
Institut für
Technische Informatik und
Kommunikationsnetze

P2P Population Tracking and

Traffic Characterization of

Current P2P File-sharing Systems

Lukas Hämmerle

Master Thesis MA-2004-04

April 2004 - September 2004

Tutor: Arno Wagner

Co-tutor: Thomas Dübendorfer

Supervisor: Prof. Dr. Bernhard Plattner

Preface

While writing this thesis a lot of interesting P2P related developments took
place. Some of them will change the P2P community very rapidly as it was
always the case with P2P networks. It was a very exciting time and even when
this thesis is finished I still will be observing the P2P (r)evolution.

At this place I also want to thank some people who supported my work and
who I could count on if I needed assistance or guidance. Namely these are:

• Arno Wagner: For the good guidance and technical support

• Thomas Dübendorfer: For being my co-tutor and gnuplot guru

• Prof. Bernhard Plattner: For being my supervisor and making this thesis
possible

• Dienstgruppe TIK: For providing an overall reliable computer environment
that was comfortable to work with

• Stephane Racine: For introducing me to NetFlow and the cluster environ-
ment

• Philipp Jardas: For his preceding survey work about P2P file sharing
systems

• Caspar Schlegel: For his support with UPFrame

• Rakesh Kumar: For providing me some of their FastTrack client port usage
data

• Luca Deri: For providing us a free version of nprobe/ntop

• My fellow co-workers of G69: For the “candy-sharing” and the interesting
conversations during coffee brakes

I further want to state that this thesis did not aim at finding methods to identify
P2P users in order to prosecute them but in order to better analyze and observe
their numbers and their usage characteristics. Since the described methods and
concepts are based on flow-level data they can’t be used to inspect which files
a certain user shares or downloads.

Copyright

c© 2004 Lukas Hämmerle <lukas@haemmerle.net> ETH Zurich,
TIK, Communication Systems Group, DDoSVax team.

Abstract

Detecting denial of service attacks and the spreading of virii and worms requires
knowledge about the type of Internet traffic that passes a network. Nowadays a
fairly large amount of all traffic in Internet backbones is not easily identifiable
anymore since the amount of non well-known traffic has dramatically increased
with the upcoming popularity of P2P file-sharing networks. For network mon-
itoring and anomaly detection reasons it is important to know which traffic is
to account for P2P networks.

This master’s thesis gives an overview about problems and methods concern-
ing identification, population tracking and traffic monitoring of P2P clients. The
examined P2P networks are FastTrack, eDonkey, Overnet, Kademlia, Gnutella
and BitTorrent, which represent the six most popular P2P networks world-
wide. While other research on that topic mainly tried to identify P2P traffic
directly, our approach first identifies P2P hosts in the medium sized back-bone
SWITCH network and then uses them to track other peers. Various measure-
ments made with a proof of concept implementation called “PeerTracker” are
presented and verified. The results show that the P2P bandwidth consumption
in the SWITCH network is considerable and that a substantial amount of the
total P2P population can be tracked for some P2P networks.

iv

Table of Contents

1 Introduction 1
1.1 Overview . 2

1.1.1 DDoSVax Project . 3
1.1.2 Reasons for P2P Identification 3
1.1.3 P2P Identification and DDoS 3

1.2 Goals . 4
1.3 Internet Communication Patterns 5

1.3.1 Client-Server Model . 5
1.3.2 P2P Model . 6

1.4 Ways of File-sharing . 7
1.5 P2P Networks and Clients . 7

1.5.1 Generations . 7
1.5.2 General P2P Usage . 8
1.5.3 Popularity . 9
1.5.4 P2P Prosecution . 10

1.6 Network environment . 11
1.6.1 Flow-level Data . 11
1.6.2 SWITCH NetFlows . 12

2 P2P Host Identification 15
2.1 P2P Systems Considered . 16
2.2 Traffic Observation Possibilities 20

2.2.1 Packet-level Observations 20
2.2.2 Flow-level Observations 21

2.3 Host Identification Methods . 22
2.3.1 Default Ports . 24
2.3.2 Generic Approaches . 27
2.3.3 Host Pool . 32
2.3.4 Non-peer Identification 33

2.4 Identification for Concrete P2P Systems 33
2.4.1 eDonkey Identification . 33
2.4.2 Kademlia Identification 34
2.4.3 Overnet Identification . 35
2.4.4 Gnutella Identification . 35
2.4.5 FastTrack Identification 36
2.4.6 BitTorrent Identification 37
2.4.7 Undetectable and Safe P2P Usage 39

2.5 Population Tracking . 39

v

vi TABLE OF CONTENTS

2.5.1 Conditions . 40
2.6 Example: Overnet Tracking . 41
2.7 Traffic Identification . 42
2.8 Limitations . 43

3 Implementation 45
3.1 Offline Scripts . 45
3.2 Online Plug-in . 45

3.2.1 Identification Algorithm Overview 45
3.2.2 Suspicious Port Range . 49
3.2.3 Tracking of External P2P Hosts 50
3.2.4 Client Shutdown Detection 51
3.2.5 Listening Port Detection 51

3.3 Containers . 53
3.3.1 Hashed Table . 53
3.3.2 Hashed Queue . 55

3.4 Resource usage . 56
3.4.1 Space Complexity . 56
3.4.2 Time Complexity . 56

4 Findings 59
4.1 Peer Verification Approaches . 59

4.1.1 eDonkey Server Tracking 60
4.1.2 Polling Peers . 61
4.1.3 BitTorrent probe clients 64

4.2 Interpretation of Verification Results 64
4.3 P2P Usage in SWITCH Network 65

4.3.1 Measurement Setup . 65
4.3.2 Peers in SWITCH network 66
4.3.3 Peer Characteristics . 67
4.3.4 Bandwidth Consumption 71

4.4 Population Tracking Results . 74
4.5 Related Work . 77

5 Conclusion 81

6 Outlook 85
6.1 Future Work and Improvements 85

6.1.1 Automated Verification 85
6.1.2 More General Identification 85
6.1.3 Auxiliary Network Processors 85
6.1.4 More P2P Networks . 86
6.1.5 Multi Peer identification 86
6.1.6 TCP flags in NetFlow . 86
6.1.7 Continuous Examination 86
6.1.8 State Reload . 86

6.2 Unsolved Problems . 86

References 89

A Full Task Description 93

TABLE OF CONTENTS vii

B P2P Networks Table 99

C NetFlow Format 101

D SWITCH Network 105

E P2P Port Usage in the Internet 2 109

F Identification Code 113

G PeerTracker Usage Instructions 119

H Used Software 127

viii TABLE OF CONTENTS

List of Figures

1-1 Client-Server model . 5
1-2 P2P model . 6
1-3 Flow Timings . 12
1-4 Switch network topology . 13
1-5 NetFlows emitted in SWITCH network 14

2-1 P2P network and client relations 17
2-2 TCP and UDP connections in P2P networks 25

3-1 Internal SWITCH candidate peers 48
3-2 Internal SWITCH non-peers . 48
3-3 Influence of suspicious port range on identification 50
3-4 Hashed queue . 55

4-1 One day eDonkey comparison server method vs port method . . 60
4-2 Active peers within SWITCH network 66
4-3 P2P clients vs web clients comparison 68
4-4 Comparison Web vs P2P vs Mail 72
4-5 Total TCP bandwidth consumption 72
4-6 P2P traffic in comparison to other protocols 73
4-7 P2P traffic of considered networks 73
4-8 Tracked Overnet peers with different timeouts 76
4-9 Tracked extern peers with 6 hours timeout 76
4-10 FastTrack tracked vs internal peers 77

D-1 Switch network . 106
D-2 Switch traffic volume per month since 1998, from [1] 106
D-3 Active internal hosts in the SWITCH network during 8 days . . . 107
D-4 Active extern hosts contacting hosts within the SWITCH network 107

E-1 Internet 2 traffic graph . 110
E-2 Internet S2 P2P traffic graph . 111

ix

x LIST OF FIGURES

List of Tables

2-1 Official port ranges . 25
2-2 Hosts with suspicious flows . 27
2-3 Top level domain names of 565 Kazaa peers (TCP) 30
2-4 Top level domain names of 3’975 Kazaa peers (UDP) 31
2-5 Hosts which had at least k flows with P2P default ports 31
2-6 eDonkey and Kademlia top 5 TCP listening ports 34
2-7 Overnet top 5 UDP listening ports 35
2-8 LimeWire top 5 listening ports 36
2-9 Kazaa top 5 listening ports . 36
2-10 BitTorrent top 5 listening ports 38
2-11 Overnet activity of client on test host 40
2-12 Overnet activity of client on test host 41
2-13 eMule activity of client on test host 41
2-14 Overnet top 5 UDP listening ports of tracked hosts 42

3-1 States for internal hosts . 47
3-2 P2P network switches . 49
3-3 Detected listening ports . 52
3-4 FastTrack file transfers port number 52
3-5 Most used ports of identified listening ports 53
3-6 Standard host container Host . 54
3-7 Host container extension HostData 54

4-1 Identified eDonkey clients for one day 60
4-2 Polling verification results . 63
4-3 P2P average usage per network in June 67
4-4 Peer domain name analysis . 68
4-5 Top 5 second level domain names 69
4-6 Peer uptime . 70
4-7 SWITCH Peer statistics . 70
4-8 Total traffic distribution . 71
4-9 Comparison to port based method 74
4-10 Tracking factors in August . 75

C-1 NetFlow version 5 header format 101
C-2 NetFlow version 5 record format 102

E-1 Internet 2 traffic statistics comparison 110

xi

xii LIST OF TABLES

G-1 PeerTracker command line options 121
G-2 netflow sreplay command line options 122

Chapter 1

Introduction

In order to track the P2P population and to identify the P2P traffic we first
need to summarize how P2P networks work and what data is used for this
Task. Chapter 1 provides some basic information that is needed to understand
the goals and the problems of this task.

Chapter 2 then will describe and analyze several methods for P2P iden-
tification which are used in several proof-of-concept scripts and a plug-in for
UPFrame [2]. The plug-in and its usage is presented in Chapter 3. Different
measurements and statistics about P2P usage in the SWITCH network can be
found in Chapter 4. This chapter also deals with result verification. In Chap-
ter 5 the results of this thesis are summarized before Chapter 6 presents some
suggestions for further work.

Definitions

In this thesis terms are used as following:

host A computer that has access to the Internet with a global IP or behind a
NAT box.

internal We divide all hosts worldwide in internal hosts, that are within the
SWITCH network and other hosts which are extern.

P2P Technically means peer-to-peer. Communication relation between P2P1

instances where all instances can act as a content requester and as a con-
tent provider. There are no dedicated fixed client or server instances.
Although there are different types of P2P applications the term P2P used
in this thesis generally denotes P2P file-sharing applications.

P2P protocol A specification that defines the communication between P2P
instances of the same type.

P2P client Refers to a special piece of software that implements one or more
P2P protocols. P2P clients are needed to participate in a P2P network.

1A peer-to-peer or P2P computer network is any network that does not have fixed clients
and servers, but a number of peer nodes that function as both clients and servers to the other
nodes on the network.

1

2 CHAPTER 1. INTRODUCTION

P2P host A computer connected to the Internet, running one or more P2P
clients.

P2P user A human user who intends downloading and sharing of files from a
P2P network by running a P2P client.

P2P network A group of hosts that communicate with each other using the
same P2P protocol, equivalent to P2P system

P2P neighbor host Two P2P hosts running the same client are neighbors if
they have a download or signalling connection established to each other
or if they communicate over UDP.

P2P population The population of a P2P network consists of all its active
peers.

P2P population tracking Population tracking is the attempt to locate as
many peers as possible of a P2P network, ideally all of them.

(Ordinary) node A participant of a P2P network that has only basic func-
tionality without any extra duties. “Servent” is a synonym often used in
other publications.

Super node A client in a P2P network that performs special functions com-
pared to ordinary nodes. Ordinary nodes must have at least one connec-
tion to a super node in order to be part of the P2P network. Super nodes
(term of FastTrack protocol) are used equivalently for “ultra peers” (term
of Gnutella protocol).

Overlay network Several connected hosts using the same communication pro-
tocol are forming an overlay network that uses an underlying physical
network infrastructure.

FastTrack is the name of the P2P network and the protocol developed by
Sharman Networks [3]. Other publications use Kazaa and FastTrack as
synonyms, but actually the“Kazaa Media Desktop” (or just Kazaa) is the
P2P client for the FastTrack network.

Leecher A P2P user that has configured its client to only download but hardly
upload. This can be done by sharing no files or by setting a small upload
transfer rate.

1.1 Overview

P2P file-sharing has become one of the most important applications in the Inter-
net today. In 2003 estimated 81.5 Million Internet users were downloading music
using a P2P file-sharing program according to [4]. This corresponds almost to
5% of the total Internet users worldwide. By the measures of bandwidth P2P
file-sharing contributes a large amount of traffic that in many networks exceeds
the mail/web traffic which has been dominating the Internet so far.

The following Subsections will depict the background and the goals of this
thesis that mainly is about P2P but in the context of distributed denial-of-
service attacks (DDoS) and Internet worm outbreaks.

1.1. OVERVIEW 3

1.1.1 DDoSVax Project

This thesis is part of the DDoSVax [5] which is a joint research project between
ETH and SWITCH. The goal of DDoSVax is to find methods of detection and
defense against distributed DDoS attacks. A DoS attack [6], is an attack on a
computer system or network that causes a loss of service to users, typically the
loss of network connectivity and services. Such attacks are not designed to gain
access to the systems. In a distributed DoS attack several hosts are attacking
a common target. DDoS attacks are committed by a person that has control
over some dozens up to some ten thousands hosts. These hosts previously have
been infected by a Trojan horse or an Internet worm that either installed itself
automatically or with the help of its unsuspecting user that was confused by a
social engineering trick which made him execute a binary containing the worm.

1.1.2 Reasons for P2P Identification

As is described in Section 1.2, one of the main goals of this thesis is to estimate
the P2P traffic in the SWITCH network. To know the amount of bandwidth
consumed by P2P hosts not only is important for network operators concerned
about DDoS attacks as described in Subsection 1.1.3 but also for a range of
other reasons which include:

• Application-specific traffic engineering

• Blocking/limiting specific traffic (e.g. P2P traffic) to reduce upstream
costs

• Auxiliary mean to detect peers by actively polling them (see Subsection
4.1.2)

• Anomaly detection on P2P traffic

1.1.3 P2P Identification and DDoS

While not being obvious at first sight, there are several reasons why P2P usage
is of concern for DDoS attacks.

1. In order to detect DDoS attacks and other network traffic anomalies, it is
important to know which type of traffic a network sends and receives. By
identifying and categorizing the traffic into different classes it is easier to
monitor suspicious anomalies concerning DDoS attacks, e.g. a spreading
worm.
Usually TCP and UDP port numbers can be used for network traffic iden-
tification since most Internet applications have assigned2 port numbers.
Unfortunately the amount of unidentifiable traffic has been increasing dra-
matically over the past years (see Appendix E) which has it made difficult
to monitor certain traffic classes. It is quite obvious that the upcoming
of P2P clients born after the Napster era had a great influence on this
rise and various related publications3 show that in some Internet service
provider (ISP) networks the amount of P2P traffic already in 2002 has

2See IANA Port Numbers http://www.iana.org/assignments/port-numbers (July 2004)
3See Section 4.5

http://www.iana.org/assignments/port-numbers

4 CHAPTER 1. INTRODUCTION

climbed up to about 75% [7]. Depending on the used P2P protocol and
P2P client, only a fraction of this traffic can be identified directly since
quite a substantial amount of P2P users don’t use their default port num-
bers anymore [8, 9].

2. Knowing the P2P bandwidth consumption can be helpful for DDoS detec-
tion since some recent Internet worms made use of P2P networks. Some
of the worms not only did spread by email but copied themselves to the
shared directories of P2P clients in order to propagate within P2P net-
works4. Using filenames of popular files they try to make P2P users down-
load and execute them in order to infect their computer.

3. As described in [10] P2P systems provide an attractive infrastructure for
DDoS attacks. They share resources and generate a large amount of traffic
which could mask attack traffic without arising suspicion. A P2P worm
could use security holes in P2P clients to infect them and spread among
the P2P population.

4. Nowadays Internet worms usually infect hosts to make the attacker able
to get control over it. To control a computer one must be able to commu-
nicate with the worm. One method to communicate with infected hosts is
by using the IRC system as explained in [11]. But recent Internet Worms
not only have used P2P technology for propagation, they also use it to
communicate with each other in a decentral way that allows their master
to command them almost anonymously5. For the person that controls the
worm this has the advantage of a reduced risk of being caught since the
decentralization of P2P systems allows to makes it hard to track down the
person that inserted a command in that P2P system as described in [12].
Getting some general ideas of P2P identification can help to locate and
shut down such P2P worm networks.

5. Another danger coming from P2P clients is concerning their long uptime.
They usually are used to download large files that take quite a while to
download. Therefore the clients run most of the time unattended by their
users. Some users let their clients run for several days or even weeks as
is shown in Table 4-6. If there exists a serious security flaw that could
be used to infect a host running a certain P2P client, this could have
serious consequences. Since many P2P clients are not open source there
even exists the possibility that their creators themselves implement some
hidden back doors to gain control over a host which is far more realistic
than assumed6.

1.2 Goals

Result of this thesis should be a collection of algorithms and concepts to identify
and track hosts of the current most popular P2P file-sharing systems inside

4See article ”Fizzer stealth worm spreads via KaZaA”
http://www.securityfocus.com/news/4660 (July 2004)

5See article ”The rise of P2P worms -And how to protect yourself”
http://reviews-zdnet.com.com/4520-6033_16-4207594.html (September 2004)

6See article ”The Dangers of Uncontrolled Software Use”
http://www.winnetmag.com/Article/ArticleID/40477/40477.html (September 2004)

http://www.securityfocus.com/news/4660
http://reviews-zdnet.com.com/4520-6033_16-4207594.html
http://www.winnetmag.com/Article/ArticleID/40477/40477.html

1.3. INTERNET COMMUNICATION PATTERNS 5

� � � � � � � � � � � 	 �
 � � � � � � � 	
 � � 	 � � �� � � � � �
 � � � � �

�

�
�

�

�

Figure 1-1: Client-Server model

and outside of the SWITCH network in order to estimate their number and
bandwidth consumption. The identification of P2P hosts is done analyzing Cisco
NetFlow data that was collected by the SWITCH border gateway routers.

The algorithms should be:

• Flow-based, without packet analysis

• Passive, without use of self operated clients/servers or interfering/impact-
ing peers

• Capable of offline and online identification

• Accurate with low false positive/false negative rate

• Scalable for fast computation with data of large networks

• Robust in spite of flow/packet loss

For the full task description see Appendix A.

1.3 Internet Communication Patterns

In the beginning of the Internet there were only a few protocols that consumed
almost the whole bandwidth in the backbones. Nowadays a huge number of
protocols exist that use quite a substantial amount of bandwidth [13]. New ap-
plications like P2P networks or online games often use different network models
as the old protocols like HTTP, FTP, SMTP or Telnet do. The following two
Subsections explain the differences between them.

1.3.1 Client-Server Model

The most common type in communication between two Internet hosts is the
client-server model shown in Figure 1-1. Several clients ask as content-requesters
a dedicated Internet server, which acts as content provider, to send the requested
data. Looking at CPU usage and bandwidth consumption this centralized model
is very unbalanced since the server has the main load of work.

6 CHAPTER 1. INTRODUCTION

� � � � � � � � � � � � � � � � � � � �� �
� � � � � � ! " � � �

#

$ � � �$ % ! � � � � � � � � & � � '

#

#

#
#

#

#

Figure 1-2: P2P model

Clients usually send only a small request without a great effort, whereas
the server has to compute and then transmit the requested data. The answer
moreover can be a multitude larger in size than the request.

So, depending of the number of requests, the server has to be a moderately
fast computer with a fast Internet connection to respond to all requests. Since
most content provider have to pay for their upstream the client-server model
is rather expensive for the server owner. A more detailed overview about the
client-server model can be found in [14].

1.3.2 P2P Model

While P2P applications include distributed computation like SETI [15], voice
over IP like Skype [16] (which btw. is developed by some of the creators of
FastTrack) and other messaging services, the most bandwidth consuming appli-
cation today is file-sharing. The P2P communication model depicted in Figure
1-2 is true for general file-sharing applications but slightly differs for some P2P
systems as is described in Chapter 2.

In the P2P model every participating host can act as content consumer as
well as content provider. This model is more balanced out since CPU-time
and memory is distributed and shared among all the P2P hosts in a network.
Although there are P2P networks like FastTrack [17] or eDonkey [18] which
use a two-tier system with ordinary nodes and super nodes for their network
architecture, the P2P approach of most file-sharing applications is decentralized
and therefore almost immune against network problems. This development is a
consequence of the fall of Napster which resulted in highly decentralized clients
like Gnutella which are completely independent from any central server, but have
a high bandwidth overhead as shown in [19] and sometimes also a bootstrapping
problem [20].

P2P traffic consists of signalling traffic and download traffic. The first is
used for search queries and for general network maintenance while the latter

1.4. WAYS OF FILE-SHARING 7

consists of transfer data between a content-requesting and a content-providing
peer. Signalling traffic occurs either directly between peers which then form an
overlay network or between ordinary node and a super node. Usually TCP or
UDP is used for signalling traffic while TCP is used for download traffic.

1.4 Ways of File-sharing

While there have been numerous ways of exchanging files since the beginning
of the Internet, P2P file-sharing is by far the most popular nowadays. Other
ways like FTP, IRC, BBS or the (again) upcoming Newsgroups7 are mostly used
by advanced computer users that first of all know about the existence of these
file-sharing methods and secondly possess the knowledge of handling the needed
tools which usually are not as user friendly as todays P2P clients. It therefore
can be assumed that P2P file-sharing programs are the most common way of
sharing files.

1.5 P2P Networks and Clients

No doubt P2P is the killer application for ISPs. Measurements [21] at a large
ISP network have shown that P2P traffic accounts for more than 75% of all
traffic and that an average P2P client produces about 90 times more traffic
than an average web client , exceeding WWW traffic by nearly a factor of three
[13]. Therefore file-sharing is not unproblematic for ISPs which often have to
pay their upstream which is massively increased by P2P traffic. Moreover they
have to provide costly networks that are capable of transporting huge amounts
of data. On the other side the customers are willing to pay for broadband
connections since they are perfect for file-sharing. So it is no surprise that
popular file-sharing websites like Suprnova.org [22] are loaded with ads from
local ISPs.

1.5.1 Generations

It is a difficult task to categorize P2P systems. Although most of them have a
common purpose - to share files and other resources - they use different tech-
niques and are constantly evolving, adding new features that are characteristic
for more advanced P2P generations.

1. Generation: Controlled with centralized search indexes

After its creation in May 1999 by founder Shawn Fanning, Napster became
shortly very popular around the world. It didn’t take long for the music industry,
represented by the Recording Industry of America (RIAA), to take actions in
December 1999 against a service that endangered their profitable business. After
a spectacular legal battle, Napster finally was forced to go offline in July 2001.
By shutting down Napster’s indexing servers, the whole network can be “turned
off” which made Napster very vulnerable to legal actions. After their successful
legal actions against Napster the RIAA started another lawsuit against Audio

7See article ”The Newsgroups Evolve” http://www.slyck.com/news.php?story=539 (Au-
gust 2004)

http://www.slyck.com/news.php?story=539

8 CHAPTER 1. INTRODUCTION

Galaxy [23] that became popular after Napster’s fall even though Audio Galaxy
existed before Napster. While AudioGalaxy was not shut down completely, it
settled out of court. They still exist, after paying the RIAA a lot of money
together with the promise to block copyrighted songs though8. Their user base
decreased very fast since then.

First generation P2P networks are using central servers for file indexes and
searches. These servers are operated by the network maintainers. Therefore
first generation P2P networks can be shut down completely.

2. Generation: Completely decentralized search indexes

The fact that Napster could be stopped a had a great impact on the succeeding
P2P networks which became quite numerous [24]. The popular Gnutella net-
work was designed with complete decentralization in mind. Together with other
networks that have been developed since then, it can be accounted to the sec-
ond generation P2P networks. The approach of total decentralization was the
extreme opposite of Napster’s principle and caused some scalability problems,
mainly because of the search algorithms [19]. More sophisticated P2P systems
like FastTrack which is actually based on Gnutella, could solve some of these
problems by bringing back some central elements in form of super nodes. But in
contrast to Napster’s server these super nodes are not operated by the creators
of the P2P networks but they are dynamically self assigned to regular clients.

Besides techniques like swarm delivery (parallelly downloading parts of the
same file from multiple sources) or anti-leeching algorithms nothing revolution-
ary new was developed for P2P systems.

3. Generation: Encryption and anonymity

Even before the RIAA started to sue the P2P users, the FastTrack creators
implemented encryption into their P2P protocol. Although the reason for this
primarily was to make it hard to reverse engineer the protocol9, it provided some
protection for the users. But obviously not enough. In mid of 2003 the RIAA
started a“Fear, Uncertainty, & Doubt”campaign and sued several hundred Fast-
Track users (see Subsection 1.5.4) which was one of the reasons why the Fast-
Track user population has dropped from 4.5 million to about 2.5 million users
in mid of 2004. Since then the call for more anonymity and encryption became
loud. But up-to-date only Freenet [12] and Earth Station 5 [25] efficiently pro-
vide some sort of anonymity. While Freenet is not aimed at file-sharing, Earth
Station 5 (ES5) is an obscure10 P2P client that provides complete anonymity
together with a feature that can “penetrate” almost any firewall.

1.5.2 General P2P Usage

Worldwide there exist some dozens of P2P systems [24]. In the western world
about half a dozen systems are widely used. This includes the large networks

8See article ”R.I.P. AudioGalaxy”http://www.kuro5hin.org/story/2002/6/21/171321/675
(August 2004)

9SharmanNetworks, the inventor of FastTrack, earns their money by selling licenses ad ads
10The client has a bad reputation and its developers claim to be located in Jenin Refugee

camp to escape the wrath of the entertainment industry... Moreover some very suspicious and
dangerous code was found in ES5.

http://www.kuro5hin.org/story/2002/6/21/171321/675

1.5. P2P NETWORKS AND CLIENTS 9

FastTrack, eDonkey, BitTorrent, Overnet, Kademlia, Gnutella, Warez, Direct-
Connect. Even among these systems there is a geographic gap in usage. While
eDonkey mainly is used in Europe, DirectConnect e.g. is a P2P system with a
large user base in the U.S.A. In Asia there exists also a large variety P2P clients,
as Soribada [26], V-Share or Argus. These clients are localized and therefore not
popular among western Internet users because of usability matters and content.

Not all P2P networks provide the same type of shared files. While Nap-
ster was used only to share MP3 files most networks nowadays can be used
to download not only non-MP3 music files (like Ogg, ACC, WMA) but also a
the whole range of multimedia files which includes movies (even whole DVDs),
Software (mostly games), pornography and eBooks. But still there are certain
P2P networks that are known or best suited to share mainly a certain type of
file. Also the quality of the shared files is highly depending on the P2P network.
FastTrack for example is actively polluted [27] by companies like Overpeer [28]
with fake files that aim at frustrating the P2P users and make them abandon
the platform.

P2P networks are used by different kind of people for different purposes.
FastTrack for example is used rather by average computer users to download
the latest MP3s and so is Gnutella. BitTorrent and eDonkey have their user
base more in the technically more sophisticated corner that primarily downloads
large files of several hundred Megabytes up to some Gigabytes which are the
sizes of movies and software packages.

Concerning the activity time of P2P users there are rawly two types; one sort
of users does P2P file-sharing occasionally and influenced by day-time. Results
in Chapter 4 show that P2P usage in SWITCH network is highest during work
time. This group of P2P users usually does file-sharing only for some hours a day,
mostly to download smaller files since they don’t take very long to download.

The other group of users consists of power users who let their P2P clients run
for several days. They tend to connect to P2P networks where there are Linux
clients available. Often these users are responsible for most of the consumed
bandwidth. In [7, 21] they state that only a few of these “heavy hitters” are
responsible for most of the total traffic in these networks.

1.5.3 Popularity

P2P systems become popular and disappear within years or even months. It’s
only about three years since the Napster saga has ended. In the meanwhile
various P2P systems were more or less popular. As was also stated in Philipp
Jardas work [29] it is generally difficult to come up with accurate numbers about
the amount of users on a specific network, due to the decentralized architecture.
In the case of BitTorrent it is not even easy to estimate the user population
since BitTorrent peers are part of several thousand unconnected networks (see
Subsection 2.1). Of the many different P2P systems the six most popular in
the western world on July 2004 were BitTorrent, Gnutella, FastTrack (including
iMesh), eDonkey (including Kademlia) and Overnet. But already in September
2004 a new P2P system called “Warez”was among the top 5. While writing this
thesis FastTrack was overtaken as most popular P2P system in terms of users
by the trio eDonkey/Overnet/Kademlia which all are strongly related to each
other and sometimes are counted as one network. The beginning decrease of

10 CHAPTER 1. INTRODUCTION

users11 of the longterm leader FastTrack has several reasons:

• Mainly FastTrack users were sued by the RIAA (see next Subsection 1.5.4).
The publicity in media scares the users and makes them looking for (safer)
alternatives.

