
P2P File-sharing
Traffic Identification Method

Validation and Verification

A Semester Thesis by
Roger Kaspar

Tutor:
Arno Wagner

Co-Tutor:
Thomas Dübendorfer

Supervisor:
Prof. Dr. Bernhard Plattner

9th March 2005

Student Thesis SA-2005-11

Abstract

P2P networks have become more and more important. Even technical unsophisticated
users begin to use the possibilities of P2P file-sharing. Recently the P2P clients have
started to use random ports what makes the detection with only port based methods
nearly impossible. Therefore an algorithm has been developed during a master’s thesis by
Lukas Hämmerle [4] that implements a population tracking method of P2P hosts. This
application is called PeerTracker.
This semester thesis verifies the results found by that population tracking algorithm. To
verify the identified P2P hosts, an online verification algorithm has been developed and
implemented. One of the main problems with that approach is, that many P2P hosts
are located behind NAT boxes or restrictive firewalls and therefore cannot be reached
by a polling algorithm. Nevertheless a lower limit for the reliability of the identification
algorithm has been found by making some assumptions about those hosts which could not
be reached by the verification. Additionally a traffic analysis has been done on the P2P
traffic caused by the identified P2P hosts.
In this thesis 75-88% of the hosts identified as P2P peers by the PeerTracker could be
successfully verified. Additionally, 7% of the total P2P traffic in the SWITCH network
could be verified as P2P traffic.

Contents

1 Introduction 11
1.1 Overview . 11

1.1.1 DDoSVax Project . 11
1.1.2 Reasons for P2P Host Identification 11
1.1.3 Reason for P2P Host Verification . 12

1.2 Goals of this Thesis . 12
1.2.1 Online Verification of Active P2P Hosts 12
1.2.2 Analysis of P2P Traffic in the SWITCH Network 12

1.3 Network Environment . 12
1.3.1 Flow-level Data . 13

1.4 P2P Host Identification by the Peertracker 13
1.4.1 Host Identification Method . 13
1.4.2 Implementation . 13

1.5 Privacy Issues . 14

2 P2P Host Verification 15
2.1 P2P Systems Considered . 15
2.2 Initial Position . 18

2.2.1 Available Data . 18
2.2.2 Setup . 18

2.3 Verification for Concrete P2P Systems . 18
2.3.1 eDonkey, Kademlia, Overnet . 19
2.3.2 Gnutella . 20
2.3.3 FastTrack . 20
2.3.4 BitTorrent . 21

2.4 Drawbacks of Polling . 21
2.4.1 NAT . 21
2.4.2 Firewalls . 22

2.5 Finding a Representative Subset for Peer Verification 22
2.5.1 Methods . 22

2.6 Traffic Identification . 23
2.7 Limitations . 24

3 Implementation 25
3.1 Configuration Setup . 25

3.1.1 Modifications to the Original PeerTracker 26
3.2 P2P Host Verification . 26
3.3 P2P Traffic Verification . 27

6 CONTENTS

4 Findings 29
4.1 Validating the Verification . 29

4.1.1 NAT and Firewall Usage in the SWITCH Network 29
4.1.2 Choice of the Subset . 31

4.2 P2P Host Verification . 31
4.2.1 Interpretation of Unsuccessfully Verified Hosts 33

4.3 P2P Traffic in SWITCH Network . 34
4.3.1 General Traffic Consumption . 35
4.3.2 Other Findings . 36

5 Conclusion 39
5.1 P2P Host Verification . 39
5.2 P2P Traffic Verification . 39

6 Outlook and Further Work 41
6.1 Verifying BitTorrent Hosts . 41
6.2 Detection whether Hosts are behind NAT/Firewall 41
6.3 Verification of Hosts behind NAT/Firewall 41

6.3.1 eDonkey, Kademlia, Overnet . 41
6.3.2 Gnutella . 42
6.3.3 FastTrack . 42

References 43

List of Figures

1.1 SWITCH network topology [27] . 13
1.2 States for identified hosts . 14

2.1 Original setup . 19
2.2 Network address translation . 21

3.1 Setup for the verification process . 25

4.1 Reachable hosts, 9.2.2005 (total 423 hosts) 30
4.2 Verified hosts, 9.2.2005 . 32

8 LIST OF FIGURES

List of Tables

2.1 Usage of P2P networks, 21.2.05 15:00-15:15, [1] 15
2.2 eDonkey Hello message . 20

3.1 Time used by the verification script (two typical measurements) 26

4.1 Reachable hosts, 9.2.2005 14:15, duration of measurement 172s (total 423
hosts) . 29

4.2 Average P2P traffic per host, 9.2.2005 15:00-15:15 (total 438 hosts) 30
4.3 Reachable hosts vs. successfully verified hosts, 9.2.2005 15:15, duration of

measurement 172s . 32
4.4 TCP connectable hosts vs. successfully verified hosts, 9.2.2005 15:15, du-

ration of measurement 172s . 33
4.5 Reachable hosts that immediately reset TCP connection with P2P default

port among their most used local ports, average over 15 minutes, 9.2.2005
15:00-15:15 . 34

4.6 Successfully verified hosts vs. unsuccessfully verified hosts, average over 15
minutes, 9.2.2005 15:00-15:15 . 34

4.7 P2P traffic vs. non-P2P traffic, average over 15 minutes, 9.2.2005 15:00-15:15 35
4.8 Total traffic analyzed and verified, average over 15 minutes, 9.2.2005 15:00-

15:15 . 35
4.9 Traffic consumption by the different networks (in brackets average traffic

per host over 15 minutes), 9.2.2005 15:00-15:15 36
4.10 ”Heavy hitters” in SWITCH network, average traffic per host over 15

minutes, 9.2.2005 15:00-15:15 . 36
4.11 Clients on default port vs. on non-default port (only successfully verified

hosts), average traffic per host over 15 minutes, 9.2.2005 15:00-15:15 37

Chapter 1

Introduction

The goal of this thesis is to verify the results of the master thesis ”P2P Population Tracking
and Traffic Characterization of Current P2P File-sharing Systems” [4] by Lukas Hämmerle.
Chapter 1 provides basic information that is needed to comprehend the goals, the results
and the problems of this task. Chapter 2 will show several methods for online P2P host
verification. Additionally, the fundamentals for the interpretation of the results found are
given. How the P2P host verification and the traffic analysis are implemented is described
in Chapter 3. In Chapter 4 the results of the measurements made and their interpretation
can be found. In Chapter 5 the findings of this thesis are summarized. Chapter 6 presents
some suggestions for further work.
This introduction only covers those topics which are necessary to understand the statement
made in this thesis. An exhaustive introduction to P2P networks and DDosVax can be
found in [4].

1.1 Overview

In the last years, P2P file-sharing has become one of the most important applications on
the Internet. In 2003 estimated 81.5 million Internet users were downloading music using
a P2P file-sharing program according to [24]. This corresponds almost to 5% of the total
Internet users worldwide. P2P file-sharing contributes a large amount of traffic that in
many networks exceeds the mail/web traffic which has been dominating the Internet so
far [4].

1.1.1 DDoSVax Project

This thesis is part of the DDoSVax project [29], which is a joint research project between
the ETH Zürich and SWITCH [27]. The goal of DDoSVax is to find methods of detection
and defense against distributed DoS attacks. The detection is based on NetFlow-data that
is collected at the border routers of the SWITCH network (see Section 1.3).

1.1.2 Reasons for P2P Host Identification

The foregoing thesis [4] implemented algorithms for P2P host identification to, among
other things, estimated the traffic caused by P2P hosts in the SWITCH network. To know
the amount of bandwidth consumed by P2P hosts is not only important for application
specific traffic engineering and shaping, but also to detect anomalies on P2P traffic. Due
to the increasing use of P2P file-sharing applications it is only a matter of time until some
serious Internet worms will appear using P2P networks. If such worms can be detected in
appropriate time serious damage can be avoided.

12 CHAPTER 1 INTRODUCTION

1.1.3 Reason for P2P Host Verification

The results of the foregoing thesis [4] are rather astonishing. The bandwidth consumption
of the examined P2P networks was found to be a large fraction of the total bandwidth
consumption and the number of identified P2P hosts was fairly high. This thesis was
done to verify these results and check if the algorithm used provides reliable information.
By verifying the identified P2P hosts a lower limit for the accuracy of the identification
algorithm can be found.

1.2 Goals of this Thesis

1.2.1 Online Verification of Active P2P Hosts

The following goals have to be reached to find a lower limit of the reliability of the iden-
tification algorithm used by [4]:

1. Find and implement a polling mechanism for every P2P network whose peers we
want to verify.

2. Find an appropriate subset of the identified hosts on which the verification can be
done.

3. Analyze the data found and find the lower limit. Verify the choice of the subset for
this P2P host verification.

1.2.2 Analysis of P2P Traffic in the SWITCH Network

In order to verify the P2P traffic measurements made by the foregoing thesis, the following
goals were defined:

1. Find out how accurate the P2P traffic estimations by [4] were.

2. Verify the choice of the subset of identified P2P hosts for the host verification with
the found P2P traffic insights.

3. Find answers to the following questions:

• Which P2P network consumes the most bandwidth?

