Institut fiir Technische Informatik
und Kommunikationsnetze
' . Computer Engineering and
Eidgendssische Technische Hochschule Ziirich Networks Laboratory

Swiss Federal Institute of Technology Zurich Communication Systems Group

Summer Term 2004 Prof. Dr. Bernhard Plattner

Master’s Thesis

Service Provisioning in

Mobile Ad hoc Networks

Rolf Griininger
Tutor: Karoly Farkas
Supervisor: Prof. Dr. Bernhard Plattner

17th September 2004

MA-2004-12

Abstract

Mobile ad hoc networking is expected to see increasingly widespread use, as
mobile devices and wireless communication technologies become more and
more powerful. However, this environment contains special challenges, such
as lack of permanent infrastructure, high level of heterogeneity, mobility of
devices, resource constraints and unreliable communication. Therefore, pro-

visioning services requires special systems designed fur such environments.

In this thesis, a decentralized service provisioning framework for mobile
ad hoc networks, called Rosamon (Rolf’s Service Framework for Mobile Ad
hoc Networks), is designed and implemented. Rosamon integrates common
service provisioning functionalities, however in this thesis we focus on only
some of these functions, namely service specification, service indication and

service management.

Rosamon is established as a middleware between application and system
layer and based on the peer-to-peer approach. Thus, no central service in-
frastructure is used, the nodes in the framework act autonomously from each
other. Rosamon supports heterogeneous services, makes little assumptions
on the underlying platform and is independent from a particular execution

environment.

To demonstrate the working of Rosamon, we selected an online mul-
tiplayer game and implemented it together with Rosamon in a test bed.
Therefore, we had the possibility to investigate and proof our design in a

real environment.

The main contributions of this thesis are the design of a service pro-
visioning framework for the mobile ad hoc environment focusing on service
specification, service indication and service management, the test bed imple-
mentation of the developed modules and a sample online multiplayer game,

and the successful demonstration of the design concepts.

Our work has accomplished the first step towards provisioning services
in mobile ad hoc networks using a generalized way, but a lot of work still

remained to be done.

II

Preface

My last semester theses were well-defined and rather implementation ori-
ented. Therefore I wanted for my master’s thesis a more open and theo-
retical topic. To design a service provisioning framework for mobile ad hoc
networks seemed to me a challenging subject in an interesting research field

of computer science.

Now, at the end of my master’s thesis, I can recapitulate that this thesis
fulfilled my expectations. The work was very absorbing, and I think I really
learned a lot. Actually, I have to admit that I was sometimes also swamped
with the openness of the topic. In the beginning of this thesis, I read a
great deal of mobile ad hoc networking related literature. When I then
started the design of the framework, I wanted to carry out too many things
together, instead of focusing on the primary problems. Thereby, a complex
service specification was elaborated at the expense of the management of

distributed services.

It remains me to thank the Computer Engineering and Networks Labo-
ratory (TIK) at the ETH Ziirich, for this challenging master’s thesis and to

thank all members of TIK for their assistance in various fields.

Especially, I want to thank my advisor Karoly Farkas for the interesting

discussions and for his support during my thesis.

Ziirich, 17th September 2004

Rolf Griininger

III

v

Contents

Abstract 1
Preface 111
Table of Contents v
List of Figures X
List of Tables XIIT

1 Official Project Description 1
2 Introduction 3
3 Fundamentals 5
3.1 Mobile Ad hoc Networks (MANET) 5
3.2 Services in Mobile Ad hoc Networks 10
3.3 Service Provisioning 000, 13

4 Design of Rosamon 17
4.1 Overview e e e 17
4.1.1 Goals 17

4.1.2 Structure of Rosamon 18

4.1.3 Service Description 19

4.1.4 Service Advertisement and Discovery 21

\Y%

CONTENTS MASTER’S THESIS

4.1.5 Service Adaptation 22
4.1.6 Data Representation 23
4.1.7 Assumptionso 23
4.1.8 Emphasis of this Thesis 24

4.2 Service Concept 25
4.2.1 Compound Service 26
4.2.2 Resource Service 27
4.2.3 Device Serviceo 28
4.2.4 Converter Service 28
4.2.5 Service Engagement 29
4.2.6 Service Session oL 30
4.2.7 Service Realisation vs. Service Implementation 32

4.3 Service Descriptiono 33
4.4 Service Adaptation Lo Lo 36
4.4.1 Static Adaptation 36
4.4.2 Dynamic Adaptation 39
4.4.3 Adaptation of Remote Services 42

5 Demonstration of Rosamon 45
5.1 Alms . . . oL 45
52 TestBed 45
5.3 Scenarioo ..ol 46
6 Test Bed Implementation 51
6.1 General 51
6.2 Rosamon 52
6.3 Real-time Multiplayer Game 56
6.3.1 Rolf’'sBlast00, 56
6.3.2 Rolf’s Blast: Peer-to-peer Version Y
6.3.3 Rolf’s Blast: Client/Server Version 58

6.4 Interaction between Rosamon and Rolf’s Blast 59

VI

MASTER’S THESIS

CONTENTS

7 Conclusions and Outlook

7.1
7.2

Conclusions e

Outlook e

A Additional Fundamentals

Al
A2

A3

Game Architectureso
Service Provisioning Frameworks
A.2.1 Service Location Protocol (SLP)
A.2.2 Jini (Java Intelligent Network Interface)
A.2.3 Universal Plug and Play (UPnP): SSDP
A.2.4 Bluetooth: Service Discovery Protocol (SDP)
A.2)5 Salutation oo

A.2.6 GSD: Novel Group-based Service Discovery Protocol
for MANET

A.2.7 Allia: Alliance-based Service Discovery for MANET

A.2.8 Lanes: Lightweight Overlay for Service Discovery in

A.2.9 DSDP: Distributed Service Discovery Protocol

A.2.10 Konark: Service Discovery and Delivery Protocol for

A.2.11 Secure Service Discovery Protocol for MANET
A.2.12 DEAPspace: Transient Ad hoc Networking of Perva-

sive Deviceso oo
A.2.13 GCLP: Geography-based Content Location Protocol .

A.2.14 Nom: Resource Location and Discovery System for

A.2.15 Chameleon: Automatic Service Composition
Service Description
A.3.1 WSDL: Web Services Description Language
A.3.2 Semantic Web

81
83

84
85

86
86

CONTENTS MASTER’S THESIS

A4 Routing L
A.4.1 Ad hoc On Demand Distance Vector (AODV)
A.4.2 Dynamic Source Routing protocol (DSR)
A.4.3 Optimized Link State Routing Protocol (OLSR)

A.4.4 Zone Routing Protocol (ZRP)
A.4.5 Summary of Ad hoc Unicast Routing Protocols
A.4.6 Ad hoc Multicast Routing Protocols
A.4.7 Resource Management

A.5 Protocol Metrics L oo

A.6 Network Simulators
A.6.1 NS-2: Network Simulator 2
A6.2 GloMoSim / QualNet
A6.3 OPNET Modeler
A6.4 OMNeTHH+o

B Design Details

B.1 Assumptions

B.2 Compound Services and Ports

B.3 Framework Communication
B.3.1 Addressing the Framework: Rosamon Address
B.3.2 Transport Protocol and Addressing Scheme

B.4 Framework Modules,
B.4.1 Service Specificationo oL
B.4.2 Service Indication
B.4.3 Service Deployment
B.4.4 Service Management
B.4.5 Environment Observer

B.5 Adaptation Example Scenario 0oL

B.6 Examples of Service Description and Discovery Documents
B.6.1 Service Description Document Examples

B.6.2 Service Discovery Document Examples

VIII

101
103
104
106
107
108
108
109

MASTER’S THESIS CONTENTS
C Test Bed Setup 177
D Presentation 181
E Used Abbreviations 195

Bibliography 199

X

List of Figures

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2
5.3
5.4

6.1
6.2
6.3

Al
A2

A3

Mobile Ad hoc Network 6
Example of the Ad Hoc City Architecture 8
Service Provisioning Framework 19
Service Types o o v i 20
Special Service Part of Service Identifier Tree 26
Engagement Value 29
Example Service Identifier Tree 34
Abstract of the Specific Service Descriptor in Rosamon 35
Test Bed Network 46
Initial Network Setup 47
Demonstration Scenario oo 48
Service Description: Rolf’s Blast: Client/Server Version (Client) 50

Rosamon: Main Window 52
Rosamon: Service Discovery Editor 53
Rolf’s Blast o 56
Game Architectureso oo 68
Service Location Protocol Operation (with and without Di-

rectory Agent) 74

Jini network technology 75

MASTER’S THESIS

LIST OF FIGURES

A.4 Universal Plug and Play (UPnP)
A.5 Salutation Architecture
A6 Lanes
A.7 DSDP: hatched nodes belong to the virtual backbone
A.8 Konark Service Discovery Stack
A.9 GCLP: Geography-based Content Location Protocol

A.10 Example Service Tree of Konark

B.1 Port Connections: 1 to 1
B.2 Port Connections: 1 to N and Nto 1
B.3 Port Connections: Nto N
B.4 Service Provisioning System,
B.5 Example Service Identifier Tree
B.6 Structure of a Service Category Descriptor in Rosamon

B.7 Structure of Specific Service Descriptor in Rosamon
B.8 ATTRIBUTE element of Specific Service Descriptor
B.9 TYPES element of Specific Service Descriptor
B.10 SUBSERVICES element of Specific Service Descriptor
B.11 Connection Types o oo i i it
B.12 SESSION element of Specific Service Descriptor
B.13 Service Indicationo Lo
B.14 Structure of a Service Advertisement Document in Rosamon
B.15 Structure of a Service Discovery Document in Rosamon

B.16 Service Discovery Procedure
B.17 Music Player Scenario
B.18 Sample Service Description: Chess (Service with Sessions) . .

B.19 Sample Service Description: Weather Forecast (Remote Ser-

VICE) o v o e e

B.20 Sample Service Description: Music Player (Compound Service) 172

B.21 Sample Service Description: Synthesizer (Attributes)

XI

LIST OF FIGURES MASTER’S THESIS

B.22 Service Description: Rolf’s Blast: Client/Server Version (Server)174

B.23 Service Description: Rolf’s Blast: Peer-to-peer Version 175
B.24 Sample Service Discovery: Chess 176
B.25 Sample Service Discovery: Service for PalmOS 176

XII

List of Tables

3.1 Consequences for Services in Mobile Ad hoc Networks 12
5.1 Service Identifiers of Rolf’s Blast (Client/Server Version) . . . 49
A.2 Architectures for Multiplayer Games 69
A.4 Conventional Service Provisioning Frameworks 72

A.6 Comparison between Service Provisioning Frameworks for Mo-

bile Ad hocnetworks 73
A.8 Comparison of mobile ad hoc routing protocols 100
A.10 Comparison of mobile ad hoc multicast routing protocols . . 102
A .11 Qualitative protocol properties in mobile ad hoc networks . . 104

A.12 Quantitative protocol properties in mobile ad hoc networks . 105

A.13 Parameters of mobile ad hoc networks 105
B.1 Port Connections Behaviour: 1 to 1 115
B.2 Port Connections Behaviour: 1 to N 116
B.3 Port Connections Behaviour: Nto 1 116
B.4 Possible Service Roles for a Server/Client Service 126
B.5 Attributes of Element CATEGORY 128
B.6 Attributes of SERVICE Element 132
B.7 Attributes of GENERAL Element 133
B.8 Attributes of ATTRIBUTE Element 135
B.9 Attributes of VARIABLE Element 135

XIII

LIST OF TABLES MASTER’S THESIS

B.10 Attributes of PORT Element 136
B.11 Attributes of IMPLEMENTATION Element 138
B.12 Attributes of CODE Element 139
B.13 Attributes of ENVIRONMENT Sub-elements 140
B.14 Attributes of CONNECTIONS Sub-elements 142
B.15 Attributes of SESSIONS Element 143
B.16 Attributes of ROLES Sub-elements 144
B.17 Attributes of SESSION Element 144
B.18 Attributes of NODFE Element 144
B.19 Attributes of POTENTIAL Element 145
B.20 Attributes in Service Advertisement 152
B.21 Attributes in Service Discovery 153

XIV

Chapter 1

Official Project Description

Official student thesis description of the Computer Engineering and Net-
works Laboratory of ETH Ziirich by Karoly Farkas:

Master’s Thesis Summer Term 2004

Service Provisioning in
Mobile Ad hoc Networks

Rolf Griininger

Professor: Prof. Dr. Bernhard Plattner
Advisor: Karoly Farkas

1 Introduction

Service provisioning in ad hoc environment requires special attention.
Several sets of services can be distinguished from the simple, centralized,
device oriented service (e.g., network printer) to the complex, distributed,
software-based device independent one (e.g., real-time games). These ser-
vices have different requirements which can incur more sophisticated proce-

dures to deploy and manage them. Let’s consider the following application

CHAPTER 1 OFFICIAL PROJECT DESCRIPTION

scenario: on-line and distributed group games in a public place to kill wait-
ing time - the mobile device joining an ad-hoc network can appear on a
virtual play-field of a game and the user can join the ongoing game session.
Concerning this scenario we have to find answers for questions like where the
game service comes from, how the game service can be deployed (installed),

how a new player can join the game session, etc.

2 Problem

This project consists of two parts: design and implementation. First, an-
swering the mentioned questions, we plan to develop a service management
framework appropriate for the game scenario of the ad hoc environment.
After that, we intend to implement this framework and a prototype game

application to investigate the working of the framework in a real situation.

3 Function: Design and Implementiation

4 Keywords: Service Provisioning, Mobile Ad hoc Networks

5 Dates

Begin: Monday, 22nd March 2004
End: Friday, 17th September 2004

6 Contacts
Prof. Dr. Bernhard Plattner Karoly Farkas
<plattner@tik.ee.ethz.ch> <farkas@tik.ee.ethz.ch>

Chapter 2

Introduction

Mobile ad hoc networking is a concept in computer communication, in which
devices communicate with each other in a temporary network with a contin-
ual changing topology and without any form of centralized administration.
Each node participating in the network can act as host and as router at
the same time and must be willing to forward packet for order nodes. It is
expected that such networks see an increasingly widespread use and appli-
cation, as mobile devices and wireless communication technologies become

more and more powerful.

The provisioning, thus the description, indication, deployment and man-
agement, of services in such a network is a common problem, and appropri-
ate solutions are needed. Thereby, the mobile ad hoc environment claims its
own challenges. A service provisioning framework in such an environment
cannot rely on a permanent infrastructure and has to deal with the hetero-
geneous services and devices, with unreliable connections, high latency, low
network bandwidth and limited device resources. Further, the framework

has to adapt the services to the environment changes.

In this thesis, Rosamon (Rolf’s Service Framework for Mobile Ad hoc
Networks) is designed and implemented, a decentralized service provisioning
framework for mobile ad hoc networks with focus on service specification,

service indication and service management.

Rosamon is established as a middleware between application and sys-
tem layer, supports heterogeneous services and is based on the peer-to-peer
approach. Thus, no central service infrastructure is used, the nodes in the

framework act autonomously from each other.

CHAPTER 2 INTRODUCTION

The interaction of Rosamon with an online multiplayer game has been
investigated in a sample scenario. Therefore, parts of Rosamon and a real-

time multiplayer game have been implemented in Java.
In the following, a short description of the chapters of this thesis is given:

Fundamentals (Chapter 3) presents an overview of the basic principles
in mobile ad hoc networking. Thereby the requirements on services in such

networks are outlined and the basics of service provisioning are given.

Design of Rosamon (Chapter 4) gives an overview of Rosamon and
presents some significant aspects of the framework. In detail, the service
concepts, the service description and the service adaptation in Rosamon are
described.

Demonstration of Rosamon (Chapter 5) describes the sample scenario

that is used to investigate the working of Rosamon in a real situation.

Test Bed Implementation (Chapter 6) documents the implementation
of Rosamon together with a sample game, which enables the previously

described demonstration scenario.

Conclusions and Outlook (Chapter 7) assesses the achievements by this
master’s thesis and gives some thoughts for the further development of this
project.

In addition, Appendix A gives some more information about mobile ad
hoc networks related topics. Games architectures are discussed, existing ser-
vice provisioning frameworks are presented, languages for service description
are introduced, the routing problems in mobile ad hoc networks together
with some sample solutions are described, protocol metrics are specified and

finally, some existing network simulators are presented.

Appendix B gives more detailed information about the design of Rosa-
mon. The assumptions of the framework on the underlying platform, the
concept of compound services and ports, and the framework communication
are outlined. Further, the individual framework modules are described in
detail. Finally, an example scenario for service adaptation in Rosamon, as
well as some examples of service description and service discovery documents

are given.

Appendix C outlines the demonstration setup, Appendix D reproduces
the slides of the presentation given at the end of this thesis work, and Ap-

pendix E describes the used abbreviations in this documentation.

Chapter 3

Fundamentals

An overview of the basic principles in mobile ad hoc networks is presented
in this chapter. First, an introduction to Mobile Ad hoc Networks is given
(Section 3.1). Then, the requirements on Services (3.2) in such networks are

outlined. Finally, the basics of Service Provisioning (3.3) are given.

In addition to this chapter, Appendix A gives some more information about
mobile ad hoc networks related topics. First, Games Architectures (A.1) as a
particular service application are discussed. Then, the different existing Service
Provisioning Frameworks (A.2) are described. Languages for Service Description
(A.3) are introduced. The Routing (A.4) problems in mobile ad hoc networks,
together with some sample solutions, are described. Protocol Metrics (A.5) are
specified, to judge suitability and performance of protocols and distributed ap-
plications in mobile ad hoc networks. Finally, some existing Network Simulators

(A.6) suitable for mobile ad hoc networks are presented.

3.1 Mobile Ad hoc Networks (MANET)

A mobile ad hoc network is a collection of mobile nodes which dynamically
forms a temporary network without using a centralized administration and
maintain itself continuously to topology changes. The connections in the
network can be stretched over multiple nodes (multi-hop) and the physical
interconnection of the nodes among each other is wireless according to the

mobile nature of the nodes [1].

Mobile ad hoc networks typically have highly dynamic topologies, not

only in terms of frequent membership changes (node entering and leaving

CHAPTER 3 FUNDAMENTALS

the network), but also in terms of node mobility (nodes change the physical
location and their relations to other nodes in the network). In addition,
these networks often consist of a mix of different devices (e.g. handhelds,
mobile phones, embedded devices, laptops) that use different physical layers
(such as Bluetooth, IrDA, UMTS, Wireless LAN (IEEE 802.11, WLAN),
Ethernet) with different protocols. Furthermore, participating nodes have
often limited resources (such as CPU capacity, storage capacity, power and

communication bandwidth). Figure 3.1 illustrates such a kind of network.

Figure 3.1: Mobile Ad hoc Network
(taken from http://www.spemaus.de/studium/diplomarbeit/html/manets.xhtml)

Concerning the highly dynamic topology, a mobile ad hoc network can-
not rely on a permanent backbone infrastructure, therewith each node par-
ticipating in the network should be willing to act as host and as router

simultaneously and forward packets for order nodes.

Further, the communication between wireless nodes is more difficult than
between hardwired nodes. Wireless links show a strong time varying statis-
tical behaviour caused by many factors, such as physics of the propagation
medium, interferences, noise, fading characteristics, shadowing, potential

power control and multiple medium access with the hidden and exposed

3.1 Mobile Ad hoc Networks (MANET) CHAPTER 3

terminal problems [2].

Consequently, new network protocols and applications adapted for mo-
bile ad hoc networks are required, due to its dynamic topology and limited
resources. Currently, significant research is done in this area. For exam-
ple, the IETF has created a working group named MANET (Mobile Ad-hoc
Networks) to standardize the TP routing protocol functionality suitable for
wireless routing application within both static and dynamic topologies. Ap-
pendix A.4 describes various routing protocols suited for mobile ad hoc

networks.

Many different applications for mobile ad hoc networks with various
number of participating nodes are imaginable. Such networks could be useful
in the office to connect the laptops and PDAs (Personal Digital Assistants)
of the attendant workers among each other and with the existing infrastruc-
ture (e.g. printers). These networks can also be used to interconnect people
in lectures, meetings, trains or leisure activities, to exchange information or
to play games. Automobiles with corresponding in-vehicle devices can form
a wide mobile ad hoc network on the roads to inform each other about the
volume of traffic, accidents and traffic jams, or to exchange more universal
information. Furthermore, mobile ad hoc networks can be applied in hos-
pital, battlefield, rescue, sensoring and monitoring scenarios or everywhere

where a permanent infrastructure is either unavailable or destroyed.

As example in [3] the ad hoc city, a multi-tier wireless ad hoc network
routing architecture for general purpose wide-area communication in cities,
is proposed. The backbone network in this architecture is itself also a mobile
multi-hop network, composed of wireless devices mounted on mobile fleets

such as city buses or delivery vehicles. Figure 3.2 illustrates the system.

Furthermore, in [4] a system called Sphinz is proposed, which uses ad
hoc routing in tandem with the cellular network model to achieve higher

throughput and lower power consumption.

There is also an interest to connect mobile ad hoc networks with other
networks, e.g. the Internet [5] [6] and to enable roaming of nodes between
different ad hoc networks and between an ad hoc network and the Internet.
Furthermore, a particular mobile node should be accessible, even if it is not

known to which network he is currently attached.

To support mobile hosts in the Internet there exists the Mobile IP [7]

technology, so that a mobile can be connected elsewhere than its well known

CHAPTER 3 FUNDAMENTALS

Base Stations

%E - %@ S

Figure 3.2: Example of the Ad Hoc City Architecture
(taken from [3])

fixed-address domain space. For this purpose a fixed home agent is used,
which redirects the packet for the mobile host to its current position in the
Internet. In a mobile ad hoc network such a fixed home agent cannot be used,
as no fixed infrastructure can be assumed. Therefore, other solutions have

to be developed to address a particular node in a mobile ad hoc network.

To deliver Internet and mobile computing applications to thin-client de-
vices, WAP and mobile Java (J2ME) have been developed. The Wireless
application protocol (WAP) [8] was designed to provide users of mobile de-
vices access to the Internet via an optimized protocol for wireless communi-
cation. It was declared as de facto standard in mobile communications, but
has not become very popular until now. The micro edition of Java (J2ME)
[9] provides the Java programming language and execution environment on
resource-constrained mobile devices. With mobile Java, applications can be
deployed that run independent of the underlying device hardware and soft-

ware. Java provides a rich user interface, security, and the ability to perform

3.1 Mobile Ad hoc Networks (MANET) CHAPTER 3

off-line operations. Java seems to become popular for mobile infotainment

applications.

Security considerations are also important. A network may require pri-
vacy to communicate important information or a network device may be
improperly configured or intentional malicious, so that the information it
exchanges is incorrect and can disrupt the network. Also, wireless links are

more vulnerable to eavesdropping, spoofing and denial-of-service attacks.

A special characteristic of wireless transmission is that also unidirectional
connections can exist. It is possible that a node A is able to "hear” node B,
but B cannot "hear” A, because node A and B have different transmission
ranges. It makes operational sense to allow a unidirectional connection
B — A as a forwarding link. If necessary A may communicate with B over

other nodes, which makes the overall communication again bidirectional.
In a nutshell a mobile ad hoc network yields special challenges in:
e cnergy efficiency: devices have limited power

e security: wireless links are more vulnerable to eavesdropping, spoofing

and denial-of-service attacks
e routing convergence: highly dynamic network topology
e protocol efficiency: bandwidth constrained, variable capacity links
e multicasting: no fixed infrastructure
e service discovery: no fixed directory agents
e media access control: collision prevention

e scalability: number of participants is not predetermined

A good overview about mobile ad hoc networks can be found in [1] and

[10].

CHAPTER 3 FUNDAMENTALS

3.2 Services in Mobile Ad hoc Networks

A service provides the user with a benefit and is a very heterogeneous
term. A service can be implemented as software, hardware or a combi-
nation of both, and could provide the user with access to information, soft-
ware, amusement, resources or other users. In this documentation the terms

application and service are used in the same meaning.

Services can be roughly classified in five categories:

e information provider (e.g. news)

e software provider (e.g. offline game)

e resource provider (e.g. storage space, computational power)
e action provider (e.g. print a document, open a door)

e interaction provider (e.g. online game)

As the requirements of networking services on the one hand are again
very heterogeneous and on the other hand can be generally stated as the
more the merrier (such as more bandwidth, more speed, more storage space),
this Section discusses the restrictions on services determined by the charac-

teristics of mobile ad hoc networks.

These restrictions are originated from the device qualities, as well as from

the properties of the wireless communication in mobile ad hoc networks.

In mobile ad hoc networks, we are encountered with heterogeneous de-
vices, which can have highly limited resources. Such a device can have lim-
ited input and display capabilities, for example a specific keypad, a small
screen size or limited color and sound support. Also the processing-, storage-
and power-capacity of the device can be critical for a particular service. Ac-
cording to the main function of the device, the application may have to be
interruptible, so that the device can serve another task (e.g. respond to a

phone call).

The communication in a wireless medium over multiple mobile hops gen-
erates its own restrictions. The connections are unreliable and can include

high latency, as due to the highly dynamic network topology new routes

10

3.2 Services in Mobile Ad hoc Networks CHAPTER 3

have to be found successively. Also the communication bandwidth is lower

compared to wired environments.

Further, as the network consists of unknown nodes, we operate in a
highly suspiciously environment and therefore security and cheat resistance
become important problems. Also, no permanent infrastructure can be as-
sumed, so that the control and synchronisation of an application have also
be distributed in the network.

To reduce the burden resulting from the variousness of the devices, ap-
plication development should be component-based to improve the flexibility
and adaptability of application. Application could then be created by on-
the-fly assembling of reusable software components, according to the device

characteristics.

Further, to make an application portable and independent of the under-
lying device hardware and software, a portable execution environment, such
as Java, should be used. For instance, the Java 2 Micro Edition (J2ME)
[9] is specially adapted for mobile devices with limited memory, processing
power, and display capabilities, such as mobile phones and PDAs, and has

achieved a broad acceptance.

The limited resource constraints can be moderated by distribution of the
application to several or more powerful devices. To enable this, the nodes
in the network should be classified according to their capabilities and will-
ingness to contribute to the ad hoc network community. The motivation to
provide own resources to the community could be obtained by reward col-
laborative behaviour with preferential treatment by other nodes. But it has
to be aware that normally in a community no complete balance can be as-
sured, there must be always entities that are willing to give more than they
take. An important drawback of distributed applications is the increased la-
tency of operation due to additional transmission duration and coordination

overhead.

Due to the broadcast nature of wireless communication flooding of mes-
sages should be avoided, as this creates a lot of traffic and collisions in the
network. In contrast, multicast communication is highly desirable to reduce
network stress, especially in distributed applications. Therefore an underly-

ing routing protocol should be used that supports multicast routing.

In the mobile environment, where temporary link failures and route

changes can happen frequently, unreliable transport protocols, such as UDP

11

CHAPTER 3 FUNDAMENTALS

[36], RTP [37] and WTP [8], should be preferred. The use of the TCP proto-
col should be avoided, as the TCP congestion avoidance behavior is ill-suited
for mobile ad hoc networks [35]. The TCP protocol assumes that all packet
losses are due to congestion, but this is not the case in a mobile environment

with temporary link failures and route changes.

More generally, reliable network communications should not be assumed

in applications for mobile networks.

Table 3.1 outlines the consequences for services in mobile ad hoc net-

works.

e support heterogeneous devices, with restricted resources and limited

input and output capabilities

e anticipate high latency and unreliable connections, avoid use of reliable

protocols (e.g. TCP) and flooding
e do not rely on permanent infrastructure
e use network bandwidth efficiently

e cnable interruption (due to more important task or network disrup-

tion)

e distribute the control of a networking service and ensure consistency

among distributed parties
e enable entry and exit of participants while service is running
e keep operating time short, prefer short play times
e keep service as small as possible
e support ease of localization into another language

e mind security issues

Table 3.1: Consequences for Services in Mobile Ad hoc Networks

12

3.3 Service Provisioning CHAPTER 3

3.3 Service Provisioning

Service provisioning covers all the functions applied for the support of ser-
vices in their life cycle. This includes the specification, indication, deploy-

ment and management of services.

A brief overview of the individual functions encountered in service pro-

visioning is given in the following.

Service Specification: A service description language is necessary to spec-
ify the heterogeneous services. This language can be classified ac-
cording to its syntax (regulated vs. unregulated), semantics (explicit

meaning vs. ambiguous) and structure (flat vs. hierarchical).

Service Indication: Enable services to be discovered by determination of
service announcement, registration and lookup. Service directories

may be established in the network to improve performance.

Service Deployment: The desired services have to be requested and down-
loaded, required resources have to be obtained, as well as the services

have to be installed and configured according to the node context.

Service Management: Maintenance of the services while they are running
and clearance after termination of services. Services can be adapted
to context variation by service reconfiguration. Therefore, the net-
work and device resources have to be monitored, and the user and

application requirements have to be ascertained.

It is reasonalbe to integrate the common provisioning functions into a
framework. Such a service provisioning framework makes possible for nodes
in a network to share there capacity among each other. The framework
should be able to automatically discover services, to configure and maintain
them without user intervention and to provide seamless inter-operability be-
tween different devices. Thereby a service could provide access to informa-
tion, software, amusement, other users or resources, such as computational

power, other networks, storage space, hardware (e.g. printers).

A good description of a service provisioning framework can be found in

[45]. Tt proposes SIRAMON, a generic, decentralized service provisioning

13

CHAPTER 3 FUNDAMENTALS

framework for mobile ad-hoc networks, which was used as the basis of this

thesis.

Current large-scale service provisioning systems are designed for static
IP-based networks such as the Internet and depend on central servers. In a
mobile ad hoc network a service provisioning system cannot rely on a static
platform structure, because all the nodes hosting services are mobile and
hence can move out of the vicinity at any time. Therefore, the protocol
must be able to adapt to fast topological changes. Further, the limited node
resources of mobile nodes, such as limited processing capability, storage

space and battery power, have to be taken into consideration.

A service provisioning system has also to cope with a variety of under-
neath network and routing protocols, as mobile devices can have very spe-
cialized communication protocols according to their operational area. An
essential problem here is to maintain a balance between standardization re-
quirements and device autonomy (use of proprietary protocols) and to define
the requirements of a service provisioning system from the routing protocol.
A clear separation between service provisioning and transport layer yields
high device autonomy, but can also have high performance costs, as some
tasks will be redundant. An interlayer approach could benefit more from
the functions of the routing protocol. For example, route discovery in the

routing protocols could be used also for service discovery.

The service discovery can be classified into three categories, the push, pull
and central directory approach. With the central directory approach, ser-
vice providers have to register their services to central directories, whereby
clients can look up desired services there. This approach relies on a central

infrastructure.

With the pull approach a service discovery request is broadcasted through
out the network. If a node contains the service, it responds with a service
reply. This approach is inefficient in terms of bandwidth and resource usage,

and also produces the broadcast storm problem.

With the push approach the services advertise themselves to all the nodes
in the network, therewith each node interested in discovering services can
cache these advertisements. In this solution, the cache size increases with
the number of services. As mobile nodes often have limited resources this

can be problematic. This is also inefficient in terms of network bandwidth

14

3.3 Service Provisioning CHAPTER 3

usage, since the whole network is flooded regularly by these advertisements,
however collision due to advertisement are not as frequent as collision gen-

erated by service requests in the pull-based paradigm.

