
Spamato Revolutions

Provide spam filter capabilities to
every available mail client using a

Spamato Mail Proxy

Andreas Wetzel

Diploma Thesis

June 1, 2004 – September 30, 2004

Supervising Professor: Prof. Dr. Roger Wattenhofer
Supervising Assistants: Nicolas Burri, Keno Albrecht

ii

Preface

Abstract

In this thesis we present the Spamato Mail Proxy.

Spamato is a collaborative spam filter system that acts as a stand alone com-
ponent offering interfaces for mail clients and for spam filters. The Spamato
Mail Proxy’s task is to allow for the connection of arbitrary mail clients to the
spam filter system.

Today’s email clients retrieve mails either through POP or IMAP. Therefore,
the Spamato Mail Proxy supports both of these protocols as well as encrypted
communication through SSL tunnels. The mail client connects to the Spam-
ato Mail Proxy which transparently forwards the connection to the real mail
server. Emails processed by the Spamato POP3 Proxy receive two new header
lines which indicate the result of the filter process. Spam mails detected by the
Spamato IMAP proxy are automatically moved to a dedicated spam folder.

Since collaborative spam filter systems like Spamato depend on user feedback,
an SMTP Feedback Proxy is also introduced that allows the user to provide
feedback to the system by forwarding messages to the proxy. Again, ordinary
messages are is transparently forwarded to an external SMTP server.

iii

Acknowledgement

First of all, I would like to thank my parents and my brother for their support
during all the years of my studies.

I am also thankful to all people who proof read this thesis and gave helpful
hints and ideas.

I am highly grateful to my supervising assistants Nicolas Burri and Keno Al-
brecht for their extensive support during the last four months. Working together
with you guys was a lot of fun.

I am also grateful to Prof. Dr. Roger Wattenhofer and his team for giving me
the possibility to write this thesis in a very pleasant environment.

Last but not least I would like to thank my coffeebreak and tabletop football
companions for our (brain-)refreshing meetings.

iv

Contents

1 Introduction 1
1.1 Spam in Numbers . 1
1.2 Outline . 1

2 Spamato 3
2.1 Framework . 3
2.2 URL Filter . 3
2.3 Razor Filter Client . 4
2.4 Supported Mail Clients . 4
2.5 Summary . 4

3 Spamato Mail Proxy 5
3.1 Goal . 5
3.2 Design Philosophy . 6
3.3 Spamato Adapter . 6
3.4 SSL Encryption . 6

4 POP3 Proxy 7
4.1 The POP3 Protocol . 7
4.2 The POP3 Command Set . 7
4.3 Concept . 8
4.4 Implementation . 8

4.4.1 Overview . 9
4.4.2 Problems and Challenges 9

5 IMAP Proxy 11
5.1 The IMAP Protocol . 11
5.2 The IMAP Command Set . 11
5.3 Concept . 12
5.4 Implementation . 13

5.4.1 Overview . 13

v

Contents

5.4.2 Problems and Challenges 14
5.4.3 Unsolved Tasks and Problems 14

6 SMTP Proxy 17
6.1 The SMTP Protocol . 17
6.2 The SMTP Command Set . 17
6.3 Concept . 18
6.4 Implementation . 18

6.4.1 Overview . 19

7 Summary 21

8 Future Work 23
8.1 Spamato Mail Proxy . 23

8.1.1 Improving the feedback capabilities 23
8.1.2 Centralise the Mail Proxy 23
8.1.3 TLS Encryption . 24

9 Bibliography 25

vi

1 Introduction

Email spam is by far the most common way of distributing unsolicited advertise-
ments. It involves sending identical or nearly identical messages to a large number
of recipients. Unlike legitimate commercial email, spam is generally sent without
the explicit permission of the recipients.

This thesis introduces a new mail client interface to Spamato – an existing,
collaborative spam detection and filtering tool. Such systems do not rely on
algorithms and rules to classify email messages but rather on humans. In simple
words, the more users work with a collaborative spam filter system, the better it
gets. Therefore, as many email clients as possible must be connected to the world
of Spamato. As a first step, plug-ins for the two most used mail clients (Mozilla
Mail Reader and Microsoft Outlook) have been developed. In this thesis we go
on a step further and introduce the Spamato Mail Proxy to support all email
clients without the ability to integrate plug-ins.

