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Abstract

Image registration is the task of finding a spatial transformation that opti-
mally maps one image onto another one. Thereby, usually a global optimum
on a similarity function (metric) is searched. Out of the huge variety of
different registration problems, many are computationally intensive and re-
quire large amounts of memory. None of the most prevalent software libraries
for image registration provides parallel computing methods for distributed
memory environments, although the task has successfully been parallelized
in several projects. Therefore, this thesis addresses the extension of one of
the most important libraries with a framework for parallel image registration
in distributed memory systems, such as clusters of workstations. The devel-
oped framework is based on a distributed calculation of the metric function
(as opposed to parallel optimization). The distribution is coordinated by a
generic module which serves as the basis for the parallelization of new met-
ric functions and at the same time hides the parallelization details from the
user. Maximum flexibility with respect to the underlying hardware is en-
sured by an abstract communication layer and a caching mechanism allows
to process even large images without exceeding the physical memory of the
participating nodes. By interacting with the numerous components provided
by the library, the framework can address a rich variety of different registra-
tion problems, which is exemplarily demonstrated in three scenarios. Based
on these scenarios experiments have been carried out on different platforms.
They show that in some cases a near linear speedup can be reached even on a
large number of processes despite of the generic character of the methods and
that the framework performs particularly well in data intensive applications
because of the avoidance of disk swapping due to the combination of caching
and the accumulated memory capacity in a cluster.

In der Bildregistrierung (Image Registration) geht es darum, eine räumliche
Transformation zu finden, welche ein Bild optimal auf ein anderes abbildet.
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Dazu wird üblicherweise ein globales Optimum auf einer Vergleichsfunkti-
on (Metrik) gesucht. Aus der grossen Auswahl verschiedener Registrierungs-
probleme sind viele rechenaufwendig und haben einen grossen Speicherbe-
darf. Keine der am weitesten verbreiteten Software Bibliotheken für Bild-
registrierung verfügt über Parallel-Computing-Methoden für Umgebungen
mit verteiltem Speicher, obwohl das Problem in verschiedenen Projekten er-
folgreich parallelisiert wurde. Deshalb widmet sich diese Arbeit der Erwei-
terung einer der wichtigsten Bibliotheken mit einem Framework für paral-
lele Bildregistrierung für Systeme mit verteiltem Speicher, wie zum Beispiel
Workstation-Clusters. Das entwickelte Framework basiert auf einer verteil-
ten Berechnung der Vergleichsfunktion (im Gegensatz zu paralleler Optimie-
rung). Die Verteilung wird koordiniert durch ein generisches Modul, welches
als Basis für die Parallelisierung neuer Metriken dient und gleichzeitig die
Parallelisierungsdetails vor dem Benutzer verbirgt. Ein abstrakter Kommu-
nikationslayer garantiert maximale Flexibilität im Bezug auf die zu Grunde
liegende Hardware-Architektur, und durch einen Caching-Mechanismus wird
es möglich, auch grosse Bilder zu bearbeiten ohne dabei die Arbeitsspeicher-
Kapazität der beteiligten Knoten zu übersteigen. Die Interaktion mit den
zahlreichen Komponenten, welche die Bibliothek zur Verfügung stellt, er-
laubt den Einsatz des Framework in einer breiten Auswahl von Problemen
im Gebiet der Bildregistrierung. Dies wird anhand dreier Beispiel-Szenarios
exemplarisch demonstriert. Aufbauend auf diesen Szenarios wurden Experi-
mente auf verschiedenen Plattformen durchgeführt. Diese zeigen, dass trotz
des generischen Charakters der Methoden in gewissen Fällen ein beinahe
linearer Speedup erreicht werden kann, und dass das Framework in daten-
intensiven Problemen besonders gute Ergebnisse erzielt. Dies, da durch eine
Kombination von Caching und der akkumulierten Speicherkapazität eines
Clusters das in sequenziellen Programmen auftretende Disk-Swapping ver-
mieden werden kann.
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Chapter 1

Introduction

Image registration is the process of establishing a point-by-point correspon-
dence between two images of a scene. The images can thereby be acquired by
different sensors or by the same sensor in different points in time or from a
different point of view. Image registration is applied in several fields, such as
in medical imaging, in stereo vision applications, for motion analysis, object
localization or image fusion.

The correspondence between the images is defined by a spatial transfor-
mation, which is usually computed by an optimization process. Thereby an
optimizer searches a global optimum on a function which defines a similarity
measure (metric function1) between the images dependent on their relative
position.

For more profound information about image registration please refer to
Section 2.1.

Different software packages, libraries and frameworks exist that carry out
image registration. Some of the most prevalent tools are the Automated Im-
age Registration (AIR) package [1], the Flexible Image Registration Toolbox
(FLIRT) [2], the VTK CISG Registration Toolkit [3], the Image Processing
Toolbox of Mathworks (for Matlab) and the Insight Segmentation and Reg-
istration Toolkit (ITK) [4]. Among these projects, ITK is the most generic
and extensive approach. Apart from the Image Processing Toolbox of Math-
works, all the above mentioned packages are open source projects that are
freely available. However, only the Insight Segmentation and Registration
Toolkit can be used free of charge in commercial applications.

Dependent on the application, image registration can be a resource de-
manding task. The main problems are the sometimes large amounts of data,

1the similarity function is often called metric function, even though it does not neces-
sarily meet the definition of a metric in the mathematical sense
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that can easily exceed the physical memory size of a state of the art com-
puter, as well as the search space, which can reach a considerable size2 in some
problems. Exploring large search spaces and data sets inherently causes long
computing times. What makes things even worse is the fact, that for large
images, computers can run out of available physical memory. The resulting
disk swapping causes a considerable increase in computing time.

Parallel computing has proven to be an efficient technique to solve both,
memory and performance problems. Most specialists dealing with image reg-
istration are not familiar with parallel and distributed computing techniques.
To bridge the gap between specialists of different disciplines, Squyres et al.
[5] as well as Seinstra and Koelma [6] propose to integrate parallel computing
methods into image processing libraries. Despite of the fact, that such meth-
ods have successfully been applied to specific image registration problems,
no generic software modules exist that address the image registration task
by means of parallel computing.

This thesis addresses the problem of parallelizing the image registration
task and thereby tackles performance as well as memory issues. The goal
was to develop methods that act as generic modules which can be used in
a multitude of registration problems. This should be achieved by extending
an existing library. To account for the diversity of the addressed registration
problems the methods had to be designed for clusters of workstations (which
are cheap and highly available) rather than for dedicated parallel computers.

Parallelization methods for optimization tasks can be divided into coarse
and fine grained. While in coarse grained methods multiple independent
function evaluations are parallely executed, fine grained methods calculate
the basic computational steps in parallel. According to Eldred and Schimel
[7], the parallel efficiency for coarse grained methods is usually better, and
best performance and scalability can be achieved by combining coarse and
fine grained methods.

Applying this scheme to image registration shows that there are basically
two strategies: parallelizing the optimization method or parallelizing the met-
ric function evaluation. These strategies can also be combined. Approaches
based on both, parallel optimization as well as parallel metric function eval-
uation have successfully been realized before.

When applying coarse grained methods, memory issues still remain criti-
cal, since each function evaluation requires the whole data set. Furthermore,
coarse grained methods usually scale only within a limited range. Several

2For deformable problems, search spaces of up to 9.8 × 106 parameters have been
reported. However, more typical are search spaces from about six to a few hundred
parameters.
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voxel based registration techniques are well suited for fine grained parallel
computation based on parallel metric function evaluation. This thesis con-
centrates on exactly these techniques.

A generic module for parallel metric computation has been developed,
which extends the basic registration framework of the ITK library. Together
with the huge diversity of registration components within ITK, this module
allows the use in a multitude of applications. A caching mechanism has been
introduced that takes advantage of the fact that each processor works on
a partial image only when parallely evaluating a metric function. Enabling
this mechanism allows to treat even large data size problems with a moderate
amount of memory.

The developed methods have been integrated into three different scenarios
and thereby successfully been tested for suitability in two and three dimen-
sional, rigid and non-rigid as well as intra- and inter-modal registration. On
two different cluster systems, more that 1000 experiments have been carried
out. Thereby the speedup3 compared to the equivalent scenarios composed
of standard ITK modules as well as scalability issues have been examined.
The analysis of time spent in different parts of the code further allowed to
gain an insight into strengths and deficiencies of the developed framework.

It could be shown, that in some cases, a speedup of more than 15 can be
reached on 16 and of over 50 on 64 processors. The use of caching, together
with the accumulated memory capacity of a cluster made it even possible to
reach parallel efficiencies4 of far more than 100% compared to a sequential
program that causes the operating system to start disk swapping.

As a conclusion from these results, it can be said that the ITK library was
successfully extended by a generic framework for parallel image registration,
which allows to treat even memory intensive problems.

The rest of this thesis is structured as follows:

Background: This chapter gives background information to image regis-
tration, parallel computing and ITK and thereby introduces the most
important terms.

Related Work: The Related Work chapter first discusses the motivation
of the project in more detail, based on work previously done in the
area. Then an overview of alternatives to parallel computing to address
the performance and memory problems in image registration is given.
Finally, other projects that address image processing and registration
by means of parallel computing are reviewed.

3See Section 2.2 for a definition.
4See Section 2.2 for a definition.
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Problem Statement: The Problem statement chapter explains the prob-
lem tackled by this thesis in detail.

Requirement Specification: This chapter defines the exact scope of the
thesis. It covers requirements and restrictions on the support of reg-
istration methods and the underlying hardware as well as an the ex-
tendibility of the developed methods.

Distributed Registration Framework: The developed methods are pre-
sented and explained in the Distributed Registration Framework chap-
ter. Concepts as well as implementation are discussed in-depth. A
reader that intends to use or extend the developed modules is strongly
encouraged to read this chapter.

Evaluation: The Evaluation chapter discusses the methodology as well as
the results of the evaluation of the developed framework.

Future Work: This chapter outlines, how the framework can further be
improved.

Conclusion: The Conclusion chapter gives a concise review of what has
been reached by this thesis and what has been left over to future
projects.



Chapter 2

Background

2.1 Image Registration

Image Registration is the process of finding a spatial transformation that
establishes optimal correspondence between two (or more) images. This is
illustrated in Figures 2.1 and 2.2.

P

T

Q

Figure 2.1: The goal of image registration is to find the transformation that
optimally maps one image onto another one.

There are many different fields where image registration is applied, such as
medicine, remote sensing, computer vision or cartography to name just a few.
Two examples can be found in Figures 2.3 and 2.4. Some of the main goals
are the combination of data acquired by different sensors, optimally aligning
images or objects recorded from different viewpoints, analyzing changes in
images taken at different points in time or matching an object model into a
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Figure 2.2: Goal: Find the (deformable) transformation that maps the image
to the left onto the image to the right. (image modified from http://www-
ipg.umds.ac.uk/p.edwards/warping/spapp.html, accessed 1 October 2004)

given scene.
A typical example for image registration is the combination of the infor-

mation contained in an magnetic resonance imaging (MRI) and a computed
tomography (CT) scan, which makes it necessary that these scans are opti-
mally aligned.

Because of the diversity of applications and of the goals aimed at by the
use of image registration, a variety of methods have been developed to address
the task. Despite this variety, there are some main components common to
most of these methods.

Some kind of similarity measure (metric) is applied to match features of
the images to each other. The diversity of features used is again huge, rang-
ing from raw pixel intensities to data structures produced by sophisticated
object recognition methods. A global optimum of the similarity measure de-
pendent on the parameters of the spatial transformation used during mapping
is searched according to an optimization strategy. The spatial transformation
is thereby restricted to the distortions that are to be expected for a given ap-
plication. During optimization, one image (fixed image) is usually kept fixed
while the other image (moving image) is permanently being transformed.
This process is depicted in Figure 2.5.

According to the spatial transformation used during mapping, rigid , non-
rigid or deformable registration methods are distinguished. While in rigid
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Figure 2.3: Example of a medical application: Applying the spatial trans-
formation found during registration of the unregistered brain images (left)
brings them into correspondence (right).
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Figure 2.4: Example of an application in cartography.
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Fixed Image

Moving Image

Metric

Optimizer

Interpolator

Transform

Figure 2.5: Registration is basically an optimization process involving the
following steps: 1) transform the moving image and compare it to the fixed
image using a metric function. 2) dependent on value and derivative of the
metric function, an optimizer calculates a new transformation. 3) back to 1
until a stop condition of the optimizer is reached.

registration the transformation only consists of rotations and translations,
no such restriction exists in non-rigid registration. A special kind of non-
rigid registration is deformable registration, where elastic models define how
an image is allowed to be distorted.

Further, registration methods are often classified according to the type
of sensors involved. In intra-modal registration the images result from the
same type of sensors. This is not the case in inter-modal (or multi-modal)
registration, an example of which is the combination of MRI and CT data
mentioned before. Moreover, there are methods that match intensity data to
geometrical models. They are called model based registration methods.

Finally it is possible to distinguish between area-based and feature-based
algorithms. An explicit feature-extraction step allows feature matching in
feature-based methods. This step is omitted in area-based methods where
raw image data is used for correlation estimation. This project only covers
a special kind of area based methods that works by direct pixel intensity
comparisons. Such methods are called intensity based .

2.2 Distributed and Parallel Computing

Because of the ever growing need for computation speed, lots of approaches
to combine the power of several processors have been developed in past.
Thereby a variety of different architectures have been proposed.

A popular classification scheme for parallel computing architectures was
defined by Flynn. In a computer there are two basic types of information:
data and instructions. Flynn’s taxonomy distinguishes four types of com-
puter systems according to the number of streams of each type of information
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[8]:

• Single Instruction Single Data (SISD): these are usual sequential com-
puters

• Multiple Instruction Single Data (MISD): such systems are rather un-
usual, however there exist some kind of pipeline architectures that fit
this definition.

• Single Instruction Multiple Data (SIMD): a typical example for such
an architecture is a vector processor

• Multiple Instruction Multiple Data (MIMD): there are several systems
matching this definition, a cluster of workstations for example.

Often the class of MIMD systems is further subdivided into shared mem-
ory and distributed memory systems. In shared memory systems all proces-
sors work on the same, shared address space. In distributed memory systems,
on the other hand, each processor has assigned its own memory which other
processors cannot directly access. The most prevalent means of communica-
tion in such systems is message passing.

Systems based on message passing often build up on libraries that take
care of the involved low level details, such as buffering, data type conversion
in heterogeneous clusters or error handling. The most important libraries
are the Parallel Virtual Machine (PVM) and different implementations of
the Message Passing Interface (MPI) standard.

While Flynn’s taxonomy classifies parallel hardware architectures, there
is a similar scheme for parallel programming models. It distinguishes between
single program multiple data (SPMD) and multiple program multiple data
(MPMD) programs. While in SPMD architectures the same program is run
on every processing node, different pieces of software carry out the calculation
in the MPMD case.

MPMD architectures are typical in applications where entirely different
calculations have to be carried out on different nodes. Often, these calcu-
lations are thereby applied to the same set of data. This kind of parallel
architecture is also referred to task parallelism. SPMD programs are usually
applied when the same operations are applied to different parts of the data.
This case is also referred to as data parallelism.

Often, one process slightly differs from the rest in the SPMD case. This
can be achieved by adding conditional statements that assign a special task
to the process with rank 0. The rank of a process is a unique identifier that
is assigned to each process. Usually, process ranks are integers that range
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from 0 to the n− 1 where n is the number of processes participating in the
calculation.

The methods developed throughout this project are designed for dis-
tributed memory MIMD systems. The process with rank 0 has a special
task assigned and the modules can be deployed in SPMD as well as MPMD
programs.

The quality of a parallel program is often measured in terms of two pa-
rameters: parallel speedup and parallel efficiency . Parallel speedup is defined
as

SN = TS/TN

where TS is the execution time of the best sequential algorithm1 and TN

is the execution time on N processors.
Parallel efficiency is defined as

EN = SN/N

where N is the number of processors.
An example should show the meaning of these measures: If the fastest

sequential algorithm executes in 8 seconds (TS = 8), and the parallel algo-
rithm takes 2 seconds on 5 processors (N = 5, T5 = 2) we get a speedup S5

of 4. A speedup of 4 using 5 processors can be considered as an efficiency of
80%, excatly as denoted by the measure E5.

There are different kinds of parallelization overhead that inherently limit
speedup. Often this overhead is due to the necessary interprocess commu-
nication an is mainly characterized by the number and sizes of messages in
distributed memory systems, and by synchronization issues in shared mem-
ory systems. Further, parallel programs may perform poorly because of un-
equally loaded nodes. Nodes might stay idle because they are waiting for
others to complete their task. Sophisticated load balancing algorithms were
proposed to handle this problem. Finally, there is limiting factor which is
known as Amdahl’s Law . Amdahl’s Law states that the maximum speedup
that can be reached by a parallel program is

S ≤ 1

f + (1− f)/N

1Note that it is difficult to define TS , because it is not clear which processor (a sin-
gle processor in the parallel environment? the fastest available serial processor?) should
be taken as reference and because it is not generally possible to define the best sequen-
tial algorithm because of several reasons such as memory versus performance trade-off,
dependency on different problem properties or changes over time.



12 Background

where N is the number of processors and f is the non-parallelizable (and
hence 1− f the parallelizable) fraction of the code [9]. This is a theoretical
limit, in practice this speedup will not be reached because of the paralleliza-
tion overhead mentioned before.

Amdahl’s law can be modified to take into account the problem size W
(which is basically the same as TS) as well as any overhead Tpo caused by the
parallelization [10]:

SN =
W

fW + (1− f)(W/N) + Tpo

=
N

1 + (N − 1)f + NTpo

W

→ 1

f + Tpo

W

for N →∞

These equations show, that the non-parallelizable fraction, as well as the
parallelization overhead should be minimized in order to achieve optimal
speedup.

2.3 ITK and its Architecture

The Insight Segmentation and Registration Toolkit (ITK) is an open-source
image processing library written in C++. It was designed to support the
Visual Human Project [11] and mainly focuses on medical image segmen-
tation and registration. ITK was developed by six principal organizations
and funded by the National Library of Medicine at the National Institutes of
Health. However, many other organizations and individuals have been help-
ing to evolve the software. Even though ITK is already a large package, it is
still rapidly growing. Reasons for that are the fact that ITK is open source
and can be used free of charge even in commercial applications, as well as
the good support and documentation provided by the main developers.