Another key issue in service provisioning is security. Especially in a mo-
bile ad hoc network, where the network is built by unknown nodes. With-
out security, a malicious or faultily network node, which is involved in the
communication flow, could modify messages that being passed along and

impersonate other nodes and resources by answering requests for them.

In Appendix A.2, some of the different available protocols with relation
to service provisioning are presented. Thereby, each protocol has different
functionality and deals only with a subset of service provisioning, mainly

service discovery.

In detail, the appendix first depictes some popular solutions for con-
ventional networks, thus for wired network with low latency, reliable links
and enough bandwidth (SLP, Jini, UPnP, Bluetooth (SDP) and Salutation).
Then, some architectures specifically adapted for mobile ad hoc networks are
described and compared to each other (GSD, Allia, Lanes, DSDP, Konark,
SSDP, DEAPspace, GCLP and Nom). Finally, Chameleon as platform for

automatic service composition is briefly examined.

Another interesting attempt for service provisioning can be found in
Distributed Agent Systems. Refer to FIPA [63] or JADE [64] for more infor-

mation about such systems.

15

CHAPTER 3 FUNDAMENTALS

16

Chapter 4

Design of Rosamon

This chapter describes Rosamon (Rolf's Service Framework for Mobile Ad hoc
Networks), a design approach for provisioning distributed applications in mobile
ad hoc networks. First, an Overview of the framework is given (Section 4.1),

and then some significant aspects of the framework are presented.

Section Service Concept (4.2) describes the service idea that is used in Rosa-
mon more precisely and identifies some special service types. Then, an outline
of the Service Description (4.3) in Rosamon is given. Finally, the framework

mechanisms for Service Adaptation (4.4) to the environment are described.

In addition to this chapter, Appendix B gives more detailed information about
the design of Rosamon. Thereby the Assumptions (B.1) of the framework on
the underlying platform are depicted. The concept of Compound Services and
Ports (B.2) is specified in more details and the Framework Communication
(B.3) is outlined. Then, the individual Framework Modules (B.4) are described
in detail. Finally, an Example Scenario for Service Adaptation (B.5) in Rosamon
is described and some Examples of Service Description and Service Discovery

Documents (B.6) are given.

4.1 Overview

4.1.1 Goals

The goal of this thesis is to design and implement Rosamon, a service pro-

visioning framework for mobile ad hoc networks, as a middleware between

17

CHAPTER 4 DEsiecN oF ROosSAMON

application and system layers. The framework should support heterogeneous
services and be as independent as possible from the used device, operating
system and execution environment, as well as from a particular program lan-
guage. In particular, the framework should support distributed multiplayer

game applications in a mobile environment.

As a starting point, SIRAMON was used, which is a generic, decentral-
ized service provisioning framework for self organised networks [45]. Refer

also to Section 3.3 for more information on service provisioning.

According to the mobile ad hoc environment, with low bandwidth and
frequent link failures and route changes, the framework has to assume unre-
liable connections and high latency. To enhance the fault tolerance in such
an environment the framework should be completely distributed and based

on the peer-to-peer approach.

4.1.2 Structure of Rosamon

To make Rosamon adaptable to different devices and applications, the frame-
work should have a modular design, where not all modules are required for
a particular implementation. Also the individual modules can be adapted

according to specific demands.

Figure 4.1 shows the structure of Rosamon with the individual modules.
The framework is inserted as a middleware between application and sys-
tem layer. The function of the individual modules, which are described in

Appendix B.4 in detail, are outlined in the following.

Service Specification: Define a universal service description language to
describe the heterogeneous services and assist applications in the usage

of this language.

Service Indication: Support both advertising (push services) and discov-

ery (pull services) of services in the network.

Service Deployment: Enable download and installation of a particular

service.

Service Management: Maintenance and support of running services. Con-

trol execution of a service, such as run, pause and stop its execution,

18

4.1 Overview CHAPTER 4

Application Layer

Service Provisioning Middleware

()

Service Specification Service Indication

Environment Observer

Service Deployment Service Management

Device Resource Manager —

Device Hardware and Operating System

Figure 4.1: Service Provisioning Framework

and adapt it to modified environment and conditions. Support services

in their communication with other peers.

Environment Observer: Monitor device resources, network and service
context, and make this information available to services and the frame-

work.

This thesis focuses mainly on service specification, service indication and

service management.

4.1.3 Service Description

In service description, the service identifiers are composed hierarchically
in a tree structure and encode the semantics of the services, therefore the

functionality of a service will be known with its identifier (Figure 4.5). The

19

CHAPTER 4 DEsiecN oF ROosSAMON

service indication is able to advertise and discover a service at any layer
of this service identifier tree. Therefore, not only specific services can be

advertised and discovered, but also service categories.

The framework has to support heterogeneous services. Therefore, three

service types are distinguished, which are depicted in Figure 4.2.

Local Service Compound Service Remote Service

Figure 4.2: Service Types

Local Service: A local service runs on the service requesting node. There-
fore the code of the service has to be downloaded and executed. The
service description specifies where the code of the service can be found,

together with the platform requirements for the code execution.

An example for a local service could be a game whose code runs after

downloading independently from the game provider.

Remote Service: A remote service is running on another node, no extra
code has to be downloaded and executed. Such a service provides ports
to enable access to its functions. The service description specifies these

ports and the protocols needed to access them.

An example for a remote service is a printer service, where a docu-
ment has to be delivered to the printer and some status information

is replied.

Compound Service: A service can also be assembled from other remote
and local services. Such a service is called compound service. The

service description specifies which other services are needed and how

20

4.1 Overview CHAPTER 4

to configure and interconnect these services to build the desired service.

Refer to Section 4.2.1 for more information.

An example for a compound service could be an MP3 music player that
consists of a user interface, an MP3 decoder and an MP3 library, where
the MP3 library could be in turn dependent on remote services. To
enable this, the individual components have to conform to a common

interface standard.

Rosamon supports all these service types, as well as services that use a
mix of these types. For example, a particular service could require that its
code has to be downloaded and executed, and also be dependent on other
services that have to be either invoked remotely or downloaded. The service

description language can specify all these dependencies.

Some services that involve multiple participants may also maintain ser-
vice sessions among these participants. Therefore, the framework is able to
describe the possible roles of participants in the session, as well as informa-
tion about running sessions. For example, in a multiplayer game service, a
potential player needs information about the game itself as well as informa-

tion about running game sessions.

To enable location intelligent decisions, the framework supports relative
and absolute location information of a service. The absolute location can
be specified in the service description and enables to find physical services,
such as printers, in the real world. The relative location, thus the distance
to the service location, is detected by a special framework function and
can be measured in number of hops or communication latency. Using this

information, the overall network traffic can be reduced.

The service specification is described in more details in Section 4.3, resp.
Appendix B.4.1.

4.1.4 Service Advertisement and Discovery

In consideration of the mobile environment, where the nodes in the vicinity
can change frequently, the nodes participating in the framework act au-
tonomously from each other. No central directories where services have to

be registered are established.

21

CHAPTER 4 DEsiecN oF ROosSAMON

A node that provides services has to process service discovery messages
from other nodes and reply where required. It is also allowed to actively
advertise its services from time to time. This is mainly reasonable for popu-
lar services, as therewith the network stress from service discovery messages
can be reduced. Thereby the nodes in the network can passively discover
other services by caching service advertisements according to their available
resources. Nodes that cache service advertisements from other nodes should

also process service discovery messages according to their knowledge.

To actively discover a service, a node can specify the desired service
characteristics in a service discovery document. Thereby all the character-
istics that are used in service description can be specified. Thus, not only
the service identifier is used to discover services, but the complete service

description instead.

Thereafter, a node should at first ask its neighbourhood nodes if they
provide or have information about the desired service, by using the specified
service discovery document. The search area can be enlarged iteratively, if
no positive answer is received. To reduce overall network traffic, flooding of
the entire network should, wherever applicable, be avoided and near seated
services should always be preferred to farther ones. After a service has been

discovered, it can be directly accessed by unicast routing.

The service indication is described in more details in Appendix B.4.2.

4.1.5 Service Adaptation

The framework implements different methods to adapt services to the envi-
ronment. First, the framework can discover and instantiate an appropriate

realisation of a service according to the node context.

Thereafter, a service realisation can specify different implementations
of the service that differ in their resource usage, which is called service
engagement. Implementations with different engagement values will differ in
their service quality and willingness to contribute to the service community.
The framework can choose an adequate implementation according to the
node context and the preferences of the user and replace it during service
execution by another implementation to adapt the service to environment

changes, if this is supported by the service implementation.

22

4.1 Overview CHAPTER 4

Furthermore, each service can specify interactive attributes, such as sup-
ported languages and used bitrate in network communication, which are

used to adapt the service statically and dynamically to the node context.

The framework is also able to distribute the resource usage of a service in
the network. Therefore the resource service concept is introduced in Rosa-
mon. This enables, for example, to source out sub-services of a compound
service to other nodes in the network, if the compound service overstrains

the resources of a particular node.

To adapt a service to different input and output devices, the framework
introduces the device service concept. Thereby, potential output and input
devices can be discovered and applied. The framework can also replace them

during service execution according to the preferences of the user.

To simplify the interconnection between services, where the output data
format of a service could conflict with the required input data format of
another service, Rosamon introduces the converter service concept. There-
with the framework is able to convert the data format of an output port so

that it fits to the corresponding input port.

More information about service adaptation can be found in Section 4.4.

The different involved service concepts are described in Section 4.2.

4.1.6 Data Representation

For service description, as well as service advertisement and discovery in
the framework, XML Information Sets [69] are used. Such an XML infoset
defines an abstract data set in a tree structure and is normally described
by a well-formed XML document [68]. As XML documents are not efficient
in terms of resource usage, which is critical in a mobile environment, also
other formal languages, for example ASN.1 [71], could be used to describe
the XML infoset in a more efficient encoding way. XML infoset has been
chosen, as it is a very common standard and many tools exist that support

the usage of it. Service description examples can be found in Appendix B.6.1.

4.1.7 Assumptions

As a mobile device can have highly limited resources, the framework should

be as light-weighted as possible and adaptable to different environments.

23

CHAPTER 4 DEsiecN oF ROosSAMON

Therefore, the framework should make little assumptions on the underlying
protocols, so that, depending on the application and environment, different
protocols can be used. Nevertheless, a minimal set of mandatory protocols

have to be chosen.

The framework assumes a packet-switched device connectivity and the
underlying protocols have to enable communication with other nodes by
unicast, as well as multicast, at least in an unreliable and connection-less
way. If multicast communication is not supported by the underlying system,
flooding can be used instead. Further, it has to be possible to limit the
scope of a multicast message by specifying the number of hops the message
is allowed to travel. This is required for service advertisement and discovery

in Rosamon.

The transport protocol have to enable the framework to transmit data in
form of datagram, where an address and a port identifier specify the desired
destination node and the corresponding application on the node. Further-
more, the framework should be able to discover the distance between two
peers to make location intelligent decisions. As a measure for this distance,
either the number of intermediate hops or the latency of the connection

could be used.

The assumptions on the underlying system are described in Appendix B.1
in more details. More information about the communication between the

individual framework instances can be found in Appendix B.3.

4.1.8 Emphasis of this Thesis

To design and implement a complete service provisioning framework is a
very extensive task, and far out of the scope of this thesis. Therefore, many
restrictions have to be made. This thesis focuses mainly on service specifica-
tion, service indication and service management. Many interesting aspects
are not considered in this thesis. For example, security, including authenti-
cation, integrity, and confidentiality, which may be also provided by lower

protocols, such as the IP security protocols.

24

4.2 Service Concept CHAPTER 4

4.2 Service Concept

The term service has a rather universal meaning in Rosamon. All things
that are suited to be discovered and advertised in the framework are denoted
as a service. A service could therefore be a piece of software in general, such
as a game or a special business application. Moreover, a service could be
an interface for information access, such as access to the actual weather
forecast or the menu of a restaurant. But also devices, such as printers or
displays, and resources (e.g. memory) can be treated as a service in the
framework. Furthermore, also service sessions together with the different
service roles (e.g. client and server of a service) can be advertised and

discovered separately as an individual service.

To describe the different aspects of a service, the service specification
is divided into local, remote, subservices and sessions information (refer
to Section 4.3). Especially, the possibility to assemble individual service
components to a compound service helps to make a service adaptable to the

variable environment and is therefore an important mechanism in Rosamon.

To designate services, the framework uses a hierarchical service identifier
tree (refer to Section 4.3). The individual branches of the tree are not
specified by the framework itself, which is independent of the used service
identifier tree. But service producers should agree on a common tree for

designating their services, therewith interoperability is achieved.

Nevertheless, three special service categories with fixed identifier are
used in Rosamon. These three categories are resource service, device service
and converter service. Figure 4.3 shows an extract of a service identifier
tree. These special service categories are used by the framework for service

deployment and service management.

The following subsections outlines the compound service concept (4.2.1)
and describes the special service categories in more details (resource service
(4.2.2), device service (4.2.3) and converter service (4.2.4)). Thereafter,
the service engagement (4.2.5) concept is explained, which enables to spec-
ify different service implementations that differ in service quality or service
community contribution. Subsection 4.2.6 gives more information about ser-
vice sessions in Rosamon and finally, Subsection 4.2.7 explains the different
meaning of the terms Service Realisation and Service Implementation used

in this framework.

25

CHAPTER 4 DEsiecN oF ROosSAMON

@ @ Computation

Figure 4.3: Special Service Part of Service Identifier Tree

4.2.1 Compound Service

Rosamon enables to compose complex services by simpler service compo-
nents. Such a service is called compound service and its components are
called sub-services or again just services in this thesis. A benefit of the
component based approach is that components are reusable for different
services and that they facilitate the adaptation of a service to the variable

environment.

For the data exchange between the sub-services, Rosamon introduces the
port mechanism. Each service can have several ports and to each port a data
type is assigned which specifies the form of the exchanged data. Thereby,
a compound service can be described by the required sub-services and the

connections among their ports.

For more information about Compound Services and the different tech-

niques to interconnect their Ports refer to Appendix B.2.

26

4.2 Service Concept CHAPTER 4

4.2.2 Resource Service

It is desirable that nodes are able to share resources among each other
independently of a specific application. Therefore, with resource service a
special service category is introduced. For each shareable resource type a
service with a common interface should be defined. This resource service

concept simplifies the exertion of distributed applications.

A node that is willing to share a resource with other nodes in the network,
can offer the corresponding resource service. A node that needs additional
resources can then search for nodes providing the corresponding resource

service and make use of it by a common interface.

The resource services can be used by the services themselves, as well as
by the framework, to distribute the resource stress in service execution. If
the framework notices that a service will overstrain a certain resource on a
particular node, it could automatically discover the corresponding resource
in the network and make use of it without the particular service and user

noticing anything.

Thereby not only individual resources, such as storage space and com-
putation power, can be provided to other nodes, but also general resources,
such as service execution. For example, a node that provides the service
sub-category of the resource service (see Figure 4.3) offers to execute ser-
vices for other nodes. Therewith the framework is able to source out services
or individual sub-services of a compound service in the network, if this is

appropriate.

The resource service concept is well suited for Rosamon, as a resource
service can be treated like a normal service and no extra handling have to
be implemented in the framework. How to make use of such a service is de-
pendent on the individual resource type, whose behaviour can be specified
separately from the framework. Nevertheless, the framework needs knowl-
edge about the usage of those resource service types that it wants to use
during service deployment and service management to adapt a service to

the node context.

The common interfaces of the resource services are not further specified

in this thesis.

27

CHAPTER 4 DEsiecN oF ROosSAMON

4.2.3 Device Service

Another special service category is the device service, which includes output
and nput devices. Device services facilitate the use of different output and
input devices. For example, the video output of a video player could be spec-
ified as a special sub-service in the service description of the player. During
service deployment the framework will discover qualified video output ser-
vices and select on of them according to the preferences of the user. During
service execution the user can replace the output device with another one
and also direct the output data to more than on output device without the

service itself noticing anything.

Please, note that only services with special input and output character-
istics should explicitly specify a corresponding input or output service in
their service description. Such a special characteristic could be, as already
mentioned, a data output in video. Normally, the standard input and out-
put capabilities of the corresponding system should be used, as this on the
one hand enables the service to use the output and input routines provided
by the system (such as GUI routines) and on the other hand, the framework
is able to redirect the standard input and output of all running services on

a node at once.

4.2.4 Converter Service

As third and last special service category, Rosamon introduces the converter
service. Services in this service category enable to convert the data format
of an output port of a service so that it fits the data format of an input port

of another service.

A converter service could be used either explicitly by specifying it in the
service description of a compound service, or it could be used automatically
by the framework, if it is detected during service deployment that the data
format of two connected service ports do not match. This could be the case,
if the port format of the individual sub-services is not explicitly described in
the service description of a compound service. If the formats of connected
ports do not match, the framework can try to discover a corresponding
converter service and make use of it. For example, the MP3 output data

of a music player could be converted to an uncompressed streaming audio

28

4.2 Service Concept CHAPTER 4

format, such that it fits the input capability of a possible music output

device.

4.2.5 Service Engagement

More than one implementation can be described in the service description of
a service. The individual implementations can thereby differ in their service
quality or in their contribution to the service community. This characteristic
is specified by an engagement attribute for each implementation in the de-
scription of a service. The value of engagement is a measure for the resource
consumption relative to the other implementations of the service. Thereby,
implementations with higher engagement value will perform better quality
or contribute more to the service community, and therefore also consumes

more resources, as implementation with a less engagement value.

By means of the engagement attribute, the framework is able to select a
particular implementation, according to the available resources, the desired

quality and the willingness to contribute to the service community.

The exact meaning of the engagement value is dependent on the par-
ticular service. It is recommended to assign the engagement value zero to
the implementation that performs the normal behaviour. Implementations
with better than normal behaviour should have a positive, the ones with less

than normal behaviour a negative engagement value. See also Figure 4.4.

positive engagement
+2
+1
0 + normal engagement
-1
—2
negative engagement

Figure 4.4: Engagement Value
An example for the use of different implementation could be an MP3 en-
coder that implements encoding algorithms with different qualities. Thereby

the normal implementation could yield a good quality, positive engagement

values will indicate excellent and negative values bad qualities.

29

CHAPTER 4 DEsiecN oF ROosSAMON

Another example is a distributed service where a running service instance
decides dynamically if it performs only as a client or if it is desired that it
also performs some server functionality. Such a service may provide two
implementations. The first implementation performs the normal behaviour,
thus it is able to perform as a client but can also take over server func-
tionality. Its engagement value will be zero and its resource requirements
are specified such that they also fulfill the needs of the server functional-
ity. The second implementation is only able to perform as a client and has
therefore a lower engagement value and less resource requirements than the
normal implementation. If a node wants to use this service, the framework
will normally select the normal implementation, only nodes that cannot or
do not want to fulfill its resource requirements will deploy the pure client

implementation.

Furthermore, in the description of the service session, the required min-
imal engagement for a new participant can be specified. If in the above
example many service members only perform as a pure client, only new

participants that take also over the server functionality can be admitted.

Please note that the different implementations of a service are described
together in a service description document. They have therefore the same
service identifier and the same service ports description (refer also to Ap-
pendix B.4.1). Different components of a service have to be described in
separate service descriptions by using different service identifiers. For ex-
ample, a classical server/client service should describe the server and the
client in two separate descriptions with different service name identifiers
(e.g.
implement the same service, but different components of the service instead.

”.../GameName/Server” and ”.../GameName/Client”), as they do not

4.2.6 Service Session

Some services that involve multiple participants may also maintain service
sessions among these participants. The service description language is able
to describe the possible roles of participants in the session, as well as infor-
mation about running sessions. For example, in a multiplayer game service,
a potential player needs information about the game itself as well as infor-

mation about running game sessions.

30

4.2 Service Concept CHAPTER 4

The service description can describe service sessions independent of the
service itself. Therefore, the framework can treat also a service session as a
kind of service. Thus, the service sessions can be described separately from
the service and used in service indication like a normal service. Thereby a
separate service identifier is used (e.g. ”.../ServiceName/Sessions”), which

can be specified in the description of the particular service.

By using this identifier, the framework can request the network for infor-
mation about available service sessions. The description of a service session,
which was received as answer to such a request, can thereby specify the
required roles and engagements for new participants. This enables a frame-
work instance to discover, if potential service sessions for the desired service

are available, before it deploys the service.

The description of the service session information is divided into two
parts, which describe the service roles in the session and the individual

available sessions.

The roles part describes the possible roles that participants can play in
the service session in general (e.g. client and server of a service). Thereby,
the different service roles of a service will be treated again as individual
services by the framework. The roles are specified by their service identifiers
and can be classified as mandatory or optional. The mandatory roles are
essential to run the service, without them the service cannot perform its real
function. The optional roles are not required to run the service, but they

can nevertheless simplify the function of the particular service.

In addition, the individual roles can be classified as auxiliary. Roles
that are classified as auziliary, do not make use of the service; such roles
are therefore well suited for outsourcing to other generous nodes in the
network. For instance, a distributed game that consists of the two roles
player and zone server (refer to Appendix A.1), can specify the zone server
as auxiliary, as the zone server can be deployed also to nodes that do not
want to participate directly in the game, whereas it would make no sense to

deploy a player service to such a node.

The session part of the service session description describes a particular
service session. Thereby, the nodes that participate in the session together
with requirements for new participants can be specified. Not only running

service sessions can be described and announced, but also potential sessions,

31

CHAPTER 4 DEsiecN oF ROosSAMON

which are waiting for certain new participants before they can perform their
function. By the description of the individual participants, redundantly de-
ployed participants can be explicitly denoted. Therewith a new participant

can select one or use multiple of them simultaneously.

For more information about the description of service session refer to
Appendix B.4.1.

4.2.7 Service Realisation vs. Service Implementation

The terms service realisation and service implementation have a different

meaning in this documentation.

A particular service is designated by a hierarchical identifier that en-
codes the semantics of the service. The realisations of such a service provide
the function that is indicated by this semantic identifier, thus they contain

the semantic identifier of the corresponding service in their own identifier.

For example, consider a chess service with ”.../Chess” as identifier. Pos-
sible realisations of this service could be services that have ”.../Chess”,
”.../Chess/SuperChess” or ”.../Chess/3dChess” as their identifiers.

Different service realisations are independent of each other and are de-
scribed by individual service description documents. An individual reali-
sation can be provided by a node and be advertised and discovered in the
network. Different nodes may provide the same or different realisations of a

service.

A service implementation belongs to a particular service realisation. A
service realisation can consist of several service implementations that differ
in their service engagement (refer to Section 4.2.5). The different imple-
mentations are described together in the service description document of a

service realisation.

For instance, take the game service chess. Several nodes in the net-
work could provide a realisation of this game, which may are developed by
different producers. A particular realisation could consist of several imple-
mentations that differ in the visual decoration. An implementation with
a low engagement will only display a simple 2-D chess board, whereas an
implementation with a high engagement could provide a 3-D board with

visual animation and other gadgets.

32

4.3 Service Description CHAPTER 4

4.3 Service Description

The service description has to be able to describe the different aspects of
heterogeneous services. This section gives a rough overview of the service

description in Rosamon.

To designate services in Rosamon a hierarchical service identifier tree is
used. In Figure 4.5 a sample tree is presented, which includes a sample mul-
tiplayer game called Rolf’s Blast. To label the services in the tree Uniform
Resource Identifiers (URIs) [72] are used.

For the service description specific services and service categories are dis-
tinguished. A specific service is a particular service which an application can
make use of, represented by boxes in Figure 4.5. A service category stands
for a class of services and does not specify an individual service. Service
categories can be used to discover particular services and are represented by

ellipses in the figure of the service identifier tree.

A service description is represented by a XML infoset [69]. Figure 4.6
presents an abstract of the document structure for the description of a service
realisation. Thereby XML elements are graphically represented as ellipses
and their attributes as boxes. Double ellipses signify that the element can

be specified more than once.

The service description of a particular service realisation consists of the
identifier (uri) and location (url) of the service, as well as six main-elements
that describe the different aspects of the service. The GENERAL element
specifies general information, such as name and version of the service and
the service producer. By the ATTRIBUTES element the characteristics of
the service, such as supported languages and used bitrate in network com-
munication, can be described. These service attributes can also be declared
as interactive, such that the framework can choose an appropriate service
attribute value according to the context. The PORTS element describes
the service ports for the data exchange between services, which enables
modular service decomposition. The particular service implementation is
specified with the IMPLEMENTATION element. Thereby several imple-
mentations can be specified that differ in service engagement (refer to Sec-
tion 4.2.5). Further, the SESSIONS element describes the possible roles in

the service session in general, as well as available service sessions. Finally,

33

CHAPTER 4 DEsiecN oF ROosSAMON

Resource

Entertainment Information

A

Computation Storage

Singleplayer Multiplayer Music

A

TurnBased RealTime
Chess RolfsBlast FakeWorld
Sess'ions
RN
Sessionl Session?2

Figure 4.5: Example Service Identifier Tree

the SPECIFICS element can contain service specific information, which is

not predefined by the framework.
An IMPLEMENTATION consists of three sub-elements. The CODE

element describes the location of the code, which has to be downloaded and
locally executed, together with the resource requirements for the code execu-
tion. The SUBSERVICES element enables to specify involved sub-services
together with the connections among them, and the REMOTE element de-

scribes the port bindings of a remote service.

34

4.3 Service Description CHAPTER 4

uri

SERVICE

url

ATTRIBUTES IMPLEMENTATION

Figure 4.6: Abstract of the Specific Service Descriptor in Rosamon

The service description can be extended further by any XML attributes
and elements as desired by a particular service. The framework will make
this additional information available to the applications and use it in service

advertising and discovery.

A service description can also be specified as incomplete. A partial,
thus incomplete, description enables for a more efficient resource usage in
service advertising and discovery. If an application needs more information
as specified in an incomplete service description, it can request the complete

description from the service provider.

For more detailed information about service description refer to Ap-
pendix B.4.1. Furthermore, some service description examples are given in
Appendix B.6.1.

35

CHAPTER 4 DEsiecN oF ROosSAMON

4.4 Service Adaptation

In a mobile ad hoc network we have to cope with heterogeneous devices, lim-
ited resources and changeable network topologies. Therefore the adaptation
of a service to the node context and network environment is an important
mechanism in a service provisioning framework for such networks. Rosamon
implements different methods for this purpose, which are described in the
following. Thereby the possibility to assemble individual service components
to a compound service plays an important role, as the service components,
which are called sub-services or again just services in this thesis, facilitate

the adaptation of a service to the environment.

The following subsections describe these different adaptation methods
used in the framework. The adaptation of a service to the environment is
done, on the one hand, statically before the execution of a service by the ser-
vice deployment module (Section 4.4.1) and, on the other hand, dynamically
during service execution by the service management module (Section 4.4.2).
Finally, Section 4.4.3 explains the adaptation of remote services more pre-

cisely.

In Appendix B.5 an example scenario for service adaptation in Rosamon,

is described.

The different adaptation methods involve some Rosamon dependent con-

cepts, which are described in Section 4.2 in more details.

4.4.1 Static Adaptation

Static adaptation of a service is done by the service deployment module

(Appendix B.4.3) before the service is executed.

At first, the framework can discover the different realisations of a service
that are available in the network and choose an appropriate one, by using the
corresponding service descriptions, which specifies the resource requirements
of a service realisation among other things. For a compound service this can
be done for each individual sub-service, thus the framework can adapt a
compound service to the node context by choosing appropriate realisations

of its sub-services.

The criteria for the choice of an appropriate service realisation, if more

than one potential service provider is found, is depending on the service

36

4.4 Service Adaptation CHAPTER 4

type. For a local service, which is deployed on the local node, the resource
requirements control the selection. For a remote service, which is executed
on a remote node and needs therefore no local resources, the closest one
in the network should be preferred, to reduce overall network traffic. Fur-
thermore, also the individual service attributes and the user preferences are
considered. For instance, a realisation should be used that supports the
user preferred language. Or if the user wants to use a printer service, the
framework should let the user elect a printer out of the available printers or

use a user-predefined default printer.

Note that service attributes that are specified as interactive, thus they
can be determined by the framework (e.g. used audio bitrate in communi-

cation), also influence the resource requirements of the service.

If the port format of the individual sub-services is not explicitly described
in the service description of a compound service, it could be that the port
data format of discovered realisations that should be interconnected does not
match. If this is the case, realisations with corresponding port data format
should be chosen. If this is not possible, the framework can try to discover a,

corresponding converter service and make use of it (refer to Section 4.2.4).

For the choice of an appropriate service realisation also the possible
service tmplementations have to be taken into account, as for a particular
service realisation more than one implementation can by specified. The in-
dividual implementations will differ in their engagement, which is a measure
for the quality of the service and the willingness to contribute to the service
community. Different implementations will thereby show a different amount
of resource consumption. In fact, the resource requirements of the service
are not specified for the service realisation, but for each implementation

individually.

Recall that the framework should first choose a service realisation that
fits the node context by using the resource requirements of the corresponding
implementation with normal engagement, as this is the recommended imple-
mentation (refer to Section 4.2.5). Depending on the user preferences also
another implementation can therefor be used. If no appropriate realisation

is found, also other specified implementations can be considered.

If an implementation of a service realisation is found that fits the node

context, it should be checked whether the service uses sessions. If this is not

37

CHAPTER 4 DEsiecN oF ROosSAMON

the case the implementation can be deployed. Otherwise, it should be dis-
covered if an adequate session for the service is available, before the service
is deployed. If no adequate session is available, other service realisations can
be checked. If none of the possible realisations possess of an adequate ser-
vice session, either the best suited service implementation can be deployed,
which will then create a new session, or the deployment can be aborted,
which is depending on the user preferences. If a new session is created, all

the mandatory auxiliary service roles should be deployed in the network.

During service deployment also the interactive attributes of a service,
such as supported languages and used bitrate in network communication,
have to be determined. Thereby four attribute types are distinguished. At-
tributes that are specified as informative give just more information about
the service, thereby nothing can be chosen by the framework. Static at-
tributes enable the framework to determinate the desired attribute value
once, when the service is started. Dynamic attributes can be changed dur-
ing service execution in addition. Finally, attributes can be specified as code
fetching, such attributes are also static but already used in service down-
loading. For instance, to prevent that data in all the supported languages of
the service has to be downloaded, the language can be therefore determined

before downloading of the code.

If no implementation of the desired service is found that fits the node
context, resources from other generous nodes in the framework can be in-
volved. Thereby the resource service category is used (refer to Section 4.2.2).
Nodes that offer a resource service, are willing to share the corresponding
resource with other nodes in the network by a common interface. Individual
resources, such as storage space and computation power, but also general
resources, thus the execution of services for other nodes, can thereby be

provided.

In the following only the service sub-category of the resource service
is considered. Therewith the framework is able to source out services or
individual sub-services of a compound service in the network, whereby the

description of a service indicates if a service is suited for outsourcing.

So, if a potential service would overstrain the resources of a particular
node, the framework can determine if the service or some of its possible
sub-services are suited for outsourcing, such that the remaining part fits the

node context. If this is the case, nodes that offer the service resource have

38

4.4 Service Adaptation CHAPTER 4

to be discovered in the network and enquired if they are willing to execute
the corresponding service. An outsourced service becomes thereby a remote

service.

By the deployment of a remote service also the network context has to be
considered. Depending on the network qualities, such as packet loss and link
failure rate, more than one instance of the same remote service on different
nodes should be instantiated. Thereby redundancy is obtained, which yields
robustness against unreliable connections in respect of the mobile ad hoc
environment. The framework has therefore to be able to split and merge

redundant port connections between services.

