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Abstract

To satisfy demands in modern networks, routers employ specialised network processors,
usually consisting of a general purpose CPU and several packet processors. With their high
processing power and versatility they are well suited for use as components in an active
network infrastructure. However, up to now the software running on network processors
in typical implementations consisted of a fixed firmware image. This diploma thesis aims
to implement a plug-in loader for the packet processors of the IBM PowerNP network
processor to allow run-time code deployment on active network nodes, and to provide a
means to pass network packets between the packet processors and other processing elements
in the active network node.

Um den Anforderungen moderner Computernetzwerke gerecht zu werden, benutzen Router
heute spezialisierte Netzwerkprozessoren, welche iiblicherweise aus einem standard-Mikro-
prozessor sowie mehreren Paketprozessoren bestehen. Dank ihrer Flexibilitdt und hoher
Leistung eignen sich Netzwerkprozessoren auch sehr gut als Komponenten in aktiven
Netzwerken. Bisher wurden diese Prozessoren typischerweise mit einem feststehenden
Firmware-Image eingesetzt. Diese Diplomarbeit implementiert nun einen Plug-in Lader
fiir die Paketprozessoren des IBM PowerNP Netzwerkprozuessors, womit zur Laufzeit Pro-
grammcode auf die Paketprozessoren geladen werden kann. Ausserdem wird eine Kom-
munikationsinfrastrucktur bereitgestellt, um Netwerkpakete zwischen allen Komponenten
eines PowerNP-basierten Netzwerkknoten ausgetauscht werden konnen.
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Chapter 1

Introduction

This chapter starts with a few words on Network routing in general, then the PromethOS
router platform is introduced to provide a reference frame for the rest of this document.
After a section about the goals of this diploma project, a short outline of the rest of the
thesis closes this introductory chapter.

1.1 Internet Routing

The way we use computers has changed fundamentally in the last 15 years, with calcu-
lator and typewriter functionality being replaced by communication facilities as the most
important application. This has only been possible by the almost universal adaption of a
single networking standard, the IP protocol suite [17], and the transition from individual
corporate and academic networks to today’s Internet, with network infrastructure enabling
communication between virtually any two devices on the network.

With the increasing number of Internet users and complexity of Internet application,
data traffic has also increased by several orders of magnitude and network infrastructure
had evolve to handle the high volume. The underlying technology, however, has remained
virtually unchanged from the earliest days of computer networking: data is transferred in
packets which are individually sent to their destination, often passing multiple intermediate
systems. These intermediate systems, called routers are the principal topic of this thesis.
This report, and especially the implementation developed in this thesis, will only use
today’s most widespread Internet protocol, IPv4 over Ethernet [17], but it is important to
note that the underlying theory applies to all packet-based network systems in an analogous
way.

1.1.1 Routing Requirements

Until now, Internet routers have done little more than look at the destination address
of incoming data packets and decide where to send them. This is quickly changing as
new network protocols are deployed: A starting point is the deployment of multicast [2],
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where routers distribute network packets not just to one, but to multiple destinations, and
manage information about who is interested in which packets.

Other applications that require more intelligent routers may be things like statistics
gathering, intrusion detecting on the router or, in conjunction with multicast, adaptive
video scaling: the provider of a video stream distributes high-resolution data, and the router
may scale this down for redistribution over low-bandwidth data channels. Environments
enabling such advanced functionality are called active networks, as opposed to conventional
“passive” networks where network routers merely send packets to their final destination,
and where all actual data processing happens at either the source or destination of the
data stream.

1.1.2 New Routing Architectures

Common to many of these possible applications of intelligent router technology is that
the required CPU bandwidth (and associated items like memory capacity and internal
communication bandwidth) far exceeds what is available on todays routers.

In the past, when requirements were higher than what was available on standard hard-
ware, two approaches have been used very successfully: distributing the task over multiple
computers, and building special hardware optimized for the requirements. The framework
developed in this thesis focuses on integrating the two: enabling load distribution in a dis-
tributed router architecture with special-purpose network processors offering a part of the
computing power by dynamically changing the software running on the routers in response
to changing requirements of the network.

1.2 The PromethOS High-Speed Router Framework

The PromethOS NP project [16, 18] implements a high performance network router for
an active network environment. Multiple processors are combined to build a distributed
router with a common management software. True to the active network philosophy, plug-
ins can be loaded onto the components of this router at run-time to adapt to changing
requirements, also, the management software tracks resource usage of all components of
the router platform and considers this information when deciding where to load plug-ins.
Processors can either be general purpose processors or special purpose network processors,
and the PromethOS NP framework offers communication facilities so that data and control
information can be exchanged between all components of such a distributed router.
PromethOS NP is implemented as a combination of Linux kernel modules and userspace
applications, and application specific code running on the packet processors of network
processors in the router architecture. A schematic overview of a PromethOS router is
shown in Figure 1.1. The Linux kernel module (the prozy device driver) receives and sends
the network packets to be handled by the PromethOS NP framework at a very low level to
keep processing overhead as low as possible, bypassing most of the Linux networking code.
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Figure 1.1: PromethOS NP router architecture

A hardware abstraction layer provides a uniform interface to all software components
(such as plug-in loaders for different hardware implementations, communication facilities
over various channels between components of a router etc.) to keep the core logic of
PromethOS NP — the resource management facility and overall plug-in management —
easy to adapt to new types of processing elements.

1.3 This Diploma Thesis

Much of the PromethOS NP framework has already been implemented and tested in earlier
work by Pascal Erni, Lukas Ruf and others [3, 16, 18], including partial integration of the
IBM PowerNP network processor (the PowerNP will be described in chapter 2). The task
set for this thesis is the completion of the PowerNP network processor integration with the
rest of the PromethOS architecture, namely

the plug-in loader: PromethOS plugin are loaded onto the packet processors of the IBM
PowerNP at run time, without requiring a break in processing of network packets.

plug-in integration: Network packets are processed by the packet processor plug-ins,
and can then be dispatched to be routed onto the network or for furhter processing
by other packet processor plug-ins or by PromethOS plug-ins on other processors in
the distributed router.
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communication paths: All components of a PromethOS router need to be able to ex-
change data and control information. This is implemented for a router environemnt
employing IBM PowerNP network processors and standard-issue general purpose
CPUs as processing elements.

In addition to the implementation, corresponding documentation is provided to allow others
to get acquainted with the system as quickly as possible. The original task assignment (in
German) for this thesis can be read in appendix A.

1.4 Structure of this Document

The rest of this document describes the implementation outlined above in great detail,
starting with chapter 2 which introduces the architecture of the PowerNP network processor
used in this thesis. It can and does not intend to replace any of the original documentation,
but rather should make it easier for the reader to locate the relevant parts of the extensive
original documentation. The main part of the thesis, the plug-in loader, is addressed in
chapter 3, which will also describe the mechanism to redirect network packets from the
packet processors to the other components in the system. In chapter 4 an easy way for
communication between the embedded PPC405 general purpose CPU of the PowerNP
and the host CPU (i.e., the CPU of the computer the PowerNP board is installed in) is
introduced. The evaluation (chapter 5) and a few closing remarks (6) conclude the main
body of the thesis, with the original task assignment, the planned project schedule, an
overview of the contents of the included CD and some instructions on how to get started
with all the tools making up the appendices.



Chapter 2

The Power NP Network Processor

This chapter does not intend to be a complete documentation of the IBM /Hifn! PowerNP
processor [10], or to replace any part of the documentation provided by IBM. Instead,
it is an extensively commented collection of pointers to those parts of the original docu-
mentation which are relevant to this diploma thesis. To be precise: described is not only
the PowerNP processor itself, but the PowerNP and the S3 (Silicon & Software Systems)
Application Reference Board (ARB) [20| as it was used in this thesis — things like the boot
process or the memory layout depend on how the PowerNP is connected to the surrounding
circuitry.

2.1 Network processors

But first, let’s answer the question what a network processor is. As Niraj Shah and
Kurt Keutzer note in [19], there is no single set of features that determine what a network
processor is — their broad definition includes any processor able to efficiently process packets
for network communication. Nonetheless, they identify five important areas where network
processors differ from general purpose CPUs.

Parallel Processing In a typical network router, many independent packet streams are
present simultaneously, with no or almost no interdependencies, which makes it very
easy to schedule tasks in parallel. Consequently, designers of network processors
often equip their products with a number of parallel processing units.

Special Purpose Hardware Network processors often are able to perform certain fre-
quently needed tasks in hardware, such as sophisticated bit field manipulation, check-
sum operations, table lookups or queue management. The number of special-purpose
function units, their design, and the way they are controlled varies wildly from prod-
uct to product.

!The PowerNP architecture was originally developed by IBM but later bought by Hifn. IBM discon-
tinued support of the PowerNP end of March 2004.
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Memory Architectures Computing tasks in network processors are mostly relatively
simple, but need to be done on many data elements, thus memory bandwidth quickly
becomes a main bottleneck. Most network processors therefore feature a memory
subsystem designed to either avoid or at least hide memory latencies, by holding
data close to the computing circuitry or by transparently executing multiple tasks
on the same processing element. In addition, some designers also offer hardware
implementations of memory management functions normally found in the operating
system kernel.

On-Chip Communication As outlined above, most network processors feature a wide
array of specialized processing circuits — implying that data needs to be moved be-
tween them as fast as possible. With most network processor architectures, this has
resulted in a very specialized on-chip communications infrastructure, often directly
supporting features of particular network protocols. This, together with the special-
ized memory layout, has proved to make true understanding of a network processor
design quite a challenge.