1.1 Spam in Numbers

Spammers are capable to send more and more messages every day because of
the constantly increasing bandwidth and computing power. According to the
last statistics published by Brightmail [Bri04], the largest commercial anti spam
company before the where absorbed by Symantec, in January 2004 60% of all
mails they checked were spam. Their latest inquiry in July 2004 even showed a
spam rate of 63%.

According to MessageLabs [Mes04], in July 2004 72% of all emails sent where
spam. In September 2004 they found almost 1.2 billion spam emails which con-
stitute about 64% of the emails checked.

These incredibly huge numbers make clear that the surge of spam is still growing
and that more than something needs to be done.

1.2 Outline

The remainder of this thesis is organised as follows.
Chapter 2 provides an overview of the Spamato system the developed Mail

Proxy depends on. The available filters as well as the supported mail clients are

1

1 Introduction

briefly described. Then, the idea behind the developed Spamato Mail Proxy
and its features are described in Chapter 3. Chapter 4 and 5 present the im-
plemented Proxy services for the POP and IMAP protocol in more detail. It is
shown where they hook into the protocol and how the filter mechanism is trig-
gered. Chapter 6 is devoted to the SMTP Proxy that provides a rudimentary user
feedback to the Spamato core.

Finally, in Chapter 7 the four month’s work is summarised before Chapter 8
finishes this thesis by pointing out some possible improvements to the newly
developed Spamato Mail Proxy.

2

2 Spamato

This thesis is based on th Spamato system – a collaborative spam filter system
[Bur04, Sch04] initially implemented by Nicolas Burri and improved by Simon
Schlachter.

In this chapter, the current Spamato system is summarised.

2.1 Framework

The Spamato system has been designed as a spam filter framework. Users of the
system classify messages as good (ham) or bad (spam) messages. Spamato’s task
is to try to remove mails that have been classified as spam from as many other
mail boxes as possible.

The framework is designed to handle multiple different spam filters at the same
time. They all are accessed through a common Java interface. Currently, the
Spamato consists of two filters (URL and Razor) which are briefly described
here. An overview of the structure of the initial system is shown in Figure 2.1.

Spamato Core

Razor Filter Client

URL Filter Client URL Filter Server

MySQL

Filter Interface

Mail Client
Interface

Figure 2.1: The setup of the original Spamato system.

The whole framework (referred to as Spamato core) is implemented in Java
[Sun04a] and therefore independent of the underlying platform and operating
system.

2.2 URL Filter

This filter consists of an “URL Filter Client” and an “URL Filter Server”. The
client part of the filter collects all domain names (used in URLs) in an email and

3

2 Spamato

use them to calculate a fingerprint, which then gets submitted to the server. The
server maintains a list of fingerprints of known spam mails. Therefore it then
compares the received fingerprint to the ones stored in the database and returns
the result according to the lookup result. If the fingerprint matches one from the
database, the mail is considered as spam.

2.3 Razor Filter Client

Razor [Raz98] is a distributed, collaborative spam detection and filtering network.
As in the Spamato system, users report mail messages that are identified as spam
or revoke those that have mistakenly been marked as spam.

In fact, the Razor client works in a similar way like the URL Filter client does.
It is designed to support several different algorithms to calculate a message’s
fingerprint. Two of them are open source: The first one is called Ephemeral
and calculates a fingerprint based on random parts of the messages text and is
currently the only one implemented in the Spamato Razor client. The second
one is called Whiplash and quite similar to the URL filter but does not treat the
URLs as one identifier but rather every single URL is taken as an indicator by its
own.

2.4 Supported Mail Clients

Currently, only the Mail Reader from the open source Mozilla Suite [Moz98] and
Microsoft Outlook are supported by the Spamato system. Buttons to configure
the filter system and to report/revoke marked messages are added to the mail
client’s tool-bar providing a very simple and intuitive interface to the user.