By all these operations also the user preferences have to be considered.
For example, a user may specify the preferred service engagement or prohibit
the outsourcing of services. The possible user defined restrictions are thereby

dependent on the particular framework implementation.

4.4.2 Dynamic Adaptation

The service management module (Appendix B.4.4) is responsible for the dy-
namic adaptation of a running service to the resource variations. Thereby
three ways of adaptation are distinguished. In the service intelligent adapta-
tion, the service does its own adaptation to resource changes. In the service
adjusted adaptation, the service provides a mechanism for dynamic adapta-
tion, but the framework is responsible for the service adaptation by using
this mechanism. Finally, in the service independent adaptation, the frame-
work does the service adaptation and treats thereby the service as a black

box.

The adaptation mechanisms should be performed only after a resource
change has been observed over a certain amount of time, as reacting to tran-
sient resource changes would result in an unjustified overhead and instability
of the system. Furthermore, adaptation could be also triggered from user

request.

The concretely applied adaptation mechanism is depending on the par-
ticular resource change, the involved services and the framework implemen-
tation. Normally, the framework should first request the corresponding ser-
vices to perform their service intelligent adaptations. If this does not solve

the problem, the service adjusted adaptation should be performed. Finally,

39

CHAPTER 4 DEsiecN oF ROosSAMON

the service independent adaptation should take place. Furthermore, also

user preferences can affect the adaptation mechanisms.

It should be kept in mind that service adaptation should be performed
not only depending on resource aggravation, but also on resource improve-

ments.

Service Intelligent Adaptation

In the service intelligent adaptation the service does its own adaptation to
resource changes. For example, a service could adapt its visual detailedness
according to the processing unit load or dynamically adapt the bitrate of
a data stream according to the available network bandwidth. Likewise, a
distributed service could redistribute the roles in the community according
to changes in the network topology. Thereby, the environment observer of
the framework assists the service with information about the environment.
A service can query resource information and register watch statements for
certain resources, so that it will be informed when a resource availability

falls below or rises above a certain threshold.

Furthermore, the framework could also request the service to relieve a
certain resource. Therewith a service can do its own adaptation, before the

framework possibly performs its service adaptations.

Service Adjusted Adaptation

In the service adjusted adaptation the framework does the service adaptation
by using the different specified interactive attributes and implementations

of a particular service.

A service can specify several interactive attributes in its service descrip-
tion that can be adopted by the framework during service execution. To
intelligently adopt the service attributes to the context, the framework has
to know the effect of their attributes. Therefore several standard attribute
types, such as language, data protocol and communication bitrate, are pre-
defined by the framework. For instance, if the network reliability changes,

the framework could adopt the used communication protocol.

As described in Section 4.2.5, a service can have several implementations

with different engagement, thus different resource requirements, which are

40

4.4 Service Adaptation CHAPTER 4

specified in the service description. The framework can dynamically adapt
the service to environment changes, by replacing a service implementation
by another. Thereby it is specified in the service description if an imple-
mentation is qualified for replacement. During replacement, the framework
allows the service to pass over status information, such that the newly in-

voked implementation can continue where the old one was interrupted.

The framework should care that the implementation with normal engage-
ment or another specific engagement value according to the user preferences

is applied wherever applicable.

For instance, consider a distributed service that consists of two imple-
mentations. The normal implementation performs the service functions re-
quired for a node but takes also over some general community functionalities
to enhance the scalability of the service. The second implementation with a
lower engagement value provides only the minimal functions needed to use
the service on a node. According to the node context the framework can
dynamically apply an appropriate implementation. Another example is a
music decoder which could have two implementations, one that yields good

quality and another with lossy quality.

Service Independent Adaptation

In the service independent adaptation the framework does the service adap-

tation and treats thereby the service as a black box.

The framework can replace a running service or an individual sub-service
by another service realisation, if a better suited one is available in the net-
work and if the service is marked as replaceable and stateless in its service
description. This is primarily suitable for remote services, as a remote ser-
vice (e.g. video output device) can become inaccessible and should therefore

be replaced by another realisation of the service.

Furthermore, the framework can make use of the Resource Service con-
cept (refer to Section 4.2.2) to distribute the resource usage in the network.
Thereby the framework can involve the needed resource from another gen-

erous node, or source out a whole service or sub-service.

The dynamical outsourcing of a service, thus the service is outsourced

while it is already running, can only be done with services that are suited for

41

CHAPTER 4 DEsiecN oF ROosSAMON

outsourcing and replacement, which is specified in their service description.
Thereby it is also possible to transfer the status information of a service to

the remote node. An outsourced service becomes thereby a remote service.

Finally, if after all adaptation efforts the services still overstrain the
resources on a particular node, the services have to be selectively termi-
nated by the framework. The selection should be dependent on the user
preferences, whereas services with extensive resource consumption could be

preferred.

Adaptation by User Request

A service adaptation can also be performed on user request. For example,
a user should be able to dynamically determine the engagement of a service

or to restrict the resource usage on its device.

Furthermore, the framework should enable the user to dynamically re-
place a realisation of a service that is suited for this. For instance, a com-
pound service that consists of a video output service (refer to 4.2.3). If
during service execution, the user wants to change the video output device,
the framework can be requested to discover qualified video output services.
Out of the discovered services, the user can choose the desired one, which
has then to be deployed as the new video output by the framework. This
is done without the compound service itself noticing anything. Thereby it
is also possible to direct the output data to more than one output service,

even if only one output sub-service is specified in the service description.

4.4.3 Adaptation of Remote Services

Additional treatment is required for remote services, as they are highly af-
fected by the network environment, which has to be considered as unreliable.
To achieve robustness against packet loss and link failure, more than one
instance of the same remote service can be deployed on different nodes.
The framework has therefore to be able to split and merge redundant port

connections between services.

A service that is suited for redundant operation has to be replaceable,
which is specified in its service description. For instance, services that de-

pend on the node context are not replaceable. Such a service could be a

42

4.4 Service Adaptation CHAPTER 4

printer, as normally it is not reasonable to send a document to two printers

or to replace a printer with another during a document is transferred.

The number of redundant instances of a service should be minimised,
as they increase maintenance effort and network load. The amount of ap-
propriate redundancy is depending on the network qualities and limited by
the available nodes that can provide the particular service. High packet
loss and link failure rate in the network indicate to increase the number of
redundant instances. A high network load indicates to lessen this number,
therewith the network is not stressed additionally. Especially, services with
port connection that have high date rates (e.g. video connections) should

not be redundantly deployed, as this would unjustifiedly stress the network.

If during service execution an instance of a remote service disappears, the
framework should deploy another instance. Thereby different cases have to
be distinguished. If the service is characterised as stateless and replaceable,
a new instance can take over the service function without further treatment.
If the service is stateful and replaceable, a new instance can only be deployed
if already another redundant instance exists. Thereby the framework can
obtain the state information from an instance and supply it to the new one.

Otherwise the service is lost.

To detect the disappearance of a remote service, the framework on which
the remote service should be running can be inquired about the service
status. A negative or missing answer indicates the disappearance of the
service or the whole node respectively. Furthermore, if the framework aborts
a service autonomously, it will inform all the nodes that were connected with

one of the service ports about the service termination.

A big challenge during redundant service execution is the merging of
redundant port connections. To supply redundant service instances with the
corresponding data from one source, the messages have to be copied, which
is not a big deal. The inverse direction indicates more problems, as the
received data have to be merged. Thereby two cases should be considered,
strearn and event based port connections (refer to Appendix B.4.1 for more

information about port types).

In an event based port connection, the communication is well-defined into
events. The data merging can be done for each event separately. Thereby

it is recommended to optimise the latency. For each event the first arrived

43

CHAPTER 4 DEsiecN oF ROosSAMON

data should be used and all other data that arrive later on to the same event

can be ignored.

In a stream based port connection, the communication is continuous. In
this case, service redundancy should be carefully applied as data merging
becomes complex for streams. Extra effort has to be done to synchronize the
data. If redundant services become permanently out of sync, the framework
has to decide which instance is further used and the other instances have to
be deployed anew. It is not appropriate to introduce synchronization infor-
mation by the framework, as such information is normally already contained
in the data stream itself. It will be dependent on the individual framework
implementation which stream types are supported for redundant appliance
and how the merging is accomplished. Also it has to be taken into consider-
ation that stream connections often show high data rates. Services that use

such connections are therefore not well suited for redundant deployment.

Please note that only the node that consumes the remote service is re-
sponsible for the merging. Therefore each individual framework implemen-
tation can use its own solution for data merging, whose exact behaviour is

not specified in-depth in this thesis.

44

Chapter 5

Demonstration of Rosamon

To investigate the working of the framework in a real situation, the developed
parts of Rosamon and a prototype game application are implemented in a test
bed. This chapter describes the sample scenario for which the framework is

implemented, whereas the next chapter describes the implementation itself.

5.1 Aims

The aim of the demonstration is to show the developed parts of Rosamon
running in a real scenario. The implementation of Rosamon should enable
to discover and advert services in the network, and to manage a client/server
based real-time multiplayer game. Thereby, it should be possible to discon-
nect and reconnect any node participating in the game, without the game
is canceled. The framework should support the game in the maintenance of
its session information, in its redundant deployment in the network and in

the monitoring of the individual node availability.

For the client/server based real-time multiplayer game, a game specially
developed for this thesis is used. It is called Rolf’s Blast and enables a

player to walk and shoot other players in a labyrinth (refer to Section 6.3).

5.2 Test Bed

The implementation of Rosamon was investigated in a test bed. The test

bed consists of a small network with four nodes, whereas each node is able

45

CHAPTER 5 DEMONSTRATION OF ROSAMON

to run an instance of Rosamon. The nodes can communicate over wireless
connections (802.11b), whereby not each node can communicate with all
other nodes directly. Figure 5.1 presents the network topology of the test
bed.

N
7

Figure 5.1: Test Bed Network

o
NG

In the network the Mobile Mesh Routing Protocol (MMRP) [81] was
used as the ad hoc routing protocol. MMRP is based upon the link state
approach and enables unicast communication over multi hops in a network
with dynamic topology. Aside from that, a node can also reach all its direct
neighbours by using the broadcast address of the network. No multicast or

broadcast for the entire network is available.

Appendix C describes the test bed setup in more details.

5.3 Scenario

The demonstration scenario starts with three nodes (node 1, 2 and 3) with
bidirectional links between node 1 and 3, and node 2 and 3. Node 1 and 2 are

not connected directly. The initial network setup is presented in Figure 5.2.

Rosamon is running on all these three nodes. The user on each node can
examine the description of the locally provided services and announce them
to the other nodes in the network. Also, the user can specify desired ser-
vice characteristics in a service discovery document and discover therewith

corresponding services available in the network.

46

5.3 Scenario CHAPTER 5

N ~F

Figure 5.2: Initial Network Setup

Aside from some fake services, where only an artificial service description
is available without a corresponding realisation of the service itself, node 1
and 3 provide the resource service for services (refer to Section 4.2.2). There-
with, node 1 and 3 indicate that they are willing to execute services on behalf
of other nodes. None of the three nodes provide the desired client/server

game, which is called Rolf’s Blast in the following.

After some time, node 4 joins the network (see Figure 5.3 A), which
possesses the game Rolf’s Blast client/server version and provides also the
resource service for services. The game can now be discovered and deployed.
Table 5.1 specifies the used service identifiers of the game and Figure 5.4
presents the service description of the game player (for the service descrip-

tion of the server and the peer-to-peer version refer to Appendix B.6.1).

First, node 1 will discover and deploy the game. While deploying the
game, Rosamon will identify that the game uses sessions and search for
corresponding information in the network. As no one is playing the game
yet, no session information is found. Therewith a new session has to be
started, which requires that Rosamon also deploys the server of the game.
The server can be either deployed locally or outsourced to a node in the
network that provides the resource service for services. The server should be
outsourced to an appropriate node. Therefore, an algorithm in Rosamon has
to determinate which node is best suited in respect to the game configuration
and the network context, thereby only nodes can be taken into consideration
that are willing to execute services on behalf of another node by providing
the corresponding resource service. In this sample scenario, the node with
the highest degree in terms of direct connections to other nodes is chosen,
thus either node 3 or 4. The server is outsourced to node 4, as it already

possesses the game code, and the game is deployed (see Figure 5.3 B).

47

CHAPTER 5 DEMONSTRATION OF ROSAMON

\@/ ! 2

@
o | -
©

3 ©

C D

~
O O ©
@3 ©)

E F

O Game player (client) @ Server

Figure 5.3: Demonstration Scenario

As the game supports redundant server deployment, the server requests
Rosamon to deploy a second redundant server in the network to make the

game session more robust to network topology changes. The second server

48

5.3 Scenario CHAPTER 5

Client (player) wuri = rosamon://.../RolfsBlast/ClientServer
Server uri = rosamon://.../RolfsBlast/ClientServer/Server

Session uri = rosamon://.../RolfsBlast/ClientServer/Sessions

= Service/Entertainment/Games/Multiplayer/RealTime

Table 5.1: Service Identifiers of Rolf’s Blast (Client/Server Version)

is deployed on node 3, as it has also a high connection degree and it also

provides the resource service for services (see Figure 5.3 C).

Moreover, the session information is advertised in the network to indicate
the other nodes on that a session is running. After some time also node
2 and 3 will deploy the game and thereby use the corresponding session
information to join the running game session. The framework will thereby
connect each player with the nearest available server. The game is then

running with three player and two server nodes (see Figure 5.3 D).

After some time, node 4 will disappear again from the network. Rosamon
will detect that the connection to node 4 is lost and undertake the corre-
sponding actions to ensure the further running of the game. Thereby the
game instance running on node 1, which was connected with the lost server,

will be reconnected to the server running on node 3 (see Figure 5.3 E).

Furthermore, the sever on node 3 will request Rosamon to deploy a
redundant server anew. As of the remaining nodes only node 1 provides the
resource service to execute services, the second server is deployed on node 1
(see Figure 5.3 F).

49

CHAPTER 5 DEMONSTRATION OF ROSAMON

SERVICE

uri = rosamon://Service/Entertainment/Games/Multiplayer/RealTime/RolfsBlast/ClientServer
url = rosamonTransport://192.168.0.4:4440/Rosamon/Services/Descriptions

completeness = true

comment = Funny multiplayer game. Shoot the other players in a labyrinth.

— GENERAL

name = Rolf’s Blast: client/server version
version = 1.0

producer = Rolf Grueninger

producerEmail = rogrueni@ee.ethz.ch

— IMPLEMENTATION
engagement = 0
stateless = false
replaceable = false

remoteable = false

— CODE
[_Efl = rosamonTransport://192.168.0.4:4440/Rosamon/Services/Codes
ENVIRONMENT
EE
name = J2SE
version = 1.4
DEMANDS
porgramSize = 67000 bytes
memorySize = 88000 bytes
graphicOutput = 734x499;color
netProtocol = datagram
netBandwidth = 1000 byte/s
—— SESSIONS
Lffi = rosamon://.../RolfsBlast/ClientServer/Sessions
ROLES

— MANDATORY

uri = rosamon://.../RolfsBlast/ClientServer
number0f = 1

auxiliary = false

— MANDATORY

uri = rosamon://.../RolfsBlast/ClientServer/Server
number0f = 1

auxiliary = true

— OPTIONAL

uri = rosamon://.../RolfsBlast/ClientServer

auxiliary = false

= Service/Entertainment/Games/Multiplayer/RealTime

Figure 5.4: Service Description: Rolf’s Blast: Client/Server Version (Client)

50

Chapter 6
Test Bed Implementation

This chapter describes the programs developed for this thesis, which enable the
demonstration scenario presented in the previous chapter. After some general
remarks in Section 6.1, the implementations of Rosamon (6.2) and the sample
game Rolf’s Blast (6.3), as well as the interactions between them (6.4), are

described.

6.1 General

To enable the demonstration scenario presented in Chapter 5, the required
parts of Rosamon itself and a sample real-time multiplayer game were im-
plemented. Java 2 Standard Edition (J2SE) [82] has been chosen as the exe-
cution environment, and the Standard Widget Toolkit (SWT) [83] is used for
the access of the user-interface facilities of the underlying operating system.
Both are widely-used and enable to develop portable applications for most
of the common operating systems. SWT was preferred to the Java standard
graphics library Swing, as it uses the native facilities of the underlying plat-
form and thereby enables a more responsive graphical user interface (GUI)

than Swing.

The implementation of Rosamon and a sample game service in a real
environment has been preferred to a simulator based implementation, as it
would be difficult to model the interaction between the framework and ser-
vices, especially as encountered in the service management, with appropriate

traffic patterns substituting the real services.

51

CHAPTER 6 TEST BED IMPLEMENTATION

The UDP/IP protocol suit is used for data communication over the net-
work. The User Datagram Protocol (UDP) [36] is a light-weight and widely
accepted standard. It enables to transport data in a network in an unreli-
able, connection-less way and is therefore suited for mobile ad hoc networks.
The protocol introduces port identifiers to target specific applications, such
as Rosamon, on a node and abstracts the network traffic in the form of

datagrams, whereby the maximum datagram size is 64 KByte.

6.2 Rosamon

In this thesis work only the parts of Rosamon that are needed to enable
the demonstration scenario presented in Chapter 5 were implemented. Fig-

ure 6.1 shows the main window of the Rosamon implementation.

ROSAMON - Rolfs Service Framework for Mobile Ad hoc Nebwo o [m] £

—Available Services
—Lacal
Fesource service: service execution on node 192, 1658.0.4 Refrash
Ruolfs Blast: client/server version S
Rolfs Blask: client/server version {server)
Rolfs Blask: peer-to-peer version
Shiow Deploy
—Remoke
MytusicPlayer Discover Clear
Shiow Deploy

Figure 6.1: Rosamon: Main Window

The main window is divided in two sections. The upper section handles
the service descriptions of the locally available services and the lower section
the ones of the remotely available services. With the buttons on the right,
a service description can be examined and the corresponding service can
be deployed. Further, a local service description can be advertised in the
network and descriptions of remotely available services can be discovered.
Thereby a service discovery editor enables the user to specify the desired

service characteristics (Figure 6.2).

52

6.2 Rosamon CHAPTER 6

Il Service Discovery Doc 10| x|

= <#document = Attribukes:
=[] SERVICE
- I Wal
D GEMERAL e I J;SLIEE
- [] ATTRIBUTES name
; wersion 1.4
- PORTS configuration

& [IMPLEMENTATION profile
-] REMOTE

- [] SUBSERVICES
e[conE

- = ENvIRONMENT

-----] DEMARNDS

=[] conE 1] | i

-] IMPLEMEMTATICON
=[] SESSICNS
[SPECIFICS ok | Cancel |

[match uri partial

Figure 6.2: Rosamon: Service Discovery Editor

Rosamon introduces its own packet format for the network communcia-
tion. A Rosamon packet consists of a header and the actual service specific
message. The header in turn consists of a Rosamon specific packet pre-
fix, the source address of the packet origin, a flooding flag together with a,
corresponding time stamp, and a service identifier that specify the service
for which the attached message is for. Thus, the service identifier either

specifies Rosamon itself or a service running in Rosamon.

Rosamon Packet = Rosamon Header + Message
Rosamon Header

= prefix ; source_address ; flooding_flag ; time_stamp ; service_id ;

A packet that has to be flooded by Rosamon, specifies the flooding flag
and the time stamp. The time stamp together with the source address
thereby unambiguously identifies a packet. Each Rosamon instance saves
for each source address the time stamp of the recently received flooding
packet and either forwards the packet further to the Rosamon broadcast

address or discards the packet if the packet was already known.

In the following some comments to the particular implementations of the

individual framework modules are given:

53

CHAPTER 6 TEST BED IMPLEMENTATION

Service Specification

Services in Rosamon are described by XML files that follow the structure
specified in all details in Appendix B.4.1. Appendix B.6.1 gives some service

description examples.

Service Indication

The mechanisms of service advertisement and discovery in Rosamon are
described in Appendix B.4.2.

To advertise a service, a Rosamon instance broadcasts the corresponding

service description in the network to the other Rosamon instances.

To discover a service, the desired characteristics of the service specified
by the user are just broadcasted to the other Rosamon instances in the
network. If a Rosamon instance receives such a service discovery message,
it matches the specified characteristics against the locally available service
descriptions and advertises positively matched service descriptions directly

to the issuer of the service discovery.

For the broadcast used in service advertisement and discovery no restric-

tion of the spreading area is applied in this implementation of Rosamon.

Service Deployment

Service deployment in Rosamon is specified in Appendix B.4.3.

In this implementation of Rosamon, service deployment is not generally
implemented. Only the different versions of Rolf’s Blast are supported (refer
to Section 6.3). The individual steps to deploy the game are not extracted
from the corresponding service description (refer to Section 5.3), but hard
coded in Rosamon. Also, code downloading of a remotely available service is
not available; in fact, the game code is already integrated in each Rosamon

instance.

In the deployment of the game, the service discovery is used to discover a,
potential game session or a resource service for services. The resource service
is required if a game server has to be outsourced. Thereby the provider
of the resource service is requested with a special message to deploy the

corresponding service.

54

6.2 Rosamon CHAPTER 6

Service Management

The Service management in Rosamon is specified in Appendix B.4.4.

For data communication a service can make use of the network sender
and receiver provided by Rosamon. Therewith, Rosamon will verify the

received data and may flood a message sent to a broadcast address.

A service is informed by Rosamon about newly received session informa-
tion. Furthermore, a service can request Rosamon to select out of several
potential nodes an appropriate node, which is used for the server selection

for each client in the game.

Finally, a service can request Rosamon to outsource a service in the

network.

Environment Observer

The environment observer of Rosamon is specified in Appendix B.4.5.

The environment observer implemented in this thesis just inspects on
each Rosamon instance the availability of the other nodes in the network.
Thereby the environment observer monitors all incoming network traffic
and saves the time of the latest received packet for each node the Rosamon

instance receives data.

If a service inquires the environment observer about the availability of
a certain node in the network, the observer will check if data was received
recently from the node. If this is the case, the remote node is denoted as
available. Otherwise, the remote node is requested to reply with an empty
packet, but the observer will still denote the node as available for a certain
period of time. If in this time period still no data is received from the

respective node, the node will be denoted as unavailable thereafter.

55

CHAPTER 6 TEST BED IMPLEMENTATION

6.3 Real-time Multiplayer Game

6.3.1 Rolf’s Blast

Rolf’s Blast is a real-time multiplayer game, specially developed for this the-
sis. A player can walk in a labyrinth and shoot at other players. Figure 6.3
shows a picture of the game. The score of a player is increased by one for
each other player it shoots, and decreased by one each time it was hit by
another player, whereby the score cannot become negative. The goal of the
game is to have the highest score among the players, thus shoot as many

others as possible and avoid to be shot by others.

Rolfs Blast: client/server version {client) - |EI|1|

Actual Score:

5 Sandra:1 I 1
Susanne:1 . O .

Sabine:1 .

W o N

Silvia:1 L r 1
.
L° o ¥
]
LQ I]

Figure 6.3: Rolf’s Blast

If a player has shot or was hit by another player, it is not allowed to
shoot for a certain period of time. Therewith it is avoided that a player

constantly shoots or that a player that was hit directly repays the hit.

Each game instance can host two local players. For the name of a player
that gets displayed in the score board of the game, the local host name

together with a node local player identifier is used.

56

6.3 Real-time Multiplayer Game CHAPTER 6

Two versions of the game have been implemented, a peer-to-peer and
a client/server based version (refer to Appendix A.1 for more information
about game architectures). The peer-to-peer version of the game, which
needs no service management by the Rosamon framework, was developed
first to ascertain in more details the needs of games in a dynamic ad hoc
environment. After this, Rosamon itself and the client/server based game

version, which interacts with Rosamon, were implemented.

To simplify the analysis of the implementations, both game versions pos-
sess an automatic mode for each player, therewith a player can act randomly

on the playground without user intervention.

6.3.2 Rolf’s Blast: Peer-to-peer Version

In the peer-to-peer version of the game, each instance of the game is alone
accountable for the state of its local players. The state of a player consists
of its name, its node-local identifier, its score, its position on the playground
and its firing status. Each time a local player acts, the corresponding game
instance executes the action and sends the complete new state of the player
to a predetermined broadcast address and port in the network, to inform
the other peers about the action. To broadcast the message, also flooding

as used in Rosamon is applicable (refer to Section 6.2).

If a local player shoots another player situated on a remote node, its score
is not increased until the corresponding game instance receives an acknowl-
edgement of the player that was shot. This mechanism avoids wrongful
enrichment of a player as a result of an inconsistent game state, because
of unreliable network connections and communication latency it cannot be
ensured that all game instances possess over the same game state simulta-
neously. For example, while a player shoots another player, the other player

could already have moved to somewhere else on the playground.

A game instance that receives a state of a remote player updates its
local game state accordingly. A possible fire action of a player is executed
on each game instance individually, thus each game instance adapts the
locally stored score of all players accordingly. If a local player of a game
instance was hit by a remote player, the hit is acknowledged to the remote

player game instance.

57

CHAPTER 6 TEST BED IMPLEMENTATION

The reason that the firing of a player is executed on each game instance
individually is that, on the one hand, this enables a more responsive and
locally consistent reaction of the local game state, and on the other hand,
possible network communication bursts caused by the synchronization effort
to a player action are avoided. As a disadvantage, a potential discrepancy in
the game state of the individual game instances could be temporary worsen.
But as in the entire game only one instance is ultimately responsible for the
state of a player, the game state is globally considered unambiguous at any
time and inconsistencies among the game instances disappear by the next

sent player states, which are triggered by further actions of the players.

If for a certain time period no action was received from a remote player,
it will be removed from the local state of each game instance, as this player is
either inactive or has lost connection. This period will be even abbreviated,

if a hit acknowledgement is expected from the remote player.

As always the complete player state is sent when a player acts, the remote
game instances can easily take in a new or previously removed player. No

additional coordination is needed to join or leave the game.

6.3.3 Rolf’s Blast: Client/Server Version

The client/server version of Rolf’s Blast was developed starting from the
peer-to-peer version of the game. The intention was more to have a service
well-suited for the management in Rosamon, as to develop a well-elaborated

client/server based game.

The client instances of the game handle the interaction with the human
players and the server manages the game state. Thus, each client just for-
wards the desired action of a local player to the server and displays the game
state as received from the server. Thereby the desired action of a local player
is pre-examined on its validity by the client to avoid unnecessary network
traffic. The server of the game executes the received action of the players
and informs the clients about the new game state. Before a new player can
join the game it has to first register himself with its desired name to the

server.

While for the communication from the client to the server unicast is
used, the server informs its client about the actual game state straightfor-

ward with a broadcast message. It may be appropriate to use also unicast

58

6.4 Interaction between Rosamon and Rolf’s Blast CHAPTER 6

communication for the server-client direction to avoid problems with an un-
intentional reunion of a previously split game session caused by network

topology changes.

If for a certain time period the server receives no action of a player,
the player will be deactivated as this player is either inactive or has lost
connection to the server. But the server still preserves the state of the
player, such that the player can be reactivated as soon as a new action of

the player is received.

The server can also be deployed redundantly. Thereby one server will
act as the master and the other servers just forward the received actions of
their players to the main server. The master server is thereby the first server
that is specified in the session description. Furthermore, each deployed
server verifies the availability of all the other servers and adapts the session

information of the game accordingly.

6.4 Interaction between Rosamon and Rolf’s Blast

In the following the interaction between Rosamon and the client/server ver-
sion of Rolf’s Blast is described.

First, Rosamon enables to discover and advertise the service and session

description of the game.

Further, Rosamon can deploy the game. Thereby the framework tries,
according to the service description, to discover a corresponding session in
the network and then either starts a new game client with the discovered
session information, or establishes a new session by instantiating the game
server before the game client is deployed. If several game servers are avail-

able, the game client will request Rosamon to select an appropriate one.

Note that download of service code is not available in this implemen-
tation of Rosamon. In fact, the game code is already integrated in each
Rosamon instance. Also the processing of the service description to extract
the information needed for the service deployment is not implemented. Like-

wise, this was hard coded in Rosamon specific for the game.

Although the game uses its own network port number for the game

specific communication, the game transmits data with the aid of Rosamon,

59

CHAPTER 6 TEST BED IMPLEMENTATION

which sends and receives the messages, verifies the data and may flood a

message sent to a broadcast address.

The game servers will inquire Rosamon about the availability of the
other servers and adapt the session information of the game accordingly.
Thereby, the session description is updated each time a new server joins or
the connection to a server is lost. Further, Rosamon is requested to advertise
this information in the network, such that the other game instances can be

adapted accordingly.

Finally, each time the game observes that only one server is available,
Rosamon is requested to deploy a redundant server if possible. Thereby
Rosamon will autonomously deploy the new server to an appropriate node

in the network.

60

Chapter 7

Conclusions and Outlook

This chapter assesses the achievements by this master's thesis and gives some

thoughts for the further development of this project.

7.1 Conclusions

Mobile ad hoc networking is expected to see increasingly widespread use,
and therefore service provisioning frameworks specially adapted for such

environments are required.

The main contributions of this work are that the demands of a service
provisioning framework in a mobile ad hoc environment have been assessed,
that a sample design of such a framework, called Rosamon, with focus on
service specification, indication and management has been formulated and
that some aspects of this framework have been implemented and success-
fully tested in a demonstration scenario. It is intended that therewith some
understanding and ideas can be given for the further development of such a

system.

This thesis is based on a thorough examination of a large body of liter-
ature, with emphasis on service provisioning frameworks and routing tech-
niques, which results in a considerable appendix of additional fundamentals
(Appendix A).

In this thesis a service specification language has been elaborated, to
describe the different aspects of a service (Appendix B.4.1). Also some

special concepts, such as resource service, service engagement, compound

61

CHAPTER 7 CONCLUSIONS AND OUTLOOK

service and service session, have been proposed (Section 4.2). Further some
methods for the adaptation of a service, especially to the node context, are
specified (Section 4.4).

The behaviour of Rosamon in the interaction with a distributed real-time
multiplayer game has been shown in a demonstration scenario. Therefore
a sample implementation of the framework and the game has been carried

out.

7.2 Outlook

This thesis intents to inspire the further developments of service provision-
ing frameworks for mobile ad hoc networks. Thereby only some aspects of
the subject could have been addressed in this thesis. In all areas of this
topic more work has to be done, especially in the field of observing the

environment, service deployment and service management.

In the following some recommendations for further work related to this

thesis are given:

e A crucial drawback of most of the described mechanisms in this thesis
is that they require the services to be specifically adapted to Rosamon.
It is supposable that the acceptance of such a service provisioning
framework is depending on the support of framework independent ap-
plication, as such application are already voluminous available. There-
fore it is recommended to improve the interaction of Rosamon with

such applications, especially in service deployment and management.

e The service specification developed in this thesis should be revised.
The given specification seems to be rather complex and still does not
specify all service characteristics useful for service management, espe-

cially for service sessions.

e The concepts of compound and remote services are described in detail
in this thesis, but were neither tested nor implemented. These concepts

should be overworked and verified.

e The service management should be elaborated in more details, espe-
cially the support of distributed services is rather rudimentary in this

thesis.

62

7.2 Outlook CHAPTER 7

e The concept of service sessions needs more consideration. Special

cases, such as the split and merge of sessions, have to be considered.

e The scalability of the mechanisms presented in this thesis should be

analysed.

e The separation of the individual framework modules have to be im-
proved. Explicit interfaces should be defined between the modules,
between the framework and the underlying system and between the

framework and the services.

e Downloading of remote code and how it can be executed on the local

node has to be specified.

