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Abstract 
Calculating a minimal dominating set is known to be NP-complete. It 
would be nice to have an approximation which is not much bigger but 
could be calculated much faster. In this paper an algorithm is pro-
posed which constructs a k-dominating set. It is mathematically 
proved that the algorithm produces a constant approximation to the 
MDS and terminates very quickly. 
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1 Introduction 
In wireless ad-hoc networks collaboration among nodes is 
an extremely important task. In small working environ-
ments with only a few nodes in the same transmission range 
very simple and primitive algorithms like flooding can be 
used. As the networks get bigger and more complex these 
basic approaches to solving problems cannot be used any-
more. 
There needs to be established an overlay network layer on 
top of TCP/IP.  Without it scalability and reliability cannot 
be guaranteed. This paper is focusing on dominating sets in 
unit disk graphs. There is already a lot of work available 
dealing with dominating set problems. However a reliable 
network might need to have more than just one dominator 

per node. In this paper it is shown how a k-dominating set 
with a constant approximationi  can be constructed using 
only local information. 

2 Algorithm 
The first algorithm presented below about constructing a 
dominating set is taken from [1]. To extend the achieved 
result from dominating set to k-dominating set the algo-
rithm was slightly modified. 

2.1 Dominating Set 
At the start-up of a node it needs to assign itself a random 
number which will be its unique identifier UID in practice 
if the randomization is using a large enough range of num-
bers. Starting with a small transmission range and in the 
state of a dominating set every node queries all nodes in 
range about their UID and selects the node with the highest 
UID as its dominator. Selecting here means that the node 
informs the selected node about its selection. The node 
receiving this information must accept to become a domi-
nating node if it is not already in the dominating set. After 
such a dominator being found and informed the selecting 
node can remove its dominating state. In the special case 
where the selecting node is also the node with the highest 
UID then it will just remain in the dominating state. 
For establishing a smaller dominating set the above de-
scribed selection process is applied recursively to all nodes 
still in the dominating state. The transmission range is dou-
bled after every round and is of the form 2 logi

i nδ = ii, for 
0i > . Initially every node is in the dominating set and 

may fall out of it at any round. Thereafter the algorithm 
stops on that node. Obviously certain nodes never drop out 
of the dominating set or there would be no dominating set 
at all. After loglog 1n −  rounds the algorithm must stop and 

                                                           
i  With constant approximation an approximation to the 
minimal dominating set is meant. This approximation is 
worse only by a constant factor to the MDS. 
ii n is the total number of nodes in the maximum transmis-
sion range of the node executing the algorithm. 
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the node will remain in the dominating set if no node with 
higher UID was found. At the thn 1loglog −  round the 
transmission range is set to 

log log 1 1 2nδ − = . After this round 
no other node can cover all the nodes the processing node 
was responsible for. Even the full transmission range can-
not be enough anymore to cover all non-dominating nodes. 

2.2 K-Dominating Set 
The same idea as above for building up a dominating set is 
used to construct a k-dominating set. Every node chooses a 
random number as its UID and starts with a small transmis-
sion range to find the k highest nodes. Those k nodes are 
selected and must become dominators after getting notified. 
If the node executing the algorithm itself is among the k 
highest nodes then it will remain in the dominating set. 
Otherwise it can remove its dominating state. If less than k 
nodes are available in the current transmission range then 
all available nodes will be notified to become a dominator 
as this will be the best possible approximation to a k-
dominating set. 
The same hierarchical technique as above for the dominat-
ing set algorithm is then applied on the remaining domina-
tors. The transmission range will be doubled every round 
until the node is no longer a dominator or reaching 

211loglog =−nδ  as half of the maximum transmission range 
and then the algorithm stops. At each step the k highest 
nodes will be forced to the dominating set and the execut-
ing node will become a non-dominating node if it is not 
among the k highest nodes. 

3 Related Work 
Many ideas for this paper’s work come from [1]. The fol-
lowing three subcategories were analyzed very carefully 
and then modified and extended to proof the requested 
properties for the k-dominating case. In all the analysis 
squares are supposed to be the visible range of the wireless 
devices. This is a method for simplifying the analysis. It 
does not exactly match the actual transmission range which 
would rather be an irregular circle depending on the nearby 
environment. The squares could as well be replaced by 
circles and the outcome of all the results would not be af-
fected up to a constant factor. 