• The free P2P clients for the FastTrack clients are bundled with spy- and
adware. As an irony of fate the Kazaa Media Desktop [17], FastTrack’s
most prominent P2P client, was outrun12as number 1 download at down-
load.com by Ad-Aware which is a software that removes spy- and adware.
On a test machine installing the FastTrack clients Kazaa Media Desktop
and iMesh resulted in 319 identified ad- and spy-ware objects (registry
keys, files and processes. Checked with Ad-Aware 6). Removing these
objects resulted in defunct clients.

• There exist several companies like Overpeer [28] that pollute (primarily)
the FastTrack network with fake files [27] to annoy its users from download-
ing copyrighted material. They unofficially get paid by copyright holders.

• Other P2P clients get easier to use, are free, deliver better performance
and are therefore interesting for the average computer user.

The users leaving the FastTrack community often end in the eDonkey realm,
but also in the Gnutella network which is upraising again these days. But
SharmanNetworks, the owner of the FastTrack protocol, is not giving up its
dwindling cash-cow so easily. Nowadays they try to stop the decrease of users
with localized Kazaa clients and new content rating mechanisms that replace
the hardly successful existing solutions [27].

The considered P2P systems in this thesis are discussed in Section 2.1.

1.5.4 P2P Prosecution

After unsuccessful protecting media with encryption (DVD) or hardware de-
pending copy protections (CD), the music and movie industry began to realize
that they have to change their strategy. But instead of directly challenging P2P
file-sharing with attractive offers like available in the iTunes Music Store [30]
that could make the users legally buy their music, the music industry - or their
representative association, the RIAA and MPAA [31] - first decided to choose
another way. They sued the network maintainer of P2P networks. First and
may be the most popular victim up to date was Napster. Due to its central-
ized design it was relatively easy to shut down the network. The dramatic fall
of Napster led to P2P systems like the Gnutella network which is completely
decentral and can hardly be shut down. Other P2P networks had learned their
lesson too, so that it is very difficult to stop recent P2P networks. Therefore
the RIAA had to chose another tactic when they had ruled out all the cen-
tralized P2P systems like Audio Galaxy, that was popular in the after-Napster
era. Moreover in August 2004 the U.S. Ninth Circuits Court affirmed four very

11See Slyck.com article FastTrack Continues its Slide
http://www.slyck.com/news.php?story=492 (August 2004)

12See Slyck.com article Kazaa Media Desktop Removed From Download.com
http://www.slyck.com/news.php?story=478 (August 2004)

http://www.slyck.com/news.php?story=492
http://www.slyck.com/news.php?story=478

1.6. NETWORK ENVIRONMENT 11

important points concerning P2P technology, stating that P2P software per se
is not illegal [32]. In June 2003 - even before the affirmation of this ruling -
the RIAA more or less successfully started an anti-P2P crusade not against the
creators of the networks or the software, but they sued the P2P users directly13.
This tactics led to a temporary decline of the P2P users but had almost no effect
on the overall P2P user base except that people moved to networks which are
not targeted (yet) by the RIAA. But according to ITIC [33] the P2P population
in August 2004 has increased since July 2004 by 15% again in spite of new RIAA
law suits against users.

When suing users directly several problems arise. The main difficulty is to
prove that somebody shared copy-righted content and then to identify these
person [34]. Since P2P file sharing is an Internet “killer application” that makes
users willing to pay for broadband connections, the ISPs generally are not in-
terested to give their customers name. Nevertheless the ISPs can be forced by
courts to present the identities of accused users. But even if the name of the
person, who pays the ISP’s bill, is known this person often was not the one who
actually was responsible for illegally sharing copy righted content. So often the
wrong persons are sued as has been the case several times.

Other targets of RIAA and similar organizations are so called link sites which
are used by many people to find and rate certain downloads in P2P networks.
The principle of link sites works as follows: Files in a P2P system like eDonkey
can be found in the network using a hash value that uniquely identifies a certain
file. Publishing such links on a website has the advantage that false (“fakes”) or
corrupt files can be marked as such. The users basically give them a bad rating
to warn other users. In spring 2004 the most prominent eDonkey/Overnet link
site called “ShareReactor” was closed by Swiss authorities after almost three
years14. But soon afterwards new sites arose and took ShareReactor’s place.

1.6 Network environment

P2P identification in this thesis is done processing flow-level data gathered from
the SWITCH network which is described in the next Chapter as is the flow
format.

1.6.1 Flow-level Data

A flow is kind of an accumulated unidirectional stream of captured network
packets, that is summarized by a set of fields that describe the most valuable
information about that stream. These information fields include source and
destination IP and port, the number of packets and bytes transfered and the
duration of the flow. Although a flow does not contain any payload data of
the transmitted packets, it allows network operators to use NetFlow for billing,
planning, monitoring as well as for research activities.

Developed by Cisco [35] for their high performance Internet router and
patented in 1996 NetFlow nowadays is de facto the standard accounting tech-

13See article ”RIAA Lawsuits Unpopular in United States”
http://www.slyck.com/news.php?story=549 (August 2004)

14See Slyck.com article ShareReactor Down Indefinetely
http://www.slyck.com/news.php?story=424 (August 2004)

http://www.slyck.com/news.php?story=549
http://www.slyck.com/news.php?story=424

12 CHAPTER 1. INTRODUCTION

() *) * +) , - . / +

0 1

2 3 4 4) 5 6 / *

*

7 8 9 ,

: ; 8 9 ,

< 7 8 9 ,

= ; 8 9 ,

> (4 4) 5 6 / * ? @ A B C D E F G H C I J A

2 3 4 K / - - 9 L , M) , N - O) 6 /
0 1

2 3 4 3 L , , / 5 * 9 L , 3 P L - /

2 3 4 Q P L R > (4 Q P L R

S) T 9 8 U 8 V 9 . /2 9 8 / W : ; 8 9 ,

S) T 9 8 U 8 X N P /2 9 8 / W < 7 -

Figure 1-3: Flow Timings

nology for network service provider. Although the latest version 9 of NetFlow is
on its way to become an IETF [36] standard, version 5 still is the most common
used.

Since flows are unidirectional a TCP connection will result in two flows.
Packets get accumulated in a flow if they have matching source/destination IPs
and ports. Flows are expired from the router cache and emitted to a collector
if one of the following conditions is true (also see Fig. 1-3):

• Maximum lifetime of the flow is exceeded. Default is 15 minutes.

• Maximum idle time is exceeded. During that time no other packets have
been sent. Default is 30 seconds.

Since UDP is a connection-less protocol, each UDP packet in fact is independent
from other packets. UDP flows therefore get emitted sooner and more often
than TCP flows. Nevertheless UDP streams can get accumulated in a flow if
the packet frequency is high enough.

Up to 30 flows are contained in a NetFlow packet that is sent in a UDP
packet to a collector host that can store or process the NetFlow data.

1.6.2 SWITCH NetFlows

The data basis of P2P identification in this thesis is a large archive of NetFlow
data that was collected from the four border gateway routers of the SWITCH
network15 depicted in Figure 1-4.

The flows are saved in NetFlow Version 5 format16. Emitted flows are col-
lected by a collector host which creates two NetFlow files every hour. One

15See Appendix D for more information about the SWITCH network
16See Appendix C for more details concerning the NetFlow format

1.6. NETWORK ENVIRONMENT 13

Y Z [
Y Z \

Y Z]
^ _ ` a

^ b c d

e f g d ch h h

Y Z i
j

k l m g b n c

h h h
h h h

o

Figure 1-4: Switch network topology

containing the data of three of the four border gateway routers and the other
containing only the data of the largest one which produces about as many flows
as the three others together.

As shown in Figure 1-4 flows are only captured if they cross one of the border
gateway routers (c). Neither packets between two internal hosts (b) nor between
two external hosts (a) pass a border gateway router and thus don’t result in a
flow.

In a 30 day measurement an average of 45 million flows per hour resulted.
The graph depicted in Figure 1-5 shows that the number of flows emitted is
day time dependent. Weekends (June 27./28.) don’t seem to have that a great
impact on the number of flows as e.g. on the number of active web clients (see
Figure 4-3). The negative peak before noon on June 22. is due to a NetFlow
collector problem on that day.

14 CHAPTER 1. INTRODUCTION

 0

 10

 20

 30

 40

 50

 60

 70

22.06.
03:00

23.06.
03:00

24.06.
03:00

25.06.
03:00

26.06.
03:00

27.06.
03:00

28.06.
03:00

29.06.
03:00

M
F

lo
w

s/
h

Date and Time

NetFlows SWITCH Network

Figure 1-5: NetFlows emitted in SWITCH network

Chapter 2

P2P Host Identification

In the following chapter approaches and methods for P2P identification are
presented and discussed. Directly identifying P2P traffic nowadays seems to
be inaccurate as has been shown in other publications [8, 9]. Therefore we
focus on P2P host identification. We try as a first step to identify P2P hosts
in the SWTICH and to later track parts of the external peer population. This
approach has also the advantage that traffic of P2P clients which use the same
download ports (as eDonkey, Overnet and Kademlia) can be better separated.

Some of the discussed methods then are used to implement or verify an
identification algorithm which is subject of Chapter 3.

Identification History

Traffic identification was rather straightforward in the beginning of the P2P
age when most clients were using default ports. Newer generation P2P clients
are incorporating various strategies to avoid detection (see Section 2.3.1). One
of them is to choose random listening ports making it difficult to accurately
identify P2P traffic and hosts with a stateless method.

While there are numerous measurements studies1 that use packet inspection
[9, 37, 13, 8] for traffic identification, recent ones have been published that
use flow-level heuristics [7, 38, 39]. One of the reasons for this trend is that
- depending on the amount of network traffic - it is hardly possible anymore
to do packet inspection or to capture the content of Internet packets at fast
rates in the GBit range [40]. Moreover flow-level identification is more robust
against protocol changes of P2P clients. In contrast, flow-level identification is
not always accurate enough and may get even more inaccurate in future with
more sophisticated“camouflage” techniques used by newer P2P clients. Another
disadvantage of flow-level identification is that hosts must be active enough to
precisely identify a peer since one flow is hardly enough to state that a host is
a peer as is shown in Subsection 2.3.2.

So far there don’t seem to exist publications which first try to identify and
classify peers using flow-based methods.

1In Section 4.5 some approaches of other researches are presented and summarized.

15

16 CHAPTER 2. P2P HOST IDENTIFICATION

2.1 P2P Systems Considered

In this thesis we examine the following P2P systems: BitTorrent, FastTrack,
Gnutella, eDonkey, Overnet and Kademlia.

According to Slyck.com [41], which is an extensive information site about
P2P file-sharing, the five most used P2P systems in July 2004 were FastTrack,
eDonkey, Overnet, iMesh, and Gnutella.

iMesh has been using an own protocol in its early stages, but nowadays
connects to the FastTrack network. Two networks that are not displayed in
their users statistics are BitTorrent and Kademlia. BitTorrent does not show up
in Slyck statistics since its user base is difficult to estimate as is explained later.
The Kademlia network is a creation of the developers of eMule that started as a
very popular eDonkey client. Since the first quarter of 2003 Kademlia support
is included optionally in eMule.

In the beginning of this thesis it originally was planed to identify only eDon-
key, Overnet and FastTrack clients. The three additional networks were consid-
ered then for the following reasons:

• The Kademlia protocol is closely related to the eDonkey network and has
a fast growing user base. It may get more important in near the future.
Since every eMule client is part of the eDonkey network and since eMule
is the only client for Kademlia, every Kademlia users is also an eDonkey
user.

• BitTorrent is responsible for a huge amount of traffic and although it is
hard to estimate its user base, BitTorrent traffic has increased dramatically
during the past month.

• The user base of the Gnutella network is increasing again. Moreover
the identification algorithms were quite promising to accurately identify
Gnutella clients.

This gives us a total of six P2P networks considered. It is assumed that these
networks are the most popular P2P networks in the SWITCH network.

In the following a brief description of the considered P2P systems and some
of its popular clients is given. Figure 2-1 gives an overview over the relation
between the networks and some of their most popular clients.

eDonkey

Is a two-tier system that uses a centralized server architecture with only about
80 worldwide available public servers which hold the file index of shared files.
The dedicated server software is freely available and can be used by anyone.
Each server communicates with other servers so that the overall user number is
known at any time. Each eDonkey client generally has one TCP connection to a
server. In newer clients they use UDP to query other servers if they are looking
for files. Some clients, like the multi-hybrid client mlDonkey, opens connections
to several eDonkey servers.

On August 9. 2004 the the maximum number of users connected to a server
(“Razorback 2”) was 519’850 users. On an average day in July 2004 there were
between 2 and 2.6 million people connected to the eDonkey network, sharing

2.1. P2P SYSTEMS CONSIDERED 17

p q r s t u u q s r v w s s x v y q w sz q u x { y | t s } ~ x | v w s s x v y q w s

z t } y � | t v � � q � x } �

� � � � � �� � � � � �� � � � � � � � �
� � �

x � w s � x �

� u q x s y
p x | � x | �p � � x | s w � x �� | t v � x |

� � � � � � � � � � � �
� � �

 � x | s x y

¡ t � x ¢ u q t

£ ¤ � � � � �

¥ q y � w | | x s y

¦ � � § � � � � � �� ¨ © � � © �
� � �

ª s � y x u u t

« � ¬ � ­ � � � �¦ � � � � � � � � �® � � � � � ¨ � �
� � �

� � © ¯ �

¬ ¯ � � � � � �

Figure 2-1: P2P network and client relations

18 CHAPTER 2. P2P HOST IDENTIFICATION

between 190 and 330 Million files. These numbers were gathered by polling all
the available eDonkey servers.

Clients for the eDonkey network include the official eDonkey2000 client by
eDonkey’s creator MetaMachine, the even more popular eMule and the derived
open source {l,a,x}Mule clients. eMule has extended the eDonkey protocols
with various features as download queuing and additional source finding mech-
anisms. Some of these added functions only work among eMule clients. Worth
annotating is also mlDonkey [42] which is a is able to connect to various P2P
networks as shown in Figure 2-1. Support for these networks is varying but
especially the connection to the FastTrack network is well appreciated among
the Linux users.

Own measurements made in June with mlDonkey, which can distinguish
eDonkey clients, running for 4 days have shown that it had contact with eMule
clients (55%), the official eDonkey client (40%) and some less popular clients
(5%) during that time. Another measurement with an eDonkey server showed
that 67% of all connected users run eMule.

Overnet

When the limitations (centralized and few servers) of eDonkey became obvious,
MetaMachine designed a successor that was completely decentralized. Overnet
was born. It was supposed to replace eDonkey but hasn’t succeeded so far.
Mainly to the great success of the eDonkey client eMule which has an easy-to
use user interface that appealed to many eDonkey users. Overnet uses - like
Kademlia [43]- the XOR-algorithm that distributes the file indexes to the par-
ticipants of the P2P network. UDP is used for signalling traffic and it produces
a lot of overhead.

At the moment there exists only the official Overnet client and the multi-
hybrid client mlDonkey. It is assumed though that only very few people use the
mlDonkey client since it is due to its complicated handling is used merely by
rather technically sophisticated people. Moreover the official client is free and
also has a GUI version that is easier to handle.

Kademlia

Establishing and populating a new P2P network is not an easy task when there
exist dozens of competing P2P networks. The creators of the very popular open
source eDonkey client eMule therefore in February 2004 bundled support for
the new Kademlia network with their client. Kademlia is like Overnet com-
pletely decentralized and also uses the XOR-algorithm with UDP for signalling
traffic, but nevertheless is incompatible to the Overnet protocol. Kademlia sup-
port is not yet enabled by default in the eMule client since it still is in a test
phase. Therefore presumably only a small fraction of eMule users have turned
it on. There aren’t any official numbers available how many people that use
the Kademlia network yet. Running an eDonkey server shows the number of
eMule clients that have Kademlia enabled. According to the numbers of own
measurements there are rawly 13% of all eMule users which are also part of the
Kademlia network.

eMule so far is the only client connecting to the Kademlia network. Therefore
every Kademlia peer is also part of the eDonkey network. Unfortunately eMule

2.1. P2P SYSTEMS CONSIDERED 19

seems to use the same port for eDonkey and Kademlia traffic why these two
can’t be separated.

Gnutella

One of the first completely decentralized P2P protocol, that was developed by
NullSoft employees. After releasing a first implementation NullSoft’s mother
company (AOL) prohibited the publication of this client within hours. But it
was too late. The open source community reverse-engineered and improved the
protocol. The user base grew. It early was discovered that the protocol had some
severe problems [19] (e.g. 1 search query could produce a total of 800 MBytes
of traffic in the whole Internet). After FastTrack got popular, Gnutella’s user
base stagnated around 400’000 users but is now increasing again since more and
more users abandon the FastTrack network.

Gnutella holds 4-10 TCP-connections to other clients. In the beginning no
UDP was used which often was criticized. Nowadays UDP is also used together
with a two-tier system where so called “ultra-peers” provide some extended
functionality compared to an ordinary node. Ultra-peer status is self-assigned
to powerful peers.

There exists a variety of commercial and open-source clients for Gnutella.
The most prominent are the Java client LimeWire [44] with an approximate
50% user base, Morpheus with 20%, and BearShare and Shareaza with about
7% each. Beside them there exists about another dozen clients due to the freely
available protocol specification of Gnutella.

FastTrack

Originally based on Gnutella, FastTrack with approximately 2.7 million users
(September 1.) still is the most popular P2P network. But as stated more and
more users abandon the FastTrack network.

FastTrack was one of the first P2P networks which used a two-tier approach.
Every FastTrack client needs a TCP connection to one super node to join the
network. Super nodes are dynamically self-assigned to powerful nodes. Accord-
ing to measurements made in [27] there were between 20’000 to 30’000 super
nodes worldwide in mid of 2004. Clients seem to communicate also over UDP to
query other super nodes. All FastTrack signalling traffic is encrypted. Download
traffic isn’t (yet).

There exist only three official sanctioned to connect to the network Kazaa,
iMesh and Grokster. Since all three of them in the“free”version are packed with
unwelcome third-party programs, some people have started to modify the official
clients what resulted in Kazaa Lite K++ that comes without the advertising
and includes some useful bonus helper programs. Since the maintainer of the
FastTrack network, SharmanNetworks, earns its money by selling licenses and
ads, it tried to fight against this unofficial clients using legal actions. Websites
were forced to remove all links to Kazaa Lite and even Google was forced to
remove search results containing Kazaa Lite2. Although these legal actions
made it more difficult to find proper versions of Kazaa Lite and one won’t find

2See Google pulls links to Kazaa imitator http://news.com.com/2100-1032-5070227.html
(August 2004)

http://news.com.com/2100-1032-5070227.html

20 CHAPTER 2. P2P HOST IDENTIFICATION

any version of Kazaa Lite using the FastTrack network, it still is not that hard
to get it, using other P2P clients like eDonkey or Overnet.

BitTorrent

Developed by a single person (Bram Cohen) BitTorrent became more and more
popular for file-sharing in 2003. Aimed at large downloads of several MBytes
it uses the upload capacity of P2P users and the tit-for-tat principle to share
bandwidth between users who download the same file. This approach is very
successful [45] and delivers very good download rates if enough people are down-
loading the same file. The files downloaded are described in so called torrent
files.

As can bee seen in Figure 2-1 there is no single BitTorrent network, but
thousands of temporary networks consisting of clients downloading the same
file (e.g. on 3rd of August, over 50’000 people were downloading the newly
released horror shooter game “Doom 3” from the two main torrents3). These
split networks makes it difficult to count the total user base. In January 2004
Suprnova.org [22] which claims to host about 60% of all torrent files, reported
over 1 million BitTorrent users 4 though. Traffic statistics let assume that the
population since then has grown even more.

After a torrent file is downloaded from a web page or otherwise received, the
BitTorrent client has to ask a BitTorrent tracker, to provide addresses of other
peers downloading the same file. The communication between the peers is done
using TCP only. The tracker is a central element in this architecture. Without
it the active peers don’t get new addresses from other peers what causes the
network to die sooner or later. The network can also die if there are no seeders -
clients that have downloaded 100% of the file - anymore. Most torrents last only
for some days or weeks, but others exist for several months [46]. This is - among
other reasons - because BitTorrent’s philosophy that clients keep uploading even
when they have finished a file. The user itself has to quit the program to stop
the outgoing transfers.

Popular clients are the original BitTorrent client written with Python by
Bram Cohen itself and the Java based client Azureus, which has a nice user
interface and provides some extra features (like multiple simultaneous down-
loads, autonomous exit after a certain upload-download ratio has been reached
or priority downloads of contained files) that advanced users appreciate.

There is an additional short overview about the most common P2P networks
in Appendix B.

2.2 Traffic Observation Possibilities

2.2.1 Packet-level Observations

To observe P2P clients in order to reverse-engineer their protocol the following
setup was used:

3See ”Doom 3 Sales Going Mad... Downloaders March On” (September 2004)
http://techbits.ca/modules.php?name=News&file=article&sid=843

4See Slyck.com articleBitTorrent Statistics http://www.slyck.com/news.php?story=370

(August 2004)

http://techbits.ca/modules.php?name=News&file=article&sid=843
http://www.slyck.com/news.php?story=370

2.2. TRAFFIC OBSERVATION POSSIBILITIES 21

• Observer host: Transparent Linux router with two network interfaces.
Connected to an unfiltered network.

• Client host: Debian Sarge Linux/Windows XP dual boot client host with
one network interface

Goal of these observations was to analyze the common behavior of some popular
P2P clients of the considered networks. This means e.g. how many UDP packets
they send, how many connections usually are opened, on what port they listen
and with how many hosts they stay in contact.

Network analyzers like tcpdump [47], ethereal [48] or nprobe [49] can be used
on the observer host to capture, monitor and even replay network traffic data. A
firewall like Keerio Firewall [50] on the client (windows) host allows to observe
the current established connections and listening ports. This is also helpful to
observe the transmitted traffic for each connection.

In order to run P2P clients under realistic conditions some files must be
shared and it is desirable to make other clients communicate with the test
client. Therefore one must initiate some file transfers either by doing search
queries and downloading files or by making other P2P users download shared
files. Legally sharing popular files, that are frequently downloaded, is not as
easy as it sounds. Considering that there are mainly are three types of shared
files (namely music, video and software) and that the most popular files usually
are current chart hits, legally shared MP3s don’t seem to attract many people
as was observed. One way to make other P2P users download from the shared
files is to trick them choosing file names of popular objects and thus “polluting”
the P2P network. A slightly less misleading but quite effective way of sharing
highly demanded files in a legal way is to share official movie trailers of currently
playing movies or to share rogue clients5 like Kazaa Lite or iMesh Lite although
these programs obviously can’t be shared on the FastTrack network, or at least
not using their real names and file hashes.

2.2.2 Flow-level Observations

Packet-level analysis is technically very difficult for large backbone networks
since traffic volume just is too big. Therefore the traffic can only be analyzed
if the data is in some way compressed or abstracted. In the SWITCH network
NetFlow data is collected and used for various purposes. One way to analyze
the flows is to use UPFrame.

NetFlow Data

DDoSVax project has access to the NetFlow data of the four border gateway
router of the SWITCH network. There is a longterm archive where complete,
unsampled NetFlow data is saved since March 2003. A 600GB short term archive
that holds data for the past four weeks is used to analyze current network events
like worm or DDoS attacks.

5See the paragraph about FastTrack in the previous subsection

22 CHAPTER 2. P2P HOST IDENTIFICATION

UPFrame

UPFrame [2] was developed for the DDoSVax project [5] to have the possibil-
ity to do online measurements of NetFlow data. Providing a flexible plug-in
framework its users are able to write their own applications that can make use
of several functions available in UPFrame. Among these features are:

• Buffers to receive incoming UDP packets at fast rates

• Smoothing functions to prevent data bursts

• Feeds to independent plug-ins that process the data.

• Automatic error recovery in case of partial framework crashes

• Released under the GNU public license

Although UPFrame was primarily written to process NetFlow UDP packets it
is of a more general nature which means that it also can handle general UDP
packets.

Processing

The DDoSVax project team has built a Linux cluster - called Scylla [51] - con-
sisting of 22 compute nodes and multiple file servers with raid support that hold
several TBytes of data. The data archives are mounted on all cluster nodes. Us-
ing OpenMosix [52] the nodes can migrate running processes to other machines
which is useful for parallel processing. UPFrame and its helper programs can
be run on several cluster nodes which allows to process independent NetFlow in
parallel.

2.3 Host Identification Methods

As explained in previous sections we first identify hosts which run P2P clients.
Then we use them to track other peers and to identify their traffic. P2P host
identification methods can be classified into the following categories:

Polling Methods

If parts of a P2P protocols are known which allow to communicate directly with
active peers, a polling method would contact a potential P2P client and send it
any valid or invalid message (e.g. a ping or hello message). Analyzing the host’s
response or the absence of it, a peer can be identified with high probability. It
is obvious that this approach only works online and requires at least an IP and
a port number to contact a host. Depending on the P2P protocol a successfully
identified peer can be used to get addresses of other active peers that can be
polled. Another very serious disadvantage is that quite a lot of peers are behind
firewalls, NAT boxes or proxies. Therefore they normally can’t be contacted
directly what makes polling techniques inaccurate.

In Subsection 4.1 a polling method is used to find a lower bound for the
results of the implementation.

2.3. HOST IDENTIFICATION METHODS 23

Packet Inspection Methods

Capturing and analyzing all the packets or partial packets which pass an Internet
router is an accurate method to identify traffic as has been demonstrated in other
publications. P2P protocols that use encryption will make it more difficult to
use that technique in the future though.

The analysis of the packet payload can either be done online or offline. Real-
time full packet processing unfortunately seems not feasible for larger networks
with Gigabit transfer rates. Storing captured data of several days to disk for
offline inspection is usually not feasible for moderately sized networks since the
data amount often is very huge if the data is not filtered in some way. And even
the capturing/storing process itself is non-trivial for high bandwidth connections
as is shown in [40].

Flow Inspection Methods

A lot of large Internet routers generate flow-level data, mostly for accounting
purposes but also for traffic identification. This compacted traffic logs include
various information entries about connections that can be used for P2P identi-
fication. Flow-level heuristics usually don’t need any detailed knowledge about
the P2P protocol except for the default port numbers. More important is the
architecture of the P2P network and how active its participating peers are.

In this thesis the focus mainly lies on flow identification methods. There are
some subgroups among flow-based techniques:

Port-based

Storing port information about hosts and then analyzing them can be very
efficient for P2P identification as will be shown. Although the amount of peers
that use non-default ports is increasing, enough peers seem to use the default
ports to allow an accurate identification. Moreover it has been observed that in
some P2P networks like FastTrack most connections are located in a relatively
small port range. This fact also can be used to identify peers and traffic.

IP based tracking

P2P traffic could be very accurately identified if all active peers of a network
are known. This would be the case if the whole population could be tracked.
As is shown later, tracking a substantial fraction of the population is possible
for some networks.

Some P2P networks rely on super nodes which usually are used by ordinary
nodes for search queries. Depending on the network there are from about 80
(eDonkey, see [53]) up to 30’000 (FastTrack) of them. Assuming that each
ordinary client must have at least one connection to a super node, it would
be relatively easy to determine P2P clients in an observed network if all super
nodes were known. Basically it just has to be checked if a host connects to one
of these super nodes. Super node tracking is possible for eDonkey, Limewire and
even FastTrack. But especially tracking FastTrack super nodes is very difficult
and requires a large effort as is shown in [27].

24 CHAPTER 2. P2P HOST IDENTIFICATION

Traffic pattern analysis

As was described in Section 1.3 the P2P model works in a different way than
the traditional client-server model. This also implies that their traffic patterns
fundamentally differ in terms of connection count, flow lengths and upload-
download ratio. A very general approach could concentrate on these charac-
teristics to identify peers. It is assumed that this method will gain importance
since more and more clients try to hide themselves using random ports.

Another classification can be made between methods that identify the kind
of P2P traffic

Download Traffic

Most current P2P systems use unencrypted TCP HTTP for their downloads.
This makes it rather easy for packet inspection methods to identify the traffic.
Therefore these methods used in measurement studies usually only consider and
account the download traffic.

Signalling Traffic

To communicate with other peers a custom and proprietary protocol is used
by most P2P systems. Newer generation of P2P protocols use UDP for that
purpose. Although download traffic in terms of size is far larger than signalling
traffic, it should not be neglected since it can produce several MBytes traffic
per hour without any downloads. Overall signalling traffic plays an important
role in P2P identification since it is mostly independent from file transfers.

Depending on the P2P system, signalling traffic can be used to track almost
the whole P2P population of a network. Signalling communication usually use
the same listening port number as is used for downloads. Exceptions are eDon-
key, Overnet and Kademlia which all use the same TCP download port numbers
but different ones for signalling traffic.

2.3.1 Default Ports

Since we are using NetFlow data, this thesis focuses on flow-bases methods that
mainly use port numbers for identification. Therefore in the following subsection
an overview about port numbers is given.

The two most used transport protocols in the Internet are TCP and UDP.
Both of them use port numbers to allow routing the packets to the process they
are belonging to. These port numbers are assigned by IANA [54] and are divided
into three ranges as shown in Table 2-1. Ports in the dynamic range are used
mostly by TCP for outgoing connections.