• Do any major differences between P2P usage of different hosts exit?

• How important is the use of non P2P default ports regarding the gained band-
width for P2P users?

1.3 Network Environment

P2P identification and traffic analysis in this thesis are done by processing flow-level data
gathered from the SWITCH network. SWITCH (Swiss Education and Research Network)
connects almost all universities, research facilities and other educational institutions in
Switzerland. There exist four border gateways that connect the SWITCH network to
peering partners.

1.4 P2P HOST IDENTIFICATION BY THE PEERTRACKER 13

Figure 1.1: SWITCH network topology [27]

1.3.1 Flow-level Data

The NetFlow format by Cisco Systems is a data format for IP traffic information. Cisco
routers generate NetFlow records, that are exported from the router in UDP packets
and collected using a NetFlow collector. A flow is defined as series of IP packets with
the same source IP, destination IP, source port and destination port [28]. NetFlows are
unidirectional and for this reason a TCP connection results in two flows, one in each
direction. Flows are expired from the router buffer and emitted to a collector if the
maximum lifetime is exceeded (default is 15 minutes) or the maximum idle time is reached
(default is 30 seconds).

1.4 P2P Host Identification by the Peertracker

In the foregoing master thesis ”P2P Population Tracking and Traffic Characterization of
Current P2P File-sharing Systems” an application was created that identifies P2P hosts
out of NetFlow data - the PeerTracker. The P2P networks Kademlia, Overnet, eDonkey,
BitTorrent, Gnutella and FastTrack have been considered.

1.4.1 Host Identification Method

The developed algorithm for P2P host identification uses a MURP1 approach that uses
the neighborhood relations to determine a peer. The criteria for a host to be considered
as an active peer is, that it either has enough connections to previously identified active
peers or that the number of suspicious flows (defined by the P2P default ports) is higher
than a threshold. The PeerTracker uses five different states in its host pool (see Figure
1.2). The most important hosts for this thesis are the active ones. (Detailed information
about the used identification method can be found in [4].)

1.4.2 Implementation

The PeerTracker was developed under Debian Linux using C. The program works as an
UPFrame2 [6] plug-in or in standalone mode. Therefore it either reads from UPFrame or a
named fifo pipe. The PeerTracker reads the NetFlows continuously and updates the peer
statistics accordingly. The host pool is evaluated periodically and the hosts are assigned

1Most Used Remote Port
2An application that provides a flexible plug-in framework to do online measurements of NetFlow data.

14 CHAPTER 1 INTRODUCTION

Figure 1.2: States for identified hosts

to the according states (see figure 1.2). When this is done, the active peers are written
into a file. The verification algorithm developed in this thesis makes use of that dump file.

1.5 Privacy Issues

NetFlow data of the SWITCH network and its content have only been used for the identi-
fication and verification of P2P hosts. The identified hosts IP addresses were only stored
temporarily. Information which relate hosts to users has not been analyzed neither has it
been stored. The only purpose of this work was to analyze P2P usage in the SWITCH
network. NetFlow data has only been transferred and stored in secure ways and has not
been given to third persons.

Chapter 2

P2P Host Verification

The first section of this chapter describes the P2P networks that have been considered.
Section 2.2 shows the initial position of this thesis and Section 2.3 explains the online
verification mechanisms that have been used on the different P2P networks. Section 2.4
and 2.5 deal with the problem that many P2P hosts cannot be polled directly and how
it is handled. Besides P2P host verification this thesis also analyzes the traffic caused by
P2P hosts. Section 2.6 describes what traffic can be identified as P2P traffic and Section
2.7 explains the limitations of the approach.

2.1 P2P Systems Considered

In this thesis, algorithms to poll clients of several P2P networks are presented. The consid-
ered P2P networks are: eDonkey, Kademlia, Overnet, Gnutella and FastTrack. BitTorrent
hosts cannot be verified by polling and therefore they are not considered in this thesis,
even though the PeerTracker is able to identify BitTorrent clients [4].

Network Users
eDonkey 3’361’422
Fasttrack 2’879’413
Gnutella 1’380’738
Overnet 1’376’256

DirectConnect 436’647
MP2P 255’855

Filetopia 4’611

Table 2.1: Usage of P2P networks, 21.2.05 15:00-15:15, [1]

According to Slyck.com [1], which is one of the most used forum and newspage regarding
P2P file-sharing, the most used network in February 2005 is eDonkey followed by Fast-
Track, Gnutella and Overnet. The proportions can be seen in Table 2.1. BitTorrent does
not show up in the Slyck statistics since its user base is difficult to estimate [1]. The
Kademlia protocol is closely related to eDonkey since is was created by the developers of
eMule [9], the most popular client for the eDonkey network. Until now only eMule clients
implement the Kademlia protocol and therefore every Kademlia user is most likely also a
eDonkey user.
In the following sections the considered P2P networks are discussed.

16 CHAPTER 2 P2P HOST VERIFICATION

eDonkey

eDonkey is a P2P network that relies on a centralized server structure, which holds the
file index of shared files. Unlike Napster, the dedicated server software is freely available
and therefore about 80 eDonkey server exist. Due to the fact that every user has to
authenticate with one of these servers, the overall number of users is known at each time.
On an average day in February 2005 there were between 2.8 and 3.8 million hosts connected
to the eDonkey network, sharing around 350 million files.
There exist several clients for the eDonkey network. The most used ones are the official
eDonkey2000 [10] client by eDonkey’s creator MetaMachine and the even more popular
eMule client [9]. One of the main reasons for the popularity of eMule is its open source
policy which permits the addition of useful features to the clients.
One of the main vulnerability of the eDonkey network is its centralized server structure.
Therefore the developers of eDonkey2000 and eMule started to integrate another, com-
pletely decentralized network into their client. For the eDonkey2000 client this is Overnet
and for eMule Kademlia.

Overnet

Overnet is a decentralized successor of the eDonkey network developed by MetaMachine.
Overnet was supposed to replace eDonkey but so far this has not happened. To push
the use of this network MetaMachine began to modify their client eDonkey2000 that it
connects also to the Overnet network. Overnet uses - like Kademlia - the XOR-algorithm
[13] that distributes the file indexes to the participants of the P2P network. UDP is used
for signaling traffic.
When this thesis was written there existed only one official Overnet client. MetaMachine
took the standalone Overnet client from the net and provides now only the hybrid client
eDonkey2000 V1.0. The only inofficial Overnet client is the multi-hybrid mlDonkey client,
which is not used by many users due to its complicated handling. It is used merely by
rather technical sophisticated people.

Kademlia

The creators of the eDonkey client eMule developed a new completely decentralized net-
work called Kademlia. Even though it also uses the XOR-algorithm [13] and UDP for
signaling traffic it is not compatible to the Overnet protocol. At the time this thesis was
written the Kademlia networks was in open test phase. It is supported by the eMule client
but is not enabled by default. Therefore it can be assumed that only few eMule users have
it turned on. So far eMule is the only client connecting to the Kademlia network. There-
fore every Kademlia peer is also part of the eDonkey network. Unfortunately eMule uses
the same port for eDonkey and Kademlia traffic, that is why these two cannot easily be
separated.

Gnutella

In early 2000 the first Gnutella client was developed by Nullsoft employees. Is is a com-
pletely decentralized network that is fully open source, which makes the network so popular
and almost immortal. It survived several setbacks, for example the scaling problems at the
beginning. The open source community debugged and improved the protocol. In 2004,
the Gnutella network became very popular again. Among other things because of many
P2P users abandoned FastTrack or other networks which are financed through spyware
and other third hand applications. Due to its open source character Gnutella provides
also some protection from being sued. A user can be sure that it has been tested and

2.1 P2P SYSTEMS CONSIDERED 17

improved by many sophisticated users. In this way the less ”dangerous” functions exist in
the protocol (e.g. listing of shared files in Kazaa).
A Gnutella client has 4-10 TCP connections to other peers. For signaling traffic UDP is
used and to make use of the benefits of server based networks a ”ultra-peer” state was
created. ”Ultra-peer” status is self assigned by powerful peers and provides some extra
functionality compared to ordinary nodes. There exist many freely available Gnutella
clients. Some of the most popular are Limewire, Bearshare and Morpheus. However, the
one that has the most increasing number of users is the Shareaza [38] client. It has a very
pleasant GUI and connects also to eDonkey and BitTorrent.

FastTrack

In 2003, FastTrack was the most used P2P network. Originally based on Gnutella it was
developed and brought to market by Sharman Networks [32]. Since it became public
knowledge that it has built in spyware and other third hand applications, many users
abandoned the FastTrack network and changed to Gnutella, BitTorrent or eDonkey. An-
other reason was also the fact that FastTrack users were the first ones sued by the RIAA1

and MPAA2.
FastTrack is a decentralized network whose protocol is not publicly available and therefore
not completely documented. It utilizes something called ”super-peers” to create temporary
indexing servers that would allow the network to scale better. Any client may become
a ”super-peer” if the according computer and Internet connection are powerful enough.
Every FastTrack client needs a TCP connection to one ”super-peer” to join the network.
The signaling traffic in Fasttrack is encrypted and uses UDP. Download traffic is not
encrypted yet.
Only three official clients exist, namely Kazaa, Grokster and iMesh. Since all three of
them in the ”free” version are packed with unwelcome third-party programs, some people
have started to modify the official clients what resulted in Kazaa Lite K++ or DietK [39].
However Sharman Networks makes its money with this thirds-party add-ons and therefore
it forced several websites that offered these clients to shut down.
In February 2005 one of the several court proceedings against Sharman Networks brought
a severe setback for FastTrack. An Australian court revealed some documents that show
that Sharman Networks has control over their network and could ban every unwanted file
from the indexing sites. If they are able to do that they could be forced to install filters
against copyrighted material. This could be the end for FastTrack [22].

