like to thank my supervisor Thomas Moscibroda. Many
crucial steps in the mathematical analysis would not have
been possible without his help. A very grateful thank you
also goes to Fabian Kuhn who helped to find the right track
in several discussions.

References
[1] Jie Gao, Leonidas J. Guibas, John Hershberger, Li

Zhang, An Zhu. Discrete Mobile Centers, pages 1-11,
2003.

[2] Fei Dai, Jie Wu. An Extended Localized Algorithm
for Connected Dominating Set Formation in Ad Hoc
Wireless Networks, pages 1-4, 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