Different technical features have been incorporated into ITK. These are
motivated by a design and implementation philosophy outlined in the ITK
Style Guide [12] and the ITK Readme [13]. The following sections are in-
tended to give an overview of the most important architectural features.
Some general design decisions are covered by Section 2.3.1. A discussion
of the core feature of the ITK architecture, a pipeline mechanism for data
processing, follows in Section 2.3.2. Section 2.3.3 finally gives an overview
of the architecture of the basic registration framework within ITK. A de-
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tailed overview of ITK and its concepts and classes can be found in the ITK
Software Guide [4].

2.3.1 General Features

ITK is designed to be compilable on multiple platforms, that is on several im-
portant C++ compilers and on different operating systems such as Windows,
Unix or MacOSX.

To ensure a common build procedure on all platforms, CMake is used.
CMake is a cross-platform build environment that allows to translate generic
makefiles into makefiles for a particular compiler.

Besides the support for different operating systems and compilers, ITK
further provides bindings to other programming languages, namely TCL,
Python, and Java.

To keep the algorithms and modules applicable to a large variety of differ-
ent problems, ITK makes extensive use of generic programming techniques.
To achieve high performance and at the same time keep the architecture
generic, many modules are templatized, which allows to make decisions at
compile rather than at run time. The itk::Image class, for example, is tem-
platized over the pixel type and the number of dimensions. In addition to
pixel-type images, other data representations such as point sets and meshes
are supported. In a generic programming model, there are objects that store,
and objects that operate on data. Objects that store data are also referred
to as containers and objects that operate on it as algorithms. Often, a third
class of objects, the so called iterators are introduced. Iterators provide a
generic interface for algorithms to access data within containers and are an
important part of the programming model of ITK.

Another part of this programming model are the so called smart pointers ,
which have been introduced because C++ does not take care about memory
allocation and freeing. Most objects within ITK are referenced by smart
pointers that realize reference counting and automatically release memory
that is not used any longer. Further features are object factories, which
allow extensions of the system at run-time, a command-observer design pat-
tern used for event handling and a pipeline architecture for data processing.
This pipeline architecture is the core concept within ITK and it is therefore
discussed in more detail in the following section.

2.3.2 Pipeline Architecture and Data Streaming

Basically, two types of objects are involved in data processing: data objects
such as images and meshes that represent data, and process objects that
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operate on data objects. These classes are connected by a data-flow pipeline
mechanism as depicted in Figure 2.6. At the beginning of a pipeline, there is
a process object usually referred to as source (a file-reader, for example). Its
output is an ITK data object. To this data object, another process object
(a filter) is attached which again produces a data object and so on. The
pipeline is finally terminated by a so called mapper , a special process object
that writes data to a file or any other output system.

...source data
object filter filter data

object mapper

Figure 2.6: Illustration of the pipeline mechanism within ITK: process ob-
jects are connected to data objects, which in turn are connected to other
process objects again.

This architecture does not only describe the flow of data, but also incor-
porates some sophisticated concepts. It takes care of memory management
and makes sure the pipeline is always up to date while guaranteeing that
only those sections are executed that have changed. It further enables data
streaming and multi threading (see below).

Within the pipeline, there is some trade off between memory efficiency
and execution speed. That is, once a filter has calculated its output, this
output can be kept in memory for re-usage, or the memory can be released
and the filter has to re-execute if the output is needed again at a later point
in time. Therefore, each filter has a release data flag which optionally can
be set by the user. This allows to optimally adjust the pipeline behavior to
the application needs.

Execution of the filters is triggered by the mapper’s Update() method.
This update request is delegated in upstream direction to the data object
at the mapper’s input, from there to the filter producing this data object
and so on (see Figure 2.7). To avoid redundant processing, the pipeline
keeps track of any modifications on process and data objects and makes sure
a filter is only executed when necessary. As soon as the update request
reaches the source of the pipeline, filters that need to execute do so in turn
in downstream direction, that is in direction from source to mapper. A filter
executes when its GenerateData() method is invoked. In Figure 2.8 this
process is illustrated in a simplified way, i.e. by neglecting the interactions
between data and process objects.

An important feature of the ITK pipeline is its capability to process data
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...source data
object filter filter data

object mapper

...
Update() Update()

upstream direction

Figure 2.7: Illustration of the interaction between process and data objects
for the case of the Update() method. As soon as a mapper is asked to update
its output, it delegates this update request to the data object at its input.
This data object in turn delegates the request to the process object by which
it is generated, and so on.

source data
object filter data

object filter ...

Update()

Update()

GenerateData()

GenerateData()

Update()

GenerateData()

upstream

downstream

Figure 2.8: Illustration of the pipeline execution: First, update requests
propagate upstream from the mapper to the source, and then filters execute
in turn by invoking their GenerateData() method.
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in pieces. This concept, which is named streaming , permits to apply the
filters within the pipeline on sub-images and to reassemble the whole image
at the end of the pipeline. Therefore, even very large images can be processed
without exceeding physical memory size. Obviously, not every filter can be
applied to partial images, because of global data dependencies. Therefore,
only parts of the toolkit are streaming capable. Even though some metric
functions are suited to be applied to partial images, none of the registration
methods within ITK supports streaming at the time of this writing.

Filters that support streaming are well suited for parallel computation.
Therefore, they usually support multi-threaded execution. The basic con-
cept, splitting data into pieces for processing, is the same. Thus, multi-
threading comes at little cost when building up on the streaming architecture.
A filter simply has to implement the ThreadedGenerateData() method in-
stead of the GenerateData() method in order to be multi-threading capable.

The processing of sub-images is realized by a concept consisting of three
different image regions. These regions are the largest possible region, which
represents the entire dataset, the buffered region, which is a contiguous block
of memory allocated by filters to hold their output and the requested re-
gion which is the part of the dataset that a filter is asked to process. An
ImageRegionSplitter allows to divide the image region into several re-
quested regions which are then processed one after the other.

The Update() method of data objects, invokes three methods:

• DataObject::UpdateOutputInformation()

• DataObject::PropagateRequestedRegion()

• DataObject::UpdateOutputData()

The output information consists of meta-data which allows to map the
pixel coordinate system to a position in real world. It has to be changed
when an image is shrunk, for example.

As indicated by its name, PropagateRequestedRegion() asks a preced-
ing filter for an output of requested size. Sometimes a filter cannot satisfy this
request and produces a larger output. Further, a filter might need a larger
region at its input in order to generate its output. This occurs, for example,
when some additional boundary pixels are required by a filter kernel.

The third method called by Update() is UpdateOutputData(), which de-
termines whether a particular filter needs to execute. Once a filter executes,
all filters downstream have to do so as well.
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2.3.3 Basic Registration Framework

Since the multitude of registration problems asks for different methods to
solve them, ITK provides different registration frameworks, each suitable for
some particular applications.

There exist four registration frameworks within ITK, three of which are
only suited for specialized tasks. Two of these specialized frameworks treat
different deformable registration problems and the third makes model to
image registration2 possible. Besides these very specialized methods, a basic
image registration framework allows to solve a multitude of more general
registration tasks. It provides intensity based algorithms for registration
problems defined by global transforms as well as for some simple deformable
problems. This project only covers the basic registration framework, the
architecture of which is discussed within this section.

As seen in Section 2.1, four main modules are required to solve the
registration task, namely a similarity measure (or metric), a transform
that defines the search space, an optimizer , and an interpolation method .
These four modules also make up the main part of the basic registra-
tion framework within ITK. Besides them, there is a controller class, the
ImageRegistrationMethod. The ImageRegistrationMethod sets up the
necessary interconnections between the other modules and it is possible to
register an observer to it, which reacts to events generated during the regis-
tration process.

The four main modules are more or less freely interchangeable. This
flexibility allows to create a multitude of registration setups suited for lots
of different applications.

From the user’s point of view, the modules are assigned to the
ImageRegistrationMethod class, which hides the further details. It keeps
a reference to each module and then sets up the necessary interconnections.
That is, it assigns the transform and interpolator to the metric and the metric
to the optimizer (see Figure 2.9). The optimizer does the actual registration
task and its execution is wrapped by the controller’s StartRegistration()
method.

The choice of the transform is mainly affected by the nature of the overall
problem, that is by the distortion that is to be expected between the images.
To avoid holes and overlaps, the transform is applied in inverse direction.
Each pixel in the fixed image is transformed and the intensity value at the
transformed point is read from the moving image. Transforms within ITK
work on world coordinates as opposed to pixel coordinates. Image meta-data,
such as pixel spacing and origin thereby allow to convert pixel positions into

2see Section 2.1.
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ImageRegistrationMethod

Optimizer

Metric

Interpolator

Transform

Figure 2.9:

world coordinates. Using world coordinates for example guarantees that even
non-isotropic images are correctly treated.

ITK provides three interpolation methods: nearest neighbor, linear and
bspline. The choice of the interpolator mainly affects the quality of the solu-
tion. Methods that ask for sub-pixel accuracy, for example, require sophisti-
cated interpolation methods. Such methods, however, are not well suited for
real time applications because of the high computational cost. More accu-
rate interpolators further result in smoother cost functions as illustrated in
Figure 2.10. This can be of advantage during the optimization process.

The optimizer directly operates on the transform parameters. There-
fore, the transform restricts the set of possible optimizers, that is, not all
transform-optimizer pairs optimally work together. At the time of this writ-
ing, all optimization algorithms implemented in ITK work iteratively. Most
of them are gradient based optimization methods, but there are others as
well, an evolutionary algorithm, for example.

The decision which metric function to use is often the most crucial one,
and greatly depends on the characteristics of the image sensors. While all
cost functions within ITK can be applied in intra-modal problems, only the
subset of cost functions based on mutual information can be used in inter-
modal applications. The metric further greatly affects the catch range of
the optimizer, and its choice is therefore dependent on the possibility for a
sophisticated initialization and on choice of the optimizer. The aim of this
project is, to make it possible to parallely calculate the metric functions of
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Figure 2.10: The metric function along one transform parameter
for linear (top) and bspline interpolation (bottom). (images from
http://www.itk.org/CourseWare/Training/RegistrationMethodsOverview.pdf)
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ITK. They are therefore going to be presented in more detail now. At the
time of this writing, there exist 11 of them:

• GradientDifferenceImageToImageMetric

• MattesMutualInformationImageToImageMetric

• MeanReciprocalSquareDifferenceImageToImageMetric

• MeanSquaresImageToImageMetric

• MutualInformationImageToImageMetric

• NormalizedCorrelationImageToImageMetric

• CorrelationCoefficientHistogramImageToImageMetric

• MeanSquaresHistogramImageToImageMetric

• MutualInformationHistogramImageToImageMetric

• NormalizedMutualInformationHistogramImageToImageMetric

• KullbackLeiberCompareHistogramImageToImageMetric

Whereas the metric functions related to mutual information can be ap-
plied in inter- as well as in intra-modal registration, all the other functions
are only applicable in intra-modal registration.

The most common cost function is the mean squares metric, which pixel-
wise sums up the squared differences of the intensity values. The mean
reciprocal metric works on a pixel by pixel basis as well, however, instead
of adding the squared differences, the differences are added after passing
them through the bell-shaped function 1

1+x2 . The gradient difference metric
compares image gradients instead of intensities, the normalized correlation
metric is principally a cross correlation approach and the mutual information
metrics are based on a statistical method that minimizes the joint information
of the overlaid images measured by entropies of the intensity distribution
functions. Those metrics carrying the term ’Histogram’ in their name are all
derived from a common superclass and operate on joint histogram data of
the two images. The computational complexity differs greatly for different
metrics. For most optimization strategies, the metric value as well as the
derivative at a given position have to be evaluated. Obviously, the derivative
calculation becomes more time-consuming the more transform parameters are
involved. That is, for rigid transforms, for example, the derivative calculation
is less complex than for general global transforms.
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An extension of the basic image registration framework described above
is the multi-resolution registration framework. It consists of the same basic
modules but operates on two so called image pyramids instead of two simple
images as its input. An image pyramid represents an image at different res-
olution levels. The framework takes care of all the necessary steps involved
when switching from one to the next resolution level. Multi-resolution reg-
istration can considerably reduce computing time for large input images,
and often the optimization process becomes more robust since there are less
undesired local optima for low resolution images (refer also to Section 3.2).
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Related Work

3.1 Motivation

A huge diversity of different methods have been developed to address the im-
age registration problem. Some of them demand for long calculation times.
Dependent on the application, the main reasons for this computational ex-
pense are the sometimes large image sizes [14, 15, 16], the large number
of parameters involved in the transform that creates a huge search space
[15, 17] and the fact, that finding a global optimum on a highly non-linear
metric function is a complex task that asks for time consuming optimization
methods [18, 19].

For registrations based on linear transformations, encountered execution
times on a single processor on state of the art hardware at the respective time
of writing were 3-4 minutes for a resolution of 128×128×21 pixels [20] (1998),
between 10 and 80 minutes for an image resolution of 125× 125× 250 pixels
[16] (2003) and about 45 minutes for approximately 256 × 256 × 50 pixels
[21] (1998). In deformable applications, the search space can be significantly
larger, which results in a considerable increase in computational complexity
[15]. In such problems, computing times of up to 330 minutes were reported
by Rohlfing and Maurer [15] in 2003 and in 1996 Christensen et al. [17]
stated that the calculation of a deformable registration problem with 9.8×106

transform parameters on a 128 × 128 × 100 voxel volume can take up to 7
days on a 150 MHz MIPS R4400.

Besides increasing the number of arithmetic operations, large data sizes
can also cause problems with the memory constraints given by off-the-shelf
computers [16, 21]. Image resolutions of more than 500×500×500 pixels are
not unusual in medical applications [16, 22]. Such images require storage in
the order of the available physical memory on a typical workstation computer.
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Exceeding physical memory causes disk swapping and therefore a drastic
increase in computing time. The problem of data size is likely to even increase
in future, because of ever more data produced by ever better acquisition
devices [14] and because of a trend from 2D to 3D image processing [21].

In some registration applications, long computing times are unacceptable.
Among them are real time applications such as in range data analysis [23] or
sensor fusion [24], applications that have to cope with the huge amount of
data daily produced by a large amount sensors [14] and clinical applications
that ask for fast imaging in intra-operative situations as well as to cut down
time between scan and surgery [15, 21, 25].

Besides an enormously higher computing power, parallel computing can
also provide a solution to memory problems by using the aggregated memory
capacity provided by all nodes participating in the computation [14, 26, 27].
This encourages the use of parallel computing in image registration appli-
cations when performance is a problem. Since image processing experts are
usually not quite familiar with parallel computing, different groups suggested
to hide the parallelization details of image processing tasks by the develop-
ment of parallel image processing libraries, such as presented in [5], [28] and
[6]. At the time of this writing, no such libraries exist that provide generic
building blocks for a multitude of registration applications in a distributed
memory parallel processing environment.

3.2 Alternative Approaches to Cut Down

Computing Time

Reducing execution time is an issue in image registration applications, and
parallel computing is a possible solution to it, as outlined in the preceding
section. However, parallel computing asks for expensive resources. Therefore
it is a must to consider other alternatives that cut down computing times
prior to applying parallel computing methods. In image registration, this
can be achieved by data as well as search space reduction [14].

Two main strategies are applied to reduce data sizes: Registration of sub-
images only [14] and multi-resolution registration as applied in [14], [20] or
[21]. The idea of the multi-resolution approach is to start at a low image
resolution to roughly approach the final solution and to successively refine
the image resolution to eventually reach the required accuracy.

Another idea to reduce data is the application of some kind of feature
extraction prior to registration, instead of working on full pixel intensity val-
ues. This, however, can lead to information loss which might be undesirable
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in applications that ask for high accuracy [20].

The most important step in search space reduction is the application
of an appropriate optimization method, that efficiently explores the search
space. To avoid getting stuck in a local optimum on the metric function,
often global optimization methods such as genetic algorithms are applied
as in [14], [18] or [19]. These methods, however, are usually more time
consuming than local optimization methods [18, 19]. Another approach to
avoid local optima is to provide an initial guess transform prior to applying
a local optimization method [16, 19, 21]. Finally, it is possible to rely on
the multi-resolution approach described above, which is more robust with
respect to getting trapped in a local optimum, since less of them exist at a
low resolution level [20, 21].

Further search space reduction techniques can be found in deformable
problems. Examples are successive grid refinement [15] or compensation for
global differences by applying a registration based on global transforms prior
to the deformable registration [21].

All of these methods provide efficient ways to optimize image registration
performance. However, they also show certain drawbacks. Data reduction
techniques such as sub-image registration or feature extraction might cause
less accurate registration results and search space reduction techniques do
not solve the memory problems caused by large data sets. The same holds
for the multi-resolution approach as soon as it comes to working on the high-
est resolution level. These drawbacks can be overcome by applying parallel
computing methods.

3.3 Parallel and Distributed Computing in

Image Processing and Registration

Even though communication overhead is one of the most important reasons
that limits the speedup of parallel applications, many authors state, that
image processing tasks are good candidate for parallel computing because of
the large data sizes involved [5, 9, 26, 27, 29, 30]. The inherent overhead of
data distribution can only be overcome by parallel file system [5].

However, the fact that many image processing tasks are inherently parallel
[5, 28, 31] often outweighs the problems caused by the data amounts and
allows to achieve near linear speedup [5, 28]. Often, data parallelism is
applied to account for the localized operations in low level algorithms [9]
and to cope with the involved data amounts [29]. Different strategies have
been proposed to reduce transmission times of large amounts of data. These
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include using IP-Multicast [32, 33] for communication involving many nodes
and compressing data prior to transmitting it, which sometimes allows to
achieve an increased throughput. However this greatly depends on data and
system properties [34, 35].

Image registration methods exhibit components that have some degree
of natural parallelism. Typically, either the optimization method or the
cost function is parallelized. However, other approaches exist as well, such
as parallely calculating general matrix operations [24], solving differential
equations [17] or decomposing wavelets [36].