3.1 Expectation 
To get the expected number of dominators after one step of 
the dominating set algorithm the close proximity of one 
visible range is analyzed. In Figure 4.1 the model for the 
visible range in two dimensions is shown. It is assumed that 
there are no more than m nodes in the visible range L of S 
and that the side length of S is one half of the transmission 
range. 
Having this setup it was shown in [1] that the expected 
number of dominators inside S is bound by ( )mO . This is 
a very important property as it shows a drastic reduction in 
dominators by executing the dominating set algorithm to all 
the nodes in L. 

3.2 High probability 
It was also shown that the reduction of nodes inside S holds 
with high probability. To be more precise the probability 
that S contains more than 1ln8 +mm  dominators is 

bounded by ( )mmO ln1 . This means that there are more than 
( )mmO ln  dominators in S with a very small probability 

that goes towards zero quickly. 
By knowing this the proposed algorithm guarantees a re-
duction in the number of dominators. Furthermore the cal-
culated expectation is more trustful by knowing the result 
with high probability. 

3.3 Hierarchical analysis 
In the paper [1] it is said that the recursive algorithm will 
eventually produce a constant approximation ( )O d  to the 
minimal dominating set with d dominators by using at most 
log log 1n −  steps. To show this property the expectation of 

( )mO  for one step was iterated on itself. This calculation 
cannot be regarded as correct as the expected reduction of 
the remaining dominators may change after one round of 
execution. The first round is not and cannot be considered 
to be independent from the following rounds. For analyzing 
the hierarchical algorithm and showing a constant approxi-
mation of the minimal dominating set a different approach 
needs to be used. 

4 K-dominating set 
Constructing a dominating set can be a very important task 
in wireless ad-hoc networks. Generally there is no structure 
among wireless devices as they can be located anywhere. In 
certain areas the density may be very high and in other parts 
it may be very sparse. Building up a dominating set can 
help to solve problems like routing. The standard dominat-
ing set has the property that every node has at least one 
node in its range as its dominator. If we consider using such 
a dominating set for instance for solving a routing problem 
it is easy to see that the whole system is not very fault toler-
ant. If the dominating set problem can be extended to be 
more reliable even if nodes are unstable then problems may 
be solved on top of this k-dominating environment by en-
suring a higher reliability. 
The algorithm for constructing such a k-dominating set is 
already given above. In this section it is to prove its proper-
ties. The first step is to show that the algorithm reduces the 
amount of dominators. This is done by analyzing the ex-
pected number of dominators after the execution of one step 
of the algorithm. 
In a second analysis it is shown that not only the expecta-
tion holds but that a slightly higher result holds with high 
probability. This proof is essential to be convinced that the 
algorithm almost cannot be unfavorable. 
In a third subchapter the whole algorithm using its hierar-
chical structure is analyzed. This leads to the final result 
and does show that the proposed algorithm fulfills the 
wanted requirements. 

4.1 Expectation 
At a first step to analyze the algorithm for k-dominating 
sets the reduction in dominators is calculated. To do this 
one round of the algorithm is taken a close look at. In 
Figure 4.1 the model used can be seen. The expectation for 
the number of dominators inside S after one round is calcu-
lated. All the areas are squares to simplify the setup. The 
side lengths are equal to 1/2. There is a central area S and a 
neighboring area S'. In total there are eight equal neighbor-



 - 3 -

ing areas to S. Therefore only one neighboring area needs to 
be analyzed in relation to the central area. The other seven 
neighboring areas do have the exact same properties. 

