
Distributed

Computing roupG

TripletMail: Replicated E-Mail Storage

Gabor Cselle
gabor@student.ethz.ch

August 19, 2005

Supervising Professor: Prof. Dr. Roger Wattenhofer
Advisor: Keno Albrecht





Abstract

We describe TripletMail, a system for outsourcing
e-mail backups. The typical corporate mail server
that handles receiving, sending and storing e-mails
is replaced by two components: A mail server for
SMTP/IMAP and a storage system which main-
tains several encrypted copies of each e-mail in
racks of inexpensive servers.

In this thesis, we focus on two problems of the
storage system: In inexpensive racks, servers can
break down often. Therefore, the storage system
needs to deal with server failures gracefully and re-
replicate copies of e-mails that were lost. Also,
storage load should be distributed evenly across all
servers. For this, we introduce a scheme that
uses consistent hashing to create a key for each
e-mail message. A tree then maps parts of the
keyspace to triplets of servers on which replicas
should be stored. We then describe an approach
for re-replication and evaluate this scheme against
simpler ones.

A Java implementation is included.

1 Introduction

1.1 Motivation

E-mail service in corporate environments is typ-
ically provided by a single SMTP/IMAP server.
This server quickly becomes a single point of fail-
ure: There is usually no fail-over mechanism in
place and data backups are seldom up-to-date.
Corporate e-mail often contains valuable and con-
fidential information, so there is reluctance to out-
source these services. However, if backup services
were available that have lower adminstration costs
than current solutions, and fulfill the requirements
below, they could be successful.

1.2 Requirements

The goal is to create a storage system for e-mails
that fits these requirements:

Confidentiality Through encryption, the storage
provider never sees the contents of e-mails.

High availability Users are able to retrieve their
e-mail at all times.

No data loss Maintaining multiple copies of each
e-mail message lowers the likelihood of losing
data due to hardware failures.

Economies of scale Minimize costs per stored e-
mail message by pooling the data of multiple
companies and using large numbers of servers.

1.3 Outline

Figure 1 illustrates the architecture of TripletMail.
We will examine each of the components in bottom-
up sequence.

Figure 1: TripletMail architecture with remote, en-
crypted backups.

The thesis is structured as follows:

Section 2 starts by listing the assumptions upon
which the system was built.

Section 3 examines the functionality offered by
the mail servers, including the encryption
and signature schemes used for communication
with the storage system.

Section 4 explains the storage system and the two
kinds of roles - storage master and storage
server - assigned to the servers.

Section 5 describes how the system determines on
which storage servers e-mail message replicas
should be kept.

Section 6 closes with a performance evaluation.

1



1.4 Related Work

There already exist solutions for storing multiple
copies of files on inexpensive servers. A good ex-
ample is the Google File System [1], which stores
very large files of several GB to keep management
overhead low. Still, we are aiming at storing e-
mail messages, whose sizes rarely exceed 100 kB.
The tree mapping approach was inspired by work
on peer-to-peer lookup protocols such as Kademlia
[2] or Willow [3]. The focus of these protocols is
more on file-sharing systems or group communica-
tion, and instances where nodes leave and join of-
ten. Also, individual nodes cannot exercise control
over others. For TripletMail, things are simpler, as
all servers are owned and fully controlled by the
operator of the storage service.

On the other end of the spectrum, we find com-
mercial solutions for storing large amounts of data
on custom hardware, such as those offered by
NetApp [4].

2 Assumptions

Instead of using high-cost storage solutions, we aim
at using inexpensive machines for storing the e-mail
replicas. Of course, low cost implies lower reliabil-
ity, so we expect about 3-5% of all machines to be
failed at any time. To build a reliable system, we
make up for high individual failure rates through
software logic: When a machine fails, others will
have to take over its load automatically.

The network layout is influenced by the fact that
the servers are typically kept in racks by the dozen.
These racks are connected to other racks via a 1
GBit Ethernet switch. Inside the racks, all ma-
chines are often connected with only 100 MBit
Ethernet to reduce networking cost. Finally, the
servers themselves consist of just barely more than
hard drives, a mainboard, and a network interface.

While unlikely, it’s possible that an entire rack
fails at the same time, as all contained servers share
a common power and network connection.