Peripherals In addition to quickly process a large number of network packets, network
processors need to move packets on to and off the chip. Network processors therefore
often directly feature industry standard network interfaces like Ethernet, ATM or
SONET.

Network processors are manufactored by many vendors; examples (other than the IBM
PowerNP) are the Motorola Cb series [14] and the Intel IXP [15].

2.2 PowerNP Architecture Overview

The main components of the PowerNP as shown in figure 2.1 are the Embedded Processor
Complex (EPC) with the embedded PowerPC 405 CPU (ePPC) and the Picoengines, the
switch interfaces, the Enqueuer/Dequeuer/Scheduler (EDS) units and the Physical MAC
multiplezer (PMM). Most components exist twice, on the ingress and the egress data path,
except for the EPC, which handles both directions in one unit and the ePPC which is not
in the main data path through the PowerNP: packets usually enter the PowerNP at a PMM
and are enqueued to the ingress EDS by the corresponding Data Mover Unit (DMU). The
ingress EDS passes control to the EPC which processes the packet and signals completion
back to the EDS which then enqueues it to the ingress switch interface. In the S3 ARB,
packets are passed directly to the egress switch interface, which signals the arrival to the
egress EDS. The egress EDS lets the packet be processed by the EPC again and then
enqueues it for delivery on a DMU, from where it is written to the physical network by
the PMM. The following sections describe these functional units in more detail, roughly
following the flow of a packet through the PowerNP processor.
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Figure 2.1: Components of the PowerNP processor

2.2.1 Data Mover Units and Physical MAC Multiplexer

The PowerNP (in its NP3GS3 version, as used on the Application Reference Board) offers
connectivity to 4 gigabit Ethernet or OC-48 SONET links or 40 100Mbps Ethernet links, or
combinations thereof, via four Data Mover Units (DMU A through DMU D). On the ARB,
three Gb Ethernet connectors are available, while DMU A is directly wired to a Broadcom
Gb Ethernet chip and is used as connection to the PCI bus of the host computer. To access
this Ethernet chip, the copernicus driver is used (included in the subversion repository on
the PromethOS server); there was no problem whatsoever with this driver throughout this
thesis?.

Additional to the aforementioned Data Mover Units, there is a special DMU E (or wrap
DMU), which injects all packages sent to it (from the egress side) back to the ingress side
for processing. As will be seen in chapter 3, this is an essential feature for some application.

2.2.2 Enqueuer Dequeuer Scheduler

The Ingress and Egress Enqueuer Dequeuer Scheduler (EDS) units deal with moving net-
work packages between the DMUs, the Embedded Processor Complex (EPC, see below)
and the switch interfaces. The units handle receiving the packets, storing the data in a
data store memory and starting the processing in the EPC. When the EPC has finished
processing each package, the EDS is responsible for enqueueing it to its destination (the
switch interface on the ingress side, the Data Mover Units on the egress side), respecting

2Use of jumbo-frames (which are supported by the PowerNP) was not tested; just increasing the MTU
of the Ethernet interface failed, though, so maybe some work is necessary in this area.
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policy decisions made by the EPC (rate limiting, for example, or whether packet ordering
should be kept for certain packages.)

The important thing about the EDS units is that once they are properly set up, they
operate fully automatic, and the application programmer (programming the EPC) does
not have to handle most queue and memory management issues. While this may make
the task of writing routing code much easier (reducing it to the part where the routing
decisions are actually felled), it makes understanding the PowerNP architecture a lot more
complicated — a big part of the package handling within the PowerNP is done in these
units, and most of it happens “behind the scenes”.

2.2.3 Embedded Processor Complex

The EPC is the central part of the PowerNP — and probably the most complex one. As
soon as the EDS (on either side) has received a network packet®, processing is started in the
EPC. After processing is finished, handling of the packet is passed back to the EDS unit
it came from. IBM recommends to do as much processing as possible on the ingress side
because network packets in the ingress EDS are stored on memory directly on the PowerNP
chip (with a very fast link to the EPC) while the memory of the egress EDS consists of
external, slower, DRAM. On the other hand, the ingress EDS’s memory is much smaller
than the egress EDS’s memory, so there may be cases where processing should be done on
the egress side to allow many packets to be buffered for some time.

Because of its complexity, the EPC is described in more details below; the Core Lan-
guage Processors are described in section 2.3 and the coprocessors in 2.4.

2.2.4 Switch Interface

Once a packet has been enqueued for delivery in the ingress EDS, the ingress switch
interface sends it off the PowerNP to either the egress switch interface of the same PowerNP
(as is the case with the Application Reference Board used here), to a second PowerNP’s
egress switch interface or to a switch fabric interconnecting many PowerNP processors in
a parallel router architecture with more than 2 PowerNP processors.

On the egress side, a packet received on the switch interface is handled by the egress
EDS, run through the EPC and then enqueued to a DMU for delivery; the ingress and
egress data paths are quite similar in this regard, even though there are many details that
are different since the tasks to be done differ.

2.2.5 Embedded PowerPC 405

Outside of the typical data flow through the PowerNP is the embedded PowerPC 405 CPU
which is included on the PowerNP chip. This PowerPC CPU is a standard general purpose

3Actually, already when a part of the packet has been received, but this is mostly invisible to the
application programmer, even when he requests data that has not yet been received.
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processor and can run a normal Linux system. Communication between the PowerPC
and most other units of the PowerNP chip is possible through the Coprocessor Access Bus
(CAB, [12] p. 405) for direct (but slow) access to most memory regions and through a
mailslot interface (p. 414 of the same manual) to efficiently pass network packets from the
EPC to the ePPC and back.

The Linux system used on this processor is described in more detail in appendix D — it
is a minimal Linux system, based on a 2.4 kernel and usees busybox to replace all of the
standard system binaries, so the full system fits on a 8M ram disk. No substantial changes
to this system were made in this thesis.

2.3 Packet Processors

As mentioned in section 2.1, a distinguishing features of network processors is the avail-
ability of special hardware for network packet processing, often in the form of specialized
processing units generally called packet processors. In the IBM/Hifn PowerNP architec-
ture these are called Core Language Processors (CLP) or simply picoengines, derived from
the name of their instruction set, the picocode. The PowerNP features 16 picoengines in 8
Dyadic Protocol Processor Units (DPPU) with 2 picoprocessors and 10 specialised copro-
cessors shared between them in each DPPU. Also, each picoengine can execute 2 threads
semi-concurrently, similar to the “Hyperthreading” feature introduced in the DEC Alpha
EV8 and offered in modern AMD or Intel general purpose CPUs, for a total of 32 threads
being executed in parallel.

Of those 32 threads, 28 are General Data Handler (GDH) threads and used for network
packet processing. The other 4 threads have additional capabilities and are used for man-
aging the PowerNP: the Guided Frame Handler processes commands issued to the EPC
in so-called guided frames (see section 4.1.) The General Table Handler thread processes
special commands relating to data structures of the tree search engine (see below), and
the General PowerPC Handler Request and Response threads handle the communication
between the embedded PowerPC and the packet processors via the mailslot interface. If
no request is pending which requires one of these special threads, they can also process
data packets like the GDH threads.

In most cases, application programmers do not need to deal with parallel programming
at all, but write a normal single-threaded program to handle a single network packet -
most thread scheduling and resource control issues are handled by the hardware.

The picocode instruction set (described in the Assembler Language Programmer’s
Guide [9] and also in the data sheet [12] p. 199ff) is similar to most other RISC plat-
forms: 32 bit word size and 32 bit instruction length and the usual arithmetic and control
instructions are present. Instructions dealing with half words and single bytes as well as bit
fields make it relatively easy to deal with typical network packet headers. However (and
more about that in section 2.5), the address modes available are more complex than in
most other CPU architectures, and much of the work is done asynchronously on the various
coprocessors (see below), so that reading picocode assembler as provided, for example, in
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the IBM Advanced Software Offerings can not be compared with reading code for most
general purpose computers.

2.4 Coprocessors

One of the key strengths of the PowerNP platform are the many coprocessors available to
accelerate tasks frequently used when processing network packets. This section contains
an overview of the available coprocessors and a few details about the functionality used
in this thesis, but please refer to p. 228ff of the data sheet [12] for a complete description
of all the features. While some coprocessors (for example the string copy and checksum
coprocessors) are local to each DPPU, other coprocessors interface with a corresponding
global unit within the PowerNP (the enqueue coprocessor interfaces with the completion
unit, the counter coprocessor with the counter manager etc.)

Coprocessor instructions can be executed synchronously or asynchronously* and take
arguments directly in the opcode and (for some coprocessor instructions) in a general
purpose register. Furthermore, many coprocessor instructions require data structures in
certain memory locations to be set up correctly. Again, for a detailed list of input and out-
put parameters of coprocessor instructions, please see the descriptions in the data sheet.
For asynchronous coprocessor calls, synchronisation is done with the wait family of in-
structions — these can either just wait for completion of coprocessor operations, or can
conditionally branch on either success or failure of a specific coprocessor operation.

While the Assembler Language Programmer’s Guide [9] describes the cpx instruction
to execute a coprocessor instruction, this is generally done via specific mnemonics which
imply the cpx instruction. For example, instead of using cpxa enqe, arguments it is
recommended to use just enge arguments. Since picocode programs usually use quite a
lot coprocessor calls, this greatly improves readability of the code.

The ordering of the coprocessors in the overview below is somewhat arbitrary and is
taken from the IBM documentation — it can be seen as a rough ordering by importance.