 
Figure 4.1: Visible range L of S 

First the number of nodes nominated from inside S  must 
be examined. The side length of S is assumed to be half the 
transmission range of the nodes executing the algorithm. 
Due to this fact all the nodes residing inside S are mutually 
visible. Every node knows about all the other nodes’ pres-
ence and also knows all their UIDs. The algorithm nomi-
nates from every node k nodes to become their dominators. 
As a result of the mutual visibility no more than k nodes 
inside S can become dominators from nodes within S. 
(4.1) 1E k≤  
Second the number of nodes nominated from outside S 
must be examined. Let x be the number of nodes in S and y 
inside S'. 
  , 'x S y S= =  
Any node p S∈  can be nominated by a 'q S∈  only if p has 
its UID within the k-largest of q's visibility. The random 
selection of UIDs at the beginning of the algorithm gives a 
uniformly distribution of UIDs on S and S'. Therefore the 
probability for node p being within the k-highest nodes of 
q's visibility is 

(4.2) 
1

kP
y

≤
+

. 

Having x nodes in S the expected number of nodes nomi-
nated in S from S' is 

(4.3) 21 1
xkE

y
≤

+
. 

Those points are nominated to be dominators from points in 
S'. As there are y points in S' there is an absolute maximum 
of nominated points inside S from points 'q S∈ of 

(4.4) 22E yk≤ . 
With the two expectations 

21E  and 22E  the overall expecta-
tion for nominated points from S' can be calculated. The 
variable m is the total number of nodes in L before the algo-
rithm starts. 

(4.5) 

( )

2

as , 0

min ,
1

min ,
1

1 1

x y

xkE yk
y

xk y
y

k x y

k m

≥

⎛ ⎞
= ⎜ ⎟+⎝ ⎠

⎛ ⎞
= ⎜ ⎟+⎝ ⎠

≤ + + −

<

 

To get the total expectation the nodes nominated from in-
side and those nominated from outside of S must be added. 
There are 8 equal squares around S. A new constant c is 
used to simplify the equation. 
(4.6) 1 28

8

E E E

k k m

c m

= +

< +

<

 

From this result the upper bound of expected dominators 
after one round can be seen easily. It is 

(4.7) ( )E O m≤ . 

4.2 High probability 
In this subchapter a stronger bound than the expectation is 
shown. By knowing only the expectation the distribution of 
all the possible cases remains unknown. It would be nice if 
almost all the possibilities were close to the expectation. In 
this case the expectation seems to be a very reasonable 
bound. But what if the distribution is not so favorable? 
There might be a very high probability for almost no reduc-
tion in dominators and a high probability of a very good 
reduction. If the algorithm happens to produce the unfavor-
able reduction it doesn’t help much to know about the ex-
pectation since a good reduction is aimed at. Showing a 
good reduction with high probability is much more con-
vincing that the proposed algorithm works with all circum-
stances and at all times. 
As a first step to get a high probability bound the probabil-
ity that the number of nodes nominated in S from S' can 
reach a certain benchmark s is calculated. Once this func-
tion is evaluated a benchmark can be searched. This 
benchmark will be somewhere above the number in expec-
tation and must lead to a very low probability. 
The probability that s (or more) points in S can be nomi-
nated from S' is needed. To get this probability the two 
areas S and S' are analyzed in detail. 
Lemma 4.1: Out of the s+k-1 highest nodes in 'S S∪  at 
least s must be in S for S' being able to nominate s or more 
dominators in S. 
Proof: If there are less than s of the s+k-1 highest nodes in 
S than the nodes in S' have no possibility to nominate s 
dominators in S. They are forced to select more nodes in S' 
as their dominators. If the s nodes in S are chosen from a 
smaller group than the s+k-1 highest nodes not all the pos-
sibilities for having selected s dominators in S are covered. 
This comes from the fact that each node in S' chooses the k 
highest nodes as dominators. Therefore it is possible that a 
node chooses the first k-1 dominators in S' and the kth domi-
nator in S. For this reason the s+k-1 highest group must be 
considered.  

S

'S

2
1

2
3

L
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Figure 4.2: Distributing the s+k-1 highest nodes 

Knowing Lemma 4.1 the probability can be calculated by 
analyzing the combinations. The number of possibilities for 
choosing the s points in S is 

(4.8) 
x
s

⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

The number of possibilities for choosing the k-1 points in S' 
is 

(4.9) 
1

y
k
⎛ ⎞
⎜ ⎟−⎝ ⎠

. 

The number of possibilities for choosing the s+k-1 highest 
points among the nodes 'S S∪  (containing x,y nodes re-
spectively) is 

(4.10) 
1

x y
s k

+⎛ ⎞
⎜ ⎟+ −⎝ ⎠

. 