2.5 Summary

Spamato is a collaborative spam filter system that does not rely on algorithms
and rules to classify email messages but on humans. Every user reports his spam
messages to the community and may in return benefit from the community helping
him to filter his own mails. Up to now there are two implemented filters and the
Mozilla Mail Reader and Microsoft Outlook are the only two supported mail
clients.

4

3 Spamato Mail Proxy

As a collaborative spam filter system, Spamato needs to support as many mail
clients as possible. The more mail clients are supported, the more users are
reachable. And the more users that use a collaborative spam filter system, the
better it gets.

Up to now, only tow mail readers have been supported by the Spamato system
via plug-ins. The initial version of the spam filter included a plug-in for Microsoft
Outlook. Another plug-in for the Mozilla Mail Reader is currently under devel-
opment. For those applications, the use of plug-ins is obviously the way to go,
since it allows the most straightforward access to messages. Unfortunately there
are many more mail readers that do not support plug-ins, like pine or the (still)
wide-spread Microsoft Outlook Express. Therefore, there is a need for a generic
approach to support those clients.

3.1 Goal

The main goal of this thesis is to provide the possibility to connect any mail client
to the Spamato system. This is achieved by using a proxy server. Mail clients no
longer connect directly to a mail server but to the Spamato Mail Proxy which
transparently connects to the real mail server. The proxy’s task is to fetch mails
from the server and to filter them before they get delivered to the client.

Nowadays, email clients fetch new messages either via POP or IMAP. Conse-
quently, these two protocols must be supported by the proxy.

Since collaborative spam filter systems like Spamato depend on user feedback,
there is also a need for a feedback channel that enables the users to report spam
mails and to revoke false positives1. We provide such a response channel by
sending mails from the mail client to the proxy because all clients are necessar-
ily supporting the Simple Mail Transfer Protocol (SMTP). The corresponding
SMTP-proxy passes mails not affected by Spamato directly to an external mail
server while catching reports/revokes for itself.

An overview over the whole system is provided in Figure 3.1.

1A message that a user wants to receive, but the spam filter system falsely tags as spam, is
referred to as false positive.

5

3 Spamato Mail Proxy

Spamato Core

Spamato Mail Proxy
(POP3 / IMAP / SMTP)

Spamato Adapter Mail Server

Mail Client

Figure 3.1: The setup of the developed Spamato Mail Proxy.

3.2 Design Philosophy

In order not to re-implement a complete client and server for the POP3 and IMAP
protocols (which might have been easy for POP, but rather hard for IMAP),
the proxy is – in simple words – implemented as a good “man-in-the-middle”.
It monitors the connection on mail protocol level waiting for some interesting
commands trigger the filter-mechanism; everything else is piped through. In this
context interesting means that a mail is accessed and has to be filtered. Since
the two protocols are rather different, the interesting commands are described in
more detail in chapters 4.2 and 5.2.

3.3 Spamato Adapter

All accesses from the Spamato Mail Proxy to the core are centralised into a
single wrapper class for more flexibility. Therefore, connecting the Mail Proxy to
another spam filter (that provides a Java interface) should be more easy.

3.4 SSL Encryption

POP and IMAP support data encryption through SSL tunnels for better security
(usually referred to as POPS and IMAPS). Since SSL encryption is done on a lower
level of the communication protocol, the whole process happens transparently to
the proxy.. The only difference is that the proxy listens on a Java SSLServerSocket
instead of a standard ServerSocket. Additionally, connections to the real mail
server are established by using a Java SSLSocket instead of a standard Socket.

6

4 POP3 Proxy

The Spamato POP3 Proxy has to transparently pass client commands to the
servers and the corresponding answers back. Each accessed mail is immediately
spam checked before the clients access is performed.

4.1 The POP3 Protocol

Post Office Protocol version 3 (POP3, described in RFC 1939) is an application
layer Internet standard protocol used to retrieve email from a remote server to
a local client over a TCP/IP connection. Nearly all individual Internet service
provider email accounts are accessed via POP3.

The earlier versions of the POP protocol, POP (informally called POP1) and
POP2, have been rendered obsolete by POP3. In contemporary use, the less
precise term POP often refers to POP3 in the context of email protocols.