Among optimization methods, the most popular candidates for paral-
lelization are evolutionary algorithms, as applied in [14], [18] and [19]. The
main reason for this popularity is the inherent parallel character of such al-
gorithms as pointed out by Salomon et al. [19]. However, other optimization
methods, such as the simplex algorithm, have successfully been parallelized
as well [15].

Many intensity based cost functions work on a pixel-by-pixel basis, ex-
actly as typical low level image algorithms do. Approaches that take advan-
tage of this inherently parallel nature of metric functions are presented in
[15], [21], [23] and [25].

Eldred and Schimel [7] discuss the problem of parallel optimization from
a more theoretical point of view. To avoid the scaling problems of parallel
optimization methods and at the same time taking advantage of their parallel
nature, a combination with parallel function evaluation is proposed. This
approach has been applied to image registration by Rohlfing and Maurer
[15] by combining parallel optimization with parallel metric calculation.

Parallel image processing has been deployed on different hardware archi-
tectures. While some of them take advantage of the high number of process-
ing units in an SIMD system [17, 24, 36], others trust in the higher flexibility
of dedicated MIMD architectures [15, 19, 21]. Further, several approaches
build upon clusters of workstations [14, 18, 23, 25, 39, 40]. These systems
usually provide less computing power than dedicated architectures, however
their low cost, the high availability and the simplicity of adding further nodes
outweigh this disadvantage in many applications [37].

According to Fleury et al. [38], shared memory systems are better suited
for image processing applications because they avoid excessive memory to
memory movements, and Downton and Crooks [9] state, that, while shared
memory systems have successfully been applied in practice, there are prob-
lems in reaching real-time performance with clusters of workstations. Other
examples however show, that cluster and grid computing can be an alterna-
tive to shared memory systems [5, 14, 18, 23, 25, 28, 29, 30, 39, 40]. Con-
sidering future trends, the authors of [9] state, that MIMD systems built
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from common microprocessors are likely to rule out dedicated parallel pro-
cessors and they expect a trend towards switch based networks (as opposed to
point-to-point interconnections) and towards topology independent parallel
algorithms.
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Chapter 4

Problem Statement

As shown in Section 3.1, there are several factors that can cause image regis-
tration to take more computing time than desired for a particular application.
The most important factors are the large data sizes and search spaces. Even
though there are several methods that reduce computing times on single pro-
cessor systems, there are applications where it makes sense to use parallel
computing methods. The main reasons that speak in favor of parallel com-
puting are memory issues and the often inherent parallel character of the
problem.

The goal of this project is to speed up the image registration task by
means of parallel computing methods in a distributed memory environment.
Generic methods applicable in various applications should be developed in a
way that they are available to a wide audience. Thereby particular attention
should be paid to applications involving large amounts of data.

The methods have to be integrated into the basic image registration
framework of ITK (see Section 2.3). That way, it is ensured that the re-
sulting framework is generally applicable and available to a wide range of
users. The implementation finally has to be investigated with respect to
performance and scalability.

As seen before, there are two main strategies to parallelize the image reg-
istration task: Parallelizing the optimization method or parallelizing the cost
function evaluation. When applying parallel optimization, each processing
node requires a full copy of each, the fixed and the moving image. These
images have to be distributed as well as stored in main memory. When,
on the other hand, the load of calculating the cost function is distributed,
each processing node typically works on a partial image only. Therefore, in
principle only one copy of each, the fixed and the moving image has to be
distributed and only partial images have to be kept in memory at each pro-
cessing node. Efficiently coping with large data sizes is a main goal of this
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project. Therefore, the developed methods should be based on distributed
metric calculation rather than parallel optimization. Further, only intensity
based metric functions has to be considered. Such functions are usually well
suited for parallelization as shown in Section 3.3.

Despite of the advantageous characteristics of parallel metric calculation
when large data sizes are involved, network traffic and memory issues are
still likely to become a serious problem. These issues have to be considered
particularly carefully and sophisticated data management techniques should
be incorporated if necessary.

To achieve the outlined goals, the project is organized in the following
four major subtasks:

• specification of the detailed requirements of the implemented software
(functional specification),

• design of an architecture for distributed image registration that fits into
the existing toolkit (ITK),

• implementation of the proposed architecture,

• investigation of the performance increase and the scalability.

Each of these subtasks is going to be discussed separately in the following
sections.

4.1 Requirement Specification

First, a requirement specification with a clear interaction and service model
has to be defined. This model is the foundation for identifying the possibili-
ties for parallelization and distribution and helps to delimit the scope of the
thesis. The requirement specification should enfold the set of registration
problems that has to be covered by the developed methods. Further it has
to define the requirements on scalability, on the amount and kind of data
that has to be supported and on hardware properties such as constraints on
heterogeneous computer systems differing in processing power and memory,
or on constraints and requirements of the communication subsystem.

4.2 Architecture Design

An architecture for distributed image registration based on parallel metric
calculation that fits smoothly into the existing part of ITK has to be designed.
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Thereby the overall architecture of the toolkit should be taken into account,
allowing flexible extensions of the proposed architecture in future. Such
an extension could be the combination of the distributed metric calculation
with parallel optimization or the development of further distributed cost
functions. Besides pure computational speedup, the architecture should take
into account memory issues and network traffic.

The design of such an architecture involves the following steps:

• studying the architecture of ITK and the characteristics of all cost
functions used in the basic image registration framework of the toolkit.
Methods only applied in deformable and model based registration
should only roughly be looked at, keeping future extensions in mind.
The cost functions should mainly be investigated with respect to their
feasibility for parallel calculation (local vs. global data dependencies)
and with respect to their relations to other methods within the toolkit.
Such relations can be similar mathematical characteristics as well as
relations within C++ (inheritance).

• based on above investigation of ITK as well as the previously defined
requirements, a design should be specified that exactly states which
parts of ITK should be implemented in a distributed manner and how
this should be done.

• above design should be refined by stating how to deal with issues con-
cerning the underlying hardware as they are to be expected according
to the requirement specification. Particular attention should be paid
to data management issues.

• based on these considerations an architecture has to be proposed that
addresses all issues discussed before.

4.3 Implementation

Even though making the code official part of ITK is not the goal of this
project, it should be written such that an integration can be achieved at a
later point in time. Therefore, the code should be written with the ITK
Style Guide in mind, and tests on different platforms, as they are supported
by ITK, should be carried out during the implementation process. The re-
quirements and restrictions of ITK should also be considered when choosing
a particular interprocess communication infrastructure.
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4.4 Evaluation

The implemented architecture has to be investigated with respect to scala-
bility and parallel efficiency for scenarios that cover the previously defined
requirements. Memory consumption as well as computation time should be
considered theoretically as well as in experiments.

A sophisticated methodology has to be thought of that allows to quan-
titatively assess the implementation. This methodology should define which
parts are evaluated, to what they are compared and how the measurements
are carried out.
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Requirement Specification

5.1 Image Registration Methods

The existing approaches to parallel image registration, as presented in Section
3.3, all focus on particular problems. None of them provides the flexibility
to solve a wide variety of different registration tasks. To create such a flex-
ible parallel image registration toolkit is exactly what this project aims at.
The idea is to extend a widely used image registration library, the Insight
Segmentation and Registration Toolkit (ITK), with parallel computing meth-
ods. ITK is mainly thought for and used in medical applications, however
its generic architecture allows the use in other fields as well.

As shown in Section 2.3.3, there exist several registration frameworks
within ITK. During this project only the most generally applicable of them,
the basic image registration framework, has to be extended. Further, only
the load of calculating intensity based metric functions is addressed by this
project, as stated in Section 4.

The characteristics of such functions are quite diverse. While some of
them have local data dependencies only, others work on intermediate repre-
sentations gathered from the whole image. The architecture of the methods
developed throughout this project have to cover all of them.

To ensure maximum flexibility of the resulting framework, any of the
further components required in image registration, namely transform, inter-
polator and optimizer, have to be supported by the distributed methods.
Particular attention should be paid to those components that cause high
computational complexity.

It is important to note that the methods mentioned before need to be
covered only by the design. Not all configurations have to be evaluated, and
mainly in the case of metric functions, not all of them have to be imple-
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mented. In a first step, a prove of concept implementation with a simple
cost function, such as the mean squares metric, should be realized. Then,
a metric function applicable in inter-modal registration problems, i.e. one
based on mutual information, can be parallelized.

5.2 Distributed Architectures

It cannot be expected that there is dedicated parallel hardware around in
typical (i.e. medical) application fields of ITK. One option to overcome this
problem is by remote access to high performance computers. However, this
is typically expensive and makes dependent from the provider of the system.
As mentioned in Section 3.3, cluster computing can provide a powerful and
affordable alternative to dedicated parallel hardware. Therefore, the target
environment on which the extended library should be applicable are clusters
of workstations. Typical cluster sizes might range from a few, say three or
four, computers within a laboratory in a hospital up to a hundred and more
nodes in research labs. Any of these clusters should be supported by the
architecture. Because of the typically large amounts of data involved, a fast
network (100 Mbps and more) will be indispensable and can be considered
a prerequisite during architecture design. As a topology, a datagram based
network is assumed, which virtually connects all nodes to each other and
which uses the IP protocol to address them. Further, it can be expected
that the nodes within the cluster are located close to each other, that is in
the same building or complex, which results in low network delays. It is
assumed that TCP is used at the transport layer, which leads to reliable
communication links.

Unfortunately, clusters of workstations have the disadvantage of un-
equally loaded nodes, as seen in Section 3.3. For an effective operation
in a real world application, sophisticated load-balancing algorithms there-
fore have to be provided. In a first step only a simple static load balancing
scheme needs to be implemented. This assumes identical workstations within
the cluster that are equally loaded at any time. However, the architecture
should be designed such, that the extension with advanced dynamic load bal-
ancing methods is possible in future. This allows the use in heterogeneous
clusters with unequally loaded nodes.
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5.3 Requirements on Data to be Processed

The diversity of typical applications of ITK asks for different image types and
methods, such as 2D rigid or 3D deformable registration. The parallel frame-
work is supposed to cover the same types of data as the basic registration
framework of ITK.

As mentioned before, parallel computing is usually interesting where large
volumes of data are involved. Therefore, images that contain up to several
hundred millions of pixels (and hence require several hundred megabytes for
storage) have to be processable.

As shown in Section 3.3, data compression prior to transmission over a
network can increase overall throughput. This, however, greatly depends
on the data involved and on the underlying network. Therefore the archi-
tecture should allow to add compression methods developed for particular
applications and particular data in future.

5.4 Requirements on Extensibility

ITK is a rapidly evolving library. Therefore, it is essential to keep the archi-
tecture flexible, allowing extensions in future.

As mentioned earlier, the architecture has to be designed such that metric
functions added to the toolkit in future can profit from the parallel computing
methods developed throughout this project. This will in general not be
possible without extra work, but the additional effort required to integrate a
new function into the distributed framework should be as low as possible.

It would be interesting to design the architecture such that support for
multi-threading, as it is provided by other ITK methods, can be added at
little cost in future. That way, shared memory systems could easily take
advantage of the developed methods.

5.5 Summary

5.5.1 Image Registration Methods

Supported by the Architecture

• only intensity based methods

• only the load of calculating the metric functions needs to be parallelized

• only the basic image registration framework
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• all metric functions within the basic registration framework

• all transformation methods within the basic registration framework

• all optimization strategies within the basic registration framework

• all interpolation methods within the basic registration framework

Covered by the Implementation

• at least one typical metric function has to be parallelized

• several combinations of modules should be tested

5.5.2 Distributed Architectures

Supported by the Architecture

• clusters of workstations

– from 3 to 100 hosts

– connected by a switched network allowing a throughput of
100 Mbps and more

– using the IP protocol to address hosts

– hosts located not far from each other

– reliable communication links (assuming TCP as transport proto-
col)

– unequal processing power and load

Covered by the Implementation

Experiments have to be carried out on at least one typical cluster according
to the description above. Only a static load balancing scheme has to be
implemented, i.e. processing power and load can assumed to be identical for
all hosts.

5.5.3 Requirements on Data to be Processed

Covered by the Architecture

• 2 and 3 dimensional data

• large images (several hundred millions of pixels)
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• use of the streaming capabilities of the toolkit to process large data

• possibility to preprocess data by compression methods prior to sending

Covered by the Implementation

• support for 2 and 3 dimensional data

• streaming support for large data

• no compression methods have to be implemented

5.5.4 Requirements on Extensibility

• other registration frameworks and methods do not have to be consid-
ered

• it should be possible to add new metric functions at little cost

• if possible with reasonable effort, the architecture should be designed
such that it can later be extended to fully support the multi-threading
capabilities of the toolkit.
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Chapter 6

Distributed Registration
Framework

6.1 Overview

The distributed registration framework extends the existing registration
framework by adding support for parallel metric calculation in a distributed
memory environment. The distributed metric calculation is organized in
a master-slave manner as illustrated in Figure 6.1. The master process is
located on the same node as the image data. It is responsible for data dis-
tribution as well as for the communication between the existing registration
framework and the slave nodes and it hides the distribution details from the
user. The slaves do the major part of the metric function evaluation and
work in parallel which leads to the targeted speedup. To each slave a region
of the fixed image is assigned. For this part, the respective slave calculates
some intermediate metric value. In intensity based metric functions, such an
intermediate value is calculated based on the comparison of each pixel of the
assigned fixed image region with the respective pixel of the moving image.
The master provides the slaves with the data they need to carry out their
calculations. It further coordinates all steps required to collect and process
the partial results and passes the final result to the registration framework.

Besides the assigned fixed image region, each slave is provided with the
whole moving image to make sure it has all necessary data at its disposal in
order to calculate the intermediate metric value. Typically, only a small part
of this image is accessed, however. Therefore a caching mechanism that can
optionally be enabled has been introduced. This caching mechanism together
with the subdivision of the fixed image makes sure that even for large data
size problems memory consumption in the slaves is kept low.



40 Distributed Registration Framework

image
data
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Figure 6.1: There is exactly one master process. It distributes the image
data to the slaves and coordinates the distributed calculation.
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Within the whole distributed framework, an abstract interface is used for
all communication tasks. This ensures maximum flexibility with respect to
the underlying hardware and communication subsystem.

These concepts are implemented using the following basic classes:

• DistributedImageToImageMetric

• RegistrationCommunicator

• CacheImage

The core element of the distributed registration framework is the
DistributedImageToImageMetric class, which is divided into a master and
a slave part. It is derived from the itk::ImageToImageMetric class which
serves as a superclass to all similarity functions used within the basic regis-
tration framework of ITK.

The DistributedImageToImageMetric class is an abstract superclass. In
order to create a specialized similarity function, some virtual methods have
to be implemented by derived classes. These functions define the way the
actual similarity measure is calculated and therefore determine the actual
behavior of the metric.

Communication is realized through an abstract class called
RegistrationCommunicator, which provides an interface for all the
necessary communication tasks. Specialized implementations of this inter-
face allow to adapt the registration framework to different parallel hardware
and communication libraries. At the moment, only one specialization based
on MPI is realized.

A CacheImage organizes its data in a block structure and makes sure
that only recently accessed blocks are kept in main memory, while others are
stored on disk. A user can choose whether images are stored as cache- or as
usual images, which perform better as long as memory is not critical.

6.2 Distributed Metric

6.2.1 Concepts

The DistributedImageToImageMetric is the core of the distributed regis-
tration framework. It is a closed module which can be plugged into the basic
registration framework, and which consists of a master and a slave part. The
master part coordinates the whole calculation and thereby hides the distri-
bution details from the user while the slaves do the actual work. This basic
setup is illustrated in Figure 6.2.
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basic registration
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Figure 6.2: The metric master is plugged into an ITK program as any other
metric. A minimal slave program which instantiates and starts the metric
slave has to be written in addition. The master takes care of the communi-
cation with the basic registration framework and the slaves.
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The whole registration process consists of two major stages: Initialization
and optimization. They are treated separately in the following sections.

Initialization

During initialization, the master provides the slaves with the data they need
to carry out their calculations. A natural way to divide data for computation
is to assign a part of the fixed image to each slave. Since the fixed image does
not change in the course of the optimization, it can be distributed over the
slaves at the beginning of the registration process. The slaves then all the
time operate on the identical sub image. Unfortunately, for the moving image
things are more complicated, since it is permanently transformed during the
registration process. There are basically three strategies on how to deal with
the moving image:

• for each slave: During each iteration calculate the part of the moving
image needed for the current transform and send that piece of data to
the slave that is not available at the slave’s node.

• for each slave: Based on some user provided hints calculate the maxi-
mum region of the moving image that is required to carry out the whole
registration and send this region to the respective slave.

• broadcast the whole moving image to each slave before the registration
process starts.

In the first approach, the amount of data to be sent to each slave is
minimized. However, during each iteration the part of the image that needs
to be sent has to be calculated for each slave. Since the transformations
involved can be quite complex, calculating this part is rather expensive, even
though it can easily be computed in parallel, since it has to be done on a
per slave basis. Further, image data has to be sent during each iteration,
which causes a considerable amount of parallel overhead and thus reduces
the possible achievable speedup according to Amdahl’s law1. Most data sent
during the ongoing registration process is data that has already been sent
earlier2. Its amount greatly depends on the initial position and it should
obviously be minimized.

1Any communication results in parallelization overhead. The extended version of Am-
dahl’s law (Section 2.2) states, that this overhead inherently limits the achievable speedup.
Since this overhead occurs in each iteration, it can make up a large part of the program.

2Note, that it has been sent by the master. The receiver was, however, another slave,
therefore it has to be resent.
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It would of course be desirable to know the total region required by each
slave in advance. Then this region could be sent at the beginning of the
registration process and no further calculation and communication overhead
occurs. However, it is a highly non-trivial task to calculate this region in
advance. Only sophisticated user input would allow to do that. The resulting
interface most likely became very complicated and hence difficult to handle
and prone to mistakes.