Each rack contains two different kinds of units: a
number of storage servers and a single storage mas-
ter, as described in Section 4. Storage servers are
responsible for storing replicas of large quantities of
e-mail. We assume that the cost for such a machine
with 500 GB of hard drive storage to be 1000 USD.

Storage masters manage the storage servers. We
estimate their cost at 1500 USD.

0

100

200

300

400

500

600

700

800

1
K

B

5
K

B

1
0

K
B

1
5

K
B

2
0

K
B

2
5

K
B

3
0

K
B

3
5

K
B

4
0

K
B

4
5

K
B

5
0

K
B

5
0

1
0

0
K

B

2
0

0
K

B
-5

0
0

K
B

1
M

B
-2

M
B

5
M

B
-1

0
M

B

Number of e-mails in size bucket

Figure 2: Approximate size distribution of e-mails.
Measured in inbox of the author. µ = 34.6 kB,
σ = 273 kB

The smallest chunk of information the system
handles is one e-mail message. We assume that
each user receives and sends around 5000 messages
per year. For estimating storage requirements and
measuring performance, we assume that the aver-
age e-mail size is around 35 kB, as demonstrated
in Figure 2. Clearly, this number is just a rough
approximation: widely different quantities are pos-
sible depending on the user.

We focus on IMAP-like schemes of retrieving e-
mail. It does not make sense to introduce backup
schemes for e-mail which is quickly wiped from the
server via POP3. IMAP is already in wide use in
corporations, in part due to the legal benefits of
having an archive of all employees’ e-mails.

Finally, during implementation, we assumed that
a replication factor of 3 is enough; this not only
explains the TripletMail name, but also why this
factor is used throughout this thesis. The number
seemed safe enough to guard against data loss and
is in line with the common practice of having a
“primary” and a “secondary” backup of important
data.

2



2.1 Definitions

Throughout this thesis, we will use the following
terms: A TripletMail storage system will store e-
mails from multiple clients - a company that has
outsourced its e-mail backups to a storage provider.
Each client will have at least one mail server, and
several employees using e-mail - we call them users.
Each user will have a number of folders which con-
tain the actual e-mail messages.

3 Mail Servers

We now start explaining the system’s architecture
in detail. We start with the servers that receive
and serve e-mail; the next section will explain the
storage system.

Mail servers, called “MServers” are placed in the
clients’ offices. They act as SMTP servers to the
outside: They receive and send out all e-mail to and
from the client. Users can retrieve their e-mail via
a web client (IMAP access should be a possibility,
but is not currently implemented).

A client may have multiple MServers for higher
availability. Also, MServers cache recently seen e-
mail from the storage system, to provide for the
case that the outside Internet connection is lost.

SMTP Web
client

IMAP
(not impl.)

Mail Server
Client:

A
1

Storage System

STORE MsgID: 3A7FB3
Folder: keno_inbox
Headers:
Message:

P

P

P

P

S

S

sym

Figure 3: Mail Server functionality

Figure 3 shows different aspects of the mail
server’s functionality: On the bottom, it accepts
requests from users. On the top, the MServer com-
municates directly with a storage master, the man-
agement component of the storage system (see Sec-

tion 4). When the connection to a storage master is
lost, the MServer starts trying to connect to any of
the other masters, until a connection can be made.

On this connection, there are four main types of
messages that can be sent: Store, Delete, Re-
trieve, and ListFolder.

Of these commands, ListFolder is the most in-
teresting. It asks the storage system to return a list
of e-mails in a folder, along with their most impor-
tant headers, such as From, Subject, and Date.
These correspond to the columns commonly dis-
played in the GUI of the user’s e-mail client. List-
Folder is a very common request, as it is the one
called whenever the user checks his or her inbox.

3.1 Ensuring Confidentiality

When designing TripletMail, one of our goals was
ensuring that the client’s data was kept secure:
neither the storage provider nor the outside world
should be able to find out the contents of e-mails.
In addition, we wanted to make certain that no at-
tacker can impersonate the storage system, causing
messages to bypass storage by going to the wrong
destination.

Therefore, we implemented an encryption and
signature system. As shown in Figure 3, each client
has a symmetric mail encryption key and a private
/ public key pair for signing messages. Only the
client knows the symmetric key: without it, the
storage provider cannot know the e-mails’ contents.