While TCP is a connection-oriented and reliable protocol, UDP packets are
non-connection oriented and not guaranteed to reach their target. Internet
programs, communicating over UDP, normally use one single port for sending
and receiving UDP packets as is shown in Figure 2-2, whereas TCP usually uses
several ports for outgoing connections. When tracking instances of an overlay
network one can use graph traversal to identify parts of the overlay network if
the instances are somehow connected over a common property. In the case of

2.3. HOST IDENTIFICATION METHODS 25

° ± ² ³ ´ µ ¶
· ¸ ² ³ ´ µ ¶

¹ º ¹ »¹ ¼

¸ ½ ¾ ¿ À Á Â Ã µ Ä Å Æ Ç È É º Ê ¼ Ë Ì Ê Ê » Ê
Í Î Ï Á Æ Å Î Ä Î Ð Ã µ Ä Å Æ Ç º Ñ ¼ È Ë È É º Ê º

Ò Î ´ ´ Ë Ó ¾ µ ¶ ¾ Ã µ Ä Å Æ Ç Ñ Ë º Ñ ¼ »
· ¸ ² Ô Á Æ Å Î ¾ Á ¾ Ï Ã µ Ä Å
° ± ² Ô Á Æ Å Î ¾ Á ¾ Ï Ã µ Ä Å

¹ È
Ð Î ¿ Ð¹ Ê

Ð

Â

¿

Õ

Figure 2-2: TCP and UDP connections in P2P networks

Range Description

0-1023 Well-known Ports: e.g. WWW (80), SMTP (25), SSH (22), ...
1024-49150 Registered Ports: e.g. FastTrack (1214), Gnutella (6346), ...
49151-65535 Dynamic and/or Private Ports

Table 2-1: Official port ranges

26 CHAPTER 2. P2P HOST IDENTIFICATION

P2P population tracking this common property are the port numbers. Looking
at 2-2 the following statements could be made:

• Binding the same port for incoming and outgoing UDP packets allows to
track other hosts by applying graph traversal. Looking at the UDP flows
shown in Figure 2-2 it is very probable that host H4 is part of the same
overlay network as host H2, even if they have never contacted themselves
directly with UDP packets.

• The TCP flows in general do not allow to determine if e.g. host H1 is in
the same overlay network as H3, even if they used the same TCP listening
port. Their listening and outgoing ports are not “tied together” as it is the
case for UDP. But if for example H1, H2 and H3 had TCP connections
to each other and if they all would use the same listening port, it would
be very probable that they are in the same overlay network.

The terms“remote” and“local” ports are sometimes used in the following. Since
flows are unidirectional, a local port is not the same as source port and it is
neither equivalent with the listening port. It depicts the port used in a flow
on the side of an observed host. The remote port depicts the port used on the
remote host.

Until August 2002 most P2P clients used their default ports6. In February
2003 about 38% of all download sessions did not use the Kazaa standard port
according to measurements made for [55]. Since then more and more P2P clients
have been using random ports for different reasons:

• Users change their P2P clients port number manually to evade restriction
or limitation of P2P traffic by their ISPs. Commercial ISPs with a lot
of private home users nowadays hardly can afford to block or limit P2P
traffic since their customers would not tolerate it. Therefore the usage of
default ports among home users is in general higher than that of otherwise
connected P2P users. In contrast to that, universities and companies often
limit or even block P2P traffic. E.g. ETH has set a P2P traffic limit of
10MBit/s which is shared by all users in the ETH network.

• Certain clients like Overnet or recent Kazaa clients automatically choose a
random port when they start up the first time. They do this to evade fire-
walls or other limitations set up by the user itself or the network provider
the host is connected to. Some even use the WWW port 80 if they can’t
communicate with other peers using other ports. As has been observed
this is the case for less than 1% of all peers.

• Users behind a NAT box have to share one global IP for several users, but
a certain port on the NAT box can be bound or forwarded only to one
users. Therefore other users have to choose a different ports.

Firewalls, proxys and Network Address Translation (NAT) are in general big
problems in P2P networks since they usually don’t allow a P2P client behind
such a device to be contacted directly. Their common principle is in general
to allow all outgoing connections but deny every incoming connections unless

6See [8] and Appendix E

2.3. HOST IDENTIFICATION METHODS 27

Range TCP [hosts] UDP [hosts]

1024-1999 2737 220
1024-2999 4734 313
1024-3999 8177 539
1024-4999 10442 642
1024-5999 12278 707
1024-6999 12519 780
1024-7999 12563 1122

Table 2-2: Hosts with suspicious flows

explicitly configured otherwise. Estimations for LimeWire state that about 60%
of all its users are behind NAT boxes7 because most home users have broadband
modems with integrated firewalls/NAT boxes. Nevertheless this can be worked
around either by the user itself or by the P2P protocol.

• Concerning firewalls and NAT devices: The P2P user can configure its
NAT device to forward certain connections to hosts in the local net. Of
course this works only if the user controls the NAT device. Firewalls
can be configured to allow incoming connections on certain ports. Most
computer users are not sophisticated enough to adapt their configurations
though. So ideally the P2P protocol should provide ways to get around
this problem.

• P2P protocols could use reverse calls where a requesting client A contacts
the client it wants to download from B by a third host C, which is not
protected by a firewall or a NAT device. Host C must already have a
connection to B which then can be used to pass the request.

The dynamic port range usually is supposed to be used for outgoing connections.
But as has been observed with various P2P clients less than half of them uses the
dynamic range for outgoing connections. Clients like Kazaa start around TCP
port 1050 and then count up for each new outgoing connection. Therefore it is
possible to inspect a specific port range for P2P connections. A measurement
made on May 27 2004 at 18:00 hour with NetFlow data shows in Table 2-2 that
only a few thousand hosts out of 162’029 active SWITCH hosts at that time
had connections with source and destination ports in such a range. The result
is even more surprising for UDP hosts. It is assumed that a substantial amount
of them are P2P clients.

The following subsection describes and analyzes some generic approaches for
P2P identification. Then these methods are discussed for each of the considered
P2P networks.

2.3.2 Generic Approaches

In the following some flow-based techniques to identify P2P hosts are described
and discussed.

7See article ”Gnutella on the Rise” http://www.slyck.com/news.php?story=530 (August
2004)

http://www.slyck.com/news.php?story=530

28 CHAPTER 2. P2P HOST IDENTIFICATION

Protocol identification

The general approach to identify P2P clients of a specific network would be to
analyze the protocol and then find methods that can be used to track down the
peers. Unfortunately only a few P2P protocols (including e.g. the Gnutella pro-
tocol) are available for the public, most are proprietary and therefore matter of
numerous re-engineering attempts like the pDonkey project [56]. The advantage
of protocol identification is that protocol can’t be changed as fast as the client
implementation since the protocol must remain backward compatible.

Client identification

P2P clients often vary in their implementation which affects their performance
(e.g. choice of super node [20]) and makes them distinguishable. One approach
to identify peers could be to use these very specific properties of a P2P client
or a part of the bundled software. These properties can include different traffic
patterns in setup or hand shaking or the use of a client specific incoming or
outgoing ports as is the case with eMule.

“Free” clients often only will work if ads get displayed. The ads come from a
limited but changing number of ad servers whose IPs could be used to identify
peers. Unfortunately the ad servers are also used by ads on WWW sites. More-
over there exist unofficial rogue clients like Kazaa Lite or iMesh Lite that are
free from adware. Some P2P clients come with helper application like “PeerEn-
abler” [57] comes with Kazaa. PeerEnabler itself is kind of a P2P system which
is some kind of content distribution system that can be used by other companies
(for money) to push software to their customers. The fact that PeerEnabler is
bundled with Kazaa and uses a default port can be exploited.

The advantage of a client identification lies in these very specific properties
that can improve the results. But since clients change their behavior with ev-
ery update, client identifications in general should be used only as support for
protocol identification. Otherwise the identification algorithm must be updated
frequently.

Traffic patterns

A P2P host, when transferring files, has lot of outgoing and incoming connec-
tions to different hosts on various ports. This in contrast to a web client that on
one hand uses port 80 as remote port and has only outgoing TCP connections.
So the number of contacted or requesting hosts could be used for identification.

Another property that separates P2P clients from common web clients is the
traffic ratio which is more balanced for p2p clients. Web clients hardly upload
as much data as they download, but P2P clients upload about the same amount
of data as they receive.

To use packet count and packet sizes of setup or hand-shake connections was
shown in [29] to be not very successful for identification, since hand-shake is too
variable and too dependent on the implementation.

P2P protocols that use file swarming have block- and chunk-sizes for the
transmitted files (e.g. 9.28 MB with sub chunks for eDonkey). Flows with cor-
responding payloads could be searched. Unfortunately only a few flows exactly
match these defined block-sizes as our observations have shown, confirming re-
sults of [29].

2.3. HOST IDENTIFICATION METHODS 29

Super node tracking

P2P networks like eDonkey, Gnutella and FastTrack rely on the existence of
few powerful super nodes. Depending on the network there exist from 80 up
to 30’000 of them. In the case of eDonkey they are static and in fact are not
ordinary peers but dedicated servers. Gnutella and FastTrack self assign super
node status. These super nodes are part of a two-tier system where the ordinary
clients must have one or more connections to one of these nodes. Typically the
servers have to maintain the connection with ping/pong messages that are sent
periodically when there are no search queries (e.g. every 412 seconds for eDonkey
or every 112 seconds for FastTrack). If it is possible to track all the super nodes
worldwide, P2P clients for the networks with super nodes could be identified
with a straightforward method (see Subsection 4.1).

Tracking all eDonkey servers is feasible with a managable effort because of
the following reasons:

• The eDonkey servers are dedicated and static, so they don’t change very
often

• There exist worldwide only about 80 active and populated servers which
makes it easy to track them

• They communicate with each other to exchange server lists

• The eDonkey protocol was subject to various reverse-engineering attempts
[56, 58]

These conditions allow to write a crawler program that queries every server for
its server list. That way new servers could be found and queried too for their
servers list. There exist a few sites like [53] which exactly do that.

For FastTrack it is rather hard but not impossible to track all super nodes
for the following reasons:

• The protocol is not well reverse-engineered since it uses encryption. The
open source client mlDonkey, that is also able to join the FastTrack net-
work, does only partially support the protocol.

• There are between 20’000 and 30’000 super nodes worldwide [59, 27] which
is a large number to track within short time.

• Super node status is self-assigned and may change with time. In [59] they
state an average life-time of a super node of about 2.5 hours. Therefore
the tracking should be done in less than this time.

Nevertheless it seems to be a possible to track all super-nodes worldwide within
an hour using a very sophisticated crawler program and about a dozen of Linux
computers as it is described in [27].

According to [60] for Gnutella there existed about 3684 ultra-peers at August
12. 2004 at 0.16 pm. This seems to be a realistic number of hosts to crawl and
since the Gnutella protocol is open source this should not be as hard as in the
case of FastTrack

Beside its accuracy another good thing about super node tracking is that
peers can be identified relatively early with a high probability because of their

30 CHAPTER 2. P2P HOST IDENTIFICATION

Country level domain Occurrence Country level domain Occurrence

ch 156 (27.61%) be 24 (4.24%)
net 117 (20.7%) es 22 (3.89%)
fr 51 (9.02%) de 20 (3.53%)

com 41 (7.25%) il 17 (3%)
pl 30 (5.3%) uk 15 (2.65%)

Table 2-3: Top level domain names of 565 Kazaa peers (TCP)

bootstrapping which is a very important process of P2P protocols. Clients
usually will try to connect to several known super nodes. If the contacted super
nodes were tracked and therefore known, these connections confirm that a host
is a peer.

Reference of locality

A P2P identification method which uses flow-based methods can be improved
for some P2P networks running own clients. P2P protocols like FastTrack use
locality explicitly when a client chooses a super node. Our measurements shown
in Table 2-3 with Kazaa running in super node status show that the test client
clearly was preferred by “local” clients. The results confirm the observations
made in [59] which assumed that FastTrack takes locality into account when an
ordinary client chooses super nodes.

In the case of eDonkey this reference of locality could also be observed in
[61] but may be more content dependent in the sense that P2P users tend to
search “localized” content. So it can be assumed that most P2P networks use
locality either by the protocol or at least by the content of the shared files.

As Table 2-4 shows not only the choice of super nodes shows some signs
of locality but also the origin of search queries. In comparison to the user
base of the corresponding countries, there are quite a lot of European country
level domain names among the requesting peers. Surprisingly most of the UDP
packets came from hosts with the nl country-level domain. One explanation
could be that the P2P population in the Netherlands is higher than in other
European countries. There are some reasons why the P2P user base in the
Netherlands may be large in comparison to other European countries. The
FastTrack protocol originally was developed in the Netherlands where also other
P2P projects like the Gnutella group are located. Moreover the Dutch supreme
court was the first high court when it in December 2003 affirmed the legality8

of P2P file-sharing technologies like Kazaa. The Netherlands are rather P2P
friendly and it is possible that Dutch people use P2P software more often than
other European users. But probably there other unknown reasons for this result,
since the number of hosts in the nl-domain is just too high. Overall it is assumed
that the locality of hosts contacting the test super nodes by UDP presumably
is content dependent.

In general, running one or more super nodes in a larger network probably
can be used as a kind of honey pot for local P2P clients since they seem to prefer

8See Slyck.com article RIAA and MPAA Ask, Why Me?
http://www.slyck.com/news.php?story=353 (August 2004)

http://www.slyck.com/news.php?story=353

2.3. HOST IDENTIFICATION METHODS 31

Country level domain Occurrence Country level domain Occurrence

nl 1026 (25.84%) be 115 (2.89%)
com 866 (21.81%) ch 107 (2.69%)
net 527 (13.27%) at 106 (2.67%)
se 281 (7.07%) fi 89 (2.24%)
fr 148 (3.72%) de 82 (2.06%)

Table 2-4: Top level domain names of 3’975 Kazaa peers (UDP)

k=1 k=5 k=10 k=30 k=50 k=100

BitTorrent 1149 520 373 135 105 89
FastTrack 2586 702 175 99 82 64
Gnutella 738 113 78 46 35 21

eDonkey/Overnet/eMule 4720 547 390 292 267 241

Table 2-5: Hosts which had at least k flows with P2P default ports

them either due to the protocol or due to the content provided.

Stateful port number method

A decrease in default port usage of P2P clients has been observed since 2002.
While this decrease makes it harder to directly identify P2P clients, the default
port numbers still are widespread enough to use them for identification as is
demonstrated later. Since it is far from accurate to declare a host a peer when
it uses a single P2P default port the approach must be stateful and identification
can’t be done instantly but after a potential peer has been observed some time.
A one day measurement which counted all SWITCH hosts from three of the four
border gateway routers in periods of 15 minutes that had at least k flows with
P2P default ports is shown in Table 2-5. Since eDonkey, Overnet and eMule use
the same download port, they are accumulated. For hosts which used default
ports from several P2P networks the most dominating was chosen.

This result shows that it is non trivial to set a reasonable threshold to deter-
mine a peer just by its flow default port usage. Obviously there occur a lot of
non-P2P connections that use P2P default ports. An explanation for this could
be that, as it is the case for many P2P clients, many Internet applications don’t
use the dynamic port range for the local port of outgoing connections. So they
may start with port 1024 and then count up for every new connection made
which leads sooner or later to a P2P default port. Of course NAT boxes and
proxy servers also contribute to this effect since they normally use the whole
non-well-known port range for outgoing connections.

False positives will be high for this approach if k is too low and false negatives
would be rather frequent if the threshold is set too high. Moreover this method
is not accurate since it does not account that flows - especially UDP flows -
to the same host can be quite frequent and therefore have a greater impact.
A better identification method would check the relations of a potential peer to
other hosts and count flows between the same hosts only once.

32 CHAPTER 2. P2P HOST IDENTIFICATION

A promising approach of a stateful identification method is to check a peer’s
neighborhood. If a P2P client or user changes its listening port to a random
port and not all of its neighbors are doing the same - which is rather unlikely for
most P2P networks except FastTrack - the hiding peer has to communicate over
the default ports anyway to contact its neighbor peers. The “good” neighbor
peers, which use default port numbers, therefore “betray” the “bad” peers that
try to hide themselves. The most important approach of the P2P identification
used in this thesis uses this fact. Therefore it is explained in greater detail in
the following:

Most Used Remote Port Approach (MURP)

As was explained above, just counting the flows that have default port numbers
is not accurate enough since it could all be flows from and to one single neighbor
host, which would falsify the results. One has to differentiate between the
neighbor peers. This is done saving the last N contacted hosts and their used
remote port numbers if they contacted the host under observation in a certain
port range, in the following called “suspicious port range”. When there were
enough IP/port pairs collected, a chart with the most used port numbers of
contacted neighbor peers is generated. Depending on the most used remote
ports it can be determined to which P2P network this host is belonging to if at
all. Since it is rather unlikely that a non-P2P application has contacted several
other hosts on the same port which also is used as a P2P default port, this
approach is supposed to be quite accurate concerning false positives. Using the
same method for local ports, it is also possible to determine the TCP/UDP
listening ports of a peer, which then also can be used to improve identification
or to track other peers.

This approach, in the following called MURP (“most used remote port”),
has been found quite effective and proved well for all P2P networks considered
in this thesis.

In the following Subsections the identification algorithm used in the imple-
mentation (see Chapter 3) for each of the considered P2P networks is discussed.
In most cases it basically is the stateful port method described in this Subsec-
tion, sometimes extended by auxiliary methods.

2.3.3 Host Pool

For the following identification methods to work some information about po-
tential peers have to be gathered first. Therefore a pool of many internal (and
later also extern) peers which are under observation is used. There are several
ways a host could get inserted in that pool

1. P2P default ports used in a flow:
Since the default-port usage in general still is high enough this method
works quite well. Only for FastTrack with a decreasing number of peers
which use port 1214 this method may not be work well enough.

2. Suspicious port range:
Some P2P clients use a small band or ports that they use for incoming and
outgoing connections. For FastTrack e.g. it was observed that 86% of all

2.4. IDENTIFICATION FOR CONCRETE P2P SYSTEMS 33

connections had source and destination port in the range of 1024-4000. As
is shown Table 2-2 there are relatively few active hosts which have flows
in such a small port range and it is assumed that most of them are P2P
hosts. Hosts which have flows in such a “suspicious range” could be added
as well to the host pool.

3. External tracked peers contact unknown internal host:
An internal host that is contacted by a known external peer probably is a
peer too.

Evaluating showed that method 1 is the most efficient. The host pool increased
by a factor of 5 when method 2 was applied but had a marginal effect on the
number of identified peers (less than 1%). This was also the case for method 3
which only marginally influenced identification but dramatically increased the
host pool. Since a large host pool needs a lot of RAM it is preferable to keep it
small.

2.3.4 Non-peer Identification

Before distinguishing the peers it is important to define some requirements that
they must fulfill so that it may be considered as peer. After the analysis of
numerous peers, including the test client, some reasonable rules are of the type:

• A peer must have at least MinTCPConn TCP connections to other hosts
within a time ProbationPeriod

• There must have been at least MinTCPBig TCP-big flows to other hosts
within ProbationPeriod

• More than MinSuspConn connections in the suspicious range must have
been made within ProbationPeriod

See Section G for reasonable default values.

2.4 Identification for Concrete P2P Systems

2.4.1 eDonkey Identification

Strongly related to each other, eDonkey, Overnet and Kademlia clients all use
the same TCP download port 4662. This makes it hard to distinguish them
unless the signalling traffic is part of the identification too. Most measurements
in other publications in fact don’t separate them. While eDonkey clients only
use few UDP packets to query other eDonkey servers than the one they are
connected to by TCP, Overnet and Kademlia use quite a lot of UDP signalling
traffic what can be used to distinguish them from eDonkey.

eDonkey clients mainly use TCP connections with the default port 4662 as
is shown in Table 2-6. This measurement was done running an eDonkey server
for 24 hours and analyzing the successfully logged in clients. It seems as if all
ports except the default port 4662 were set by the users. Surprising is only the
third most used port 6346 which is the Gnutella default port. One reasonable
explanation for this would be that a hybrid client like mlDonkey which also

34 CHAPTER 2. P2P HOST IDENTIFICATION

TCP port Occurrence (22’093 peers) Percentage

4662 16’497 74.67&
4661 606 2.74%
6346 224 1.01%
80 222 1%

5662 213 0.96%

Table 2-6: eDonkey and Kademlia top 5 TCP listening ports

connects to the Gnutella network, uses the same TCP port for different P2P
protocols. Observing the official eDonkey client on the test host showed that
about 68% of all TCP source ports connecting to destination port 4662 are in
range 1024-6000.

The approach that showed best results is the stateful most used remote port
method (MURP).

A host H is identified as an eDonkey peer if the following requirements are
met:

• The most used local or remote TCP port of H is 4662 and this port was
used by at least MinPeerPortThreshold unique hosts

• The most used local or remote UDP port of H is 4665 and this port was
used by at least MinPeerPortThreshold unique hosts or H is neither a
Kademlia peer nor an Overnet peer.

2.4.2 Kademlia Identification

eMule started as an eDonkey client and became very popular even exceeding
the official eDonkey clients in terms of users. Since April 2004 the eMule client
optionally connects also to a new Kademlia network (or just Kad). This makes
eMule a hybrid client that has one foot in the eDonkey and one in the Kademlia
P2P network. Kademlia uses the XOR routing [43] approach that can be used
in completely decentral networks. On a test client after a 24 hour run eMule
had contact with more than 180 unique hosts per Minute (see Table 2-13) which
makes it relatively easy to identify with the standard approach because Kadem-
lia uses the default port 4672 for UDP signalling traffic. Unfortunately this port
is used for both, the eDonkey and the Kademlia messages, why the number of
identified Kademlia hosts in fact is the number of eMule clients and not the
number of hosts actually in the Kademlia network.

A host H is identified as a Kademlia peer if the following requirements are
met:

• The most used local or remote TCP port of H is 4662 and this port was
used by at least MinPeerPortThreshold unique hosts

• The most used local or remote UDP port of H is 4672 and this port was
used by at least MinPeerPortThreshold unique hosts.

2.4. IDENTIFICATION FOR CONCRETE P2P SYSTEMS 35

UDP Port Occurrence (92’933 peers) Percentage

4665 491 0.5%
4672 473 0.5%
15848 283 0.3%
4662 204 0.2%
1025 200 0.2%

Table 2-7: Overnet top 5 UDP listening ports

2.4.3 Overnet Identification

Overnet has no default UDP listening port. The first time the client is started
it chooses a random port number above the well known range. A 24h run of
the test client showed that 55% of them are in the range 1024-10’000 and only
0.56% of the used ports were in the well-known range, most of them on port 80
(UDP WWW) and 53 (DNS). In Table 2-7 the most used ports are shown. It
is also interesting that among the most frequently used ports there are a few
default UDP listening ports of eMule (4672) and eDonkey (4665) which are not
part of the Overnet network. There is no peak since no default port exists for
Overnet. This makes it makes it a bit harder to identify Overnet peers. But
since eDonkey and eMule both have default ports, an identification approach
can check for a random port distribution to determine an Overnet peer.

Interesting to mention is also that the test client was contacted by 30 different
hosts in the 30th hour after it was shutdown. Within the first 24 hours after it
was stopped 5’445 different hosts sent 12’380 UDP packets to the used listening
port. This effect will be used for tracking external peers as is described later.

A host H is identified as an Overnet peer if the following requirements are
met:

• The most used local or remote TCP port of H is 4662 and this port was
used by at least MinPeerPortThreshold unique hosts

• At least MinPeerPortThreshold unique hosts have contacted H and the
occurrence of the most used UDP remote port is less than MaxPeerPort-
Threshold.

2.4.4 Gnutella Identification

Gnutella as one of the older P2P clients that was born directly after the Napster
shut down, has since then been constantly evolving. While it was completely
decentral in the beginning it today supports a two-tier architecture with so called
ultra peers, which are powerful peers that self-assign this status to themselves
to cache file index data for ordinary peers. Every ordinary peer has - depending
on its network connection speed - several (typically 4-10) connections to ultra
peers. These connections are rather dynamically and often change. Gnutella
uses the default port 6346 and 6348 and in the beginning used TCP connections
only. Nowadays UDP is used too by newer clients that also support Gnutella2,
a disputatious but extended protocol introduced by the P2P client Shareaza.

According to the Gnutella network crawl statistics of [60], Limewire is the
most used Gnutella client which is used by about half of all Gnutella users. In a

36 CHAPTER 2. P2P HOST IDENTIFICATION

TCP port Occurrence (1’724 peers) Percentage

6346 1027 59.6%
6348 482 28%
6349 90 5.2%
6350 50 2.9%
6351 15 0.9%

UDP port Occurrence (3’764 peers) Percentage

6346 2440 64.8%
6348 1018 27.0%
6349 190 5.0%
6350 59 1.6%
6351 19 0.5%

Table 2-8: LimeWire top 5 listening ports

UDP port Occurrence (63’221 hosts) Percentage

1214 2620 4.14%
32656 789 1.24%
1530 36 0.05%
3636 36 0.05%
1193 35 0.05%

Table 2-9: Kazaa top 5 listening ports

12h run the TCP port usage of Table 2-8 resulted. As can be seen most Gnutella
peers still use their default ports or ports near to them. Therefore chances are
good, that the identification is successful using the stateful port method.

A host H is identified as an Gnutella peer if the following requirements are
met:

• The most used local or remote TCP or UDP port of H is in range of 6346-
6349 and this port was used by at least MinPeerPortThreshold unique
hosts.

2.4.5 FastTrack Identification

In Table 2-9 the UDP port usage after a 16 hour run of Kazaa as super node
is shown. Since Kazaa uses the same port number for UDP and TCP listening
ports it may be assumed that the port distribution for TCP is equal to that of
UDP. An ordinary client receives far less UDP packets and maintains basically
one connection to a super node plus connections to other peers that download or
upload. There are at minimum 8 packets sent to the current super node within
15 minutes.

A super node in contrast has about 35 outgoing TCP connections which
remain constant after some time and a large number of incoming TCP connec-
tions from other super nodes and ordinary clients. The number of established
incoming connections was at 205.

2.4. IDENTIFICATION FOR CONCRETE P2P SYSTEMS 37

As can be seen in Table 2-9 the default port usage is surprisingly low. The
reason for this is that since version 2 of the Kazaa client, it incorporates some
stealth techniques to make it harder to block or limit its download traffic. Choos-
ing a random port number for the listening ports is one of these measures. This
makes it rather hard to identify FastTrack peers. But fortunately the situation
is not that bad yet. First of all iMesh, which is the second most popular offi-
cial client, still seems to use the default port mostly and since - according to
Slyck.com - there still are about 800’000 iMesh users in the FastTrack network
which is about 25% of all users. These 4.14% default port usage observed in
Table 2-9 could be explained with the fact that the test client was run as a
super node which communicated quite frequently with other super nodes. Run-
ning iMesh as super node seems was never achieved. Explanation for this is
that iMesh uses an older FastTrack library than Kazaa and so may not be able
to run in super node mode. Therefore the Kazaa test super node in fact may
have primarily communicated with other Kazaa super nodes and some ordinary
clients with few iMesh or older Kazaa clients among them, which were using
default ports. Measurements made for [59] in January 2004 show in Table 3-4
that the default port usage was approximately 13% at that time. Today it seems
to be lower but still sufficient to identify FastTrack peers.

Second, what sets Kazaa apart from e.g. Overnet which uses a random UDP
port too is the fact that Kazaa uses the same port number for TCP and UDP
which is not very common for other applications. The third fact that helps to
identify FastTrack clients is the application PeerEnabler [57] which is installed
together with Kazaa. This program is meant to “distribute files efficiently and
securely over the Internet”, using a similar principle like BitTorrent. Since
PeerEnabler uses 3531 as default port and since it is bundled with Kazaa this
can be used as supporting identification method.

A host H is identified as a FastTrack peer if one of the following requirements
are met:

• The most used local or remote TCP port of H is 1214 and this port was
used by at least MinPeerPortThreshold unique hosts.

• The most used local TCP port is the same as the most used local UDP
port and both were used by at least MinPeerPortThreshold unique hosts.
Additionally port 1214 was used by at least one neighbor peer.

• The TCP and UDP remote port distributions are random with peaks
smaller than MaxPeerPortThreshold and at least two of the four TCP/UDP
ports 1214/3531 were used in a flow.

2.4.6 BitTorrent Identification

BitTorrent doesn’t consist of one large network like the other discussed P2P
networks but there are many thousand small networks, where all participating
peers are downloading the same file. Download of the file is done using the
tit-for-tat principle, the more a peer uploads data to other peers, the more he
receives from them. This is a proven counter measure against leechers that are
a problem in other networks. BitTorrent uses a total of 10 default TCP ports.
Port 6969 is the reserved default ports for trackers, although measurements

38 CHAPTER 2. P2P HOST IDENTIFICATION

TCP port Occurrence (2559 peers)

6881 1285 50.2%
6882 325 12.7%
6883 208 8.1%
6884 127 5%
6885 81 3.2%

Table 2-10: BitTorrent top 5 listening ports

done in April 2004 with 65 different trackers have shown that about 50% of all
trackers use this default port.