63

APPENDIX CONCLUSIONS AND OUTLOOK

64

Appendix A

Additional Fundamentals

In addition to Chapter 3 this appendix describes some more mobile ad hoc

networks related topics.

Chapter 3 gives an general introduction to Mobile Ad hoc Networks (3.1),
outlines the requirements of Services (3.2) in such networks, and describes the

basics of Service Provisioning (3.3).

This appendix discusses Game Architectures (A.1) as a particular service ap-
plication and describes the different existing Service Provisioning Frameworks
(A.2). Then, the Service Description (A.3) to specify network services is dis-
cussed. Section Routing (A.4) describes the routing problem in mobile ad
hoc networks, together with some sample solutions. Section Protocol Metrics
(A.5) specifies metrics to judge suitability and performance of protocols and
distributed applications in mobile ad hoc networks. Finally, existing Network

Simulators (A.6) suitable for mobile ad hoc networks are presented.

A.1 Game Architectures

Playing games seems to be a natural demand of human beings. Games can
provide entertainment and amusement. They also enable us to satisfy the

eagerness for competition and learning skills.

Computer games are currently one of the key drivers for computing de-
velopment and have become a large business area. For this reason the dis-
tributed multiplayer game scenario has been chosen as sample scenario in
this thesis.

65

APPENDIX A ADDITIONAL FUNDAMENTALS

Computer games can be fundamentally divided in singleplayer games

and multiplayer games.

In singleplayer games the function of the network could be to make the
game available, either for download or for remote execution. In addition the
achieved scores of a game sessions could be accumulated to present them to

other remote players in a high score table.

In multiplayer games the network also enables a player to interact with

remote players. This interaction could be in different ways.

In a turn-based multiplayer game, the players act either in succession,
thus at a particularly moment only one player can be active (e.g. chess), or
all player make a decision for a move simultaneously but independently form
the others and then after all players have made their decision the moves are
performed and the result is communicated to the players, so they can think

out their next move.

In a real-time multiplayer game all players act simultaneously and the
results are communicated to all players at any time. Real-time games can
persists for a long period of time and possibly players can join and leave
the game at any time. Depending on the game, the characters and units
controlled from the player can continue to perform a default behaviour even
when the player is offline. Thereby a player does not have to participate in
the game continuously. To prevent obsessive players from gaining a large
advantage over casual players, the number of actions a player can take during

a period of time could be limited.

A possible programming language for game development for mobile de-
vices is the micro edition of Java (J2ME) that is optimized for small resource-
constrained mobile devices. It offers a large and growing installed base and
makes programs independent on the underlying device hardware. Although
it is limited in comparison to the standard edition of Java, it supports games
development in the field of user input, networking and media management,
sound, graphic and animation. It also includes a special game API which
adds game-specific functionality, such as sprites and tiled layers, which takes

advantage of native device graphics capabilities.

The architectural approaches for multiplayer games can be classified in
three groups. Peer-to-Peer, Client/Server and Zone-based, see also Ta-
ble A.2 and Figure A.1.

66

A.1 Game Architectures APPENDIX A

Peer-to-Peer: Each node hosts the game and maintains its game state
without centralized instance. It is responsible to inform the other

participating nodes (called peers) about the movements of its user.

The peer-to-peer approach yield a robust and fault tolerant system,
with no single point of failure. If a node hang-up, the others can
keep playing. But the synchronisation of the game state to achieve
consistency among the players is a major problem, as well as the huge
traffic, generated by the communication between all connected devices
(O(n?), whereas n is the number of nodes), which restrains scalability
of the game. Further, as there is no master authority, avoiding cheating

becomes difficult.

An example for a peer-to-peer game is MiMaze [39], a distributed

real-time multiplayer game on the Internet.

Client/Server: A centralized server exists, which is responsible for the
game state and act as master authority. Clients inform the server
about movements of their users and the server informs them about

the actual game state.

The master authority ensures synchronisation and consistency of the
game state among the players and can prevent cheating. But the
fault tolerance of the system is bad, as a single point of failure exists.
Also, although the communication complexity is reduced to O(2n), the
scalability is limited, as all communication coincide at one single point,
which cause a network bandwidth problem. To enhance scalability
the mirrored-server-architecture can be used, where auxiliary server
mirrors are inserted in the network to reduce the burden of the master

server.

An example for a mirrored-server architecture can be found in [40].

Zone-based: To achieve a good scalability and fault robustness, the zone-
based approach elects some peers in the peer-to-peer model as zone
servers. The zone server receives the moves from its assigned players

and propagates them to all other players via their zone servers.

Therewith compared to the client/server approach a local accumula-
tion of network traffic is avoided, as well as compared to the peer-

to-peer approach the entire network stress is reduced. Also the fault

67

APPENDIX A ADDITIONAL FUNDAMENTALS

tolerance of the system is good. If a zone server hang-up, its assigned
players join to other zone servers or elect a new zone server among
them. Thus, each node should be able to act as zone server at any

time. The consistence and cheating problem remain a major problem.

An example for a zone-based architecture can be found in [41].

Qx@ /Q
/N —=e
O O |

— O O

an i

o
@ [
Peer-to-Peer O

Q Player node @ Zone server @ Server @ Mirrored server

Figure A.1: Game Architectures

The scalability of a game can be further enhanced by fragmentation of

the game world into several levels. Therewith each node only has to maintain

68

A.1 Game Architectures APPENDIX A

‘ pTo ‘ contra
Peer-to-Peer | (+) fault tolerance (—) consistence
(—) scalability
(—) cheating
Client /Server | (+) consistence (—) scalability
(4) cheating prevention | (—) single point of failure
Zone-based (+) scalability (—) consistence
(4) fault tolerance (—) cheating

Table A.2: Architectures for Multiplayer Games

its game level and its moves have only to be communicated to nodes in the

same level.

A major problem for games in networks, especially in mobile ad hoc
networks, is the high latency between the moment a player makes a move
and the moment all other players receive its move. In mobile ad hoc networks
this waiting time can be greater than a second. This fact makes it effectively
impossible to develop for mobile ad hoc networks fast-action multiplayer
games, where lags over 150 ms are unacceptable [42]. Therefore turn-based

multiplayer games are more feasible.

In turn-based games, players enter their moves and then they wait for the
actions of their opponents. The waiting for others is inherent to this game
type and therefore a network delay of a few seconds is tolerable. To avoid
that the delay becomes too extreme, it is a good idea to limit the number

of players in turn-based games.

In real-time games the high latency has to be build into the game con-
cept, as it can no be avoided. The existence of a delay between an action is
taken and an action affects the game state has to be justified through the
game itself. A good example are games that play somehow in water or outer
space, there it might be feasible that ships are manoeuvring slowly with
missiles moving slowly across space toward their destination. With such an

approach the latency can be hidden.

Another major problem in distributed games is the consistence of the

game state among the players. The game requires some form of synchro-

69

APPENDIX A ADDITIONAL FUNDAMENTALS

nization to ensure that the different game states are as similar as possi-
ble. Several methods of resolution exists [43], such as lockstep-, bucket-,

timewrap- and trailing state-synchronization.

For example the bucket synchronization mechanism [39] divides the time
into fixed length sampling periods and a bucket is associated with each
sampling period. Each bucket collects corresponding state updates sent form
remote player. When a node has to compute a new game state it process
all the messages in the corresponding bucket, whereby missing messages
can be compensated by dead reckoning. Dead reckoning [44] is a technique
to compensate too large communication latency and loss across network
by allowing a node to guess the state of another player when updates are

missing based on the last known updates.

Another example for game state synchronization is the trailing state syn-
chronization [43]. The problem is addressed by maintaining more than one
game state in parallel, each running with a delay from its preceding states.
To detect inconsistencies after an command is executed, each synchronizer
compares itself with the immediate preceding state. If inconsistency is dis-

covered, a roll back is performed.

Yet another problem in distributed games is to prevent cheating (refer

to [44] for more information).

Further the limited resources of mobile devices, such as restricted input
and output capabilities, have to be taken into account in mobile game de-
velopment. The game should be designed so that only one location at a
particular moment is of interest for a player, zoom levels and scrolling can

help to display the game on a small screen.

And as already mentioned, it is also desirable that a player can join and

leave the game at any particular time.

To abstract, the consequences for games stay the same as for any par-

ticular service in a mobile ad hoc network, which are outlined in Table 3.1.

A good introduction to mobile game development can be found in [38].

70

A.2 Service Provisioning Frameworks APPENDIX A

A.2 Service Provisioning Frameworks

Whereas Section 3.3 describes the fundamentals of service provisioning, this
section presents some of the available protocols with relation to service pro-
visioning. Thereby, each protocol has different functionality and deals only

with a subset of service provisioning, mainly service discovery.

First, some popular solutions for conventional networks, thus for wired
network with low latency, reliable links and enough bandwidth, are pre-
sented: SLP (A.2.1), Jini (A.2.2), UPnP (A.2.3), Bluetooth (SDP) (A.2.4)
and Salutation (A.2.5).

UPnP and SDP are simple low level protocols that focus on device au-
tonomy. SLP assumes an underlying Internet protocol based communica-
tion. Salutation is a network protocol independent architecture and attach
importance to inter-operability of services. Jini is dependent on the Java
language and thus requires considerable computing resources to function
properly. All these protocols use typical attribute or interface matching to

compare existing services in the network.

Salutation uses multicasting to request and advertise services. SDP of-
fers only a method for searching offered services in the neighbourhood, and
is not able to advertise services. Jini uses a centralized scheme where all
types of services are registered to a lookup service. UPnP and SLP imple-
ments a centralized directory based scheme as well as a multicast scheme

for discovering services. Table A.4 gives a comparison of these frameworks.

Unfortunately, these approaches are not well suited for mobile ad hoc
network with high dynamic topologies, high latency and unreliable links.
Also device capabilities and limitations, as well as user and application pref-
erences should be taken into consideration. Users of mobile devices should
have the ability to control in which way their device resources are used.
Therefore some policies should be defined in the service provisioning frame-

work.

Therefore architectures specifically adapted for mobile ad hoc networks

have been proposed.

GSD (A.2.6) is based on group-based forwarding of messages and caching
of service advertisements. For service description a semantic language is

used. Allia (A.2.7) is a caching-based and policy driven service discovery

71

APPENDIX A ADDITIONAL FUNDAMENTALS

| SLP | Jini | UPnP | SDP | Salutation

Appendix A21|A22| A23 | A24 A25
Service Specification X X X X X
Service Indication X X X X X
Service Deployment X X
Service Management X

Environment Observer

Push (Advertisements) X X
Pull (Requests) X X X X
Central Directory X X X

>
>

Scalability X

Table A.4: Conventional Service Provisioning Frameworks

framework that actively forms alliances between nodes. Lanes (A.2.8) are
based on a two-dimensional overlay structure and DSDP (A.2.9) on a virtual

backbone for service discovery.

Konark (A.2.10) is a service discovery and delivery protocol that as-
sumes IP level connectivity and specifies its own description language. SSDP
(A.2.11) and DEAPspace (A.2.12) are simple service discovery protocol for
short range networks. GCLP (A.2.13) is uses device location information to
lower proactive traffic. And finally Nom (A.2.14) is based on a simple P2P

protocol.
In Table A.6 a comparison of this protocol is given.

Finally, in Section A.2.15, Chameleon, a platform for automatic service

composition, is shortly depicted.

To improve the availability and scalability of services, paper [46] proposes
a caching service for Web Services in mobile ad hoc networks. A simple
mechanism with little communication overhead is described. Thereby the
first node that accesses a service becomes the proxy of this service. If a
node acting as proxy becomes too loaded, it can pass the job to other less
loaded nodes. The load information is gossiped in the background among

the devices.

72

APPENDIX A

A.2 Service Provisioning Frameworks

S}IoM]}ou D0 PY O[IOJN J10J syIomoure.q wg_gomww\wo.ﬂnﬂ 9IIAIDS UooM]a(QOWEQQEOO 9V 9l9q®l

X

X
reryred

[erpred

X
rergred

rergred

X
rerpred

rergpred

X
reryred

retyred

X
reryred

retyred

Aniqereag
OAIIRIY

OAT}OROIJ

X
X

X

X
X

X

X
X
X

X

X

X

X
X

X
X

JOATOS(() JUSWIUOIIAUG
JUOWOSRUR]\ 9DIAIOG
JuowAo[do(T 901ATOG
UOTRIIPUT 9DIAIOG

uoryeoyadg 9d1AI0g

V1'e'v

ere’y

¢lI'e’yv

1T°¢'V

0T'c'v

6'CV

8CV

LCV

9¢CV

xipueddy

| woN | 410D | ooedsqvaa | dass | wreuoy [dasa | swet | emy | asp |

73

APPENDIX A ADDITIONAL FUNDAMENTALS

Another interesting attempt for service provisioning can be found in
Distributed Agent Systems. Refer to FIPA [63] or JADE [64] for more infor-

mation about such system.

A.2.1 Service Location Protocol (SLP)

The Service Location Protocol (SLP) [47] is an IETF protocol that provides
a scalable framework for the discovery and selection of network services.
It allows but does not require centralized administration. SLP is language
independent, thus can be implemented in any program language. The dis-
covery is based on service attributes and can handle both hardware and
software services. SLP has been designed to serve enterprise networks, and

it may not necessarily scale for wide-area networks.

The infrastructure consists of three types of agents. Client applications
are modeled as User Agents, services are advertised by Service Agents and
Directory Agents act as a centralized repository for service location infor-
mation to provide scalability to the protocol. The Services are grouped

together using scopes.

SLP responses SLP SLP
response recjsters
I—.h_
N ! By
DA
SLP recuest

SLF recuest drulticast)

Figure A.2: Service Location Protocol Operation (with and without Direc-
tory Agent)
(taken from http://www.mactech.com/articles/mactech/Vol.15/15.10/ServiceLocation /)

The protocol allows User Agents to directly issue Service Requests to
Service Agents using multicast (Figure A.2). This Service Requests specify
the characteristics of the required service. Service Agents answer with a
Service Reply specifying the location of all services in the network which

satisfy the request.

Beside Service Request to obtain the location of a service there exists
also Attribute Request to request the attributes of a service and Service Type

Request to request the types of services that are available.

74

A.2 Service Provisioning Frameworks APPENDIX A

In larger networks Directory Agents can be used, to cache cache service
location and attribute information. They enhance the performance, robust-
ness and scalability of SLP. User and Service Agents can discover Directory
Agents by issuing a multicast Service Request for Directory Agent or by

listen to infrequently sent Directory Agent Advertisement.

A.2.2 Jini (Java Intelligent Network Interface)

The Jini network technology [48], developed by Sun Microsystems, is an
environment for creating dynamically networked components, applications
and services based on Java (Figure A.3). Jini provides simple mechanisms to
enable devices to form ad hoc network communities, called Jini federations.
Devices in a federation may share services and information with other mem-
bers. It provides mechanisms for devices to join and detach from network

dynamically without the need for configuring each device.

jl - Print Piciurs » ['

Camera Prirter

Senice Protocol

Application < » Service
Jini Technology - Jini Technology
Java Technology | < — *#* 8 % Java Technology
Operating System Operating System
— Metwaork Pratocol . =, = = == = =
Mebwork Transport «— —7"—" — " —" = Metwork Transoon
y__________ %

Figure A.3: Jini network technology
(Copyright Sun Microsystems)

A service advertise itself by publishing a Java object that implements the
service API. The client finds services by looking for an object that supports
the API. After a appropriate service is found, the client will download any
code it needs in order to talk to the service, thereby learning how to talk
to the particular service implementation via the API. The downloaded Java,
object implements the service chooses how to translate an API request into

network communication.

75

APPENDIX A ADDITIONAL FUNDAMENTALS

The central mechanism of a Jini system is the Lookup Service that regis-
ters devices and services available on the network. It is also the major point

of contact between the system and the users of the system.

When a device is plugged into the network, it locates the lookup service
and registers its service there. Services from other devices can be accessed,
by querying the lookup service for the desired service and then invoking
the downloaded interface of the service. Registration information can have
attribute/value pairs that are amenable to querying. Service developers
can also come to agreement on the network interface methods for specific

services, so that the service can be accessed by universal code.

The Jini technology implementation is rather resource demanding, and
therefore can be unsuitable for resource-constrained mobile devices. Also,
since the code mobility gives services access to other machines, security is a

mayor challenge.

A.2.3 Universal Plug and Play (UPnP): SSDP

UPnP [49], pushed primarily by Microsoft, is a framework defined at a much
lower level than Jini. UPnP is providing a set of defined network protocols

and based on the Internet protocol suite, instead of the application level.

For service announcement and discovery SSDP (Simple Service Discov-
ery Protocol) is used, which can operate with or without a lookup direc-
tory service in between. In SSDP the registration/query process sends and
receives data in HTTP format over both unicast and multicast UDP (Fig-
ure A.4).

A device joining the network announce itself with a multicast message
that contain a URI that identifies the resource (e.g. ”dmtf:printer”) and a
URL to an XML file that provides a description of the device. The XML
file uses a style sheet tailored to various types of devices. A query for device
discovery can also be multicast, to which devices may respond directly, or
it may be directed towards a directory service if present. Queries are only
targeted on the URI and not the XML descriptions. After device discovery,
its XML description can be retrieved and proprietary protocols can take

over in communicating with the devices.

UPnP also addresses the problem of automatic assignment of IP ad-

dresses and DNS names to a device being plugged in.

76

A.2 Service Provisioning Frameworks APPENDIX A

UPnP Yendor Defined

UP AP Forum Working Committee Defined

UPnP Device Architecture Defined

SEDP | HTTPMU | GEMA
(Discoveryl

HTTPU
(Discovery)

HTTP

GENA
(Evenk)

HTTP
[[[res cription)

UDF TP

Figure A.4: Universal Plug and Play (UPnP)
(Copyright Microsoft Corporation)

By concentrating on base level discovery and device capability querying

only, UPnP does not address how to invoke services.

A.2.4 Bluetooth: Service Discovery Protocol (SDP)

The Service Discovery Protocol (SDP) [50] is a Bluetooth defined protocol
to discover which services are available and to determine the characteristics
of those available services.

SDP is a simple protocol with minimal requirements on the underlying
transport. It only provides basic methods for searching and recognition
of devices and services, without addressing utilization and maintenance of

services.

The characteristic of a service is described by a list of service attributes.

Each service is an instance of a service class, that provides the definitions

7

APPENDIX A ADDITIONAL FUNDAMENTALS

of all attributes of the service. For each service class and for important
attributes of services a Universally Unique Identifier (UUID) is assigned.

To search services, only attributes whose values are UUIDs can be used.

For service discovery SDP offers searching for a specific service, as well

as browsing to see what services are actually being offered.

A.2.5 Salutation

The Salutation architecture [51] is a service discovery and session manage-
ment protocol developed by a corporation of several companies (e.g. IBM).
It is an open standard and tries to find a balance between device auton-
omy and standardization. Salutation is, unlike Jini, UPnP, SDP and SLP,
independent of operating systems, communication protocols and hardware

platforms.

The Salutation architecture defines an entity called the Salutation Man-
ager (SLM) that functions as a service broker for services in the network.
The SLM, which can be located in the same device or remotely, does ev-
erything on behalf of its clients. It is also responsible for the data transfer
between devices, including those across different media and transport proto-
cols (Figure A.5). All registration is done with the local or nearest available
SLM. The framework provides also call-backs into the devices to notify of

events like data arriving or devices becoming unavailable.

Services are described as a set of Functional Units that contain parame-
ters with well-defined syntax and semantic. The Salutation Consortium has
defined a number of Functional Units that identify features of various ser-
vice classes. This standard definitions allow easier inter-operability, because

generic drivers for a class of service can be used.

To discovery a service, this functional units can be queried and matched
against. Certain well defined comparison functions can be associated with
a query. The discovery request is sent to the local SLM which in turn will
be directed to other SLMs. SLMs can be asked to periodically check the

availability of functional units, to aware when a service has left the scene.

The communication between clients and services can operated in one of 3
different modes. In the native mode messages are exchanged directly through

a native protocol without the SLMs getting involved in data transfer. In the

78

A.2 Service Provisioning Frameworks APPENDIX A

Salutation application interface (SM-API) SM-API

Transport layer

Figure A.5: Salutation Architecture
(taken from
http://www.spectrum.ieee.org/ WEBONLY /publicfeature/mar01/netf2.html)

emulated mode the SLMs will manage the data transfer, which provides
transport protocol independence. In the salutation mode the SLMs not only
carry messages, but also define the message formats to be used in the session,

which allows generic inter-operability using well-defined APIs.

It exists also a scaled down version of the Salutation Architecture, called
Salutation-Lite, targeted at resource poor devices in a environment of wide-
spread connectivity and mobility. The technology provides a standard method
to describe and advertise the capabilities of services and devices to other ser-

vices and devices.

A.2.6 GSD: Novel Group-based Service Discovery Protocol
for MANET

GSD is a group-based distributed service discovery protocol for mobile ad
hoc networks [56]. It is based on the concept of peer-to-peer caching of
service advertisements and group-based intelligent forwarding of service re-
quests to reduce the broadcast storm problem. It does not require a service

to register to a lookup server.

79

APPENDIX A ADDITIONAL FUNDAMENTALS

For service description the semantic capabilities offered by the DARPA
Agent Markup Language (DAML) are used to effectively describe services
and resources present in the network. This language supports ontologies to
achieve flexibility in service matching and is therefore well suited for the

heterogeneity of services in a mobile ad hoc networks.

The services present on the nodes are classified into hierarchical groups.
Each node advertises its services to its neighbors within a defined number
of hops. An advertisement also includes a list of the several service groups
that the sender node has seen in its vicinity. This group information is used
to intelligently selectively forward a service request to other nodes in the
network where there are chances of service availability. Thus, the semantic

features present in DAML is used to reduce network flooding.

In other words, by maintaining the local advertisement, a node has infor-
mation about all the services present in his vicinity, as well as information
about available service groups that may can be reached through a particu-
larly node in his vicinity. Thus, instead of broadcasting a request, a node
selectively forwards the request to those nodes that have seen the same group

of services in its vicinity.

A.2.7 Allia: Alliance-based Service Discovery for MANET

Allia is a peer-to-peer caching based and policy driven service discovery
framework to facilitate service discovery in mobile ad-hoc networks [58].
The approach adapts structured compound formation of agent communities
to the mobile environment and achieves high degree of flexibility in adapt-
ing itself to the changes of the ad-hoc environment. The framework takes
into consideration device capabilities and limitations, as well as user and
application preferences regarding usage of the devices. This gives the users
of mobile applications the ability to control the ways in which their own

resources are utilized.

The main goal of the platform formation is to provide an agent better

access to services in the vicinity.

An agent actively forms its own alliance and passively joins other al-
liances in an environment. An alliance helps in service discovery and the
alliance formation does not have the overhead of explicit leader election. An

alliance of a particular node is a set of nodes whose local service information

80

A.2 Service Provisioning Frameworks APPENDIX A

is cached by this node. Thus, a node explicitly knows the member nodes in
its alliance. However, a node is not aware of the alliance where it is a mem-
ber of. Whenever a node leaves a certain vicinity, and enters a new vicinity,
it constructs its own alliance by listening to advertisements. It also becomes
a member of other alliances by advertising its local services. Therefore a
node do not need to register or deregister with the alliances when it changes

its location.

Policies can be used to reflect device capability as well as to restrict
platform functionality to take user, application and network preferences into
consideration. Policies can specify caching, advertisement and forwarding
preferences. Policies can also be used for security restrictions like access

rights and credential verification.

When an agent needs to discover a certain service, it first looks at its
local platform to check whether that service is available. On failure, it checks
the members of its alliance to discover the service. If the service is still
unavailable, the source platform tries to broadcast or multicast, depending
on his local policy, the request to other alliances in its vicinity. To take care
of network resources policy-based multicasting can be used, where the node
multicasts the request to other nodes in its vicinity where there are greater

chances of obtaining the service.

By passive caching of advertisements rather than actively pulling of ser-
vice descriptions from neighboring nodes, network changes can be detected.
Also advertisement collision are not as frequent as in pull-based paradigm,
where, in respond to a particular request, the advertisements from different

nodes can collide with each other at the receiver.

A.2.8 Lanes: Lightweight Overlay for Service Discovery in
MANET

Lanes are application layer overlays to discover services offered in a mobile
ad hoc network [54]. They offer a fault-tolerant and efficient structure, which
can be used for semantics-based service discovery. Admittedly, a concrete
service description is not addressed in the paper and the approach is service

description independent.

Lanes are based on the Content Addressable Network (CAN), a scalable

indexing system for large-scale decentralized storage applications on the

81

APPENDIX A ADDITIONAL FUNDAMENTALS

Internet. A Distributed Hash Table (DHT) is used to associate hash values
(keys) with some kind of content in a distributed and decentralized way.
Participants in the DHT each only store a small section of the contents of

the hashtable and thus provide scalability.

Lane x Laney Lane z

!

O
1
O
i -
O
i
O

Figure A.6: Lanes
(taken from [54])

The basic concept of Lanes is a two-dimensional overlay structure (Fig-
ure A.6), called lanes, which is similar to, but less strict than the one used in
the CAN. One dimension of this overlay propagates service advertisements,
the other one distributes service requests. A proactive operation is used
within one lane (allowing to use unicasts to well-known predecessors and
successors) and a reactive operation is used between the lanes (leading to
anycasts to reach an arbitrary node in neighboring lanes). Thus, a node has

only to maintain the information of its lane.

Within a lane, there is a strict relationship of predecessors and successors
and also the lanes are arranged in a well defined order. Nodes in the same
lane share the same anycast addresses and can be treated equally form the
outside. A large lane that consists of too many nodes, can be divided into

two neighboring lanes and short lanes can be combined to one new lane.

As the nodes are well arranged in a lane, only one periodic ping message

82

A.2 Service Provisioning Frameworks APPENDIX A

per node to its successor is require to maintain a lane.

Lanes tries to be a good compromise between weakly structured ap-
proaches, which are easily adapted to network characteristics but typically
scale poorly, and highly structured approaches with optimal adaptability to
user profiles at the cost of highly inefficient maintenance in dynamic network

topologies.

A.2.9 DSDP: Distributed Service Discovery Protocol

DSDP is a distributed service discovery architecture which relies on a virtual
backbone for locating and registering available services within a dynamic

network topology [59].

The proposal consists of the formation of a virtual backbone, as well as

distribution of service registrations, requests, and replies.

The dynamic virtual backbone is formed from a subset of the network
nodes, such that each node in the network is either a part of the backbone
or one hop away from at least one of the backbone nodes (Figure A.7).
The nodes in the virtual backbone act as service brokers and form a mesh

structure that is interconnected by virtual links.

Each non-backbone node is associated with at least one service broker in
the backbone. Services have to be registered to at least one service broker in
the backbone. When a node requests a service, it sends a request messages
to its service broker, wherefrom the messages is forwarded further in the
backbone, which has the distributed knowledge of all available services in the
network. Broadcasting of such messages would inefficiently waste network
resources which is crucial in shared wireless mediums. Therefore in DSDP
the backbone together with a source based multicast tree algorithm helps
to make the service discovery and registration algorithm more scalable and
efficient. For each node requesting or registering services a multicast tree on
the backbone is established, whereby every backbone node has to maintain
a forwarding list for these trees. Reverse paths in these subtrees are used

for reply messages.

83

APPENDIX A ADDITIONAL FUNDAMENTALS

Figure A.7: DSDP: hatched nodes belong to the virtual backbone
(taken from [59])

A.2.10 Konark: Service Discovery and Delivery Protocol for
MANET

Konark is a service discovery and delivery protocol designed specifically for
mobile ad hoc networks and targeted towards device independent services
[60]. Konark assumes an IP level connectivity among devices in the network
(Figure A.8).

To describe a wide range of services, Konark defines an XML-based de-
scription language, based on WSDL, that allows services to be described in a
tree-based human and software understandable form. A basic tree structure

is given to simplify interoperability between services.

Service advertising and discovery can be done at any level of the tree,
thus enables service matching at different stages of abstraction, from generic
(such as ”entertainment”) to very specific at the leaf of the tree (such as
"Tetris”).

84

A.2 Service Provisioning Frameworks

APPENDIX A

Konark Applications Konark Applications Konark Applications
KONARK KONARE KONARK
SDP MANAGER SDP MANAGER SDP MANAGER
Messaging Layer Messaging Laver Messaging Layer
TCP/UDP TCPUDP TCP/UDP
P i3 P

Wireless Link Layer Wireless Link Laver

Figure A.8: Konark Service Discovery Stack
(taken from [60])

The service advertisements contain name and URL of the service, as well
as a time-to-live (TTL) information to help self-healing of the systems. The
client peers can cache this service information to use it later so that they do
not have to locate the services again. If no service information is cached for
a desired service, a distributed pull method is used to retrieve the service

location.

To simplify the framework, widely accepted Internet standards are used.
IP multicast is utilised to locate peers and to communicate service infor-
mation and each node hosts a micro HTTP server that can handle service

delivery, which is based on SOAP.

A.2.11 Secure Service Discovery Protocol for MANET

A dynamic service discovery infrastructure for small or medium size mobile
ad hoc networks [52]. The Protocol allow finding, locating and evaluating
services in vicinity required by client and fit for high dynamic environment

without directory agent or central registry.

The protocol is reactive, therefore based on pull model with no service
advertisements, and each node have to maintain a small size cache to keep
the present valid service descriptions and behave as a delegate of the service

to response service request.

The service framework is described rather sketchy in [52]. But also a

method to provide best quality of service is outlined.

85

APPENDIX A ADDITIONAL FUNDAMENTALS

A.2.12 DEAPspace: Transient Ad hoc Networking of Per-
vasive Devices

The DEAPspace project develop a framework for small portable computing
devices that enable them to communicate via a wireless network and share
hardware resources and software services [53]. DEAPspace is target for short
range networks. It supports the development of ad hoc proximity-based
collective distributed applications, thus it addresses peer-to-peer networking
instead of the client-server model. The main components of this framework

are the discovery algorithm and the service description model.

The discovery algorithm is proactive. By regularly single-hop broadcast
messages, a device share its full world view with the proximate devices view.
these messages can be restrained if the world view of a device correspond

with the view of its neighbours.

Each service is defined primarily by an input format, an output format,
a name and an address. The name offers some consistent human-readable
information to allow the user to discriminate between similar services. The
format descriptions are hierarchical unique object identifiers (OIDs), based
around the MIME types, to allow service queries to be specified to whatever

precision is appropriate.

A.2.13 GCLP: Geography-based Content Location Protocol

GCLP is a protocol for efficient content location in location-aware ad hoc
networks [55]. The Protocol makes use of location information to lower

proactive traffic, minimizing query cost and achieve scalability.

GCLP assumes that all devices in the network know their own location.
It makes use of this information to periodically advertise content to nodes
along several geographical directions. Nodes that attempt to locate content
need only contact one of these nodes to become aware of the presence of the

desired content.

A node can advertise its services by sending periodically update messages
that follow a predefined trajectory through the network (Figure A.9). This
significantly decreases the amount of proactive traffic as it is limited to nodes
along the trajectories. Nodes along these trajectories cache the information

received from the update messages.

86

A.2 Service Provisioning Frameworks APPENDIX A

Figure A.9: GCLP: Geography-based Content Location Protocol
(taken from [55])

A client that want to locate a service on the network, sends out a query
message that similarly propagates along predefined trajectories. In dense
networks, these trajectories should intersect at least at one node, which will
then reply the query. After receiving a reply, the client may establish a

direct connection with the service using the underlying routing protocol.