Newly incoming e-mails are packed into a Store
message with encrypted body, encrypted headers,
and a time stamp. A 256-bit MsgID is generated
by running a one-way hash function such as SHA-
1 over the contents and headers. Also, to avoid
known-cleartext attacks on the symmetric key, a
few bytes of random content are added. This mes-
sage is then signed and sent to the storage system.
The storage master processes the message only if
the signature was correct. Similarly, the storage
system has its own key pair so the mail server can
check its messages for authenticity.

4 Storage System

Machines in the storage system racks take on two
different roles: storage master (“SMaster”) or stor-
age server (“SServer”). They are assigned identi-

3



fiers as seen in Figure 4: SMasters get ascending
single letters, the SServers in the same rack share
this letter and a number.

Storage Servers
(Store e-mails)

Storage Masters
Management
functions

SServer d1

SServer d2

SServer d3

SMaster d

SServer c1

SServer c2

SServer c3

SMaster c

SServer b1

SServer b2

SServer b3

SMaster b

SServer a1

SServer a2

SServer a3

SMaster a

Figure 4: Storage system roles.

Each SMaster keeps a TCP connection open to
every other SMaster and every SServer. Periodi-
cally, a ping message is sent to each machine. This
allows the SMasters to quickly notice the failure of
a machine in the system.

Three copies of each e-mail reside on three differ-
ent storage servers. Triplets are chosen so storage
load is balanced across servers.

4.1 Folder Information

To facilitate a quick response to ListFolder calls,
all folder information is kept on the SMasters.

Folder information consists of a list of MsgIDs
for each folder. Every MsgID has an associated
bytestring, which happens to be the encrypted
headers sent by the mail server with the Store
command.

Since SMasters can fail, we must assure that
the same folder information is available at every
one. For this, we have implemented a simple
method: Each SMaster pushes information origi-
nally received at the Store call (the new MsgID
and encrypted headers) to the next one, until all
have heard the news.

5 Assigning Storage Locations

We have shown how the SMaster answers List-
Folder requests using local information. How-
ever, for requests like Store, Delete, Retrieve,
it must know where e-mail replicas reside. To ac-
complish this, storage locations are assigned using
a mapping tree with a triplet of storage server IDs
at its leaves.

5.1 Mapping Tree

Figure 5 shows a small example mapping tree, as
used in TripletMail. The MsgID of each e-mail is
mapped to a leaf in the tree, which in turn lists a
triplet of SServers. To determine the storage loca-
tions, the MsgID is walked in a bitwise manner. If
a bit is 0, the left child node is taken; if the bit
is 1, the right node is taken. This is done until a
leaf node with an assigned triplet is reached. For
example, all e-mails whose MsgIDs start with 01
would be stored on the storage servers a2, b2, c2.

0 1

0 01 1

a1, b1, c1 a3, b3, c3a2, b2, c2 a4, b4, c4

Figure 5: An example mapping tree.

5.2 Triplets Selection Scheme

The triplets at the leaves of the mapping tree con-
trol the load distribution across storage servers. We
now present a heuristic to generate these triplets so
load is distributed evenly.

We divide all storage servers into 3 groups of
equal size. For example, in the case of Figure
4, the groups would be: G1 = {a1, a2, a3, b1},
G2 = {b2, b3, c1, c2}, G3 = {c3, d1, d2, d3}. The
first entry in the triplet may only come from the
first group, the second from the second group, and
so on. With this restriction, we avoid that all repli-
cas of an e-mail message are stored in the same
rack.

Triplet Properties The following properties
should hold for all triplets:

1. The tuple elements should not all be contained
in the same rack.

2. The same triplet occurs twice only once all pos-
sible triplets have been exhausted.

3. If load(s) is the number of occurrences of a
storage server s in all triplets, then the follow-
ing must hold: maxs load(s) ≤ mins load(s)+1

Property 1 ensures that we do not lose all replicas
when a rack loses its power or network connection.

4



Property 2 and 3 ensure that load is spread evenly
over the machines: By requiring all permutations
of group elements to occur, we make every server
from every group share some load with every server
from another group. Property 3 applies more to
states where the possible space of triplets has not
yet been exhausted: It makes sure we don’t first
try all triplets containing a1, then a2, and so on.