BitTorrent

BitTorrent is a P2P file-sharing protocol that became very popular for larger files (e.g.
CD-size) and is developed by Bram Cohen. In contradiction to other P2P networks it
has no built in search algorithm. To download a file the according .torrent file has to be
downloaded from a webpage3. Torrent files contain the hash values of a file and the address
of a tracker. The tracker supplies peers with addresses of other peers that share the wanted
files. There exists no single BitTorrent network, but thousands of temporary networks
consisting of clients downloading the same file. During the download process the tracker
periodically sends updated information about new download locations. Communication
between two peers is done with TCP. There exist many different BitTorrent clients which
are in general freely available for everyone. Very popular are the original BitTorrent client
written by Bram Cohen himself and the java based client Azureus [40].

1Motion Picture Association of America [34]
2Recording Industry Association of America [33]
3E.g. www.torrentreactor.to

18 CHAPTER 2 P2P HOST VERIFICATION

2.2 Initial Position

First the available output from the PeerTracker will be analyzed and then the environment
and the original setup will be taken into focus.

2.2.1 Available Data

The PeerTracker takes NetFlows as an input and then periodically generates two output
files. One file contains the statistic (e.g. traffic information) and configuration variables
(such as the evaluation period), the other information about the identified peers. The input
parameters can be adjusted in the config file4. Basically two things had to be adjusted:
The evaluation period (the time after the identified peers are dumped) and settings about
which part of the host pool has to be dumped. Only the active peers were needed - a
verification of dead peer does not make much sense.
The statistic files have been mainly important for the traffic analysis in section 4.3 whereas
the peerdump file was used to gather important data about the peers that had to be
verified. The file with the dumped active peers was uses as the input for the online
verification. Important for the verification was the IP address of the host, the assumed
P2P network and the three most used local ports (UDP and TCP).

2.2.2 Setup

Before this thesis the PeerTracker had only been used in offline mode. The storage system
of NetFlow data, used by the DDosVax team, was designed for offline processing of the
flows: The collected flows are available from the DDoSVax archive three hours after the
last flow was recorded by the border routers. The NetFlows are collected by a server in
the SWITCH network and stored into two files. One contains the flows of three border
routers, the other those of the fourth one. Every hour two new files are created. These
files then are sent to a DDoSVax server where they are stored (see Figure 2.1). A latency
of tree hours is way too much for an online verification of identified P2P hosts - too many
clients would not be running anymore. Therefore one of the tasks of this thesis was to
build a setup where the NetFlow data can be processed with an appropriate latency. How
this was done can be found in Section 3.1.
The PeerTracker reads either from a named fifo pipe or from UPFrame. In previous
measurements the whole two files with one hour of NetFlow data have been combined and
streamed into a named pipe.

2.3 Verification for Concrete P2P Systems

In this section the protocols of the analyzed P2P networks are discussed more closely and
it is explained which part of each protocol can be used for an online verification. To verify
whether a specific P2P client is really running on a host, one must either closely analyze
the network traffic or the host must be contacted in some way. Due to the fact that within
the DDoSVax project there is no possibility to examine the payloads of the packets that
are sent or received by a host, in this thesis it was tried to verify the identified P2P hosts
by contacting them. If parts of a P2P protocol are known that allow to communicate
directly with active peers, a polling method can contact a potential P2P client and send
it a typical message for the particular network. By analyzing the hosts answer a peer can
be verified.

4PeerTracker.cfg

2.3 VERIFICATION FOR CONCRETE P2P SYSTEMS 19

Figure 2.1: Original setup

2.3.1 eDonkey, Kademlia, Overnet

The most important thing for P2P clients is downloading and uploading files. Thus ver-
ification of a P2P client can be done at the point in the protocol where a peer contacts
another to start a download process. This approach seems to be the most promising one.

With the eDonkey protocol, a client that wants to download a file contacts the target peer
with an eDonkey Hello message. Even if the contacted peer does not share any files at all
it has to answer to this request. This is specified in the protocol description [11]. That
way every running eDonkey client (if it accepts connections from outside, see Section 2.4)
can be successfully verified. As Kademlia and Overnet also makes use of this message,
peers of these networks can be verified with the same method.

The eDonkey protocol is binary and therefore a bit more difficult to understand. Every
packet comes with a header of five bytes. The first byte is the eDonkey Protocol identifier,
which has the value 0xe3 for eDonkey, 0xc5 for eMule or 0xd4 for eMule with compression.
The last one is not important for the verification process because it is not used with
the eDonkey Hello message. The four following bytes indicate the length of the data
encapsulated in the packet. The packet sent by the verification process then contains the
two hex values 0x01 and 0x10, which denote an eDonkey Hello message, followed by the
client’s hash value, its ID and port. The important part of the eDonkey Hello message is
summarized in Table 2.2.

The content of the peer’s reply is not important to the verification process as long as the
first byte is the eDonkey protocol marker hex value 0xe3 or 0xc5 (eMule extension). If
such a message is received the peer is successfully verified. The verification algorithm does
the explained procedure on the three most used local ports by connection count, assuming
that the listening port is among them. In addition the default ports 4662, 4672 and 5662
are polled.

20 CHAPTER 2 P2P HOST VERIFICATION

Bytes Content
1 Protocol descriptor: 0xe3 or 0xc5
4 Packet data length
2 ’Hello client’ descriptor: 0x01 0x10
16 MD4 digest client hash
4 Client ID
2 Client Port

Table 2.2: eDonkey Hello message

2.3.2 Gnutella

Gnutella is an open source protocol and therefore the verification is somewhat more com-
prehensible. The counterpart of the eDonkey Hello message in the eDonkey handshake is
the Gnutella Connect message in the Gnutella handshake. Every time a peers wants to
connect to another one, that message is sent in plain5 text via TCP. If the contacted peer is
willing to accept the connection it replies with Gnutella OK. Any other response indicates
the servant’s unwillingness to accept the connection. A servant may reject an incoming
connection request for a variety of reasons - a servant’s pool of incoming connection slots
may be exhausted, or it may not support the same version of the protocol as the request-
ing servant, for example [26]. In this case a peer answers either with Gnutella maximum
connections reached or another error message. They all have one thing in common - they
begin with the word ”Gnutella”.
The only problem with Gnutella is that in the protocol specifications it is only recom-
mended to answer the Gnutella Connect request if a peer is unwilling to accept the con-
nection. The most of the clients do it but there could exist some clients that do not reply
at all. This could result in a little lower quota for successfully verified Gnutella hosts.
The explained Gnutella Connect message is used by the verification algorithm. It tries
to establishes a TCP connection to an assumed Gnutella peer and sends a Gnutella Con-
nect message. If then an answer containing the word ”Gnutella” is received, the peer is
successfully verified. Besides the three most used local ports the Gnutella default ports
6346-6349 are polled.

2.3.3 FastTrack

Due to the fact that the FastTrack protocol is encrypted the verification has to be made
with a download request. This is the only known part that is in plain text. As the
protocol is not freely available some reverse engineering attempts [8] were done, e.g. for
the open source clients mlDonkey of giFT. However the published information is far from
complete. Nevertheless it is known that a FastTrack download request starts with the
HTTP command GET /.files HTTP/1.1 that is sent using TCP. A FastTrack client then
will reply with a pseudo HTTP response of the form HTTP/1.0 403 Forbidden followed
by two decimal numbers that stand for the coming encryption. Some Kazaa clients also
answer with HTTP/1.0 404 Not Found/nX-Kazaa-Username.
To verify a FastTrack peer the host is contacted with such a download request. If the
reply contains either the string ”Forbidden” or ”Kazaa” the peer is successfully verified.
Besides the three most used local ports the FastTrack default port 1214 is polled.

5Actually the message is ”GNUTELLA CONNECT/x.y\n\n” where x.y stands for the protocol version.

2.4 DRAWBACKS OF POLLING 21

2.3.4 BitTorrent

The polling algorithms used for the P2P host verification base on a characteristic hand-
shake for the particular networks. BitTorrent immediately aborts this handshake if the
request does not contain a distinguishing hash-value of the file that is requested. Unfortu-
nately we have no information about the files offered by the hosts that we want to identify.
Therefore BitTorrent hosts cannot be verified by polling without knowing anything about
the shared files. If a contacted peer accepts incoming TCP connections and immediately
drops them after BitTorrent requests it can be assumed that a BitTorrent client is run-
ning, but it is no proof for it. There is still a possibility that another service is running
on the target host that uses the dedicated ports. There exist other possible methods for
BitTorrent peer verification but this thesis does not cover or implement them due to time
constraints. More about this techniques can be read in Chapter 6.1.