Email clients using POP3 generally connect, retrieve all messages, store them on
the user’s PC as new messages, delete them from the server, and then disconnect,
even though have an option to leave mails on the server.

For a simple illustration of the POP3 protocol, think of a (real life) letter box.
Then mail checking is as easy as opening the box first, then check out if there is
a new letter inside, if yes, grab it and close the letterbox.

Like many other older Internet protocols, originally POP3 only supported an
unencrypted login mechanism. Although the plain text transmission of passwords
in POP3 is still common, POP3 currently supports several authentication methods
to provide varying levels of protection against illegitimate access to a user’s mail
box. The implemented POP3 Proxy only supports basic plain text authentication.

4.2 The POP3 Command Set

The basic POP3 protocol only of a small number of commands. Each command
received from the client is transparently piped from the client to the server and
vice-versa. Except the only interesting command RETR, which is used to retrieve
a single mail from the server. Then the server answers with the corresponding
mail (if available) in plain text.

7

4 POP3 Proxy

4.3 Concept

As stated before, the proxy waits until the client sends an interesting RETR com-
mand. The proxy pipes the command directly to the server as usual but does not
return the result to the client immediately. First the whole message is intercepted
and sent to the Spamato core to spam check it. Next, two header lines are added
to the message before the proxy delivers it to the mail client. An overview over
the whole filter process is shown in Figure 4.1.

Spamato Mail Proxy
(POP3)

Mail ServerMail Client

Spamato Core

Any Command
Response

RETR

spamcheck()

Mail text
Mail with
Spamato tags

Figure 4.1: The POP3 Proxy’s concept. Thick arrows represent the ordinary
communication (pipe through) while the thin ones symbolise the in-
teresting RETR command.

1 X-Spam -Checked -By: Spamato Mail Proxy v0.9
2 X-Spam: YES/NO

Listing 4.1: Added headers by Spamato POP3 Proxy

The first line denotes that Spamato has processed the message while the second
one indicates if the configured filter system regards this mail as spam.

Picking up the letter box example, the functionality of the POP3 proxy can be
described like this: Instead of checking for new letters yourself, you send your dog
(serving as the proxy) which collects the letters for you. The (certainly intelligent)
dog marks the messages as spam by biting a hole through the letter. On every
letter you now see the dogs “I was here”-slobber-tag, so you know he checked it
(line 1 in listing 4.3). Finally – if you completely trust your dog – you do not
even have to open the perforated letters (line 2).

4.4 Implementation

The POP3 Proxy used in the Spamato Mail Proxy is based on RFC 1939 which
describes the basic POP3 functionalities. Proposed extensions from related RFCs
have not been considered.

8

4.4 Implementation

4.4.1 Overview

The implementation of the Spamato POP3 Proxy consists of the following three
main components:

Server-Thread: This component creates a Java ServerSocket and waits for in-
coming connections. A new Connection-Thread is instantiated and started
for every connection.

Connection-Thread: A single connection from a mail-client is encapsulated in
this component. It establishes a connection to the real POP3 server, pipes
data back and forth and waits for an interesting RETR command sent by the
client.

Command-Parser: All client commands received by the proxy are parsed and
classified so that the Connection-Thread can decide how to react.

4.4.2 Problems and Challenges

Altogether, the POP3 Proxy was easier to implement than expected. The only
problem encountered – reading answers from the server – is briefly described here.

Single-line vs. Multi-line Answers

Most of the POP3 commands result in an answer only consisting of a single line,
but some of them get a reply with more than one (obviously, fetching a whole
message is a good example). Originally, the proxy service should only know about
those commands that are interesting just passing by all the rest. As a result, the
proxy may provide exactly the same functionality to the client as the real server
does.

After sending a command to the server, the proxy reads one line from the server
answer. Unfortunately, there is no way to determine at that point if there are
some more lines to fetch. The only workaround was to provide a lookup table for
command answers since for every command the answers type (single- / multi-line)
is defined in the RFC. The drawback of the solution is that the proxy does no
longer support the whole command set of the server but only those defined in
the lookup table. Our testings with several clients and servers never revealed a
problem related to that problem.