Distributing the whole moving image to each slave at the beginning of
the registration run guarantees that enough data is available at each node,
involves much less computations and eases the interface as well as the im-
plementation. At a first glance this approach seems to require enormous
amounts of data to be sent over the network. However, a tree structured
communication scheme allows to broadcast a message to N hosts in only
TM · log2(N) seconds, where TM is the time required to send the message
to a single host3. When optimizing the send process at the network layer,
the time required can even be reduced to 1 · TM when using multi-cast tech-
niques such as IP-Multicast. Assuming an identical network bandwidth at
each node, it becomes apparent that the bottleneck of the data distribution
is the master node. Therefore, rather than minimizing the amount of data to
be sent to each slave, the amount of data sent from the master node should
be minimized. A further advantage of this approach is, that there is little
effort required to adapt the distributed framework to profit from a parallel
file system. Only an image reading capability has to be added to the slave to
achieve such a support. Considering these facts, it was decided to go for the
broadcasting approach, which results in a data distribution as illustrated in
Figure 6.3.

Keeping the whole moving image in each slave is not quite optimal with
respect to memory usage. While this does not bother as long as small images
are involved, it can become a serious issue in large size problems. In each
slave, typically only a small part of the moving image (in the order of the
size of the fixed image part) is accessed. To account for that, a caching
mechanism has been introduced, which is discussed in detail in section 6.4.

For some metric functions, besides the fixed and the moving image, a
third image, the gradient image of the moving image, is required in the
slaves. Using the broadcasting approach, this image can be calculated locally
in the slave node prior to starting the optimization process. When bspline
interpolation is applied, finally a forth image, holding the bspline coefficients

3Tree structured communication works as follows: First, process 0 sends the message
to process 1. Then process 0 sends the message to process 2 and process 1 sends it to
process 3. Then all four processes send the message to another four processes and so on.
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master process

fixed image moving image

slave process i

fixed image 
region

moving image

Figure 6.3: Simplified illustration of the data distribution after the metric
initialization. The images in the master node are drawn in dashed lines,
because dependent on the application they can be removed from memory
after initialization. In reality, there might be a gradient and a coefficient
image on the slave side dependent on the choice of metric and interpolator.
These images are typically large compared to the moving image. See Section
6.4 for details.



46 Distributed Registration Framework

needs to be kept in the slaves. Typically, the gradient as well as the coefficient
image are large compared to the moving and the fixed image. Since the access
characteristics are equal to those for the moving image, the same caching
mechanism can be applied in order to cut down memory usage.

Optimization phase

After distributing the image data, the framework is ready to start the op-
timization process. All the different optimizers within ITK work iteration
based. During each iteration an optimizer dependent number of metric val-
ues and derivatives is requested from the metric function. Whenever a new
value (or derivative4) is required, the optimizer addresses a request to the
metric master including the transform parameters for which the function has
to be evaluated. The master then passes the transform parameters to the
slaves and asks them to calculate the partial value associated with their fixed
image region. Calculating the partial value can potentially involve several
stages, however, usually only one stage is required. First, the slaves calculate
intermediate results and transmit them to the master. The master in turn
processes these results and, if required, distributes the processed intermedi-
ate results to the slaves. Based on these results, further intermediate results
are calculated and again transmitted to the master. This process is repeated
an arbitrary (metric dependent) number of times. From the last set of in-
termediate results the master finally computes the actual metric value and
passes it to the optimizer. The steps required in order to calculate a metric
value are depicted in Figure 6.4

The optimization process ends as soon as any of the optimizer’s stop
conditions is reached. At this point the registration process terminates. The
slaves get informed about that and quit.

6.2.2 Implementation

Initialization

The DistributedImageToImageMetric consists of a master and a slave part,
which are implemented within the same class. The master part is identified
by the process with rank zero. Any instance of the metric running on a
process with a rank unequal to zero automatically becomes a slave.

The data distribution is realized in the Initialize() method. While for
the master process, this method is automatically called by the registration

4For simplicity only the process involved to calculate a metric value is discussed. Cal-
culating derivatives works analogously.
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Figure 6.4: Metric value calculation.
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framework it has to be called explicitly by the user for the slave processes.
The fixed image is subdivided into slices along the outermost image di-

mension5, as illustrated in Figure 6.5(a). This eases the implementation over
a subdivision along multiple axis, which can be rather complicated, since any
number of slaves (and hence image parts) has to be supported (see Figure
6.5(b)).

In case a gradient image is required, this is computed in the slave’s
Initialize() method as well. Computing it parallely in all slaves takes
approximately the same amount of time as calculating it once in the master
node, but avoids the overhead incurred by sending it to the slaves afterwards.

Optimization

For the slaves, the optimization phase is implemented within the
StartSlave() method, which has to be explicitly called by the user. Af-
ter the slaves have been started, they enter a loop that waits for commands
from the master.

During the optimization process, the optimizer repeatedly (at least once
per iteration) calls the master’s

GetValue(TransformParameters parameters)

method6.
The master now broadcasts a command which informs the slaves that a

new metric value has to be calculated. Then the new transform parameters
are transmitted. At this point, the master as well as the slave enter a loop
that accounts for the possibility that the parallel computation consists of
several stages. These loops look as follows:

slave:

for (int i = 0; i < m_NumberOfStages; i++) {

this->DistributedGetValue(region,

m_DistributionController->GetLocalProcessId(), i);

this->IntermediateResultsAllReduce(i)

}

5The y-dimension in 2D and the z-dimension in 3D
6For simplicity, only the procedure for calculating a metric value is discussed. The

procedure for calculating derivatives is analogously and the involved functions are discussed
in Section 6.2.3.
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Figure 6.5:
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master:

for (int i = 0; i < m_NumberOfStages; i++) {

this->BeforeDistributedGetValue(i);

this->IntermediateResultsAllReduce(i);

}

with the method IntermediateResultsAllReduce(int stage):

if (this->Master() ) {

this->ReceiveIntermediateResultsFromSlaves(stage);

this->AfterDistributedGetValue(stage);

this->SendProcessedIntermediateResultsToSlaves(stage);

} else { // slave

this->SendIntermediateResultsToMaster(stage);

this->ReceiveProcessedIntermediateResultsFromMaster(stage);

}

The slaves first calculate the intermediate results for the current stage by
invoking their DistributedGetValue() method and then send them to the
master. To ease the send process, all intermediate results are transmitted as
an array of type double. The master first receives the intermediate results
from all the slaves, then processes them and finally redistributes the processed
results to the slaves, if the current stage is not yet the last one.

The IntermediateResultsAllReduce() method was introduced, be-
cause in some cases this operation can be performed more efficiently than
shown here. If a more efficient solution exists, a derived metric class can
realize it by overriding IntermediateResultsAllReduce().

After exiting the loops, the final metric value is stored on the metric
master. The master’s GetValue() function now returns this value to the
registration framework. The slave, on the other hand, waits for a new com-
mand to be processed.

Above steps are repeated for each iteration during the optimization pro-
cess. Eventually, the optimizer reaches one of its stop conditions and the
optimization process - and the registration run - terminates. At that time,
the slaves are waiting for another command to be processed. Therefore, an
exit command is sent to all the slaves which now terminate.

6.2.3 Creating new Metric Functions

The basic idea to create a new metric function is to derive a specialized
class from the DistributedImageToImageMetric. However, there are two
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strategies to calculate metric derivatives: Based on finite differences or based
on the Jacobian7 of the transform.

When using the finite difference method, the derivatives are calculated
by evaluating the metric function at slightly displaced positions. Thus all
calculations base on the GetValue() method and no further operations have
to be parallelized.

For some metric functions, it is possible to calculate the derivative based
on analytical considerations using the Jacobian of the transform and the
gradient image of the moving image8. This allows to calculate the deriva-
tive by traversing the fixed image only once, which results in an enor-
mous speedup compared to the finite difference methods, which repeatedly
calls the GetValue() method. Since this derivative calculation does not
build up on the GetValue() method, two more parallelized methods have
been introduced. These methods, which are called GetDerivative() and
GetValueAndDerivative()9 work analogously to the GetValue() method
that was described before.

To account for the two strategies for derivative calculation, two
more classes have been introduced, which are both derived from
DistributedImageToImageMetric:

• DistributedImageToImageMetricFDDerivatives

• DistributedImageToImageMetricSpecializedDerivatives

The complete class diagram for the distributed metric framework thus
looks as shown in Figure 6.6.

Rather than directly derive the new metric class from
DistributedImageToImageMetric, it should be derived from any of
the latter two classes, depending on how the derivatives are going to be
calculated.

In any case, the following three pure virtual methods have to be overrid-
den:

• DistributedGetValue() (slave)

• BeforeDistributedGetValue() (master)

• AfterDistributedGetValue() (master)

7A matrix containing the first order derivatives at a given position
8To discuss the mathematical details is beyond the scope of this report
9Often both, the value and the derivative are required. It is usually sufficient to traverse

the fixed image once if they are calculated in the same method.
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itk::ImageToImageMetric

- abstract GetValue()
- abstract GetDerivative()
- GetValueAndDerivative()
      (using GetValue() and GetDerivative())

DistributedImageToImageMetric

- GetValue() (using DistributedGetValue())

- abstract DistributedGetValue()
- abstract BeforeDistributedGetValue()
- abstract AfterDistributedGetValue()
- communication functions

DistributedImageToImageMetric-
FDDerivatives

- GetDerivative() 
       (using finite differences and GetValue())

- functions to control finite difference parameters

DistributedImageToImageMetric-
SpecializedDerivatives

- GetDerivatives() 
       (using DistributedGetDerivative())
- GetValueAndDerivatives() 
       (using DistributedGetValueAndDerivatives())

- abstract DistributedGetDerivative()
- abstract BeforeDistributedGetDerivative()
- abstract AfterDistributedGetDerivative()
- abstract DistributedGetValueAndDerivative()
- BeforeDistributedGetValueAndDerivative() 
      (using BeforeDistributedGetValue and 
       BeforeDistributedGetDerivative)
- AfterDistributedGetValueAndDerivative()
      (using AfterDistributedGetValue and
       AfterDistributedGetDerivative)

Figure 6.6: Class diagram for the distributed metric mod-
ules. New metric functions should either be derived
from DistributedImageToImageMetricFDDerivatives (for
derivative calculation based on finite differences) or from
DistributedImageToImageMetricSpecializedDerivatives (for derivative
calculation by a user defined method).
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The core method is the DistributedGetValue() method, which calcu-
lates the partial results for each stage10.

The partial results have to be stored in the class member
m IntermediateResults, which is an array of type double. The first ar-
ray index is used by the master to identify the process. For the slaves, and
therefore within the DistributedGetValue() method, this index is always
zero. The second array index denotes the stage and the third index is used
to identify the n-th value of the intermediate result for the current stage11.
The number of pixels considered during the calculation of the partial result
have to be stored in the m NumberOfPixels member variable.

The method BeforeDistributedGetValue() allows to perform some
steps that prepare the master to receiving the partial results. Often, no
special steps have to be carried out. In this case, the method can just consist
of an empty implementation.

The method AfterDistributedGetValue() finally processes the partial
results provided by the slaves. In the final stage, the result of the processing
step has to be stored in the m Measure member variable. It is the value stored
in this variable, which is returned to the registration framework as the value
of the metric function.

For many metric functions these are all the steps that have to be done
to make them available to the distributed framework. However, there
are some further cases that have to be considered. If a metric is derived
from the DistributedImageToImageMetricSpecializedDerivatives

class, it has further to implement the DistributedGetDerivative(),
the BeforeDistributedGetDerivative(), the
AfterDistributedGetDerivative(), and optionally the
DistributedGetValueAndDerivative() method.

As mentioned earlier, the IntermediateResultsAllReduce() method
can be overridden in order to profit from a more efficient method to pro-
cess and redistribute the intermediate results.

Further, in some cases the predefined format for storage of intermediate
results might not be suited. In order to properly treat a custom format
for intermediate results, the following communication methods have to be
overridden:

• SendIntermediateResultsToMaster()

• ReceiveIntermediateResultsFromSlaves()

10usually only one stage is involved, however sometimes it might make sense to calculate
the metric value in a multiple stage process

11An intermediate result can consist of several values, that are transmitted as arrays.
The third index points to the n-th value inside this array
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• SendProcessedIntermediateResultsToSlaves()

• ReceiveProcessedIntermediateResultsFromMaster()

6.2.4 Implemented Metric Functions

Based on above guidelines, the following metric functions have been imple-
mented:

1. DistributedMeanSquaresImageToImageMetric

2. DistributedMeanSquaresImageToImageMetric2

3. DistributedHistogramImageToImageMetric (abstract)

4. DistributedMeanSquaresHistogramImageToImageMetric

5. DistributedMutualInformationHistogramImageToImageMetric

6. MPIDistributedHistogramImageToImageMetric (abstract)

7. MPIDistributedMutualInformationHistogramImageToImageMetric

The first two metric functions both implement a mean squares12 measure.
While the first metric calculates derivatives based on finite differences, the
second one uses a more efficient method based on a gradient image and the
Jacobian of the transform.

The third metric serves as an abstract superclass for metric func-
tions that operate on the joint histogram of the two images. The
DistributedMeanSquaresHistogramImageToImageMetric as well as the
MutualInformationHistogramImageToImageMetric directly build upon
this superclass. As indicated by their names, they define a mean squares
measure and a measure based on mutual information, respectively13. The
mutual information metric is applicable in inter- as well as intra-model ap-
plications.

The histogram based metric functions incur a large com-
munication overhead, as will be shown in Section 7.5.3.
In the MPIDistributedHistogramImageToImageMetric, the

12Squared error or the pixel intensities divided by the number of pixels considered in
order to normalize the value.

13There are two reasons that legitimate the existence of this third mean squares met-
ric: First, it often requires a lower number of multiplications than the other approaches.
Second, since in a histogram several intensity values can be subsumed into one bin, the
result is not necessarily the same as for the other approaches.
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IntermediateResultsAllReduce() method was overrid-
den, which allowed to improve the situation. The
MPIDistributedMutualInformationHistogramImageToImageMetric

derives from this modified superclass. Since these classes make direct use of
MPI routines, the prefix MPI has been added.

6.3 Communication Subsystem

6.3.1 Concepts

ITK does not provide any interprocess communication means14. As seen
in Section 2.2, there exist several libraries designed for parallel computing
in cluster environments. Dependent on environment and application these
libraries show different advantages and disadvantages15. Therefore an ab-
stract communication layer was introduced, which defines an interface that
is independent from the underlying communication library. Any interprocess
communication within the distributed framework is carried out through this
abstract communication layer. This is illustrated in Figure 6.7.

abstract communication
layer

communication subsystem
(library & hardware)

distributed metric

abstract communication
layer

communication subsystem
(library & hardware)

distributed metric

network link

node 1 node 2

Figure 6.7: Any communications operations are carried out through an ab-
stract communication layer.

The communication interface mainly consists of a (small) subset of the
functionality defined in the MPI-1 standard [41]. MPI exhibits four basic
design principles:

14This is the state at the time of this writing.
15Most MPI implementations, for example, have limited support for heterogeneous net-

works or dynamic process creation. Better support can be found in PVM. However, MPI
is a standard while PVM is developed by a single institution.
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Communication operations: Functions for point-to-point and collective
communication.

Data types: The data types of messages are known. This allows to com-
pensate for different architectures (e.g. big endian versus little endian)
of the participating nodes.

Communicators: Messages can only be sent within communicators. A
communicator consists of an identifier and a group of processes. The
communicator concept allows to develop modular programs (and li-
braries) using MPI.

Topologies: To optimize communication paths, the underlying topology is
considered by MPI.

From these four, the first three concepts were integrated into the commu-
nication layer.

For all the basic data types supported by C++, communication opera-
tions for point-to-point communication as well as for broadcasting have been
defined. All of them assume that the message buffer can be reused after
returning from the send call. Whether this is achieved by buffering or by
waiting for the message to be delivered is left to the implementation of the
interface. Besides the communication functionality for basic data types, op-
erations to transmit image data and meta data are provided. The necessary
data type conversions have to be done by the specific implementation of the
interface.

In order to support modular programming, concepts to group processes
and to form communication entities have been incorporated into the commu-
nication layer. There further exist methods to initialize the whole communi-
cation subsystem and to cleanly shut it down.

6.3.2 Implementation

The abstract communication layer is realized by a pure virtual class named
RegistrationCommunicator. The RegistrationCommunicator defines a
communicator in the sense of MPI, that is, messages sent within the commu-
nicator can only be received by the group of processes associated to it. The
RegistrationCommunicator exhibits different communication methods for
point-to-point communication, broadcasting and image transmission. Meth-
ods used to send messages of basic data types are overloaded for all C++
standard data types, hiding the conversion to data types of the underlying
communication system from the user.
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In order to realize interprocess communication, an implementation has
to be provided for this abstract interface. Based on the given hardware and
possibly a communication library, a class can be derived from the abstract
interface, as illustrated in Figure 6.8. At the moment, only one specialization,
based on MPI and called MPIRegistrationCommunicator, exists. Since MPI
implementations exist for many different architectures this class is a quite
generic implementation that fits the needs of most applications.

RegistrationCommunicator

SocketRegistration-
Communicator

MPIRegistration-
Communicator

PVMRegistration-
Communicator

. . .

Figure 6.8: The abstract superclass (RegistrationCommunicator) allows to
derive different specialized communicator classes.

6.4 Caching

6.4.1 Concepts

During initialization, each slave receives the whole moving image, as ex-
plained in Section 6.2.1. Typically it however works on a small part16 of the
fixed image only. This part is mapped onto the moving image by a iteration
dependent transform. Usually the size of the transformed region is in the
order of the size of the fixed image region and it typically does not alter very
much from iteration to iteration as depicted in Figure 6.9. Therefore, data
access can generally be considered local for succeeding iterations and most
regions of the moving image will never be accessed. Consequently there is
little sense in keeping the whole moving image in main memory, particu-
larly if memory is a critical resource. The local data access characteristics
encourage the use of caching to make optimal use of the available memory.
Therefore, a CacheImage class has been introduced that takes care of the
necessary data management, i.e. that decides which parts of the image are
kept in main memory and which parts are stored on disk.