A.2.14 Nom: Resource Location and Discovery System for
MANET

Nom is a decentralized resource location and discovery system for hetero-
geneous networks, based on a simple P2P protocol [57]. Nom operates in
completely distributed fashion, with each node running a copy of the Nom
code that monitors its local node network traffic to detect resource location

queries.

Nom is based on Gnutella, a peer-to-peer network widely used on the

87

APPENDIX A ADDITIONAL FUNDAMENTALS

Internet for exchanging data. It performs Time-To-Live (TTL) controlled
flooding on the network. Flooding-based schemes present scalability prob-
lems, however protocol such as Gnutella, with hundreds of thousands of

nodes, showed that it can work.

A.2.15 Chameleon: Automatic Service Composition

Chameleon focus on automatic service composition. [61] Complex network
services can be constructed by composing simpler, reusable service compo-
nents in a well defined way. The composition is performed automatically

and customized to the service execution platform.

A service is structured as an arbitrary tree of components. The XML-
based service description language contains information about these service

components and is independent of any particular node architecture.

A service creation engine on each node maps the node independent ser-
vice description to a node specific implementation by composing appropriate
service components. The resulting mapping depends on node capabilities de-
scribed in the node descriptor and can take advantage of the specific node

features.

The platform is modeled as an active node with Ezecution Environments

(EEs) that serve as runtime environments for service components.

88

A.3 Service Description APPENDIX A

A.3 Service Description

The term service is a very heterogeneous concept. A service could provide
access to hardware, such as printers, cameras, audio-system, other networks,
storage space computational power, et cetera. But a service could also
provide use with information, software, games, multimedia or connect us
with other users. Further a service can enable use to buy food or tickets, to

rent a car, to telecommand something else or many other things.

To specify these heterogeneous services a simple and rich description
language along with support for cross-platform is needed. This language
should be able to describe what the service does provide for the user and
what it requires from the user, as well as how it works and how it is used.
The information of what the service does, such as the purpose, properties,
capabilities and requirements of the service, are needed for service discovery.
The specifications of how it works, such as what happen successively when
the service is carried out and which other sub-services are involved, enables
maintaining and monitoring of the service. And finally how it works specifies
the details of how a user can access a service, such as required communication

protocols, message formats and message serialization.

The service description languages can be classified according to their syn-
tax, semantics and structure. The syntax defines the form of the language,
thus which names can be used and how have they to be arranged to form
a valid description. The semantics defines the meaning and relationship of
names and descriptions. Finally the structure define the formation of names.
This can be done flat, thus just the name of a service, or hierarchical, thus

the name defines a leaf of a service tree (see Figure A.10).

To find a specific service that is also able to serve the requester, the ser-
vice capability matching should not only be done on syntax-level (thus at-
tribute, interfaced or unique-identifier based matching) but also on semantic-
level. Thus if a particularly service is unavailable, the services with the

closest match could be suggested.

Further is should be also possible to describe location information, so
that a user is able to search for services nearest to him. For example a user
want to search for a printer with special properties nearest to him and he
also want to know where the printer is located precisely, therewith he can

pick up his printed documents.

89

APPENDIX A ADDITIONAL FUNDAMENTALS

Devices

Internet Fax Restaurants Chess MP3-Bongs

Figure A.10: Example Service Tree of Konark
(taken from [60])

The following Subsection focus on two service description languages.
The Web Services Description Language (WSDL) (A.3.1) is standardised
by the World Wide Web Consortium (W3C) and describes network services
syntactical as a set of endpoints. The Ontology Web Language for Ser-
vices (OWL-S) (A.3.3) goes a big step further than WSDL and defines a
semantically rich, ontology based service description language. To facilitate
the understanding of OWL-S the Semantic Web is introduced in Subsec-
tion A.3.2.

A.3.1 WSDL: Web Services Description Language

WSDL defines an XML grammar for describing network services as a compo-
sition of communication endpoints (also called ports) capable of exchanging
messages [65]. Therefore WSDL helps to automates the details involved in
applications communication. In WSDL the abstract definition of endpoints
and messages is separated from their concrete network deployment or data
format bindings. This allows the reuse of these definitions for different plat-

form and language implementations.

The description of a service in WSDL is therefore divided into two parts.

The first part describes the communication abstractly. The second part then

90

A.3 Service Description APPENDIX A

bind these abstract definitions to concrete network protocols and message
formats, whereby service definitions can be mapped to any implementation

language, platform, object model or messaging system.

The following list gives a short overview over the elements used in a
WSDL document:

e abstract description

Types: machine- and language-independent data type definitions
Message: defines the exchanged data by types

Operation: specifies the messages involved in an action supported by

the service

Port Type: a set of operations supported by one or more endpoints
e concrete description

Binding: a protocol and data format specification for a particular
port type

Port: a single endpoint defined by associating a network address with

a binding

Service: a collection of related ports

A.3.2 Semantic Web

The Semantic Web is an extension of the current web in which
information is given well-defined meaning, better enabling com-

puters and people to work in cooperation [66].

The Semantic Web intend to define not only the syntax of data, but
also its semantic. Thus the meaning of data is made explicit, to enable
machines to understand them and therefore allowing intelligent processing
of this data.

The Semantic Web framework is based on the Resource Description
Framework (RDF), which provides a lightweight ontology system to sup-
port the exchange of knowledge on the Web using XML [68] for syntax and
URIs for naming.

91

APPENDIX A ADDITIONAL FUNDAMENTALS

An ontology is the specification of a conceptualization. Ontologies in-
clude computer-usable definitions of basic concepts in the domain and the
relationships among them. Therewith the purpose, intents and relationships
of exchanged data can be described by assigned data types to ontologies.
This enables applications to interpret data in the same way according to
their ontology independent of the concrete data type. Therefore the World
Wide Web Consortium (W3C) standardised a semantic markup language for
publishing and sharing ontologies, called Web Ontology Language (OWL).

With the Semantic Web data can be shared, processed and reused by
automated tools across application, enterprise and community boundaries
without the need for human intervention. Applications are able to process
the content of information instead of just presenting the information to
humans. And further, creating software can become just a matter of finding
the right resources on the Web and linking these resources by writing a
corresponding specification document and then, the new created software

will become again just a resource available on the Web.

A.3.3 OWL-S: Ontology Web Language for Services

OWL-S (formerly DAML-S) is an ontology for Web services which provides
a core set of markup language constructs for describing the properties and
capabilities of Web services in unambiguous, computer-interpretable form
[67]. Web services described with OWL-S will facilitate the automation of
Web service tasks including automated Web service discovery, execution,

interoperation, composition and execution monitoring.

Whereas WSDL can tell an agent how the service is used, OWL-S can
also describe what the service does and why. In this way, OWL-S com-
plements WSDL by providing additional information needed by agents to
understand a service and to make service discovery and execution more in-

telligent.

OWL-S belongs to the DAML program and is based on the Web Ontol-
ogy Language (OWL) (refer to Subsection A.3.2). OWL facilitates greater
machine interpretability of Web content by providing additional vocabulary

along with a formal semantics.

In OWL-S services are described by profiles, models and groundings.

92

A.3 Service Description APPENDIX A

The service profile describes what the service does. It gives the type
of information needed by a service-seeking agent to determine whether the

service meets its needs.

The service model tells how the service works. It describes what happens

when the service is carried out.

The service grounding specifies the details of how the service can be
accessed. Typically a grounding specify some well know communications
protocol and service-specific details such as port numbers used in contacting

the service.

Therefore the service profile can be used for service advertising, registry
and discovery, whereas the service model and grounding give the information

to make use of a selected service.

In OWL-S a particular service can be described and grounded by several

different profiles and groundings, whereas its service model is unambiguous.

93

APPENDIX A ADDITIONAL FUNDAMENTALS

A.4 Routing

To deliver a packet in a network, it is often necessary to hop several nodes
before a packet reaches its destination, thereby a routing protocol is needed.
The function of a routing protocol is to find possible routes from the source
to the destination, to select one of these routes and then to deliver packets

to their correct destinations according to the chosen route.

Following basic concepts are usually used for routing protocols:

Flooding: A process to deliver data to every node in the network. For this
purpose a node sends its packet to a all its neighbors, which relay it
to their neighbors and so on, until the packet has reached all reach-
able nodes in the network. To ensure a packet is only relayed once by
each node, an packet identifier is needed which has to be buffered for
some time by each node. Flooding is often used to broadcast control

information.

Link State: Each node maintains a complete view of the network topology,
with a cost for each link. To keep this information up-to-date, each

node periodically broadcasts its links to all other nodes using flooding.

Distance Vector: Each node maintains only the value of the shortest dis-
tance to every other node in the network, together with the interface
to the corresponding next node in the route. It periodically informs its
neighbors about its collected shortest distances, which use this infor-
mation to update their own view of the shortest distances accordingly.
Compared to link state, distance vector is more computation efficient,
easier to implement and requires less storage space, but is more sus-

ceptible to routing loops.

Source Routing: Each packet carry the complete path that the packet
should take through the network. Thereby routing loops can be easy
avoided but each packet requires a overhead for the routing. The
routing decision is made at the source, and can be either proactive or

reactive.

94

A .4 Routing APPENDIX A

Routing protocol can be classified into different categories, such as cen-

tralized vs. distributed, static vs. adaptive or proactive vs. reactive.

Centralized: Routing decision is made at a central node.
Distributed: Computing of routes is shared among the network nodes.

Static: Route between source to destination is fixed regardless of traffic

conditions.

Adaptive: Route between source to destination may change in response to

traffic conditions (e.g. congestion).

Proactive (or table-driven): Maintain all possible routes on the assump-
tion that they may be needed, so that when a packet needs to be sent
or forwarded, the route is already known and can be immediately used,
which results in a minimal delay before sending a packet. Therefore
each node must have some kind of knowledge about the entire net-
work, which needs extra storage space. A great effort has to be done
to keep this knowledge convergent, especially when the network topol-
ogy is changing frequently, as in mobile ad hoc networks. For each
modification in the network topology, all nodes has to be informed
with update messages that consumes a lot of network bandwidth and

node resources.

Reactive (or on-demand): Determine what route to use on demand only.
Thus, when a route is needed some kind of global discovery for the des-
tination is invoked, which results in a delay before the actual packets
can be sent. Reactive protocols have lower computational and storage
space requirements than proactive protocol, but they can produce a
big amount of broadcast messages when requesting new routes. This
is a disadvantage for mobile ad hoc network, because traffic bursts are

susceptible for collision in the wireless propagation medium.

Traditional routing protocols, such as protocol based on the distance
vector algorithm (e.g. RIP-2 [11]) or link state algorithm (e.g. OSPF2 [12]),
are designed for static topologies and are not well-suited for mobile ad hoc
networks with frequently changing topology. They are proactive protocols,

thus maintain routes to all reachable destinations in the network, including

95

APPENDIX A ADDITIONAL FUNDAMENTALS

nodes to which no packets are sent. Periodic control messages are required
to update the routing tables constantly. As the number of network nodes
can be large, number of possible routes can also be large, which requires a

extensive and frequent control message exchange.

Fast topology changes in mobile ad hoc network require an even more
frequent update messages to assure the consistence of the nodes view with
the actual network topology. Also the maintenance of routes to all reachable
node can take a lot of storage space and CPU power in the individual network
nodes. All these facts are in contradiction to the characteristic of nodes in
mobile ad hoc networks, which are often resource poor and operate in a

shared transmission medium.

Another characteristic for conventional routing protocols is that they
assume bi-directional links and cannot deal with uni-directional links that

may occur in a wireless radio environment.

By an intelligent insertion of multi-hop, nodes can transmit packets with

a much lower transmission power in mobile ad hoc networks.

Another problem in mobile ad hoc network is address auto-configuration,
which has to be distributed and adaptive to network aggregation (refer to
[13] and [14]). The next problem is then to provide accessibility between

different networks.

A routing protocol for a mobile ad hoc network has to be distributed.
When it comes to proactive or reactive approach the decision gets harder.
Both have there specific advantages and disadvantages. Proactive protocol
have less delay before sending a packet, but consume more network and node
resources, which are a crucial in mobile ad hoc network. In contrast reactive
protocols generally consume less resources, but can impose a considerable
network load when requesting new routes, which make the network traffic
less uniform than with the proactive approach. This drawback can be soft-
ened when each node gets some knowledge about the network topology by
passive monitoring of the network traffic generate by other nodes. You can
also combining the proactive and reactive approaches in a hybrid routing
protocol. Thus each mobile node proactively maintains routes within a lo-
cal region, where mobile nodes outside the region are reached with reactive
routing.

Various routing protocols for mobile ad hoc networks have been devel-

oped so far. All these protocols allows the network to be completely self-

96

A .4 Routing APPENDIX A

organizing and self-configuring, without the need for any existing network
infrastructure or administration. In the following Subsections some charac-
teristic protocols are outlined. As representative of reactive routing proto-
cols AODV (Subsection A.4.1) and DSR (A.4.2) have been chosen. OLSR
(A.4.3) represents a proactive and ZRP (A.4.4) a hybrid routing solution.

Subsection A.4.5 summarizes and compares these unicast routing protocols.

All these protocols, except AODV, support only unicast and broadcast
communication, thus communication between a sender and a receiver node
or between a sender and all nodes in the network. For distributed appli-
cations often multicast communication are desired, where a node can com-
municate to a group of nodes in the network. Ad hoc multicast routing

protocols are described in Subsection A.4.6.

To judge the suitability and performance of a routing protocol, qualita-

tive and quantitative metrics are needed which are described in Section A.5.

Finally, Subsection A.4.7 depicts an approach for resource management
in the network, to improve network performance and enable better-than-best-
effort handling.

A.4.1 Ad hoc On Demand Distance Vector (AODV)

The Ad hoc On Demand Distance Vector (AODV) routing protocol [18]
is intended for mobile ad hoc networks. AODV uses the distance vector
algorithm and is reactive. Therefore it builds routes between nodes only as
demanded by source nodes and maintains these routes as long as they are
needed by the sources. It offers quick adaptation to dynamic link conditions,

low processing and memory overhead and low network utilization.

To find a route to a particular destination node, the source node broad-
casts a route request (RREQ) to its immediate neighbors. If one of these
neighbors has a route to the destination, then it replies back with a route
reply (RREP). Otherwise the neighbors in turn rebroadcast the request. In
addition the nodes receiving this packet update their information for the
source node and set up backwards pointers to the source node in the route
tables. This continues until the RREQ hits the final destination or a node
with a route to the destination. If this is the case, it unicasts a RREP back
to the source. Thereby the route from source to destination is generated by

the intermediate nodes.

97

APPENDIX A ADDITIONAL FUNDAMENTALS

This protocol is capable of both unicast and multicast routing. For mul-
ticast AODV forms trees which connect multicast group members. AODV
uses sequence numbers to ensure the freshness of routes. It is loop-free,

self-starting, and scales to large numbers of mobile nodes.

A.4.2 Dynamic Source Routing protocol (DSR)

The Dynamic Source Routing protocol (DSR) [19] is another protocol devel-
oped for mobile ad hoc networks. It is a reactive routing protocol that uses

the source routing algorithm.

The protocol is composed of the two main mechanisms of Route Discov-
ery and Route Maintenance, which work together to allow nodes to discover
and maintain routes to destinations. The protocol allows multiple routes to
any destination and allows each sender to select and control the routes used
in routing its packets. These results in a routing overhead in each packet,
but avoids the need for up-to-date routing information in the intermediate
nodes through which packets are forwarded and allows nodes forwarding
or overhearing packets to cache the routing information for their own fu-
ture use. The choice between multiple routes enables load balancing and
increased robustness. Other advantages of the DSR protocol include loop-
free routing, support for use in networks containing unidirectional links, and
rapid recovery when routes in the network change. The DSR protocol is de-
signed mainly for mobile ad hoc networks of up to about two hundred nodes,

and is designed to work well with even very high rates of mobility [19].

A.4.3 Optimized Link State Routing Protocol (OLSR)

The Optimized Link State Routing Protocol (OLSR) [20] is based on the link
state algorithm, tailored to the requirements of mobile ad hoc networks. It
operates as a table driven and proactive protocol, thus exchanges topology in-
formation with other nodes of the network regularly. To reduce the network
load produced by these update messages, the flooding process is optimized
in OLSR. Only some selected nodes, referred as multipoint relays (MPRs),
broadcast the periodically update messages. Thereby, a MPR, announces to
the network, that it has reachability to the nodes which have selected it as
MPR. In route calculation, the MPRs are used to form the route from a

given node to any destination in the network.

98

A .4 Routing APPENDIX A

The multipoint relays (MPRs) allow to substantially reduce the utiliza-
tion of bandwidth compared to a classical flooding mechanism, because the
number of redundant retransmissions when flooding the network and re-
dundant topology advertisements are reduced. The protocol is particularly
suitable for large and dense networks as the technique of MPRs works well

in this context.

A.4.4 Zone Routing Protocol (ZRP)

The Zone Routing Protocol (ZRP) [21] is a hybrid routing protocol, therefore
aims to combining the best properties of reactive and proactive routing
operation. It is designed for mobile ad hoc networks and assumes that the

largest part of the traffic is directed to nearby nodes.

Therefore, ZRP uses a modified proactive distance vector scheme within
the routing zone of each node. In this limited zone, which is individual for
each node, the maintenance of routing information is easier. Nodes outside
the routing zone can be reached with reactive routing. ZRP uses a method
called bordercasting in which a node ask all nodes on the border of its routing
zone to look for a node outside of its routing zone. Thus, the network load is

reduced as the route query is not broadcasted to each node in the network.

A.4.5 Summary of Ad hoc Unicast Routing Protocols

Table A.8 gives an overview over the presented routing protocol for mobile

ad hoc networks.

All these protocols allows the network to be completely self-organizing
and self-configuring, without the need for any existing network infrastructure
or administration but none of them support power conservation, security or
Quality of Service (refer to Subsection A.4.7), however AODV has prelim-
inary work on QoS Routing and IPv6 routing in place. Also none of the
presented protocol is adaptive, meaning that the protocols do not take any

smart routing decisions according to the traffic load in the network.

AODV have a overall good performance also when mobility is high, scales
well to large networks, is resource efficient and supports multicast. However,
as it is a reactive protocol, it involves considerable route request delays and

inefficiently floods the entire network for route determination.

99

APPENDIX A ADDITIONAL FUNDAMENTALS

AODV | DSR |OLSR| ZRP

Type distance | source link | distance
vector | routing | state vector
Reactive yes yes no partial
Multiple routes no yes no no
Unidirectional link support no yes no no
Multicast yes no no no
QoS Support no no no no
Security no no no no
Power conservation no no no no

Table A.8: Comparison of mobile ad hoc routing protocols

DSR is also reactive and has many similarities with AODV, but as it
must carry the source route in each packet, it imposes a considerable packet
overhead and scales therefore not so good to large networks. Also multicast
is not supported. As advantages, in contrast to AODV, DSR supports unidi-
rectional links and can extract more information about the network topology

from the forwarded packets, thus number of route request is reduced.

OLSR requires a good deal of bandwidth and node resources to maintain
routing information, but compared to classical proactive routing protocols
its impact is reduced by the concept of multipoint relays. The mobility in
the network should not be too high, to allow the protocol to converge in

reasonable time.

ZRP reduces the proactive scope to a zone centered on each node. It is
therefore well suited for large networks where the main part of the traffic is

directed to nearby nodes.

Besides AODV [18], DSR [19], OLSR [20] and ZRP [21] many other
routing protocol for mobile ad hoc networks have been proposed, for example
Temporally-Ordered Routing Protocol (TORA) [24], Cluster Based Routing
Protocol(CBRP) [25] and Topology Dissemination Based on Reverse-Path
Forwarding (TBRPF') [23].

More information about routing in mobile ad hoc networks can be found
in [15], [16] and [17].

100

A .4 Routing APPENDIX A

A.4.6 Ad hoc Multicast Routing Protocols

In distributed applications it is often appropriate that a node can communi-
cate information with all other nodes associated to the application, without
sending a packet to each receiver individually. Thus multicast communica-
tion is desired, where a node is able to communicate with a group of nodes in
the network. This simplifies also other applications such as streaming media,

bulk data transfer, conferencing applications, data feeds and gaming.

Many protocols have been proposed for multicast routing in mobile ad
hoc networks [22]. These protocols take into consideration the broadcast

nature of the channel and continuous topology changes.

The protocols can be classified in two groups, tree-based and mesh-based
protocols. The tree-based protocol can be divided further in source-based

and core-based tree.

With the source-tree-based approach a forwarding tree is generated for
each sending node to the member of its multicast group. The trees are
generated by regularly flooding using Reverse Path Forwarding [26], whereby
a router only forwards the message if it was received on its least cost path to
the sender. A prune message is send back if the router has no node that want
to participate in the group, whereby the tree can be built. To allow a node
to join a group later, either it can wait for the regularly tree generation or
use an un-prune message. A representative of a source-tree-based protocol
is Distance Vector Multicast Routing Protocol (DVMRP) [27].

In the core-tree-based approach each multicast group has a center node
and only for this node the tree is generated. This core node has knowledge
about all his members, thus each node willing to participate in a group, has
to send a join message to the core. The drawbacks of this approach is that
if a core node fails a new core node has to be established and the traffic
is concentrated around the core, as all source of a group uses the same
connections. So multiple core nodes should be used, which increase the
administration effort. Examples of core-tree-based protocols are Ad hoc On
Demand Distance Vector (AODV) [18], Ad hoc multicast routing protocol
(AMRoute) [28] and Ad hoc multicast routing protocol utilizing increasing
id-numbers (AMRIS) [29].

In the mesh-based approach for each multicast group a mesh structure

is spanned, where nodes are interconnected through several paths. A for-

101

APPENDIX A ADDITIONAL FUNDAMENTALS

warding group concept is used, where only a subset of nodes forwards the
multicast packets. Examples of mesh-based protocols are On Demand Mul-
ticast Routing Protocol (ODMRP) [30] [31] and Core Assisted Mesh Protocol
(CAMP) [32]. Mesh-based multicast protocols are more robust to mobility,
as they use redundant paths to receivers, with the disadvantage that they

consume more network resources than the tree based solutions.

A major problem for broadcasts and multicasts is the hidden-terminal
problem, where a node A wants to communicate with a node B without
knowing that the propagation medium at place B is already used. This
problem can cause packet collisions and thereby significantly decrease the

performance of multicast routing protocols.

A variant of the conventional multicast is geocast, where the group con-
sists of the set of all nodes within a specified geographical region. Hosts
within the specified region at a given time form the geocast group at that
time. For example the Location-based multicast algorithm (LBM) [33] uses
this approach.

Another variant is broadcast, where a nodes wants to communicate with
all nodes in the network. For this purpose often flooding is used. Flooding
has the advantage that it is very robust for mobility, since it uses a lot of
redundant routes. But compared with other multicast protocols, flooding

has a large number of unnecessary transmissions that stresses the network.

DVMRP AODV, ODMRP LBM Flooding

AMRoute, | CAMP
AMRIS

Type multicast multicast | multicast | geocast | broadcast

Principle | source-tree | core-tree mesh location | flooding

aware

regularly

flooding X X X X

high

mobility X X X

Table A.10: Comparison of mobile ad hoc multicast routing protocols

102

A .4 Routing APPENDIX A

Table A.10 gives a rough overview of multicast routing protocol for mo-

bile ad hoc networks.

In [34] a performance comparison of ODMRP, CAMP, AMRIS and AM-
Route is presented. A general conclusion was that, in a mobile scenario,
mesh-based protocols outperformed tree-based protocols. The availability
of alternate routes provided robustness to mobility, although network band-
width consume is higher. ODMRP yield the best results, but the protocol
showed also a trend of rapidly increasing overhead as the number of senders

increases.

A.4.7 Resource Management

Most current routing protocols typically provide only best-effort service,
thus they do not provide a way to control the consumption of resources in
the network, such as the battery power or the available forwarding capacity

of the nodes.

By explicit use of resource management the network performance can
be improved. Such as to avoid congestion in the network, the traffic can
be routed according to the available forwarding capacity of nodes. And by
taken energy level of nodes into account the availableness of nodes in the

network can be enhanced.

Paper [35] describes a scheme of path-state and flow-state mechanisms
that can be used in source routing protocols to explicitly manage resources

in an ad hoc network.

By the path-state mechanism, nodes in the network send information
about their current state back to the sender. This allows the sender to
direct its packets along the routes that it believes make the best use of

network resources.

By the flow-state mechanism, a sender reserves resources at the inter-
mediate nodes before sending data, which allows the intermediate nodes to
control how many resources they must expend and enables better-than-best-

effort handling.

103

APPENDIX A ADDITIONAL FUNDAMENTALS

A.5 Protocol Metrics

To judge the suitability and performance of protocols and distributed appli-
cations in mobile ad hoc networks, qualitative and quantitative metrics, as

well as essential parameters for the networking context are needed.

In Table A.11 qualitative properties desirable for protocols in mobile ad

hoc networks are listed (inspired by [15]).

Distributed operation: In a mobile ad hoc network no permanent cen-

tralized node can be assumed.
Loop freedom: Avoid waste of network bandwidth.

Demand based operation: Adapt to traffic pattern on demand, to utilize

node resources, network energy and bandwidth more efficiently.

Proactive operation: In contradiction to demand based operation, avoid

additional latency.
Security: Wireless links are more vulnerable.

Power conservation and sleep period operation: Mobile devices

have limited power.

Multiple routes: Increased network reliability against topology changes

and congestion.

Unidirectional link support: Utilization of these links improves protocol

performance.

Quality of service support: Ensure bandwidth reservations in a chang-

ing network topology.

Device resources demands: Mobile device have limited resources, such

as processing-, storage- and power-capacity.
b

Table A.11: Qualitative protocol properties in mobile ad hoc networks

In Table A.12 a list of quantitative metrics that can be used to assess

104

A.5 Protocol Metrics APPENDIX A

the performance of protocols is given (inspired by [15]).

End-to-end data throughput and delay

Route acquisition time

Packet delivery ratio

Efficiency, for example
e average number of data bits transmitted per data bit delivered
e average number of control bits transmitted per data bit delivered
e average number of control and data packets transmitted per data

packet delivered

Table A.12: Quantitative protocol properties in mobile ad hoc networks

Also, it has to be consider the networking context in which the per-
formance of protocols and distributed applications is measured. Essential

parameters are listed in Table A.13 (according to [15]).

e Networks size in number of nodes
e Network connectivity

e Topology rate of change

e Link capacity

e Fraction of unidirectional links

e Traffic patterns

e Mobility

e Fraction and frequency of sleeping nodes

Table A.13: Parameters of mobile ad hoc networks

105

APPENDIX A ADDITIONAL FUNDAMENTALS

A.6 Network Simulators

The testing and evaluation of protocols and applications for mobile ad hoc
networks in a real environment can be rather costly and complex, especially
if large networks are considered. Therefore simulation is an important tool

to improve or validate an implementation.

Simulation often requires to model a real software system into the simu-
lator. A tradeoff between real test environment and simulation is emulation,
where network traffic is generated by real systems and then injected into a
network environment simulator [74]. This avoids the traffic modeling prob-

lem, as well as the reimplementing of the real system into the simulator.

To obtained meaningful results, it is important that the model on which
the simulator is based matches as closely as possible the reality. The mod-
elisation of radio propagation, collision detection and MAC protocols is cru-
cial. Also the simulation parameters and its environment, such as mobility
schemes, power ranges and connectivity, must be realistic. Essential param-
eters for performance measurements of protocol and distributed applications

in mobile ad hoc networks are described in Section A.5.

In the following Subsections some popular network simulators are briefly
described. They all provide advanced simulation environments to test and
debug networking protocols, including wireless applications. NS-2 (A.6.1)
is an open source simulator which is widely used for networking research.
GloMoSim (A.6.2) is a scalable simulator especially developed for wireless
networks. It seems rather outdated, but there exist a commercial GloMoSim
based product, called QualNet (A.6.2). OPNET Modeler (A.6.3) is a com-
mercial and powerful network simulator for wired and wireless networks.
Finally OMNeT++ (A.6.4) is a public-source discrete event simulation en-
vironment, primary used for communication networks with strong GUI sup-

port.

Paper [73] presents simulation results of the flooding algorithm using the
three simulators OPNET Modeler, NS-2 and GloMoSim. Thereby significant
divergences of the results between the simulators emerged. The differences
were not only quantitative but also qualitative. The authors of the paper
explain this outcome partly by the mismatching of the modelisation of each

simulator and partly by the different levels of detail implemented in the sim-

106

A.6 Network Simulators APPENDIX A

ulated scenarios. Keeping this in mind, the result of standalone simulations

should be treated with great cautiousness.

A.6.1 NS-2: Network Simulator 2

The Network Simulator 2 (NS-2) is a discrete event driven simulator to
support networking research [75]. It is target for designing new network
protocols, comparing different protocols and traffic evaluations. NS-2 follows
closely the OSI model and provides substantial support for simulation of
TCP, routing and multicast protocols over wired and wireless networks.

NS-2 is developed and maintained by a large amount of researchers and
part of the Virtual InterNetwork Testbed (VINT) project. It is distributed
freely and open source. Versions are available for several kinds of Unix and
Windows.

The simulator core is written in C++. An object oriented variant of the
script language Tcl, called OTecl, is used for the configuration scripts. The
combination of these two languages offers an compromise between perfor-

mance and ease of use of the simulator.

The simulation of a specific protocol under NS-2 consists of four steps:

1. implementing the protocol by C++ and OTecl code
2. describing the simulation in OTcl
3. running the simulation

4. analyzing generated trace files

For viewing network simulation traces and real world packet trace data
a Tcl/TK based animation tool, called Network Animator (NAM, exists.

A limitation of NS-2 is its large memory footprint and its lack of scala-

bility as soon as simulations of thousands of nodes are undertaken.

To reduce simulation run time and improve scalability the SNS Staged
Simulator was created, which applies staging to NS-2 [76]. The idea behind
staging is to eliminate redundant or partially redundant computations typ-
ically encountered in simulations. Especially in wireless simulations where
the calculations of message propagation in the wireless medium is very fre-

quent and expensive, redundant computations are common.

107

APPENDIX A ADDITIONAL FUNDAMENTALS

A.6.2 GloMoSim / QualNet

GloMoSim is a scalable simulator for wireless networks developed at UCLA
Parallel Computing Laboratory [77]. Adding functionality to simulate wired
as well as hybrid networks is anticipated. GloMoSim follows the OSI model
and uses the C-based parallel discrete-event simulation capability provided

by Parsec. Standard APIs are used between the different simulation layers.

Network characteristics are specified in text configuration files that con-
tains the description of the traffic to generate and the description of the
remainder parameters. The statistics collected can be either textual or
graphical. In addition, GloMoSim provides various applications, transport

protocols, routing protocols and mobility schemes.

GloMoSim is available at no cost to educational users, but seems rather
outdated (last version of December 2000). There exist a commercial Glo-
MoSim based product, called QualNet, by Scalable Network Technologies
(SNT) [78]. For university a discount on the price is provided. The com-
pany advertising promises following: ”The end result is accurate prediction
of network performance for a diverse set of application requirements and
uses. From wired LANs and WANSs, to cellular, satellite, WLANs and mo-
bile ad hoc networks, QualNet supports an extensive range of networking
applications. Because of its efficient kernel, QualNet models large networks

with heavy traffic and highly mobile entities in reasonable simulation times.”