At this point the probability can be written by using 

 
#number of 'good' cases
#number of total cases

 

which leads to the equation 

(4.11) 
( )( )
( )

1

1

1

s k

i s

x y
s k ii

p
x y

s k

+ −

=
+ − −

=
+

+ −

∑
. 

In the above equation the top part adds up all the possibili-
ties for having more than s nodes in S out of the s+k-1 
highest nodes. The lower part counts all the possibilities for 
placing the s+k-1 highest nodes among the x+y nodes of 

'S S∪ . 
By testing the probability of equation (4.11) a fast degrada-
tion can be observed. Using the same asymptotical bound 
as in [1] for the proof with high probability then also the 
same low probability is found. It was proofed by Thomas 
Moscibroda that with an exponentially small probability 

(4.12) log

1
mp

m
≤  

a maximal bound of 

(4.13) ( )( )max log , 2O m m k  

exists as m gets large. By knowing this result the proposed 
algorithm for the k-dominating set seems to be very assur-
ing to decrease the number of dominators inside S signifi-
cantly with one step. When the number of nodes is high the 
resulting number of dominators will be logm m<  with 
very high probability. The number of dominators can al-
ways reach 2k  which is just a constant number and can be 
assumed to be small. 

Now an upper bound with high probability was shown. This 
bound is just a little higher than the value in expectation. 
Due to this fact the algorithm performs well in all practical 
cases. 

4.3 Hierarchical Analysis 
In this section the whole k-dominating set algorithm is 
analyzed. In the previous sections only one step of the algo-
rithm was executed. The whole process continues though 
by doubling the transmission range after each round and 
proceeding with the remaining dominators. In [1] only the 
expectation of dominators was recursively calculated to 
show a constant approximation at the end. This calculation 
is misleading as consecutive rounds are not fully independ-
ent. 
For the mathematical analysis in this section the high prob-
ability result is used. All the possibilities combined with 
their number of remaining dominators are added up. This 
will give the final expectation of dominators under a high 
probability condition after the algorithm terminates. 
The reduction in dominators from n down to a constant 
approximation is divided into 2 phases. In Figure 4.3 it can 
be seen that the first phase reduces the dominators to a 
log log n  approximation and the second phase brings the 
algorithm to its stop at a constant approximation. 

 
Figure 4.3 Hierarchical algorithm divided into 2 phases for 

mathematical analysis 

4.3.1 Phase I ( )log logn n→  

Starting from a total number of n dominatorsi in the whole 
environmentii the number gets reduced at each step with a 
high probability. Still there remains a slight possibility that 
the number doesn’t get reduced very much. At the begin-
ning there are 

0n n=  dominators and after the ith round 
there remain in  dominators. For round 1i +  only the 'good' 
( )+  cases up to round i are of interest. As soon as a 'bad' 
( )−  case happens the execution stops for the analysis and 
counts the number of dominators before the 'bad' case. 
Following the first 3 rounds are listed. 
Round 1 
( )−  

log
0

1
onp

n
=  

 1 on n≤  

                                                           
i Remember that at the beginning of the k-dominating set 
algorithm all nodes are marked to be in the dominating set 
and remain dominators until they are not nominated any-
more at some round. 
ii At this stage the interest of the analysis is on all nodes in a 
square with a side length of half the maximal transmission 
range and not only on same specific area S anymore. Only 
this analysis will lead to the desired constant overall ap-
proximation. 

k-1 s 

S’ S 

phase I phase II 

log log nn 1
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( )+  
log

0

11
onp

n
= −  

 1 logo on n n≤  
Round 2 
( )−  see Round 1 

( )+−  
1log log

0 1

1 11
on np

n n
⎛ ⎞⎛ ⎞

= −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

 2 logo on n n≤  

( )++  
1log log

0 1

1 11 1
on np

n n
⎛ ⎞⎛ ⎞

= − −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

 2 1 1logn n n≤  
Round 3 
( )−  see Round 1 
( )+−  see Round 2 

( )+ + −  
1 2log log log

0 1 2

1 1 11 1
on n np

n n n
⎛ ⎞⎛ ⎞⎛ ⎞

= − −⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

 