If a BitTorrent user wants to download a file he first has to find either
a torrent file or a link to a Tracker that serves the torrent file. So there is
no search function included in BitTorrent. Therefore various torrent archives
have been set up where users can publish torrent links. The largest of them
is Suprnova[22] which claims to have about 60% of all trackers worldwide in
their database. A list of maximum 40 peers is sent to new clients which then
contact the other peers themselves. This means that a new BitTorrent client
that starts downloading a file will open 40 connections to other peers. Most
of the successful connections then are held open since the neighbor peer may
have chunks that were not downloaded yet. Connections are bidirectional and
are used for signalling and download traffic at the same time. BitTorrent peers
don’t contact as many neighbor peers as e.g. Overnet.

On the client side the range 6881-6889 is mostly used. Analyzing the peer
lists of 96 different torrents the port usage of Table 2-10 resulted. In total 86%
of all peers used the default ports. The fact that there is not only one default
port but ten makes identification with to most used remote port approach a bit
slower since for that method it was assumed that most of the peers use only
one default port. So the threshold that is used to determine if a host is a peer
may not reached that fast. Therefore identification is extended by a probability
value that increases with the count of the used default ports. This improves
identification time.

A host H is identified as a BitTorrent peer if one of the following requirements
are met:

• The most used local or remote TCP port of H is in range 6881-6889 and
this port was used by at least MinPeerPortThreshold unique hosts.

• The probability value p of H is at least 0.5. p is calculated as follows:

– Add 0.4 to p if more than 6 default ports were used by neighbor peers

– Add 0.3 to p if more than 4 default ports were used by neighbor peers

– Add 0.2 to p if more than 2 default ports were used by neighbor peers

– Add 0.4 to p if at least 3 default ports were used including 6969

– Add 0.05 up to 0.25 for each single default port used depending on
their usage (see Table 2-10)

2.5. POPULATION TRACKING 39

2.4.7 Undetectable and Safe P2P Usage

After having examined several methods of P2P identification which were mostly
successfully we also have an understanding how to design a P2P client that
makes its detection rather hard. Such a client would:

• Use a proprietary protocol (security by obscurity) that is hard to reverse
engineer and difficult to actively poll.

• Encrypt signalling and download traffic. Downloads could be encrypted
with an asymmetric key pair using key exchange algorithms. This would
prevent packet inspection.

• Use a two-tier architecture where the super nodes are dynamically assigned
and change frequently.

• Choose random port numbers in the whole port range and may be even
change the port numbers from time to time (port hopping).

• Use random ports for outgoing TCP connections and random UDP listen-
ing ports for signalling traffic. That way the host can’t be scanned reliably
to determine if the client is running.

To hide a P2P client is one thing but today the threat of being sued is more
important. Even with today’s P2P clients there are ways to evade being sued by
the RIAA or similar organizations in other countries. Means to do so include:

• Don’t use FastTrack or the current most popular network since they were
and will be the RIAA’s main target. In August 2004 they started to sue
eDonkey and Gnutella users too9

• Use an anonymizing trusted proxy, e.g. JAP10 when running file-sharing
programs.

• Don’t share any or only legal files. But under no circumstances share
music files which are in the top 40 or currently playing movies. Sharing
no files at all is not appreciated in the P2P community and may result in
slow download rates

• Use IP blockers like Protowall [62] or Peerguardian [63] with up-to-date
block lists that give some security by stopping peers that are know to be
operated by the RIAA or other P2P unfriendly organization.

2.5 Population Tracking

One goal of this thesis is trying to track all peers worldwide. As will be shown,
this seems to be very difficult in general. Nevertheless the implementation tracks
a substantial amount of external peers for all considered P2P networks in order
to monitor their overall activity which is expressed in the amount of tracked
external peers.

9See Slyck.com article RIAA Sues 744 Individuals More
http://www.slyck.com/news.php?story=552 (September 2004)

10See university of Dresden’s free service JAP - Anonymity and Privacy
http://anon.inf.tu-dresden.de/ (September 2004)

http://www.slyck.com/news.php?story=552
http://anon.inf.tu-dresden.de/

40 CHAPTER 2. P2P HOST IDENTIFICATION

After 24 hours run Received Sent Total

Unique hosts packets 92’933 92’497 94’046
UDP packets 444’896 493’558 938’454
UDP KBytes 13’636 37’705 51’341

Table 2-11: Overnet activity of client on test host

2.5.1 Conditions

To track all peers of a P2P network worldwide some conditions must be met:

• All peers of the same type must be connected to the same network, i.e.
no network fragmentation

• A substantial number of peers must be observable, they serve as base
population

• Contacted peers must somehow be identifiable as such, e.g. through port
numbers

• Communication activity of these peers must be very high, e.g. they must
frequently contact other peers, even without file transfers

Of the six considered P2P networks only two fulfill all of these requirements. Bit-
Torrent consists of numerous independent and unconnected networks. Gnutella,
FastTrack and eDonkey use a two-tier architecture where super nodes masquer-
ade the activity of ordinary peers what reduces their activity. Gnutella at its
early ages was a one-tier architecture too but even then a host mainly had
contact with a few neighbor peers.

Concerning Overnet and Kademlia; since they are completely decentral P2P
networks with a one-tier architecture that makes heavy use of UDP messages -
due to the XOR search algorithm - the possibility to track all peers worldwide
was expected to be rather high. The official clients, run on the test host, showed
that the UDP usage is massive for both of them. Tables 2-11, 2-12 and 2-13 give
an idea about the activity of the Overnet and eMule test client. It’s noteworthy
that these numbers may be higher than for an average Overnet/eMule peers
since the rather powerful test host is located in an unfiltered net that has direct
100MBit access to the Internet. Looking at the total transfered bytes it gets
obvious that both protocols have quite a large overhead of about 2-4 MBytes per
hour which is needed for network maintenance and search queries. Interesting -
concerning the tracking - is the number of 94’046 unique hosts contacted by the
Overnet client. At that time the overall Overnet population was about 920’000
users. So during these 24 hours the test client has had contact with about 10%
of all hosts worldwide. Of course most of the contacted hosts probably did not
remain online during that time but nevertheless quite a substantial number of
the total users were contacted.

In June the Overnet population was about 800’000 users daily according to
Slyck.com [41] and the client which can report user numbers. At the same time
the eDonkey network counted about 2.4 million users. Assuming that a bit
more than 50% of the eDonkey users run eMule (estimations go up to 85%) and

2.6. EXAMPLE: OVERNET TRACKING 41

per minute Received Sent Total

Unique hosts packets 63 63 64
UDP packets 304 338 642
UDP Bytes 9’564 26’445 36’010

Average UDP Bytes/Packet 31 78 56

Table 2-12: Overnet activity of client on test host

per minute Received Sent Total

Unique hosts packets 178 185 186
UDP packets 533 542 1075
UDP Bytes 35’331 38’516 74’660

Average UDP Bytes/Packet 66 71 69

Table 2-13: eMule activity of client on test host

that about 13% of the eMule users have Kademlia support enabled (according to
statistics of a self run eDonkey server) this would give a population size of about
156’000, which probably could be tracked. As is shown in Section 4.4 far more
hosts than this were tracked for the Kademlia network since unfortunately eMule
uses the same port to contact other peers in the Kademlia and the eDonkey
network. Therefore they can’t be distinguished clearly. This was the reason it
was decided to analyze Overnet peers in more detail.

2.6 Example: Overnet Tracking

Tracking was done as follows:

1. Specify a number of safe“seed”Overnet peers (10 internal peers were used)
and their listening ports as starting population

2. Declare any host an Overnet peer that contacts or is contacted by one of
the already known peers on its known listening port

Since Overnet chooses a random UDP listening port as does the only non-official
Overnet client mlDonkey, there should be no peaks in the port usage11 of the
tracked hosts. But in the first try a lot of hosts with port 53 (DNS), 123 (NTP)
and 137 (netbios) showed up. Overnet clients sometimes seem to use their
listening port number for DNS queries. Therefore hosts contacted using these
ports were filtered in a second try.

There still were substantial peaks (up to 33%) at 4672/4673 (eMule), 6346
(Gnutella) that led to the conclusion that some Overnet peers occasionally
also contact eDonkey, Kademlia and Gnutella peers, possibly because of hy-
brid clients like mlDonkey which connect to several P2P networks. As soon as a
peer from another network is tracked as an Overnet peer this other network will
be tracked too without further measures. After ignoring the ports 137, 135, 123,

11See Table 2-7

42 CHAPTER 2. P2P HOST IDENTIFICATION

UDP Port Occurrence (154’093 peers) Percentage

4665 1023 0.66%
4672 819 0.53%
4662 417 0.27%
5468 340 0.22%
15848 306 0.19%

Table 2-14: Overnet top 5 UDP listening ports of tracked hosts

53 and not tracking hosts that were contacted using the local UDP ports 4672,
4673, 6346, 6348 and 5672 for outgoing packets, the port distribution shown
in Table 2-14 was almost the same as in Table 2-7. Analyzing only one hour
of NetFlow data (6 pm of a Tuesday during the semester) resulted in 154’093
tracked Overnet peers, which corresponded almost to 20% of the total Overnet
population. This first result was promising but as is shown in Section 4.4 track-
ing of the whole Overnet population seems to be very hard even if more internal
Overnet peers are used to track external peers.

2.7 Traffic Identification

Another goal of this thesis is to identify P2P traffic of peers within the SWITCH
network. It was assumed that a substantial amount of P2P traffic is transmitted
on non-default ports and therefore can’t be accounted using straightforward
traffic identification methods. Identifying P2P hosts is an intermediate step to
improve the accuracy of P2P traffic estimation. Knowing that one or more P2P
clients run on a specific host is one thing, but then accounting the traffic on
non-default ports of this host to the correct P2P client is a non-trivial task that
gets even more difficult if there are multiple clients running on that host.

Most P2P programs use several listening ports. Examining P2P clients on
the test host showed that e.g. the Kazaa client was listening on three UDP
ports and on two TCP ports. Hybrid clients can even be accepting connections
on more ports. Detecting all of them would need a disproportional effort.

Moreover outgoing TCP connections are set up independently from the lis-
tening port by most applications. Usually an unused port above the well-known
range is chosen for the local port and the listening port of the remote peer to
set up a connections12. So outgoing TCP connections, which are primarily used
for downloads and therefore important to identify, are not easy to distinguish
and account either unless they use default ports. Of course other applications
running on the same host normally use default-port numbers and could be ig-
nored using this information. But this would require a complete and up-to-date
data base with all known port numbers that would have to be updated fre-
quently since more and more Internet applications are developed. This may be
inaccurate if the P2P clients chooses a port randomly.

The used estimation approach is based on the assumption that hosts running
P2P clients do not run other applications with listening ports in the non-well-
known port range. Such applications typically include video/audio streaming or

12See Section 2.3.1 for more information about ports

2.8. LIMITATIONS 43

online games. Both of them them are sensitive to network latency and get the
full attention of the user while running. Running a P2P client at the same time
will noticeably decrease their performance which makes this situation rather
unlikely to happen. Since only a very small fraction13 of P2P users manually
sets the listening port of their client to a port number in the well-known range
and since most users seem to read Emails and surf the web while file-sharing,
all flows where either source or destination port is in the well-known port range
are not considered for the P2P traffic estimation.

The bandwidth estimation works as follows:

1. All flows where either source or destination port is in the well-known range
are ignored for the bandwidth estimation

2. Flows with P2P default ports are accounted to the corresponding network.
All other flows count as unidentified.

3. All unidentified traffic for observed hosts is summed up and if the internal
host it is an active peer directly accounted to the P2P network this host
is belonging to according to identification

4. If a candidate peer gets identified as an active peer, its so far generated
unidentified traffic is accounted to the corresponding P2P network. This
way the identification latency has less impact on the bandwidth estima-
tion.

2.8 Limitations

As described in Section 2.7 the traffic estimation is based on the assumption that
P2P hosts don’t run other applications in the non-well-known port range. This
seems to be true for most hosts but definitely not for all hosts. Therefore the
estimated P2P traffic trends to be higher than the actual P2P traffic of identified
peers. Moreover the accounted traffic per P2P net may not be accurate since
only one of possibly several P2P clients per host is identified and therefore all
unidentified traffic from that host is accounted to one network unless default
ports are used.

The longer the identification takes for a host the less accurate will the traffic
measurement be since the transmitted data of an identified peer is accounted
for the current time step although that traffic may have been from previous
periods. But since the identification time for most hosts is about the time of
one evaluation period14 this is not of great importance.

Peers that have only few connections need more time to be identified since the
proposed algorithm benefits from large activity. Fortunately most P2P clients
contact many other hosts during the bootstrapping process, so that for most
hosts this is no problem. It is though a problem for clients that don’t have much
signalling traffic using default ports and that don’t upload or download anything.
But since we primarily are interested in the P2P bandwidth consumption and
since these peers don’t cause much traffic - otherwise they would be more active
- they are not of great concern.

13Our measurements have shown that for all of the considered P2P networks less than 1%
of the peers use listening ports in the well-known port range

14See Table 4-7, “Identification Time”

44 CHAPTER 2. P2P HOST IDENTIFICATION

Chapter 3

Implementation

The proposed identification methods of Chapter 2 were used for several imple-
mentations that are subject of this and the following Chapter.

3.1 Offline Scripts

To evaluate some identification methods several Perl scripts were written. They
are well for experimenting but not fast enough to analyze several days of NetFlow
data within reasonable time. Some of the more useful scripts are the SafePeer
scripts, which can be used to rapidly collect some P2P hosts that have a very
high probability to actually be peers. These scripts won’t find all the peers
though, since the requirements to be considered a safe peer are quite high.
Most of them use the same approach as the plug-in described in the following
section. The verifyPeer script will try to poll active peers in order to verify
them. It can be used only if the port number of a peer is known or if it uses the
default port. Peers that are behind firewalls or NAT devices can’t be polled.

3.2 Online Plug-in

As a proof of concept and to be able to actually measure the P2P traffic in
the SWITCH network an UPFrame plug-in called PeerTracker was developed
under Debian Linux using C.

One of the disadvantages of online processing with UPFrame is that the
sending rate can’t be dynamically adapted. This either causes packet loss or
takes more time as needed to process the data. Therefore the plug-in may also
be used in a stand-alone mode (without UPFrame) where the NetFlow data
is read from a named pipe which is filled by netflow sreplay on the same local
machine. This allows flows analysis to be as fast as possible without packet loss.
See Section 3.4 for an overview about how fast PeerTracker can process data
and how much resources are needed.

3.2.1 Identification Algorithm Overview

As was described in Section 2.3 the identification algorithm makes heavy use of
the MURP approach that uses the neighborhood relations to determine a peer.

45

46 CHAPTER 3. IMPLEMENTATION

That approach assumes that internal peers can be reliably detected when the
relations to their external neighbors are examined. As is done in most of the
offline scripts too, PeerTracker reads NetFlow data, decomposes and analyzes it
as is shown in the pseudo code Algorithm 1.

For all flows f do {
if (EvaluationInterval.exceeded()){
evaluateHosts(HostPool);
writeStatistics();
resetStatistics();
}

updateGeneralTrafficStatistics(f);

if(f.srcport > 1023 or f.dstport > 1023)
continue;

if (h.internal and !HostPool.exist(h) and f.usesP2PDefaultports())
HostPool.add(h)

if (h.intern and HostPool.exists(h))
updatePortStatistics(h);

if (isSendingHost(h)
and HostPool.exist(h)
and
(f.srcport == h.detectedListeningPort ()
or withinSuspiciousRange(f))

)
updateTimeStatistics(h);

}

Algorithm 1: PeerTracker identification algorithm

If source or destination port of a flow use a P2P default port, the corre-
sponding internal host first is added as candidate peer to a host pool. Beside
the candidate peer status the known hosts in the host pool can have one of the
following states. The state may change every time a host is evaluated:

Candidate peer Internal host that used a P2P default port and is going to be
evaluated earliest after the ProbationPeriod. Candidate peers are either
identified as peers or as non-peers. They are only identified if there is
enough information available to safely determine its state, otherwise it
remains candidate peer at most for the time MaxCandidateLife.

Non-peer Internal hosts that were evaluated and found to be not peers. Non-
peers are immediately deleted after evaluation. Active peers can’t change
their status to non-peers immediately.

Active peer Internal or external hosts that ere evaluated and found to be a

3.2. ONLINE PLUG-IN 47

Ö × Ø Ù Ú Ù × Û Ü
Ý Ü Ü Þ ß à Û Ú á Ü

Ý Ü Ü Þ

â ã Ø ä Ý Ü Ü Þ

å Ü × Ù
Ý Ü Ü Þ

æ á Ü Þ Ù Ü × Ù
Ý Ü Ü Þ

å Ü ç Ü Û Ú ã Ø

å Ü ç Ü Û Ú ã Ø

è é ê Ý Ü à Û

ë Þ ã ì × Û Ú ã Øë Ü Þ Ú ã Ù
ß à Û Ú á Ú Û í

î × ï ðñ Ø × à Û Ú á Ú Û í î × ï ð
ß ò Û Ü Þ ç Ú ò Ü

Table 3-1: States for internal hosts

peer. Hosts remain active as long as they send data on their detected
UDP listening port or in the suspicious port range.

Dead peer Formerly active peers whose timeouts MaxPeerInactivity have ex-
ceeded. Although they seem to be dead, other peers will try to contact
them. This fact is used to track external peers. If a host is active again
during his after life it gets assigned active peer status again when it is the
next time evaluated.

Overdead peer Dead peers whose timeout MaxAfterLife is over are immedi-
ately deleted.

As can be seen in the state diagram of Figure 3-1 a candidate peer remains
in the pool for a certain time where it is observed but not deleted. After this
ProbationPeriod it can get deleted or assigned another status. The status of
a host is changed after they were evaluated which is done periodically after
EvaluationInterval of processed flows. EvaluationInterval was set to 15 minutes
for all measurements in this thesis. Figure 3-1 shows the amount of candidate
peers after evaluation. There were more candidate peers before all the hosts
were evaluated. Most of them (about 84%) then get deleted since they are
identified as non-peer hosts. The amount of these hosts can be seen in Figure
3-2. The source of the peaks in these figures could not be determined but may
come from network scans. The negative peak on June 22. was caused by a
temporary processing delay in the NetFlow data collector.

The evaluation function examines a host’s gathered data1 and determines
which - if any - is the most likely P2P network this host is belonging to. The
actual code that handles identification of peers can be found in Appendix F.
Due to the evaluation interval the peers get identified with some latency, which
is needed to gather enough information about them. Every hosts in the pool
is observed further even if it was identified. So the network an identified peer
belongs to, may not remain static. This can have the following reasons:

1See Section 3.3.1

48 CHAPTER 3. IMPLEMENTATION

 0

 200

 400

 600

 800

 1000

 1200

 1400

22.06.
03:00

23.06.
03:00

24.06.
03:00

25.06.
03:00

26.06.
03:00

27.06.
03:00

28.06.
03:00

29.06.
03:00

H
os

ts

Date and Time

Candidate hosts inside the SWITCH Network

Figure 3-1: Internal SWITCH candidate peers

 0

 1000

 2000

 3000

 4000

 5000

22.06.
03:00

23.06.
03:00

24.06.
03:00

25.06.
03:00

26.06.
03:00

27.06.
03:00

28.06.
03:00

29.06.
03:00

H
os

ts

Date and Time

Non-peer hosts among candidates peers inside the SWITCH Network

Figure 3-2: Internal SWITCH non-peers

3.2. ONLINE PLUG-IN 49

Switches BitTorrent FastTrack Gnutella eDonkey Overnet Kademlia

BitTorrent 98.42% 0.3% 0.38% 0.25% 0.27% 0.38%
FastTrack 0.44% 98.25% 0.23% 0.29% 0.32% 0.47%
Gnutella 0.5% 0.22% 97.61% 1.08% 0.35% 0.24%
eDonkey 0.23% 0.17% 0.69% 92.97% 3.73% 2.21%
Overnet 0.44% 0.45% 0.33% 6.8% 91.73% 0.25%
Kademlia 0.41% 0.33% 0.18% 1.93% 0.15% 97.0%

Table 3-2: P2P network switches

• There has not been enough data gathered about a host to safely deter-
mine the corresponding P2P network. This is especially the case if an
eDonkey/Overnet/Kademlia host is evaluated the first time. Afterwards
the amount of gathered data stabilizes the identification result.

• More than one P2P client is running on a host. The activity of the clients
varies which leads to different port distributions that influence the identi-
fication.

• The user may start an additional P2P client which is better identifiable.

Analyzing all identified peers of an eight day trace, P2P network switches shown
in Table 3-2 have been observed. The table shows the network switches of
consecutive evaluation intervals. If a host first is identified as eDonkey peer
then after the next evaluation as Overnet peer and finally again as eDonkey
peer, this counts as one switching host with two network switches. Of 3’047
identified peers, 1’244 at least once changed the P2P network according to the
identification algorithm. As assumed the separation of eDonkey and the other
two related P2P networks Overnet and Kademlia seems to be difficult for the
algorithm. Therefore relatively much network switches occur from and to the
eDonkey network.

3.2.2 Suspicious Port Range

As was described earlier, P2P clients mostly use port ranges above the well-
known ports. Therefore the identification algorithm uses a suspicious ports
range to track external peers, to update activity timeouts and for some statistics.
If source and destination port of a flow are within that the suspicious port range
the corresponding flow is flagged as suspicious.

The identification of internal clients is influenced by the suspicious port
range in the way that only suspicious flows are considered as potential P2P
flows. This means that only ports of such flows are stored and analyzed for
MURP. In order to analyze the influence of the suspicious port range on the
identification of internal clients, measurements with various ranges were made.
The NetFlow data from one typical weekday was used. The suspicious port
range starts at port 1024 and ends at a specific port. As can be seen in Figure
3-3 the optimal range - in terms of maximum identified hosts - is 1024-49150
what corresponds to the registered port range. Overall the difference is small
for ranges above 7000 and below the dynamic port range (e.g. 1348 vs 1357 for
ranges 1024-10000 vs 1024-30000).

50 CHAPTER 3. IMPLEMENTATION

 0

 100

 200

 300

 400

 500

 600

 700

22.06.
02:00

22.06.
04:00

22.06.
07:00

22.06.
10:00

22.06.
13:00

22.06.
16:00

22.06.
18:00

22.06.
21:00

Id
en

tif
ie

d
cl

ie
nt

s

Date and Time

Active P2P clients in the SWITCH Network
Using different portranges for suspicious portrange

1024-5000
1024-7000
1024-1000
1024-30000
1024-49150
1024-65535

Figure 3-3: Influence of suspicious port range on identification

Range 1024-5000 is not large enough for some clients like BitTorrent which
has its default ports at 6881-6889. If the range in contrast is too large (1024-
65535) the identification fails because too many non-relevant ports (local ports
of outgoing connections) are stored too, so that either the thresholds must be
reduced or more ports most be saved. Both alternatives have disadvantages
related to accuracy and memory usage.

3.2.3 Tracking of External P2P Hosts

As explained we only identify internal peers that are then used as a start popu-
lation to track external peers. External hosts are considered as active P2P peers
if

• they contact an internal active or dead P2P host on its TCP or UDP
listening port if it was identified

• they contact an internal active or dead P2P host using source and desti-
nation port in suspicious range

• they are contacted by an internal active P2P host on its TCP or UDP
listening port if it was identified

• they are contacted by an internal active or dead P2P host using source
and destination port in suspicious range

3.2. ONLINE PLUG-IN 51

External peers inherit the P2P type - the P2P network they belong to - from the
internal hosts that they contact unless a P2P default port is used. For multi-
client hosts, external peers are attributed the network of the best identifiable
P2P network which normally is also the most active network.

3.2.4 Client Shutdown Detection

To detect if a P2P client still is running, we use the suspicious port range and
the default ports together with a timeout MaxPeerInactivity that is refreshed
under certain conditions. After the timeout is exceeded an active internal peer is
declared dead. It then stays dead for another time MaxAfterLife until it changes
its state to overdead and is deleted. The afterlife of peers can be used to track
external clients that still contact shut down peers on their listening port, even
hours after they stopped running.

Since external peers can’t be observed that well as internal peers, there is also
a single timeout for them without an afterlife. But even if they are contacted
again shortly after they got deleted, they immediately get active status again.

In general the timeout is refreshed for sending hosts only if

• they use a default P2P port

• they send UDP packets on their identified listening port

• they send packets in the suspicious port range

• an external active peer contacts an internal active peer

The average inactivity time is less than 2 Minutes as is shown in Table 4-7,
which basically means that the timeout is reset quite often. Measurements have
shown that the effect of a timeout MaxPeerInactivity beyond 600s are negligible.

External peers have a different timeout value and no afterlife since they are
deleted immediately when they are considered dead. See Section 4.4 for the
timeout value of external peers.

3.2.5 Listening Port Detection

Beside the actual peer identification, for some peers the listening ports can
be detected if a peer is active enough. The detection works hand in hand
with the peer identification. Under the assumption that a peer is contacted
by many neighbor peers on one local listening port, the most used local TCP
and UDP ports are considered as listening ports if they exceed the threshold
MinIncomingPortThreshold which - after some tweaking measurements - was
set to 60, which means that at least 60 out of NeighbourHosts (100 was used for
all measurements) must have used the same port to contact a host. The higher
the percentage, the less identified listening ports but the more accurate are the
results. Table 3-3 shows for which P2P networks the UDP and listening ports
were identified, according to an eight day measurement.

Protocols that heavily rely on UDP (Overnet and Kademlia) have a better
chance that their UDP listening port gets identified. The result of BitTorrent
is surprising at first since it does not use UDP at all. After inspecting their
listening ports (see Table 3-5) it seemed that these hosts were running not only

52 CHAPTER 3. IMPLEMENTATION

Protocol Hosts Identified UDP ports Identified TCP ports

BitTorrent 6451 5.1% 16.4%
FastTrack 3772 36% 14.1%
Gnutella 4724 40.7% 24.9%
eDonkey 3141 40% 18.6%
Overnet 2034 85.6% 41.7%
Kademlia 2592 80.8% 67.1%

Table 3-3: Detected listening ports

1214 (13.1%) 2568 (4.6%) 32656 (0.97%) 2872 (0.11%) 1969 (0.04%)

Table 3-4: FastTrack file transfers port number

BitTorrent but also another P2P software. The ports were distributed quite
random with 4672 (eMule) as most used UDP port. About a third of the
identified ports were located in the 4000-5000 port range what is the preferably
used range of eDonkey, Overnet and eMule. Obviously the identification of
BitTorrent was easier than any of the other P2P clients running on that host.

The three most used ports of all identified hosts are depicted in Table 3-5. It
is not surprising that the default ports for each P2P network are dominant. In-
teresting but expected though is the relatively low number of FastTrack default
ports that is with 8.3% far lower than for the other peers.

In measurements made in January 2003 for [59] the five most used ports of
961’461 FastTrack file transfers are shown in Table 3-4. The default port usage
has further decreased since then (13.1% vs 8.3%) although a direct comparisons
between host port numbers (1 peer = 1 port) and port numbers used in file
transfers (port of one peer may be in statistics several times) should be compared
with some caution.

The cause of this low default port usage is the fact that recent Kazaa clients
choose random port numbers for communication with other peers.

Remarkable are the non-P2P default ports that are used quite frequently as
most used ports. Most of them are not registered and not even known in port
databases2. Possible explanations for these high numbers are:

• Users which changed their IP (e.g. per DHCP) during the eight days of
this measurements were counted several times and therefore have a large
impact on the results.

• Some numbers like 14662, 2662, 1223 or 3333 are either quite similar to
the default port numbers of the corresponding P2P protocol or they are
just “beautiful” numbers, set by the users. Several users who manually
changed their listening port numbers have taken the same choice.

2All non-P2P default ports in the Table are unregistered/unknown except, 3333 (DEC
notes), 8118 (privoxy HTTP proxy), 2579 (mpfoncl), 8080 (HTTP-proxy # common HTTP
proxy/second web server port), 4660 (maclmgr, OpenMosix migrates local processes), 17300
(kuang2 back door), 1584 (tn-tl-fd2), 1223 (tgp), 1469 (aal-lm, active analysis limited license
manager), 2672 (nhserver), 4200 (vrml multi user system), 4240 (vrml multi user systems),
2662 (bintec-capi)

3.3. CONTAINERS 53

Protocol Hosts 1. UDP 2. UDP 3. UDP

BitTorrent 6451 4672 (12.5%) 3333 (12%) 4307 (3.3%)
FastTrack 3772 1214 (6.6%) 8118 (3.45%) 2579 (2.86%)
Gnutella 4724 6346 (65.6%) 6348 (5.1%) 25295 (1.5%)
eDonkey 3141 6257 (8.7%) 1584 (7.4%) 6346 (4.1%)
Overnet 2034 12059 (7.6%) 10490 (3%) 7035 (2.5%)
Kademlia 2592 4672 (58.4%) 16001 (8.8%) 2672 (4.6%)

Protocol Hosts 1. TCP 2. TCP 3. TCP

BitTorrent 6451 6881 (69.7%) 6991 (6.6%) 6901 (5.37%)
FastTrack 3772 1214 (8.3%) 8080 (5.64%) 4660 (4.14%)
Gnutella 4724 6346 (58.6%) 17300 (10.8%) 6348 (2.9%)
eDonkey 3141 4662 (55.56%) 17300 (7%) 14662 (6.84%)
Overnet 2034 4662 (83.9%) 1223 (3.4%) 1469 (2.7%)
Kademlia 3496 4662 (66.6) 4200 (2.63%) 2662 (1.5)

Table 3-5: Most used ports of identified listening ports

• Network scans (e.g. for the kuang back door at port 17300) which aim at
finding hosts with a kuang2 back door.