A.6.3 OPNET Modeler

OPNET Modeler is a network simulator for wired and wireless networks
developed by OPNET [79]. It was originally developed at MIT, and intro-
duced in 1987 as the first commercial network simulator. This simulator is a

commercial product but free licenses for the academic research are available.

The company advertising promises following: "OPNET Modeler is the
world’s most powerful modeling and simulation platform, essential for design
and analysis of networks, network equipment, and communications proto-

cols.”

The simulator is based on a three hierarchical editors that directly rep-

resents the structure of real networks, equipment and protocols.

108

A.6 Network Simulators APPENDIX A

The Project Editor graphically represents the topology of a communi-
cations network. The networks consist of node and link objects that are

configurable via dialog boxes.

The Node Editor represents the architecture of a network device by de-
picting the flow of data between functional elements, called modules. Mod-
ules can generate, send and receive packets from other modules and typically

represent applications, protocol layers, algorithms and physical resources.

The Process Editor uses a finite state machine (FSM) approach to model
the behaviour of a modules. Each state of a process model contains C/C++
code, supported by a library of functions designed for protocol programming.
It should be taken into consideration that it can be difficult to abstract a

desired algorithm to such a finite state machine.

A.6.4 OMNeT++

OMNeT++ is a discrete event simulation environment, primary used for
commuunication networks [80]. It is public-source, component-based and
modular with strong GUI support. Several open source simulation models
have been published for the environment, also in the field of mobility and

ad-hoc simulations. OMNeT++ is free for academic and non-profit use.

The environment provides a component architecture for models. The
components, called modules, are programmed in C+4 and then assembled
into larger modules using a graphical editor or a topology description lan-

guage. The modules communicate by exchanging messages.

The model together with the OMNeT++ simulation kernel and a suit-
able configuration file, builds the simulation program. For the user interfaces
a command line (batch) and an interactive, graphical interfaces are provided.

Simulation results are written into output vector files, which can be plotted.

109

APPENDIX A ADDITIONAL FUNDAMENTALS

110

Appendix B

Design Details

In addition to Chapter 4, this chapter gives more details about the design of

Rosamon.

Chapter 4 gives first an Overwiew (4.1) over the framework and describes
then the Service Concept (4.2), the Service Description (4.3) and the Service
Adaptation (4.4) in Rosamon.

This appendix depicts the framework needs on the underlying platform in Sec-
tion Assumptions (B.1). Then, the concept of Compound Services (B.2) and
the different techniques to interconnect their Ports is explained. The Commu-
nication (B.3) between the individual framework instances is specified. Section
Framework Modules (B.4) describes the individual modules of the framework in
detail. Finally, an Example Scenario for Service Adaptation (B.5) in Rosamon
is described and some Examples of Service Description and Service Discovery

Documents (B.6) are given.

B.1 Assumptions

The framework aims to make low demands on the underlying system. Nev-
ertheless, the device should possess of sufficient memory, computation ca-
pacity and network bandwidth, as the framework (e.g. use of XML) as well

as certain service (e.g. distributed multiplayer game) will claim resources.

The framework assumes a packet-switched device communication. The
underlying network protocol have to be capable to deliver packets at least in

an unreliable and connection-less way. Each node in the network should be

111

APPENDIX B DESIGN DETAILS

accessible by a unique address, therefore the underlying protocol have to im-
plement an addressing scheme capable of address auto- and re-configuration,
which may be needed when two previously independent networks collide or
the network is attached to a wired gateway. Please note that re-configuration
of node addresses should be avoided whenever applicable as this stresses the

functioning of Rosamon.

The routing protocol has to enable unicast as well as multicast rout-
ing. The capability of multicast routing simplifies the implementation of
distributed services, as well as the implementation of the framework itself.
Thereby it has to be possible to limit the scope of the multicast by specifying
the number of hops the message is allowed to travel, which is required for
service advertisement and discovery in Rosamon. Flooding of the network is
not used in the framework, but if multicast is not supported by the routing

protocol it could be emulated by using flooding.

To allow location intelligent decisions, the underlying protocol should
allow the framework to discover the distance between two peers. As a mea-
sure for the distance, the number of intermediate hops or the latency of the

connection could be used.

The transport layer protocol has to abstract the network traffic in form
of datagrams, thereby port identifiers have to be supported to allow high-
level protocols to target specific applications, such as Rosamon, on a node.
This protocol is used for the communication channel among the individual
framework instances to exchange service advertisement and service discovery
documents. The framework does not require that the transport protocol
is reliable and connection orientated. For example, UDP/IP connectivity

would satisfy the framework requirements.

To facilitate the communication among services in Rosamon further, it
is desirable that the transport layer protocol also supports stream-oriented
communication, which enables transfer of larger amount of data. Also the
capability of data and time synchronization among nodes would be well
suited for distributed services, especially real-time multiplayer games, in
mobile ad hoc networks. Potential candidates for such a protocol are the
Wireless Transaction Protocol (WTP) [8], as used in the WAP standard
and the real-time transport protocol (RTP) [37], an official Internet protocol
standard, which implements also a method for data synchronization among

nodes.

112

B.1 Assumptions APPENDIX B

As nodes participating in the framework act autonomously from each
other, the framework is suited for networks with high node mobility, which
causes unreliable connections, link failures and high latency. But for rea-
sonable use of distributed services, such as multiplayer games, it is desirable

that the mobile network is locally relatively stable.

113

APPENDIX B DESIGN DETAILS

B.2 Compound Services and Ports

For the data exchange between services, Rosamon introduces the port mech-
anism. Each service can have several ports and to each port a data type is

assigned which specifies the form of the exchanged data.

By using the port mechanism, the framework enables also to compose
complex services by simpler service components. Such a service is called
compound service and its components are called sub-service in this the-
sis. A benefit of the component-based approach is that the components
are reusable for different services. Furthermore, the possibility to assemble
a service by individual service components is an important mechanism in

Rosamon to make a service adaptable to a variable environment.

A compound service can be described by the required sub-services and

the connections among their ports.

The data types are described by the use of XML Schema Definition
(XSD) [70], which provides interoperability and platform neutrality. To a
port either a common XML Schema data type or a self defined XSD type
can be assigned. Self defined types are described as XSD elements in the
sub-element TYPES. Thereby simple data types, as well as complex types
can be described, whereby the difference between complex and simple types
is that complex types can also carry elements and attributes in their content.
In addition to these types, also stream and file oriented data types can be

specified (refer also to Section B.4.1).

A port can be either active or passive, which is specified by the activity
attribute of the port description. An active port acts autonomously, thus it
fetches or generates date by itself. A passive port acts on demand, thus the
framework, on behalf of another port, feeds the port with data or requests

data from it.

To interconnect ports, either an application registers its ports and bind
them to the ports of a service that are described in the PORTS element
of the service description, or the framework connects them during Service
Deployment according to the specifications in the CONNECTIONS element

of the description for a compound service.

The behaviour of a port connection can differ, depending on the activity

attribute of its interconnected ports.

114

B.2 Compound Services and Ports

APPENDIX B

Figure B.1 and Table B.1 present the behaviour for connections between

a single output port with a single input port, also called 7 to I connections.

Figure B.1: Port Connections: 1 to 1

outport inport i outport inport
[
D e I——
? el
|
passive passive : active passive
|
—_— — | —— 1 —
—le | ef||le
- . ! . —/ .
passive active | active queue active

‘ outport ‘ inport ‘ effect

passive | passive | useless, nothing happens

passive | active | pull driven connection

active | passive | push driven connection

active active | data queue is inserted, whereas inport will
be blocked until data is available

Table B.1: Port Connections Behaviour: 1 to 1

It is also possible to connect several output ports to one input port
(N to 1) and conversely (1 to N), whereas the several in- or output ports
must have the same activity characteristic. The corresponding behaviour is
presented in Figure B.2 and Table B.2 and B.3.

115

APPENDIX B

DESIGN DETAILS

outport

—

.__

active >

inports outports inport
passive active e
._ _/ passive

O

active

passive

passive

o (o

active

-©

queue
—~ o
| v v
.—/ active active ‘ (
active l\i.. .__J /
queue

Figure B.2: Port Connections: 1 to N and N to 1

1 outport | N inports | effect
active passive | data duplication
passive active data spreading
active active data queue is inserted

Table B.2: Port Connections Behaviour: 1 to N

N outports | 1 inport | effect
active passive | collecting
passive active | conflict, not supported
active active | data queue is inserted

Table B.3: Port Connections Behaviour: N to 1

116

active

B.2 Compound Services and Ports APPENDIX B

Further, also several output ports can be connected with several input
ports (N to N). Thereby it is only possible to connect active output ports
with passive input ports, or active output ports with active input ports,
all other combinations are not allowed. Figure B.3 presents the two cases,
whereas two different behaviours are possible for the second case, which
are marked as (I) and (II) in the figure. Either each input port gets his
own data queue (I) or all input ports share the same data queue (II).
Thereby the first behaviour is applied by default by the framework, whereas

the second behaviour is only applied on demand.

active outports active inports

o] e

active outports passive inports

-
e

(D

a

o] e

queue

@
(1)

Q]

\/

kj
=G

Figure B.3: Port Connections: N to N

117

APPENDIX B DESIGN DETAILS

B.3 Framework Communication

B.3.1 Addressing the Framework: Rosamon Address

Peers in Rosamon communicate among each other either directly, by using
the unicast address of each other, or indirectly, by using a common multicast
address, which is called Rosamon address in the following. The spread of
a message in the network can be controlled by specifying the number of
hops the message is allowed to travel. For the Rosamon address either a
predefined multicast address can be used or the address has to be retrieved

by using some network functionality.

Depending on a particular implementation of the framework, messages
with the Rosamon address as destination will be either flooded to all nodes
in the framework, or if some kind of virtual backbone is established, the

messages can be forwarded in a more intelligent way.

Therefore, all nodes in the network that want to participate in Rosamon
have to join the multicast group of the framework by informing their under-
lying routing protocol of it, so that they will receive the framework related
messages, for example the service discovery and advertise messages. As an
exception, a node that does not provide services for other peers and that also
does not want to proactively discover available services in the network, does
not need to join the multicast group. Nevertheless, such a node is still able
to actively discover and use services, as the responses to a service discovery

message are send directly by unicast to the requester.

B.3.2 Transport Protocol and Addressing Scheme

As described in Section B.1 the framework requires a transport protocol
which is able to transport packets by unicast and multicast routing to a spec-
ified destination in, at least, an unreliable and connection-less way. Thereby,
an address and a port identifier specify the desired destination node and the
corresponding application on the node. Multicast messages can be limited
to a certain scope by specifying the number of hops the message is allowed

to travel.

To relieve the communication complexity for applications in Rosamon,
the framework should define and implement a common interface for a con-

nection orientated data transport, which enables to transmit data in a

118

B.3 Framework Communication APPENDIX B

stream instead of several size limited datagrams. Applications can there-
fore give over the protocol specific task to the framework, but nevertheless,
they are still allowed to implement and use their own protocols. Further-
more, a common interface for a time and data synchronization protocol is
preferable.

An address in the Rosamon framework is represented by a URL [72] with
the following syntax:

[Protocol] ://[Address] : [Port]/[ServiceInstanceName] /[ServiceRelated]

The Protocol designator indicates the name of the protocol that is used
for the communication. Address and Port reference together the Rosamon
instance on a particular node, whereas Address indicates the node and Port
the instance of the framework on this node. With ServicelnstanceName a,
particular service running on the framework instance can be accessed and
the ServiceRelated part of the URL is then dependent on this referenced

service.

In the following two sample URLs are presented.

rosamonTransport://[2001:620:8:3210:FEDC:BA98:7654:3210] :49000/
rosamonTransport://192.168.0.1:4440/RolfsBlastl/Update

Thereby ”rosamonTransport” represents the common transport protocol used
in Rosamon and ”49000” is the predefined port number of the framework.
Thus, the first URL references the Rosamon instance on a node with an
IPv6 address and the second URL accesses the service instance RolfsBlast1
running on the framework by an IPv4 address reference to the node. The

purpose of "Update” is dependent on the service.

When two previously independent mobile networks collide or the net-
work is attached to a wired gateway, it may be, depending on the used
data link layer protocol, that address re-configuration is inevitable. Address
re-configuration of node addresses should be whenever possible avoided, as
this stresses the functioning of Rosamon. If a node changes its address, all
its previous advertised information will be useless and the node becomes
inaccessible for service sessions running on other nodes. The invalid infor-
mation of service advertisements is not a significant problem, as the node

can advertise its services anew and the old information will be discarded in

119

APPENDIX B DESIGN DETAILS

the network after a while. Node inaccessibility in service session is a prob-
lem and therefore address re-configuration must be supported in the service

management module of the framework.

It might be desired that the framework avoids possible re-configuration of
node addresses by introducing a new address scheme with unique addresses
that wraps the addresses used by the underlying protocol. To achieve ad-
dress uniqueness, some kind of global configuration would be required, which
would be contrary to the Rosamon nature where node acts autonomously

from each other.

120

B.4 Framework Modules APPENDIX B

B.4 Framework Modules

As described in Chapter 4, this thesis designs Rosamon, a service provi-
sioning framework for mobile ad hoc networks, based on a modular and

completely distributed design. Figure B.4 outlines the system.

Service 2
PN
Service 1 \———
Service 3
Application Layer
Service Provisioning Middleware }
(\ N\
Service Management Service Indication
Environment Observer
Service Deployment Service Specification
. J

s

Device Resource Manager —

Device Hardware and Operating System

Figure B.4: Service Provisioning System

The following sub-sections describe the individual module of the frame-
work in more details. These modules are Service Specification (B.4.1), Ser-

vice Indication (B.4.2), Service Deployment (B.4.3), Service Management

121

APPENDIX B DESIGN DETAILS

(B.4.4) and Environment Observer (B.4.5).

B.4.1 Service Specification

The Service Specification defines a universal service description language
and assist applications in the use of this language. For the description of
services XML infoset [69] is used.

Where Section 4.3 gives an overview about the used service description,
this section focus on the details. First, more information about the service
identifier and service session are given. Then, the service description for
service categories and specific services are described successively. Further-

more, in Appendix B.6.1 some service description examples are given.

Service Identifier

To designate services in Rosamon a hierarchical service identifier tree is
used. In Figure B.5 a sample tree is presented, which includes a sample

multiplayer game called ” RolfsBlast”.

For the service description specific services and service categories are dis-
tinguished. A specific service is a particular service which an application can
make use of, represented by boxes in Figure 4.5. A service category stands
for a class of services and does not specify an individual service. Service
categories can be used to discover particular services and are represented by

ellipses in figure of the service identifier tree.

Please note that the term service has a rather universal meaning in this
thesis. As described in Section 4.2, all things that are suited to discover and
advertise in the framework can be denoted as a service. Thus, also service
sessions, different service roles (e.g. client or server of a service), devices
(such as printers or displays) and resources (e.g. memory) can be treated

as a service in the framework.

Uniform Resource Identifiers (URIs) [72] are used to label the services in
the tree. A URI is built by the name of the scheme (here equal to rosamon)
and the hierarchical part of the service identifier. Thereby the slash ”/”
character is used for separating hierarchical components. The URIs will be
treated as case insensitive in this framework.

122

B.4 Framework Modules APPENDIX B

Resource Entertainment Information

Computation Storage

Singleplayer Multiplayer

TurnBased RealTime

Chess RolfsBlast FakeWorld

Sessions

AN

Sessionl Session?2

Figure B.5: Example Service Identifier Tree

absolute_URI = scheme ":" hier_part

hier_part = "//" authority "/" path_segments "/" local_name

Thus, the URI in Rosamon of the sample game corresponding to the service
identifier tree in Figure 4.5 is:

rosamon://Service/Entertainment/Games/Multiplayer/RealTime/RolfsBlast

The hierarchy of the tree is not determined by the framework and can be

adapted to the respective application. The function of the framework is inde-

123

APPENDIX B DESIGN DETAILS

pendent of the individual service identifiers. Nevertheless, service producers
should agree on a common tree for designating their services, therewith in-
teroperability is achieved. If all producers of a service category use the same
prefix for their services, such as "rosamon://Service/Entertainment/Games”
for games, a user is able to discover all these services by using the corre-
sponding prefix.

The hierarchical structure of the service identifier tree also enables to

distinguish between different aspects of a service, such as service sessions.
In the following the different service URIs for the sample game are given.

entire game: rosamon://.../RealTime/RolfsBlast
all its sessions: rosamon://.../RealTime/RolfsBlast/Sessions

particular session: rosamon://.../RealTime/RolfsBlast/Sessions/Sessionl

The service identifier (also called uri) is used to discover desired services
in the framework, thus to map a service identifier (uri) with its correspond-
ing locations (wurl). Thereby not only exact matching of the identifier is
possible, but also partial. This makes the service service discovery more pow-
erful and universal. For example, if an application searches for multiplayer
games (”.../Games/Multiplayer”) using partial matching, it will receive re-
sponses with service description that match the requested uri exactly, as well
as responses that match for more specific services (e.g. ”.../Games/Multi-
player/RealTime”) and more general services (e.g. ”.../Games”) (as a gen-

eral game service could also provide muliplayer games).

124

B.4 Framework Modules APPENDIX B

Service Session

Some services that involve multiple participants may also maintain service
sesstons among these participants. The service description language is able
to describe the possible roles of participants in the session, as well as infor-
mation about running sessions. For example, in a multiplayer game service,
a potential player needs information about the game itself as well as infor-

mation about running game sessions.

The service description can describe service sessions independent of the
service itself. Therefore, the framework can treat also a service session as a
kind of service. Thus, the service sessions can be described separately from
the service and used in service indication like a normal service. Thereby a
separate service identifier is used (e.g. ”.../ServiceName/Sessions”), which

can be specified in the description of the particular service.

Such a specified service identifier for service sessions indicates the frame-
work, that the particular service uses service sessions that are described sep-
arately. By using this identifier, the framework can request the network for
information about available service sessions if desired by the user. The de-
scription of a service session, which was received as answer to such a request,
can thereby specify the required roles and engagements for new participants.
This enables a framework instance to discover, if potential service sessions

for the desired service are available, before it deploys the service.

Nevertheless, it is also possible to describe the service session together
with its service. But normally, as a description of a particular service session
is rather dynamic, in comparison with the information of the service itself,
it is preferable to describe the service sessions separately from the particular
service. To support such dynamic information, a service description can also

be generated on demand, which is described in Appendix B.4.2.
The description of a service session is divided into two parts.

The roles part describes the possible roles that participants can play in
the service session in general (e.g. client and server of a service). Thereby,
the different service roles of a service will be treated again as individual
services by the framework. The roles are specified by their service identifiers
and can be classified as mandatory or optional. The mandatory roles are
essential to run the service, without them the service cannot perform its

real function. The optional roles are not required to run the service, but

125

APPENDIX B DESIGN DETAILS

they can nevertheless simplify the function of the particular service. Note
that the framework itself does not have to know the meaning of the role

identifier.

In addition, the individual roles can be classified as auxiliary. Roles
that are classified as auxiliary, do not make use of the service; such roles
are therefore well suited for outsourcing to other generous nodes in the
network. For instance, a distributed game that consists of the two roles
player and zone server (refer to Appendix A.1), can specify the zone server
as auxiliary, as the zone server can be deployed also to nodes that do not
want to participate directly in the game, whereas it would make no sense to

deploy a player service to such a node.

The session part of the service session description describes a particular
service session. Thereby, the nodes that participate in the session together
with requirements for new participants can be specified. Not only running
service sessions can be described and announced, but also potential sessions,
which are waiting for certain new participants before they can perform their
function. By the description of the individual participants, redundant de-
ployed participant can be explicitly denoted. Therewith a new participant

can select one or use multiple of them simultaneously.

To clarify the use of service sessions in the framework, two examples are

given in the following.

A service that is based on the server/client model will provide the two
service roles with different service identifiers (7. . ./ServiceName/Server” and
7. ../ServiceName/Client”) and specifies them as mandatory in the service
description. If the service allows more than one client, the client identifier

has to be specified as optional in addition (see Table B.4).

mandatory roles ‘ optional roles

.../ServiceName/Server | .../ServiceName/Client

.../ServiceName/Client

Table B.4: Possible Service Roles for a Server/Client Service

(one server and several clients)

A node that wants to make use of such a service, knows by the cor-
responding service description that the corresponding service requires two

roles. It can therefore search in the network for session information, whereby

126

B.4 Framework Modules APPENDIX B

the description of a session specifies the required role for a new participant.
If no potential session is found, the node can either deploy all the mandatory
service roles in the network, so that the servies can run, or deploy only a
subset of the mandatory roles and wait for other participants. In both cases
the service session, which is may incomplete, can be advertised in the net-
work. For the framework it does not matter which service role is deployed at
first. If no other criteria, such as node resources, determine the role choice,

the order of occurrence of mandatory roles in the service description should

be followed.

If the server role is also specified as auxiliary, thus the server role itself
does not profit of the service, a node knows therewith that it must deploy
the client if it wants to make use of the service. Furthermore, it could try to
find a generous node in the network which is willing to execute the unselfish

server role.

A service that is based on a peer-to-peer model will not have different
service roles and therefore does not need special identifiers for the service
roles. For example, if this service requires at least two participants, it would
specify its identifier under mandatory roles and set the number of attribute
of this role element to two. In addition, the identifier is also specified as

optional, as more than two participants are allowed in the session.

A distributed service that requires introducing of additional zone servers,
if the number of participants exceeds a certain value, could either solve
this by specifying different implementations of the same service role or by

specifing the zone server as an optional service role.

The first approach treats the zone server as a normal service role. Thus,
the normal service role consists of an implementation that is able to take
over the zone server functionality if required. To satisfy nodes with little
resources, also an implementation with a lower engagement value could be

provided that implements only the minimal service functions.

The second approach explicitly defines the zone server role. Thus, a node
cannot implicitly take over the zone server functionality. If a zone server is
needed, a node has to deploy this role. Note that even if the zone server role
is specified as an optional role in the general service session description, it

could be still specified as required in the description of a specific session.

127

APPENDIX B DESIGN DETAILS

Service Description for Service Categories

If a node in Rosamon provides several services of the same category, it
can specify the corresponding service category instead of all its individual
services. The description of a service category can be used both in service
advertising and discovery, and enables a more efficient resource usage in the
service indication process. Another mechanism to reduce the resource usage
in service indication is the partial service description which is described in

paragraph Completeness of Service Description below.

The service description structure of a service category in Rosamon is
presented in Figure B.6. It contains only one element, the CATEGORY
element. Its attributes, denoted by boxes, are described in Table B.5. The
obligatory attributes specify the semantic identifier of the service category
and the address of the node that provides services in the specified service
category. By the optional attribute comment, a human readable statement

to the service category can be given.

uri
|

comment |

Figure B.6: Structure of a Service Category Descriptor in Rosamon

uri Encodes the semantics of the service category by a hierarchi-
cal service identifier. Used for service identification. Refer

to Page 122 for the syntax of the wuri.

url Address of the node that provides services in the corre-
sponding service category. Used to retrieve more informa-
tion about the available services in the corresponding service

category. Refer to Section B.3.2 for the syntax of the url.

comment | Optional statement to the service category in a human read-

able form.

Table B.5: Attributes of Element CATEGORY

128

B.4 Framework Modules APPENDIX B

Service Description for Specific Services

The service description of a particular service in Rosamon can contain gen-
eral information, as well as details about the service attributes, the service
ports that enable modular service decomposition, the particular service im-

plementations, the available service sessions and service specific properties.

A particular service implementation is divided in three parts. The local
element describes the location of the code that has to be downloaded and
locally executed together with the resource requirements for the code exe-
cution. The subservices element specifies the involved sub-services together
with the connections among them, and the remote element describes the

port bindings of the remote part of a service.

Figure B.7 presents the XML infoset structure of the service description
for a specific service in Rosamon. Thereby XML elements are graphically
represented as ellipses and their attributes as boxes. Dashed ellipses stand
for optional elements. Double ellipses signify one or more, or, if dashed, zero
or more elements. Dashed boxes stand for optional attributes. Coloured
ellipses indicate that they consist of a substructure that is described sepa-

rately.

Note that only a basic structure of service description in Rosamon is
predefined and presented in Figure B.7. All elements can be extended further
by any attributes and sub-elements as desired by a particular service. The
framework will make this additional information available to the applications
and use it in service discovery, by matching the structure and attribute
values of a service discovery document with the ones of a particular service

description.

Service discovery or advertising specific information, such as validity,
is described separately in a corresponding document, which is discussed in
Section B.4.2.

129

DESIGN DETAILS

APPENDIX B

Arerpixne
n

— -

\\\|||lll

: TVNOILJO

A —————
lll“l|\\

e T T

~<

S wOHEOmEm

See g2

Arerixne

JOPqUNU

n

TSI SSISs G

Q\
, € /Eo&«o%

D —

N

uowsoy ul I103d1I0s9(] 991AI0G oYIoodg JO 9INIONI)S) ¢ 9InJI

1 § I qrpmpueq| eINJONI}S O3
g oo L i oo C
i mu\vﬂw?wm\ﬂqu , ~__— | XeIoquInu | omquyye]
,T\am&mwmmmﬁ T ooud] oydiynu .
W\umﬁnﬂb\ wssoooud! | ot p\@mmb\mﬂmo I foanjooqoIe] @ Aparpr SYuRRPR dr0ur 10 0107 (7”3
,rHHowmvwwoWWowﬁ UOISIon TOTSToA adAy SUOWS OIOW 10 OUO @
I eziqurerSoid! aureu aureu oureu
<~ = [_owren] quawepe [euondo (T 3
~_ — A
\\llflll LoTTTTSS TS .
(mozﬁamo Coaa »C so AT IHOd O yowola oo (T 7
Il|| - S’ Seao -’
L \m@ [an
oacl T o= - —_ _
P =~ e II Pt -~ lI Pae =~q
/\/\ LNINNOHUIANH AMDH\/MMmmm}w) ﬂ m.O NIANT _ rﬁxom HDO /mrﬁiomuza s/ SHJAL \—
| /\ e
\n\-- N N e N ™ soonpoxd|
[maoo Gmo:&mmmwm) m&o; 1) é R
TEEER I S - ”llmgm?,
e
9]qeajowaL FH\‘BWW\U
~~. a[qeaderdal B LSS CCRY PpEtTy 4 ————te SSaall
25 = . ~ - - ~
Sse[eyeIs HMAOHH«AH /Hm:/Hmw._nﬂé\H“ s/ STHOd \v A SULNGIMLLY . / A<ﬁmzm0)
\ TuemegeS e R S5 TN TS o g
[juewuiod [an
ssouajo[duod un ADIATIS

130

B.4 Framework Modules APPENDIX B

No relative distance of the service, such as number of hops to the ser-
vice provider, is described in the document. Such information would be
difficult to maintain, as it is different for each node. As a matter of fact,
the relative distance has to be discovered for each node anew and would
therefore involve needless expenses if it was described in the document. To
enable, nevertheless, an application to discover the relative distance of an-
other node or service, the framework provides a special function that detects

the distance on demand.

Also the framework should provide functions towards the applications to

ease the generation and handling of such XML service description infosets.

Completeness of Service Description

A service description can also be incomplete, which is specified with the
completeness attribute in element SERVICE. A partial, thus incomplete,
description enables for a more efficient resource usage in service advertising
and discovery. If an application needs more information, it can request the

complete description from the service provider.

A complete service description should contain all reasonable information
needed for service usage. A potential service consumer will assume that it
cannot request more information, if the description to the service is marked
as complete. Whether a description is complete or not does depend on the
particular service. For example, if a service advertises its sessions separately
from the particular service description by an alternative service identifier,
the service description is complete without information about its sessions,
as this information can be requested separately. Otherwise, the service de-
scription have to contain the session information to be complete, as there
is no other way to request this information. Further, a complete descrip-
tion of available sessions of a service does not have to describe all available
service sessions in the network, the completeness attribute only indicates
that all service sessions known to the producer of the corresponding de-
scription are described, thus no further information can be requested from

the corresponding service provider.

It has also been taken into consideration to denote the completeness of a
service description implicit in its hierarchical service identifier, by an ending

slash. But the explicit attribute has been chosen, as it is less error-prone.

131

APPENDIX B DESIGN DETAILS

SERVICE Element

The root of the service description document for a specific service is the
SERVICE element. Its attributes are depicted in Table B.6. The obligatory
attributes specify the semantic identifier of the service (uri) and the ad-
dress of the service provider (url), as well as the completeness of the service
description. Information about the completeness of a service description is
given in Paragraph Completeness of Service Description above in this sec-
tion. By the optional attribute comment, a human readable statement to

the service can be given.

uri Encodes the semantics of the service by a hierarchical
service identifier. Used for service identification. Refer

to Page 122 for the syntax of the wuri.

url Address of the service provider. Used to retrieve more
information about the service. Refer to Section B.3.2

for the syntax.

completeness | If true, the service description is complete. If this
attribute is false, the complete description can be re-

quested from the service provider.

comment Optional statement to the service in a human readable

form.

Table B.6: Attributes of SERVICE Element

More service details can be described by sub-elements, which are all
optional. With a combination of these optional sub-elements, it is possible
to describe a variety of service types. To describe a remote service, only
the PORTS element is compulsory. A compound service only needs the
SUBSERVICES sub-element and a local service only the CODFE sub-element
of the IMPLEMENTATION element. But also a mix of these service types
could be described easily by combining these sub-elements. Further, service
sessions can be described with the SESSIONS element.

GENERAL Element

The element GENERAL contains the general service information. Table B.7
explains pre-defined attributes, which are all optional. The attributes of this

132

B.4 Framework Modules APPENDIX B

element can be expanded by additional service specific attributes.

name Effective name of the service. Enables an alternative

service identification compared to the service URI.

version Specifies the version number of the service.

location Description of the real location of the service. Enables

to find a physical service.

producer Specifies the name of the service producer.

producer_url | Specifies the address of the service producer.

Table B.7: Attributes of GENERAL Element

Note that each service must have an wri, which encodes the semantic of
the service, but is also allowed to have an own name. Thereby it is possible
to discover a service by its uri, as well as by its name or both. The service
identification via wri offers also partial matching, whereas with the name
only exact matching is possible. As partial matching is possible with the uri,
the actual name could also be appended to the ur: and the name could be
used in some other way for service identification. This liberty is intentional
and helps to keep the framework universal.

For example, the description document for a chess game called ” Chess-
Master” could have the following entries:

rosamon://Service/.../TurnBased/Chess

uri

name = ChessMaster
But also

uri = rosamon://Service/.../TurnBased/Chess/ChessMaster

makes sense, as the game can be still found by partial matching with the wuri
7. ../TurnBased/Chess”. The attribute name just leaves room for alternative

identification methods, which have to be based on exact matching.

ATTRIBUTES Element

The ATTRIBUTES element describes the characteristics of the service. It
consists of several ATTRIBUTE elements that specify each a certain at-

tribute of the service. For instance, the supported languages of the service,

133

APPENDIX B DESIGN DETAILS

the capabilities of an output device, the data format of the ports or the data

bitrate in network communication can be specified.

An attribute can be either only informative or also interactive. Inter-
active means, that the attribute description specifies different values from
which the framework can choose a convenient one, for adaption of the service
to the context. Thereby three types of interaction are distinguished. The
interaction could be static, which means that the framework informs the
service during service deployment about the desired attribute value, which
cannot be altered afterwards. A dynamic interaction enables the framework
also to change its choice during service execution. Finally, an attribute that
is specified as code fetching is used in the service downloading procedure.
It is also static and enables to download only the needed data instead of
the whole service. For instance, to prevent that data in all the supported
languages of the service has to be downloaded, the language could be deter-

mined before downloading of the code.

name
ATTRIBUTE value
type

¢ VARIABLE®
s "\ subservice |

Seeo —_—

—====Z==== ——TT=s
—== ===

—_—— e ——————T

Co
imaxInclusive |

i
imaxExclusive |

Figure B.8: ATTRIBUTE element of Specific Service Descriptor

Figure B.8 presents the structure of the ATTRIBUTE element. An
ATTRIBUTE consists of a name, type and value (refer also to Table B.8).