9

4 POP3 Proxy

10

5 IMAP Proxy

The Spamato IMAP Proxy has to transparently pass client commands to the
servers and the corresponding answers back. Each accessed mail is immediately
spam checked before the clients access is performed.

5.1 The IMAP Protocol

The Internet Message Access Protocol (IMAP) is an application layer Internet
standard protocol used to access emails on a remote server.

IMAP was designed by Mark Crispin as a modern alternative to the widely used
POP3 email retrieval protocol. Fundamentally, both of these protocols allow an
email client to access messages stored on an email server. But IMAP provides
more features such as:

• Support for multiple clients simultaneously connected to the same mailbox.

• Access to MIME parts of messages and partial fetch.

• Keeping message state information on the server.

• Access to multiple mailboxes (folders) on the server.

Furthermore, the messages on an IMAP server are not only numbered sequen-
tially starting at one (as in POP3), but every message has its own unified message
identifier (UID) which uniquely identifies that message.

5.2 The IMAP Command Set

The IMAP protocol implemented in the Spamato Mail Proxy is accurately
called IMAP version 4 revision 1 (IMAP4rev1) and is described in RFC 3501.

IMAP4rev1 has a long list of available commands. Luckily, there is only one
command for fetching messages (or message parts) which may occur in two dif-
ferent forms.

FETCH requires two parameters. First, a list of messages to retrieve information
for must be provided. Second, it needs to be specified which data items

11

5 IMAP Proxy

from the selected messages should be returned by the server. This may be –
just to mention some of them – the full message body, partial header fields,
message flags and/or the message’s unique identifier (the documentation of
FETCH in the RFC is of about the same size as the whole RFC about POP3).

UID FETCH works the same as FETCH. The only difference is that messages are
referenced by their unique identifier rather than by their current sequence
number on the server.

5.3 Concept

The Spamato IMAP Proxy waits for an interesting (UID) FETCH command which
then is kept back until the filter process is done.

Because parsing and reassembling FETCH requests and responses would have
been rather hard, the proxy opens a new connection to the IMAP server using
the JavaMail API [Sun04b]. This API provides an easy interface to fetch emails
from an IMAP server as an Object that can be processed by the Spamato adapter.
If Spamato identifies a message as spam, the proxy moves it into a dedicated
spam folder and tags it as deleted in the current folder. Then, the client’s initial
FETCH command is passed to the server. An overview over the whole process is
shown in Figure 5.1.

Client Proxy Server
FETCH

FETCH

Filter
Mail If spam move

to spam folder

Pass FETCH to server

Figure 5.1: The IMAP Proxy’s concept.

In the introduction, we have seen that an IMAP server supports more than
one folder. The Spamato IMAP Proxy monitors each of these folders except the
spam folder itself.

12

5.4 Implementation

In order not to scan a message on every access – since it may be accessed several
times before the mail gets displayed to the user – the proxy maintains a list of
recently checked messages. The email gets scanned again only if a configurable
period of time has passed since the last check (an it is still unread).

5.4 Implementation

The IMAP Proxy used in the Spamato Mail Proxy is based on RFC 3501
which describes the IMAP functionalities in detail. All other RFCs concerning
extensions to the protocol have not been considered.

5.4.1 Overview

Because the IMAP protocol supports multiple clients simultaneously connected to
the same mailbox, the client must be capable of notifying the other clients about
what was going on. For example if one user deletes a message, all other clients
must be informed of that. Therefore the IMAP protocol is designed asynchronous
and two listeners are needed. One that waits for client commands and another one
that reacts to spontaneous server status messages. The implementation consists
of the following five main components:

Server-Thread: This component creates a Java ServerSocket and waits for in-
coming connections. A new Connection-Thread is instantiated and started
for every connection.

Connection-Thread: A single connection from a mail-client is encapsulated in
this component. It establishes a connection to the real IMAP server, pipes
data back and forth and waits for an interesting (UID) FETCH command
sent by the client.

Listeners: The proxy has its own listeners on the server- and on the client-side
as well. Some special cases like raw data pass-trough also require some
minimal communication between those two listeners.

Command-Parser: All client commands received are classified and partially parsed
that the Connection-Thread can easily decide how to proceed depending on
the result.