3.3 Containers

Collecting information about millions of hosts needs some consideration about
which and how data should be stored. Especially when searching a specific
information in large memory areas of several hundred MBytes, it is important
to have data structures that are optimized for space and speed.

3.3.1 Hashed Table

The implementations discussed in Chapter 3 makes heavy use of IP lookups.
When storing some million IPs and their corresponding data, an efficient hash ta-
ble can speed up searches enormously. Therefore the data structure hashed table
by Arno Wagner was used, which was released under the GPL. It is dynamically
resizable and can easily be adapted to use different hashing algorithms. Since
PeerTracker uses IPs as key, no hash algorithm is used but just the IPs.

To avoid frequent rehasing the table is initialized with a size of 5 million
entries. Allocated memory in Linux is only “physically” used (page wise) when
actually needed.

The implementation differentiates between internal host and external hosts.
For every host in the host pool basically a data type of the format in Table 3-6
is used.

An extension data type shown in Table 3-7 is used for observed (intern)
hosts.

54 CHAPTER 3. IMPLEMENTATION

Field Description

ip IP of the host
udpport UDP port if available, 0 otherwise
home 1 if host is in home net, 0 otherwise
status One of the following states: Candidate, Active,

Dead, Non-peer, Overdead
type To which P2P network this host belongs. Host can

be only in one P2P network.
st Start time, UNIX times tamp of when this host

was inserted in host pool
en End time, last time this host sent an identified

P2P flow
data For internal host; pointer to additional data con-

tainer. NULL for external hosts

Table 3-6: Standard host container Host

Field Description

tcpport Hosts TCP port if available, 0 otherwise.
udplocal Pointers to hashed queue data type, see Subsection

3.3.2
udpremote “
tcplocal “
tcpremote “
identtime Time needed to identify this host, highly depend-

ing on EvaluationInterval (see Appendix G)
totalsentbytes Total traffic that were sent to hosts in home net
P2Pexternsentbytes P2P traffic that were sent extern hosts
totalreceivedbytes Total traffic received by hosts in home net
P2Preceivedbytes P2P traffic received by extern hosts
susp Number of suspicious flows
tcpbig Number of TCP-big flows
[t|u][1214|3531] Number of tcpTCP/UDP flows with hits on Fast-

Track/PeerEnabler default ports
t[6881-6889|6969] Number of flows on BitTorrent default ports

Table 3-7: Host container extension HostData

3.3. CONTAINERS 55

ó
ô
õ
ö
÷
ø

ô ù õ ú ô û ü ú ô ú ô õ ó÷ û û õ ô ù õ ú ô û ü ú ü ú ô ÷ ö÷ û û õ ô ó ú ô ú ý ÷ ú û øõ ü ý ôô ù õ ú ô û ü ú ô ú õ ÷ö û ÷ ô ô ó ú ó ú ô ú ô õø û û õ ô ù õ ú ô û ü ú ý ú ù÷ û û õ

þ ÿ � � �

� � � � � � � ÿ � � � �

	
 � � � � ÿ � � � �

Figure 3-4: Hashed queue

3.3.2 Hashed Queue

In order to observe the port distribution of observed hosts, a special data struc-
ture that stores pairs of IP and port as elements is needed. It shall store the last
N ports the host has contacted while ensuring that flows to the same host do
exist only once in the queue. The following requirements for the data structure
must be met:

• Dynamically resizable queue

• Searches using the IP as key of O(1)

• Low memory usage

To fulfill these requirements an ordinary list can be used, extended by a hashing
table that points on elements in the list, as it can be seen in Figure 3-4. In
the implemented ip port hashed queue each element stores the pair of IP and
port, together with two pointers. One of the pointers links the next element
in the queue, the other one is used if there occurs a collision in the hash table.
The hash table itself is per default of the same size as the queue length, but
can be adapted at run time. The hash code uses the IP as a positive integer
and returns the remainder of the division with the size of the hash table. This
number then is equivalent to the position in the hash table. Tests with some
thousand IPs of existing hosts have shown, that the collision rate is around 45%
if the hash table is of the same size as the queue. Increasing the size of the
hash table while keeping the queue length constant of course reduces collisions
but consumes more memory, which seems to be the more limiting factor for the
plug-in.

The data structure has an overhead of 64 Bytes with additional 14 Bytes
per actually used element and another 4 Bytes times the hash table size what
gives a total of 2064 Bytes for a hashed queue with 100 elements as it is used
per default in PeerTracker.

From the various functions that operate on ip port hashed queue the most
important are a searchHost function which tests if an IP already exists in the
queue, an appendHost function which inserts a new element at the end of the
queue (pops the first element if needed) and a getChart function which returns
the n most used ports in the queue, using binary sort algorithms (O(n∗log(n))).

56 CHAPTER 3. IMPLEMENTATION

Moreover there are functions to resize the queue/hash table, to look for a
certain port (O(n), n=100, used once for every host every time it is evaluated)
and to output the content of the queue.

3.4 Resource usage

3.4.1 Space Complexity

PeerTracker was designed with fast processing speed and low memory usage in
mind. The amount of consumed memory is linearly depending on the number
of hosts stored since memory usage for every host is constant. An external host
consumes 20 Bytes of data and another 20 Bytes overhead. An internal host
has an overhead of 5’860 Bytes to store 2518 Bytes of data at most. This large
overhead is needed for the hash table management. internal hosts have a total
of four hashed queues attached. The number of internal and external hosts is
influenced by the networks which are observed and by the timeouts set to detect
dead peers. See Appendix G to discover how to configure these parameters.

If the command line option ’-d’ for detailed traffic statistics is enabled,
memory usage is increased further depending on the number of active (sending)
internal and external hosts observed. Storing 16 million hosts with maximal 2500
internal hosts among them uses about 1.2 GB in RAM with all of PeerTracker’s
traffic statistics turned on. In the SWITCH network, PeerTracker consumes
about 330MB if there are 1.5 million hosts in the pool. These numbers are
typical for SWITCH network if all P2P networks are tracked with detailed
statistics and a timeout for external peers of 6 hours.

To limit PeerTracker’s CPU and memory usage the Linux bash function
ulimit 3can be used. E.g. ’ulimit -v 5000000’ in PeerTracker’s startup script
would limit the virtual memory size that it can use to 5’000’000 KB. PeerTracker
needs at minimum 310MB of virtual memory to start. This is because the host
pool hash table is initialized with 5 million entries to prevent costly rehashing
operations.

If the ’-m’ switch is enabled and less than 5MB of memory can be allocated,
PeerTracker stops allocating more memory. This means that the statistical
data gets unreliable until enough memory is available again which normally is
the case after the next time the hosts are evaluated. Without this memory check
PeerTracker would exit automatically but could be restarted by the watch dog
script if one is available. Of course this would mean that every known host is
lost and population tracking has to start anew.

PeerTracker will output for every statistics file if the data it contains is valid
or not, depending on packet loss and memory availability.

3.4.2 Time Complexity

Processing of NetFlow data is independent of the number of hosts in the host
pool since efficient hash tables are used. Although table collisions increase with
the number of hosts contained in the hash table lookup, insertion and deletion
of hosts are of O(1). As was described in Subsection 3.3.2, every time the hosts
are evaluated a chart with the most used ports has to be calculated which has

3See ”ulimit man page” (September 2004) http: // www. ss64. com/ bash/ ulimit. html

http://www.ss64.com/bash/ulimit.html

3.4. RESOURCE USAGE 57

complexity O(h ∗ n ∗ log(n)) where h is the number of internal hosts and n the
amount hosts that are stored for MURP. n is a constant set to 100 in the default
configuration4.

On an AMD Athlon XP 2800+ with a 2GHz CPU clock it takes 13.5 minutes
to process 100 MFlows, 10 minutes on an Athlon 2.1GHz dual CPU (detailed
traffic statistics and memory check turned off). In the SWITCH network about
45MFlows are emitted per hour on average, which makes PeerTracker in this case
about 9 to 14 times faster than real-time. Computing 8 days of NetFlow data
took about 14 hours on the dual CPU Athlon. This is more than fast enough
to compute NetFlow data in real-time in the case of the SWITCH network. It
is to annotate that netflow sreplay consumes about 50% more CPU time than
PeerTracker if it has to uncompress the NetFlow data.

In plug-in mode PeerTracker’s processing speed is dependent on UPFrame’s
packet receiving rate. Processing speed should be the same as in stand-alone
mode. If UPFrame received packets faster than PeerTracker or UPFrame can
process them, this results in packet loss. PeerTracker will note packet loss in
the log file as well as in the P2P statistics files. Packet loss can only occur in
the plug-in mode since processing speed in stand-alone mode is automatically
adapted by the named pipe and in general as fast as possible.

4See PeerTracker configuration file in Appendix G

58 CHAPTER 3. IMPLEMENTATION

Chapter 4

Findings

This Chapter first will show that the verification of identified peers is rather
difficult but that at the same time the measurement results gathered with Peer-
Tracker are reasonable for most P2P networks. Afterwards additional statistics
and numbers are given, concerning the P2P usage in the SWITCH network
and the population tracking. Finally, approaches and discoveries made in other
research papers are presented in the section on related work.

4.1 Peer Verification Approaches

An accurate way to verify the identification results concerning false negatives
and false positives would be packet inspection of all packets passing the border
gateway routers of a network. Unfortunately this is hardly possible for high
bandwidth links with almost GBit transmission rates since processing the pack-
ets or even only parts of them is too time consuming. An alternative would be
to capture and store the data for an offline analysis. But as is shown in [40],
capturing the packets for offline analysis is a difficult task too. So this hasn’t
been an option either.

Without packet inspection one could use polling techniques. In that case a
detailed understanding of the P2P protocol is required but sometimes is hard to
achieve since except Gnutella and BitTorrent, all protocols are proprietary and
only reverse-engineered publications are available to the public. The success of
polling is very protocol dependent. Furthermore polling can only detect false
positives. Finding false negatives is very hard since this would require to poll all
hosts of a network on every port for every P2P protocol. Having at least a large
pool of suspicious hosts and used ports helps decreasing the number of hosts to
poll. In Subsection 4.1.2 a polling technique is used to find a lower bound of the
identification degree for Gnutella, FastTrack, eDonkey, Overnet and Kademlia.

A third way of verifying peers is to run test clients that are known to be active
at a certain time and then determine wether the tracking algorithm identifies
them. This approach is used for BitTorrent in Subsection 4.1.3.

Verification is done for SWITCH internal peers only since they are of larger
importance for the P2P traffic identification than the tracked external peers.

59

60 CHAPTER 4. FINDINGS

 0

 20

 40

 60

 80

 100

 120

 140

 160

2004.06.29.
00:00

2004.06.29.
06:00

2004.06.29.
12:00

2004.06.29.
18:00

2004.06.30.
00:00

Id
en

tif
ie

d
cl

ie
nt

s

Date and Time

Active eDonkey clients in the SWITCH Network

Server method
PeerTracker method

Figure 4-1: One day eDonkey comparison server method vs port method

Server tracking method eDonkey only +Overn. + Kad. all peers

481 hosts (reference value) 378 hosts 831 hosts 1357

Unique hosts 571 hosts 652 hosts 1405
Matching hosts 288 hosts (60%) 421 (88%) 433 (90%)

Table 4-1: Identified eDonkey clients for one day

4.1.1 eDonkey Server Tracking

Since there exist only about 80 static eDonkey servers worldwide and since every
eDonkey client needs a connection to one of them in order to join the eDonkey
network, it is possible to look for hosts connecting to these servers. The chances
are high that hosts which connect with the same IP and port to an eDonkey
server are running a corresponding client. The results of an ordinary weekday
were examined. Using the eDonkey server lists from [53] which contains all
active and populated servers worldwide (updated every six minutes) all hosts of
the SWITCH network connecting to one of these servers were searched. At least
one flow was necessary to be considered as eDonkey peer at first. Comparing the
number of identified eDonkey clients between the server tracking method and
the peers identified by PeerTracker gives Figure 4-1, which shows a substantial
difference in identified hosts. PeerTracker doesn’t seem to find all the eDonkey
hosts.

If furthermore the IPs of identified peers are compared between the two

4.1. PEER VERIFICATION APPROACHES 61

methods, PeerTracker seems to find only 50% of the eDonkey hosts. If also the
IPs of identified Kademlia and Overnet clients were used for comparison about
72% of the hosts matched between the two methods. Adding also the identified
FastTrack, Gnutella and BitTorrent IPs for the comparison finally gave a match
of 75%. So PeerTracker has found 75% of the peers which were found with the
server tracking method. The reason why the number of matched IPs increases
when the IPs of the other P2P networks are considered too, is that eDonkey
clients use the same download port as the Kademlia (eMule) clients and the
Overnet clients. Therefore the classification between these three clients is not
always accurate1. Moreover the official eDonkey client is a hybrid client that also
joins the Overnet network. Since PeerTracker only identifies the most obvious
P2P client for a host, some hosts running eDonkey and another clients are not
counted as eDonkey hosts.

Analyzing the missing 25% hosts showed that most of them were not iden-
tified by PeerTracker because they were running only a short time. Therefore
the requirements to be considered as eDonkey peer were increased for the server
tracking method. Since eDonkey is contacted by its server, which it doesn’t
change after start up, at least every 412 seconds and since the average uptime
of peers is far more than half an hour the minimum time a peer must have been
connected to a server was set to 1’000 seconds. That way peers which unsuc-
cessfully connected to a server were not counted any more. Table 4-1 shows the
results of this measurement. PeerTracker found 90% of the eDonkey peers after
the requirements were increased. The missing 10% can be a result of peers that
have no uploads or downloads in progress. Therefore they mainly communicate
with their eDonkey server and have hardly contact with other peers. Peer-
Tracker in such cases has difficulties to detect peers since it benefits from active
peers. Concerning the bandwidth estimation those 10% are not of concern since
they don’t contribute much to the P2P traffic without file transfers.

4.1.2 Polling Peers

To further determine the identification accuracy of the considered P2P net-
works, a Perl script was written whose goal is to poll and verify identified peers.
Since polling is an active process that needs the identified peers still to be online
when it is contacted, an almost real-time identification is needed. Unfortunately
DDoSVax had - at the time this thesis was written - no practicable possibility
to process the NetFlow data instantly after it was emitted by the border gate-
way routers. Instead the NetFlow data is collected and then after some hours
transfered to the DDoSVax NetFlow archive. A latency of several hours would
severely impact the polling results. Therefore a script was written that can be
used to download the latest NetFlow data from the SWITCH collector host.
To keep latency short, only data of the first 20 minutes after a full hour was
downloaded. In total we have a latency of about 20 minutes between the first
flow of the downloaded data and the time the identification has finished. Polling
350 hosts using 20 parallel threads takes then another 30 minutes (due to the
number of polling attempts and a generous timeout). It is probable that some
identified peers shut down during that time.

The polling itself is partially based on the signatures used in [9] to identify

1See also Table 3-2

62 CHAPTER 4. FINDINGS

peers using packet inspection techniques. Every identified active peer is polled
first on its three most used local TCP ports and then on all P2P default ports
of the considered networks. A timeout of 7 seconds was set after which unsuc-
cessful connections were cancelled. Four measurements were done on week days
(2./3./7./14. Sept.) at 4 or 5 pm when the number of P2P clients normally is
high.

In the following the different queries and signatures used to poll the potential
peers are described.

Gnutella

Unlike most P2P protocols, the Gnutella protocol [64] is freely available to
the public. A TCP connection to a potential Gnutella host is set up and the
standard query string ’GNUTELLA CONNECT/0.6’ then is sent. It should be
answered by a real Gnutella host with ’GNUTELLA’ as the first word. Beside
the three most used local ports the ports 6346, 6348 and 6349 were polled.

FastTrack

The FastTrack protocol is encrypted and not publicly available. Some reverse
engineering attempts [65] were done, e.g. for the open source mlDonkey of giFT
clients. But the published information is far from complete. Nevertheless the
FastTrack downloads are not encrypted and a download request for FastTrack
peers starts with the HTTP command ’GET /.files HTTP/1.1’ that is sent
using TCP. A FastTrack client then will reply with a pseudo HTTP response
of the form ’HTTP/1.0 403 Forbidden’ followed by two decimal numbers that
stand for the encryption type and a challenge number. Some Kazaa clients also
answer with ’HTTP.1.0 404 Not Found\nX-Kazaa-Username’. Some Kazaa
clients listen and answer on several ports including the ports 1214 and port 80
even if their mainly used listening port was chosen random. Ports 1214 and
port 80 are polled in addition to the three most used local ports.

BitTorrent

The BitTorrent protocol [66], though openly available, includes no possibility
to directly identify a BitTorrent peer. The reason for this is that a contacting
peer first has to start a hand-shake which includes the hash value of the torrent
file. Since we don’t know this value the polled peer won’t answer. But one
thing noted is that BitTorrent peers immediately close the connection if the
torrent hash value differs from their own. If the hand shake is not complete
yet or not valid the connections is held open until a time out value is exceeded.
Another property of BitTorrent peers that can be used for polling is that they -
depending on the client and the number of current downloads - normally have
several (usually 2) listening ports that will accept connections.

Therefore the a technique that could be used to poll BitTorrent clients, could
send it a random hash value on all BitTorrent default ports. If the connection is
accepted and closed immediately after sending the query this would be a good
sign but is no proof since it is a recommended action for protocols using TCP to
close a connection upon an invalid message. Therefore peers were not checked
for BitTorrent activity.

4.1. PEER VERIFICATION APPROACHES 63

Network Gnut. FastT. eDon. Overnet Kad.

Identified hosts 98 83 186 140 256
Responded to ICMP pings 37 29 30 43 100
Responded to TCP pings 35 21 55 48 173

Verified 24 16 42 25 166
Verification ratio 65% 55% 76% 52% 96%

Additional clients verified 2 eDon. 0 3 Gnut. 0 3 Gnut.

Table 4-2: Polling verification results

eDonkey/Overnet/Kademlia

Although there is no official version of the eDonkey protocol available there
exist some usable reverse engineered protocol specifications[56, 58]. Overnet and
Kademlia (since included in the eDonkey client eMule) use many of the original
eDonkey protocol messages. One of them is the eDonkey Hello message that is
used by peers to announce their presence before a file transfer is started. The
eDonkey protocol is binary and therefore a bit more complicated to understand.
The polling algorithm basically sends a potential peer a hello message which
then is supposed to be answered by a real peer. If the first byte of the answer is
the eDonkey protocol marker hex value ’e3’ or ’c5’ (eMule extension) the host is
verified as an eDonkey, Overnet or Kademlia peer according to the assumption
that was made when this peer was identified.

Ports 4662, 4672 and 5662 are polled.

Verification results

One of the main difficulty with polling techniques is that hosts behind firewalls,
NAT devices or proxies can’t be contacted normally. As was described in Section
2.3.1 this is also a problem that P2P protocols have to deal with. Firewalls
and intrusion detection systems or P2P client internal security measures can
make polling even more difficult. After some unsuccessful connection attempts
a contacting host is seen as attacker and put on an ignore list. All further
connections from that host are then blocked. About 60% of all Limewire users
are believed to be behind firewalls or NAT devices2 . So the results shown in
Table 4-2 are not that surprising.

More than half of the hosts didn’t even respond to ICMP pings or a TCP
ping which was done on more than 12 different ports. Since - for latency reasons
- only about 15 minutes of data are evaluated, the listening port may not be
identified for most hosts so that polling does not work unless the host listens on
one of the polled default ports.

The verification ratio is calculated as the number of verified peers divided by
the maximum number of hosts which could be pinged (ICMP or TCP). As can be
seen the results are quite varying and not very promising. Especially FastTrack
clients are not only harder to identify but also more difficult to verify than peers
of other networks. A reason why the number of verified hosts is rather small for

2See article ”Gnutella on the Rise” http://www.slyck.com/news.php?story=530 (August
2004)

http://www.slyck.com/news.php?story=530

64 CHAPTER 4. FINDINGS

some networks is that for polling the listening port of a peer has to be known.
Unfortunately the listening port is not detected3 for all the peers and it usually
takes several hours or a lot of file transfers for a detection. Therefore, if a peer
does not use the default listening port - as is the case for most FastTrack clients
- and if it can’t be detected otherwise, it is almost impossible to poll this host
without polling all of its ports. It was tried to poll a host also on its three most
used local ports though, but local ports are not equivalent to listening ports in
general since local ports could be the ports used for outgoing connections.

For a small fraction of peers there were additional clients validated, mostly
Gnutella and eDonkey. Clients like mlDonkey include support for both of these
networks. It is believed that the amount of hosts which are part of several P2P
networks actually is higher than these numbers make believe. E.g. the polling
method used can’t separate eDonkey, Overnet and Kademlia peers from each
other.

One has to keep in mind that the results of Table 4-2 should be considered as
a lower bound for the identification accuracy when using polling as verification
method.

4.1.3 BitTorrent probe clients

Since the polling method couldn’t be used for BitTorrent and since downloading
with BitTorrent can be done easily with one single command, 18 test clients
were set up to run BitTorrent. Two clients were connected over a 1MBit cable
connection in the ETH-Cablecom IP range the others were directly connected
to the Internet with a 100MBit connection. To make things a bit harder all
clients were configured to use a non-default listening port in the range of 3254
and 3289. 8 pairs of clients were downloading the same files. The downloaded
files were at least 200MB in size and at least 10 people were downloading or
uploading them. The clients were shut down after one hour.

All of the test clients were detected by PeerTracker and became candidate
peers. 16 of them were recognized as BitTorrent clients immediately after less
than 15 minutes, 2 clients downloading the same file needed half an hour to be
recognized and a single client stayed candidate the whole time. The client which
was not identified had contact with only 12 other peers which was too less for
the identification algorithm to work.

4.2 Interpretation of Verification Results

As the previous Sections has demonstrated peer verification is a difficult task
without the availability of packet inspection. The method used in Subsection
4.1.1 promises high accuracy and can be done passively in an offline mode. It
was used for the eDonkey network since the few eDonkey server are dedicated
servers which don’t change frequently. For other P2P systems like Gnutella or
FastTrack which have a two-tier architecture too, the same principle could be
used. But since their super nodes change more frequently and are far more
numerous, the effort to track them all is rather high as has been demonstrated
for FastTrack in [27]. Developing a crawler program for Gnutella seems more
feasible though as is demonstrated on [60]. The numbers for eDonkey look not

3Also see Table 3-3

4.3. P2P USAGE IN SWITCH NETWORK 65

that bad with 90% verified peers which is higher than the result achieved with
the polling method.

In general polling doesn’t seem to be an option to verify the complete iden-
tification results. Since only a small amount of peers at all accept incoming
connections due to firewalls and NAT devices, it is only a fraction of peers that
can be validated. But the ability to connect to a host is needed to poll them.
Furthermore the listening port of a potential peer must be known. For most
protocols the default port can be used in most cases. Polling is an active an
intruding technique which may be interpreted as an attack by some hosts which
causes them to ignore the polling hosts.

The number of verified peers with the polling method are low for some of the
considered protocols. They may serve as a lower bound but it is believed that
the amount of correctly identified peers actually is higher which also is confirmed
in the case of eDonkey. Surprising are the differences between eDonkey, Overnet
and Kademlia. They all were polled using the same method which consisted of
an eDonkey hello message. But obviously eMule peers (Kademlia) first of all
could be contacted more often than the two others. Additionally the verification
ratio of Kademlia was found to be substantially higher than for the other two
related networks.

Running test clients is a safe way to detect false positives and to test the
identification algorithms. One though has to consider that the test environment
can have a great impact on the results. Overall the results for BitTorrent look
promising with 94% correctly identified true positives and only 6% false negative
clients.

4.3 P2P Usage in SWITCH Network

In this section some facts and statistics about P2P usage in the SWITCH net-
work are presented. Keep in mind that the SWITCH network is not comparable
to an ISP network which provides its services mainly to home users whose In-
ternet usage is different as in an educational network.

4.3.1 Measurement Setup

All measurements published in this thesis were done for the eight days from
22nd to 29th of June 2004 or a 30 day period from 7th of August to 6th of
September. The week in June is one of the last weeks of summer term4 for all
large Swiss universities (ETH, EPFL, Universities of Basel, Zurich, Lucerne, St.
Gallen and others) that produce most Internet traffic in the SWITCH network.
If only one day of analyzed data was used it always was a Tuesday. Processing
with PeerTracker was done in the stand alone mode since this mode allows to
analyze the NetFlow data as fast as possible and moreover does not produce any
flow loss as may be the case in online mode. For all measurements the NetFlow
data of all four border gateway routers was processed. All measurement graphics
were created with a resolution of 15 minutes. All date and times correspond to
local time in Switzerland (CEST, UTC + 2 hours). If not otherwise mentioned
the PeerTracker configuration shown in Appendix G was used.

4See academic calendar of all Swiss universities Academic Calendar
http://www.crus.ch/mehrspr/iud/semester.html (August 2004)

http://www.crus.ch/mehrspr/iud/semester.html

66 CHAPTER 4. FINDINGS

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

22.06.
03:00

23.06.
03:00

24.06.
03:00

25.06.
03:00

26.06.
03:00

27.06.
03:00

28.06.
03:00

29.06.
03:00

Id
en

tif
ie

d
pe

er
s

Date and Time

Active peers in the SWITCH Network

FastTrack
eDonkey
Overnet
Kademlia
BitTorrent
Gnutella

Figure 4-2: Active peers within SWITCH network

4.3.2 Peers in SWITCH network

Figure 4-2 shows the identified peers during an 8 day run at the end of summer
term in Switzerland. It can be clearly seen that the weekend (June 27./28.) has
a great influence on the P2P usage as it has on web usage.

Comparing the P2P usage with web surfing usage as shown in Figure 4-3
shows that there are on average 7.5 times more people surfing the web than
there are P2P users. P2P usage seems less day time dependent. Every night
there seem to be at least 300 people who let their P2P clients run while there
are at least 620 hosts that surf the web.

That“negative”peak in WWW usage that is characteristic for every weekday
is probably due to launch since it exactly is in the time range of 11.30 am and
1 pm. People leave their desks at 11.30 am to take lunch. After 1 pm, WWW
usage starts to increase again.

P2P usage seems to be highest around 5 pm during weekdays and about an
hour sooner and more constant at weekends. In general the different networks
seem to have different users as was described in Subsection 1.5.3.

Overall it is surprising that so few FastTrack clients were found although it
is supposed to be the largest network worldwide in terms of active users. This
can have several reasons:

• Identification for FastTrack peers is more difficult since Kazaa, the most
used client, in recent versions chooses random port numbers. Manual
examination of the non-peers has shown though that there is no substantial
amount of FastTrack suspicious hosts.

4.3. P2P USAGE IN SWITCH NETWORK 67

Average hosts Standard deviation

BitTorrent 92.3 31.61
FastTrack 50.8 18.7
Gnutella 64.5 24.8
eDonkey 95.6 19.9
Overnet 53.4 13.4
Kademlia 95.3 15.6

Table 4-3: P2P average usage per network in June

• Kazaa - in the free version - contains a lot of ad-ware and spy-ware. Most
users in the SWITCH network are in general technically sophisticated and
may have heard from that. Therefore they may avoid Kazaa, especially
when network administrators explicitly dissuade from using it.

• Most of the sued P2P users in the USA and in Germany were FastTrack
users. This had a great influence on the usage in companies and univer-
sities where the system administrators explicitly prohibited the usage of
FastTrack clients.

Noteworthy are also the numbers of Table 4-3 which show a significant variation
in P2P usage. According to the standard deviation shown there, some networks
have a more constant user base in the SWITCH network than others. Reasons
for this are probably on one hand the kind of content served by the networks,
the technical knowledge that is needed to operate the clients and the download
speed. BitTorrent seems to be quite popular, probably because of its ease of
use and its fast download rates. Overnet in contrast is not very popular but
seems to have the most constant user base. Limewire is good for downloading
music files which usually are small in size. Therefore they don’t take very long
to download so that the client faster can be shut down by its user.

When the measurements are compared to a 30 day measurement of August
the number of P2P users seems to be lowered by 14% while the web surfing
people are 15% less. The P2P usage of both measurements shows the same
daily and weekly characteristics as in Figure 4-2.

4.3.3 Peer Characteristics

Analyzing the 8 day measurement of June resulted in a total of 2’982 unique
peers within the Switch network. Interested in the organizational location of the
peers, a reverse domain name lookup was done for each of them. For 566 peers
no domain name was found. But examining the domain names of the remaining
2’416 peers showed that more than half of them seem to be in a dynamic IP
range as can be seen in Table 4-5. But these numbers should be taken with
caution because of the incomplete DNS lookup and since the same peer may
get counted several times if its IP changes, e.g. after the user turned off its
notebook while connected to a DHCP network.