Tree Search Engine The tree search engine is a generic table lookup unit, implemented
completely in hardware. Since the format of the table entries (to be more exact:
leaf nodes - tables are implemented as search trees) is user defined, the tree search
engine can be used for many different purposes. The tree search engine is one of most
powerful units of the PowerNP and also one of the most complex ones.

Data Store The data store coprocessor provides an interface between the EPC and the
ingress and egress EDS. It is used to transfer network packet data between the EDS
and the EPC whenever a packet needs to be processed.

Control Access Bus Interface The control access bus (CAB) is an interface that allows
access to almost all components of the PowerNP processor and for some memory

4and also with or without retaining priority; a feature which was not used and is not further discussed
in this thesis.
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regions is the only method for the application programmer to access them directly
(for example, the picocode instruction memory; see section 2.5.2). But the bandwidth
is very low, and all 32 threads and the embedded PowerPC CPU share just one CAB,
so it is not usually used during network data processing. It is, however, crucial during
the set up of the PowerNP at boot time.

Enqueue The enqueue coprocessor is responsible for passing a package back to the EDS
after processing and freeing the allocated resources in the EPC. How the package is
further processed by the EDS depends on which queue the package was enqueued
to (this is specified as an immediate operand to the enqueue instruction) and on
the content of the Frame Control Buffer (FCB) Page, which is the data structure
interpreted by the EDS hardware (the data fields are described in the data sheet [12]
starting at section 7.4.4.1 on p. 250.)

Checksum It generates and verifies IPv4 header checksums. The IP header is read from
or written to in one of the memory areas managed by the Data Store coprocessor.

String Copy The string copy coprocessor has only one command, strcopy, which copies
data between any two memory locations within the EPC. (In contrast to the data

store coprocessor which copies data between memory locations in the EPC and the
EDS.)

Policy The PowerNP supports the notion of a flow as a sequence of network packets that
are somehow related, and has several options to deal with flows® In this thesis, the
policy handling capabilities of the PowerNP have not been used, so please refer to
the manual for more details.

Counter The counter coprocessor provides an interface to the counter manager in the
EPC and is used for statistics gathering. There are counters which are automatically
updated by the hardware and a number of counters controllable by the picocode
software.

Coprocessor Response Bus The coprocessor response bus coprocessor can be used to
attach additional coprocessors to the PowerNP — a feature which is not used at all
on the application reference board.

Semaphore The semaphore manager offers the possibility for inter-process synchronisa-
tion between threads running concurrently on the CLPs, it can be used to manage
shared data structures. Most of the data structures supported directly by the hard-
ware are already properly protected from concurrent access by multiple threads, so
the semaphore coprocessor is only required to manage additional, application-defined
data structures in the PowerNP.

5The algorithms implemented by the policy manager are the *Single Rate Three Color Marker’ and the
"Two Rate Three Color Marker’ algorithms as specified in RFC 2697 and 2698 [4, 5].
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Figure 2.2: External memories controlled by the PowerNP

2.5 Memory Layout

The PowerNP does not implement the “flat” memory address space present in most general
purpose CPU. Instead, it provides an array of many different, specialised memories with
very different characteristics. Many of these are addressable via the CAB bus; the data
sheet [12] shows in section 7.4.3.2 (p. 247) how a CAB address is structured. Other areas
can be directly addressed from assembler instructions, please see the Assembler Language
Programmer’s Guide [9] p. 65ff (chapter 4) for more information about memory addressing.

Not usually referred to as “memory”, each of the 32 threads has access to a register
set consisting of general purpose registers of the CLP itself and a register set for each
coprocessor®. Additionally, there is a thread-local memory pool of 1kb which is heavily

used in packet processing, its layout is described in section 7.2.4 of the data sheet (p. 198).

2.5.1 Global Data Storage

Most of the memory areas are global to the whole PowerNP, these are quickly described
below. Fundamentally, there are on-chip and external memories, and some of the external
memories can be omitted if some features of the PowerNP are not used (showed as dashed
boxes in figure 2.2). Details are explained in various places in the data sheet (|12], sections
8.1.1 p. 315 and 13.1 p.473), in the hardware reference manual ([13], explains where each
data structure is stored) and in the Application Reference Board Technical Description
([11], sections 2.3 to 2.5, p. 20f.)

6

some of these coprocessor registers, called array registers, are really small memory regions and not
what is usually associated with the term.
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A short overview of all the memories is given here: HO and H1 are two fast but small
on-chip SRAMs, Z0 is an optional external SRAM memory, DO, D1, D2 and D3 are
external DRAM memories, a lot slower than the SRAM ones, but considerably larger. All
these are used for data structures of the tree search engine. There are various constraints
on where data structures can be stored (listed in the Hardware Reference Manual [13] and
in chapter 8 of the data sheet [12]|), but generally it is always possible to store the most
frequently accessed structures into a fast static RAM. The external D4 DRAM area is a
grab-bag for all hardware-supported data structures which are not held in other (dedicated)
memory areas. DS0 and DS1 are external DRAMs which hold the egress data store. The
optional Z1 memory is an fast external static RAM for use by the egress scheduler. And,
finally, the ingress data store is built into the ingress enqueue dequeue schedule unit and
is, consequently, fast but quite small.

2.5.2 Picocode Memory

There are two memory areas not usually directly accessed by the application programmer:
the flash memory and the picocode instruction memory. The latter contains the instruc-
tions executed by the picoengines; it has a capacity of 32k Instructions (or 128kB) and is
initialized at system boot, exactly how depends on the way the PowerNP is used in the
hardware. In the S3 application reference board, the procedure is according to section
10.9.5 of the data sheet [12]: The picoinstruction memory is loaded from the flash memory,
and the code for the embedded PowerPC is provided through guided traffic.

For this thesis, the flash memory has not been modified, so please refer to the IBM
documentation and to the diploma thesis of Pascal Erni [3] for more details. The picoin-
struction memory, however, is a central component for the plug-in loader described in this
thesis. The description is in the Hardware Reference Manual [13], section 3.11 (p.304), the
plug-in manager accesses it through the CAB as described in section 3.3.

2.5.3 Area D6

As described before, the embedded PowerPC 405 runs a Linux system. The PowerPC
has its own memory area, D6, which is the only memory area directly accessible to it.
Communication with the other parts of the PowerNP happens in two ways: the control
access bus described in section 2.4, and the mailbox interface which is described in the
data sheet [12], section 10.8 (p. 414ff).

The D6 memory can also be accessed by the picoprocessors, and (at a higher level)
this is how the PowerPC is booted: the d6load tool uses the Block Write Raw guided
command as described in IBM’s ASO Control Application Programming Reference [8] on
p. 74 (the Guided Frame Format section on p.58 of the same manual is probably necessary
to understand how to use that command) to load the Linux kernel and an initial ram
disk into the D6 load before starting the PowerPC processor. More information about the
Linux system on the embedded PowerPC is contained in section D.4 in the appendix.



Chapter 3

Plug-in Loader

Network processors so far have been deployed with a statically compiled firmware con-
taining the software to route and filter packets, with run-time configuration being limited
to activating or deactivating certain features by adding and modifying routing tables and
firewall rules. In section 1.1.1 the idea of active networking was described, where network
routers need to provide much more functionality than just forwarding or filtering packets.
Also, when a node in for an active network is designed or even deployed, it may be un-
known what functionality this node should execute. Hence the requirement to be able to
load plug-ins onto the network processor at run-time.

In this chapter the plug-in loader architecture is explained in detail. The first section
of this chapter highlights the special difficulties of writing a plug-in loader on the PowerNP
architecture, the remainder contains an in-depth description of the plug-in interface and
describes how to use the tools to assemble and load plugins.

3.1 Constraints

With the ubiquity of architectures supporting shared libraries (using ELF, PE or some
other executable file format), an architecture to dynamically load executable code into
a runtime environment does not sound very exciting. But the core language processors
on the IBM PowerNP do not implement a modern general purpose architecture, so that
implementing a plug-in loader on this architecture was not as straightforward as it seems
at first. Also, as much as possible of the available software, the IBM Advanced Software
Offerings (ASO), should be used, as writing a new runtime environment from scratch would
be a dauntingly complex task — and this ASO was not designed to support dynamically
loaded code.

Additionally, as described in section 2.5, the instruction memory of the PowerNP is
only 32k instructions big, at 4 bytes per instruction. Roughly 27k instructions are already
used by the ASO firmware, so that only 4k instructions are available for loadable plug ins.
Setting the size of a plug-in arbitrarily to 1k instructions, this means that 4 plug-ins can
be loaded simultaneously — further evaluation will tell how many plug-ins will typically be
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needed, and how big plug-ins typically will be. This is, however, not within the scope of
this thesis.

As mentioned above, the IBM ASO is not designed with dynamically loadable code in
mind. Furthermore, the PowerNP hardware platform lacks some features that are present in
today’s general purpose CPUs which ease the implementation of dynamically reconfigurable
programs considerably.

3.1.1 No MMU

The first such feature is the memory management unit, MMU. In light of dynamically
loadable plug-ins, the main use of a MMU is that it creates a virtual address space and
allows any arbitrary mapping to physical addresses. This allows the repeated allocation
and deallocation of physical memory regions of different sizes into the virtual address
space without fragmentation in the physical memory becoming a problem (fragmentation
within the virtual address space is not usually a problem because the virtual address space
typically is several orders of magnitude bigger than the physical address space, and in
many cases is only relatively short-lived.)