If nothing more is specified, the attribute is only informative.

If the attribute can have different values, also the VARIABLE element
is specified together with the type of interaction (refer to Table B.9). The

134

B.4 Framework Modules APPENDIX B

name | Name of the attribute.
value | Value of the attribute. If the VARIABLE element is

also specified, this value serves as the default value.

type | Type of the attribute. This is either a framework pre-

defined type or a XML schema simple type.

Table B.8: Attributes of ATTRIBUTE Element

usage Specifies the interaction of the attribute. Either in-

formative, static, dynamic or codeFetching.

subservice | Optional. This attribute enables to make attributes of
sub-services available to the service description of the
compound service. The sub-service is thereby speci-

fied by its instance name.

Table B.9: Attributes of VARIABLFE Element

different attribute values can be specified by several ENUMERATION ele-
ments, which specifies the possible values individually, and by the RANGE
element, which specifies a complete value range. The attribute value spec-
ified in the ATTRIBUTE element serves thereby as the default value and
has to occur also in an ENUMERATION or RANGE element.

To enable the framework to intelligent select a value of an interactive
attribute, the framework has to know the effect of the attribute. Therefore
the framework defines several standard attribute types, such as types for
languages, data formats, communication protocols and bitrates. Note that

these types are not further described in this thesis.

An attribute could also be referenced by a port (refer to description of
element PORTS). This enables a port to have variable characteristics, which
can be used by the framework to adapt connected ports to each other. This
is also possible, even if the framework does not know the meaning of the
attribute itself. For instance, an output port may specify its audio sampling
rate as a range from 20-96 kHz and an input port may supports 44.1 kHz
and 22 kHz, with 44.1 kHz as default. If the framework has to connect these
two ports if would therefore select the sampling rate of 44.1 kHz for both

ports.

135

APPENDIX B DESIGN DETAILS

PORTS Element

The element PORTS describes the ports of a service together with the used
data types. Ports are used for the data exchange between services, and

enable to combine different services to one more comprehensive service.

The ports are subdivided into input (IN_.PORT') and output (OUT-PORT)
ports. Each of these elements can have several PORT elements, whose at-
tributes are described in Table B.10.

name Name of the port.

type Specifies the data type of the port by referring to an
XML schema simple type or a type specified in the
TYPES element.

activity Specifies if the port actively fetches (inport) or gener-

ates (outport) data or if it acts only passively, thus on

demand. Refer to Section B.2 for more information.

multiple If true, multiple instance of the same port can be used,

to serve multiple partners at the same time.

numberMax | Optional. If multiple connections to the same port are
allowed, the maximum number of connections can be

specified.

default Optional. If the port type is a simple type, a default
value can be specified. This is used either for an input
port, if the port is not connected to another port, or
for an output port, if the service does not implement

the port.

Table B.10: Attributes of PORT Element

To serve a variable number of connections, a port can be instanced sev-
eral times. For instance, a server may have 1 to n clients at the same time.

Thereby the ports will be serially numbered.

By the sub-element TYPES, the data types can be described that are
relevant for data exchange via the ports. Figure B.9 presents its structure.
A data type can be assigned to a port via the type attribute in the port

description.

136

B.4 Framework Modules APPENDIX B

~ -, -
(’(S REAM)) (/(FILE)) (’(’ sunpleType)) complexType))
ST R TS Ses - S -
=
’/’1 _______ RINN ’/’; _______ X
!\\\ATTRIBUTE YRR REFERENCE _J)
ST RS ==

Figure B.9: TYPES element of Specific Service Descriptor

The different types used in Rosamon can be distinguished as event or

stream oriented.

As event oriented types, files and the XML Schema Definition (XSD)
[70] types are used. A file type is described by the FILE element and the
XSD types are described by a simple Type or complexType element. Thereby
the structure of the XSD types is defined by the XSD specification for
(<xsd:simpleType>) and (<xsd:complexType>).

A stream oriented type is described by the STREAM element.

The characteristics of a file or stream type, for example the data protocol,
are described by attributes. Thereby either an attribute is defined by the
ATTRIBUTE element or the REFERENCE element is used, which refers
to an already defined attribute in the ATTRIBUTES element. Refer to the
description of the ATTRIBUTES element for more information about the

syntax of attributes.

More information about ports can be found in Section B.2.

IMPLEMENTATION Element

The element IMPLEMENTATION specifies a particular implementation of
the service. To describe the different service aspects, corresponding sub-

elements can be specified. The CODE element describes the location of

137

APPENDIX B DESIGN DETAILS

the code that has to be downloaded and locally executed together with the
resource requirements for the code execution. The SUBSERVICES element
enables to specify involved sub-services together with the connections among
them, and the REMOTE element describes the port bindings of the remote

service part.

Table B.11 describes the attributes of the IMPLEMENTATION element.

stateless = Service have thereby be able to save their status information at

engagement | Specifies the engagement of the service by a num-
ber. Positive numbers indicate a positive and nega-
tive numbers a negative engagement. Refer to Section

4.2.5 for more information about service engagement.

stateless Specifies if the service has an internal state.

replaceable | Specifies if the service can be replace by another im-
plementation of the same service or by another service
realisations. If the service is specified as not stateless,
the service can only be replaced by another imple-
mentation of the same service, thereby the service has
to be able to pass its internal state to the framework,
which will forward it to the newly deployed implemen-

tation.

remoteable | Specifies if the service can be deployed on a remote
node. For instance, a service that directly depends on
user interaction is not remoteable, as the user expects

that he/she can use the service on his/her device.

Table B.11: Attributes of IMPLEMENTATION Element

any time.

It is possible to specify more than one implementation for a particu-
lar service. Thereby the individual implementations has to differ in their
engagement, which is specified by the engagement attribute of the IMPLE-
MENTATION element. The value of engagement is a measure for the re-
source consumption relative to the other implementations of the service.
Implementations with a high engagement value will normally perform bet-
ter quality or contribute more to the service community, if it is a distributed

service. Therefore, the engagement attribute enables the framework to se-

138

B.4 Framework Modules APPENDIX B

lect a particular implementation, according to the available resources, the
desired quality and the willingness to contribute to the service community.

For more information about the service engagement refer to Section 4.2.5.

CODE Element

The element CODE gives more information about the code that implements
the service. Its url attribute specifies the address, from where the code can
be downloaded (see also Table B.12), and the sub-element ENVIRONMENT

describes the requirements of the code to its execution platform.

url | Address of the code location. Used to fetch the code

of the service.

Table B.12: Attributes of CODFE Element

The element ENVIRONMENT consists of three sub-elements. OS spec-
ifies the required operating system of the device. EF specifies the execution
environment needed for the service execution. And DEMANDS specifies
some other requirements of the service. The attributes of these sub-elements

are described in Table B.13 in more details.

Note that the individual sub-elements of ENVIRONMENT are optional,
only requirements reasonable for a particular service have to be described.
For example, for a service implemented in Java, it might make no sense to

specify a specific operating system.

SUBSERVICES Element

If a service is compound by other services, the element SUBSERVICES spec-
ifies the required sub-services, together with the connections among them.
In the following, such a service is also called main-service to distinguish it
from its sub-services. Refer also to Section B.2 for more information about

compound services.
Figure B.9 presents the structure of the SUBSERVICES element.

Element SUBSERVICE contains the description of a sub-service and

assigns an instance name to this service. The description of the sub-service

139

APPENDIX B

DESIGN DETAILS

name Specifies the operation system (e.g. ”PalmOS”) and
the execution environment (e.g. ”J2ME”), respec-
tively.

version Version number of the operating system (OS) or exe-
cution environment (EE).

architecture Architecture of the OS (e.g. "x86").

configuration Configuration of the EE (e.g. "CDC” = connected
device configuration of J2ME).

profile Profile of the EE (e.g. "FP” = foundation profile of
J2ME).

programSize Size of the service code in bytes.

memorySize Required working memory space for service execution
in bytes.

bufferSize Required buffer memory space for service execution in
bytes.

processingRate | Required processing capacity in number of instruc-
tions per second.

netProtocol Required network protocol.

netBandwidth | Desired network bandwidth in bytes per second.

graphicOutput | Specified if a graphical display is required.

powerCharge Desired minimal electric power charge in percent of
the maximal power capacity of the node.

Table B.13: Attributes of ENVIRONMENT Sub-elements

is again a service description, but it only has to contain the information
Thereby the specified

SERVICE element can be used directly for the service discovery document.

needed to discover the corresponding sub-service.

Element CONNECTIONS describes how the ports of the individual ser-
vices are connected among each other. Thereby three types of connections
are identified, which are diagramed in Figure B.11. An assignment of a sub-
service port to a port of the main-service is described in element PORT. A
connection among ports of sub-services is described in element LINK, and el-
ement STUB is used to assign a default value to an unconnected sub-service
port, whereby default values are only applicable to simple type ports. The
attributes of these sub-elements are depicted in Table B.14.

140

B.4 Framework Modules APPENDIX B

——
- ~~

” ~
{ CONNECTIONS)
'

~
S~ —_—

- 4/]\5
e —nS ————n e —m
SERVICE e RS P RN .7 BN
Q i{ PORT)} {{ LINK)} (¢ STUB })
A\ /1 A% /1 A% /1

portname instanceName
instanceName instancePortname
instancePortname defaultValue

TO_PORT

FROM_PORT

instanceName instanceName

instancePortname instancePortname

Figure B.10: SUBSERVICES element of Specific Service Descriptor

PORTs
A AR,
\AA /
>
—
—————
LINKSs STUB

Figure B.11: Connection Types

The element PORT implies two different cases.

In the first case two similar port types are interconnected, thus an input
port of the main-service is connected to an input port of a sub-service, or
an output port of a sub-service is connected to an output port of the main-
service, respectively. In this case, the main-service should not implement this

port as it is already connected to a sub-service, a possible implementation

141

APPENDIX B DESIGN DETAILS

portname Specifies a port of the main-service by its name.

instanceName Specifies a sub-service by its instance name.

instancePortname | Specifies a port of the sub-service selected by

instanceName.

defaultValue Default value for an unconnected simple type

port.

Table B.14: Attributes of CONNECTIONS Sub-elements

of this port would be ignored.

In the second case, two different port types are interconnected, thus an
output port of a sub-service is connected to an input port of the main-
service, or an output port of the main-service is connected to an input port
of a sub-service, respectively. In this case, the corresponding port of the
main-service should not be used by a possible superior application. This is
problematic, as the corresponding port of the main-service is described in the
PORTS element of the main-service, and therewith it is also announced that
this port is accessible from the outside of the service. A possible connection
from outside would then overrule this intern connection of the port. To
solve this flaw, such a service could be wrapped by an abstract service that

prevents the port from declaration to the outside world.

REMOTE Element

Remote ports are accessed over the network and are described by the sub-
element REMOTE. Therefore each port needs a binding to a location and
communication protocol. The url of the element BINDINGS defines the
address where the port connections can be registered to the remote location.
Thereby the PORT_REF element specifies to each port, which is referenced
by its name, the possible bindings by one or more BINDINGS elements.

A node that wants to use a remote service has therefore to select for each
port a corresponding binding and register its choice together with its port
counterparts to the remote service. The remote service will then inform the
service consumer about the individual port addresses. A node cannot di-
rectly access the remote ports without registering itself, this is necessary that

the remote service can distinguish between the different service consumer,

142

B.4 Framework Modules APPENDIX B

thus it will communicate different addresses of its ports to the individual

service consumers.

In addition to this framework related remote service mechanism, it is also
possible to describe a remote service with the standardised Web Services
Description Language (WSDL) [65] (refer to Section A.3.1). Thereby the
WEBSERVICE element contains either the complete WSDL document or

a url to this document.

SESSIONS Element

The element SESSIONS describes the possible roles in the service session
in general, as well as available service sessions. Refer to Page 125 for more

information about service sessions.

If the service sessions information is described separately from the main
service description, the SESSIONS element will specify a separate service
identifier (uri) for the corresponding document (refer to Table B.15). By
using this identifier the actual description of the service sessions can be

retrieved.

uri | Specifies the uri that can be used to retrieve more information

about the available service sessions.

Table B.15: Attributes of SESSIONS Element

The ROLES element describes the possible roles that participants can
play in the service session in general. The roles are specified by their service
identifiers and can be classified as mandatory or optional. A mandatory
role is essential to run the service and can be specified by a MANDATORY
element. An optional role is not required to run the service, but can never-
theless simplify the function of the particular service. Such a role is specified
by a OPTIONAL element. The attributes of these elements are described
in Table B.16.

The individual roles can be classified as auxiliary, which specifies that
the corresponding role itself does not make use of the service. Such a role is
therefore well suited for outsourcing to other generous nodes in the network.

For instance, a distributed game that consists of the two roles player and

143

APPENDIX B DESIGN DETAILS

uri Service identifier of the service role.

numberOf | Number of instances of this service role that are

required to execute the service.

auxiliary Specifies if the role is only auxiliary, thus the

corresponding service role itself does not profit

from the service.

Table B.16: Attributes of ROLES Sub-elements

zone server, can specify the zone server as auxiliary, as the zone server can
be deployed also to nodes that do not want to participate directly in the
game, whereas it would make no sense to deploy a player service to such a

node.

The SESSIONS element can also contain one or more SESSION ele-
ments that describe each a particular service session. Thereby, the nodes
that participate in the session together with requirements for new partici-
pants can be specified. Not only running service sessions can be described
and announced, but also potential sessions, which are waiting for certain new
participants before they can perform their function. Figure B.12 presents
the structure of the SESSION element.

uri Specifies the identifier of the session.
members Optional. Actual number of participants in the
session.

membersMax | Optional. Maximal possible number of partici-

pants in the session.

Table B.17: Attributes of SESSION Element

uri Identifies the service role.

url Address of the service role instance.

engagement | Optional. Specifies the engagement value the of

service role instance.

Table B.18: Attributes of NODE Element

For each SESSION an identifier, as well as the actual and maximal

144

B.4 Framework Modules APPENDIX B

/’/; —————— < \\\
@ { POTENTIAL })
\\\: _____ —::’

~— ——

uri

jengagement |

Figure B.12: SESSION element of Specific Service Descriptor

uri Identifies the required service role.

engagement | Optional. Specifies the minimal engagement

value of the role required for a new participant.

Table B.19: Attributes of POTENTIAL Element

number of participants of the session can be declared (refer to Table B.17).
By using the specified identifier of the service session, the actual session
description can be retrieved anytime. An open problem is thereby, to keep

the different service session identifiers unique.

The individual session participants are specified by corresponding MFEM-
BER sub-elements. To describe such a participant, the MEMBER element
consists of a NODE element that specifies the role identifier and the location
of the role instance (refer to Table B.18). Thereby more than one NODE
element can be specified, which indicates that the corresponding service par-
ticipant is deployed redundantly. Depending on the context, other session
participant with connection to a redundant member, will either select one

or use multiple of the corresponding participant simultaneously.

By the POTENTIAL element, the requirements for new service partic-
ipants can be specified (refer to Table B.19). Thereby the desired service

145

APPENDIX B DESIGN DETAILS

roles, as well as corresponding minimal engagement values can be specified

to restrict new participants according to the actual session circumstances.

SPECIFICS Element

The element SPECIFICS enables to describe service specific information,

which is not predefined by the framework.

This element, as all the predefined elements in the service description,
can be extended by additional service specific attributes and sub-elements.
The framework will make this information available to the applications and
also use it in service discovery, by matching the elements and attribute
values of a service discovery document with the ones of a particular service
description. Their meaning is thereby dependent on the particular service
itself. For certain service categories some common characteristics could be

predefined.
For instance, if the ATTRIBUTES element is not sufficient for the de-

scription of printer services, this element could contain separate information
about the capabilities of the printer device, such as supported media and

media size, as well as color and resolution capabilities.

146

B.4 Framework Modules APPENDIX B

B.4.2 Service Indication

The Service Indication module of the framework enables to advertise and
discover services. Thereby both specific services and service categories can
be announced and discovered by using the different layers of a service identi-
fier tree. The service indication is independent of a specific service identifier

tree and can handle different trees.

Because of the mobile environment, the service indication is completely
distributed, thus no central service directory is used. To simplify service dis-
covery and to reduce the network load from service discovery messages each
node can passively discover services in the network by monitoring service
advertisement messages and cache them according to its available resources.
Such a node should also make its gathered information available to other
nodes by responding to service discovery messages for services it has infor-

mation about.

Furthermore, also the reply messages to service discovery messages from
other nodes could be monitored, but this has to be extra supported by
the underlying routing protocol, as these messages are directly addressed
to the service discovering node and are normally only forwarded by the

intermediate nodes.

Note that the framework does not actively monitor the network topology.
Thus, if a new node joins the network, its services are unknown until it
actively announces its services in the network, or another node actively

searches for one of its service types.

Service advertisement messages should be bounded to a certain spread-
ing area by limiting the number of hops the message is allowed to travel.
Therefore a node can obtain a well view of its vicinity, where it will have
a rather coarse view of the entire network. This is desirable as, although a
mobile network is expected to be globally rather variable, it is assumed that

the network will be locally relatively stable.

Figure B.13 outlines a sample procedure of service indication in Rosa-

mon.

Part I: Node X provides the two services "A/1” and "A/2”. It wants
to actively advertise its services, but to reduce the network load, it only

advertises the service category ”A”, instead of the complete description of

147

APPENDIX B DESIGN DETAILS

@ @

ad(A) : : |
Y .Y .Y
O HONEENO
: req(A/;)\/\/l: req(A/?) v
O, | O, | Q.
I E II E III

Figure B.13: Service Indication

its services, to its vicinity by multicast using the Rosamon address. Node
Y receives the advertisement and as it has sufficient resources, it caches the

message.

Part II: Node Z wants to use service "A/2” for which it has no infor-
mation. Therefore it discovers information about this service in its vicinity
by multicast using the Rosamon address. Although node Y has not the
exact information about the desired service, it replies upon receiving the
service discover message by unicast, using the information about the upper

category of the desired service.

Part III: Assoon as node Z has knowledge about node X, which provides
services in category "A”, it asks node X by using unicast, if it provides the
desired service "A/2”. As node X provides the service, it responses with
the complete description of the service by unicast. Node Z is now able to

use the desired service.

Another behaviour of the intermediate node Y is also possible. Instead
of providing its cached information to the service discovering node Z, node
Y could act as a proxy and discover the service provider X on behalf of node
Z for the service description of the desired service and forward the answer
back to node Z. Thereby also node Y gets knowledge about the specific

service description, which it could cache and provide to other nodes.

148

B.4 Framework Modules APPENDIX B

Furthermore, if node Y is a generous node with sufficient resources it
could also request node X for the code of a local service and cache it.
Thereby also node Y becomes a provider of the corresponding service and

no further inclusion of node X is necessary.

Due to the dynamic topology of a mobile ad hoc network, the cached
service descriptions should be discarded from time to time. Therefore an op-
tional ¢t (time to live) attribute, which indicates the validity of the descrip-
tion in seconds, can be specified for each service in a service advertisement
document. The relevance of the ttl attribute is more informal than absolute.
Each node can decide autonomously when it will discard a particular service
description, especially if no validity is specified. If a validity is specified in
a cached document, it has to be updated before the description is replied
to a service discovering node. Even if the validity has already expired, the
description can be still useful, as finally the service provider is responsible

whether a service is available or not.

For advertising of services, XML infosets are used that contain one or
more service descriptions. Thereby specific services as well as service cate-
gories can be avvertised. Also, it is not necessary that a service is described
in all details, any level of description accuracy is allowed. Thereby, an in-
complete service description is denoted by a special attribute and indicates
that more information about the service could be requested from the service

provider.

The possibility to describe a service only partially or to describe a service
category enables a more efficient resource usage compared to the complete
description of a specific service, which can be rather extensive. This is

desirable, as resource usage is crucial for mobile devices.

With partial description of services, it is also possible to separate dy-
namic service information from static information. Thus, a service can be
announced with only its static characteristics. If a node needs more in-
formation, the framework will consult the service provider for a complete
description, which will be generated just on demand. This helps to keep the
service description up to date, as only permanent characteristics have to be
specified in advance and dynamic properties, such as service sessions, can

be specified on demand.

For active service discovering, also the service description is used. A

service requester can thereby specify all its desired service characteristics in

149

APPENDIX B DESIGN DETAILS

a service discovery document. Thus, not only the service identifier is used

to discover services, but the complete service description instead.

The matching of a service discovery document to the available service
descriptions is executed by matching the individual elements and attributes
of the discovery document with the ones in the individual service description
documents. Thereby a service requester will specify all the desired charac-
teristics of the service in its service discovery document. Thus, not only
the service identifier is used to discover services, but the complete service
description instead. For instance, it is possible to discover a service with
identifier 7. ../Games/Multiplayer/TurnBased/Chess” that can be locally ex-
ecuted in a Java environment and that uses not more than 20000 bytes of
working memory. As example, Figure B.24 presents the corresponding dis-
covery document, which would match the service description in Figure B.18.
Or as another example, Figure B.25 presents the discovery document for all
services in the network that are executable on Palm OS and which consume

not more than one megabyte of working memory.

In the following, the service indication process is described individual for
the service provider and consumer, and the service matching is specified in

more details.

Service Provider

A node that provides services has to listen to the common Rosamon address
(refer to Section B.3.1). Incoming service discovery messages from other
nodes can be answered if a corresponding service is provided. For that
purpose the applications or services have to register their services with the
corresponding service description documents to the framework on the node
they are running. A service can be specified complete or partial, but it can
be also indicated by a service category. Furthermore, the specific service
description, as well as the service category description can be announced
simultaneously. If the service is not completely specified, the framework
will consult the service provider for a temporary complete description if
it is requested. This helps to keep the service description up to date, as
only permanent characteristics have to be specified in advance and dynamic

properties, such as service sessions, can be specified on demand.

150

B.4 Framework Modules APPENDIX B

The registered service description documents will then be matched against
the received service discovery messages (refer to Paragraph Service Match-
ing below). If a corresponding service is detected, its service description is
replied. A registration should be undone when the service becomes unavail-
able. If an application did not deregister its services properly, the registra-
tion is canceled at the latest when a potential consumer wants to access to
the service and the framework noticed that the service cannot be accessed

anymaore.

The node can also actively advertise its services from time to time in
the network, which is called push advertising. This is mainly reasonable
for popular services, as therewith the network stress from service discovery
messages can be reduced. Therefore an application can instruct the frame-
work to advertise its services once or periodically. If a node provides many
services in the same service category, the framework is allowed to announce

this category instead of the individual services.

If the framework is responsible for periodic advertising of a service, it is
legitimate to define the advertising period according to the network circum-
stances. Advertising is done more often if the node vicinity shows high node
mobility and low network traffic. It is done less often if low node mobility

or high network traffic is detected.

Advertising of services should be restricted to a certain surrounding area,

by limiting the number of hops an advertise message is allowed to travel.

Where an intermediate node replies to a service discovery message only
with the information it caches, a node that provides the particular service
should always reply with the complete service description to a service dis-

covery message.

Figure B.14 shows the structure of the service advertisement document.

The advertisement contains one or more descriptions for specific and
general services, whereby a general service is synonymous to a service cat-
egory. Details of the SERVICE and CATEGORY element are described in
Section B.4.1). A specific service description can be partial or complete.
When using partial service or service category description, other nodes can

request more detailed information via the specified service provider address.

151

APPENDIX B DESIGN DETAILS

-~ % /
e) ;)\: SPECIFIC)) « GENERAL -); Tt |

S ’/ *—___—’z

Figure B.14: Structure of a Service Advertisement Document in Rosamon

ttl | Time to live; specifies the validity of the service description

advertisement in seconds.

Table B.20: Attributes in Service Advertisement

The validity of each service description can be specified by the optional
attribute t¢l (Table B.20). It indicates to a node that caches the description,
when it should discard the description. If the service is periodical advertised,
the validity should be in the same magnitude as the advertising period.
Nodes that cache service advertisements have to update the ttl attribute,

before they reply the description to a service requesting node.

Note that the validity of a service description has no influence on the
node that provides the service. On this node the value of the validity stays
the same as specified by the service and if a service description is valid or
not, is determined by registering and de-registering of the service on this

node.

There is no possibility in the framework to cancel a transmitted service
advertisement. After a while the advertisement will be discarded by the
node that cached the message and if a node wants to use a service that
became unavailable meanwhile, the framework will reply with a negative

answer.

If a node that executes a service becomes again a provider of the service,
is dependent on the service implementation. A service running on a node

has sole responsibility for registering itself to the node and to provide the

152

B.4 Framework Modules APPENDIX B

service to other nodes.

Service Consumer

To discover particular services, a service discovery document is used, which
specifies the desired services and service categories. Thereby, only the ele-
ment and attributes that have to be matched against have to be specified in
the corresponding service descriptions. Figure B.15 shows the structure of
the XML infoset and Table B.21 describes its attributes.

——
e —— - -

- =< LT =N : :
matchUriPartial /‘/ SPECIFI \)\ (‘/ ENERAL\)\ matchUrlPalrtlal
NSa___=2 Nsee____=2"\JrequestDetails

Figure B.15: Structure of a Service Discovery Document in Rosamon

matchUriPartial | Specifies if the service identifier of the service de-

scription should be matched partially or exactly.

requestDetails Specifies if information about the service category
or about the individual available services in this

category is requested.

Table B.21: Attributes in Service Discovery

The discovery document contains one or more descriptions for specific
and general services, whereby a general service is synonymous to a ser-
vice category. The elements SERVICE and CATEGORY are described in
Section B.4.1, whereby they only have to contain the desired element for
service matching. Thus, all elements and attributes are optional in a service
description used for a service discovery document. A service description
that contains no elements and attributes at all will match to all available

services.

153

APPENDIX B DESIGN DETAILS

With the obligatory attribute matchUriPartial, the method for matching
the service identifier is specified, which can be either partial or exact. More
details about service matching are described in paragraph Service Matching

below.

The description for general services has an obligatory attribute request-
Details in addition. Therewith it is specified if information about the service
category or information about the provided services in this category are re-
quested. Note that a description about a service category contains only its
identifier and its provider address. Thus, if the attribute requestDetails is
false, only information about which nodes provide services in the category

can be discovered.

An example of a service discovery document can be found in Figure B.24
and Figure B.25.

With the service discovery document the framework can be consulted for
information about the desired services. First, the local framework instance
is asked, as this may have already information about the service because
of cached service advertisements. If this consultation failed, the application
can actively discover services in the network, which is called pull advertising.
Therefore a node asks at first its neighbourhood nodes if they provide or
have information about the desired service. If no positive answer is received,
the search area can be enlarged iteratively. In doing so, nodes that receive

the discovery message more than once, do not need to process it again.

After a service has been discovered, it can be directly accessed by unicast
routing. If more than one potential service provider is found, the closest
one should be preferred to reduce overall network traffic. Therefore the

framework provides a separate function to detect the distance to other nodes.

The service description of a discovered service is reported to the calling
application, which could then make use of the service by using the Service

Deployment and Service Management modules of the framework.

Figure B.16 illustrates the service discovery procedure. The principal
task is done in the inquire vicinity box, where the other nodes participating
in the framework are asked for information about the desired service. For
that purpose a multicast message using the Rosamon address is transmit-
ted, which will be limited to a certain area by specify the number of hops
the message is allowed to travel. The box request exact uri requests a ser-

vice description that matches the desired uri exactly, and the box request

154

B.4 Framework Modules APPENDIX B

complete description will inquire the corresponding node directly by using
unicast.

Discover Service

information

yes local available?
no
enlarge inquire
search area vicinity

positive answer?
no

yes

exact match of request

uri?

no| exact uri

Lo request
description
complete |—
complete? L
description

Service Discovered

Figure B.16: Service Discovery Procedure

155

APPENDIX B DESIGN DETAILS

Service Matching

To discover services, a node generates a service discovery document that
specifies the desired elements and attributes of the services, as described in

paragraph Service Consumer above.

A node that processes a service discovery message will match the service
discovery document of the message with all its available service descrip-
tion documents. Thereby, the framework will search for each element in
the discovery document a corresponding element in the service description
document and test if their attribute values exactly match each other. If no
corresponding element in the service description is found, the matching of
this element is classified as negative if the description is marked as com-
plete, or as positive if the description is marked as incomplete. If all entries
of a service discovery document could be positive matched against a service
description, the matching was successful and the corresponding service de-
scription document is replied. Otherwise, the discovery message is discarded

and no message is responded.

Thereby three special cases exist where the used match differs from exact

value matching.

One special case is the ATTRIBUTE element. Such an element can
specify more than one possible value by using its VARIABLE sub-element.
The matching for an ATTRIBUTE element is positive, if at least one shared
value exists. For instance, if the service discovery document specifies for a
particular port a bitrate of 12 or 24 kbit/s and a service description specifies
a range of 10 - 20 kbit/s for the same port, the matching is positive, as the

value 12 kbit/s is contained in both attribute descriptions.

Another special case is the DEMAND element. Its resource require-
ments attribute values are matched less than or equal to the requested value.
Therefore, the maximum resource usage a service is allowed to have is spec-

ified by the DEMAND element in a service discovery document.

The third special case is the service identifier, also called uri. Where
for all other attributes exact pattern matching is applied, for the service
identifier also partial matching is possible. Partial matching means in this
framework that either the requested identifier is completely contained in the
service identifier of a service description or vice versa. If partial or exact

matching should be used, is indicated by the attribute matchUriPartial in

156

B.4 Framework Modules APPENDIX B

the service discovery document. If this attribute is true, partial matching is

executed, otherwise exact matching is applied.

For example, in the following an advertisement for real-time games,

as well as six sample discovery wuris are given, whereby ”...” substitutes
"rosamon://Service/Entertainment”.

advertisement: uri = .../Games/Multiplayer/RealTime

discovery 1: uri = .../Games

discovery 2: uri = .../Games/Singleplayer

discovery 3: uri = .../Games/Multiplayer/RealTime

discovery 4: uri = .../Games/Multiplayer/RealTime/RolfsBlast

discovery 5: uri = Multiplayer/RealTime

When using partial service identifier matching, all discovery uris, except
discovery 2, will match the advertisement, as either the requested wri is
contained in the advertisement uri or vice versa. When using exact ser-
vice identifier matching only discovery 3 will match. Discovery 2 will never

match, as "Singleplayer” conflicts with "Multiplayer”.

In Appendix B.6 a service discovery document for a chess game is given
in Figure B.24, which would match the service description for a chess game
in Figure B.18.

157

APPENDIX B DESIGN DETAILS

B.4.3 Service Deployment

The Service Deployment module is responsible for downloading and config-
uration of a service, thus for the preparation of a service needed to make
use of it. The individual task of the module is highly dependent on the
corresponding service type. The service type is determined by the specified

elements of the service description.

The elements GENERAL and SPECIFICS of the service description trig-
ger no activities in the Service Deployment module. They are just reported

to the application by the Service Indication module.

The ATTRIBUTES element can contain interactive service characteris-
tics, which the framework has to determinate and then inform the service
about its choice, depending on the interaction type, either in code down-

loading or when the service is started.