Since most of the regular university and research institute employees have
workstations with static IPs this huge amount of dynamic IPs may come from
students or private users who are either temporarily connected to the university

68 CHAPTER 4. FINDINGS

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

22.06.
03:00

23.06.
03:00

24.06.
03:00

25.06.
03:00

26.06.
03:00

27.06.
03:00

28.06.
03:00

29.06.
03:00

Id
en

tif
ie

d
cl

ie
nt

s

Date and Time

WWW and P2P clients in the SWITCH Network

WWW
P2P

Figure 4-3: P2P clients vs web clients comparison

Description Occurrence (2’416 hosts) Percentage

In VPN IP range 97 4%
In DHCP IP range 710 29.4%

In DHCP-VPN range 702 29.1%
No number in DNS name (static IPs) 249 10.3%

Proxy in DNS name 9 0.3%
Remaining (static IPS, lab machines) 649 26.9%

Table 4-4: Peer domain name analysis

4.3. P2P USAGE IN SWITCH NETWORK 69

Description Occurrence (2’416 hosts) Percentage

ethz.ch 1029 42.6%
via-eth.ch 622 25.73%

epfl.ch 251 10.4%
unil.ch 99 4.1%

zhwin.ch 98 4.1%

Table 4-5: Top 5 second level domain names

network using their laptop or a dial-up connection. This assumption is confirmed
when a chart with the most used second level domains is made. The correspond-
ing numbers are shown in Table 4-5. According to this result more than 25%
of all peers in the SWITCH network are subscribing the ETH-Cablecom service
which provides broadband access for ETH students and employees. The ETH
network seems to be home for almost 70% of SWITCH’s P2P users. Among
them a quite substantial amount of users which are connected over the Swiss
ISP “Cablecom”but located in the ETH IP range (“via-eth.ch”). Looking at the
other second level domains it can be said in general that the more technically
related an organization within SWITCH is and the more students it has, the
higher is the P2P usage.

A SWITCH peer statistic can be seen in Table 4-7. As was described in
Subsection 4.3.2 the number of peers is dependent on the day time and the
holiday seasons, so is the amount of transmitted data.

Since the EvaluationPeriod was set to 900 seconds for all measurements the
identification time is closely related to this value. But it can bee seen that
FastTrack clients in general need more more time to be identified.

Concerning the uptime it seems that eDonkey, Overnet and Kademlia peers
are running longer than the peers of the three other P2P systems. This is
confirmed by the numbers shown in Table 4-3 which show that eDonkey et al.
have a more constant user base with fewer daily variations. Table 4-6 shows some
absolute numbers about the uptime statistics. A few P2P users let their client
run for several days or even weeks. Therefore these uptime and other values
have to be taken with caution since they may be different in measurements that
cover more than 30 days.

The average inactivity time observed is less than two minutes which would
allow to further reduce parameter MaxPeerInactivity which is responsible to
detect dead peers.

Although BitTorrent is responsible for most of the P2P traffic, its clients
transfer less data than Overnet since there are almost twice as many BitTorrent
clients online on average than Overnet clients. Interesting are the numbers for
FastTrack. While all other peers on average send more data in total than they
receive this is not the case for FastTrack peers. One explanation for this may be
that some users stopped sharing files and just are “leeching” (only downloading)
due to the legal threats FastTrack users are faced with.

Surprising is also the amount of well-known data sent. It was assumed that
most users while running P2P clients produce traffic in the well-known range
(namely WWW, SMTP), but that the received traffic is much greater than the
sent traffic. As it seems the well known data sent is of substantial size. Checking

70 CHAPTER 4. FINDINGS

Uptime greater than 5 days 10 days 15 days 20 days 25 days
Peers 275 160 90 50 28

Table 4-6: Peer uptime

Avg./Std. deviation BitTorrent FastTrack Gnutella

Peers analyzed 1’210 963 1224
Identification time [s] 942/261 1049/335 939/210
Uptime [h] 17.6/61 11.6/43 12/57.1
Inactive time of active peers [min] 0.9/2.9 0.95/3.45 1.4/3.6

Total data received [MB] 2’686/12’477 841/3’136 1’084/6’863
Well-known data received [MB] 239/2’091 69/738 233/1’500
P2P data received [MB] 1’444/7145 89/420 447/3’044
Unknown data received [MB] 1’003/6’393 683/2’500 514/4’021

Total data sent [MB] 4’373/24’618 776/5’260 1’718/18’861
Well known data sent [MB] 95/908 10/79 54/803
P2P data sent [MB] 2’582/15’695 113/724 644/7’737
Unknown data sent [MB] 1’696/10’299 653/5’040 1’020/13’960

Avg./Std. deviation eDonkey Overnet Kademlia

Peers analyzed 954 633 801
Identification time [s] 942/253 941/227 922/222
Uptime [h] 24.7/79 24/90.1 34.4/92.2
Inactive time of active peers [min] 1.4/4 1.1/3.3 1.4/5.1

Total data received [MB] 1’192/4’518 2’205/16’640 3’004/14’847
Well-known data received [MB] 187/1’006 292/3’148 190/1’563
P2P data received [MB] 609/2’937 971/6’841 1’638/9’195
Unknown data received [MB] 396/’1821 942/8’173 1’176/8’793

Total data sent [MB] 1’691/8’329 3’753/44’378 4’785/26’154
Well known data sent [MB] 92/518 147/1’415 116/588
P2P data sent [MB] 986/5534 2’076/21’835 2’568/12’299
Unknown data sent [MB] 613/3512 1’530/22’163 2’101/17’139

Table 4-7: SWITCH Peer statistics

4.3. P2P USAGE IN SWITCH NETWORK 71

Traffic June August

Total avg. [MBit/s] 690 522

TCP 96.6% 97.5%
UDP 2.5% 1.8%
Other 0.9% 0.7%

Web 13.1% 14.3%
Mail 1.6% 1.12

P2P (TCP+UDP) 36% 28%

Table 4-8: Total traffic distribution

the IPs of the 2’982 identified hosts from that measurement showed that 497
of them had a web server running which may be the cause for this balanced
well-known traffic. Probably there are also other well-known services running
on these hosts so that the traffic in the well-known range makes sense.

4.3.4 Bandwidth Consumption

To get an idea of the P2P bandwidth consumption in comparison of the total
traffic in Figure 4-5 the TCP incoming and outgoing traffic is shown. As can be
seen there is more data sent out of the SWITCH network than comes in. Figure
4-6 shows the web, mail and P2P traffic which account for most of the TCP
traffic. Interesting to note here is that the outgoing traffic is higher than the
incoming traffic not only for WWW but also for P2P traffic. So the SWITCH
network is - as most university networks - more content provider than content-
requester5

In Table 4-8 a general overview about the SWITCH traffic of the two mea-
surements can be seen. P2P in/out traffic ratio is 1:1.6 which is about the same
as for WWW traffic. While web traffic often exceeds P2P traffic during work
time (8 am - 5 pm), P2P traffic is more constant and not so much day time
dependent what results in an overall higher bandwidth consumption than web
traffic as can be seen in Figure 4-4.

Figure 4-7 shows the separated traffic of the considered P2P networks. As
can be seen quite clearly, BitTorrent is responsible for a large amount of trans-
ferred data. Although the trio of eDonkey, Overnet and Kademlia has more
than twice the users in the SWITCH network, they produce less traffic than
BitTorrent.

Comparing the total amount of P2P traffic between the measurements of
June and August showed that P2P traffic was 19% lower in August. As was
explained above, in August there are holidays for most Swiss universities. There-
fore less students and also less employees are using the SWITCH network.

Knowing that stateless port based traffic accounting is less accurate than a

5One side note concerning this: Some universities like ETH limit P2P traffic. ETH e.g.
shapes P2P traffic to 5MBit/s using port numbers. This is not effective if they want to save
upstream bandwidth. P2P users will change their ports to non-default ports. But this won’t
improve their download rates since the traffic shaping still will effect downloads from peers
that use default ports. But the opposite way, extern peers downloading from ETH peers, will
be unlimited since no filtered port is used.

72 CHAPTER 4. FINDINGS

 0

 50

 100

 150

 200

 250

 300

 350

22.06.
03:00

23.06.
03:00

24.06.
03:00

25.06.
03:00

26.06.
03:00

27.06.
03:00

28.06.
03:00

29.06.
03:00

M
B

its
/s

Date and Time

P2P vs Web vs SMTP Bandwidth Consumption at Border of SWITCH Network

WWW incoming
WWW outgoing
SMTP incoming
SMPT outgoing
P2P (TCP+UDP) incoming
P2P (TCP+UDP) outgoing

Figure 4-4: Comparison Web vs P2P vs Mail

 0

 200

 400

 600

 800

 1000

 1200

22.06.
03:00

23.06.
03:00

24.06.
03:00

25.06.
03:00

26.06.
03:00

27.06.
03:00

28.06.
03:00

29.06.
03:00

M
B

its
/s

Date and Time

Bandwidth consumption at border of SWITCH Network

TCP incoming
TCP outgoing

Figure 4-5: Total TCP bandwidth consumption

4.3. P2P USAGE IN SWITCH NETWORK 73

 0

 50

 100

 150

 200

 250

 300

22.06.
03:00

23.06.
03:00

24.06.
03:00

25.06.
03:00

26.06.
03:00

27.06.
03:00

28.06.
03:00

29.06.
03:00

M
bi

ts
/s

Date and Time

P2P bandwidth consumption at border of SWITCH Network

BitTorrent (stateless)
BitTorrent
FastTrack (stateless)
FastTrack
Gnutella (stateless)
Gnutella
eDonkey, Overnet, Kademlia (stateless)
eDonkey, Overnet, Kademlia

Figure 4-6: P2P traffic in comparison to other protocols

 0

 50

 100

 150

 200

 250

 300

22.06.
03:00

23.06.
03:00

24.06.
03:00

25.06.
03:00

26.06.
03:00

27.06.
03:00

28.06.
03:00

29.06.
03:00

M
B

it/
s

Date and Time

P2P bandwidth consumption at border of SWITCH Network

FastTrack
eDonkey
Overnet
Kademlia
BitTorrent
Gnutella

Figure 4-7: P2P traffic of considered networks

74 CHAPTER 4. FINDINGS

Network Stateless Stateful stateless
stateful

BitTorrent 17’099 GB 27’722 GB 61.7%
FastTrack 546 GB 3’786 GB 14.4%
Gnutella 1’572 GB 3’299 GB 47.7%

eDonkey, Overnet, Kademlia 14’650 GB 25’146 GB 58.2%

Total 33’867 59’953 56.5%

Table 4-9: Comparison to port based method

stateful method, it is interesting to examine how large the difference is related
to the values of our approach.

The 30 day measurement (Aug.-Sept.) was used for this comparison. TCP
and UDP traffic was accounted for all considered P2P networks. Since eDon-
key, Overnet and Kademlia all use the same default download port, a stateless
method can’t separate these three protocols from each other. Therefore they
are summed up for this comparison.

As can be seen in Table 4-9 the difference is quite substantial, especially for
the FastTrack network, whose clients use some more sophisticated techniques
to camouflage themselves. Overall the stateful port based method used in the
implementation seems to estimate 1.4 times more P2P traffic than the stateless
method. These numbers exceed those of [8] where depending on the P2P network
the difference was between 30% and 60% at that time.

4.4 Population Tracking Results

Population tracking is one of the main goals of this thesis. As was assumed
in earlier chapters for some P2P networks it should be possible to track the
whole user base using a medium backbone network as SWITCH. Unfortunately
the SWITCH network seems to be not large enough and there are not enough
P2P users within it so that only a part of the population could be tracked. A
timeout (MaxExternPeerInactivity) value of 6 hours was found to be reasonable
since it is below the minimum average uptime (Gnutella; 7.6 hours, see Table
4-3). Increasing the MaxExternPeerInactivity value further may “track” more
external hosts but the results won’t become more accurate since many of the
tracked peers probably are not online anymore.

For Overnet a considerable amount of peers can be tracked since they contact
neighbor peers frequently. Figure 4-8 shows the tracked Overnet peers of an
eight day measurement where the timeout MaxExternPeerInactivity value was
set to different values. Assuming a population of 800’000 users more than half
of the users could be tracked with a timeout high enough.

Figure 4-9 shows the tracked peers of all considered networks with a time-
out of 6 hours. It can be seen that P2P protocols with one-tier architectures
(Kademlia and Overnet) result in more tracked peers. An interesting observa-
tion when comparing the number of active internal peers of Figure 4-2 with the
number of tracked external peers is that the latter are less periodic and less
regular. Especially the numbers of tracked FastTrack and Gnutella peers seem
less dependent on the numbers of SWITCH peers as depicted in Figure 4-10

4.4. POPULATION TRACKING RESULTS 75

Network Avg. Int. Peers Avg. Tracked Peers Tracking Factor

BitTorrent 89.3 158’418 1’774
FastTrack 36.6 68’041 1’859
Gnutella 45.1 68’187 1’512
eDonkey 68.1 156’066 2’291
Overnet 43.8 322’458 7’362
Kademlia 97.4 505’869 5’193

Table 4-10: Tracking factors in August

for FastTrack. A possible explanation for this is the varying number of super
nodes within the SWITCH network. Ordinary FastTrack and to some degree
also Gnutella nodes don’t seem to communicate with many other nodes beside
their current super node(s) and peers that they are transferring files to or from.
But if a peer becomes super node it has numerous connections to other super
nodes via TCP and UDP. Moreover many ordinary nodes connect to super nodes
or occasionally query them with UDP search requests. Therefore the number
of current super nodes in the SWITCH network has significant influence of the
amount of tracked external peers.

Table 4-10 shows how many external peers in average can be tracked for
an internal peer according to a 30 day measurement with a timeout of 6 hours.
Again it is quite obvious that Overnet and Kademlia have the highest chances to
track the total population, especially when keeping in mind that their population
is estimated below 1 million users in contrast to most other P2P networks. But
as explained before, the actual Kademlia network is probably much smaller and
this high number of tracked Kademlia peers actually are tracked eMule clients
which are part of the eDonkey network mostly. The reason why there couldn’t
be tracked an equal number of eDonkey hosts is that eMule has extended the
eDonkey protocol and tends to communicate more extensive and more frequently
with its own kind than with other eDonkey clients.

As Figure 4-8 demonstrates, complete population tracking using SWITCH
NetFlow data seems to be difficult in general. A substantial amount of peers
from networks where each peer has contact with a lot of different neighbor peers
like Overnet and Kademlia can be tracked though. The SWITCH network,
consisting of about 30’000 active hosts on average is very small in comparison
to the approximately 800 million6 estimated Internet users worldwide. Moreover
it is no transit network and located “at the border” of the Internet. Since it is
an educational network it has fewer P2P users in comparison to regular ISP
networks. Overall there are too little P2P users which could be used for the
tracking. To track the complete population the NetFlow data of a large back
bone provider would be needed, e.g. one that possesses transatlantic fibers.

One possibility to improve tracking in the SWITCH network is to run some
very powerful super nodes that are contacted by most active peers once in a
while. This could be an option for eDonkey where there are only a few servers
worldwide, e.g. the largest one (“Razorback 2”) is directly connecting to about
25% of all eDonkey users and communicates with a substantial part of the

6As of September 2004, see World Internet Usage Stats and Populations statistics
http://www.internetworldstats.com/stats.htm.

http://www.internetworldstats.com/stats.htm

76 CHAPTER 4. FINDINGS

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

22.06.
03:00

23.06.
03:00

24.06.
03:00

25.06.
03:00

26.06.
03:00

27.06.
03:00

28.06.
03:00

29.06.
03:00

P
ee

rs

Date and Time

Tracked Overnet peers outside the SWITCH Network

1.5h timeout
3h timeout
6h timeout
9h timeout

Figure 4-8: Tracked Overnet peers with different timeouts

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

22.06.
03:00

23.06.
03:00

24.06.
03:00

25.06.
03:00

26.06.
03:00

27.06.
03:00

28.06.
03:00

29.06.
03:00

T
ra

ck
ed

 p
ee

rs

Date and Time

Active peers outside the SWITCH Network

FastTrack
eDonkey
Overnet
Kademlia
BitTorrent
Gnutella

Figure 4-9: Tracked extern peers with 6 hours timeout

4.5. RELATED WORK 77

 1

 10

 100

 1000

 10000

 100000

 1e+06

22.06.
03:00

23.06.
03:00

24.06.
03:00

25.06.
03:00

26.06.
03:00

27.06.
03:00

28.06.
03:00

29.06.
03:00

P
ee

rs

Date and Time

Relation between intern and tracked peers

Tracked FastTrack peers
Identified intern FastTrack peers

Figure 4-10: FastTrack tracked vs internal peers

remaining users. But as our tests have shown that it takes quite some time
to attract some hundred users, even with a fast connection and a powerful
computer. Since there are at most some hundred users connected to a FastTrack
super node and since there are between 20’000 and 30’000 of them, the benefit
of running FastTrack super nodes is assumed to be relatively low concerning the
tracking.

4.5 Related Work

Methods in P2P User Prosecution

The main target of the RIAA legal attack was the FastTrack network since it is
the leading network in terms of active users. In August of 2004 they also started
to prosecute Gnutella, eDonkey and BitTorrent user. The methods used to
identify users that share copy righted material are not known to the public. But
one can imagine different approaches depending on the P2P network. Tracking
BitTorrent users that download a copyrighted file is straightforward analyzing
the IP addresses received by the tracker and then polling the peers to check
how much of a file they already have downloaded. For the other two-tier based
networks one method could be to operate a super node. A super node has an
index of all shared files of the connected ordinary nodes. This allows to compare
file names, file sizes and possibly file hashes to identify copy righted material.
Moreover for Kazaa clients it was possible for older clients to get a complete list
of all the shared files from a client directly. Therefore finding IPs of peers that

78 CHAPTER 4. FINDINGS

illegally share content is in general not that difficult, but to identify the persons
that actually are responsible for sharing the content is much more difficult due
to reasons explained in Subsection 1.5.4.

Other Approaches

The ways to measure P2P traffic have been examined by various other re-
searchers. So far no study has actually tried to identify P2P clients to improve
bandwidth estimations or to track other peers. No publication did separated
eDonkey from Overnet or Kademlia traffic.

• In [9] a signature based traffic analysis for TCP packets was used. Only
the first few packets in a beginning download is inspected with the goal for
scalability in mind. Considered protocols were Gnutella, FastTrack, Di-
rectConnect, BitTorrent and eDonkey. The chosen approach worked well
for high-speed links too but it is believed that application layer signature
methods will become inaccurate with the incorporation of sophisticated
camouflage or encryption techniques of modern P2P clients.

• A flow-level based approach was used in [21]. Signalling and download
traffic was measured in a large ISP network using state-less default port
numbers. Considered P2P networks were FastTrack, Gnutella and Direct
Connect.

• At the University of Washington a 200-day trace of FastTrack TCP up-
stream data was analyzed in [37]. The external download requests were
used identified and stored in a 1TB archive using packet inspection meth-
ods.

• Another packet level inspection measurement was done in [13] where in-
coming and outgoing HTTP traffic of FastTrack and Gnutella was cap-
tured and analyzed.

• So was in [8] where packet traces of max. 48 hours were analyzed. Only
the first 44 bytes (IP, TCP/UDP headers + 4 Bytes payload) of incoming
and outgoing, FastTrack, DirectConnect, Gnutella, Napster, BitTorrent,
eDonkey and five less popular P2P protocols were captured. One of their
statements is that the P2P traffic increased by 30%-60% when using packet
inspection in comparison to just using stateless default port methods.

• An interesting approach is presented in [39]. The idea is to relate flows to
each other according to source and destination port numbers using a flow
relation map heuristic with priorities and SYN/ACKs to identify listening
port. The method is not described very detailed though.

• On a campus net and the network of research institute with total about
2200 students and researchers, [38] captured the first 64 Bytes. The ap-
proach used for identification is, that unknown flows are induced by flows
of known traffic. They used a time window to find induced flows. The
higher the window the more “identified” traffic resulted. They also stated,
that false positives can’t be recognized without checking the payload.

4.5. RELATED WORK 79

• Flow measurements in the backbone of a large ISP were done in [7] for
May 2002 and January 2003. They determined the server port using the
IANA[54] port numbers and the more detailed Graffiti [67] port table,
giving precedence to well-known ports. Unclassified traffic was grouped
in a “TCP-big “ class that includes flows with more than 100KB data
transmitted in less than 30 minutes. They noted that identified P2P traffic
decreased in January 2003 but the TCP-Big traffic dramatically increased
(10.5 times for outgoing and 6 times for incoming directions). Moreover
they found that the TCP-Big traffic had a strong correlation with P2P
traffic.

• In [61] all TCP traffic to port 4662 was captured with tcpdump. Among
a general overview about the eDonkey network their results indicate that
a majority of the observed traffic is locally and not worldwide distributed.

• Not exactly P2P traffic identification was the goal in [59] but to get new
insights of the FastTrack protocol. They were running a Kazaa super
node and two ordinary nodes for 12 hours capturing all traffic to these
nodes. Results were some interesting facts about how the FastTrack nodes
communicate with each other.

• In [55] a layer 4 switch inspected the first few packets to detect FastTrack
download traffic. The traffic of an identified host then was redirected to
a caching server, that intercepted and analyzed all downloads.

• Commercial software or hardware to block or limit P2P traffic like P2P
WatchDog [68] or P-Cube’s router software [69] use packet analyzing meth-
ods too. They constantly have to update their signatures for protocol
changes and new P2P clients.

80 CHAPTER 4. FINDINGS

Chapter 5

Conclusion

The goals of this thesis were to find methods to identify P2P traffic in the
SWITCH network and to track external peers of the BitTorrent, FastTrack,
Gnutella, eDonkey, Overnet and Kademlia networks. To achieve these goals
the described approach as a first step identifies peers in the SWITCH network.
Therefore the focus of this thesis was on P2P identification which tries to dis-
cover hosts that run P2P clients.

P2P Identification

P2P identification is non trivial and has become even more difficult since quite
a substantial amount of the P2P clients use non-default ports. Especially the
FastTrack client Kazaa incorporates several techniques, including random port
number usage and encryption, to hide itself from detection. This in order to
evade traffic limitation and legal consequences.

Various techniques that actively or passively detect or verify P2P clients have
been presented in this thesis. A passive identification approach using NetFlow
data was implemented as an UPFrame plug-in and used for various measure-
ments. The plug-in can process SWITCH NetFlow data about 10 times faster
than real-time and delivers various statistics about P2P and general bandwidth
usage.

P2P identification in general will become harder in the future since more
and more clients will follow the example of Kazaa and try to hide themselves
from legal threats and bandwidth restrictions. Packet inspection as a relatively
accurate traffic identification method will get more difficult too since there is a
trend for P2P clients to implement encryption mechanisms. The implemented
approaches for P2P identification which analyze the neighborhood of potential
peers have shown to work in general. But as was observed they have their
limits. Peers which have only little contact with other peers, are not always
reliably identified by the algorithm since it benefits from numerous connections.
Moreover the identification results largely depend on the default port usage of
a P2P network. Kazaa clients which choose random ports for signalling and
download traffic are much harder to detect since their default port usage is
around 10% nowadays. Peers of the other considered networks have a higher
default port usage which makes them better identifiable.

81

82 CHAPTER 5. CONCLUSION

P2P Verification

An eDonkey specific technique, a polling approach and self-run clients were used
to verify the P2P identification results. For all P2P systems that use a two-tier
architecture, a crawling program could identify the super nodes. Using the super
nodes, ordinary peers can be identified accurately. According to this verification
method, 90% of all eDonkey hosts were identified by the implementation. The
missing 10% were not recognized most likely since they were only a short time
online or since they didn’t transmit enough files.

Polling requires a near-real-time identification of peers and their listening
ports which imposes new problems concerning the NetFlow data availability.
Verification results show that depending on the protocol at least 52%-95% of all
peers are correctly identified as true positives. But overall polling was found to
be a difficult verification method since a lot of peers are protected by firewalls
or NAT devices and thus do not allow incoming connections which are needed
to poll them. Furthermore polling requires the listening ports of a P2P client
to be known which can’t be achieved for all peers.

P2P Bandwidth Usage

The measurements made with PeerTracker have shown that P2P bandwidth es-
timation could be improved using the approach that first identifies P2P hosts.
Further it has been demonstrated that P2P traffic - depending on the network
- accounted by the straightforward stateless method was only 15%-60% of the
traffic accounted with the improved estimations. In contrast to other publica-
tions the approach proposed in this thesis even allows to identify P2P traffic for
different P2P networks which use the same download port as is the case with
eDonkey, Overnet and Kademlia.

The total P2P bandwidth consumption in the SWITCH network is of sub-
stantial size and is almost three times as high as web traffic. This is due to
the fact that P2P traffic is less day time dependent. Moreover the P2P users
produce a larger amounts of traffic although there are about 7.5 times more web
surfing people in the SWITCH network on average. Comparing measurements
from June and August also have shown that the longterm number of WWW
users and the number of P2P users do correlate. In the holidays 15% less users
were active for both groups.

P2P Population Tracking

To track the whole P2P population - with the peers identified in the SWITCH
network as starting population - seems difficult for most P2P systems includ-
ing BitTorrent, FastTrack, eDonkey and Gnutella. A quite substantial amount
(more than 50%) of the whole P2P population could be tracked for the Over-
net network using the SWITCH NetFlow data. In general there is a chance
that tracking the whole population is possible for P2P systems, which have a
one-tier architecture and frequently contact their neighbor peers for network
maintenance. This includes Overnet and Kademlia. It is believed that tracking
the whole P2P population for these two networks is feasible if the NetFlow data
of a larger (transit) backbone network could be used. This certainly would need
the implementation to be adapted since it was not designed to be used in such
an environment.

83

Tracking of P2P hosts which use a two-tier architecture can be improved by
running self-operated super nodes as honey peers. A super node is contacted
by far more other peers than an ordinary node. Limiting the tracking to one
network only is difficult if there are hybrid P2P clients which use the same port
numbers to join different P2P networks. Filtering certain hosts which use de-
fault ports from other P2P networks is needed in this situation.

Overall this thesis has demonstrated the possibilities and limits of P2P iden-
tification and population tracking.

84 CHAPTER 5. CONCLUSION

Chapter 6

Outlook

6.1 Future Work and Improvements

The time for this thesis was limited to 26 weeks and although the goals were
achieved, there still remains a lot that could be done in a succeeding semester
or master’s thesis. The development of the implementations was an iterative
process where various changes and extensions occurred that needed the mea-
surements to be redone and compared to each other which was quite time con-
suming. Therefore some of the following features and improvements could not
be implemented yet.

6.1.1 Automated Verification

To increase the accuracy of PeerTracker, it could be extended to actively verify
P2P hosts by either selectively polling them using an extended version of the
script used in Subsection 4.1 or by using a crawler program to track all super
nodes of a network. Of course this is only possible when PeerTracker runs online
and analyzes the NetFlow data in real-time.

6.1.2 More General Identification

If the evolution of P2P clients continues following the example of FastTrack, port
based passive methods won’t deliver accurate results anymore. Identification
would have to concentrate on more general characteristics of P2P clients. They
e.g. could use communications patterns, timings and traffic volumes to perform
a classification. Some of these methods were shortly examined during this thesis
but since the described approach promised to be more successful they were not
analyzed in more detail.

6.1.3 Auxiliary Network Processors

A combination of flow-based identification with a packet analysis method prob-
ably could improve the identification accuracy. Analyzing only some of the
packets of suspicious hosts may be fast enough even for large networks. A
packet processor (an active router, e.g. a Linux box running Promethos[70])
could be used to check and confirm a potential peer.

85

86 CHAPTER 6. OUTLOOK

6.1.4 More P2P Networks

Worldwide there are some dozens of P2P networks up and running. The six
quite popular networks considered in this thesis cover a large amount of the
worldwide P2P users but some other popular networks like Warez [71], MP2P
[72] or DirectConnect [73] could be added too in order to better estimate the
total P2P traffic.

6.1.5 Multi Peer identification

There exists a considerably amount of P2P hosts that run more than one P2P
client or a hybrid client like eMule. PeerTracker detects just the easiest identi-
fiable of the running clients. If one just is interested in the total bandwidth all
the peers consume or the hosts that run at least one P2P client, this approach
is adequate. But when the exact number of active peers is of concern, all clients
running on a host should be identified.

6.1.6 TCP flags in NetFlow

Unfortunately the NetFlow data provided by the SWITCH border gateway
routers does not contain the accumulated tcp flags. These flags, in particu-
lar the TCP SYN flag, could be very useful to detect the listening ports of a
host which probably allow to identify P2P hosts with a better accuracy. With-
out them it is rather costly to find out which of two communicating hosts set
up the TCP connection although it seems feasible as is shown in [14]. Only the
time stamps of two related flows could be used in a work-around to guess which
host set the SYN flag. But this would require a buffer that contains several
thousand TCP flows to find two related flows and then to find out which host
opened the connection.

6.1.7 Continuous Examination

The current implementation of PeerTracker evaluates all the hosts on a peri-
odic basis which is 15 Minutes in the default configuration. An extension to
PeerTracker could add a feature that continuously evaluates hosts that pro-
vide enough information yet. This generally would result in faster identification
times. A periodic evaluation still would be needed though for the population
aging.