Lacking memory address virtualisation, we decided to use plug-ins of a fixed size. That
way, repeated allocations/deallocations of memory will never fragment the free memory
region in the instruction memory in a way to make it impossible to load other plug-ins.
As an added benefit, using fixed-sized plug-ins at fixed addresses simplifies the code to call
the plug-ins considerably.

The other main feature of a MMU, access protection between memory regions of dif-
ferent owners, is less important in this context, even though it could probably be useful
when plug-ins should be executed which are not completely trusted (for example in a
router architecture that offers CPU cycles to process certain network packets but does not
necessarily trust the provider of the plug-in code.)

It should be noted that it is completely reasonable for IBM not to have equipped the
core language processors with a memory management unit: the very small address space of
the instruction memory is a convincing argument for omitting address virtualisation there
and the complex memory layout of the data memories would have made an MMU for the
whole PowerNP memory architecture not only a likely performance problem and waste of
silicon space but would certainly also have made understanding the PowerNP architecture
still more difficult.

3.1.2 Limited Support for Relative Branches

On most very small embedded systems, code is compiled and linked statically to a fixed
address. On the other hand, on all modern environments which support the notion of
an operation systems separate from the application programs, code is compiled to be
relocatable, so that it can be loaded to an arbitrary address in memory — all of these
platforms also support the notion of a dynamic library, i.e. code that is loaded into the
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address space of a program after the program is started!. To allow relocatable code, the
instruction set of the platform needs to have branch instructions that address their target
relative to the current program counter (called relative branches).

The PowerNP has several branch instructions, namely the unconditional branch (b),
conditional branch with condition codes (b{cond} — the condition codes are similar to
most other CPU architectures), “branch and link” subroutine call (bal) and conditional
branches testing on a specific bit in a register (bObit and bibit). While most of these
can be used for a relative branch, the bal (branch and link) instruction apparently cannot.
To be more precise: according to the assembler documentation documentation the bal
instruction does perform a relative branch ([9] p. 204f), while the data sheet ([12] p. 201)
clearly says that the immediate value is directly loaded into the program counter, which
would mean an absolute branch.

This limitation does not mean that relocatable plug-ins are impossible, but it does
mean that using subroutine calls within plug-ins needs special thought, and it limits the
use of the picocode C compiler provided by IBM, which generates normal (absolute) bal
instructions?. There are two possibilities to work around this problem: first, storing the
return address for a procedure call manually into the link register and then using an
unconditional branch to jump to the procedure, or storing the relocated target address
into a register and using the branch and link operation with a register argument.

3.2 User Interface

The Plug-in Loader is built on top of the NPCtrlD/NPCtrl interface written by Pascal Erni
in |3] and has functions to upload and activate and to deactivate picocode as well as to
set rules in the multi field classifier (MFC — see p. 213 of |7]) to call the plug-ins. The
command syntax is identical with the original NPCtrl command, except that a new ‘load’
command is used instead of the ‘addRule’ command. A plug-in id in the range 0 to 3
(inclusive) has to be specified. Unloading of plug-ins is done through the ‘flush’ command
of the NPCtrl command. A sample session starting the networking on the embedded
PowerPC Linux shell and loading a plug-in is shown in figure 3.1.

3.3 The NPCtrlD daemon

To load, activate and deactivate picocode plug-ins, the NPCtr1lD daemon was extended to
recognize the ‘load’ command. As manually loading a plug-in in this way is only expected

! Although from the view of the application programmers, dynamic libraries are loaded at program start
up, it is important to note that as far as the kernel is concerned, libraries are loaded entirely under the
control of the application program.

2In the author’s opinion, the many coprocessor calls and the special code to deal with the complicated
memory model makes the C code unreadable to the point where it does not have any advantage over
writing plain assembler code.
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# cd /usr/bin

# npcp

command output omitted

# NPCtrlD &

command output omitted

# NPCtrl -u 2 -p tcp -s 192.168.92.0 -S 192.168.92.255 -1 23 -L 25
most command output omitted

Added Rule successfully.

#

Figure 3.1: Sample shell session: load a plugin

to occur within a proof-of-concept implementation, with a full implementation either inte-
grating the functionality of the node manager within the control point (npcp) or at least
with the NPCtrlD daemon, a simple implementation was chosen: the message between
NPCtrl and NPCtrlD does only contain the plug-in id, and the actual plug-in code is read
from the file system by NPCtr1D from a file named pico_z.bin (where z is the plug-in id)
in the working directory of the NPCtrlD daemon.

As explained above, picocode plug-ins currently have a fixed size of 1024 instructions
and the picocode firmware is about 27k instructions long, which means that 4 plug-ins can
be loaded simultaneously, starting at addresses 0x7000, 0x7400, 0x7800 and 0x7¢00 in the
instruction memory. These four slots are directly mapped to the plug-in ids 0 to 3.

The AddPlugin function of NPCtrlD.c in aso-134/src/wrapper/linux/NPCtrlD con-
tains most of the added code between r288 and the HEAD revision in the subversion
repository; the NPCtrl frontend program source code is in aso-134/src/NPCtrl. To ac-
cess the instruction memory, the CAB (co-processor access bus) Driver API is used, which
is described on p. 706 of [8]. Information about the layout and access to the picocode
instruction memory can be found in [13| on p. 304, most importantly its CAB address
range and addressing mode (quadwords at 0x24000000 to 0x2401FFF0, with the lowest
nibble being used to address the word within every quadword.)

The cited documentation is very brief, so as additional reference the source code of the
CAB driver API in the cabdd directory and the code in linux/powerl2/pci_init.c was
used, which showed that the CAB driver API does not access the CAB directly but merely
handles the CAB bus protocol but requires user-provided funtions to access the CAB
configuration registers. The CAB configuration registers are mapped into the physical
address space of the ePPC and so they are accessible to NPCtrlD via the /dev/mem Linux
character special file. While this access method works with the software in use for this
thesis project, it should be pointed out that accessing the CAB registers in this way is
unsafe and does not protect against other programs using the CAB at the same time.

To verify that the plugin code is indeed written into the instruction memory, a small
demonstration program to read the whole instruction memory was written, it can be found



22 CHAPTER 3. PLUG-IN LOADER

ORG 0x0000;
do something here ...

; no further plugin to be called --> set r28 to -1

xor r28, r28
sub r28, #1
ret

; cause the plugin file to be 1024 instructions long
ORG 0xO3FF;
dw OxFFFFFFFF

Figure 3.2: A minimal picoplugin

in testprog/flashdump.c in the subversion repository. This program accesses the instruc-
tion memory by using guided commands (more about guided frames and guided commands
in chapter 4), which would be an alternative in case using /dev/mem should prove prob-
lematic. The reason that guided commands were not used to upload the plug-in to the
instruction memory is that the current implementation of the control point does not allow
sending these guided commands, so an extension to npcp would have had to be written to
allow this.

3.4 Picoplugin API

In addition to upload the picocode plug-in to the instruction memory, the load command
of NPCtrl also adds a filter rule to the multi-field classifier so that the plug-in is called for
packets matching the rule (figure 3.1 shows what a rule typically looks like.) A minimal
plugin (which does absolutely nothing) is shown in figure 3.2; it can be assembled with
npasm -ram -1 -v NP4GS3B -d0_128 plugin.asm, which will produce a plugin.ram file
containing the plugin code and a plugin.lst file containing a commented source listing.
The ram file, stripped of its leading two lines, can be converted into a raw binary image
with xxd -r -p, the resulting file can then be used by NPCtrlD. This is also shown by
the Makefile in the Code/sampleplugin directory (the buthead command used in the
Makefile is available in a package with the same name in Debian; the xxd command is
part of the vim package.)

The call to the plug-in can be found in the npdd/pico/src/data directory of the
ASO, around line 800 of 14.asm (it was inserted at r375 in the subversion repository).
The original idea was to use the 'redir’ action flag (p. 183 of [7]) to distinguish picocode
PromethOS plug-ins from external plug-ins (this would make sense, given that an unset
‘redir’ flag is interpreted as “process this packet locally” throughout the firmware, but in
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the end it was easier to just statically allocate the plug-in ID’s 0 to 3 for picocode plug-ins
and jump into the picocode plug-in in 14.asm according to the plug-in id: it turned out
that bigger modifications to the NPCtrlD daemon would have been necessary to add a
rule with unset ‘redir’ action flag, and the documentation of the control point API is not
very verbose on this topic (chapter 11 of [8]), so that this implementation directly calls the
plug-in if the plug-in id is 3 or lower.

The environment available to the plug-ins is described in the Forwarding Picocode
Design Reference [7] on pages 70 (general overview), 99ff (Interfaces A3, A5) and 210ff,
and particularly 217ff (detailed description of the code surrounding the call to the plug-
in). All the corresponding code is contained in the 14.asm file in the picocode firmware in
aso0-134/src/npdd/pico.

After return from a plug-in, the value of the r28 general purpose register is interpreted:
if is set to -1, plug-in execution is finished and the packet continues its way through the
picocode firmware. Any other value is interpreted as a plug-in id, with values smaller than
4 causing a further picocode plug-in to be called and other values causing the packet to
be redirected to the control CPU for processing by a Linux kernel level PromethOS NP
plug-in.

3.5 The Way Out — ePPC to Network Code Path

Unfortunately, the code to call the picocode plug-ins is only executed for packets entering
the PowerNP from external network interfaces, and not for packets going out from the
embedded PowerPC. Due to time constraints, the code to call packets for these packets,
too, could not be written, but the code path where this has to happen has been identified
and possible solution are proposed below.