We now define some load counters for use in the
triplet generation algorithm.

load(s) How many triplets stor-
age server s already oc-
curs in.

connG1,G2(a, b) number of times SServer
a ∈ G1 appears in a
triplet with SServer b ∈
G2

connG1,G3(a, c) number of times SServer
a ∈ G1 appears in a
triplet with SServer c ∈
G3

connG2,G3(b, c) number of times SServer
b ∈ G2 appears in a
triplet with SServer c ∈
G3

connG1,G2,G3(a, b, c) number of times SServers
a, b, c appear in a triplet
together

Given a set of already existing triplets in the tree,
we may find the next set using the Generate-New-
Triplet algorithm:

1. From G1, pick the element t1 with the lowest
load(t1)

2. From G2, pick element t2 with the lowest
(load(t2) + 1) · (connG1,G2(t2) + 1)

3. From G3, pick element t3 with the lowest
(load(t3) + 1) · (connG1,G3(t1, t3) + 1) ·
(connG2,G3(t2, t3) + 1) ·
(connG1,G2,G3(t1, t2, t3) + 1)

For systems with more than 3 SServers in more
than one rack, property 1 holds because of our
grouping scheme.

The algorithm generates all permutations of the
three groups, in a sequence that spreads the load
evenly at all times, thereby keeping to properties 2
and 3. Figure 6 shows example results.

0.
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

a1b1c1
a2b2c2
a3b3c3
a4b4c4
a1b2c3
a2b1c4
a3b4c1
a4b3c2
a1b3c4
a2b4c3
a3b1c2
a4b2c1
a1b4c2
a2b3c1
a3b2c4
a4b1c3
a1b1c2
a2b2c1
a3b3c4
a4b4c3
a1b2c4
a2b1c3

22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.

a3b4c2
a4b3c1
a1b3c3
a2b4c4
a3b1c1
a4b2c2
a1b4c1
a2b3c2
a3b2c3
a4b1c4
a1b1c3
a2b2c4
a3b3c1
a4b4c2
a1b2c1
a2b1c2
a3b4c3
a4b3c4
a1b3c2
a2b4c1
a3b1c4
a4b2c3

44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.

a1b4c4
a2b3c3
a3b2c2
a4b1c1
a1b1c4
a2b2c3
a3b3c2
a4b4c1
a1b2c2
a2b1c1
a3b4c4
a4b3c3
a1b3c1
a2b4c2
a3b1c3
a4b2c4
a1b4c3
a2b3c4
a3b2c1
a4b1c2
a1b1c1
...

Figure 6: Generate-New-Triplet algorithm: Result-
ing triplet sequence for 3 racks with 4 SServers
each.

5.3 Tree Leaf Splitting

Leaf splitting is an important part of TripletMail.
As we will see, it facilitates quick re-replication in
case of failures.

Each leaf represents a up to certain number of
e-mails. Once this amount of data is exceeded, the
leaf node must be split.

This leads us to a trade-off: For example, if we
set the limit to 1000 e-mails per leaf, leaf splits
will occur twice as often as with a limit of 2000.
However, the amount of data to copy during the
split is around 500, not 1000, so copying will take
less time. Finally, with smaller limits, load will be
spread more evenly across servers, because the load
granularity is smaller; on the other hand, negotiat-
ing each leaf split takes some effort.

How does a leaf split take place? The storage
master that first needs to store an e-mail which
breaks the leaf node storage limit is responsible for
splitting the node. A new triplet is determined us-
ing the Generate-New-Triplet algorithm. The stor-
age master then splits the tree leaf and assigns the
new triplet to the new 1 branch. Figure 7 illustrates
this.

But before we can initiate the process of copying

5



0 1

0

0

01

1

1

a1, b1, c1 a3, b3, c3

a2, b2, c2 a1, b2, c3

a4, b4, c4

0
1 SServer a1 SServer b1 SServer c1

SServer a2 SServer b2 SServer c2

SServer a3 SServer b3 SServer c3

SServer a4 SServer b4 SServer c4

SMaster a SMaster b SMaster c

Figure 7: Result of splitting the mapping tree at
leaf 01.

over information from the old to the new storage
servers, we must agree with other servers on this
change. Another storage master might have noticed
the very same problem at about the same time: A
new message was added to a leaf node, which raised
the requirement for a leaf to be split. However,
only one storage master may be responsible for the
split, as only a single SMaster may send out the
commands to copy the affected messages to their
new location and then delete them from the old
one.