6.1.8 State Reload

A possibility to save and reload the state of PeerTracker could be very use-
ful to stop or pause the processing, e.g. for hardware maintenance reasons.
PeerTracker makes use of several large and many small hash tables that take
significant effort to reconstruct.

6.2 Unsolved Problems

One of the reasons - beside the speedup - to make PeerTracker able to run
independent from UPFrame, was a non reproducible bug in UPFrame that oc-

6.2. UNSOLVED PROBLEMS 87

curred spontaneously and that made measurements unreliable since NetFlow
packets were dropped constantly. It seemed to depend on the netflow replay
sending rate and/or non-controllable circumstances like memory/CPU usage of
the computing host. The higher the netflow replay sending rate was, the more
often this bug did occur.

88 CHAPTER 6. OUTLOOK

References

[1] “SWITCH - The Swiss Education and Research Network.”
http://www.switch.ch/ (July 2004).

[2] E. D. Team and C. Schlegel, “UPFrame: UDP Processing Framework.”
http://www.tik.ee.ethz.ch/~ddosvax/upframe/ (July 2004).

[3] “SharmanNetworks.” http://www.sharmannetworks.com/ (July 2004).

[4] “Digital Piracy - Definitive P2P piracy figures for Year
2003....” http://www.itic.ca/DIC/News/2004/08/11/

P2P_piracy_figures_2003.html (July 2004).

[5] A. Wagner and T. Dübendorfer, “DDosVax Project.”
http://www.tik.ee.ethz.ch/~ddosvax/ (July 2004).

[6] R. K. C. Chang, “Defending against flooding-based distributed denial-of-
service attacks: A tutorial,” IEEE Communications Magazine, pp. 42–51,
2002.

[7] A. Gerber, J. Houle, H. Nguyen, M. Roughan, and S. Sen,“P2P, The Gorilla
in the Cable,” tech. rep., AT&T Labs - Research, June 2004.

[8] T. Karagiannis, A. Broido, and M. Faloutsos, “File-sharing in the Internet:
A characterization of P2P traffic in the backbone,” tech. rep., University of
California, Riverside Department of Computer Science, November 2003.

[9] S. Sen and J. Wang, “Accurate, Scalable In-Network Identification of P2P
Traffic Using Application Signatures,” tech. rep.

[10] B. P. Arno Wagner, “Peer-to-Peer Systems as Attack Platform for Dis-
tributed Denial-of-Service,” tech. rep., 2002.

[11] S. Racine, “Analysis of Internet Relay Chat Usage by DDoS Zombies,”
Master’s thesis, ETH Zurich, Computer and Networks Lab, March 2004.

[12] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong, “Freenet: A distributed
anonymous information storage and retrieval system,” tech. rep., 2001.

[13] S. Saroiu, K. P. Gummadi, R. J. Dunn, S. D. Gribble, and H. M. Levy,
“Analysis of Internet Content Delivery Systems,” tech. rep., University of
Washington, December 2002.

[14] B. Tellenbach, “Visualisation of Internet Host Client/Server Behaviour,”
Master’s thesis.

89

http://www.switch.ch/
http://www.tik.ee.ethz.ch/~ddosvax/upframe/
http://www.sharmannetworks.com/
http://www.itic.ca/DIC/News/2004/08/11/
P2P_piracy_figures_2003.html
http://www.tik.ee.ethz.ch/~ddosvax/

90 REFERENCES

[15] “SETI@home: Search for Extraterrestrial Intelligence at home.”
http://setiathome.ssl.berkeley.edu/.

[16] “Skype.” http://www.skype.com/ (September 2004).

[17] “KaZaA Media Desktop.” http://www.kazaa.com/ (July 2004).

[18] “eDonkey.” http://www.edonkey.com/ (July 2004).

[19] J. Ritter, “Why Gnutella can’t scale. No, really.,” tech. rep.,
2001. http://www.eecs.harvard.edu/~jonathan/papers/2001/

ritter01gnutella-cant-scale.pdf (July 2004).

[20] P. Karbhari, M. Ammar, A. Dhamdhere, H. Raj, G. Riley, and E. Zegura,
“Bootstrapping in Gnutella: A Measurement Study,” tech. rep., Georgia
Institute of Technology, Atlanta, April 2004.

[21] S. Sen and J. Wang, “Analyzing peer-to-peer traffic across large networks,”
tech. rep., AT&T Labs - Research, November 2002.

[22] “Suprnova.org.” http://www.suprnova.org/ (July 2004).

[23] “AudioGalaxy.” http://www.afternapster.com/ (August 2004).

[24] “freshnoise.com: music after napster, the beat goes on....”
http://www.afternapster.com/ (August 2004).

[25] “Earth Station 5.” http://www.es5.com/ (August 2004).

[26] “Soribada.” http://www.soribada.com/ (August 2004).

[27] J. Liang, R. Kumar, and Y. X. adn Keith W. Ross, “Pollution in P2P File
Sharing Systems,” tech. rep., 2004.

[28] “Overpeer.” http://www.overpeer.com/ (August 2004).

[29] P. Jardas, “P2P Filesharing Systems Real World NetFlow Traffic Charac-
terization,” Master’s thesis.

[30] “Apple iTunes Music Store.” http://www.apple.com/itunes/store/ (Au-
gust 2004).

[31] “RIAA - Recording Industry Association of America.”
http://www.riaa.com/ (August 2004).

[32] “More on MGM v.Grokster Ruling.” http://www.eff.org/IP/

P2P/MGM_v_Grokster/ (August 2004).

[33] “P2P and Music Statistics for August 2004.”
http://www.itic.ca/DIC/News/2004/09/02/

P2P_Statistics_August_2004.en.html (September 2004).

[34] “P2P Entrapment - Incriminating P2P Network Users.”
http://members.ozemail.com.au/~123456789/p2p_entrapment.pdf

(August 2004).

http://setiathome.ssl.berkeley.edu/
http://www.skype.com/
http://www.kazaa.com/
http://www.edonkey.com/
http://www.eecs.harvard.edu/~jonathan/papers/2001/
ritter01gnutella-cant-scale.pdf
http://www.suprnova.org/
http://www.afternapster.com/
http://www.afternapster.com/
http://www.es5.com/
http://www.soribada.com/
http://www.overpeer.com/
http://www.apple.com/itunes/store/
http://www.riaa.com/
http://www.eff.org/IP/
P2P/MGM_v_Grokster/
http://www.itic.ca/DIC/News/2004/09/02/
P2P_Statistics_August_2004.en.html
http://members.ozemail.com.au/~123456789/p2p_entrapment.pdf

REFERENCES 91

[35] “Cisco Netflow Services Solutions Guide.”
http://www.cisco.com/univercd/cc/td/doc/cisintwk/

intsolns/netflsol/nfwhite.htm (August 2004).

[36] “IETF - Internet Engineering Task Force.” http.//www.ietf.org/ (July
2004).

[37] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M. Levy, and
J. Zahorjan, “Measurement, Modeling, and Analysis of a Peer-to-Peer File-
Sharing Workload,” tech. rep., October 2003.

[38] R. van de Meent and A. Pras, “Assessing Unknown Network Traffic,” tech.
rep., University of Twente, Enschede, October 2003.

[39] J.-J. K. Myung-Sup Kim and J. W. Hong, “Towards Peer-to-Peer Traffic
Analysis,” tech. rep., POSTECH, Korea, October 2003.

[40] G. Zaugg, “A Light Weight Packet Capturer for High-Speed Links,” tech.
rep., Swiss Federal Institute of Technology (ETH), Zurich.

[41] “Slyck.com.” http://www.slyck.com/ (July 2004).

[42] “mlDonkey.” http://mldonkey.org/ (July 2004).

[43] P. Maymounkov and D. Mazières, “Kademlia: A peer-to-peer information
system based on the XOR metric,” tech. rep., March 2002.

[44] “LimeWire - No Spyware, No Adware, No Trojan Horse, Just Pure File-
sharing.” http://www.limewire.com/ (August 2004).

[45] B. Cohen, “Incentives build robustness in BitTorrent,” tech. rep.
http://bitconjurer.org/BitTorrent/bittorrentecon.pdf (August
2004).

[46] m. Izal, G. Urvoy-Keller, W. Biersack, P. Felber, A. al Hamra, and
L. Garcés-Erice, “Dissecting BitTorrent: Five Months in a Torrents Life-
time,” tech. rep., Institut Eurecom, France, April 2004.

[47] “TCPDUMP.” http://www.tcpdump.org/ (July 2004).

[48] “Ethereal - A Network Protocol Analyzer.” http://www.ethereal.com/

(July 2004).

[49] L. Deri, “nprobe.” http://www.ntop.org/ (July 2004).

[50] “Kerio.” http://www.kerio.com/ (September 2004).

[51] “OpenMosix - An Open Source Linux Cluster Project.”
http://openmosix.sourceforge.net/ (August 2004).

[52] “TIK Experimental Cluster.” http://www.tik.ee.ethz.ch/

~ddosvax/cluster/ (August 2004).

[53] “server.met - Server List for eDonkey and eMule.” http://ed2k.2x4u.de/

(August 2004).

http://www.cisco.com/univercd/cc/td/doc/cisintwk/
intsolns/netflsol/nfwhite.htm
http.//www.ietf.org/
http://www.slyck.com/
http://mldonkey.org/
http://www.limewire.com/
http://bitconjurer.org/BitTorrent/bittorrentecon.pdf
http://www.tcpdump.org/
http://www.ethereal.com/
http://www.ntop.org/
http://www.kerio.com/
http://openmosix.sourceforge.net/
http://www.tik.ee.ethz.ch/
~ddosvax/cluster/
http://ed2k.2x4u.de/

92 REFERENCES

[54] “IANA.” http://www.iana.com/assignments/port-numbers/services/

(July 2004).

[55] N. Leibowitz, M. Ripeanu, and A. Wierzbicki, “Deconstructing KaZaA,”
tech. rep., June 2003.

[56] A. Klimkin, “pDonkey: Unofficial eDonkey protocol specification and perl
tools.” http://sourceforge.net/projects/pdonkey/ (July 2004).

[57] “PeerEnabler.” http://www.limewire.com/

english/content/uastats.shtml (August 2004).

[58] O. Heckmann and A. Bock,“The eDonkey 2000 Protocol,” tech. rep., Darm-
stadt University of Technology, December 2002.

[59] J. Liang, R. Kumar, and K. W. Ross, “Understanding KaZaA,” tech. rep.,
2004.

[60] “Limewire Network Crawler Statistics.”http://www.limewire.com/english/
content/uastats.shtml (August 2004).

[61] K. Tutschku, “A Measurement-based Traffic Profile of the eDonkey File-
sharing Service,” tech. rep., Institute of Computer Science, Würzburg, April
2004.

[62] “Protowall.” http://www.bluetack.co.uk/pwhelp/ (August 2004).

[63] “Methlab - Peerguardian.” http://www.methlabs.org/methlabs.htm

(August 2004).

[64] T. Klingberge and R. Manfredi, “The Gnutella Protocol.”
http://rfc-gnutella.sourceforge.net/src/rfc-0_6-draft.html

(August 2004).

[65] T. Hargreaves, “The FastTrack Protocol.”
http://cvs.berlios.de/cgi-bin/viewcvs.cgi/

gift-fasttrack/giFT-FastTrack/PROTOCOL (August 2004).

[66] B. Cohen, “The BitTorrent Protocol.”
http://bitconjurer.org/BitTorrent/protocol.html (August 2004).

[67] “Graffiti.” http://www.graffiti.com/services/ (July 2004).

[68] “P2P Watch Dog 5: The Leader in Detecting Evasive Protocols.”
http://www.p2pwatchdog.com/ (August 2004).

[69] “P-Cube: Global Leader in Service Control & Bandwidth Management for
Service Providers.” http://www.p-cube.com/ (August 2004).

[70] Lukas Ruf, “The PromethOS Homepage.” http://www.promethos.org,
2001.

[71] “Warez.com - Redefining Warez and Giving Warez a New Meaning.”
http://www.warez.com/ (September 2004).

[72] “MP2P: Blubster - The Largest Online Music Network.”
http://www.blubster.com/ (September 2004).

[73] “Direct Connect.” http://www.neo-modus.com/ (September 2004).

http://www.iana.com/assignments/port-numbers/services/
http://sourceforge.net/projects/pdonkey/
http://www.limewire.com/
english/content/uastats.shtml
http://www.limewire.com/english/
content/uastats.shtml
http://www.bluetack.co.uk/pwhelp/
http://www.methlabs.org/methlabs.htm
http://rfc-gnutella.sourceforge.net/src/rfc-0_6-draft.html
http://cvs.berlios.de/cgi-bin/viewcvs.cgi/
gift-fasttrack/giFT-FastTrack/PROTOCOL
http://bitconjurer.org/BitTorrent/protocol.html
http://www.graffiti.com/services/
http://www.p2pwatchdog.com/
http://www.p-cube.com/
http://www.warez.com/
http://www.blubster.com/
http://www.neo-modus.com/

Appendix A

Full Task Description

The following pages contain the original task description of this master’s thesis
as of April 2004.

93

Institut für
Technische Informatik und
Kommunikationsnetze

March 7th, 2004
Arno Wagner,Thomas Dübendorfer

Master’s Thesis:

Population Tracking and Traffic Characterisation
for Current P2P Filesharing Systems

for Lukas Hämmerle <haemmluk@ee.ethz.ch>

1 Introduction

P2P Filesharing

Peer-to-Peer Filesharing is a new ”killer application” forthe Internet. The idea is that people
install a piece of software, that allows them to offer (”share”) files from their computer to the
community of people running software for the same system. Inturn everybody can download
files shared by somebody else.

While legal issues around the sharing of copyrighted works are mostly unsolved, from a techni-
cal point of view these sytems are usable today. Recent user statistics suggest that at each point
in time several million people are using these systems.

One important characteristic of P2P filesharing systems is that they generate a significant amount
of the overall Internet traffic. This thesis will focus on detection and characteristics of the gen-
erated traffic and some of its implications.

Internet Worms

Internet worms are by now understood well enough by those willing to create them, that mas-
sive infection events in a short time are possible. The compromised hosts can then be used for
attacks, such as massively distributed Denial of Service Attacks. Worms cannot only infect op-
erating systems directly, indirect attacks on networked applications are also a real possibility.
The classical example of this is email. With the recent emergence of P2P filesharing systems, it
is to be expected that worms for these infrastructures will be created in the future. Since these
P2P systems create a lot of network traffic during normal operation, actually detecting a worm
while it is spreading seems to be quite difficult whithout some monitoring equipment targeted
specifically at P2P traffic.

The DDoSVax Project

In the joint ETH/SWITCH research project “DDoSVax”1 abstracted Internet traffic data (Cisco
Netflow) is collected at all border gateway routers operatedby SWITCH. This data contains
information about which Internet hosts were connected to which others and how much data was
exchanged over which protocols.

2 Thesis Task

We want a P2P traffic observation system that is capable of giving realtime statistics for the traf-
fic of the most popular P2P systems. The main focus for this it the possibility to evaluate overall
P2P traffic and to potentially do anomaly detection on this traffic to detect worms spreading in a
P2P network. The second motivation is that anomaly detection on other network traffic becomes
easier if P2P traffic can be identified and ignored.

The basic survey of P2P filesharing systems is not part of thisthesis. Instead results from the
now completed Bachelor’s Thesis of Philipp Jardas should beused.

P2P Population Tracking

Since a pure momentary identification of P2P traffic seems to be difficult, the primary expected
contribution of this thesis are algorithms and prototype implementations of systems that identify
and track the current host population in the most popular P2Pfilesharing systems.

To avoid legal problems, this thesis will focus on techniques that do not need to store any data
on the past behaviour of specific nodes. Storage of node identities (IP addresses) will be kept
to a minimum. If it can be avoided, there will be no long-term storage of IP addresses of P2P
system participants. Ideally the tracking approaches do not store more data long-term than one
or more typical P2P clients store anyway.

P2P Trafic Identification and Analysis: Offline and Online

The final goal is the implementation of one or several online tracking systems, based on net-
flow data and possibly helped by P2P clients operated in addition, should that turn out to be
necessary.

As an intermediate step, tracking can be done offline in the DDoSVax netflow data archive,
where long-term observation data is available. Such an offline analysis has the advantage that
there are no realtime constraints and tracking can be done incremental, i.e. the approach can be
run on a specific data set, improved and run again on the same data set.

1Seehttp://www.tik.ee.ethz.ch/~ddosvax/

2

Possible Approaches to Anomaly Detection

If there is time left, the thesis should also try to identify possible algorithms that can be used
to detect anomalies, like an increased number of connections, in a P2P system, that can be an
indication of a P2P based worm.

3 Deliverables

• Code for offline population tracking.

• Code for online population tracking, designed for UPFrame.

• Demonstration setups (data, scripts) for offline and onlinepopulation tracking.

Documentation and Presentation

A documentation that states the steps conducted, lessons learnt, major results and an outlook
on future work and unsolved problems has to be written. The code should be documented well
enough such that it can be extended by another developer within reasonable time. At the end of
the thesis, a presentation will have to be given at TIK that states the core tasks and results of
this Master’s thesis. If important new research results arefound, a paper might be written as an
extract of the thesis and submitted to a computer network andsecurity conference.

• Master’s Thesis Documentation A concise description of the work conducted in this thesis
(task, related work, environment, results and outlook).

• Code documentation (functionality, interfaced) for all code that is part of the thesis results.

• Users guide (setup and operation) for all implemented toolsthat are part of the thesis
results.

Dates

The Master’s thesis starts on March 22th, 2004 and is finishedby September 22th, 2004. It lasts
26 weeks in total.

Two informal presentations to Prof. Plattner will be scheduled about 2 Months into the thesis
and about 4 months into the thesis.

Around the end of the Thesis there will be a formal presentation of the results.

3

Supervisors

Arno Wagner, wagner@tik.ee.ethz.ch, +41 1 632 70 04, ETZ G64.1
Thomas Dübendorfer, duebendorfer@tik.ee.ethz.ch, +41 1 632 71 96, ETZ G64.1

4

98 APPENDIX A. FULL TASK DESCRIPTION

Appendix B

P2P Networks Table

The following table shows the most common P2P networks in Europe and the
USA. Worldwide there are some dozens P2P networks, most of them limited to
a small geographical area.

99

TCP/1214, UDP/1214

1999 TCP/1214, UDP/1214

eDonkey2000 2002

2002

2004

< 1GB HTTP GET

Gnutella2 < 1GB HTTP GET

TCP/6699-6702, UDP/6257

2002 TCP/2234+5534

MP2P

P2P Networks

P
ro

p
er

ti
es

R
e

la
te

d
to

S
u

pe
rn

od
e

s
fo

r
se

ar
ch

F
ile

 h
as

he
s

E
st

ab
lis

he
d

D
e

ve
lo

pe
r/

O
w

ne
r

R
at

h
er

 c
e

nt
ra

liz
ed

R
at

he
r

d
ec

en
tr

al
iz

ed

S
ha

re
d

 fi
le

s

D
ow

nl
oa

d
pr

o
to

co
l

D
ef

au
lt

C
on

n
ec

tio
ns

C
hu

nk
ed

 fi
le

 d
ow

nl
oa

ds

P
ro

to
co

l p
ub

lis
he

d

P
o

pu
la

r
cl

ie
nt

s

V
a

ria

FastTrack Dynamically
assigned
supernodes

Yes,
UUHash
(weak
algorithm)

March 2001 Sharman
Networks

No Yes Large
Files <
2GB

HTTP GET,
unencrypted

Yes Encrypted,
partially
reverse
engineered

Morpheus, KaZaA,
iMesh, Grokster,
giFT (OS),
MLDonkey (OS)

Based on Gnutella, proprietary clients automatically
download software updates, adware-contained clients,
encryption used for searches/queries

iMesh FastTrack
(earlier
iMesh)

iMesh No Yes Large
Files <
2GB

HTTP GET,
unencrypted

Yes Encrypted,
partially
reverse
engineered

Morpheus, iMesh Had its own network, now part of FastTrack

eDonkey Servers
(needed to join
network)

Yes, MD5 MetaMachine Yes No Large
Files <
2GB

eDonkey TCP/4661 (server connection),
TCP/4662 (client connection),
UDP/4665 (poll other server)

Yes Only
reverse
engineered

Shareaza P2P,
Morpheus, iMesh,
MLDonkey,
eDonkey, eMule,
lMule, aMule, xMule

Worlwide about 80 active public servers.

Overnet eDonkey
transfer
protocol

No, searches and
publishes in a
completely
decentralized way

Yes, MD5 Jed Mcalleb,
MetaMachine

No Yes Large
Files <
2GB

eDonkey UDP/Random Port (extensive
use of UDP!) TCP/4662

Yes Only
reverse
engineered

Overnet, eDonkey Extension of eDonkey with different way of
publishing/finding files, XOR routing policy

Kademlia (eMule) eDonkey
transfer
protocol

No, completely
decentralized,
incompatible to
Overnet

Yes, MD5 Emule project No Yes Large
Files <
2GB

eDonkey UDP/4672,4673 (extensive
use of UDP!) TCP/4662

Yes Emule is
open
source

Emule Like Overnet uses XOR routing protocol but
incompatible to Overnet

BitTorrent No built-in search
facility, torrent links
or files are published
on websites

Yes, SHA1 July 2002 Bram Cohen No Yes, no
central
resource
allocation

Large
Files <
5GB

BitTorrent
protocol
using
Bencode

TCP/6969 (Tracker)
TCP/6881-6889 (since v. 3.2
up to 6999)

Yes Yes The Shad0w's
experimental client,
Burst!, BitComet,
Azureus

Tracker only needed to find other peers, temporary
network

Gnutella Optional Ultrapeers No March 2000 Community No Yes TCP/6346-6347, UDP/6346-
6347

No Yes Limewire (Java),
Morpheus,
Shareaza, ...

Scales badly

Extended
Gnutella

Ultrapeers cache file
location and hashes
of leaf nodes

Yes, SHA1 March 2003 Mainly Michael
Stokes
(Shareaza)

No Yes TCP/6346-6349, UDP/6346-
6349 (used for searches)

Yes Yes Limewire,
Bearshare, ...

Napster/OpenNap Static Servers September
1999 Shawn Fanning,

Napster

Yes No Mostly
Music, <
10MB

No Yes Napster

Soulseek Static Servers Nir Arbel, a
former Napster
programmer

Yes No Mostly
Music, <
10MB

No Yes Soulseek Pay for download privileges (about 0.5% of people),
inofficial successor of AudioGalaxy

Others

DirectConnect
Ares
EarthStation

Appendix C

NetFlow Format

A NetFlow UDP packet consists of a header (see Table C-1) and several records
(see Table C-2) contain the information fields of the flows.

An example header looks like this:

Header Netflow Version 5:

count = 26

SysUptime = 24338230

unix_secs = 1086817578 [Wed Jun 9 23:46:18 2004]

unix_nsecs = 613

flow_sequence = 18949

engine_type = 0

engine_id = 0

reserved = 0

The most important information fields here are the number of following
records/flows (depicted in count) and the time stamps unix secs and unix nsecs
that tell the time this packet was sent.

The actual data records have 20 data fields that look like this:

Record Netflow Version 5:

Bytes Contents Description

0-1 version NetFlow export format version number
2-3 count Number of flows exported in this packet (1-30)
4-7 SysUptime Current time in milliseconds since the export device booted
8-11 unix secs Current count of seconds since 0000 UTC 1970
12-15 unix nsecs Residual nanoseconds since 0000 UTC 1970
16-19 flow sequence Sequence counter of total flows seen
20 engine type Type of flow-switching engine
21 engine id Slot number of the flow-switching engine
22-23 reserved Unused (zero) bytes

Table C-1: NetFlow version 5 header format

101

102 APPENDIX C. NETFLOW FORMAT

Bytes Contents Description

0-3 addr Source IP address
4-7 dstaddr Destination IP address
8-11 nexthop IP address of next hop router
12-13 input SNMP index of input interface
14-15 output SNMP index of output interface
16-19 dPkts Packets in the flow
20-23 dOctets Total number of layer 3 bytes in the packets of the flow
24-27 First SysUptime at start of flow in milli seconds
28-31 Last SysUptime at the time the last packet of the flow was received
32-33 port TCP/UDP source port number or equivalent
34-35 dstport TCP/UDP destination port number or equivalent
36 pad1 Unused byte
37 tcp flags Cumulative OR of TCP flags (not used in SWITCH routers)
38 prot IP protocol type
39 tos IP type of service
40-41 as Autonomous system number of the source, either origin or peer
42-43 dst as Autonomous system number of the destination, either origin or peer
44 mask Source address prefix mask bits
45 dst mask Destination address prefix mask bits
46-47 pad2 Unused bytes

Table C-2: NetFlow version 5 record format

addr = 10.0.1.12

dstaddr = 192.168.1.120

nexthop = 0.0.0.0

input = 0

output = 255

dPkts = 6

dOctets = 438

First = 23419621

Last = 23955906

port = 4662

dstport = 2747

pad1 = 0

tcp_flags = 0

prot = 17

tos = 0

_as = 0

dst_as = 0

_mask = 0

dst_mask = 0

pad2 = 0

Since not all of these fields contain the data that they are supposed to be
(e.g. the fields tcp flags is always 0 if NetFlows were emitted by the SWITCH

103

border gateway routers) and only about 10 of them are useful for most purposes,
a compact (human/grep readable) one line representation of this form is often
more suitable:

UDP pr

10.0.1.12 si

192.168.1.120 di

1214 sp

2747 dp

438 le

6 pk

1086816659.744 st

1086817196.029 en

536.285 du

NetFlows can also be generated on Linux hosts using for example the pro-
gram nprobe [49] and a flow collector. That way one has an easy to set up
mean to debug and test algorithms using NetFlows. Using nprobe to produce
NetFlows also has the advantage that all NetFlow fields contain the proper data.

104 APPENDIX C. NETFLOW FORMAT

Appendix D

SWITCH Network

Since 1987 the Switch network [1] connects almost all universities, research
facilities and other educational institutions in Switzerland. Since the connected
organizations are merely situated in an academic environment the network usage
can’t be compared to that of a regular Internet service provider.

As depicted in Figure D-1, four border gateway routers located in Geneva,
Zurich and Basel provide access to the rest of the Internet. Approximately 5%
of the total Swiss Internet traffic is routed through one of them. The routers
also produce the NetFlow data which is used for this thesis and other network
monitoring purposes by DDoSVax.

In Figure D-2 is shown how many GBytes per month left the SWITCH
network during the past few years. Under the point “SWITCH server” all traffic
from the SunSite FTP mirror, NewsServer and Web-Cache (e.g. Akamai) is
summed up.

On an average weekday about 25’000 hosts actively send packets over one
of the border gateway routers, as can be seen in Figure D-3. About 560’000
external hosts are contacting internal hosts on average as depicted in Figure
D-4. In these figures only hosts show up which sent at least one packet over one
of the four border gateway routers.

105

106 APPENDIX D. SWITCH NETWORK

Figure D-1: Switch network

Figure D-2: Switch traffic volume per month since 1998, from [1]

107

 0

 20000

 40000

 60000

 80000

 100000

 120000

22.06.
03:00

23.06.
03:00

24.06.
02:00

25.06.
02:00

26.06.
02:00

27.06.
02:00

28.06.
02:00

29.06.
02:00

H
os

ts

Date and Time

Hosts inside the SWITCH Network

Figure D-3: Active internal hosts in the SWITCH network during 8 days

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

22.06.
03:00

23.06.
00:00

23.06.
21:00

24.06.
18:00

25.06.
15:00

26.06.
13:00

27.06.
10:00

28.06.
07:00

H
os

ts

Date and Time

Hosts contacted outside the SWITCH Network

Figure D-4: Active extern hosts contacting hosts within the SWITCH network

108 APPENDIX D. SWITCH NETWORK

Appendix E

P2P Port Usage in the

Internet 2

The following data is supposed to demonstrate the P2P camouflage process
where more and more P2P clients try to hide themselves using non-default port
numbers.

The data is taken from Internet2 statistics pages1 which produce quite de-
tailed traffic statistics every week since February 2002.

Internet2 is a non-profit consortium led by over 200 US universities and a
number of corporate partners from the networking and technology business. Its
purpose is to develop and deploy advanced network applications and technologies
such as IPv6, IP multi-casting and quality of service.

Looking at Table E-1, one can clearly see, that the amount of unidentified
traffic has increased by factor of nine within 30 months. In the same time
FastTrack traffic seems to have greatly decreased while the total traffic was
almost doubled. Just reading these numbers would lead to the conclusion that
the FastTrack network has lost many users during that time. The opposite is
true. The FastTrack user base up to date still is the largest of all P2P networks
in terms of active users. Another explanation could be that FastTrack traffic
was limited or blocked somehow. But since Kazaa, FastTrack’s number one
client, uses various techniques to evade blocking and since there were transferred
considerable 970 GBytes FastTrack traffic in the week of 2004, this explanation
looses some evidence.

It is assumed that the measured FastTrack traffic has been declining since
Kazaa has started to choose random port numbers, which was in 2002.