16The more processors involved the smaller the fixed image part on a single slave.
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fixed image

moving image (iteration n) moving image (iteration n+1)

Figure 6.9: The region of fixed image and its corresponding region of the
moving image after applying the transform for iteration n are illustrated
on the left side. On the right side, the transformed fixed image region for
iteration n + 1 (dark) as well as the region for iteration n (dashed) are
indicated. Since the transform will only slightly change from iteration n to
iteration n + 1 the region on the moving image will only slightly change, too.
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In order to efficiently move data portions from main memory to disk and
vice versa, data is preferably stored in a block structure rather than line by
line as this is done in ITK. This is depicted in Figure 6.10. Therefore, the
CacheImage organizes its data in blocks. Whenever a pixel is accessed, it
is checked whether the corresponding block resides in main memory. If not,
the new block is loaded from disk and the block that has not been accessed
for the longest time is released from main memory.

To avoid occupying large amounts of swap space that could be used by
other processes, data on disk is stored in a regular file. Memory mapped
access is used in order to perform read and write operations on the file.

In case of the moving image, the CacheImage is integrated into a
CacheInterpolator. Three of them exist, in accordance with the three
interpolator types (nearest neighbor, linear and bspline) present in ITK. In
case of the gradient image, the cache image is directly located in the metric
slaves.

The gradient image is large compared to the moving image, because a
pixel consists of a floating point value for each derivative. Typically it con-
sumes between 8 and 24 times as much memory as the moving image17.
Caching this image reduces the memory consumption during the ongoing
optimization process. However, the memory peak resulting during the cre-
ation of the gradient image can already cause serious problems. A system
might run out of physical memory which causes swapping and slows down
the creation process. What makes things worse is the fact that there are op-
erating systems18, that do not allow a process to return freed memory to the
operating system. Therefore, the process size will not drop even during opti-
mization, where due to caching only small amounts of memory are used. The
unused memory (which is most likely swapped out) reduces the swap space
available to other processes. Because of these problems, the memory peak
occurring during gradient image generation should be avoided. The stream-
ing concept of ITK allows to create images in pieces. Creating the gradient
image block by block and directly writing these blocks to disk avoids the
undesirable memory peak.

In memory uncritical problems, the framework performs better without
caching. Therefore, it is by default disabled. In order to enable caching, a
cached interpolator has to be provided in case of the moving image, and a
flag has to be set in case of the gradient image.

17A pixel of the moving image is typically represented by one or two bytes and a deriva-
tive typically by a double value which takes 8 bytes. In 2D there are 2 derivatives yielding
16 bytes, and in 3D there are 3 derivatives yielding 24 bytes per pixel.

18among them most variants of UNIX
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Figure 6.10: Top: Linear data structure as it is used by the standard ITK
image. Pixels are stored line by line in a single huge array, as indicated
by the increasing numbers. When data for the shadowed region should be
kept in memory, and it should be possible to move blocks of 16 pixels to
and from disk, the area marked with bold lines is affected. Bottom: The
same is illustrated for an image that stores data in blocks of 4 by 4 pixels.
In the first case, 16 × 16 = 256 pixels are affected, in the second case only
8× 16 = 128 pixels. In reality, both, image as well as block size is typically
much larger than in this illustration.



6.4 Caching 61

6.4.2 Implementation

Pixels that do not belong to the fixed image are accessed after apply-
ing a transform. Therefore, any pixel values are retrieved by the image’s
GetPixel() method and no iterators are used. This fact considerable eases
the implementation of an image that stores data in blocks, since no compli-
cated iterators that need to traverse these blocks have to be implemented.
Rather, any index calculation can be carried out within the GetPixel()

method. Index calculations turn out to be more complex than for usual
image data structures, despite the use of index tables to speed them up.
Consequently pixel access performs worse when CacheImages are used.

The block handling is also realized in the GetPixel() method. The
whole data is written into an ordinary file, block by block. Memory mapped
file access allows to efficiently move blocks to and remove them from main
memory. A FileMapper class wraps the mapping process in order to hide the
differences of memory mapped file access in Windows and Unix. Whenever
a pixel is accessed and the corresponding block does not reside in memory,
the respective region of the file is mapped to a new view. The view of the
block that has not been accessed for the longest time is unmapped.

Caching of the moving image is realized by new interpolator classes,
namely

• NearestNeighborCacheInterpolateImageFunction

• LinearCacheInterpolateImageFunction

• BSplineCacheInterpolateImageFunction

Two main reasons led to the decision that the cache image should be
created within the interpolator and not within the metric class. A first
reason is, that the bspline interpolator works on a coefficient image, rather
than directly on the moving image. This coefficient image is the one that has
to be cached, and it has to be created inside of the interpolator. Creating the
cached image inside the nearest neighbor and the linear interpolator allows
to treat all the cases almost identically. A second reason that speaks in favor
of wrapping the cache image inside the interpolator are several type conflicts
that would have had to be resolved when storing the image in the metric.

Caching of the gradient image is realized inside the metric class. In order
to avoid the undesired memory peak, the gradient image is created block
by block and these blocks are directly written disk. Since the gradient filter
applied in ITK image metrics does not support streaming it was replaced by
a combination of a smoothing filter (itk::DiscreteGaussianImageFilter)
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and a simpler gradient filter (itk::GradientImageFilter) that is streaming
capable.



Chapter 7

Evaluation

When evaluating a parallel realization of an algorithm, several measures are
of interest. The measures used to assess the methods developed through-
out this project are briefly introduced within the following section. Then a
software library (MPE) that allows the examination of performance param-
eters within a parallel program is presented followed by the discussion of the
methodology, the scenarios used for, and the results of the evaluation of the
distributed registration framework.

7.1 Measures

Usually, people are interested in the reduction of computing time in the first
place. Recall from Section 2.2, that reduction in computing time is defined
as parallel speedup

SN = TS/TN (7.1)

and that another, closely related measure called parallel efficiency

EN = SN/N (7.2)

has been introduced. In these formulas, N denotes the number of proces-
sors, TN the execution time of the parallel program on N processors, and TS

the execution time of the best sequential algorithm on one processor. Note
that it is generally difficult to define TS, because of several reasons. Which
algorithm performs best can depend on several factors, the best algorithm
can change over time (since new, better algorithms are developed) and it is
not clear on which hardware the time is measured. Therefore, in practice TS
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usually denotes the execution time of a good sequential algorithm1.

The parallel efficiency usually depends on the number of processors as well
as on the problem size W (using the definition of [42](p. 129), W becomes
basically equal to TS

2). Due to non parallelizable code and an increasing
communication as well as synchronization overhead, the parallel efficiency
decreases with an increasing number of processors. On the other hand, an
increasing problem size often increases efficiency, since the calculation time
increases relative to the overhead. A system that allows to keep the efficiency
at a fixed value for an increasing number of processors, if the problem size
is adjusted accordingly, is called scalable. The function that defines how W
has to be increased with respect to N in order to keep the efficiency fixed is
called isoefficiency function. To look at this phenomena more closely, let us
define the total overhead

To = N · TN −W , (7.3)

which subsumes any work that is not incurred by the fastest known se-
quential algorithm. As seen before, the total overhead is a function of the
problem size as well as the number of processors: To(N, W ). Using equation
7.3, the parallel execution time can be written as a function of the problem
size, the number of processes and the total overhead function:

TN =
W + To(W, N)

N

Substituting TN in equations 7.1 and 7.2 results in the following expres-
sion for the parallel efficiency:

EN =
1

1 + To(N, W )/W
(7.4)

From equation 7.4 it becomes apparent, that the efficiency does not
change if To(N, W )/W is constant. Replacing EN in 7.4 with the desired
value E for the efficiency and reformulating the equation yields:

W =
E

1− E
To(N, W ) (7.5)

1For the evaluation of the parallel registration framework, TS was the time used by an
equivalent program composed of standard ITK modules.

2The authors of [42] state, that problem size should be proportional to the total number
of basic computational steps involved, which is proportional to TS . If the unit to measure
W is normalized accordingly, W thus becomes equal to TS . This is arguable when factors
like disk swapping slow down the computation.
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This is an implicit representation of the isoefficiency function. Often
equation 7.5 can be reformulated such that W is expressed as a function of
N , which results in an explicit representation of the isoefficiency function.

The isoefficiency function defines the ease with which the efficiency of
a parallel system can be kept fixed by increasing the problem size. It can
therefore be considered as a measure for scalability . A “small” isoefficiency
function denotes that a little increase of the problem size is sufficient in
order to maintain the efficiency for an increasing number of processors, which
means that the algorithm scales well.

With a growing problem size, memory requirements usually increase.
Therefore, memory requirements have to be considered carefully when ana-
lyzing scalability. Often it is assumed that the amount of available memory
grows equally to the number of processors (this is quite reasonable for cluster
computing). It is then possible to change above definition of a scalable system
by adding a memory constraint: A system is scalable if the efficiency can be
kept fixed for a growing number of processes by increasing the problem size
such that the memory requirement per processor is constant (or decreasing).

7.2 The Multi Processing Environment

(MPE) Library

The Multi Processing Environment (MPE) library [43] provides features for
graphics output, debugging and performance analysis of MPI programs. It
is an open source library developed at the Argonne National Laboratory.
Here, only a brief introduction to the functionality for performance analysis
is given.

The performance analysis using MPE is based on logging of events using
highly accurate time stamps. There is an automatic mode that encloses
every MPI routine with calls to the MPE library which in turn creates an
entry in a log file for the beginning and the end of the routine. Further, it
is possible to create user defined events by inserting according calls to the
MPE library into the code. MPE gathers all the information logged by the
different processes, corrects the possible misalignment and drift of clocks and
finally creates a single log file.

Typically a log file generated by MPE is viewed by some graphical tool
that displays all the logged events as time-lines. The most popular viewer is
Jumpshot , which comes with the MPE distribution. An example of a time-
line representation of an MPE log file using Jumpshot is shown in Figure
7.1.
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Figure 7.1: A screenshot of the Jumpshot output of an MPE log file. The
rows represent the single processes and the x-direction the elapsed time since
process start. Colored boxes depict states (such as computing time, broadcast
operations, etc.) and arrows indicate point to point communications.
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Inserting timing statements into a program obviously incurs some over-
head. In our case, this overhead is small with respect to computing times
and can safely be neglected during performance analysis. However, when
developing an application based on the parallel registration framework this
overhead is not desired. MPE logging is only in effect if MPE is linked to
the program. Since this decision is made at link time, no overhead occurs if
MPE is not linked. In order to disable custom calls to MPE routines, a com-
piler directive has been defined that allows to switch these calls on and off at
compile time and which can be set using CMake3 during the configuration
of the parallel registration framework.

7.3 Methodology

The goal of the evaluation was to examine the developed methods with re-
spect to speedup, efficiency and scalability. When analyzing the scalability,
memory issues were taken into account.

These measures were acquired for three different sample scenarios. A sam-
ple scenario consists of a combination of metric function, optimizer, transform
and interpolator with their respective parameters.

Speedup and efficiency can be quantified for a fixed problem size by mea-
suring the execution times of the parallel program as well as of the “best” se-
quential algorithm. The “best” sequential algorithm required to get the time
TS is considered to be the equivalent algorithm implemented using standard
ITK modules. TS is measured on a single node of the workstation cluster.
Execution time is measured as wall-clock time, which is the time (such as the
system time) elapsed between the process start and its termination. Using
wall-clock time is common practice when evaluating parallel performance.

In order to evaluate the scalability, it is necessary to adjust the problem
size and to closely watch the memory consumption, as explained in Section
7.1. Therefore, for each scenario memory usage as well as speedup has to be
examined for an increasing problem size. The increase in problem size can
be quantified by measuring the increase of TS

4. To modify the problem size,
obviously the size of the input images can be changed. For larger images
more pixels have to be compared and consequently problem size increases.
An other option to get a larger problem size is to ask for higher accuracy.
This can be achieved by adjusting the optimizer parameters that define the

3A makefile generation tool
4This is arguable in cases where the sequential program is slowed down due to disk

swapping.
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stop conditions. Basically, a higher accuracy asks for a larger number of
iterations and consequently problem size increases.

Obviously it would be interesting to gain a deeper insight into the per-
formance parameters than by just measuring the total execution time and
memory consumption. Using the MPIRegistrationCommunicator as the
communication interface (see Section 6.3 for details) a program based on the
parallel registration framework becomes an MPI application which allows to
use MPE to gain such an insight. By automatic profiling, MPE allows to
measure the overhead of the MPI routines (which is mainly communication
overhead). Customized MPE calls further permit to measure time spent in
particular parts of the code, such as the non parallelizable fraction f , the
initialization phase, work carried out by the optimizer or time spent by the
processes waiting for each other. Figure 7.2 shows for the case of the opti-
mization phase, how the parallel algorithm can be subdivided into different
parts.

During the evaluation, the following values have been analyzed using
MPE:

• time spent in the initialization phase

• time spent to send the moving and the fixed image

• time spent by the optimizer

• time spent to calculate the intermediate values and derivatives

• idle time of the slaves (waiting for new parameters)

Unlike the measures described in Section 7.1, these values do not pro-
vide the possibility to compare the parallel framework with other parallel
algorithms. However, they give insight into strengths and deficiencies of the
parallel framework and allow to derive conclusions on how to further improve
it.

Measurement Conditions

Experiments were carried out on Unix workstations at ETH Zurich (Tardis
cluster) as well as on a Windows cluster at Nizhny Novgorod State Univer-
sity (NNSU). The Tardis cluster consists of up to 78 identical Sun-Blade-100
workstations with 512 MB RAM and about 30 Sun-Blade-1500 workstations.
Experiments should only be carried out on the Sun-Blade-100 machines.
They are connected by a 100 Mbit Ethernet.
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The Windows cluster at NNSU consists of 2 servers with 4 Pentium-III
700 MHz CPUs each, 12 servers with 2 Pentium-III 1 GHz CPUs each, and 12
workstations with a single Pentium-IV 1.3 GHz CPU. The different machines
have 512, 256 and 128 MB of RAM, respectively. The server machines are
connected with a 1000 Mbit, and the workstations with a 100 Mbit Ethernet
network.

Any experiments for speedup and efficiency were carried out at least three
times. The workstations at ETH were not guaranteed to be free of interfer-
ence originating from other users. Further, any jobs had to be run with
lowest priority (nice 19). This caused a significant load imbalance. Since the
parallel framework does not provide dynamic load balancing, only the result
with the lowest interference (i.e. the experiment with the lowest wall-clock
time) was taken.

On the windows cluster at NNSU eight Pentium-III 1 GHz machines (i.e.
16 processors) could be reserved to carry out the experiments. Since they
were supposed to be free of interfering load5, averages times were taken for
the results acquired by the experiments on this system.

The master-slave architecture of the parallel registration framework
causes one process (the master process) to be idle most of the time. This
process can be run on the same processor as one of the slave processes, as
illustrated in Figure 7.3 (a). In this setup, N + 1 processes (1 master and N
slaves) are run on N processors.

Unfortunately, it was cumbersome to automatically run a large number
of experiments like that at the Unix cluster at ETH. Therefore, the N + 1
processes were run on N + 1 processors as illustrated in Figure 7.3 (b).
Speedup and efficiency values were, however, calculated with respect to N6.
Some specially set up experiments proved, that no change in performance
can be observed between the two configurations.

The Windows cluster also caused difficulties to run experiments as shown
in Figure 7.3, since each node consists of two CPUs there. The operating
system would automatically place the second process on the second CPU.
Therefore, only the experiments on 16 processors (with 17 processes) were
run in the configuration as shown in Figure 7.3 (a).

During all the experiments, MPE logging was enabled. The overhead
with respect to timing is supposed to be negligible. However, the memory

5Unfortunately this was not entirely true as will be shown in Section 7.4.2. However,
the load was the same for all experiments.

6Parallel speedup and efficiency are defined with respect to the number of processors.
Strictly speaking, they would therefore have had to be related to N + 1 when using
configuration (b). However the results would have become difficult to interpret and would
not have reflected the actual character of the parallelization.
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Figure 7.3: The parallel framework can be run in two different configurations.
In configuration (a), N slaves sit on N processors. Thereby, one processor
is shared between a slave an the master. Since the master is idle most of
the time, performance is not affected. In configuration (b), each process sits
on its own CPU. Experiments have been carried out with configuration (b)
(except of those on 16 processors at NNSU).
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measurements might have been influenced by the logging process, since for
performance reasons, log files are kept in main memory until process termi-
nation.

7.4 Sample Scenarios

Three sample scenarios addressing different registration tasks have been cre-
ated to evaluate the parallel registration framework. These scenarios are
briefly presented in the following sections.

7.4.1 Three Dimensional Rigid Problem

The first scenario addresses a rigid registration problem in 3 dimensions. The
scenario consists of the following components:

• itk::QuaternionRigidTransform

• itk::QuaternionRigidTransformGradientDescentOptimizer

• itk::LinearInterpolateImageFunction

• itk::MeanSquaresImageToImageMetric (sequential)

• DistributedMeanSquaresImageToImageMetric2 (parallel)

Two micro CT images7 of a mouse femur taken from different points of
view serve as the input to the program. The original images have a resolution
of 512 × 512 × 1006 pixels encoded with 2 bytes (65536 gray levels). This
results in approximately 500 MB per image. For the experiments, the images
were downscaled to the following resolutions:

• scale 1: 52× 52× 101 pixels (534 KB)

• scale 2: 65× 65× 127 pixels (1048 KB)

• scale 4: 82× 82× 160 pixels (2102 KB)

• scale 8: 103× 103× 202 pixels (4186 KB)

• scale 16: 130× 130× 254 pixels (8384 KB)

7The images originate from Steven Boyd, PhD, Department of Mechanical and Manu-
facturing Engineering, University of Calgary, Canada.
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• scale 32: 163× 163× 320 pixels (16606 KB)

• scale 64: 205× 205× 403 pixels (33079 KB)

The most important property of the scenario is the large amount of data
when using full resolution. The optimizer requires gradients which are cal-
culated by the metric by a closed form rather than by finite differences.
Therefore, a gradient image has to be calculated in the initialization step.
This causes a rather large non-parallelizable fraction of the code8 as well as
increased memory requirements because of the large gradient image.