As described in section 2.3, the communication between the embedded PowerPC and
the packet processors is handled by the GPH threads. The corresponding code is contained
in gph.asm at GPH_Transmit_Frame for packages leaving the ePPC. The packet is read from
D6 RAM and written into the egress data store, then immediately enqueued for delivery
to the ingress side (line 808 of that file). On the ingress side, the packet is received in
cp_gdh.asm as a D205 encapsulated frame, which will bypass the multi-field classifier
code which calls the plug-ins. To deliver these packets to the multi-field classifier and thus
cause the plug-ins to be acalled, a D203 frame is required, which has quite a different
header and contains only the layer 3 (IP) frame instead of a complete Ethernet packet.
These frame formats are described on p. 112ff of the Picocode Design manual [7]; table 3.1
contains an overview which shows that there are not many common header fields between
D203 and D205 encapsulation.

Possible solutions to this problem include the three outlined below, of course without
claiming that other solutions are not possible or even better.

Plug-ins on Egress Side: Plug-ins could be called directly from the GPH thread in
gph.asm. This alternative was discarded quickly as it would require the plug-ins
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field name Length | D203 D205 Description

DA 6B yes yes Destination MAC (of the PowerNP), ig-
nored

DA 6B yes yes Source MAC (of CP), ignored

Ethertype 2B 0xD200 | 0xD200 | The Ethertype

Subtype 1B 0x03 0x05 The frame encapsulation type

SP 1B yes yes Source port. Used only for the data wrap
port, 64 = ePPC, 65 = PCI host, 0 oth-
erwise.

IP DA 4B yes The IP dest. address to use instead of
the IP DA in the frame.

IP SA 4B yes Only for IP multicast: IP source address

Protocol type | 2B yes Layer 3 protocol type, as for rl in QA1

Ingress context | 16b yes For Layer 4 classification

Layer 4 skip 1b yes L4 classifier lookups should be skipped.

BA flag 1b yes Perform BA classification in L4

BA number 3b yes BA table number

ETB 8b yes Encoded Target Blade

TP 8b yes Target port. Goes to the TP field in the
FCB

0C-48 1b yes Is target port an OC-48 link?

LID 21b yes LID (meaning varies depending upon
frame type.) Usually contains queue in-
dex and port number.

FHF 4b yes The frame type to build. Refer to the Ux
and UJx frame formats.

FClnfo 4b yes yes Flow control information

TTL no Decr | 1b yes Reserved (7)

Priority 1b yes Switch priority

FHE 4B yes FHE (meaning depends on frame format)

Data yes yes L3 frame or raw frame, respectively.

Table 3.1: Picocode D203 and D205 frame encapsulation; reserved and padding fields have

been omitted.
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to handle two completely different interfaces: packets are stored in the egress data-
store in the GPH thread, but are stored in the ingress datastore in the multi-field
classifier in 14 .asm, also most of the data structures described in the previous section
are absent or totally different.

Rewrite D205 to D203 Packets: Packets entering the ingress side as described above
could be converted from D205 to D203 packets by rewriting the encapsulation header
and removing the Ethernet packet header from the packet data. This is probably
the most realistic approach, since only a small part of the firmware would have to be
changed.

Move Packets to Ingress in GPH: A more elegant solution would be to modify the
GPH thread to move incoming packets to the ingress datastore instead of the egress
datastore and handle them in the same way as packets coming in from the data mover
units. Care would have to be taken to re-enqueue these frames to a GDH thread to
avoid contention on the GPH thread. While this solution is more elegant than the
previous one, it is certainly also much more complex to implement.

3.6 Direct Packet Dispatch

Sometimes a network packet may need to be dispatched from a picocode plug-in directly
to the host processor or the control processor®, bypassing all further handling by the
ASO picocode. For this purpose the redir plug-in (in Code/sampleplugin/redir.asm)
was written which directly enqueues the packet after manually constructing the necessary
FCBPage data structure.

The FCBPage, which is documented on p. 250 of the data sheet [12], is the data struc-
ture interpreted by the Enqueuer/Dequeuer/Scheduler units (there is a data structure with
this name on both the ingress and the egress side, but the actual contents differ) to decide
where a packet is to be sent to by the hardware after it has been processed by the EPC.
Since the plug-in processing occurs on the ingress side, an ingress FCBPage is assembled
which will direct the packet via the switch interface to the egress side, where it will be pro-
cessed in softjump.asm (the egress processing is directly started at swj_unicast by the
hardware classifier.) Two new software jumps were added: promethos_egress_gph and
promethos_egress_host, which directly enqueue the packets to the embedded PowerPC
or to DMU A (and therefore to the host CPU), respectively.

This is the extent of the current implementation — to actually use this code, the proxy
device driver will have to be modified to handle these packets, since they don’t match any
of the frame formats that driver is prepared to handle.

3At the time this code was written the more elegant plug-in intercall APT via the return code — now
described in 3.4 — did not exist yet.
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Host to PowerPC communication

It was decided quite early that the IBM PowerNP control point (npcp) software would
be running on the embedded PowerPC and not on the host CPU, so that all possible
conflicts between instances of the npcp on a host computer running with multiple PowerNP
Application Reference Boards could be totally avoided. Obviously, the control software on
the host CPU needs to communicate with the control point on the embedded PowerPC
— for this, and for the author to familiarize himself with the PowerNP architecture, a
simple test program was developed allowing data exchange between the host CPU and the
embedded PowerPC without involving any part of the plug-in architecture.

4.1 Communication Paradigm: Guided Frames

First, a short introduction on the software architecture of the IBM Advanced Software
Offering (ASO). After power up, the PowerNP application reference board only runs a
minimal firmware which was loaded from flash memory as described above in section 2.5.2.
The only way to communicate with the picocode firmware is by using guided frames:
commands wrapped in special IP frames over UDP port 5555. The format of these guided

Ethernet
IP

UDP port 5555

Ethernet

Guided
Frame Hdr.
Guided Cmds.
or payload

Figure 4.1: Guided commands encapsulated in a guided frame.
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commands is shown in figure 4.1 and described in the ASO Control API Programming
Reference [6], p. 51ff. These guided frames are run through the functional blocks of
the picocode firmware and interpreted; response data and error codes are embedded into
the guided frame and the same data is then returned to the originating control point if
an acknowledgement was requested (an in depth description of guided frame handling is
provided in chapter 9 of [6]). As described below, the fact that the frame is mainly just
passed through by the firmware, with commands interpreted where necessary, could be
used for a simple yet reliable communication mechanism between host CPU and ePPC.

4.2 Implementation Details

The header fields of a guided frame are described in details on p. 58/59 of the API
documentation [6], three fields are of particular interest for the communication path to be
introduced here (quoted directly from the IBM documentation):

resp/req Response and Not Request Indicator. Differentiates between request (unpro-
cessed) and response guided frames.

ack/noack Acknowledgment or No Acknowledgment. Controls whether the GFH pic-
ocode acknowledges the guided frame. Guided frames that are not to be acknowl-
edged must not contain any form of guided command that performs a read.

use/learn Use or learn the Source Line Card/Source Port (SB/SP) information. The
SB/SP information is required to route the frame back to the originating the CP. If
the use/learn bit is set to 1, the SB/SP field in the frame is expected to be provided
by the originating CP. However, if it is set to 0, these values are deduced by the GFH
at the ingress side.

Thus, by setting ‘req’, ‘ack’ and ‘use’, on a guided frame, it is possible to cause the
picocode firmware to pass a frame through unchanged — and by specifying the destination
address for the frame in the source address fields (source blade, source port) — since the
‘ack’ causes the firmware to pass the frame “back to the originator” — it is possible to pass
frames between the embedded PowerPC and the host CPU. Luckily, not even the internal
frame structure is parsed, so payload data may be inserted directly after the guided frame
header, i.e. the packet does not need to adhere to the guided command format.

While the PowerNP hardware — according to the documentation — does support big
(9kB) jumbo-frames, at least some parts of the software available for this thesis do not.
So, through experimentation, a maximal payload size of 1458 bytes was determined. As
described below in section 5.3, some performance testing was done when the program was
written. In the current state of the source code repository (r473; see also the software
archive content overview in appendix C), the program is in NP/picocode/Code/testprog
in bench.c and gf.h. To compile, issue a make bench command in that directory or
(to compile for the embedded PowerPC platform — see also appendix D) CC=ppc_405-gcc
make bench. The tool is invoked with either ‘s’ or ‘r’ as its only command line argument
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to time the sending or receiving of a number of frames (it may be necessary to compile
the program intended for the receiving end with a lower number of frames as the picocode
firmware tends to drop a few frames during a benchmark run.) Also, note that the control
point software must not be started to run this test, just boot the ePPC with the Linux
system image (again, appendix D.)

4.3 Two Control Points

The router infrastructure that is supposed to surround this implementation is supposed
to consist of a control point (npcp) process on the embedded PowerPC processor for each
PowerNP board, with the management and communication software running on the host
CPU and some interface software on the PowerPCs to interface with the control point being
specific to PromethOS NP. Of course, this is not the only way to build a distributed router
infrastructure with the PowerNP platform, and IBM equipped the Advanced Software
Offerings bundle with the possibility of attaching more than one control point to a single
PowerNP chip — to quote from the IBM ASO API Reference manual [6], on p. 70:

This API is used to set the physical port parameters for a secondary CP port.
A secondary CP is a CP attached to the Network Processor using an Ethernet
connection, but it is not the CP that is used to load the operational picocode
on the Network Processor.