Another remarkable fact depicted in Figure E-2 is the huge increase of Bit-
Torrent traffic and a temporary decrease of unidentified traffic in the middle of
2003. These two events seem correlated since BitTorrent traffic has not been
identified before April 2003 by Internet 2 routers.

1See Internet2 NetFlow: Weekly Reports http://netflow.internet2.edu/weekly/

(September 2004)

109

http://netflow.internet2.edu/weekly/

110 APPENDIX E. P2P PORT USAGE IN THE INTERNET 2

Traffic [TB] Week 2002 02 18 Week 2004 07 19
Total 157.6 (100%) 327.9 (100%)
File-Sharing 80.24 (50.91%) 18.7 (5.73%)
FastTrack 53.74 (34.1%) 0.97 (0.03%)
eDonkey 1.492 (0.95%) 1.998 (0.61%)
BitTorrent 0 (0%) 9.25 (2.82%)
Unidentified 26.68 (18.2%) 71.53 (21.86%)

Table E-1: Internet 2 traffic statistics comparison

 0

 10

 20

 30

 40

 50

 60

2002.08.01. 2003.02.01. 2003.08.01. 2004.02.01.

%
 o

f t
ot

al
 tr

af
fic

Date

File-sharing traffic
Unidentified traffic

Figure E-1: Internet 2 traffic graph

111

 0

 20

 40

 60

 80

 100

2002.08.01. 2003.02.01. 2003.08.01. 2004.02.01.

%
 o

f t
ot

al
 p

2p
 tr

af
fic

Date

FastTrack traffic
eDonkey traffic
Bittorrent traffic

Figure E-2: Internet S2 P2P traffic graph

112 APPENDIX E. P2P PORT USAGE IN THE INTERNET 2

Appendix F

Identification Code

The following code sample shows the part which actually determines to which
P2P network a host belongs to.

1 /*----------------------- Peer type detection -------------------------*/

2 // Try to i d e n t i f y type o f peers
3
4 // Precedence :
5 NonPeers , Overnet , Kademlia , eDonkey , Gnutella , BitTorrent , FastTrack

6 // Overnet : udpremote random , tcpremote 4662
7 // Kademlia : udpremote 4672/4673 , tcpremote 4662
8 // eDonkey : (udpremote 4665) , tcpremote 4662
9 // Gnute l la : tcp /udp por t s 6346−6349

10 // B i t t o r r en t : udpremote none , tcpremote 6881−6889
11 // Fas t t rack : udpremote 1214 (few) , tcpremote 1214 (few)
12
13 // Non peers
14 // We f i r s t must check i f a hos t i s a peer at a l l
15
16 // Mark as non peer i f
17 // − Too l e s s connect ions a f t e r probat ion per iod
18 // − Too l e s s susp . f l ows / t c p b i g f l ow s
19 if (

20 tcpremotetotalcount < MinTCPConn

21 || curHost ->data ->susp < MinSuspConn

22 || curHost ->data ->tcpbig < MinTCPBig

23)

24 {

25 curHost ->status = NONPEER;

26 return;

27 }

28
29 // Check most used por t s
30 // Most important proper ty f o r i d e n t i f i c a t i o n
31 if (

32 (

33 tcpremoteports [0] == 4662

34 && tcpremoteportcounts [0] > MinPeerPortThreshold

35)

36 ||

37 (

38 tcplocalports [0] == 4662

39 &&

40 tcplocalportcounts [0] > MinPeerPortThreshold

41)

113

114 APPENDIX F. IDENTIFICATION CODE

42)

43 {

44
45 // Overnet , Kademlia , eDonkey
46 if (TrackKademliaPeers)

47 goto KADEMLIAID;

48
49 KADEMLIAID:

50 if (! TrackKademliaPeers)

51 goto EDONKEYID;

52
53 if (// Kademlia d e f a u l t por t usage
54 (

55 udplocalports [0] == 4672

56 &&

57 udplocalportcounts [0] > MinPeerPortThreshold

58)

59 ||

60 (

61 udpremoteports [0] == 4672

62 &&

63 udpremoteportcounts [0] > MinPeerPortThreshold

64)

65)

66 {

67 curHost ->type = KADEMLIA;

68 curHost ->status = ACTIVE;

69 return;

70 }

71
72 EDONKEYID:

73 if (! TrackeDonkeyPeers)

74 goto OVERNETID;

75
76 if (// eDonkey uses 4665 to query other s e r v e r s
77 (

78 udpremoteports [0] == 4665

79 &&

80 udpremoteportcounts [0] > MinPeerPortThreshold

81)

82 ||

83 (

84 udplocalports [0] == 4665

85 &&

86 udplocalportcounts [0] > MinPeerPortThreshold

87)

88
89)

90 {

91 curHost ->type = EDONKEY;

92 curHost ->status = ACTIVE;

93 return;

94 }

95
96 OVERNETID:

97 if (! TrackOvernetPeers)

98 goto GNUTELLAID;

99
100 if (// Overnet random port d i s t r i b u t i o n
101 udpremotetotalcount > MinPeerPortThreshold

102 && udpremoteportcounts [0] < MaxPeerPortThreshold

103)

115

104 {

105 curHost ->type = OVERNET;

106 curHost ->status = ACTIVE;

107 return;

108 }

109
110
111 // I f a hos t as surv i v ed to t h i s po in t i t i s an eDonkey hos t
112 curHost ->type = EDONKEY;

113 curHost ->status = ACTIVE;

114 return;

115 }

116
117 GNUTELLAID:

118 if (! TrackGnutellaPeers)

119 goto BITTORRENTID;

120
121 if (// Gnute l la uses mainly d e f a u l t por t s
122 (

123 (udplocalports [0] >= 6346 && udplocalports [0] <= 6349)

124 &&

125 udplocalportcounts [0] > MinPeerPortThreshold

126)

127 ||

128 (

129 (udpremoteports [0] >= 6346 && udpremoteports [0] <= 6349)

130 &&

131 udpremoteportcounts [0] > MinPeerPortThreshold

132)

133 ||

134 (

135 (tcplocalports [0] >= 6346 && tcplocalports [0] <= 6349)

136 &&

137 tcplocalportcounts [0] > MinPeerPortThreshold

138)

139 ||

140 (

141 (tcpremoteports [0] >= 6346 && tcpremoteports [0] <= 6349)

142 && tcpremoteportcounts [0] > MinPeerPortThreshold

143)

144)

145 {

146 curHost ->type = GNUTELLA;

147 curHost ->status = ACTIVE;

148 return;

149 }

150
151 BITTORRENTID:

152 if (! TrackBitTorrentPeers)

153 goto FASTTRACKID;

154
155 // BitTorrent
156 // BitTorrent connect ions o f t en have src / ds t por t above susp icous
157 // range and the se connect ions are not s to red in ip / por t queue
158 // So there p o s s i b l y are only a few f l ows f o r a b i t t o r r e n t c l i e n t
159 // why we a l s o use an add i t i ona l method fo r i d e n t i f i c a t i o n
160
161 if (

162 (

163 tcpremoteports [0] >= 6881

164 &&

165 tcpremoteports [0] <= 6889

116 APPENDIX F. IDENTIFICATION CODE

166 &&

167 tcpremoteportcounts [0] > MinPeerPortThreshold

168)

169 ||

170 (

171 tcplocalports [0] >= 6881

172 &&

173 tcplocalports [0] <= 6889

174 &&

175 tcplocalportcounts [0] > MinPeerPortThreshold

176)

177)

178 {

179 curHost ->type = BITTORRENT;

180 curHost ->status = ACTIVE;

181 return;

182 }

183
184 float probability = 0;

185 int defaultportcount = 0;

186 if (curHost ->data ->t6969)

187 {

188 probability += 0.2; defaultportcount ++;

189 }

190 if (curHost ->data ->t6881)

191 {

192 probability += 0.25; defaultportcount ++;

193 }

194 if (curHost ->data ->t6882)

195 {

196 probability += 0.1; defaultportcount ++;

197 }

198 if (curHost ->data ->t6883)

199 {

200 probability += 0.1; defaultportcount ++;

201 }

202 if (curHost ->data ->t6884)

203 {

204 probability += 0.05; defaultportcount ++;

205 }

206 if (curHost ->data ->t6885)

207 {

208 probability += 0.05; defaultportcount ++;

209 }

210 if (curHost ->data ->t6886)

211 {

212 probability += 0.05; defaultportcount ++;

213 }

214 if (curHost ->data ->t6887)

215 {

216 probability += 0.05; defaultportcount ++;

217 }

218 if (curHost ->data ->t6888)

219 {

220 probability += 0.05; defaultportcount ++;

221 }

222 if (curHost ->data ->t6889)

223 {

224 probability += 0.05; defaultportcount ++;

225 }

226
227 if (curHost ->data ->t6969 && defaultportcount >= 3)

117

228 {

229 probability += 0.4; defaultportcount ++;

230 }

231
232 if (defaultportcount > 6)

233 {

234 probability += 0.4;

235 }

236 else if (defaultportcount > 4)

237 {

238 probability += 0.3;

239 }

240 else if (defaultportcount > 2)

241 {

242 probability += 0.2;

243 }

244
245 if (probability >= 0.5)

246 {

247 curHost ->type = BITTORRENT;

248 curHost ->status = ACTIVE;

249 return;

250 }

251
252 FASTTRACKID:

253 if (! TrackFastTrackPeers)

254 goto ENDID;

255
256 // FastTrack
257 // These are hardes t to d e t e c t s ince only about 5−15% of them
258 // use d e f a u l t por t . So we f i r s t t r y to use the murp method and
259 // i f t ha t does not work we check i f the most used tcp por t i s
260 // the same as the udp por t .
261 // Then we check f o r a random port d i s t r i b u t i o n .
262 // I f t ha t i s the case we use the a b s o l u t number
263 // o f d e f a u l t por t s in combination . This i s not r e a l l y a good
264 // method alone , but t o g e t h e r with the the random p o r t l i s t usage
265 // i t h e l p s improving de t e c t i on .
266
267 if (

268 tcpremoteports [0] == 1214

269 &&

270 tcpremoteportcounts [0] > MinPeerPortThreshold

271)

272 {

273 curHost ->type = FASTTRACK;

274 curHost ->status = ACTIVE;

275 return;

276 }

277
278 if (

279 tcplocalports [0] == 1214

280 &&

281 tcplocalportcounts [0] > MinPeerPortThreshold

282)

283 {

284 curHost ->type = FASTTRACK;

285 curHost ->status = ACTIVE;

286 return;

287 }

288
289 // Check i f l o c a l udp/ tcp por t s are the same , but not g nu t e l l a por t

118 APPENDIX F. IDENTIFICATION CODE

290 if (

291 tcplocalports [0] == udplocalports [0]

292 &&

293 tcplocalportcounts [0] > MinPeerPortThreshold

294 &&

295 udplocalportcounts [0] > MinPeerPortThreshold

296)

297 {

298 curHost ->type = FASTTRACK;

299 curHost ->status = ACTIVE;

300 return;

301 }

302
303
304 // Check f o r almost random tcp remote por t d i s t r i b u t i o n
305 // and occurence o f tcp por t 1214
306 if (

307 tcpremoteportcounts [0] < MaxPeerPortThreshold

308 &&

309 curHost ->data ->tcpremote ->searchPort(curHost ->data ->tcpremote , 1214)

310 &&

311 udpremoteportcounts [0] < MaxPeerPortThreshold

312 &&

313 curHost ->data ->udpremote ->searchPort(curHost ->data ->udpremote , 1214)

314)

315 {

316
317 // Now check how many of the ”d e f a u l t ” por t s
318 // o f a kazaa c l i e n t s are used
319 if (

320 (curHost ->data ->u1214 && curHost ->data ->u3531)

321 || (curHost ->data ->t1214 && curHost ->data ->u3531)

322 || (curHost ->data ->t1214 && curHost ->data ->t3531)

323)

324 {

325 curHost ->type = FASTTRACK;

326 curHost ->status = ACTIVE;

327 return;

328 }

329 }

330
331 ENDID:

332 // I f peer cou ld not be i d e n t i f i e d , curHost remains candidate
333 return;

Appendix G

PeerTracker Usage

Instructions

Installation

Installation is straightforward.

1. If not yet done, install UPFrame[2]. Upframe is needed because Peer-
Tracker uses some of its libraries, even for stand-alone mode.

2. Install the bz2 development files. E.g. under Debian you simply use ’apt-
get install libbz2-dev’

3. Get PeerTracker source code (on the CD that came with this documenta-
tion or ask Arno Wagner, wagner@tik.ee.ethz.ch)

4. Uncompress with ’tar -zxvf peertracker.tgz’ and move the directory ’peer-
tracker’ inside the UPFrame directory

5. UPFrame must have been compiled successfully before PeerTracker can
be compiled (’make all’ in UPFrame directory)

6. Modify PeerTracker’s makefile if you didn’t install UPFrame in its de-
fault location which is ’/home/upframe’. In that case adapt the value
’INSTALLDIR’ in the PeerTracker makefile.

7. Change working directory to PeerTracker directory and call ’make peer-
tracker’. This will also compile netflow sreplay that can be used to feed
NetFlow data to PeerTracker in stand-alone mode

8. Finally run ’make install’ which will copy the binary and script files to
the right places.

Together with the PeerTracker binary and the configuration file, some shell
scripts to start PeerTracker are placed in the UPFrame directory tree. The
scripts are adapted for usage in SWITCH network, but it should not be a prob-
lem to modify them. One will have to adapt the scripts in UPFrame’s ’etc’
directory anyway. Commenting out the warning may do for a default setup.

119

120 APPENDIX G. PEERTRACKER USAGE INSTRUCTIONS

Command Line Options

Calling the plug-in with the -h option will output:

peertracker -h

Usage:

-w <SCRIPT> Enable watchdog, restart command

-e <SCRIPT> Script that shall be executed after a

new statistics file has been written.

-t <TIME> Watchdog timeout

-m Enable memory exceeding check

-f <FILENAME> Path to fifo

-d Generate detailed statistics

-a <FILENAME> Address list containg <netip> <CIDR> of home net

-l <FILENAME> General UPFrame plugin log

-o Plugin log to stdout (overrides -l)

-n <FILENAME> Plugin log to stdout (overrides -w, -e, -t, -f)

-p <FILEPREFIX> Prefix to use for peer dump files

-s <FILEPREFIX> Prefix to use for p2p statistics files

-c <FILENAME> Config file

-h Print usage hints

See Table G-1 for a more precise description of the command line options.
After you installed and configured PeerTracker, a simple run of could look like
this:

1. Start ’upframe/etc/ptstart.sh’

2. Then call ’upframe/etc/ptsendflows.sh’ with some flows as arguments, e.g.
’/netflow/archive/*’

PeerTracker will output the log information to STDOUT or to a file, depending
on the arguments in the ’ptstart.sh’ script. It will output some status informa-
tion every 2 Million flows or if something special happens.

Table G-2 shows the netflow sreplay command line usage. Based on the
original netflow replay by Arno Wagner it extends its functions in the way that
it is possible to delay packets (modification by Bernhard Tellenbach), to send
two NetFlow files synchronized (therefore netflow sreplay) and to feed a named
pipe on the local host instead of sending the data to UPFrame. Sending two
NetFlow files together is quite useful since the SWITCH NetFlow data for one
hour comes in two separate files. The pipe feed allows processing data directly
- without UPFrame - by any program that can handle pipes. This has the
advantage that processing speed is dynamically adapted and in general as fast
as possible while it would be constant when UPFrame is used. Moreover there
won’t be any packet loss as there could be with UPFrame.

Configuration

The standard PeerTracker configuration file ’peertracker.cfg’ that per default
should be in ’upframe/etc’ directory looks like this:

121

Switch Detailed description

-w <SCRIPT> Executed whenever UPFrame’s watchdog process
recognizes that PeerTracker is hanging or crashed.
The script should contain a restart command for
PeerTracker.

-e <SCRIPT> This post-processing script is executed after statis-
tical files (P2P statistics or peer dump files) were
written. The script will be called with the name
of the statistical file as first argument.

-t <TIME> Time interval the watchdog should check the
heartbeat of PeerTracker.

-f <FILE> Path to UPFrame’s first-in-first-out queue. Usu-
ally ’upframe/var/fifo’.

-d Not only gather statistics about P2P systems but
also some general traffic statistics. Slows down
processing a bit.

-a <FILENAME> File where subnets and masks are saved of the
form ’net mask ’ where mask is a number in range
0-32 that stands for the subnet mask. Example
’192.168.0.0 24 ’.

-l <FILENAME> Filename of the log file that PeerTracker uses.
-n <FILENAME> Use stand-alone mode. This option tells Peer-

Tracker to read the NetFlow data from a named
pipe (FIFO) instead getting the data from UP-
Frame. This mode is faster and more secure than
the UPFrame plug-in mode. The named pipe will
be deleted on exit.

-o Instead of logging to a file, log to standard output.
-p <FILEPREFIX> Filename prefix of the peer dump files. Appended

by ’ YYYYMMDDhhmm.dat ’ time stamp.
-s <FILEPREFIX> Same as above but for the P2P statistic files. Ap-

pended by ’ YYYYMMDDhhmm.dat ’ time stamp.
-c <FILENAME> Filename of the PeerTracker configuration.
-h Show short usage info.

Table G-1: PeerTracker command line options

122 APPENDIX G. PEERTRACKER USAGE INSTRUCTIONS

Switch Description

-i <IP> Target IP address of the host running UPFrame,
default is 127.0.0.1. Only needed when feeding
UPFrame.

-p <PORT> Target UDP port of the host running UPFrame,
default is 19999. Only needed when feeding UP-
Frame.

-d <USEC> Delay in micro seconds between packets. Does not
include time for reading, decompressing and send-
ing the packet, but is a purely additional delay.

-x <NUMBER> Every x-th packet, the specified delay takes effect.
Default is 0

-c <PACKETCOUNT> Number of NetFlow packets that are sent. Default
is all.

-b <BUFFERSIZE> Send buffer size. Default is 1024KB.
-f <FILE1> Read from <FILE1> instead of STDIN. Giving ar-

gument ’-’ will still read from STDIN. If <FILE1>
ends in ’.bz2’, bzip2 uncompression will be done on
it.
Note: Only <FILE1> can be read from STDIN.

-g <FILE2> Read from <FILE2> instead of STDIN. Giving ar-
gument ’-’ will still read from STDIN. If <FILE2>
ends in ’.bz2’, bzip2 decompression will be done
on it. This argument is optional to make net-
flow sreplay backward compatible.

-n <NAMEDPIPE> Instead of sending the NetFlow packets to UP-
Frame put them in named pipe <NAMEDPIPE>

on the local host. This allows faster and more se-
cure computation since there won’t be any packet
loss.
If this argument is not given data is sent using
UDP.

Table G-2: netflow sreplay command line options

123

Configuration file of PeerTracker

The following setup corresponds to the hardcoded default values

which should be reasonable for most purposes

Comments start with a

Format is ’%ParameterName% %Number%’

Unknown %ParameterName% is ignored

%Number% must be an unsigned integer including 0

Time in seconds after that all the hosts gets evaluated

EvaluationInterval 900

Suspicous portrange end port, start port is a 1024

SuspPortRange 30000

TCP big flow length in bytes

TCPBigLength 102400

TCP big flow minimum duration in seconds

TCPBigDuration 10

Number recently contacted neighbours that are stored in

ip_port_hashed_queue

All parameters beginning with Min or Max are relational

to this value

NeighbourHosts 100

Period in seconds that a host at least is observed

before it gets deleted or assigned ’active peer’

or ’dead peer’ status

ProbationPeriod 400

Maximum time in seconds an intern (home net) peer

may be inactive before it gets assigned ’dead peer’

status

Must be greater than Probation Period

MaxPeerInactivity 600

Maximum time in seconds a host can be candidate

MaxCandidateLife 1800

Maximum time in seconds an extern host can be

inactive before deletion

MaxExternPeerInactivity 10800

Maximum time in seconds a ’dead peer’ still

remains in hosts pool

MaxAfterLife 3600

124 APPENDIX G. PEERTRACKER USAGE INSTRUCTIONS

Maximum number of neighbours (out of

NeighbourHosts) that have a

non-default port as most used port

MaxPeerPortThreshold 6

Minimum number of neighbours (out of

NeighbourHosts) that must use the

default port to consider a host to be part

of a network

MinPeerPortThreshold 8

Minimum occurrence (out of NeighbourHosts) of

a port to be considered as incoming UDP/TCP port

MinIncomingPortThreshold 60

Minimum number of TCP flows for a host to be

considered as peer at all

MinTCPConn 3

Minimum number of suspicous flows for a host to

be considered as peer at all

MinSuspConn 3

Minimum number of TCP big flows for a host to

be considered as peer at all

MinTCPBig 3

Wether to track extern hosts

If 0, only peers in home net are tracked

OnlyTrackHome 0

Wether to dump eDonkey peers

If 0, eDonkey peers wont be tracked

TrackeDonkeyPeers 1

Wether to dump Overnet peers

If 0, Overnet peers wont be tracked

TrackOvernetPeers 1

Wether to dump Kademlia peers

If 0, Kademlia peers wont be tracked

TrackKademliaPeers 1

Wether to dump FastTrack peers

If 0, FastTrack peers wont be tracked

TrackFastTrackPeers 1

Wether to dump Gnutella peers

If 0, Gnutella peers wont be tracked

TrackGnutellaPeers 1

125

Wether to dump BitTorrent peers

If 0, BitTorrent peers wont be tracked

TrackBitTorrentPeers 1

Dump hosts periodically after each

evaluation interval

DumpHosts 0

How many hosts should be dumped,

set to 0 for no limit

DumpLimit 1000

Wether to dump the non peers after each

evaluation step

If 0, non peers won’t be dumped

DumpNonPeers 0

Wether to show all hosts or only hosts in home net

If 0, all hosts (including extern hosts) will be dumped

Use this with caution, since there may be

millions of extern hosts to dump

DumpOnlyHomeHosts 1

Wether to dump candidate peers

If 0, candidate peers won’t be dumped

DumpCandidatePeers 0

Wether to dump active peers

If 0, active peers won’t be dumped

DumpActivePeers 1

Wether to dump dead peers

If 0, dead peers won’t be dumped

DumpDeadPeers 1

Wether to dump overdead peers

If 0, overdad peers won’t be dumped

DumpOverdeadPeers 0

The format is ’ParamaterName Value’. The parameter names are equivalent
to the variable names in PeerTracker. The values of this file correspond to the
default values used for the measurements in this thesis. These values would be
reasonable for most setups.

In the UPFrame etc directory there are two shell scripts called ’ptreloadcon-
fig’ and ’ptdumppeers.sh’. As their names let assume, they can be used to make
PeerTracker reload its configuration file during runtime. This works by sending
the PeerTracker process the USR1 signal. Running ’ptdumppeers.sh’ will make
PeerTracker dump all its stored hosts according to the configuration file (obey-

126 APPENDIX G. PEERTRACKER USAGE INSTRUCTIONS

ing DumpLimit and other parameters) using the USR2 signal. Depending on
which hosts and how many hosts are dumped, this can take quite some time and
my fill up your hard drive (approximately 2.7 KBytes per host), so be careful
when using this command during plug-in mode. It could result in packet loss.

Output

P2P statistics files and host dump files are saved in a Perl format which means
that each value can be read in by a Perl script by applying the eval() function
to every line. An example of a partial P2P statistics file looks like this:

This is a perl data dump file, use eval to import data

$P2PStats{’1087859714’}{’infos’}{’datavalid’} = ’yes’;

$P2PStats{’1087859714’}{’infos’}{’flowtime’} = 1087859714;

$P2PStats{’1087859714’}{’infos’}{’processingtime’} = 912;

$P2PStats{’1087859714’}{’infos’}{’flowcounter’} = 11000000;

$P2PStats{’1087859714’}{’infos’}{’flowpacketcounter’} = 379279;

$P2PStats{’1087859714’}{’infos’}{’flowpacketloss’} = 0;

$P2PStats{’1087859714’}{’config’}{’evaluationinterval’} = 900;

$P2PStats{’1087859714’}{’config’}{’suspportrange’} = 7000;

$P2PStats{’1087859714’}{’config’}{’tcpbiglength’} = 102400;

$P2PStats{’1087859714’}{’config’}{’tcpbigduration’} = 10;

$P2PStats{’1087859714’}{’config’}{’neighbourhosts’} = 100;

$P2PStats{’1087859714’}{’config’}{’probationperiod’} = 400;

...

Using the post-processing script the statistics files for example can be com-
pressed and then transmitted to a storage server where eventually another
scripts could generate statistical graphics.

If the -d switch is enabled there are 171 values written in the P2P statistics
file, including the configuration information and some PeerTracker specific in-
formation like packet loss or the flow counter. For host dumps, 59 data fields
are written out for each host together with the processing time and the flow
time stamp. The field names are mostly self explaining.

The data is saved in a Perl hash array whose keys are the Unix time stamps
and whose values are sub hash arrays containing the actual information. This
way it is easy to read in several statistic files to analyze the contained data. See
Appendix H for scripts that process the statistics files to output the data in a
human readable format.

Appendix H

Used Software

Written/Modified software

• PeerTracker: Plug-in for UPFrame that identifies and tracks P2P hosts.
Can also be used in stand-alone mode without UPFrame.

• {show|analyze}{P2PStats|Peers} Perl scripts: Read files or directories of
PeerTracker output files and either show their information in a human
readable format or create gnuplot data files, scripts and graphics.

• netflow sreplay: Extended version of netflow replay that can replay two
NetFlow files at once, preserving synchronization. Moreover this program
can be used if PeerTracker is used in stand-alone mode. NetFlow data
then is written to a named pipe on the local host where it can be read by
PeerTracker.

• isSwitch: C version of isSwitch (Perl), tells if an IP is within SWITCH
network.

• ip port hashed queue: Data structure described in Section 3.3.2, there is
also a test program for verification purposes.

• nls: Perl script to show/symlink NetFlow file names in a human readable
format.

• {eDonkey|Overnet|Kademlia|FastTrack\BitTorrent}Tracker: Perl scripts
to identify and track internal/external P2P hosts using different methods.

• Safe{eDonkey|Overnet|Kademlia}Tracker: Perl scripts to identify safe P2P
hosts, which have a high probability to be a peer of a certain network.

• verifyPeer: Perl script that reads a PeerTracker peer dump file and actively
polls the identified hosts in order to verify them.

• verifyWWW: Perl script to verify WWW hosts.

127

128 APPENDIX H. USED SOFTWARE

DDoSVax related

• UPFrame 0.2: UDP processing framework to do online measurements

• netflow to text: To convert NetFlow data into a human/grep readable
format

• udp counter single.pl: As a flow collector for nprobe

Measurement related

• nprobe 3.0.3: To create NetFlow files on a Linux box

• gnuplot 4.0: To visualize the measurement data

Programming related

• valgrind: To check for memory leaks in code

• gprof: To analyze plug-in execution profile

P2P client related

• BitTorrent 0.332

• TorrentSpy-0.2.4.26-win32: To examine torrentfiles

• Azurueus 2.0.8.4

• eMule 0.4.2e

• iMesh V4

• Kazaa Multimedia Desktop 2.7

• KaZuperNode s147

• eDonkey Overnet 0.5.2

	Introduction
	Overview
	DDoSVax Project
	Reasons for P2P Identification
	P2P Identification and DDoS

	Goals
	Internet Communication Patterns
	Client-Server Model
	P2P Model

	Ways of File-sharing
	P2P Networks and Clients
	Generations
	General P2P Usage
	Popularity
	P2P Prosecution

	Network environment
	Flow-level Data
	SWITCH NetFlows

	P2P Host Identification
	P2P Systems Considered
	Traffic Observation Possibilities
	Packet-level Observations
	Flow-level Observations

	Host Identification Methods
	Default Ports
	Generic Approaches
	Host Pool
	Non-peer Identification

	Identification for Concrete P2P Systems
	eDonkey Identification
	Kademlia Identification
	Overnet Identification
	Gnutella Identification
	FastTrack Identification
	BitTorrent Identification
	Undetectable and Safe P2P Usage

	Population Tracking
	Conditions

	Example: Overnet Tracking
	Traffic Identification
	Limitations

	Implementation
	Offline Scripts
	Online Plug-in
	Identification Algorithm Overview
	Suspicious Port Range
	Tracking of External P2P Hosts
	Client Shutdown Detection
	Listening Port Detection

	Containers
	Hashed Table
	Hashed Queue

	Resource usage
	Space Complexity
	Time Complexity

	Findings
	Peer Verification Approaches
	eDonkey Server Tracking
	Polling Peers
	BitTorrent probe clients

	Interpretation of Verification Results
	P2P Usage in SWITCH Network
	Measurement Setup
	Peers in SWITCH network
	Peer Characteristics
	Bandwidth Consumption

	Population Tracking Results
	Related Work

	Conclusion
	Outlook
	Future Work and Improvements
	Automated Verification
	More General Identification
	Auxiliary Network Processors
	More P2P Networks
	Multi Peer identification
	TCP flags in NetFlow
	Continuous Examination
	State Reload

	Unsolved Problems

	References
	Full Task Description
	P2P Networks Table
	NetFlow Format
	SWITCH Network
	P2P Port Usage in the Internet 2
	Identification Code
	PeerTracker Usage Instructions
	Used Software