2.4 Drawbacks of Polling

As discussed in previous sections, in this thesis the approach of an online verification by
polling is used. The drawback with this approach is the fact that every host that wants to
be verified has to accept at least one TCP connection. As described in section 2.3 within
this connection a request, which is typical for the assumed P2P network, is sent and the
answer is interpreted accordingly. If a host does not accept any connections from outside
at all the verification cannot take place. As explained in the following two sections, the
main reasons for that to happen are restrictive firewalls and NAT devices. This problem
is essential for this thesis because many P2P hosts are believed to be placed behind such
a device. E.g. in [14] it is predicted that about 50% of Gnutella traffic is across firewalls
and NAT boxes.

2.4.1 NAT

A NAT device6 connects an inside network (mostly private networks) to an outside net-
work. The NAT device represents all clients of the inside network and has one IP address
assigned.

Figure 2.2: Network address translation

If a client tries to connect to a server in the outside network on a specific port, the NAT
device replaces the sender IP address in the packet’s header with its own and the source

6Network Address Translation

22 CHAPTER 2 P2P HOST VERIFICATION

port with a unique port number. This information is then saved in a temporary table.
When an answer is received, the NAT device compares the IP/port pair with the entries
in its cache and forwards the packet to the according client. Normally a NAT box drops
packets that come from an IP address which is not present in the temporary table of the
device. Thus a peer that is behind a NAT device cannot be polled. The packets are
dropped because the entry in the mapping table of the NAT is missing since the peer itself
did not initiate a connection to the polling host. Some users, which run P2P-clients on a
host behind a NAT device, have port mapping activated to map the P2P client’s listening
port directly to their host. In that case the peer should be verifiable because incoming
connections on these ports are allowed. In the following, peers that are located behind a
NAT device with port mapping activated are not considered ”NAT users”. By default,
incoming ICMP requests are answered by the NAT device. However this can be turned
off manually.

2.4.2 Firewalls

A firewall is a piece of software or hardware that controls the traffic between two dedicated
networks. Usually a firewall is in use to protect a personal network from unwanted access
from outside and to prevent malicious programs from connecting to the Internet from
inside. To do so, a firewall contains a packet-filter that checks the source, destination
and protocol-type of each packet according to rules which can be defined manually. To
protect on a higher level, firewalls nowadays also contain a content-filter which checks the
content of a connection for malicious code (e.g. active-x controls or javascript). Often
a firewall is configured that it rejects unknown connections by default or asks the user
how the request should be handled. In most cases a P2P user configures its firewall in a
way that makes connections from outside possible, at least for the client’s listening ports.
Peers behind such a firewall can be verified if a listening port is found. However, some
users have firewalls running that block all incoming connection attempts, even those to
the listening ports of the used P2P client. This can be due to security considerations or
just because of lack of knowledge to reconfigure the firewall settings. In that case, the
P2P clients cannot be polled because no connection can be established from outside.

2.5 Finding a Representative Subset for Peer Verification

The goal of this thesis is to find a lower limit of the accuracy of the P2P host identification
algorithm presented by [4]. However, as seen in the previous section, some P2P hosts
cannot be verified by polling because they have a restrictive firewall running or are located
behind a NAT box. Therefore a representative subset of hosts that can be verified has to
be found for the verification process. If it can be shown that an examined subset of the
whole set of identified hosts is likely to have the same ratio of correct identified, then the
lower limit found is valid for the whole set of identified peers by the PeerTracker. In this
thesis the set of hosts that can be polled is taken as this representative subset. In the
following it is explained what methods have been used to determine if a host is pollable.
Then in Chapter 4.1.2, measurements are analyzed and the choice of this specific subset
is justified.

2.5.1 Methods

First of all it is useful to know if a host or its NAT device is actually running or if it has
been shut down in the short time between the identification by the PeerTracker and the
online verification. This is done by sending an ICMP ping to the host. Then, it has to

2.6 TRAFFIC IDENTIFICATION 23

be checked if the host accepts incoming TCP connections. In order to discover this, TCP
pings on several ports are done.

ICMP-”Echo Request”

The Internet Control Message Protocol (ICMP) is a required protocol tightly integrated
with IP and is used among other things to exchange error, control, and informational
messages [17]. ICMP pings are almost always successful because firewalls and NAT boxes,
if not manually configured otherwise, answer these requests. For this reason not much
information can be gained with this test. It only shows that the host or the according
NAT device is alive. With a short time gap between identification and online verification
reply very high reply quotas can be expected.

TCP-”Connection Attempt”

The transmission control protocol (TCP) is one of the main protocols in TCP/IP networks.
Whereas the IP protocol deals only with packets, TCP enables two hosts to establish a
connection and exchange streams of data. TCP guarantees delivery of data and also
guarantees that packets will be delivered in the same order in which they were sent [18].
A TCP ping tries to establish a connection to a host on a certain port. Three different
things can occur:

1. The pinged host accepts the connection and replies with an ACK message. This
does not give any evidence about a P2P client running on the port, however it states
that a service on the host accepts incoming connections on this particular port. In
this case the TCP ping is successful.

2. The host immediately resets the connection and replies with a RST message. If
no service is running that waits for incoming connections on a particular port, the
connection is reset by default. This is stated in the specifications of the TCP protocol
[16]. In this case the TCP ping is also successful.

3. Nothing is received from the pinged host, not even a reset message. In this case
the TCP request had to be dropped somewhere on the host’s side. Either a NAT
dropped the incoming packet or a firewall or an intrusion detection system blocked
the incoming connection. In this case the TCP ping is not successful.

In case 1 and 2, where the TCP ping is successful, the pinged host is reachable and thus
possible P2P clients can be verified. If the TCP ping is not successful (case 3) it is not
possible to poll P2P hosts because no TCP connection can be established to the according
ports. A P2P client can only be connected to on its listening port, therefore the three
most used ports of the according host and the default ports for the assumed P2P network
are TCP pinged. If these pings are unsuccessful it can be assumed that either a firewall is
running or that the host is located behind a NAT. This assumption is valid because the
peers under examination transferred data on these ports only a few seconds before the
verification process. This means the ports are used, but not accessible from outside. That
makes these hosts unverifiable for the used algorithm.

2.6 Traffic Identification

One of the main goal of this thesis was to verify the traffic measurement made in the
foregoing thesis [4]. To accomplish that, one has to find out what traffic can be counted as
P2P. In the last years P2P clients and users started to use random ports for their traffic. It

24 CHAPTER 2 P2P HOST VERIFICATION

has to be assumed that a substantial amount of P2P traffic is transmitted on non-default
ports. Straightforward traffic identification based on P2P default ports cannot generate
good results7. Fortunately in this thesis only traffic calculations in relation with identified
(and for the most part successfully verified) P2P hosts have to be made. This simplifies
the problem because several assumptions about traffic usage of P2P users can be made:

• Hosts running P2P clients do most likely not run other applications with listening
ports in the non-well-known8 port range. Such applications include video/audio
streaming or online games. These applications are very sensitive to network latency
(QoS) and get full attention of the user while running. A running P2P client would
noticeably decrease their performance because it is rather bandwidth consuming.

• Traffic that is more probable to occur simultaneous to P2P file-sharing is Web-traffic,
remote login, FTP or SSH data transfer or mail traffic because these applications
are not as sensitive to latency as those named above. All these applications have
their listening ports in the well-known range [23].

• It can be assumed that very few P2P users manually set their clients listening port
in the well-known port range. Only users with a certain level of technical knowl-
edge know about the benefits of having a non-default listening port (e.g. some traffic
shaping methods can be dodged). Mostly users with such a knowledge are also aware
of the fact that ports in the well-known range are reserved for other applications and
having abnormal traffic on such a port can cause problems with hardware, software
and network administrators. Measurements show that for all of the considered net-
works less than 1% of the peers use listening ports in the well-known port range
[4].

Concerning the given statements above, only traffic between two ports of the non-well-
known range (that means bigger than 1024) are considered as P2P traffic. Furthermore
the identified P2P traffic is added to the network the according host belongs to.

2.7 Limitations

Due to the fact that many host cannot be reached because of NAT boxes and firewalls,
the online verification has to be made on a subset of the total amount of identified hosts
by the PeerTracker (see Sections 2.4 and 2.5). Therefore the lower limit found in these
measurements depend on the choice of the subset of verifiable hosts for the measurement’s
interpretation. To justify this choice of the subset several measurements have been made.
The traffic estimation (see section 2.6) is based on the assumption that P2P hosts do not
run other applications in the non-well-known port range. This seems to be true for the
most of the hosts but definitely not for all. Therefore the estimated P2P traffic trends to
be higher than the actual P2P traffic of the identified hosts.

7Even though the traffic shaping in the ETH Zürich network currently uses the default port approach.
However, this might change soon.

8well-known port: 1-1024, non-well-known ports: 1025-65536

Chapter 3

Implementation

This chapter deals with the implementation of the online verification algorithm (Section
3.2) and the traffic validation (Section 3.3). To be able to read NetFlow data in realtime,
the setup had to be changed in a way that the latency of the data processing becomes
minimal.