Mail-Checker: Because of the rather complicated protocol – to keep it as simple
as possible – a separate component to check messages has been introduced.
Mails that need to be checked are processed by this component trough a
second connection opened to the server. This problem is discussed later on.

13

5 IMAP Proxy

5.4.2 Problems and Challenges

IMAP Protocol

The IMAP protocol is very complicated to outline and hard to understand. Also,
there are not many free server implementations available. Even the Java Apache
Mail Enterprise Server (James) [Jam04] currently does not have IMAP support.

Asynchronous communication. The IMAP protocol specifies that not only the
client may initiate data transfers, but also the server may submit sponta-
neous status messages. The proxy could not be implemented as simple as
the one for POP3. Each IMAP command has its own tag that uniquely
identifies a request since multiple commands may be processed simultane-
ously and the client has to know which answer belongs to which command
(sent before). The challenge was to keep the two listeners synchronised with
each other and to keep track of their different command tags.

Raw data transmission. A server answer may contain a tag specifying that some
raw data will follow (the whole message’s text for example) immediately.
Thus, a single answer from the server may be interrupted several times
with raw data. If the client wants to transmit raw data to the server, the
procedure is slightly different. The client first has to announce that it wants
to send some data. Then it has to wait until the server signals to be ready to
receive the data. So parsing messages both of the client-side and server-side
where two different kettle of fish.

Second server connection

The IMAP protocol allows compound and nested FETCH requests and answers.
Different kinds of messages (plain-text and HTML messages) would have drasti-
cally increased the difficulty to implement message filtering on that level. There-
fore, the Spamato IMAP Proxy opens a second (high level) connection to the
server using the JavaMail API. That way, it is very easy to retrieve and filter any
message with the drawback of two required connections.

5.4.3 Unsolved Tasks and Problems

Eliminating the second connection

As stated above, filtering a message in the Spamato IMAP Proxy requires a
second connection to the mail server. Unfortunately, not every server allows more
than one connection from the same IP address. Additionally, some mail clients
(such as Mozilla) open multiple connections to a single server for performance
reasons.

14

5.4 Implementation

As the current proxy is unable to detect such multiple connections, each one
requires an additional connection for checking mails – so the number of open
connections is always doubled by the proxy. A possible solution might be to
perform the high level JavaMail calls through the already opened connection, if
that is possible at all.

Possible timeout

When a client is opening a huge mailbox, it may happen that the client does
not get any feedback from the proxy in a reasonable amount of time leading to
a timeout. This happens because before returning anything to the client, all
messages are processed by the proxy.

If the client requests thousand mail headers, they usually come back one after
another. But the current proxy design does not allow such a feedback. First
all thousand mail headers are read by the proxy – some mails may be filtered –
and then the normal client-request is performed. While the proxy is working, the
client does not get any feedback, thus could conclude the server might be down.

15

5 IMAP Proxy

16

6 SMTP Proxy

The Spamato SMTP Proxy has to transparently pass client commands to the
servers and the corresponding answers back. For every sent email it has to decide
in a way i f the message is dedicated to the Spamato core or must be forwarded
to an external mail server.

6.1 The SMTP Protocol

The Simple Mail Transfer Protocol (SMTP, described in RFC 2821) is the de
facto standard for email transmission across the Internet.

SMTP is a relatively simple, text-based protocol. It allows for sending messages
to multiple recipients and then the message text is transferred. It is quite easy to
test a SMTP server using telnet program. SMTP uses TCP port 25.

Since this protocol is designed as purely ASCII plain text one, it did not deal
well with binary files. Standards, such as MIME (RFC 2045-2049), were developed
to encode binary files for transfer through SMTP. Today, most SMTP servers sup-
port the 8BITMIME extension, permitting binary files to be transmitted almost
as easily as plain text.

6.2 The SMTP Command Set

The basic SMTP protocol implemented in Spamato only consists of a small
and perspicuous set of commands. At least, there is a small set of mandatory
commands that must be supported. Today, a lot of extensions are possible, as
described in RFC 2821, but they where of no interest for this task since we only
want to catch a small number of mails for some specific Spamato receivers. Again,
we want to provide the same functionality (including extensions) from the server
to the client by just passing commands and answers back and forth.