 3 2n n≤  

( )+ + +  
1 2log log log

0 1 2

1 1 11 1 1
on n np

n n n
⎛ ⎞⎛ ⎞⎛ ⎞

= − − −⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

 

 3 2 2logn n n≤  
From the above first 3 rounds it is now easy to deduce the 
expected number of dominators for the 'bad' cases in the 
first phase. To do this the sum of the probabilities multi-
plied with the number of dominators of all the cases with a 
'bad' finishing round must be calculated. To simplify the 
calculation the probabilities are augmented a little bit. In-
stead of using the true and high probabilities of having the 
'good' cases before the aborting 'bad' case, those probabili-
ties are set to 1. Using this simplification the expected 
number of dominators from the first phase can be calculated 
by 

(4.14) 
log log loglog

log log 1
0 0

1[ 1]
i i

i i

i

n n n n
i

n n
i ii i

S

nE Phase
n n

> >

−
= =

= =∑ ∑  

Now two properties must be show for the function (4.14) to 
receive a constant expectation. First it must be shown that 
the term iS  is sufficiently small and second it must be 
shown that there are not too many additions. 

Lemma 4.2: 
1log log   

log logi in n S
n

> ⇒ <  

Proof: For a in  that is large enough it is true that 

log 1 1in − > . As n is not a constant log login n>  can be 
assumed to meet the previous requirement. Out of this fol-
lows immediately that 

log 1

1 1 1
log logii n

i i

S
n n n−= < < .  

Lemma 4.3: There are only ( )log logO n  steps in applying 

logi in n  recursively to itself until the result is smaller or 
equal to log log n . 
Proof: Using Maple it was shown that the number of recur-
sions is growing proportionally slower than log log n  for 

3 6 2010 ,10 ,10n = . The number of recursions with 1000 nodes 
is 11 and log log(1000) 1.93≈ . This means there are about 6 
times more recursions as with log log n . Due to the structure 
of the functions analyzed they have no discontinuities and 
will not change their behavior in the large.  Therefore the 
number of recursions is bound as Lemma 4.3 says.  
Now the expectation for the first phase can be calculated 
using function (4.14) leading to the final expectation of the 
first phase 

(4.15) ( )
log log

0

log log[ 1] 1
log log

c n

i
i

c nE Phase S O
n=

≤ < ≤∑ . 

As shown for Lemma 4.3i 6c ≤  is true if 310n ≥ . Therefore 
the above result proofs that the number of dominators from 
phase 1 is bound by ( )1O . 

4.3.2 Phase II ( )log log 1n →  

For the second phase as seen in Figure 4.3 the number of 
dominators must be reduced from log log n  to 1. As the 
analysis here is continued from the previous result the num-
ber of dominators is log log n≤ . 
At this stage when the number of dominators is getting 
fewer then the probability for 'bad' cases is getting bigger. It 
is not possible just to sum up all the cases as in the first 
phase or the expected number of dominators from the sec-
ond phase will be too high. To proceed the second phase is 
divided into X rounds. As it would be nice to have the algo-
rithm achieve the constant approximation within log log n  
rounds the maximum number of rounds is set to 
(4.16) log logX n≤ . 
Each round now has a failure rateii of 

(4.17) 
[ ] ( )log

1

1 1   , 3
2i im

i

i i

P failure m
m
m m+

= < ≥

=
. 

Out of this equation follows immediately the success rate at 
each round which is equals to 

(4.18) 
[ ] ( )

1

1   , 3
2

log

i

i i i

P success m

m m m+

≥ ≥

=
. 

From here on the second phase is divided into 2 cases. The 
first one is that there are 4X≤  successful rounds on the 
total of X rounds. The second case is the one with 4X>  
successful rounds. For solving the first case the Chernoff 
bound is very helpful. 
Chernoff bound: 

(4.19) ( ) 2

1P E e δ µδ µ −≤ − ≤⎡ ⎤⎣ ⎦  

Applying the Chernoff bound to the first case the probabil-
ity for having 4X≤  successful rounds can be calculated 
with 

                                                           
i For the numerical analysis the logarithm to the base 10 
was used. 
ii The failure rate is equal to the probability of having a 'bad' 
case in that particular round. 
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(4.20)
1

84 211
4 2 2

XXX XP E P E e e
−− ⋅⎡ ⎤⎡ ⎤ ⎛ ⎞≤ = ≤ − ≤ =⎜ ⎟⎢ ⎥⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦

. 