7.4.2 Two Dimensional Problem based on Bspline De-
formable Transform

The second scenario addresses a simple deformable problem in two dimen-
sions. It consists of the following components:

• itk::BSplineDeformableTransform

• itk::RegularStepGradientDescentOptimizer

• itk::BSplineInterpolateImageFunction

• itk::MeanSquaresImageToImageMetric (sequential)

• DistributedMeanSquaresImageToImageMetric2 (parallel)

The deformation field is defined by a bspline deformable transform. An
example of such a deformation field is illustrated in Figure 7.4. For the
scenario, grid-points on a grid of size 5 × 5 were displaced to well defined
positions. Since third order bsplines were used, the total number of transform
parameters was (5 + 3)× (5 + 3) = 64.

Two slices of a brain image (one of which was intentionally deformed)
taken from the ITK examples serve as the input to the program. The original
images have a size of 221× 257 pixels encoded with 1 byte (256 gray-levels).
For the experiments, they were upscaled to the following resolutions:

• scale 1: 221× 257 (56 KB)

• scale 2: 313× 364 (112 KB)

8The whole gradient image is calculated on all the slaves, which is basically equivalent to
calculating it once non-parallelized. This step could be parallelized however (see Section 8).
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Figure 7.4: The bspline deformable transform allows to define a de-
formation field by displacing grid-points. The deformation in between
the grid points is calculated using bspline interpolation.(image modified
from http://www.cs.rpi.edu/courses/spring04/imagereg/lectureBSplines.ppt
(29 September 2004))

• scale 4: 442× 514 (222 KB)

• scale 8: 626× 727 (445 KB)

• scale 16: 884× 1028 (888 KB)

Due to the computationally intensive bspline interpolator, it takes rather
long to calculate a single metric value (and derivative) despite of the small
images. A gradient as well as a coefficient image are required due to the
metric and the interpolator, resulting in rather large memory requirements
compared to the small input images.

7.4.3 Two Dimensional Affine Problem

The third scenario addresses a two dimensional affine problem. It consists of
the following components:

• itk::AffineTransform

• itk::OnePlusOneEvolutionaryOptimizer

• itk::LinearInterpolateImageFunction
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• itk::MutualInformationHistogramImageToImageMetric (sequen-
tial)

• DistributedMutualInformationHistogramImageToImageMetric

(parallel)

The input images were again taken from the ITK examples. They rep-
resent slices of a brain and one of them was intentionally deformed. The
following resolutions were used for the experiments:

• scale 1: 221× 257 (56 KB)

• scale 2: 313× 364 (112 KB)

• scale 4: 442× 514 (222 KB)

• scale 8: 626× 727 (445 KB)

• scale 16: 884× 1028 (888 KB)

Due to the use of a mutual information based similarity function, the
scenario is applicable to inter-modal registration problems. Because of the
typically rather noisy character of mutual information based metrics, evo-
lutionary optimization algorithms are supposed to be a good choice. The
applied one plus one evolutionary optimizer does not require any gradients
to be calculated. Since further, a relatively simple interpolator was used and
the images are rather small, the time to calculate one metric value becomes
low. However, the optimizer requires a large amount of iterations in order
to achieve satisfying results which causes the overall computing time to be
large.

7.5 Results

The developed parallel registration framework was evaluated in more than
1000 experiments. The following sections try to summarize the results. They
can be compared to results reached by other projects addressing image reg-
istration by cluster computing. The approach of Chalermwat [14] reached
efficiencies of about 85% on 8, between 70% and 80% on 16, between 45%
and 60% on 32, and between 20% and 50% on 64 processors. Other projects
achieved efficiencies of approximately 70% on 8 and 50% on 14 [25] or of 85%
to 90% on 8 and between 60% and 70% on 16 processors [23]. Further, the
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results can be compared to the “ideal” speedup of N on N processors9. To
facilitate this task, a curve that illustrates this “ideal” case has been added
to all speedup and efficiency diagrams.

7.5.1 3D Rigid Scenario

The three dimensional rigid problem was the one that was evaluated most
extensively. The behavior was analyzed with and without caching for small
and rather large images10 (see Section 7.4 for details about the image sizes)
and for different numbers of optimizer iterations.

The experiments for scale 1 to 32 have been carried out with 100 itera-
tions. For the experiments with scale 64, both, the Windows machines at
NNSU as well as the Unix workstations at ETH run into disk swapping, which
was intended in order to analyze the behavior of caching. Therefore, exper-
iments with scale 64 were computed with only 50 iterations. This avoided
overly long execution times11, which do not only make experiments very time
consuming but also make the results prone to interference due to other tasks
and prevent other users from using expensive resources12.

The resulting speedup for scales 1 to 64 and 100 iterations (only 50 in
case of scale 64) without caching has been summarized in Figure 7.5. Figure
7.6 shows the corresponding efficiencies for these experiments. Note the
extraordinary shape of the curves for scale 64 for the experiments at ETH and
for scales 16, 32 and 64 for the experiments at NNSU, which are due to the
disk swapping caused by the sequential reference program. This phenomena
is discussed in more detail in the caching part of this section. The wall-clock
times of the sequential program to which the speedup and efficiency values
are related are illustrated in Figure 7.7.

To demonstrate the effect of increasing the problem size by increasing the
number of iterations (which leads to more accurate results), the experiments
for scales 1 to 16 have further been carried out for 200 iterations. The
respective results can be found in Figures 7.8 (speedup) and 7.9 (efficiency).

These results show, that for the three dimensional rigid scenario, an in-
crease in problem size due to larger images does only slightly improve parallel

9The word “ideal” is used, even though parallelization sometimes allows to reach a
higher speedup.

10Note that the maximum file size was about 32 MB, which only a 16-th of the original
image size

11For 50 iterations, the execution time for the sequential program was still in the order
of 8 hours on the Windows cluster, and in the order of 10 hours on the Unix machines.

12Even when using lowest priority for the jobs, a user will be disturbed due to disk
swapping
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Figure 7.5: Speedup for the experiments at ETH (top) and NNSU (bottom).
The results for scale 64 were carried out with only 50 iterations, the other
experiments with 100 iterations. The extraordinary shape of the curves for
scale 64 (ETH) and 16 to 64 (NNSU) will be explained in the caching part
of this section.
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Figure 7.6: Efficiencies for the experiments at ETH (top) and NNSU (bot-
tom). The results for scale 64 were carried out with only 50 iterations, the
other experiments with 100 iterations. The extraordinary shape of the curves
for scale 64 (ETH) and 16 to 64 (NNSU) will be explained in the caching
part of this section.
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Figure 7.7: The wall-clock times for the sequential program of the three
dimensional rigid scenario.

efficiency. Since larger images ask for more memory resources, scalability in
the sense of the extended definition, which asks for constant memory con-
sumption (see Section 7.1) is poor. When the problem size is increased by
incrementing the number of iterations, memory requirements remain con-
stant. At the same time a significant improvement of parallel efficiency can
be observed as illustrated in Figure 7.10. According to the formal definition
of Section 7.1, the program can therefore be considered scalable. This con-
clusion is, however, dangerous. Which number of iterations is reasonable is
highly dependent on the problem and the required accuracy13. In the three
dimensional rigid scenario that was evaluated, the improvement in accuracy
stagnated between 200 and 300 iterations.

Caching

The caching mechanism (see Section 6.4) was introduced to avoid the problem
of an increasing per processor memory consumption for larger and larger data
sizes, which inevitably causes the processing nodes to start disk swapping at
a certain point. Any experiments using caching were carried out with the

13Factors such as the quality of the initial guess (if present), the optimization method,
or the smoothness of the metric function greatly affect the convergence.
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Figure 7.8: Speedup for the experiments at ETH (top) and NNSU (bottom)
for the three dimensional rigid problem with 200 iterations. The extraordi-
nary shape of the curve for scale 16 (NNSU) will be explained in the caching
part of this section.
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Figure 7.9: Efficiencies for the experiments at ETH (top) and NNSU (bot-
tom) for the three dimensional rigid problem with 200 iterations. The ex-
traordinary shape of the curve for scale 16 (NNSU) will be explained in the
caching part of this section.
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Figure 7.10: Comparison of the speedup of the three dimensional rigid sce-
nario with 100 and 200 iterations at scale 8. The results of the experiments
at ETH (top) as well as at NNSU (bottom) are shown.
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following parameters:

• Cache block size for the gradient image: 32× 32× 32 pixels (768 KB)

• Maximum number of cache blocks for the gradient image: 64

• Cache block size for the moving image: 64× 64× 64 pixels (512 KB)

• Maximum number of cache blocks for the moving image: 64

Therefore, the maximum memory consumption caused by these two im-
ages should not exceed 80 MB (64 · (768 + 512) KB).

The per slave memory consumption as illustrated in Figure 7.11 shows,
that without caching, the physical memory size is exceeded from scale 32
on the Windows machines at NNSU (256 MB RAM), and from scale 64
on the Unix workstations at ETH (512 MB RAM). On the Windows clus-
ter, two processes were executed on each host for the experiments with 16
processors. Therefore, the experiments with scale 16 on 16 processors were
already influenced by the consequences of disk swapping. This occurrence
of disk swapping explains the extraordinary curves that were observed in
Figures 7.5 and 7.6.

Figure 7.11: Memory usage in dependency of the scale. Note that the mem-
ory usage is the total process size. The values were taken from the Unix
(SunOS) workstations at ETH.
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As soon as the process size of the non-caching version exceeds the phys-
ical memory size, a caching-version of the program is supposed to increase
performance. The results, which are summarized in Figures 7.12 and 7.13
confirmed this conjecture.

At a first glance, it might be surprising that efficiencies considerably
larger than one can be observed, even in cases where no caching is applied
(as seen in Figures 7.5 and 7.6). However, the fact that each host works on a
partial image only does not only reduce the amount of disk accesses in case
of caching, but can also do so in case of usual disk swapping. Analyzing the
bone images used in this example showed, that the transform between the
fixed and the moving image consisted of a rotation along the z-axis and a
slight transformation. Therefore, a slice of the fixed image (which represents
the sub-image in the slave) is mapped to a slice of the moving image as
illustrated in Figure 7.14. As indicated in the figure, pixels are stored with
increasing x, then y and finally z indices. Therefore, the moving image slice
is an almost continuous block of memory when using standard ITK data
representation. Consequently only little swapping is necessary as soon as the
slice is small enough to fit into the physical memory.

To demonstrate the effect of a less optimally aligned data set, the fixed
image was rotated around the y-axis. The resulting orientation of the images
and the corresponding slices are illustrated in Figure 7.15. In this case, the
moving image slice is no longer stored in a continuous memory block when
using the ITK data structure. Therefore, a much larger amount of pages are
required to represent this slice. Consequently, much more disk swapping is
required in this setup and the non-caching version of the parallel program
performs significantly worse. A comparison of the speedups reached on the
Unix machines for the two data sets and the caching and the non-caching
version of the program is shown in Figure 7.16. This figure also shows that
the parallel framework can reach an enormous speedup compared to the
sequential execution time of standard ITK methods as soon memory becomes
critical, particularly when caching is enabled.

Experiments showed, that for a scale of 64, the maximum resident size of
the slave processes was in the order 95 MB on the Windows machines and in
the order of 160 MB on Unix, when caching was used. The difference most
likely comes from different policies of the operating systems when it comes
to freeing memory mapped to a file and from the larger physical memory size
on the Unix machines in conjunction with this policy. With an increasing
number of slaves, the per slave memory usage rapidly dropped (this is shown
in Figure 7.17 for scale 64 and 32 on the Unix machines). Considering the
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Figure 7.12: Speedup for the three dimensional rigid scenario with caching
for the experiments at ETH (top) and NNSU (bottom). The results for scale
64 were carried out with only 50 iterations, the other experiments with 100
iterations. Note that some speedup values are higher than those of the “ideal”
curve. This is due to the disk swapping which slowed down the sequential
reference program.
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Figure 7.13: Efficiencies for the three dimensional rigid scenario with caching
for the experiments at ETH (top) and NNSU (bottom). The results for scale
64 were carried out with only 50 iterations, the other experiments with 100
iterations. Note that some efficiency values are higher than 100%. This is
due to the disk swapping that slowed down the sequential reference program.
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Figure 7.14: Top: Orientation of the images as well as of the fixed and
the transformed fixed image region. Bottom: View from the top with the
operating system memory pages indicated. The numbers indicate the order
of the page accesses (NOT the pixel accesses). It can be seen, that first all
the pages in the topmost layer are accessed, then those in the second layer
from top and so on. Thus, the data accesses are restricted to a compact
block in memory.
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Figure 7.15: Top: Orientation of the images as well as of the fixed and
the transformed fixed image region. Bottom: View from the top with the
operating system memory pages indicated. The numbers indicate the order
of the page accesses (NOT the pixel accesses). Compared to the area of
the fixed image slice, a much larger number of memory pages is required
per layer than in the situation in Figure 7.14. What’s more, pixels are this
time accessed in direction of the z-axis. Therefore, succeeding pixel accesses
address different pages. The consequence are much more frequent swapping
operations (and hence disk accesses) as soon as the total region does not fit
into main memory.
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Figure 7.16: Comparison of the behavior of the parallel framework with
and without caching for differently aligned data sets. When the resulting
moving image regions approximately represent slices along the z-axis, both,
the caching as well as the normal version of the parallel framework perform
better than for less optimally aligned data sets and both can reach efficiencies
of more than 100%. For both alignments, the caching version performs better
(particularly on a large number of processors), and particularly for the badly
aligned data sets the results are more predictable. The underlying data of
this figure originates from the experiments at ETH.
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(theoretically14) limited amount of memory and the high efficiencies (up to
more than 500%) that seem15 to significantly increase with an increasing
problem size (see Figure 7.18), the architecture can be said to behave well
with respect to scaling.

Figure 7.17: Memory usage in dependency of the number of processes when
caching is enabled. Note that the memory usage is the total process size.
The values were taken from the Unix (SunOS) workstations at ETH.

The results related to caching showed, that caching can significantly in-
crease performance in certain situations. However, they also show, that it
should not be used blindly. It is inevitable to think about the amount of
data, and even about its approximate orientation in space in order to es-
timate the consequences. If not used carefully, caching might significantly
reduce instead of increase performance.

14Experiments with a much lower number of cache image blocks showed, that this lim-
itation also works in practice. For two processes and scale 16, for example, the total and
resident process sizes were only 42 and 32 MB, respectively when using 10 blocks each,
compared to 91 and 63 MB when using 64 blocks.

15Unfortunately, it was almost impossible to carry out experiments on larger scales
which might have proved this assumption.
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Figure 7.18: Comparison of the behavior of caching for an increasing data
size based on the results from the experiments at NNSU. When the process
size only slightly exceeds the physical memory size (scale 32), no significant
performance difference can be observed between the non-caching and the
caching version of the program. However, the situation drastically changes
for an increasing data size (scale 64).
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Analysis of the MPE Log-Files

When analyzing the MPE log files, it becomes apparent that a considerable
amount of time is spent in the initialization process. With approximately 65
seconds, or approximately 2% of the total execution time, this part seems
small when looking at Figure 7.19. However, Amdahl’s law states, that this
already limits the maximally reachable speedup to about 50. Even worse,
Figure 7.20 reveals, that due to a more complicated data distribution, the
initialization phase takes even more time on a larger number of processes (ap-
proximately 135 seconds in this example with 33 processors) and it becomes
also optically visible that the time spent for initialization significantly affects
speedup, even though the overhead within the optimization phase is rather
low. The long initialization phase also explains the significant improvement
in speedup when increasing the number of iterations.

When looking more closely at this initialization phase, as this is done
in Figure 7.21, it becomes apparent that particularly on a low or moderate
number of processors, a significant part of this initialization phase consists of
gradient image calculation and that further a lot of time is spent by sending
image data. Section 8 will show, how the time for gradient image calculation
can be reduced and methods will be presented that allow to send image data
in a smaller amount of time.

Figure 7.19: Jumpshot diagram for two processes. To the left, the initializa-
tion phase (violet) can be seen. It makes up only a small part of the total
computation time.
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Figure 7.20: Jumpshot diagram for N = 32. The initialization phase to the
left (mainly green) makes up a considerable part of the overall wall-clock
time in this case.

Figure 7.21: The initialization phase (violet) basically consists of sending the
moving image (light blue to the left), calculating the gradient image (gray)
and sending the fixed image regions (green).
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The log files further show, that only a negligible part of the time is spent
in the other non-parallelizable code segments, such as the optimizer and the
post processing of the intermediate results. However, a significant overhead
is generated by load imbalance. Figure 7.22 shows a case, where many slaves
have to wait for one process that sits on a CPU that was (most likely) slowed
down by other user processes. Further load imbalance is caused by a non
equally distributed workload due to unequal region splitting (slice thickness
can vary by one pixel, since it has to be an integer number) and due to
regions that are not mapped onto the moving image and thus produce less
work. This problem is is illustrated in Figure 7.23.

Figure 7.22: The second last processor is (most likely) not free of load from
other users. Therefore, all the other processes have to wait for it (light blue).
The large block that is mainly red (computing time) shows that the program
could perform much better. The thin white lines within this block are the
point to point operations that transmit the intermediate results.

Summary

Speedup and efficiency figures for the three dimensional rigid example are
in the order of those reached by other projects. The use of caching further
allows to treat large data size problems with high efficiency on a large number
of processes, due to a low memory usage.
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Figure 7.23: The computing times (red) of the first 5 slaves are longer, since
they work on a larger image region. The image size in z-direction was 101
pixels, which resulted in 27 slices of 3 and 5 slices of 4 pixels width. The
slice of the last slave was most likely not entirely mapped onto the moving
image, which resulted in even less work.
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The scenario is characterized by a long initialization phase which inher-
ently limits the achievable speedup. Due to the large data sizes, the time for
function evaluations becomes long compared to the time spent to send and
process the intermediate results. Therefore, the parallel overhead during the
optimization phase is low.

7.5.2 2D Bspline Deformable Scenario

The two dimensional bspline deformable problem was evaluated for scales 1
to 16 on 1 to 16 processors at NNSU and on 1 to 64 processors at ETH. The
results are summarized in Figures 7.24 and 7.25. The wall-clock times of the
sequential program can be found in Figure 7.26.