3.1 Configuration Setup

To reach the goals of this thesis the PeerTracker had to run in online mode and the time
between the identification by the PeerTracker and the online verification had to be kept
very short. Before this thesis the needed NetFlow data was first on the DDosVax server
three hours after the last flow had been captured. Therefore a script was written that
reads the flows directly from the server that collects the flows from the border routers.
This two streams1 are then streamed into one named fifo pipe on a DDoSVax machine
(see Figure 3.1).

Figure 3.1: Setup for the verification process

The PeerTracker was configured to read from this named pipe. Due to the fact that
the PeerTracker is able to process the delivered amount of NetFlow data in realtime, no

1One stream for the three smaller border routers, one for the biggest.

26 CHAPTER 3 IMPLEMENTATION

problem with its performance were encountered. After each evaluation period2 the result
of the P2P host verification were directly transferred to another machine where the online
verification took place.
With this setup the results of the PeerTracker’s host identification (namely the identified
active peers) was available for the verification process 15 seconds after the last flow was
captured by the border routers. A router dumps a flow not later than 30 seconds after the
last matching packet has passed it. Thus the latency has been reduced from three hours
to totally 45 seconds.

3.1.1 Modifications to the Original PeerTracker

In the original PeerTracker application the reading procedure from the fifo pipe had to be
changed slightly. In the original version whole NetFlow packets with a NetFlow header
and several flows are expected. When a file with NetFlow data of one hour is streamed
into a pipe this causes no problem. However if those packets are streamed in realtime and
the PeerTracker reads from the pipe simultaneously it can occur that incomplete packets
are in the pipe. The IO-buffer of the operating system was either too small or too big. To
avoid these errors the original PeerTracker was modified to only read if a whole packet is
available in the pipe.

3.2 P2P Host Verification

The P2P host verification script was written in Perl under Debian Linux and used the
Perl::NET module for networking issues.
The main thread reads the file with the active hosts identified by the PeerTracker and the
verification results from the last verification. It then compares these two files to avoid that
hosts, which could not be reached previously, are polled again3. For every host that has
to be verified a thread is created and started. Multi-threading is used because sometimes
the verification algorithm has to wait for several TCP timeouts. Processing all hosts in
one thread would take much longer. Up to 200 threads are running simultaneously.
Each thread tries to poll its hosts with the methods described in Sections 2.3.1-2.3.3.
Hosts that are identified as BitTorrent peers are not verified. Additionally the hosts are
ICMP and TCP pinged to get information about their reachability (see Section 2.5.1).
When all threads are done, the main thread writes the results into a file. Interesting are
the verification result (was polling successful and on which port) and the reachability of
the hosts.
Information about the performance of the script can be found in table 3.1. More than 400
hosts can be verified in less than three minutes.

Hosts Verification Time
215 85s
444 177s

Table 3.1: Time used by the verification script (two typical measurements)

2Each Evaluation Time the PeerTracker evaluates its host pool. Mostly a period of 15 minutes was
used.

3If measurement are made over a long period, ongoing TCP and ICMP requests can cause alerts in IDS
(intrusion detection systems) and firewalls.

3.3 P2P TRAFFIC VERIFICATION 27

3.3 P2P Traffic Verification

To analyze the P2P traffic caused by the verified hosts another Perl script was written
that reads NetFlow raw data and assigns traffic to the verified hosts. Traffic is considered
as P2P if source and destination port are in the non-well known range (for explanation see
Section 2.6). It then generates interesting relations like the results in Section 4.3. Among
other things it generates a ranking of the most active peers.

Chapter 4

Findings

In this chapter out findings will be presented. Section 4.1 shows the results that justify the
assumption, that reachable hosts are a representative subset for the P2P host verification.
Sections 4.2 and 4.3 finally present the results of the P2P host verification respectively
traffic validation.

4.1 Validating the Verification

In this thesis it is tried to find a lower limit for the accuracy of the P2P host identification
algorithm used by the PeerTracker. As described and explained in Section 2.5 this lower
limit is investigated by comparing those hosts which are successfully verifiable to those
which are reachable in some way. The following two sections will show that this assumption
is reasonable. In Section 4.1.1 findings about the reachability of the identified peers are
presented and possible reasons are named. In Section 4.1.2 measurements are shown which
legitimate the choice of the subset for the peer verification of Section 4.2.

4.1.1 NAT and Firewall Usage in the SWITCH Network

If an assumed peer is located behind a NAT device or a restrictive firewall, no connection
from outside is possible. Therefore the used verification algorithm has no chance to verify
those peers. Hence it is essential to know which hosts are located behind a NAT or a
restrictive firewall. Section 2.5.1 explains how it is detected if this is the case.
As expected, almost all hosts (or the according NAT device) respond to ICMP pings. Table
4.1 shows the result of a measurement made on a Wednesday at 14:15 (CET). Those hosts
which do not respond to ICMP requests have either been shut down in the very short time
between the identification by the PeerTracker and the online verification or the according
NAT or firewall is intentionally configured in a way that ICMP requests are blocked.
To find out which hosts are reachable, the identified peers are TCP pinged on the three
most used TCP ports. The exact values of not responding hosts in a representative

Assumed P2P Network ICMP: reply received TCP: ACK or RST received
All 99.5% 52.0%

EDonkey, Kademlia, Overnet (EKO) 100% 53.6%
Gnutella (GT) 97.8% 47.7%
FastTrack (FT) 100% 50%

Table 4.1: Reachable hosts, 9.2.2005 14:15, duration of measurement 172s (total 423 hosts)

30 CHAPTER 4 FINDINGS

 0

 20

 40

 60

 80

 100

 120

 140

09.02.
12:15

09.02.
13:12

09.02.
14:10

09.02.
15:07

09.02.
16:05

09.02.
17:02

%
 o

f t
ot

al
 v

er
ifi

ed
 H

os
ts

Date and Time

Reachability of Identified Hosts

ICMP: Reply received
TCP: ACK or RST received

EKO TCP: ACK or RST received
GT TCP: ACK or RST received
FT TCP: ACK or RST received

Figure 4.1: Reachable hosts, 9.2.2005 (total 423 hosts)

timeframe can be found in Table 4.1 and a record of the whole day is shown in Figure
4.1. Due to the reasoning in Section 2.5 and the results of the measurements it is save to
say that around 50% of the verified hosts are located behind a NAT or have a restrictive
firewall running. This assumption is reasonable because:

• The ICMP ping tests show that almost no host (or the according NAT) is down, so
this is no reason for unreachability.

• Every host without a firewall running or behind a NAT would reply at least a RST
to the connection attempt of a TCP ping. If the host is up (ICMP ping) and no
answer at all is received, then it can be taken as a proof for a running firewall or a
NAT.

• It can be seen that all three different network types have almost the same percentage
of reachable peers. This matches with the presumption, that NAT devices and
firewall usage are uniformly distributed in the SWITCH network.

• It matches with statements and measurements made in other projects. Among other
things, that 50% of all Gnutella traffic is across a NAT or firewall [14].

Reachable hosts Unreachable hosts
P2P traffic in 127.2 kBit/s 112.0 kBit/s
P2P traffic out 167.2 kBit/s 140.8 kB/s

Table 4.2: Average P2P traffic per host, 9.2.2005 15:00-15:15 (total 438 hosts)

4.2 P2P HOST VERIFICATION 31

To strengthen this statements, the average P2P traffic of peers assumed to be behind a
NAT or firewall is compared to those which are reachable by TCP. The results can be seen
in Table 4.2.
It can be seen that these hosts, which are connectable from outside have slightly bigger
download and upload rates. This can be explained with the fairness algorithms built into
the P2P clients. E.g. the eDonkey network client eMule gives hosts which cannot be
connected from outside lower priorities in the download queues (a so called LowID [9]).
Such fairness mechanisms result in a lower download rate which corresponds with the
results in Table 4.2.
As conclusion, it can be stated that the measurements done show that around 50% of
all hosts are most likely located behind a NAT or a firewall that drops all incoming
connections1.

4.1.2 Choice of the Subset

As described in Chapter 2.5 and verified in the previous section, the subset for the peer
verification will be those hosts which are reachable via TCP on the most used ports2. To
find out how accurate this choice is, some more examination of the assumed P2P traffic
in Table 4.2 has been made. The following arguments make the choice of the subset
reasonable:

• It was found that the set of unreachable hosts has significant P2P download and
upload rates. Thus many peers must be in the set of unreachable hosts.

• The amount of P2P data transferred per host is similar for reachable and unreachable
hosts. This leads to the conclusion that about the same part of the unreachable hosts
must be peers as of the reachable hosts. Otherwise the average down/upload rate
of the unreachable hosts would not be as high as it is. The small difference can be
explained with the fairness algorithms of the P2P-clients.

As seen above, it seems to be reasonable to take the reachable hosts as the subset for
the peer verification process. Not only the considered traffic measurements but also the
distribution of the reachable hosts on the different networks and the comparison with
other projects results speaks in favor of an uniformly distribution of the identified peers
into the categories reachable and unreachable. This means if a lower limit of the accuracy
of the P2P host identification algorithm is found on the set of reachable hosts, it can be
assumed with a high probability that this limit is also valid for the total set of identified
hosts.