But, as mentioned at the start of the chapter, to avoid conflicts between multiple control
point instances, and to avoid complicating the software set up even more, it was decided
that running just the one control point in the default configuration and using custom glue
code was preferable to running several control points.
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Evaluation

This chapter summarizes what has been achieved in this project. The structure of this
chapter follows the structure given in section 1.3 in the introduction.

5.1 Plug-in Loader

The original firmware provided in IBM’s advanced software offerings (ASO) does not pro-
vide facilities to load packet processor code at run-time — the firmware is loaded once, at
control point start up, and is not modified after that. As described in sections 3.2 and
3.3, an extension was written to allow plug-ins to be loaded by software running on the
embedded PowerPC of the PowerNP.

The IBM firmware takes most of the available space in the instruction memory for the
packet processors, so that only 4k Instructions are available to store plug-ins; this has
arbitrarily been divided into 4 slots of 1k Instructions each, so that the current plugin
loader can load upto 4 plug-ins simultaneously.

5.2 Plug-in Integration

Packet processing in the picocode firmware needs to be altered so that the plug-ins are
called to process data packets. This has been done for packets originating from the network
directed to other network interfaces or the embedded PowerPC. Traffic originating on the
ePPC is not currently processed by the plug-in architecture, the reasons and possible
solutions are given in section 3.5.

The environment available during plug-in execution is described in section 3.4, as is
the API which allows plug-ins to specify that a network packet needs further processing
in another plug-in, either on the packet processor, the control CPU or, using a slightly
different method (3.6) on the host CPU. The implementation of the latter functionality
does, however, only exist on the packet processor side, the driver implementation in the
Linux kernel does not currently handle arriving packets.
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packet processor embedded
firmware PowerPC

<> plugin >

host CPU

Figure 5.1: Communication paths in the Promethos NP architecture

5.3 Communication Infrastructure

All the possible communication paths on a router node with the PowerNP processing are
shown in figure 5.1 The communication channels between the plug-ins and the other
components in the system have been described above, this section describes the direct
communication between the host CPU and the control CPU.

A simple way to exchange packets between the host CPU and the embedded PowerPC
has been found, and is even usable with the default IBM ASO firmware — so there is no
need to rebuild the boot firmware of the application reference board, which according to
Pascal Erni is not trivial (section 4.4.4 of |3]). The implementation of this communication
path is described in chapter 4.

Communication bandwidth between the host CPU and the embedded PowerPC is rather
low: measurments show a rate of less than 100Mbps (or ca. 6300 packets per second), which
is also confirmed by the work of Pascal Erni [3] and Michel Dénzer [1]. The path from
the host CPU to the packet processors is certainly not the problem: the PowerNP’s Data
Mover Unit which interfaces to the PCI connector of the board has a capacity of 1Gbps.
The bottleneck is in the GPH thread which handles communication between the packet
processors and the ePPC: regular data traffic (running from ingress DMU to egress DMU
and not to the embedded PowerPC) can use any of the 32 threads of the EPC, but there
is only one GPH thread for each direction.

While this performance may seem disappointing, it should be pointed out that the
embedded PowerPC in this network processor is a PPC405 running at 133MHz, with
only 64MB RAM, so any nontrivial data processing or bookkeeping would probably soon
severely test the limits of that architecture.

The source code of the benchmark program can be found in the subversion repository at
Code/testprog/gf .c in r271, or in the HEAD revision in the same directory as bench.c;
an example run is shown in figure 5.2. The author found it necessary to use a lower packet
count on the receiving side, since some packets get dropped when the PowerNP is flooded.

! The case of multiple PowerNP processor boards in a single host computer is not substantially different:
traffic between the PowerNP boards is routed by the host CPU.
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# gf s

Sending. ..

50000 packets of 1458 bytes sent in 7896ms

this means: 9232346.240592bps at 6332.199068pps
# gf s

Sending. ..

50000 packets of 1458 bytes sent in 7925ms

this means: 9198094.013605bps at 6308.706457pps
# gf s

Sending. ..

50000 packets of 1458 bytes sent in 7911ms

this means: 9214551.154031bps at 6319.993933pps
# gf s

Sending. ..

50000 packets of 1458 bytes sent in 7895ms

this means: 9233231.425816bps at 6332.806191pps

Figure 5.2: Performance measurements between control CPU and host CPU.

The current implementation of this communication channel uses the npctl10 interface
of the procy device driver exclusively, so no control point software can be run in parallel.
Either modification of the proxy device driver or of the control point software will be neces-
sary to handle operation of the control point in parallel with the use of this communication
channel.



Chapter 6
Conclusion and the Road Ahead

To get started with this last chapter, let’s first look back at the original task assignment
(here translated into English, the original German version can be seen in appendix A):

In this diploma thesis, a framework for the packet processors shall be developed
enabling their dynamic programming with PicoPlugins. Also, the framework
should implement a programmable distributor [16] to dispatch network packets
to the various processors in the system.

The following section will look back and relate this thesis to the task assignment. The
rest of the chapter will then describe how the work done in this project could be further
improved.

6.1 Summary

Looking back at the past 4 months, most of the goals of the task assignment could be
implemented, albeit sometimes only as proof-of-concept code. For the biggest missing piece,
plug-in invocation on network traffic originating on the embedded PowerPC, it could be
shown where exactly further modification is necessary. The most important conclusion for
the author is that, even with the extensive documentation that was available, the complex
architecture required a lot of time until the architecture was understood enough, so that
any actual work could be done. With the switch to 6 months-long master thesis instead of
the 4 months diploma thesis, this problem should have a less heavy impact on the work of
future students.

6.2 The Future

As mentioned above, it was not possible to implement a full production-ready network
router, so there is much room for improvements in many areas. One obvious project is
writing actual plug-ins to make use of the possibility to load pico-plugins. Other projects
include:
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Traffic from ePPC An implementation of one of the proposed solutions of section 3.5
is required to handle traffic originating from the embedded PowerPC and thus make
the plug-in framework fully usable.

Extend Linux Kernel Driver The network packets directed to the Linux kernel running
on the host or control CPU as described in section 3.6 need to be handled and passed
on to a software component to be processed.

Evaluate Plugin Size The free area of the instruction memory was arbitrarily divided
into space for 4 plug-ins. This choice needs to be reevaluated by looking at plug-
in implementations and playing the possibility to load more plug-ins against the
possibility to load bigger plug-ins. Additionally, it may be possible to omit or replace
parts of the IBM firmware to free instruction memory space for more plug-ins.

Configuration Data for Plug-ins The current plug-in framework does only load plug-
in code into the instruction memory and run this code on network packets. No way
is provided to supply configuration data to these plug-ins. This could be achieved by
reserving parts of the D6 memory for this purpose or by building data structures in
the tree search engine.






Appendix A

Task Assignment

The next three pages contain the original task assignment for this diploma thesis.
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A Framework For Programming Packet Processors

1 Einfihrung

Moderne Router setzen zur Steigerung der Verarbeitungskapazitat einen oder mehrere Netzwerkpro-
zessoren (NP) [2, 3, 4] pro Netzwerk Port ein. Diese Netzwerkprozessoren kénnen durch Programm-
code programmiert werden. Eine Fahigkeit, welche die NPs fir den Einsatz in Aktiven Netzen (AN) [7]
pradestiniert. NPs bestehen Ublicherweise aus einem General Purpose Processor Core und mehreren
spezialisierten Paket Prozessoren, welche bei IBM Core Language Processors, bei Intel MicroEngines
genannt werden. Sie stellen somit ein Chip-Multi-Processor System dar, welches die Aufgaben entspre-
chend der zu I6senden Komplexitat auf die verschiedenen Prozessoren verteilt.

Die Programmierung von Paket Prozessoren ist nicht trivial, setzt sie doch ein sehr profundes Verstand-
nis der Prozessor-Architektur voraus. Um die Programmierung von Services zu vereinfachen, wurde im
Rahmen von PromethOS NP [6] das Konzept der PicoPlugins eingefihrt, welches es gestatten soll, Ser-
vice Komponenten nach einem einheitlichten Konzept auch auf den Paket Prozessoren zu installieren.
Eine Uebersicht der Gesamtarchitektur wird in [5] prasentiert.

2 Aufgaben: A Framework To Program Packet Processors

Im Rahmen dieser Diplomarbeit soll ein Framework fir die Packet Processors entwickelt werden, wel-
ches deren dynamische Programmierung nach dem Konzept der PicoPlugins ermdglichen soll. Das
Framework soll zudem in der Lage sein, Pakete nach dem Konzept der Programmable Distributors [5]
an verschiedene Prozessoren zu dispatchen.

3 Vorgehen

e Richten Sie sich eine Entwicklungsumgebung (GNU Tools) unter Linux ein.

e Machen Sie sich vertraut mit den Unterlagen (Dokumentation und Source Code) zum PromethOS
NP Framework und dem Netzwerkprozessor.



Erstellen Sie einen Zeitplan, in welchem Sie die von lhnen zu erreichenden Meilensteine lhrer
Arbeit identifizieren.

Entwickeln Sie eine Architektur fir das zu erstellende Packet Processor Framework.
Implementieren Sie lhre Architektur.

Verifizieren, evaluieren und demonstrieren Sie das Erreichte durch eine Beispielapplikation.
Dokumentieren Sie die Resultate ausfihrlich.

Auf eine klare und ausfiihrliche Dokumentation wird besonders Wert gelegt. Es wird empfohlen, diese
laufend nachzufiihren und insbesondere die entwickelten Konzepte und untersuchten Varianten vor dem
definitiven Variantenentscheid ausfihrlich schriftlich festzuhalten.