Therefore, TripletMail uses a variant of 2-Phase-
Commit [5] to make sure only one storage master
modifies the tree at a time, and all on-line storage
masters agree to this change.

The limitation to on-line storage masters allows
us to split leaves even when some storage mas-
ters have failed. However, it adds a disadvan-
tage: When communication between storage mas-
ters fails, they can be partitioned into two groups
that independently modify the tree. The likelihood
of a network partition, however, is minimal, since
all storage masters are directly connected to the
same network switch.

5.4 Re-Replication

When servers go down, a replica of each e-mail mes-
sage on the server is lost. Since one of our design

principles is that each message should at all times
have three replicas, we must re-replicate it to other
servers.

Since SMasters keep TCP connections open to
each SServer and ping them periodically, the loss
of a server is noticed quickly. After a grace period,
re-replication is started. The length of the grace
period should be long enough so that minor errors
are ignored: For example, it can be set to the time
it takes a machine to reboot.

Once again, the first storage master to notice the
loss of a storage server jumps into action.

Initially, it adjusts the groups G1, G2, and G3
used in triplet generation: The SServers which are
still alive are again divided into three equal-size
groups. Now, all triplet occurrences of the failed
server in the mapping tree must be replaced with
an SServer from the same group. Each time, the
SServer s with the lowest load(s) is chosen.

Then, the 2PC protocol is run to make sure no
conflicting changes are being made to the tree.
When the 2PC is complete, the newly chosen
SServers are advised to copy the e-mail messages
affected from the remaining copies, thereby restor-
ing the original replication factor.

5.5 Extending Storage Capacity

The re-replication mechanism is also used for ex-
pansion: When more storage servers or whole racks
are added to the storage system, the load will reach
them quickly: After the groups have been adjusted,
new triplets generated by the Generate-New-Triplet
algorithm will always contain the new servers. Sim-
ilarly, failed servers will be replaced by the new ones
in the affected triplets. Therefore, the triplet-based
approach also allows for expansions for the original
storage system to add more capacity.

5.6 Comparison: Top-Down Filling

We now compare our triplet-based approach to
other approaches to spread several replicas across
servers. An important measure will be the time it
takes to re-replicate failed servers. For simplicity,
we will assume that all messages are the same size,
and it takes one time unit to copy each message.

Clearly, the easiest approach for distributing
replicas would be that of top-down filling : each
server on the first rack gets assigned two fixed

6



peers on the other racks on which replicas are
stored. Once the first server is filled, we start fill-
ing the next three servers. For example, in Figure
7, SServer a1, b1, c1 would first be filled completely,
then a2, b2, c2, and so on.

With the top-down filling approach, it would take
a long time to re-replicate: a fail-over server would
have to copy all contents from its two peers. If
there were m messages on the failed server, it will
take m

2 time units to re-replicate the lost server.
Also, with this approach, each group of three

servers would have exactly the same load. As expe-
rience teaches, three hardware components manu-
factured in the same batch and exposed to the same
load tend to fail at the same time. In TripletMail,
each SServer is exposed to a different load, making
accidents where all three copies are lost at the same
time less likely.

In an ideal case, all messages would be spread
evenly over n servers. If one failed, then the total
amount of time necessary to re-replicate all mes-
sages would be m

n−1 : The load of copying m mes-
sages would be evenly distributed over the n − 1
remaining servers. Implementing a system, how-
ever, would not be easy: while re-replication would
be quicker, one needs a method to ensure that two
replicas never end up on the same server.

Our triplet-based approach comes close: For a
sufficiently large number of triplets in the mapping
tree, a failed storage server with m messages is re-
replicated in 3 · m

n−1 time units.
Because of our re-replication scheme introduced

in Section 5.4, the failed server will be replaced by
n−1

3 storage servers, who will evenly share the load
of copying the m messages.

5.7 Future Work

Several ideas are not yet implemented. Clearly, fo-
cussing on 3 replicas is somewhat rigid: This work
needs to be generalized to more than a fixed replica
count. Also, e-mails can currently be accessed by
web client only, as IMAP support is not yet avail-
able. The caching strategies for the MServers could
be optimized. Finally, e-mails often have the same
attachments: These could be identified through
content hashes and saved only once.