The experiments at ETH show a steady increase in efficiency when going
to larger data sets. The (approximate) isoefficiency functions for 80%, 82%
and 84% are shown in Figure 7.27. It is difficult to guess the exact extrapola-
tion of the curves. From visual inspection, however, it can be expected that
the slope will not extremely increase even in the area of 100 processors16.
Considering problem size increase factors of about 2.5 or 3 to keep efficiency
at the constant level of 80% when doubling the number of processors, it can
be said that the methods scales well in this scenario. Unfortunately, per node
memory consumption increases proportionally with the problem size. There-
fore, the good scaling properties have to be relativized. However, even on the
Windows machines with 256 MB of memory, the maximum “scale”, such that
no swapping occurs, would be approximately 100 (compared to a maximum
of 16 that was evaluated). For even larger data sets, caching could be used
in order to account for the high memory requirements. Thus, the scenario
can be considered scalable despite of the increasing memory requirements for
larger workloads.

Analysis of the MPE Log-Files

The inspection of the MPE log files showed a rather short initialization phase.
The computationally intensive bspline interpolation caused long calculation
times compared to the overhead incurred by transmitting the intermediate re-
sults. Therefore, the overall parallel overhead within the optimization phase
was low, as depicted in Figure 7.28. The time spent in the optimizer was
negligible, despite of the large number of parameters.

A careful reader might have noticed, that the results of the experiments
on the NNSU cluster were worse compared to those on the workstations at

16Recall from the requirement specification, that 100 processors was the approximate
maximum size that was expected for typical applications.
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Figure 7.24: Speedup values for the two dimensional bspline deformable prob-
lem. In the experiments at ETH (top) speedup steadily increases for an in-
creasing problem size. This is not the case for the experiments at NNSU
(bottom). The reason will be explained during the discussion of the MPE
log files later in this section.
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Figure 7.25: Efficiency values for the two dimensional bspline deformable
problem. In the experiments at ETH (top) efficiency steadily increases for
an increasing problem size. This is not the case for the experiments at NNSU
(bottom). The reason will be explained during the discussion of the MPE
log files later in this section.



7.5 Results 99

Figure 7.26: The wall-clock times of the two dimensional deformable scenario
for increasing image sizes.

Figure 7.27: The isoefficiency functions for the two dimensional bspline de-
formable scenario and the experiments at ETH.
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Figure 7.28: Even for 64 slaves, the communication overhead (light blue) is
low compared to the computing times (red) in the bspline scenario.

ETH. They also showed a significant efficiency decrease when incrementing
the number of processors from one to two. Inspection of the log files showed,
that one host (the second one) performed slightly worse in all the examples
(including those for the other scenarios)17. This is depicted in Figure 7.29.
Due to the low overall overhead in the bspline deformable scenario, the in-
fluence of this slower node was particularly high in this case.

Summary

The bspline deformable problem is characterized by a short initialization
phase as well as a small parallel overhead during optimization. Therefore,
high efficiencies can be reached. Because of the small initialization phase, the
problem scales well as long as memory is not critical. Most likely, caching
allows to keep up this scalability even for memory intensive tasks, however,
this has not experimentally been proved.

7.5.3 2D Affine Scenario

The two dimensional affine scenario was evaluated for scales 1 to 16 and
100 iterations. Since a histogram based metric was applied, the intermediate

17The reason is, that this node acts as a file server for the cluster.
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Figure 7.29: On the Windows cluster at NNSU, one node (the second one,
3rd row) is slightly more loaded than the others since it acts as a file server
for the cluster. Therefore, the other nodes permanently have to wait (light
blue) for this one.

results were large in this example (a whole 64×64 histogram), which resulted
in a high communication overhead. Therefore, the effect of overriding the
IntermediateResultsAllReduce() method (see Sections 6.2.2 and 6.2.3)
was evaluated in this example.

The results of the variant without overriding the
IntermediateResultsAllReduce() method are summarized in Fig-
ures 7.30 and 7.31 and the wall-clock times of the sequential program
are illustrated in Figure 7.32. For low scales they show poor efficiencies.
However, a significant increase of parallel efficiency can be achieved when
going to larger problem sizes. For scale 16 the results of this example can
already compete with those of other projects. The isoefficiency functions for
56%, 60% and 64% are shown in Figure 7.33.

Overriding IntermediateResultsAllReduce

The treatment of intermediate results of the
DistributedImageToImageMetric is not optimal when in each stage
a large number of intermediate results has to be transmitted an processed.
A large number of processors causes a large number of point-to-point
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Figure 7.30: Speedup values for the two dimensional affine problem. In
the experiments at ETH (top) speedup even decreases for a high number of
processors due to the high communication overhead. This was not the case
for the experiments at NNSU (bottom), where the nodes were connected by
a faster 1Gbit Ethernet.
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Figure 7.31: Speedup values for the two dimensional affine problem. The
better results at NNSU (bottom) compared to those at ETH (top) mainly
result from the faster 1Gbit interconnection network at NNSU.



104 Evaluation

Figure 7.32: The wall-clock times of the sequential program for the two
dimensional affine scenario.

Figure 7.33: Isoefficiency of the two dimensional affine problem for the ex-
periments at ETH.
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messages, that all have to be received at the master node. All the results
have then to be post processed by a singe node (the master node). Further,
intermediate results are by default transmitted as values of type double,
which is not always appropriate.

Post processing of the partial histograms produced by a histogram based
metric consists of simply adding the respective bin frequencies. This can
efficiently be done in a tree structure18, which reduces the amount of messages
that have to be received by the master from N to log2(N). Further, the
histogram values represent frequencies that do not require a double value
but can be represented by integers, which reduces the message size by a
factor of two.

Exactly these modifications (representing histogram bins us-
ing integers and summing the bins up using a tree structure19)
have been incorporated into the histogram metric by overriding the
IntermediateResultsAllReduce() method. The results for this scenario
with the modified metric function are shown in Figures 7.34 and 7.35. As
can be seen, many of the efficiency values are lower than when using the
non-modified metric, which might seem disappointing. When, however, the
isoefficiency functions illustrated in Figure 7.36 are compared to those of
the non-modified example (Figure 7.33), it becomes obvious that the scaling
behavior has significantly improved. While the slopes of the curves rapidly
increase in the non-modified case, those of the modified metric are almost
constant.

Analysis of the MPE Log-Files

The MPE log files of the non-modified metric showed, that on a large number
of processors, the communication overhead dominates over the computing
time during the optimization phase. This is illustrated in Figure 7.37 for
33 processors and scale 16. Reducing message size by better the use of a
better suited data type and replacing the point to point communication by
MPI Reduce() allowed to improve the situation, as shown in Figure 7.38.
However, the overhead is still considerable. Therefore, efficiency drastically
increases for larger data sizes that lead to longer computing times at the
same communication cost during the optimization phase.

18I.e. in a first step, any two neighboring processes add their histograms. The results
are stored on any process with even rank. In a second step, these new histograms (only
half of the number of the original partial histograms exists now) are again added, and the
results are stored in the processes with ranks 0, 4, 8, . . ., and so on.

19Which can easily be achieved by calling MPI Reduce() (at least when using the MPICH
implementation of MPI)
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Figure 7.34: Speedup values for the modified two dimensional affine prob-
lem that uses MPI Reduce() for the processing of the partial results. The
experiments were carried out at ETH.

Summary

For small problem sizes, parallel speedup and efficiency are poor in the two
dimensional affine scenario. However, the situation significantly improves
when going to larger data sizes. Introducing an improved processing of the
intermediate histograms generated in the slaves resulted in isoefficiency func-
tions that speak for good scalability properties.
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Figure 7.35: Efficiency values for the modified two dimensional affine prob-
lem that uses MPI Reduce() for the processing of the partial results. The
experiments were carried out at ETH.
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Figure 7.36: Isoefficiency functions for the modified two dimensional affine
problem that uses MPI Reduce() for the processing of the partial results.
The almost linear functions indicate good scalability. The experiments were
carried out at ETH.

Figure 7.37: A large number of point to point communications (white arrows)
that transmit messages of a considerable size (64 · 64 · 8 bytes) cause a lot of
overhead and dominate over the computing time (red).



7.5 Results 109

Figure 7.38: Using MPI Reduce() and a better data representation, the com-
munication overhead can considerably be reduced compared to the one de-
picted in Figure 7.37. However, it is still large compared to the computing
times (red).
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Chapter 8

Future Work

8.1 Reducing Parallel Overhead

8.1.1 Need for Dynamic Load Balancing

As already mentioned in section 5.2, dynamic load balancing is indispensable
when deploying parallel computing methods on clusters of work stations in
“real world” environments (such as a hospital). The experiments carried
out on the Tardis cluster at ETH, which could not entirely be protected
against interference caused by other users, showed that the parallel registra-
tion framework is no exception.

One way to extend the framework with dynamic load balancing is the use
of progress monitoring inside the slaves. Whenever a certain percentage (say,
5%) of the assigned fixed image region is completed, a slave process could
send a message to the master. As soon as one slave has finished its work, the
master could send a part (say, the last 5%) of the fixed image region of the
slowest process to this fastest process which in turn calculates the associated
intermediate values. The slowest slave would then be informed about that
and finish its calculation after 95% of its region1. Since typically the perfor-
mance of a single node does not change very much from one iteration to the
next, the newly distributed image regions should be kept in memory in order
to minimize the cost of sending image data in succeeding iterations. In case
caching is enabled, care has to be taken that data locality is preserved. This
can for example be achieved by only allowing neighboring nodes to take over
work from each other.

Depending on the data and the number of processes, the subdivision of

1Obviously, further parts can be redistributed, such that the slowest slave only requires
to process 90% or 85% (etc.) of its region.
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image regions could be done along the outermost (as already done for initial
distribution) or the second last2 image dimension.

Obviously it is not possible to integrate dynamic load balancing into the
parallel registration framework without creating some new parallel overhead.
As seen in Figure 7.22, an important reason that lowers efficiency for a large
number of processes is synchronization overhead due to slow nodes. There-
fore, the performance increase due to better loaded nodes is likely to far
outweigh this newly introduced overhead.

8.1.2 Optimizing Initialization Phase

IP-Multicast

During initialization, the moving image is broadcasted to all slaves. The cur-
rent implementations uses the MPI Bcast() method to do so. MPI Bcast()

internally builds up on point-to-point communications. A tree structure al-
lows to broadcast a message in TM · log2(N) seconds (where N is the number
of processes and TM the time to send the message over the network once). It
has been shown, that for large messages (such as messages consisting of image
data definitely are), the use of IP-Multicast can considerably reduce transmis-
sion time, since only one message (instead of log2(N)) has to be sent by the
root node [32, 33]. Using IP-Multicast can therefore reduce the initial com-
munication overhead which inherently limits the achievable speedup accord-
ing to Amdahl’s law. A free implementation that integrates IP-Multicast into
MPI can be found at http://www.boulder.swri.edu/~ptamblyn/ais/3.

Data Compression

As stated in Section 3.3, compressing data prior to sending it over the net-
work can sometimes increase throughput. This, however, greatly depends
on the kind of data, the available computing power, and the communica-
tion subsystem. In case a configuration of these components speaks in favor
of compression, a user can override the image send and receive methods of
the RegistrationCommunicator by versions that compresses data prior to
transmission (send) and uncompresses them after reception (receive). The
goal of adding such compression methods is obviously to reduce the time
spent in the initialization phase. Therefore, it is of particular interest if a
large number of processors is involved in the computation.

2I.e. x in 2D and y in 3D.
3State 21.09.2004
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Parallel Gradient Image Calculation

As can be seen in Section 7.5.1, Figure 7.21, a considerable amount of time
during initialization is consumed by gradient image calculation. Each slave
calculates the whole gradient image. Consequently this work is carried out n
times (where n is the number of slave processes). This is basically equivalent
to non-parallelizable code which inherently limits the achievable speedup
according to Amdahl’s law. Since the gradient image filter used in the parallel
framework is streaming capable (i.e. allows to treat images region by region),
the work of calculating the gradient image could be parallelized, such that
each slave only calculates one n-th ( 1

n
) of the gradient image and broadcasts

its part to the other slaves. Provided, that the interconnection network is
fast, the speedup due to this parallelization probably outweighs the time lost
be exchanging image data among the slaves4.

8.2 Parallel Registration Framework and

Shared Memory Systems

ITK has some built in support for parallel computing on
shared memory systems. At the time of this writing, one
metric function (MatchCardinalityImageToImageMetric) pro-
vides support for multi-threaded processing. In analogy with
the DistributedImageToImageMetric’s DistributedGetValue(),
BeforeDistributedGetValue() and AfterDistributedGetValue()

methods, it owns the methods ThreadedGetValue(),
BeforeThreadedGetValue() and AfterThreadedGetValue(). These
methods carry out exactly the same work as their counterparts in the
distributed framework.

Analyzing the architecture has shown, that a threaded metric super-
class could be introduced, similar to the DistributedImageToImageMetric

which serves as the superclass for all the metric classes of the parallel frame-
work for distributed memory systems. Let us assume such a threaded
metric superclass exists, is called ThreadedImageToImageMetric and de-
rives from itk::ImageToImageMetric. Then, a special version of the

4An example should give a rough idea: The calculation time for an image of 130×130×
254 pixels (which yields a gradient image size of roughly 100 MB) took approximately 26
seconds (at ETH). Ideally 100 MB can be sent over a a 100 Mbps network in approximately
8 seconds. On n = 16 slaves, the calculation of one gradient image part takes about
26/16 = 1.6 seconds. Thus, a parallel version ideally calculates the gradient image in
8 + 1.6 = 9.6 instead of 26 seconds.
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DistributedImageToImageMetric could be created, that keeps an instance
of such a ThreadedImageToImageMetric. Within the slaves, the fixed and
the moving image, as well as the interpolator could be assigned to the
threaded metric member5. The DistributedGetValue() method would then
become a simple wrapper around the ThreadedGetValue() method of the
threaded metric that makes sure the results are copied into the data struc-
tures needed to transmit them over the network. The pre- and post pro-
cessing methods could analogously be wrapped. That way, any threading
capable metric could be equipped with the functionality of the distributed
metric.

Instead of creating a new metric function deriving from the
DistributedImageToImageMetric, new metric functions could be derived
from the ThreadedImageToImageMetric and then be made available to the
parallel registration framework for distributed memory systems by this wrap-
per module.

5Note that this does not involve copying large amounts of data, since only pointers to
the images have to be copied.
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Conclusion

During this project, a generic parallel registration framework for distributed
memory systems, such as clusters of workstations, has been developed. The
framework builds upon and extends the ITK library, one of the most prevalent
software toolkits in the area of image registration. Thereby the developed
methods hide the parallelization details from the user and can thus be ap-
plied without in-depth knowledge about parallel computing. The multitude
of modules available in the ITK library together with their universal char-
acter allows to embed the parallel framework into a large variety of different
applications.

A generic module for distributed metric calculation has been developed,
which allows to implement a multitude of intensity based metric functions
with little effort. Exemplarily, metric functions that define mean squares as
well as mutual information measures have been realized.

An abstract communication layer has been introduced to ensure that
the methods can be deployed on different hardware architectures with little
modifications. This layer has been implemented for the MPI standard, which
allows the use of the unmodified framework on most distributed memory sys-
tems. Finally, a caching mechanism has been proposed to deal with memory
intensive problems.

An extensive evaluation in more that 1000 experiments showed that:

• the framework can be applied in various registration problems, includ-
ing:

– two and three dimensional problems.

– rigid and deformable problems.

– inter- and intra-modal problems.
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• high speedup values up to a large number of processors can be achieved
in some problems.

• the framework scales well in most problems.

• in problems demanding for large amounts of memory, parallel efficien-
cies of more than 100% can be reached compared to sequential programs
that cause disk swapping.

• extensions that improve performance in special situations can be added
at little cost.

• the framework can be used in Windows as well as Unix clusters.

The evaluation, however, also revealed, that particularly in three dimen-
sional problems, a long initialization phase inherently limits the reachable
speedup and that the lack of dynamic load balancing negatively affects
performance in heterogeneous clusters as well as in clusters that are not
free of interfering load. The need for dynamic load balancing as well as
the optimization of the initialization phase could be addressed by future
projects. In addition, such projects could tackle problems related to the use
of the parallel framework in shared memory systems.

In dieser Arbeit wurde ein generisches Framework entwickelt, welches par-
allele Bildregistrierung in Systemen mit verteiltem Speicher, wie zum Beispiel
Workstation-Clusters, ermöglicht. Das Framework basiert auf und erweitert
die ITK Bibliothek, welche eines der weitestverbreiteten Software-Toolkits
im Bereich der Bildregistrierung darstellt. Die entwickelten Methoden ver-
bergen die Parallelisierungsdetails vor dem Benutzer, so dass sie auch oh-
ne tiefgründiges Wissen über Parallel-Computing eingesetzt werden können.
Der universelle Charakter und die Vielzahl der von der ITK Bibliothek zur
Verfügung gestellten Module erlauben es, das Framework in eine grosse Aus-
wahl verschiedener Anwendungen zu integrieren.

Für die verteilte Berechnung der Metrikfunktion wurde ein generisches
Modul entwickelt, welche es ermöglicht, mit geringem Aufwand eine Vielzahl
von intensitätsbasierten Vergleichsfunktionen zu implementieren. Exempla-
risch wurden Metriken realisiert, welche auf den Massen “Mean-Squares” und
“Mutual Information” beruhen.

Ein abstrakter Kommunikationslayer wurde eingeführt, um sicherzustel-
len, dass lediglich kleine Modifikationen nötig sind um das Framework auf den
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verschiedensten Hardware-Architekturen einzusetzen. Dieser Layer wurde für
den MPI-Standard implementiert, wodurch die meisten Systeme mit verteil-
tem Speicher abgedeckt sind und sich eine Modifikation des Frameworks ganz
erübrigt. Schliesslich wurde ein Caching-Mechanismus vorgeschlagen und um-
gesetzt, um auch memoryintensive Probleme behandeln zu können.

Eine umfangreiche Evaluation, bestehend aus mehr als 1000 Experimen-
ten, hat gezeigt, dass:

• das Framework in verschiedenartigen Bildregistrierungsproblemen ein-
gesetzt werden kann, darunter gehören:

– zwei- und dreidimensionale Probleme.