The only interesting command during an SMTP transaction for the proxy is
the RCPT TO command which is briefly described here.

RCPT TO tells the server to whom the following message is addressed and mostly
appears right after the sending user is authenticated. That command may
occur several times to define more than one recipient for a message.

17

6 SMTP Proxy

6.3 Concept

When a client opens an SMTP connection to the proxy, the proxy immediately
opens one to the external SMTP server. That allows us to provide any kind of
authentication mechanism through the proxy.

Any occurrence of a RCPT TO command triggers the proxy to check the recipients
address. If the receivers host does not match a configurable host name (referred
to as the SMTP Trigger Host Name) all, subsequent command are piped through
the proxy an nothing more has to be done.

If the mail is addressed to the Spamato Trigger Host name, the connection
to the external SMTP server is stopped and further maintained by the proxy.
Then, with the receiver name supplied the proxy decides whether the message is
reported spam or a revoked false positive. (Currently, only the email addresses
report@<triggerhost> and revoke@<triggerhost> are understood by the
proxy. More may be introduced for future tasks.)

Finally, the proxy collects the full message and notifies the Spamato core to
handle the given message as spam (on reports) or as a good mail (on revokes).

An overview over the whole process is shown in Figure 6.1.

Spamato Mail Proxy
(SMTP)

Mail ServerMail Client

Spamato Core

Ordinary Email

report() / revoke()

Email for
Spamato

Figure 6.1: The SMTP Proxy’s concept. Thick arrows represent the ordinary
communication (pipe through) while the thin ones symbolise the case
where Spamato receives the mail.

6.4 Implementation

The SMTP part in the Spamato Mail Proxy is based on RFC 821. The newer
RFC 2821 introduces nothing new about the basics but is more focused on topics
like user authentication and extensions.

18

6.4 Implementation

6.4.1 Overview

The implementation of the Spamato SMTP Proxy consists of the following three
main components:

Server-Thread: This component creates a Java ServerSocket and waits for in-
coming connections. A new Connection-Thread is instantiated and started
for every connection.

Connection-Thread: Everything concerning a single SMTP connection from a
mail client is encapsulated in this component. It establishes a connection
to the real SMTP server, passes data back and forth and decides whether
an email is feedback for the Spamato core or must be forwarded to the
external SMTP server.

Feedback: If the proxy receives a mail destined for the Spamato core (currently
only reports and revokes), this component fetches the message and notifies
corresponding to the email receiver.

19

6 SMTP Proxy

20

7 Summary

This thesis adds an new mail client interface to Spamato – an existing, collabo-
rative spam detection and filtering system.

The Spamato Mail Proxy was designed and implemented in order to support
all email clients that do not directly support plug-ins. It operates as a good “man-
in-the-middle” between a mail client and an external mail server, transparently for
both systems. For more privacy, the proxy also supports communication through
SSL encrypted tunnels.

The first implemented mail retrieval proxy (POP3) constitutes a very simple
form of mail filtering. The Spamato Mail Proxy adds tags to the mail header
that allow a mail client to sort the incoming mails according to them.

Developing the IMAP proxy was by far the most challenging part of the whole
thesis, even if the resulting code may not look like it. The protocol has so much
complex capabilities, it was really demanding to keep track them. Testing the
proxy was quite hard, because the IMAP protocol offers multiple ways to deter-
mine if there are new mails on a server and to fetch them. Additionally, some
clients do heavy caching (Mozilla) while others consequently write all changes to
the server immediately (K-Mail).

From the complexity point of view may be compared to POP3. Everything is
kept small and easy to work with. So again, developing the SMTP proxy required
for feedback to the Spamato core was a simple task.

Summarised, I have had a very good time working at the Distributed Computing
Group. On the one hand because working with Spam and Protocols turned out
to be very interesting and on the other hand the people surrounding me were
very enjoyable. My two advisors Nicolas Burri and Keno Albrecht gave me all the
support I could ever hope for and always had a good sense of humour.