4.2 P2P Host Verification

One of the main goal of this thesis was to find a lower limit of the accuracy of the P2P
host identifying algorithm used by the PeerTracker. As discussed in Section 2.5 this lower
limit can be found by comparing the number of successfully verified hosts to those which
are reachable from outside by TCP. This assumption was justified in Section 4.1.2. Several
measurements have been made to find out how reliable the PeerTracker is. The results of
one particular day can be found in Figure 4.2.
By considering only those hosts that are verifiable for the used online polling algorithm
(those that are reachable by TCP connections from outside), we find a lower limit of 75%

1Some ports could also be unblocked by the user to get better download performance. However if the
PeerTracker does not find this port the host stays unreachable.

2As defined earlier a host is reachable even if only a RST message is received.

32 CHAPTER 4 FINDINGS

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

09.02.
10:15

09.02.
11:15

09.02.
12:15

09.02.
13:15

09.02.
14:15

09.02.
15:15

P
2P

-H
os

ts
 (E

K
O

,G
T,

FT
)

Date and Time

Results Verification of Peertracker

Checked Hosts
Reachable by TCP

Successfully verified
EKO successfully verified

GT successfully verified
FT successfully verified

Figure 4.2: Verified hosts, 9.2.2005

successfully verified peers (see Table 4.3). That means with respect to the findings in
Section 4.1 the PeerTracker works with an accuracy of at least 75%. This was the lowest
value found in several measurements. However values up to 88% have been encountered.
It seems to depend on the probability that P2P clients are shut down in the short time
between the identification by the PeerTracker and the online verification. At night this is
very improbable and therefore higher results are found then. Also the number of identified
peers seems to have an influence. With many peers that have to be polled the verifying
process has to handle much more threads in the same time and the verification takes a
longer time. To longer the verification takes the higher the probability of clients to shut
down in the meantime.

Total hosts Reachable hosts (TCP) Successfully verified hosts
All networks 438 223 (50.9%) 167 (38.1%, 74.9% of reachable hosts)

EKO 317 161 (50.7%) 130 (41.0%, 80.7% of reachable hosts)
GT 95 50 (52.6%) 28 (29.5%, 56.0% of reachable hosts)
FT 26 12 (46.2%) 9 (34.6%, 75% of reachable hosts)

Table 4.3: Reachable hosts vs. successfully verified hosts, 9.2.2005 15:15, duration of measure-
ment 172s

In Table 4.3, it can be seen that only about 38%3 of the verified hosts are successfully
identified as P2P clients. This rather lower number is caused by the fact that about 50%
of the verified hosts could not even be reached on the tested ports because of NAT boxes,
firewalls and IDS.
Kademlia, Overnet and eDonkey (the three networks that have been verified with the

3The upper limit of this value in the measurements made was 49%

4.2 P2P HOST VERIFICATION 33

same method) have the largest percentage of successfully verified peers (80,7%). In the
same range lies the factor of successfully verified FastTrack peers. Only verified Gnutella
peers have a little lower value, as predicted in Section 2.3.2.

4.2.1 Interpretation of Unsuccessfully Verified Hosts

Some identified hosts by the PeerTracker could be reached by the verification algorithm
but not verified successfully. These hosts are analyzed more carefully in this section. In
the following the different cases that occur are stated and interpretations are given.

TCP Connectable (SYS ACK Reply)

Hosts that accept a TCP connection on a particular port but do not reply to a handshake
attempt of the verification algorithm do not occur often. In a measurement made in
February 2005 to 179 hosts a TCP connection could be established whereof only 12 (6.7%)
hosts could not be effectually verified. This can be seen in table 4.4. The different reasons
for that are:

• The host is a peer but has been tested for the wrong P2P network. Today there exist
many hybrid clients which make the PeerTracker’s decision for a particular network
even more difficult.

• The host is actually a peer of the assumed P2P network but the client does not reply
to the tried handshake as expected. As shown in Section 2.3.2 it most likely occurs
with the Gnutella protocol because its handshake is not defined strictly. In Table
4.4 it can be seen that there exist more Gnutella hosts that are TCP connectable
but not successfully verified. In contradiction to the 6.7% found above, 20% of the
Gnutella hosts that accepts TCP connections could not be verified.

• The host is not a peer and was wrongly identified by the PeerTracker. Another
non-P2P service is running on the particular port. These hosts are false positives.

Total hosts TCP connectable Successfully verified
All networks 438 179 167

EKO 317 134 130
GT 95 35 28
FT 26 10 9

Table 4.4: TCP connectable hosts vs. successfully verified hosts, 9.2.2005 15:15, duration of
measurement 172s

Reachable by TCP but not TCP Connectable (RST Reply)

By comparing Table 4.3 with Table 4.4 it can be found that about 20% of the hosts that
could be reached by TCP accepted no TCP connection. That means that 20% immediately
replied with a TCP packet with set RST flag.

• The P2P client could have been shut down and the PeerTracker did not realize it.
It is quite difficult to decide how long a host should be considered as active. If this
interval is too short the status of the hosts are changed too often what adulterates
the measurement. To get an impression about how many peers can be considered

34 CHAPTER 4 FINDINGS

as down those with very little P2P traffic in the last evaluation period and a default
P2P port among their three most used local ports are shown in Table 4.5. Due to
the fact that a P2P default port is among the three most used local ports, the host’s
listening port was most likely found by the PeerTracker. Considering the little traffic
and the fact the listening port has been found we find that a respectable amount
(16 out of 44 in this measurement) of reachable but no TCP connection accepting
host must have shut down their P2P client during the evaluation period.

Hosts Hosts with ∅ P2P traffic <8kBit/s
Hosts 32 16

Table 4.5: Reachable hosts that immediately reset TCP connection with P2P default port among
their most used local ports, average over 15 minutes, 9.2.2005 15:00-15:15

• Another reason that a host does not accept any TCP connections on the tested
ports could be that the listening port has not been found by the PeerTracker. Many
incoming flows are needed to accurately determine a peer’s listening port. In table
4.6 it can be seen that unsuccessfully verified hosts have much less average P2P traffic
and suspicious flows than successfully verified peers. 47% of all unsuccessfully verified
peers have less than 8 kBit/s average P2P traffic (only 0.6% of the successfully
verified hosts have that less P2P traffic). The same thing can be observed with the
amount of suspicious flows.

Successfully verified Unsuccessfully verified
Hosts 167 56

∅ P2P traffic 328 kBit/s 198 kBit/s
∅ suspicious flows 26318 16064

Hosts with ∅ P2P traffic < 8kBit/s 1 18
Hosts with ∅ P2P traffic > 8kBit/s 166 38

Hosts with ∅ suspicious flows < 1500 5 15
Hosts with ∅ suspicious flows > 1500 162 42

Table 4.6: Successfully verified hosts vs. unsuccessfully verified hosts, average over 15 minutes,
9.2.2005 15:00-15:15

• The according host could have been identified as a P2P host by the PeerTracker
even though there is no P2P client running on the host. This is another reason of
unsuccessfully verified hosts with little traffic and suspicious flows (Table 4.6). These
hosts are false positives.

To conclude with, it can be said that the accuracy of the identification process used by
the PeerTracker must be quite higher than the found 75% in Section 4.2. In this section
several reasons for an unsuccessful verification are shown and only two of them point to a
situation where hosts were wrongly accused of P2P file-sharing.

4.3 P2P Traffic in SWITCH Network

This section deals with the estimated P2P border traffic of the SWITCH network. Several
measurements have been made to verify the statements made in the foregoing thesis [4].
For all the measurements, the assumption from Section 2.6 regarding the decision, which

4.3 P2P TRAFFIC IN SWITCH NETWORK 35

traffic should be considered as P2P, has been used. Furthermore an important fraction of
the P2P traffic could not been taken into account because BitTorrent clients could not be
considered in the verification process. Thus P2P traffic caused by BitTorrent clients has
not been included into the measurements.
As already shown in Section 4.1.1 it does not matter if a host has been successfully
verified or not when the caused P2P traffic is examined. Table 4.2 displays that hosts that
are reachable for the verification process have about the same average P2P traffic than
unreachable hosts. In the following with ”verified traffic” the traffic of the verified hosts
is meant, regardless if they were successfully or unsuccessfully verified.

4.3.1 General Traffic Consumption

Table 4.7 shows the traffic of 438 verified hosts. These are all hosts identified by the
PeerTracker except the BitTorrent peers. As the table shows, the SWITCH network has
more outgoing P2P traffic than incoming. SWITCH is more sender than a receiver - there
is about 30% more outgoing P2P traffic than incoming. The incoming non-P2P traffic
is four times higher than the outgoing. This is most likely caused by the WWW traffic
which is certainly more incoming than outgoing.

P2P traffic Non-P2P traffic Total
In 52.5 MBit/s (81.5%) 11.9 MBit/s 64.4 MBit/s

Out 67.8 MBit/s (95.8%) 3.0 MBit/s 70.8 MBit/s

Table 4.7: P2P traffic vs. non-P2P traffic, average over 15 minutes, 9.2.2005 15:00-15:15

81.5% of the total incoming traffic of the verified hosts is P2P traffic. On the outgoing
traffic the fraction is even higher (96%). The most of the verified hosts, successfully or
unsuccessfully, must be P2P host otherwise there would not be so much P2P traffic caused
by this hosts. 89% of the total traffic of the verified hosts is P2P traffic.