– Probleme welche auf starren Transformationen beruhen, sowie sol-
che, in welchem die Transformation durch ein allgemeines Defor-
mationsfeld gegeben ist.

– inter- und intra-modale Probleme.

• in gewissen Problemen hohe Speedup-Werte auf bis zu einer grossen
Anzahl von Prozessoren erreicht werden können.

• das Framework in den meisten Problemen gute Skalierungseigenschaf-
ten aufweist.

• in Problemen mit grossem Speicherbedarf im Vergleich zu sequenziellen
Programmen, welche zu Disk-Swapping führen, eine parallele Effizienz
von mehr als 100% erreicht werden kann.

• mit kleinem Aufwand Erweiterungen eingebracht werden können, wel-
che die Performance in speziellen Situationen steigern.

• das Framework sowohl in Windows- als auch in Unix-Clustern einsetz-
bar ist.

Allerdings hat die Evaluation auch aufgezeigt, dass besonders in drei-
dimensionalen Problemen eine lange Initialisierungsphase den erreichbaren
Speedup inhärent limitiert, und dass das Fehlen einer dynamischen Lastver-
teilungsstrategie die Performance in heterogenen Clustern, sowie in Clustern
mit unterschiedlich belasteten Knoten, negativ beeinträchtigt. Zukünftige
Projekte könnten sich deshalb sowohl der Entwicklung eines dynamischen
Lastverteilsungsmechanismus als auch der Optimierung der Initialisierungs-
phase widmen. Ausserdem könnten solche Projekte Probleme angehen, wel-
che sich im Zusammenhang mit der Verwendung des Frameworks in Shared-
Memory-Systemen ergeben.
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Appendix A

Original Task Description

A.1 Introduction

Image registration is the process of establishing a point-by-point correspon-
dence between two images of a scene. The images can thereby be acquired
by different sensors (inter-modal registration) or by the same sensor in dif-
ferent points in time (intra-modal registration). The image registration task
can be further divided into rigid and non-rigid registration depending on the
transform allowed to map one image onto the other.

Image registration is applied in several fields, such as in medical imaging,
in stereo vision applications, for motion analysis, object localization or image
fusion.

From the algorithmic point of view, image registration is basically an op-
timization problem. Usually a cost function is used, that defines the quality
of the correspondence between the images depending on their relative posi-
tion. On this function, a global optimum is searched. In the course of the
optimization, usually one image is kept fixed (fixed image) and the other one
(moving image) is transformed until an optimal correspondence is found.

Different software packages, libraries and frameworks exist that carry out
image registration. Some of the most prevalent tools are the Automated Im-
age Registration (AIR) package ([1]), the Flexible Image Registration Tool-
box (FLIRT) ([2]), the VTK CISG Registration Toolkit ([3]), the Image Pro-
cessing Toolbox of Mathworks (for Matlab) and the Insight Segmentation
and Registration Toolkit (ITK) [4]. Among these projects, ITK is the most
generic and extensive approach. Apart from the Image Processing Toolbox of
Mathworks, all the above mentioned packages are open source projects that
are freely available. However, only the Insight Segmentation and Registration
Toolkit can be used in commercial applications.
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Particularly in 3D applications, image registration can be a computa-
tionally intensive task as shown in [16] and [2]. The main problems are the
sometimes large amounts of data, e.g. a µCT image of a mouse femur as
used in [16] has a size of approximately 500MB. Since a cost function often
takes into account every single pixel (or voxel), such data amounts result
in long calculation times. What makes things even worse is the fact, that
for large images computers soon run out of available physical memory. The
ensueing disk swapping causes considerable performance loss and an increase
in calculation time.

The usage of distributed computing techniques can solve both, mem-
ory as well as performance problems. There exist several approaches that
address the image registration problem, and optimization problems in gen-
eral, with parallel computing techniques ([44], [14], [45], [19], [25], [7], [46],
[47]). Parallization methods for optimization tasks are divided into coarse
grained and fine grained methods. While in coarse grained methods multi-
ple independent function evaluations are executed in parallel, fine grained
methods calculate the basic computational steps in parallel. According to [7]
the parallel efficiency for coarse grained methods is usually better, and best
performance and scalability can be achieved by combining coarse and fine
grained methods. When addressing the parallel computation of the image
registration task, usually coarse grained approaches based on evolutionary
algorithms are applied ([44], [14], [45], [19]). Evolutionary algorithms are
often used in optimization problems and are well suited for a coarse grained
distribution, since the same function has to be evaluated several times for
different samples.

However, memory issues still remain critical when applying coarse grained
methods. Furthermore, coarse grained methods usually scale only within a
very limited range. Several voxel based registration techniques appear to
be well suited for fine grained parallel computation, thus allowing to define
promissing methods for addressing scalability and memory issues.

In this thesis, distributed computing techniques should be integrated into
the ITK library and the performance increase as well as the scalability of fine
grained methods should be investigated. The ITK library was chosen because
of the above mentioned advantages over other libraries.
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A.2 The ITK Library and Distributed Image

Registration

ITK is an open source C++ library mainly used in medical imaging for image
segmentation and registration. It was founded in 1999 by the US Library of
Medicine of the National Institutes of Health.

The basic image registration framework consists mainly of transform, in-
terpolator, optimizer, and metric classes. All of these components are neces-
sary to carry out image registration. The transform is needed to define how
the moving image can be transformed (only translations, rigid transforms,
affine transforms, non-linear transforms etc.) in the course of a registration
run. The metric class is the cost function, that defines the quality of the
correspondence dependent on the current transform parameters. Since the
transformed pixels of the moving image will not exactly fit onto the pixel
grid of the fixed image, interpolation is necessary. The optimizer defines
a strategy to search for a global optimum in the cost function. A further
class serves as a controller to the mentioned modules and sets up all the nec-
essary interconnections between them (see figure A.1). Several optimizers,
transforms, interpolators and metrics can be chosen from.

Fixed Image

Moving Image

Metric

Optimizer

Interpolator

Transform

Figure A.1: Modules of the ITK Library.

Besides the basic image registration framework, ITK contains function-
ality for deformable and for model based registration. However, these parts
should not be considered during this project.

All optimizers present in ITK (see [4]) have an optimization strategy
that works iteratively. It thereby often steps along a direction related to the
gradient of the cost function. Therefore, for each iteration, the cost function
has to be evaluated and (usually) its gradient has to be computed. For large
amounts of data, the calculation of the cost value and the gradients becomes
time consuming. We therefore propose an approach that distributes the load
of computing the image metrics.

Within the toolkit, there are 11 implementations of cost functions at the
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time of this writing. These are:

• GradientDifferenceImageToImageMetric

• MattesMutualInformationImageToImageMetric

• MeanReciprocalSquareDifferenceImageToImageMetric

• MeanSquaresImageToImageMetric

• MutualInformationImageToImageMetric

• NormalizedCorrelationImageToImageMetric

• CorrelationCoefficientHistogramImageToImageMetric

• MeanSquaresHistogramImageToImageMetric

• MutualInformationHistogramImageToImageMetric

• NormalizedMutualInformationHistogramImageToImageMetric

• KullbackLeiberCompareHistogramImageToImageMetric

Whereas the metric functions related to mutual information can be ap-
plied in inter- as well as in intra-modal registration, all the other functions
are only applicable in intra-modal registration.

The most common cost function is the mean squares metric, which pix-
elswise sums up the squared differences of the intensity values. The mean
reciprocal metric works on a pixel by pixel basis as well, however, instead of
adding the squared differences, the differences are added after passing them
through the bell-shaped function 1

1+x2 . The gradient difference metric com-
pares image gradients instead of intensities, the normalized correlation metric
is principally a cross correlation approach and the mutual information met-
rics are based on a statistical method that minimizes the joint information
of the overlaid images measured by entropies of the intensity distribution
functions. Those metrics carrying the term ’Histogram’ in their name are all
derived from a common superclass and operate on joint histogram data of
the two images. The computational complexity differs greatly for different
metrics. For most optimization strategies, the metric value as well as the
derivative at a given position have to be evaluated. Obviously, the gradient
calculation becomes more time-consuming the more transform parameters
are involved (i.e. for rigid transforms, gradient calculation is less complex as
in the case when general non-linear transforms are allowed).



A.3 Problem Statement 123

While some metrics (like the mean squares or the mean reciprocal metric)
only contain local data dependencies, this does not hold for other metrics,
what makes it more difficult to calculate them in parallel.

As already stated before, within ITK it seems to be reasonable to dis-
tribute the load of metric calculations. Other approaches, like distributing
the optimization process are possible as well but show some disadvantages.
Most of the optimizers are based on a gradient descent idea. In principle, cal-
culating these gradients can easily be distributed in a coarse grained manner
by calculating the cost function for some slightly displaced positions on dif-
ferent machines. This approach makes sense for some cost functions, where
analytical solutions for the gradient calculation are not available or not ef-
ficient. However, the scalability for this technique is very limited and each
involved computer needs to work on the whole images which might cause
memory problems as well as unnecessary high network traffic. For a 3D rigid
registration working with 6 degrees of freedom (i.e. transform parameters),
for example, 13 computers could be involved (for each parameter a displace-
ment in both directions has to be calculated). In total, the calculations would
be carried out on 13 copies of the fixed as well as the moving image and these
copies would have to be distributed over the network. Other coarse grained
methods raise the same problems.

To allow flexible scalability and to avoid the necessity of several image
copies, the problem should be tackled by distributing the calculation of the
image metrics in a fine grained manner. This essentially means to divide the
image into partial images and to compute the metric value based on calcu-
lations applied to them. The single calculations should thereby be carried
out on computers connected by a network. Except of the overhead, only
one copy of each, the fixed and the moving image has to be distributed in
this setup. Network traffic still might become a serious problem in such an
environment, because of the large data amounts and the permanent displace-
ment of the moving image (which probably makes up most of the overhead
mentioned above). A good data management will be indispensable and it
could be worth considering methods like data compression, or maybe even
prediction to tackle the problem. Based on an architecture that allows dis-
tributed metric calculation, a combination with coarse grained methods could
be interesting as proposed by [7]. However, this is not the aim of this project.

A.3 Problem Statement

The master thesis consists of the following main tasks:

• specification of the detailed requirements of the implemented software



124 Original Task Description

(functional specification),

• design of an architecture for distributed image registration that fits into
the existing toolkit (ITK),

• implementation of the proposed architecture,

• investigation of the performance increase and the scalability.

A.3.1 Requirement Specification

In order to set up a clear requirement specification the student starts with the
definition of a clear interaction and service model. This model will be the
foundation for identifying the possibilities for parallelization and distribu-
tion, but it will also help in delimiting the scope of the thesis. The deduced
requirement specification will enfold the set of registration problems that
have to be covered by the distributed registration methods developed dur-
ing this project, i.e. inter– vs. intra–modal registration, rigid vs. non–rigid
registration,etc. It further comprises the requirements on scalability, on the
amount of data that is to be supported, and on hardware profiles e.g. on con-
straints on heterogenous computers systems differing in processing power and
memory, or on constraints and requirements of the communication system.

A.3.2 Architecture Design

An architecture for distributed image registration should be designed that
fits smoothly into the existing part of ITK. The basic idea is to consider
fine grained methods, i.e. the parallel calculation of cost functions. Thereby
the overall architecture of the toolkit should be taken into account, allowing
flexible extensions of the proposed architecture in future. Such an extension
could be the combination of the distributed metric calculation with coarse
grained methods or the development of further distributed cost functions.

Besides pure computational speedup, the architecture should take into
account memory issues and network traffic. Memory issues have shown to
be a major problem in [16], since for large amounts of data the physically
available memory has been exceeded. Because of these large data amounts,
data exchange over the network will most likely become a serious issue as
well.

The design of such an architecture involves the following steps:

• studying the architecture of ITK and the characteristics of all cost
functions used in the basic image registration framework of the toolkit.
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Methods only applied in deformable and model based registration
should only roughly be looked at, keeping future extensions in mind.
The cost functions should mainly be investigated with respect to their
feasibility for parallel calculation (local vs. global data dependencies)
and with respect to their relations to other methods within the toolkit.
Such relations can be similar mathematical characteristics as well as
relations within C++ (inheritance).

• based on above investigation of ITK as well as the previously defined
requirements, a design should be specified that exactly states which
parts of ITK should be implemented in a distributed manner and how
this should be done.

• above design should be refined by stating how to deal with issues con-
cerning the underlying hardware as they are to be expected according
to the requirement specification. Particular attention should be paid
to data management issues.

• based on these considerations an architecture should be proposed that
addresses all issues discussed before.

A.3.3 Implementation

The previously specified architecture should be implemented such that it runs
on all platforms supported by ITK. The choice of the interprocess commu-
nication infrastructre will be decided upon an anaylysis of the requirements
and the design choice. A lightweight solution is however suggested. Dur-
ing the whole implementation process, tests on different platforms should be
carried out.

The coding styles defined in the ITK Style Guide will be followed when-
ever possible. Making the code official part of ITK is not the main goal
of the project since it is difficult to estimate the work necessary to do so.
Therefore, only in case there is enough time left and the procedure proves
not to be extraordinarily time consuming this work can be done within the
project. However, the code should be written such that an integration into
ITK can later be achieved.

A.3.4 Evaluation

The implemented architecture should be investigated with respect to scala-
bility and parallel efficiency for scenarios that cover the previously defined
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requirements. Memory consumption as well as computation time should be
considered theoretically as well as in experiments.

A sophisticated methodology has to be thought of that allows to quan-
titatively assess the implementation. This methodology should define which
parts are evaluated, to what they are compared and how the measurements
are carried out.

A.4 Organization of the Work

• The student has to arrange weekly meetings with his supervisor. In
these meetings the student is exepeced to inform on the progress of the
work, on encountered problems and proposed solutions. It is mandatory
that the student is well prepared for these meetings.

• By the end of the second week the student is expected to present the
final timetable of the thesis. The rough timetable defined in advance
should be refined and discussed with Prof. Gergel. The timetable has
to identify important milestones of the project. Milestones are sub–
goals that, upon reaching them, may implying decisions on further
proceeding.

• By the end of the first 6 weeks the student has to issue a pre–version
of the table of contents of the thesis documentation. It should be
discussed with Prof. Gergel and sent to the supervisors at ETH such
that they can add remarks.

• The student will have to make a short report at about the end of month
three. The report will be presented to Prof. Platter. It has to give a
brief overview on the current state of the project and the ongoing and
planned steps. (The report will most likely be hold as a telephone
conference.)

• The documentation of the thesis is carried out in parallel to the
project’s progress. Two intermediate reports should be issued and sent
to the assistants at ETH, the first after 2 and the second after 4 months.
The documentation can be made with any word processor, though we
recommend to use LATEX.

• After the end of the thesis, when back in Switzerland, the student is
to present his achievements in a 15 minutes talk at a group/institute
meeting at TIK. The presentation slides have to be sent to the assistants
at ETH by the end of the project.



A.4 Organization of the Work 127

• The documentation of the project is to be written in English. The
abstract and the executive summary however need to be written in
both English and German. In the appendix the taks description and
the timeplan have to be included. The student is to deliver 4 copies of
the documentation.

• The whole work has to be archived on CDROM (including presentation
slides). Please check that the documentation, the code, and all sources
are available in a printable, or executable, and useable shape.
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Appendix B

Time Table

Week 1-4: 5 April - 2 May

– Refine this time table.

· 18 April: Hand in the refined time table.

– Prepare a presentation to be held at NNSU

· 15 April: Hold the presentation.

– Set up the development environment:

∗ make sure there is a linux and a windows environment avail-
able

∗ install software

· LATEX

· compiler (gcc, VC++)

· ITK and related sofware (cmake, cvs?)

– Find out about related work:

∗ image registration

∗ which job to assign to which processor in a distributed envi-
ronment

∗ communication means in a distributed environment

– Define the requirement specification according to the task descrip-
tion.

Week 5: 3 May - 9 May
Analyze the ITK architecture.

· 9 May: Hand in the table of contents of the report.
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· Milestone: All the information necessary to define how the final so-
lution should look like is gathered.

Week 6-7: 10 May - 18 May
Define an architecture for the distributed part that fits into the existing
toolkit.

· Milestone: Based on above defined architecture the exact requirements
for the communication subsystem can now be seen.

Week 7: 19 May - 23 May
Evaluate different methods to implement the communication means
and choose a method suitable for the proposed architecture.

· 23 May: Hand in the first intermediate report.

Week 8-13: 24 May - 4 July
Implementation of the basic architecture (framework for communica-
tion and distribution of classes that should be calculated in parallel)

· Week 13: Phone conference with professor Plattner.

Week 14-16: 5 July - 25 July
Implementation of one scenario as a proof of concept for the previously
defined and implemented architecture.

· 25 July: Hand in the second intermediate report.

· Milestone: If the proof of concept was successful and enough time is
remaining, proceed according to the timetable. If there is not enough
time left, proceed with the evaluation such that at least one scenario
is evaluated. If the proof of concept was not successful, reconsider the
architecture.

Week 17-19: 26 July - 15 August
Implementation of further scenarios.

Week 20-21: 16 August - 29 August
Definition of a methodology for the evaluation of the architecture

Week 22-23: 30 August - 12 September
Make theoretical calculations and carry out the experiments according
to the defined evaluation methodology.

Week 24-26: 13 September - 3 October
Buffer for delays as well as time to prepare the presentation.
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· Week 26: Hand in the final report.

· Week 26: Hand in the presentation slides.
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streaming, 16, 59, 113
subdivision, 48, 111
swap space, 59

Tardis cluster, 68
task parallelism, 10
TCP, 34
threaded metric, 113
ThreadedGenerateData(), 16
three dimensional rigid scenario, 76
three dimensional rigid scenario, 72
time-line representation, 65
topology, 56
total overhead, 64
transform, 17, 33
tree structure, 105, 112
tree structured communication, 44
two dimensional deformable sce-

nario, 96
two dimensional affine scenario, 74,

100
two dimensional deformable sce-

nario, 73

Update(), 14
UpdateOutputData(), 16
UpdateOutputInformation(), 16
upstream, 14

vector processor, 10
Visual Human Project, 12

wall-clock time, 67, 76, 96, 101
Windows cluster, 68
world coordinates, 17