4 Qrganisatorische Hinweise

Am Ende der zweiten Woche ist ein Zeitplan fir den Ablauf der Arbeit vorzulegen und mit dem
Betreuer abzustimmen.

Mit dem Betreuer sind regelméssige, zumindest wochentliche Sitzungen zu vereinbaren. In diesen
Sitzungen sollen die Studenten mundlich Uber den Fortgang der Arbeit und die Einhaltung des
Zeitplanes berichten und anstehende Probleme diskutieren.

Am Ende des ersten Monates muss eine Vorabversion des Inhaltsverzeichnis zur Dokumentation
dem Betreuer abgegeben und mit diesem besprochen werden.

Nach der Halfte der Arbeitsdauer soll ein kurzer mindlicher Zwischenbericht abgegeben werden,
der Uber den Stand der Arbeit Auskunft gibt. Dieser Zwischenbericht besteht aus einer viertel-
stiindigen, mindlichen Darlegung der bisherigen Schritte und des weiteren Vorgehens gegeniiber
Professor Plattner.

Am Schluss der Arbeit muss eine Prasentation von 20 Minuten im Fachgruppen- oder Instituts-
rahmen gegeben werden. Anschliessend an die Schlussprasentation soll die Arbeit Interessierten
praktisch vorgefuhrt werden.

Die Arbeit muss regelméassig auf dem PromethOS SVN-Server <htt ps://svn. pronet hos.
or g: 8443/ svn/ Promet hOS> gesichert werden. Es ist darauf zu achten, dass die richtige
Branch verwendet wird.

Bereits vorhandene Software kann ibernommen und gegebenenfalls angepasst werden.

Die Dokumentation ist mit dem Satzsystem IXTeX zu erstellen. lllustrationen missen mit einem
OpenSource Programm unter Linux erstellt werden.

Es ist ein mit Bindespiralen gebundener Schlussbericht Uber die geleisteten Arbeit abzuliefern (4
Exemplare). Dieser Bericht besteht aus einer Zusammenfassung , einer Einleitung, einer Analyse
von verwandten und verwendeten Arbeiten, sowie einer vollstandigen Beschreibung der Konfigu-
ration von den eingesetzten Programmen. Der Bericht ist in Deutsch oder Englisch zu halten. Die
Zusammenfassung muss in Deutsch und Englisch verfasst werden.

Die Arbeit muss auf CDROM archiviert abgegeben werden. Stellen Sie sicher, dass alle Program-
me sowie die Dokumentation sowohl in der lauffahigen, resp. druckbaren Version als auch im
Quellformat vorhanden, lesbar und verwendbar sind.

Mit Hilfe der abgegebenen Dokumentation muss der entwickelte Code zu einem ausfuhrbaren
Programm erneut Ubersetzt und eingesetzt werden kdnnen.

Diese Arbeit steht unter der GNU General Public License (GNU GPL) [1].

Fur die Arbeit werden jedoch Informationen eingesetzt, welche nur durch das Unterzeichnen eines
NDA (Non-Disclosure Agreement) mit IBM Corp. erhalten wurden. Die Arbeit als ganzes (Pro-
grammcode und Dokumentation) sowie alle Informationen, die unter das NDA fallen, durfen nur
an Dritte weitergegeben werden, wenn eine schriftliche Einwilligung von IBM Corp. vorliegt. Falls
NDA-Informationen auf einem anderen Rechner als <www. pr onet hos. or g> gespeichert wer-
den, muss sichergestellt werden, dass kein unberechtigter Zugriff auf diese mdoglich ist.

Diese Arbeit wird als Diplomarbeit an der ETH Zirich durchgefuhrt. Es gelten die Bestimmungen
hinsichtlich Kopier- und Verwertungsrechte der ETH Zurich.



Literatur

[1] GNU General Public License v2. http://www.gnu.org/copyleft/gpl.html, June 1991.

[2] IBM Corp. IBM PowerNP NP4GS3 Databook. http://www.ibm.com, 2002.

[3] Intel Corp. Intel IXP1200 network processor — datasheet. http://www.intel.com, 2000.

[4] Intel Corp. Intel IXP2xxx hardware reference manual. http://www.intel.com, 2003.

[5] L. Ruf, R. Keller, and B. Plattner. A Scalable High-performance Router Platform Supporting Dynamic
Service Extensibility On Network and Host Processors. In Proc. of 2004 ACS/IEEE Int. Conf. on
Pervasive Services (ICPS’2004), Beirut, Lebanon. IEEE, Jul. 2004.

[6] L. Ruf, R. Pletka, P. Erni, P. Droz, and B. Plattner. Towards High-performance Active Networking. In
Proc. of 5th Annual Int. Working Conf. on Active Networking (IWAN), Kyoto, Japan, number 2982 in
Lecture Notes in Computer Science. Springer Verlag, Heidelberg, Dec. 2003.

[7] D. Tennenhouse, J. Smith, W. Sincoskie, D. Wetherall, and G. Minden. A Survey of Active Network
Research. IEEE Communications, January, 1997.

Zurich, den 05.04.2004



Appendix B
Schedule

The next page contains the original project schedule. The diploma thesis started on April
5th 2004, and ended on August 4th of the same year.
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Appendix C

Software Archive Contents

The subversion® version management software was used to store the software used in this
project, and references to specific versions of files are made in some places in this document.
Consequently, to continue the work started in this project, it is recommended to coninue
to use this repository — for access permissions, the supervisor of this project, Lukas Ruf,
should be contacted at <lukas.ruf@promethos.org>. A snapshot of the latest version of
the software is also available in a tar file; again, contact Lukas Ruf for access. Both the tar
file and the subversion repository have the same directory layout. A number of additional
subdirectories were omitted, especially all directories in the Linux kernel tree and most
subdirecotires of the ASO code. All files which were changed in this project are listed in
monospace italics.

+-- NP
| -- copernicus_drv
| The copernicus driver (Broadcom gigabit Ethernet)

| -- hardhat
| +-- devkit
+-- 1lsp

+-- ibm-np4gs3-ppc_405
+-- linux-2.4.17_mv121

The Linux kernel for the embedded PowerPC Linux
+-- picocode
| Everything that was changed in this project is contained in this directory
| -- Code
| |-- aso-134
| |  +-- src
|  The IBM Advanced Software Offerings source code
| |-~ NPCtrl NPCtrl.{c,h}
|
|

The client program of the plugin loader
| |-- cabdd

http://subversion.tigris.org/
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The CAB driver API

| |-- linux
| | +-- em405
| | +-- sonic

| | +-- utils
The d6load utility

| |-- npdd

| | ’-- pico src/data/{l4.asm,softjump.asm}
The picocode firmware

| +-- wrapper

| +-- linux

| +-- NPCtrlD NPCtrlD.{c,h}, NPCtriMsg.h
The plugin loader daemon

| -- hardhat

|  +-- devkit

| +-- ppc

| +-- 405

| +-- bin
The MontaVista PowerPC cross development tools (executables)
| -- sampleplugin all files
The sample picocode plugin, the packet dispatcher
+-- testprog all files
Test programs: bench, flashdump

|-- Confdata all files

The load. sh helper script; configuration files used in the project

+-- Docu all files exzcept ‘ibmdoc’

+-- ibmdoc
IBM ASO documentation (pdf) from IBM



Appendix D

Tools Setup

This chapter describes how to set up the entire PowerNP development environment, start-
ing with a standard Debian GNU/Linux PC on an Intel based computer. While it is fairly
detailed, it does not intend to describe each keystroke.

D.1 Tools on Debian GNU /Linux

There are two different sets of tools to be installed: the tools provided by IBM for Pio-
cocode development and the MontaVista Hardhat Linux cross compiler for the embedded
PowerPC.

D.1.1 PowerPC 405 cross compiler environment

MontaVista provides a pair of complete Linux distributions for embedded software devel-
opment on PowerPC 405-based systems; one (Red Hat-based) system for the host system
and one for the embedded platform, mainly intended to be used for systems able to mount
their root file system via NFS. In this thesis, however, only the cross development tool
chain was needed,

In theory, the NP/hardhat directory in the subversion server contains the necessary
executables and support files in the devkit/ppc/405/bin subdirectory. However, using
this toolchain for anything that requires linking with libc (i.e. anything except compiling
the Linux kernel) showed that a lot of the header and object files necessary to compile
programs which link to the C library are missing. The necessary parts of the hardhat
directory structure were therefore duplicated in NP/picocode/Code/hardhat and supple-
mented with the missing files from the original MontaVista ISO images!. Thus, to use the
cross compiling environment, NP/picocode/Code/hardhat/devkit/ppc/405/bin must be
added to the $PATH environment variable.

'host-mv13.0.0.iso and ppc_405-mv13.0.0.iso from the PromethOS web page with SHA1 sums
e70b0a8450cd3176£28a48436f3adb479e34a819 and e30b52cb45bd75aleal334cd7e06ce94717782402.



44 APPENDIX D. TOOLS SETUP

D.1.2 IBM Advanced Software Offerings

The Advanced Software Offerings (ASO) version 3.1.0 used in this thesis is contained in the
ibm.restricted.red_hat72.npbkit310-1inux24-i386.tgz? file on the PromethOS web
server at https://www.promethos.net/IBM/Restricted/ which is an archive containing
the ASO itself and its dependencies as RPM packages.

The following is a description how the IBM ASO bundle was set up on the author’s
Debian GNU /Linux installation. The software bundle was originally intended to be used
on Red Hat Linux 7.2, so if the instructions below should fail®, using that environment
and setting up the software according to the instructions in the README.TXT in the tar
file should work. But because the author prefers Debian and because Red Hat 7.2 is an
ancient system by today’s standard (especially since modern graphics and network adapter
hardware and SATA disk controllers are likely not to be supported at all), this was not
tested.