Traffic (in&out)
Total 1703 MBit/s

Total verified 135 MBit/s
Verified P2P 120 MBit/s

Table 4.8: Total traffic analyzed and verified, average over 15 minutes, 9.2.2005 15:00-15:15

Comparing the total traffic in the SWITCH network to the verified P2P traffic, we find a
value of only 7%. The numbers can be found in Table 4.8. This result does not confirm
the findings from the foregoing thesis [4]. There 28-36% of the total traffic was identified
as P2P traffic. However the following things have to be taken into account:

• The measurements of this thesis have been made during the semester holidays. Most
students are home and do not use the network anymore at university. As SWITCH
connects almost all universities and other educational institutions of Switzerland this
has to result in an considerable decrease of P2P traffic measured. It can be assumed
that students use much more often P2P software than the staff at the universities.

• BitTorrent traffic has not been considered since those hosts could not be verified.
However BitTorrent is considered as the most bandwidth consuming network of all.
Some sources even say that it is responsible for more than the half of the total P2P
traffic worldwide [31].

36 CHAPTER 4 FINDINGS

If we compare the different P2P networks regarding the P2P traffic we see that all the
verified networks have similar average P2P traffic per host (Table 4.9). eDonkey, Kademlia
and Overnet (EKO) have a significant difference between outgoing and incoming P2P
traffic. This is most likely caused by the priority algorithm used in these networks. That
means those peers, which do not accept TCP connections from outside, have a lower
download priority than others. As found in Section 4.1.1 many hosts in the SWITCH
network are not reachable from outside and have therefore lower download rates.
There is no priority for peers that allow incoming TCP connections in Gnutella what
explains the similar average upload and download rates. Even though the values in Table
4.9 show that FastTrack peers have higher download than upload rates, this particular
result is not very accurate. Only 26 FastTrack hosts had been verified.

P2P traffic in P2P traffic out Total P2P traffic
Total 52.5 (0.120) MBit/s 67.7 (0.155) MBit/s 120.2 (0.275) MBit/s
EKO 35.3 (0.111) MBit/s 51.6 (0.163) MBit/s 86.9 (0.274) MBit/s
GT 13.3 (0.140) MBit/s 13.8 (0.145) MBit/s 27.1 (0.285) MBit/s
FT 3.9 (0.150) MBit/s 2.3 (0.088) MBit/s 6.2 (0.238) MBit/s

Table 4.9: Traffic consumption by the different networks (in brackets average traffic per host over
15 minutes), 9.2.2005 15:00-15:15

4.3.2 Other Findings

It is interesting to see that only a few hosts are responsible for a considerable amount of
the P2P traffic in the SWITCH network. In Table 4.10 the first five of these so called
”heavy hitters” are listed. It is surprising that 5 hosts out of 438 (1.1%) are responsible
for 11.8% of the total P2P traffic. 4% of the verified hosts are accountable for 30% of the
total verified P2P traffic. To get such a high down- and upload rate one has to change its
P2P client’s listening ports to a non-default port to get around traffic shaping restrictions
often in use4. As expected, none of the 10 most active verified hosts use a default listening
port.

Rank ∅ P2P traffic (in&out) % of total P2P traffic (438 hosts)
1. 4.89 MBit/s 4.1%
2. 3.13 MBit/s 2.6%
3. 2.89 MBit/s 2.4%
4. 2.67 MBit/s 2.2%
5. 2.51 MBit/s 2.1%

All first 5 together 14.19 MBit/s 11.8%

Table 4.10: ”Heavy hitters” in SWITCH network, average traffic per host over 15 minutes,
9.2.2005 15:00-15:15

The usage of P2P default ports is an important topic for traffic shaping mechanisms. In
Table 4.11 the traffic of eDonkey, Kademlia and Overnet (EKO) peers using a P2P default
port is compared to those, which do not use a default port. The other networks are not
considered here because the number of according hosts was not enough for a representative
conclusion. EKO peers on default ports have less P2P traffic than those on non default
ports. This can have the following reasons:

4The ETH limits the incoming traffic on default P2P ports to 10 MBit/s

4.3 P2P TRAFFIC IN SWITCH NETWORK 37

• Peers with non default listening ports are not as affected by traffic shaping mecha-
nisms as other peers. If they download a file from another peer with a non-default
listening port traffic shaping based on default ports is useless.

• The hosts that do not use a P2P default port are harder to identify by the Peer-
Tracker, only those with enough suspicious traffic and flows are detected. This results
in a higher average traffic for these hosts.

In Table 4.11, it can also be seen that hosts that do not use a P2P default listening port
have a higher upload/download quota. This can also be explained with traffic shaping
mechanisms. Incoming traffic is restricted because the source port sometimes is a P2P
default port (listening port of the other peer). However outgoing traffic always has non-
default source and destination ports since the source is the non-default port of the inside
peer and the destination port is a freely chosen one. Therefore the upload rate of such a
peer is higher.

∅ P2P traffic in ∅ P2P traffic out Total ∅ P2P traffic # Hosts
EKO default 116.0 kBit/s 157.0 kBit/s 273.0 kBit/s 94

EKO non-default 168.6 kBit/s 237.1 kBit/s 405.7 kBit/s 36

Table 4.11: Clients on default port vs. on non-default port (only successfully verified hosts),
average traffic per host over 15 minutes, 9.2.2005 15:00-15:15

Chapter 5

Conclusion

The goal of this thesis was to verify the P2P host identification method developed and
implemented by the foregoing master thesis ”P2P Population Tracking and Traffic Char-
acterization of Current P2P File-sharing Systems” [4]. Furthermore the found traffic usage
of P2P systems in the SWITCH network should be validated.

5.1 P2P Host Verification

In order to verify identified P2P host, polling algorithms for eDonkey, Gnutella, Overnet,
Kademlia and FastTrack networks have been developed and implemented. The verifying
mechanisms base on the particular handshakes of the different networks. Polling P2P
hosts is a difficult task because many hosts cannot be reached by a verification applica-
tion - restrictive firewalls, NAT boxes and intrusion detection systems make this often
impossible. However, in this thesis it could be shown, that a lower limit of the accuracy of
the identification algorithm can also be found on the subset of reachable hosts (by TCP).
With this supposition it can be stated that the identification algorithm by [4] works with
an accuracy of at least 75% for the examined P2P networks1. BitTorrent peers were not
taken into account because direct online polling is not possible.
Additionally some facts about the usage of NAT boxes and firewalls in the SWITCH
network could be found. Around 50% of all identified P2P hosts were found to accept no
TCP connections from outside.

5.2 P2P Traffic Verification

In this thesis the P2P traffic usage could not be verified completely. The verified (success-
fully and unsuccessfully) P2P hosts are only responsible for around 7% of the total border
traffic of the SWITCH network. However it has to be considered that the most traffic
consuming P2P network (BitTorrent) could not been taken into account. Additionally
measurements have been taken during semester holidays when the most intensive P2P
users (the students) do not use the SWITCH network.
Secondary many interesting findings about the P2P traffic in the SWITCH network have
been made. The SWITCH network sends more P2P traffic than it receives - there is about
30% more outgoing P2P traffic than incoming.
Furthermore only a few peers are responsible for a large amount of P2P traffic. Less than
4% of the verified hosts are accountable for more than 30% of the total verified P2P traffic
in the SWITCH network.

1Depending on the number of verifiable hosts, this lower limit can go up to 88%.

40 CHAPTER 5 CONCLUSION

It has also been found that many peers that reach high download an upload rates do
not use default listening ports. It must be assumed that some host operators manually
change the listening ports of their P2P clients on purpose to circumvent traffic shaping
mechanisms (which for example ETH Zürich is using).

Chapter 6

Outlook and Further Work

6.1 Verifying BitTorrent Hosts

BitTorrent peers cannot be verified online in the way the other analyzed networks were,
because the TCP handshake that initiates the connection does already contain information
about the requested file (hash-value). In contrast to eDonkey, Overnet, Gnutella, Fast-
Track and Kademlia peers a BitTorrent peers does not authenticate itself as a participant
of the network unless it has one of the requested files. If the requested file is not offered
by the contacted peer the host immediately drops the connection.
Another approach to verify BitTorrent peers would be to gather information from trackers.
A BitTorrent client downloading a file receives a list with other peers that share the
according file periodically from the tracker. A BitTorrent peer would be verified if it
appeared in one of those lists. This approach can only lead to partial success if the most
downloaded files and the according trackers are known. This could be done by collecting
the most downloaded files from websites 1 that offer torrents. With this information a list
of a considerable part of the BitTorrent peers could be generated. However the problem
is the huge amount of existing trackers and the almost endless variety of shared files.

6.2 Detection whether Hosts are behind NAT/Firewall

In this thesis it has been assumed when a host is not reachable via TCP (that means not
even a RST packet is returned), it is most likely located behind a NAT box or a firewall
that blocks incoming TCP connections. To verify this assumption an algorithm could
be developed that finds those hosts which only have outgoing connections from NetFlow
data. Several tests made showed that it is possible to find out which host initiated the
connection by comparing the timestamps of the according two flows2. However this would
require a buffer that contains several thousands TCP flows to find two related flows and
then find out which host opened the connection.