21

7 Summary

22

8 Future Work

8.1 Spamato Mail Proxy

8.1.1 Improving the feedback capabilities

Currently the Spamato system can only receive user feedback through the im-
plemented SMTP proxy. If a user has a spam mail in his inbox that was not
detected by the system, he has to forward it to a certain email address (for ex-
ample report@local.spamato) which allows the SMTP Proxy to recognise it as
a spam report. Now, every mail client adds some lines to a forwarded mail in a
different matter. It may also remove or change some content (mostly headers)
of those mails. As a result, the reported mail is no longer identical to the spam
message initially received and thus does not help other users to filter out the same
message.

Particularly the IMAP proxy could provide a very handy feedback channel.
Every mail manually moved to the spam folder could automatically be treated as
a spam report. In return, every mail moved out of that folder to another place
(except the trash folder) might be treated as a revoke. Using such a transparent
feedback system, a user might not even realise that he is providing important
feedback to the system.

8.1.2 Centralise the Mail Proxy

Instead of every user running his local copy of the proxy, the proxy could run
somewhere else on a local LAN or the Internet where it may benefit of fast broad-
band connections to mail servers. Advantages of such a system are:

Reuse of resources: One single instance (or a small number of instances) of
Spamato could filter mails for thousands of users.

Less traffic: At least for the IMAP protocol, spam messages may be filtered out
even before they reach the users computer. They do not have to be trans-
mitted through a possibly slow connection to the user.

Easy updates: One update has to be done and all users instantly profit of the
new features.

23

8 Future Work

Other difficulties might show up, such as where to store the users’ configura-
tion/statistics. Moreover every user must be clearly authenticated to prevent the
user of foreign proxy accounts. But these things have been solved several times
before in other environments, therefore it should not be too difficult to do it again.

8.1.3 TLS Encryption

A lot of today’s mail clients also support TLS as an encryption mechanism. In-
stead of using a different port number for encrypted communications, the client
initially opens a normal plain text connection. Right after the connection is ini-
tiated, the client may send a STARTTLS command that tells the server to switch
to encrypted communication. This mechanism could easily be implemented into
the current POP, IMAP and SMTP proxy.

24

9 Bibliography

[Bri04] Brightmail - Spam Percentages and Spam Categories.
http://www.brightmail.com/spamstats.html, 2004.

[Bur04] Nicolas Burri. Spamato - A Collaborative Spam Filter System, 2004.

[Jam04] Java Apache Mail Enterprise Server. http://james.apache.org, 2004.

[Mes04] MessageLabs. http://www.messagelabs.com, 2004.

[Moz98] Mozilla Suite. http://www.mozilla.org, 1998.

[Raz98] Vipul’s Razor. http://razor.sourceforge.net, 1998.

[Sch04] Simon Schlachter. Spamato Reloaded - Trust, Authentication and More
in a Collaborative Spam Filter System, 2004.

[Sun04a] Sun Microsystems. Java 2 platform, standard edition.
http://java.sun.com/j2se/index.jsp, 2004.

[Sun04b] Sun Microsystems. Javamail.
http://java.sun.com/products/javamail, 2004.

25

http://www.brightmail.com/spamstats.html
http://james.apache.org
http://www.messagelabs.com
http://www.mozilla.org
http://razor.sourceforge.net
http://java.sun.com/j2se/index.jsp
http://java.sun.com/products/javamail

	Contents
	Introduction
	Spam in Numbers
	Outline

	Spamato
	Framework
	URL Filter
	Razor Filter Client
	Supported Mail Clients
	Summary

	Spamato Mail Proxy
	Goal
	Design Philosophy
	Spamato Adapter
	SSL Encryption

	POP3 Proxy
	The POP3 Protocol
	The POP3 Command Set
	Concept
	Implementation
	Overview
	Problems and Challenges

	IMAP Proxy
	The IMAP Protocol
	The IMAP Command Set
	Concept
	Implementation
	Overview
	Problems and Challenges
	Unsolved Tasks and Problems

	SMTP Proxy
	The SMTP Protocol
	The SMTP Command Set
	Concept
	Implementation
	Overview

	Summary
	Future Work
	Spamato Mail Proxy
	Improving the feedback capabilities
	Centralise the Mail Proxy
	TLS Encryption

	Bibliography