Using the above probability the expected number of domi-
nators from the first case can be calculated. To simplify the 
calculation the worst case is taken where no reduction has 
taken place since reaching log log n  dominators. Therefore 
the expectation is 

(4.21) [ ] 81 log log
X

E case e n
−

≤ ⋅ . 
As X was bound by the assumption in (4.16) the above 
equation can by simplified as follows. 

(4.22) 

[ ]

( )

( )

log log
8

1
8

8

1 log log

log log log
log log

log
1

n

E case e n

n n
n

n
O

−

−

≤ ⋅

= ⋅

=

≤

 

Now it is also shown that the first case of the second phase 
bounds the number of dominators by ( )1O . 
It remains to show that the second case doesn’t leave too 
many dominators either. Continuing with the dominators 
reduced to log log n≤  the algorithm executes and due to the 
precondition there are more than 4X  rounds. These 'good' 
rounds all lower the number of dominators to 

1 logi i im m m+ = . It was shown that the recursive applica-
tion of the above implicit reduction function can be bound 
with an exponentially decreasing explicit function 
(4.23) 3 4log  , 5504m m m m≤ ≥ . 
This makes it possible to use the explicit function for esti-
mating the upper bound of expected remaining dominators 
for the second case. The probability is just set to 1 as this 
will lead to a sufficiently small bound. 

(4.24)

[ ] ( )( )( )

( )( )

( )( )

( )( )

( )

4

log log

1 4

4

3 4

3 4

log

log

log
4

2 1 log log

log log  (I)

log log  , 0.2876

log log

log  (II)

1  (III)

X

n

kn

n

n

E case n

n

n k

n

n
O

−

≤ ⋅

=

= ≈ −

≤

≤

≤

 

In the above calculation for the second case several proper-
ties were used. These properties are listed here. 
(I) 4 log logX n≤  

(II) 4log log logn n≤  

(III) ( )1 1XX O≤  
With (4.24) it is show that the second case of phase 2 re-
duces the number of remaining dominators below the 
bound of ( )1O . 

4.3.3 Overall bound 
Due to the split up of this hierarchical analysis the individ-
ual parts need to be combined to get the overall bound for 
the whole algorithm. The total process was divided into 3 
different parts. In the first phase the possible dominators 
due to failures were estimated. In the second phase two 
cases had to be considered. The first case is unfavorable as 
it has few successful rounds. The number of possible domi-
nators still stays small as the possibility for this unfavorable 
case is relatively small. The last case is the 'good' case 
when there are many favorable rounds. In this case it is 
almost obvious that the number of dominators gets reduced 
as desired. Summing up all the expectations the overall 
bound is found by 
(4.25) ( ) ( ) ( ) ( )

4.15 4.22 4.24

1 1 1 1E O O O O≤ + + = . 

5 Conclusion 
In this paper it is shown how a k-dominating set can be 
constructed using only local information. The proposed 
hierarchical algorithm performs this task and it could be 
shown that it achieves an overall bound of ( )1O  dominators 
in each unit disk square of side length 1/2. Suppose a 
minimal dominating set contains d dominators in the whole 
environment. The proposed hierarchical algorithm can 
cover the whole environment with 4d unit squares of side 
length 1/2 and all of them having ( )1O  dominators. It fol-
lows immediately that this paper's algorithm constructs a k-
dominating set using only local information with an ( )O d  
approximation to the optimal dominating. The time require 
for execution of the algorithm can also be bound asymptoti-
cally. Both phases of the hierarchical analysis terminate in 

( )log logO n . Therefore the total algorithm also terminates 
in ( )log logO n . 

6 Future work 
The mathematical analysis of this paper focuses mainly on 
the asymptotical bound. Certain functional transformations 
can only be realized when the number of nodes is very big. 
It may be necessary for future work to analyze the algo-
rithm in detail on a 'reasonable' number of nodes depending 
on the required application. 
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