Before the installation, make sure the following Debian packages are installed: alien
(version 8.44 was used by the author), gcc , make, debhelper and dpkg-dev. The fakeroot
package is useful, too; alternatively alien can be called from the root account. Then, the
RPM files can be converted into Debian packages:

avbidder@papillon:~/tmp$ fakeroot alien blt-2.4u-1.i386.rpm
blt_2.4u-2_1386.deb generated

avbidder@papillon:~/tmp$ fakeroot alien Tcl-8.3.4-1.i386.rpm
tcl_8.3.4-2_1386.deb generated

avbidder@papillon:~/tmp$ fakeroot alien Tk-8.3.4-1.i386.rpm
tk_8.3.4-2_1386.deb generated

avbidder@papillon:~/tmp$ fakeroot alien IBMnpbkit-3.1.0-0158.i386.rpm
ibmnpbkit_3.1.0-159_1386.deb generated

avbidder@papillon:~/tmp$ 1s

IBMnpbkit-3.1.0-0158.i386.rpm blt_2.4u-2_i386.deb

README . TXT ibmnpbkit_3.1.0-159_1386.deb
Tcl-8.3.4-1.1386.rpm tcl_8.3.4-2_1386.deb
Tk-8.3.4-1.1386.rpm tk_8.3.4-2_1i386.deb

blt-2.4u-1.1i386.rpm
avbidder@papillon:~/tmp$

These .deb files can then be installed as usual, though it may be necessary to either
remove all installed Tcl/Tk based software from the system or to ignore conflicts and
dependencies (and risk that the other Tcl/Tk based programs stop working) — or (if only
the picocode assembler is needed and not the npsim and npscope tools), only install the
ibmnpbkit_3.1.0-159_1386.deb package and ignore the Tcl/Tk and blt requirements. In

2SHA1 checksum b90e92b9a318358c¢5063320480358b922d4a6fdd

3 A lot of software from the Debian testing and unstable distributions was used, so the author’s instal-
lation presented a moving target. It is therefore, unfortunately, conceivable that the software installation
may fail on different Debian installations.
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any case, the IBM ASO seems not to work with the Tcl/Tk and blt packages that come
with Debian. All files are installed in /opt/nptools.

In addition to the software installation, it is also necessary to set some environment
variables. This is also explained in the README . TXT file which was already mentioned above.
The author added the following section to his ~/.bash_profile; users of other shells will
need to adapt this, obviously.

if [ -d /opt/nptools ]; then
export NPTOOLS_HOME=/opt/nptools
export NPTOOLS_USER_HOME=/home/avbidder/.nptools
export NPASM_QOPTS="-q -co"
export TCL_LIBRARY=$NPTOOLS_HOME/tcl18.3.4/bin
export TK_LIBRARY=$TCL_LIBRARY
export LD_LIBRARY_PATH=$NPTOOLS_HOME/tc18.3.4/1lib:$NPTOOLS_HOME/1lib
export MANPATH=:$MANPATH:$NPTOOLS_HOME/tcl8.3.4/man
PATH=$PATH: /opt/nptools/bin
fi

D.2 Drivers for the Application Reference Board

To access the PowerNP board from the host system, the copernicus driver (to access the
Broadcom gigabit interface) and the prozy device driverneed to be loaded. Please see the
next section on how to compile the proxy device driver; this section explains how to get
the copernicus driver.

The source code of the copernicus driver resides in NP/copernicus_drv in the sub-
version repository. To compile, it expects the configured Linux kernel code in either
/usr/src/linux or /lib/modules/‘uname -r‘/build. In this thesis, a 2.4 kernel was
used (the author used a 2.4.26 kernel, Michel Dénzer used 2.4.17-mvl21-promethos; any
2.4 version should work.), 2.6 kernels were not tested and will probably not work. A simple
make then builds the copernicus.o kernel module. It is important that a gee 2.95 version is
used to compile the kernel and the drivers; the source code contains some non-standard C
constructs which are not supported anymore in newer versions. For this, either install the
gee Debian package from Debian 3.0 (this worked on the author’s machine — it may not
work on newer Debian installations because of dependency problems), include a symlink to
gee-2.95 in a directory early in the $PATH, or change the /usr/bin/gcc symlink to point
to the correct compiler (using dpkg-divert to make sure the change is not overwritten on
software updates.)

NP/picocode/Confdata contains the load.sh shell script which loads the copernicus
driver, the proxy device driver and initialises the npct10 pseudo Ethernet interface which
is the primary interface to the PowerNP processor. It initialises network interfaces to the
IP addresses 3.3.3.3 and 4.4.4.4* which are hard coded into some of the tools.

4Which are assigned to General Electric and Level 3 communications, respectively. Why IBM did not
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D.3 Modifying and Compiling the ASO

The important parts of the advanced software offerings from IBM, as modified by Pascal
Erni 3] and in this thesis, are the PowerNP control point daemon (npcp), the proxy device
driver, the npcp control daemon and its control program (NPCtrlD and NPCtrl) and the
picocode firmware. The complete ASO bundle is contained in NP/picocode/Code/aso-134
(or without the author’s modifications, in NP/aso-134.)

As explained in the previous section, gcc 2.95 must be used; additionally, the con-
trol point software includes some components written in C++, so g++ 2.95.x needs to
be available too. The software kit can be compiled either for the host platform or for
the Linux system on the embedded PPC405 (see below). The configuration is contained in
Linux-debian.mk (compilation for the host PC) and Linux-sonicehh.mk (compilation for
the embedded Linux platform) in Code/aso-134/src; you will need to set the BASE vari-
able in these files to match your directory layout®. To activate a configuration, execute ei-
ther ./configure debian or ./configure sonicehh and compile the software with make.
The picocode firmware needs to be compiled separately by executing make np3b in the
src/npdd/pico directory. The d6load utility in 1inux/em405/sonic/utils/ also needs
manual compilation, with just make. The final executables can be found in exe/platform
(the executables) and obj/platform/npdd/pico/link (the picocode firmware), respec-
tively; platform is either i386-debian-1linux or ppc405-hardhat-1linux.

The sample picocode plug-ins, contained in NP/picocode/Code/sampleplugin, are
closely related to this software bundle. A simple make command compiles the redirect
plug-in, a trivial change in the Makefile will enable compilation of the sett! plug-in. More
information about the plug-in infrastructure is contained in the main part of this thesis in
chapter 3

D.4 Linux on the embedded PowerNP CPU

As described in the main part of this document, plug-ins are loaded from the Linux system
running on the embedded PowerPC. An adapted Linux kernel which runs on the PowerNP
board is stored in NP/hardhat/devkit/lsp/ibm-np4gs3-ppc_405/1inux-2.4.17_mv121
in the subversion repository. The PowerPC Linux root file system must be present in
the kernel directory in the ram disk at arch/ppc/boot/images/ramdisk.image.gz, the
ramdisk used in this project is provided in the Confdata directory. With the kernel configu-
ration in config-2_4_17_mv121 (rename this to .config in the same directory), a bootable
kernel image which includes the ram disk can be built with make zImage.initrd, and the
resulting arch/ppc/boot/images/zvmlinux.initrd.vxboot file can be loaded onto the
PowerPC with the d6load tool.

The ramdisk.image contains a minimal Linux system on a 8M ext?2 file system image.

chose IP addresses from the RFC 1918 private IP ranges is a mystery to the author.
SMichel Dénzer did some more work on the build system to eliminate this in [1]. This unfortunately
didn’t get merged into this tree.
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All system binaries are provided by the busybozr system®. To edit this file system, it can
be mounted on the host Linux system with the loop option to mount: mount -o loop
ramdisk.image /mnt (after uncompressing it with gzip.) After making the changes and
compressing it again, regenerate the boot image as described above and load it with d61oad.

After boot, the Linux console is accessible via the serial port of the application reference
board” (the necessary serial cable was provided by Lukas Ruf; ordering information can be
found in the technical description of the application reference board [11] in section 1.2.)
After boot up, networking can be started by loading the pci_rethmod.o driver module
and starting the control point software (the npcp program) which will load the picocode
firmware from /etc/npcp.d into the packet processors’ instruction memory (note that the
npcp program needs his helper binaries in the current working directory, so be sure to
change to /usr/bin beforehand.) To use the plug-in loader, the NPCtrlD daemon must
be started and can then be controlled with the NPCtrl program. Please read the previous
section on how to modify and compile these components.

Please note that there are several issues that need to be taken into consideration when
working with the Linux system on this PowerPC processor — there was unfortunately not
enough time to trace these to their roots.

Initial boot problems In some cases, d6load fails after a cold boot. Retrying a sec-
ond time may succeed, or doing a warm boot may be necessary. Unfortunately no
systematic pattern for this behaviour could ever be established.

Does only boot once After the control point has been started and has loaded the firm-
ware onto the PowerNP (from the host CPU or from the Linux on the embedded
PowerPC), (re)booting the ePPC with d6load does not work anymore, so the host
computer needs to be restarted.

“Ping of death” From the PPC Linux, after the control point has been started to activate
network, ping does only work for a few packages — after approx. 6 packets, the
PowerPC kernel will crash (which will manifest itself either by causing a segmentation
fault or illegal instruction error in the ping program or by turning the kernel belly-up
in a kernel panic.)

Shttp://www.busybox.net/
"The author prefers the ser2net program to access the serial port via telnet, but any serial console
emulator will do.
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