6.3 Verification of Hosts behind NAT/Firewall

6.3.1 eDonkey, Kademlia, Overnet

A client behind a NAT device or a restrictive firewall cannot be polled directly because no
incoming TCP connections are possible. eDonkey uses IDs to identify the different peers.
There exist low IDs and high IDs. Peers that are not connectable on their listening ports

1E.g. http://www.btsites.tk/
2For one TCP connection there always exist two NetFlows, one in each direction.

42 CHAPTER 6 OUTLOOK AND FURTHER WORK

get a low ID. If the ID of the host that wants to be verified as a peer can be found, one
would know if the host was located behind a NAT or a firewall. There exists a mechanism
in the eDonkey protocol to get the ID from the host’s IP address from a server, but it
could not be tested due to time constraints [11].

6.3.2 Gnutella

As eDonkey peers Gnutella clients behind a NAT or a firewall cannot be polled directly.
The protocol does it with a push message which contains the ID of the client that offers the
wanted file. One possible approach could be to send such a push message to a host that
wants to be verified. However, two problems exit: First, we do not have the Gnutella-ID
(GUID3) of the host we want to push, second the push message is only routed back the
way it came [26]. If the message did not come at all, it will most likely not be forwarded.
Therefore another approach has to be found.

6.3.3 FastTrack

As widely known, the FastTrack protocol is not an open source project. Some attempts
to reverse engineer the protocol have been made and even some open source clients that
can participate in the network are available. However there does not exist a fully verified
description of the network specifications and therefore no significant statement about
possibilities to verify peers behind NAT devices and restrictive firewalls could be made.
One eventuality that could be found, is the implementation of an open source FastTrack
Client (giFT) that uses a callback sequence to download from firewalled peers [8]. If this
was a standard within FastTrack it could be used to verify also peers which cannot be
polled directly.

3The GUID is free selectable and can only be obtained by a successful search result that is returned.

Bibliography

[1] ”Slyck.com - File Sharing News and Info”
http://www.slyck.com/ (Ferbruary 2005)

[2] T. Christiansen, N. Torkington: ”Perl Cookbook”
O’Reilly (2003)

[3] L. L. Peterson, B. S. Davie: ”Computer Networks, A System Approach”
Morgan Kaufmann Publishers (2000)

[4] L. Hämmerle: ”P2P Population Tracking and Traffic Characterization of Current
P2P File-sharing Systems”
Master’s Thesis (2004)

[5] P. Jardas: ”P2P File-sharing Systems Real World NetFlow Traffic Characterization”
Bachelor’s Thesis (2004)

[6] E.D. Team and C.Schlegel, ”UPFrame: UDP Processing Framework.”
http://www.tik.ee.ethz.ch/∼ddosvax/upframe/ (2004)

[7] E. Siever, S. Figgins and A. Weber: ”Linux in a Nutshell”
O’Reilly (2003)

[8] ”The FastTrack Protocol”
http://cvs.berlios.de/cgi-bin/viewcvs.cgi/gift-fasttrack/giFT-
FastTrack/PROTOCOL?rev=1.19&content-type=text/vnd.viewcvs-markup
(July 2004)

[9] ”EMule - A file-sharing client for eDonkey2000”
http://www.emule-project.net (February 2005)

[10] ”EDonkey 2000 - An eDonkey Client”
http://www.edonkey2000.com/ (February 2005)

[11] ”Unofficial eDonkey Protocol Specification v0.6.2”
http://sf.gds.tuwien.ac.at/00-html/p/pdonkey/eDonkey-protocol-0.6.2.html (2004)

[12] Y. Kulbak and D. Bickson: ”The eMule Protocol Specification”
http://www.cs.huji.ac.il/labs/danss/presentations/emule.pdf (January 2005)

[13] P. Maymounkov and D. Mazières: ”Kademlia: A Peer-to-peer Information System
Based on the XOR Metric”, tech. rep.
http://www.sics.se/∼sameh/research/P2P/Kademlia/Kademlia-
%20(SV%20newer)%20%20A%20Peer-to-peer%20Information%20System
%20Based%20on%20the%20XOR%20Metric/kpos.pdf

44 BIBLIOGRAPHY

[14] J. Kuptz: ”Gnutella: Unstoppable by Design”
http://www.wired.com/wired/archive/8.10/architecture.html (2000)

[15] ETH Informatikdienste: ”Filter zwischen ETHZ und SWITCH”
http://www.id.ethz.ch/services/list/netzwerk/filter/index (2005)

[16] ”RFC 793 - Transmission Control Protocol”
http://www.faqs.org/rfcs/rfc793.html (1981)

[17] ”ICMP Protocol Overview”
http://www.freesoft.org/CIE/Topics/81.htm

[18] Webopedia: ”What is TCP?”
http://www.webopedia.com/TERM/T/TCP.html

[19] ”Using IP Network Address Translation (NAT)”
http://www.support.nsgdata.com/RouterDocs/software documentation/openroute 32/
ipprot/natransa.htm

[20] Wikipedia: ”Firewall”
http://de.wikipedia.org/wiki/Firewall

[21] Slyck.com: ”BitTorrent Remains Powerhouse Network”
http://www.slyck.com/news.php?story=649 (January 2005)

[22] Slyck.com: ”Damning Kazaa Evidence Released”
http://www.slyck.com/news.php?story=656 (February 2005)

[23] ”Port Numbers and Services Database”
http://www.sockets.com/services.htm

[24] IT Innovations & Concepts: ”Digital Piracy - Definitive P2P piracy figures for Year
2003...”, tech. rep.
http://www.itic.ca/DIC/News/2004/08/11/P2P piracy figures 2003.html
(July 2004)

[25] The official BitTorrent Homepage: ”BitTorrent Protocol Description”
http://bittorrent.com/protocol.html

[26] ”The Gnutella Protocol Specification v0.4”
http://www9.limewire.com/developer/gnutella protocol 0.4.pdf

[27] ”SWITCH - The Swiss Education and Research Network”
http://www.switch.ch/ (February 2005)

[28] ”Cisco NetFlow Services Solution Guide”
http://www.cisco.com/univercd/cc/td/doc/cisintwk/intsolns/netflsol/nfwhite.htm
(Ausgust 2004)

[29] A. Wagner and T. Dübendorfer: ”DDoSVax Project”
http://www.tik.ee.ethz.ch/ ddosvax (January 2005)

[30] B. Cohen: ”Incentives build robustness in BitTorrent”, tech. rep. (May 2003)
http://bitconjurer.org/BitTorrent/bittorrentecon.pdf

[31] News.com: ”Survey: Movie-swapping up - Kazaa down”
http://news.com.com/Survey+Movie-swapping+up+Kazaa+down/2100-1025 3-
5267992.html?tag=nl

BIBLIOGRAPHY 45

[32] ”Sharman Networks”
http://www.sharmannetworks.com (February 2005)

[33] ”RIAA - Recording Industry Association of America”
http://www.riaa.com/default.asp (February 2005)

[34] ”MPAA - Motion Picture Association of America”
http://www.mpaa.org/ (February 2005)

[35] ”Tcpdump”
http://www.tcpdump.org/ (July 2004)

[36] ”Ethereal - The world’s most popular network protocol analyzer”
http://www.ethereal.com/ (February 2005)

[37] ”Kerio”
http://www.kerio.com/ (2005)

[38] ”Shareaza - The Ultimate P2P Client”
http://www.shareaza.com/

[39] ”Diet K”
http://www.dietk.com/

[40] ”Azureus - Java BitTorrent Client”
http://azureus.sourceforge.net/

	Title
	Introduction
	Overview
	DDoSVax Project
	Reasons for P2P Host Identification
	Reason for P2P Host Verification

	Goals of this Thesis
	Online Verification of Active P2P Hosts
	Analysis of P2P Traffic in the SWITCH Network

	Network Environment
	Flow-level Data

	P2P Host Identification by the Peertracker
	Host Identification Method
	Implementation

	Privacy Issues

	P2P Host Verification
	P2P Systems Considered
	Initial Position
	Available Data
	Setup

	Verification for Concrete P2P Systems
	eDonkey, Kademlia, Overnet
	Gnutella
	FastTrack
	BitTorrent

	Drawbacks of Polling
	NAT
	Firewalls

	Finding a Representative Subset for Peer Verification
	Methods

	Traffic Identification
	Limitations

	Implementation
	Configuration Setup
	Modifications to the Original PeerTracker

	P2P Host Verification
	P2P Traffic Verification

	Findings
	Validating the Verification
	NAT and Firewall Usage in the SWITCH Network
	Choice of the Subset

	P2P Host Verification
	Interpretation of Unsuccessfully Verified Hosts

	P2P Traffic in SWITCH Network
	General Traffic Consumption
	Other Findings

	Conclusion
	P2P Host Verification
	P2P Traffic Verification

	Outlook and Further Work
	Verifying BitTorrent Hosts
	Detection whether Hosts are behind NAT/Firewall
	Verification of Hosts behind NAT/Firewall
	eDonkey, Kademlia, Overnet
	Gnutella
	FastTrack

	References