6 Performance Evaluation

To estimate system performance, we subjected the
system to some tests. Parameters were chosen as
follows: All messages were of size 35 kB, as that
corresponds to the average size of e-mails we mea-
sured earlier. The limit on the number of messages
per tree leaf was set to 1000. The hardware we
had available were homogenous machines with P4
processors running at 3 GHz, and 1 GB RAM. We
simulated 3 racks with 3 SMasters, and 6 SServers
per rack. Also, we ran 6 MServers simulating 2
clients. Each client had 100 users, with 1 folder
each. Messages were generated for random users,
with random content and headers. Performance
measurements were taken at SMasters.

These tests were run in a student lab. Therefore,
we could not replicate the network layout of a server
farm organized around racks.

Two measurements were made: Firstly, we
measured the write performance by having the
MServers saturate the system with Store requests.
Figure 8 shows that system could easily handle
storing around 1000 e-mails per minute.

Split Indicator a Writes / min b Writes / min c Writes / min Cumulative Writes / min

Time [minutes]

0

500

1000

1500

2000

2500

00
:0

0
01

:0
0

02
:0

0
03

:0
0

04
:0

0
05

:0
0

06
:0

0
07

:0
0

08
:0

0
09

:0
0

10
:0

0
11

:0
0

12
:0

0
13

:0
0

14
:0

0

STOREs / minute

Figure 8: Performance for number of messages
stored per minute.

Still, the system will usually be faced with a dif-
ferent load: Users will receive, check, and read
e-mail. For this, we had the MServers perform-
ing cycles of storing a new message, listing a ran-
dom folder, and retrieving a random message from

7



0

200

400

600

800

1000

1200

00
:0

0
01

:0
0

02
:0

0
03

:0
0

04
:0

0
05

:0
0

06
:0

0
07

:0
0

08
:0

0
09

:0
0

10
:0

0
11

:0
0

12
:0

0
13

:0
0

14
:0

0

Split Indicator a: Cycles / min b: Cycles / min c Cycles / min Cumulative cycles / min

Time [minutes]

Cycles / minute

Figure 9: Performance for mixed use: Store /
ListFolder / Retrieve cycles.

that folder. The results are shown in Figure 9 and
demonstrate that the system should be able to sus-
tain around 400 cycles / minute.

In effect, the performance displayed in here also
limits the use of the system: Since 5000 e-mail mes-
sages per user per year could be interpreted as 5000
such cycles per year during work hours, this system
could support about 8000 users. At a hardware cost
of around 3 USD per user for our evaluation sys-
tem, this seems acceptable. However, the software
is implemented in Java and not optimized.

7 Conclusion

We implemented a storage system for outsourcing
e-mail storage. The system is optimized for inex-
pensive servers stored in racks. E-mails are stored
in an encrypted manner so the storage provider
cannot see their contents. For assigning storage lo-
cations, we use consistent hashing to generate keys
for each message. Using a tree structure, parts of
the keyspace are then mapped to servers on which
replicas should be stored. This approach fits well
with small-size data chunks of our e-mails. We
demonstrated that this system spreads load evenly
across the servers used for storage. When servers
fail, we can quickly re-replicate the lost data be-
cause of these well-spread copies.

With the current implementation, TripletMail
could be made into a viable service, since perfor-
mance requirements are met.

Acknowledgements

The author wishes to thank his advisor, Keno Al-
brecht, and Prof. Roger Wattenhofer for their help.
Also, thanks go to Florian Walpen for fruitful dis-
cussions.

References

[1] S. Ghemawat, H. Gobioff, S.-T. Leung,
The Google File System, SOSP 2003, Bolton
Landing, NY, USA, Oct 2003

[2] P. Maymounkov, D. Mazieres, Kademlia:
A peer-to-peer information system based on
the XOR metric, IPTPS 2002, Cambridge,
MA, USA, Mar. 2002

[3] R. van Renesse, A. Bozdog, Willow: DHT,
Aggregation, and Publish/Subscribe in One
Protocol, IPTPS 2004, San Diego, CA, USA,
Feb. 2004

[4] NetApp: http://www.netapp.com/

[5] Bernstein, P.A. et al: Concurrency Con-
trol and Recovery in Database Systems: Chap-
ter 7, Addison Wesley, 1987

8