If the element PORTS is specified in the service description, the service
contains ports for other applications. The Service Deployment has therefore
to establish an interface to enable other applications to access the ports.
Thereby an application can register to the individual ports of the service,
such that it can exchange data with the service. For more information about

ports and the composition of a compound service refer to Section B.2.

If the element IMPLEMENTATION is specified, the service is either a
local, compound or remote service or a combination of these, and has to
be deployed. If several implementations are specified, the Service Deploy-
ment module will decide according to the available node resources and the

preferences of the calling application which one it has to deploy.

If in IMPLEMENTATION the CODE element is specified, the service
contains code that has to be downloaded and executed. The Service Deploy-
ment module is thereby responsible for the downloading and configuration
of the service, as well as for the allocation of required resources, such that

the service is ready for activation by the Service Management module.

If in IMPLEMENTATION the SUBSERVICES element is specified, the
service is assembled from other services. These sub-services have to be
discovered, loaded and their ports have to be interconnected by the Service

Deployment module and required resources have to be allocated.

If in IMPLEMENTATION the REMOTE element is specified, the ser-

vice has connections to remote services. Therefore the local ports have to

158

B.4 Framework Modules APPENDIX B

be binded to the ports of the remote service, by registering the connections

to the remote service.

If the WEBSERVICE element is specified, thus the remote service is
described by a WSDL description, either the framework only delivers the
WSDL description to the application which is then responsible for the use
of the remote service, or the framework wraps the remote ports such that
they can be accessed like local ports by an application. Therefore the service
deployment module provides a virtual local port description of the remote
ports to the application. The WSDL description is either already contained
in the service description or has to be obtained by the framework using the
specified url of the REMOTE element.

If the SESSIONS element is specified, the service uses sessions. There-
fore, the service deployment module has to discover appropriate service ses-
sions or if no potential session is found, start a new session. The information
about the required service roles is thereby contained in the SESSIONS el-
ement. If a new session is started and service roles are specified that are
mandatory and auziliary, the module also has to deploy these roles, either
on the same node or or another generous node in the network. Refer to

Section 4.2.6 for more information about service sessions.

Before the service deployment can be executed, it has to be verified,
if the service is suited for execution on the particular node. Therefore a
verify function has to be called that checks the requirements of the service,
specified in the ENVIRONMENT section of the CODE element, against
the device context. This check includes, if they are specified in the service
description, the required operating system (OS) and execution environment
(EE), as well as some predefined resource quantities (DEMANDS) (refer
to Table B.13). If SUBSERVICES are specified, the verify function will
try to discover these services and check if also they could be executed on
the node and if there ports fit together. If the ports of subservices do not
fit, the module can try to insert a corresponding converter service. If a
service description passes all checks, the corresponding service is ready for

deployment.
If the service description declares several IMPLEMFENTATION elements

for a particular service, the Service Deployment module has to choose an
adequate implementation. If the calling application specifies no desired en-

gagement value, the module prefers the implementation for the service and

159

APPENDIX B DESIGN DETAILS

its possible sub-services with normal engagement (value ”07). If the cho-
sen codes overstrain the available node resources, the module tries to find
implementations with lower engagement that fulfill the node constraints.
The calling application can also specify a minimum, maximum or exact
engagement value that the Service Deployment has to achieve. For more

information about the service engagement refer to Section 4.2.5.

If for a compound service no configuration of its sub-services can be dis-
covered that fits the node context, the framework can determine if some of
its possible sub-services are suited for outsourcing, such that the remaining
part fits the node context. If this is the case, nodes that offer the service
resource have to be discovered in the network and enquired if they are will-
ing to execute the corresponding service. An outsourced service becomes

thereby a remote service.

By the deployment of a remote service also the network context has to be
considered. Depending on the network qualities, such as packet loss and link
failure rate, more than one instance of the same remote service on different
nodes should be instantiated. Thereby redundancy is obtained, which yields
robustness against unreliable connections in respect of the mobile ad hoc
environment. The framework has therefore to be able to split and merge

redundant port connections between services.

Recapitulated, the service deployment is split into the following succes-
sive phases, whereas the individual behaviour of the phases is depending on

the particular service type, thus remote, local, compound or mixed service

type.

1. Verification: Verify if the node context satisfies the service require-
ments. Specified sub-services has to be discovered and also verified.
An adequate implementation has to be chosen if several service imple-
mentations are described. If, to fit the node context, sub-services has
to be outsourced, nodes has to be discovered in the network that are

willing to execute the corresponding sub-services.

2. Downloading: Load the code of the service, together with the codes
of its required sub-service by using the specified urls. Thereby possible

code fetching attributes influence the code downloading.

3. Allocation: Allocate the required resources if necessary.

160

B.4 Framework Modules APPENDIX B

4. Composition: Interconnect the service ports of a compound service

by registering the port connections.

5. Configuration: Inform the service about the chosen value of interac-
tive attributes. Register the connections between service ports and the

application, according to the instructions of the calling application.

161

APPENDIX B DESIGN DETAILS

B.4.4 Service Management

The Service Management module is responsible for the maintenance of run-
ning services. Maintenance includes the control of the service execution, the
dynamic service adaptation to resource and environment variations, as well
as user triggered service adjustment, and the support of the communication

between both local and remote services.

e Control Service Execution

The service management module enables the framework and the pro-
cesses that initiated the service, to control the service execution. The
control includes to start, to pause, to terminate and to remowve the
corresponding service. By the start command, the service begins, or
resumes after a pause, to perform its function. By the pause command,
the service can be temporary be stopped, which can be suitable, if a
service with higher priority makes the service execution impossible at
the moment. For instance, if the user receives a telephone call, the
execution of a game should be paused during the conversation. By
the terminate command, the service is stopped and could be restarted
anew by the start command. Finally, by the remove command, all

information about the service is discarded.

e Service Adaptation

The adaptation of a service to the node context and network environ-
ment is an important mechanism in a mobile ad hoc network, as such
networks show a highly dynamic topology and consist of heterogeneous

devices with limited resources.

The framework distinguish between three types of dynamic adapta-
tion, whereby the dynamic adaptations should be performed not di-
rectly to resource changes, as reacting to transient resource changes

would result in an unjustified overhead and instability of the system.

— Service Intelligent Adaptation
The service does its own adaptation to resource changes. Thereby,
the service can query the environment observer module of the
framework for resource information and register watch statement

for certain resources. A watch statement will inform the service

162

B.4 Framework Modules APPENDIX B

when a resource characteristic falls below or rises above a certain
threshold. The framework may also ask the service to perform
its service intelligent adaptation, to relieve a certain resource.

— Service Adjusted Adaptation
The framework controls the adaptation by using special mecha-
nisms provided by the service. Thereby the service implementa-
tion concept and the interactive services attributes are used.

— Service Independent Adaptation
The framework does the adaptation and treats the service thereby
as a black box. The framework can outsource services and dis-
tribute the resource usage in the network, a service can be re-
placed by another service realisation (e.g. when the connection
to a remote service is lost), or a service could be terminated, if

all adaptation mechanisms failed.

Also the user should be able to trigger adaptation of a service. A user
may want to replace the video output device of a compound service
or to redirect it to more than one device. A user may also want to
change the value of an interactive attribute, such as the language of

the user interface.

The dynamic service adaptation mechanisms in Rosamon are described

more precisely in Section 4.4.2.

e Service Communication

To support communication between services, the framework provides
the port mechanism (refer to Appendix B.2). Therewith services can
be interconnected both on remote and local nodes. The service man-
agement module has to provide the corresponding functions and adapt
the communication to the environment. For instance, the used com-
munication protocol could be adapted if the reliableness of the network

changes.

A common interface to a time and data synchronization protocol is
preferable, to relieve the communication complexity for distributed

services in Rosamon.

Furthermore, the framework should support reconfiguration of node

addresses, depending on the used data link layer protocol.

163

APPENDIX B DESIGN DETAILS

B.4.5 Environment Observer

The Environment Observer module monitors the network, node and user
context and makes this information available to the framework and its ser-
vices. An application can therefore query the environment observer about
certain resource characteristics. Also watch statements could be registered,
therewith the application is informed when a resource characteristics falls

below or rises above a certain threshold.

The network context includes such characteristics as network capacity,
reliability, latency, traffic amount and connectivity to certain other nodes.
For instance, a service could register a watch statement for the reachability
of another node, such that it will be informed when the connection to the

other node is lost.

The node context includes the device architecture and operating system,
its input and output capabilities and other available resources characteristics
(e.g. memory space, power charge), as well as information about other
running services and about the device and framework supported methods

and protocols (e.g. HTTP, WSDL, SOAP).

The user context includes the user preferred service attributes, such as
user language and desired data and service qualities (e.g. for audio), as
well as user preferred sub-services, such as input and output devices (e.g.
printers, displays). Therewith the framework can automatically select ap-

propriate service realisations without user interaction.

The Environment Observer should thereby smooth the detection of rapid
fluctuating characteristics to prevent instability and unjustified adaptation

overhead.

164

B.5 Adaptation Example Scenario APPENDIX B

B.5 Adaptation Example Scenario

An example scenario for service adaptation is given in the following. In
Figure B.17 a music player is depicted. It is assembled as a compound
service, consisting of a generic user interface for a music player, a music

library, a music decoder and a music output device.

Music Player

User Interface

for Music Player
~{]

/
!
1
1
1
1
1
1
!

Music —1 Music i _.L.[]

Library Decoder .o

Figure B.17: Music Player Scenario

Static Adaptation

To adapt the service to the node context, the framework discovers service re-
alisations of each sub-service and chooses appropriate realisations according
to their specified resource requirements and user preferences. For instance,
if two realisations for the music output service are available, such as loud-
speakers and headphones, the particular choice will depend on the user. In
our sample scenario, the service description of the music player describes
the user interface as a local service, whereas the other services can be either
local or remote. As example, for the music library either a local library of

the user or a public library provided in the network can be used.

As denoted by overlapping boxes in the figure, the chosen realisation
of the music decoder has two implementations. Its normal implementation
yields good quality, and the other implementation, which has a lower en-

gagement value and is therefore intended for circumstances where resources

165

APPENDIX B DESIGN DETAILS

are short, yields lossy quality.

If no appropriate realisation of the music decoder is found that suits the
node context, a possible realisation that is provided for local deployment
could be also instantiated on a remote node by using the resource service
concept, if a generous node is found in the network. In doing so, the network
context has to be considered, thus it has to be checked if the network can

provide the required bandwidth.

If the service realisations cannot be chosen such that all ports match
the format of their counterpart, the framework can insert corresponding
converter services, if available. For instance, if the resolution of the music
decoder output format is 16 bit, but the input of the music output service

requires 24 bit, a converter service could be inserted that adjust the format.

During service deployment also the interactive service attributes has to
be determined. Such attributes could be the user interface language and the

audio output format and bitrate of the music library.

In the following we assume that after static adaptation, an appropriate
user interface and music decoder (normal implementation) is locally de-
ployed. The music library is invoked remotely and only instantiated once,
as such a library is not suited for replacement and therefore also not suited
for redundant operation. For the output device remote loudspeakers are

invoked.

Dynamic Adaptation

If, during execution of the music player, the user walks to another room,
he/she might want to exchange the output device, as he/she cannot hear
the loudspeakers anymore. So the user prompts the framework to present
available music output devices and replaces for instance the loudspeaker
with the locally attached headphones. In another case, where the remote
loudspeakers become inaccessible in the network, the framework will request
the user to choose a new output device. Furthermore, the user may request
the framework to direct the music to more than one device. To lessen the
number of user interactions, the user may also predefine a list with preferred
service realisations, thereby the framework will always try to choose a service
of this list.

166

B.5 Adaptation Example Scenario APPENDIX B

During service execution also the node resources can change. If the
available resources become short, the framework will first prompt the service
to perform its service intelligent adaptation, if the service did not do it
already autonomously. For instance, if the availability of working memory

becomes short, the service could decrease the amount of cached information.

If the service still overstrains the resources, the framework applies the
service adjusted adaptation. Thereby the interactive attributes and the dif-
ferent service implementations can be used. For instance, if the available
network bandwidth decreases, the framework can adapt the audio bitrate
used between the music library and the music decoder, if this bitrate is spec-
ified as a dynamic attribute in the service description. If this attribute is not
specified or specified only as information, the service may adapt this bitrate
in its service intelligent adaptation. Furthermore, if the node resources are
short, the framework may decide to replace the normal implementation of
the music decoder with the less costly one. Thereby short interruptions in
the service execution may occur, as on the one hand, the framework does
not react immediately to resource variations (to filter out transients), and
on the other hand, replacement of an implementation will take some time.
If the resource shortage is over and resource availability stays on a high level
for a certain period, the framework will replace the implementation again

with the normal one.

If all previous adaptations did not solve the problem, the service in-
dependent adaptation will take place. Thus, the music decoder could be
instantiated on a remote node by using the resource service concept or re-
placed by a better realisation, if such a one is available in the meantime.

Finally, the music player could also be terminated.

167

APPENDIX B DESIGN DETAILS

B.6 Examples of Service Description and Discov-

ery Documents

In the following, some examples of service description and service discovery

documents are given.

B.6.1 Service Description Document Examples

In this section some examples of service description documents are given.

The specification of the service description can be found in Appendix B.4.1.

Figure B.18 shows the description for a chess game. The game uses
service sessions that consists of two service participants of the same role
type. A individual service role is thereby locally executed in Java, and two
implementations are specified for the service that differ in program size and

needed working memory size.

Figure B.19 shows the description of a remote service that provides
weather forecasts. The description specifies the corresponding ports, types
and bindings. After the local ports have been registered to the remote ser-
vice by using the specified binding url, the service can be used by query the
remote service with a discovery message (WeatherForecastDiscovery) that
specifies the location and date of the desired weather forecast. The service
will reply with a message (WeatherForecastReply) that either contains the

weather forecast or an error information as text.

Figure B.20 shows a fragment of the description of a compound service.
The service includes the subservices music decoder and music output that
are interconnected. The description of the subservices can be directly used

in a service discovery document to discover the corresponding subservices.

Figure B.21 describes a service that uses attributes. The attributes are
also referenced by the output port of the service, which indicates that the at-
tributes describe the characteristics of the corresponding port. The attribute
outputFormat is only informative and specifies the used audio format of the
port. The attributes outputBitrate and outputSampleRate are both interac-
tive, and enable the framework to dynamically choose the bitrate and the
sample rate of the audio output port of the service according to the specified

values.

168

B.6 Examples of Service Description and Discovery DocumentA PPENDIX B

Finally, in addition to the service description of the real-time mulitplayer
game Rolf’s Blast: client/server version in Section 5.3, the service descrip-
tion of the corresponding server is presented in Figure B.22 and the service

description of the peer-to-peer version of the game is given in Figure B.23.

B.6.2 Service Discovery Document Examples

In this section some examples of service discovery documents are given.
The specification of the service discovery document can be found in Ap-
pendix B.4.2.

Figure B.24 presents the discovery document to discover services with
identifier 7. ../Games/Multiplayer/TurnBased/Chess” that can be locally ex-
ecuted in a Java environment and that uses not more than 20000 bytes of
working memory. The matching of the wuri is specified as partial, this means
that not only service descriptions with the same identifier could match,

but also services with a more specific identifier, such as ”

.../Multiplayer
/TurnBased/Chess/MyChess”, or services with a more general identifier, such
as ”.../Games/Multiplayer/”, could match the discovery document. This
discovery document would therefore match the service description of the

chess service described in Figure B.18.

Figure B.25 presents the discovery document for all services in the net-
work that are executable on Palm OS and which consume not more than

one megabyte of working memory.

169

APPENDIX B DESIGN DETAILS

SERVICE
uri = rosamon://Service/Entertainment/Games/Multiplayer/TurnBased/Chess/MyChess
url = rosamonTransport://192.168.0.1:4440/Rosamon/Services/Descriptions
completeness = true
— GENERAL
name = MyChess
version = 2.1
producer = MyCompany
— IMPLEMENTATION
engagement = 0
stateless = false
replaceable = true
remoteable = false
— CODE
Ljfl = rosamonTransport://192.168.0.1:4440/Rosamon/Services/Codes
ENVIRONMENT
EE
name = J28E
version = 1.4
DEMANDS
porgramSize = 2410 bytes
memorySize = 10000 bytes
netProtocol = TCP
netBandwidth = 10 byte/s
— IMPLEMENTATION
engagement = -1
stateless = false
replaceable = true
remoteable = false
CODE
Lffl = rosamonTransport://192.168.0.1:4440/Rosamon/Services/Codes
ENVIRONMENT
EE
name = J28E
version = 1.4
DEMANDS
porgramSize = 710 bytes
memorySize = 1000 bytes
netProtocol = TCP
netBandwidth = 10 byte/s
— SESSIONS

= rosamon://Service/Entertainment/Games/Multiplayer/TurnBased/Chess/MyChess/Sessions

| o
ROLES

L— MANDATORY
| rosamon://Service/Entertainment/Games/Multiplayer/TurnBased/Chess/MyChess

2
Figure B.18: Sample Service Description: Chess (Service with Sessions)

uri

number0f

170

B.6 Examples of Service Description and Discovery DocumentA PPENDIX B

SERVICE
uri = rosamon://Service/Information/Local/Europe/Weather/MyForecast
url = rosamonTransport://192.168.0.1:4440/Rosamon/Services/Descriptions
completeness = true
— GENERAL
name = MyWeatherForcast
version = 0.1
producer = MyCompany
— PORTS
— TYPES
— <xsd:complexType name="requestMsg">
<xsd:sequence>
<xsd:element name="Location" type="xsd:string"/>
<xsd:element name="Date" type="xsd:date"/>
</xsd:sequence>
</xsd:complexType>

— <xsd:complexType name="replyMsg">
<xsd:choice>
<xsd:element name="Forecast" type="xsd:string"/>
<xsd:element name="Error" type="xsd:string"/>
</xsd:choice>
</xsd:complexType>
— IN_PORTS
L— poRrT
name = WeatherForecastRequest
type = requestMsg
activity = passive
— OUT_PORTS
L— poRrT
name = WeatherForecastReply
type
activity = active
— IMPLEMENTATION
engagement = 0

replyMsg

stateless = true
replaceable = true
remoteable = false

REMOTE
L BINDINGS
url = rosamonTransport://192.168.0.1:4440/Rosamon/MyWeatherForcast/Binding
PORT_REF
name = WeatherForecastRequest
BINDING
I protocol = SOAP
PORT_REF
name = WeatherForecastReply
BINDING

I protocol = SOAP

Figure B.19: Sample Service Description: Weather Forecast (Remote Ser-

vice)

171

APPENDIX B DESIGN DETAILS

SERVICE
uri = rosamon://Service/Entertainment/Media/Music/Player/MyMusicPlayer
url = rosamonTransport://192.168.0.1:4440/Rosamon/Services/Descriptions
completeness = true
IMPLEMENTATION

engagement = 0

stateless = false

replaceable = false

remoteable = false

SUBSERVICES
|
|
— SUBSERVICE
[_i?stanceName = MusicDecoder
SERVICE
Lffi = rosamon://Service/Entertainment/Media/Music/Decoder
PORTS
IN_PORTS
PORT
l name = MusicIn
PORT
l name = ControllIn
OUT_PORTS
PORT
| name = AudioOut
PORT
l name = StatusOut
— SUBSERVICE
[_i?stanceName = MusicOutput
SERVICE
Lffi = rosamon://Service/Device/Output/Audio/Stream
PORTS
L— 1n_PORTS
L— poRT
| name = AudioIn
— CONNECTIONS
— LINK

FROM_PORT
instanceName = MusicDecoder

instancePortName = AudioQut
TO_PORT

instanceName = MusicOutput

instancePortName = Audioln

Figure B.20: Sample Service Description: Music Player (Compound Service)

172

B.6 Examples of Service Description and Discovery DocumentA PPENDIX B

SERVICE
uri = rosamon://Service/Entertainment/Media/Music/Syntesizer/MySynth
url = rosamonTransport://192.168.0.1:4440/Rosamon/Services/Descriptions

completeness = false

— ATTRIBUTES
— ATTRIBUTE
name = outputFormat
value = MP3
type = rosamonAudioFormat
— ATTRIBUTE

name = outputBitrate
value = 128 kbit/s
type = rosamonAudioBitrate
— VARIALBE
usage = dynamic
ENUMERATION
I value = 96 kbit/s
ENUMERATION
I value = 128 kbit/s
ENUMERATION
I value = 192 kbit/s

— ATTRIBUTE
name = outputSampleRate
value = 44.1 kHz
type = rosamonAudioSampleRate
VARIALBE
usage = dynamic
ENUMERATION
| value = 44.1 kHz
ENUMERATION
| value = 48 kHz

— PORTS
— TYPES
L— STREAM
name = streamingAudio

REFERENCE

| attributeRef = outputFormat

REFERENCE

| attributeRef = outputBitrate

— OUT_PORTS
L— poRrT
name = outputAudio
type = streamingAudio
activity = active

Figure B.21: Sample Service Description: Synthesizer (Attributes)

173

APPENDIX B DESIGN DETAILS

SERVICE
uri = rosamon://Service/Entertainment/Games/Multiplayer/RealTime/RolfsBlast/ClientServer/Server
url = rosamonTransport://192.168.0.4:4440/Rosamon/Services/Descriptions
completeness = true
comment = Server for Rolf’s Blast client-server version.
The server is not a player in the game.
— GENERAL
name = Rolf’s Blast: client/server version (server)
version = 1.0
producer = Rolf Grueninger
producerEmail = rogrueni@ee.ethz.ch
— IMPLEMENTATION
engagement = 0
stateless = false
replaceable = true

remoteable = true

— CODE
[_Efl = rosamonTransport://192.168.0.4:4440/Rosamon/Services/Codes
ENVIRONMENT
EE
name = J2SE
version = 1.4
DEMANDS
porgramSize = 37000 bytes
memorySize = 80000 bytes
graphicOutput = 734x499;color
netProtocol = datagram
netBandwidth = 10000 byte/s
—— SESSIONS
Lffi = rosamon://.../RolfsBlast/ClientServer/Sessions
ROLES

— MANDATORY

uri = rosamon://.../RolfsBlast/ClientServer
number0f = 1

auxiliary = false

— MANDATORY

uri = rosamon://.../RolfsBlast/ClientServer/Server
number0f = 1

auxiliary = true

— OPTIONAL

uri = rosamon://.../RolfsBlast/ClientServer

auxiliary = false

= Service/Entertainment/Games/Multiplayer/RealTime

Figure B.22: Service Description: Rolf’s Blast: Client/Server Version

(Server)
174

B.6 Examples of Service Description and Discovery DocumentA PPENDIX B

SERVICE

uri = rosamon://Service/Entertainment/Games/Multiplayer/RealTime/RolfsBlast/PeerToPeer
url = rosamonTransport://192.168.0.4:4440/Rosamon/Services/Descriptions

completeness = true

comment = Funny multiplayer game. Shoot the other players in a labyrinth.

Peer-to-peer version, which needs no service management by the Rosamon framework.

— GENERAL

name = Rolf’s Blast: peer-to-peer version
version = 1.0

producer = Rolf Grueninger

producerEmail = rogrueni@ee.ethz.ch

— IMPLEMENTATION
engagement = 0
stateless = false
replaceable = false

remoteable = false

— CODE
Lffl = rosamonTransport://192.168.0.4:4440/Rosamon/Services/Codes
ENVIRONMENT
EE
name = J2SE
version = 1.4
DEMANDS
porgramSize = 66000 bytes
memorySize = 88000 bytes
graphicOutput = 734x499;color
netProtocol = datagram
netBandwidth = 10000 byte/s
—— SESSIONS
l_i?i = rosamon://.../RolfsBlast/PeerToPeer/Sessions
ROLES
MANDATORY

uri = rosamon://.../RolfsBlast/PeerToPeer
number0f = 1
auxiliary = false
OPTIONAL
uri = rosamon://.../RolfsBlast/PeerToPeer

auxiliary = false

Figure B.23: Service Description: Rolf’s Blast: Peer-to-peer Version

175

APPENDIX B DESIGN DETAILS

REQUEST
L SPECIFIC
I\matchUriPartial = true
SERVICE
uri = rosamon://Service/Entertainment/Games/Multiplayer/TurnBased/Chess
— IMPLEMENTATION
L— cope
L— ENVIRONMENT
EE
name = J2SE
version = 1.4
DEMANDS
| memorySize <= 20000 bytes
— SESSIONS
Figure B.24: Sample Service Discovery: Chess
REQUEST
L specrFIC
[_f?tchUriPartial = true
SERVICE
— IMPLEMENTATION
L— cooE
L ENvVIRONMENT
EE
| name = Palm0S

DEMANDS

| memorySize <= 1024 bytes

Figure B.25: Sample Service Discovery: Service for PalmOS

176

Appendix C

Test Bed Setup

The demonstration setup consists of 2 PC’s and 2 Laptops that are con-
nected with Wireless LAN cards running in the ad hoc mode. For uni-
cast communication over multi hop, the mobile mesh routing protocol (mo-
bilemesh) was used, which does not support broadcast and multicast. To
support broadcast communication over multi hops, a flooding algorithm was
implemented in Rosamon itself. Rosamon is written in Java 2 Standard Edi-
tion. To shorten the connection range of the wireless devices, the wireless

cards of the PC’s are operating without antennas.

Comment: The open source software tools of the mobile mesh research
project seems to be outdated and showed sometimes a long convergence time
to network topology changes. A further drawback of the tools is that they
do not support broadcast and multicast communication. For further usage
of the test bench, a more matured routing protocol implementation should

be chosen.

Hardware

e Address: 192.168.0.1: PC Pentium 3, 800MHz, 256 MB RAM Wireless-
PCI-Adapter: Netgear WG311 (802.11g, 802.11b) (without antenna,

to shorten connection range)

e Address: 192.168.0.2: PC Pentium 2, 450MHz Wireless-PCI-Adapter:
Linksys WMP11 (802.11b) (without antenna, to shorten connection

range)

177

APPENDIX C TEST BED SETUP

e Address: 192.168.0.3 and 192.168.0.4: Laptop DELL Latitude Pen-
tium 2, 333MHz, 256 MB RAM Wireless-PCI-Adapter: Lucent Tech-
nologies Orinoco GOLD (802.11g) Standard ETH Neptun Image

Software

Operating System (OS)
e Laptops: Debian Woody (stable release)

e PC: Debian Sarge (testing release)

Execution Environment (EE)

e Java 2 Runtime Environment, Standard Edition (J2SE) Version 1.4.2,
Sun Microsystems Inc. (not integrated in Debian by default, see

http://www.debian.org/doc/manuals/debian-java-faq/ for a guidance
of "How can I integrate Sun’s J2SE SDK with Debian”)

e Eclipse 3.0 (because of the SWT (Standard Widget Toolkit) library,

which is used for the graphical user interface of Rosamon)

Wireless LAN

e PC: Used software packets:

— wireless-tools
— ndiswrapper (http://ndiswrapper.sourceforge.net/)

e Laptop: Wireless LAN was already installed with the ETH Neptun

Image.

To permanently set up the wireless cards to the test bed network, mod-
ify the file /etc/network/interfaces with following entries, whereby the
address and the interface name of the wireless device (wlanO for the PCs

and ethO for the Laptops) have to be adapted accordingly.

178

APPENDIX C

auto wlanO

iface wlanO inet static
address 192.168.0.1
netmask 255.255.255.0
network 192.168.0.0
broadcast 192.168.0.255
wireless—-essid RosamonTestbench
wireless—-mode ad-hoc

wireless—-channel 7

Alternatively, the card can be set up manually by executing the following
commands, whereby also the address and the interface name of the wireless

device have to be adapted accordingly.

ifconfig ethO inet 192.168.0.3 netmask 255.255.255.0 \
broadcast 192.168.0.255

iwconfig ethO essid RosamonTestbench

iwconfig ethO mode ad-hoc

iwconfig ethO channel 7

The settings of the wireless device can be check with ifconfig and

iwconfig.

The laptop cards sometimes reconnect during operation to the local in-

frastructure, if this happens, execute the previous commands anew.

Sometimes the wireless card of a PC refuses to accept the ESSID, if this
happens reboot the PC.

Routing Protocol

mobilemesh (Version 1.0) (http://www.mitre.org/work/tech_transfer /mobilemesh/)
which needs the additional packets:

e perl-tk
e graphviz (Version 1.16) (http://www.graphviz.org)

e imagemagick

179

APPENDIX C TEST BED SETUP

As mobilemesh was developed for an older version of graphviz, where
the program dot was called dotneato, make a link form dotneato to dot

or execute the following:

echo "dot $@" > /usr/bin/dotneato

Start Routing Protocol

Execute the following commands and adapt the interface name of the wire-

less device (wlanO for the PCs and ethO for the Laptops) accordingly.

mmdiscover -i ethO
mmrp

mmtodot -p 20471 &
mmrpviz -p 20471 &

Start Rosamon

Execute the following commands and adapt the paths of Rosamon, Eclipse
and the SWT library to the local circumstance. Thereby 192.168.0.255
4440 stands for the Rosamon broadcast address and port, 192.168.0.4
stands for the preferred remote node to outsource a service or to select
a server in Rosamon, and flood instructs Rosamon that messages to the

Rosamon address should be flooded.

LD_LIBRARY_PATH=<eclipse_path>

export LD_LIBRARY_PATH

cd <workspace/Rosamon>

java -classpath <eclipse_SWT_WS_path>/swt.jar:./bin/ \
-Djava.library.path=<eclipse_0S_path> \
Main 192.168.0.255 4440 192.168.0.4 flood

<eclipse_SWT_WS_path> =
<eclipse_path>/plugins/org.eclipse.swt.<version>/ws/<ws>/

<eclipse_SWT_0S_path> =
<eclipse_path>/plugins/org.eclipse.swt.<version>/os/linux/x86/

180

Appendix D

Presentation

181

APPENDIX D PRESENTATION

182

Computer Engineering and
Networks Laboratory

/ Institut fiir Technische Informatik\
und Kommunikationsnetze
Eidgendssische Technische Hochschule Ziirich ' .

Swiss Federal Institute of Technology Zurich Communication Systems Group

Master’s Thesis

Service Provisioning in

Slide 1
Mobile Ad hoc Networks
(ROSAMON)
RoLF GRUNINGER
Prof. Dr. Bernhard Plattner
k Advisor: Karoly Farkas J
/ Outline \
e Motivations
o Goals
e Challenges
Slide 2 e Our Approach: ROSAMON

— Service Specification
— Service Component Model

— Service Management

Demonstration

K 2/21 /

/ Motivations \

e Mobile ad hoc networking is expected to see increasingly widespread
use and application

e Description, discovering, deployment and management of services in
networks is a common problem

Slide 3 e Detach the common tasks form the individual services

e Lack of appropriate solutions for mobile ad hoc networks

Problem statement:

Efficient service provisioning in mobile ad hoc networks

N - /

/ Goals \

Design a service provisioning framework for mobile ad hoc networks

Support diversity of services and variety of devices

Robust and efficient operation

Slide 4

Focus on service specification and management

In particular, support the application of a online multiplayer game

Results: Service Provisioning Framework and Prototype Implementation

K 4/21 /

Slide 5

Slide 6

-

-

Challenges

Heterogeneous services and devices

Mobile ad hoc environment
— no permanent infrastructure

unreliable connections

high latency
— low bandwidth

limited device resources

Adaptable to environment changes

5/21

-

-

Our Approach: ROSAMON
(Rolf's Service Framework for Mobile Ad hoc Networks)

Decentralized service provisioning framework for mobile ad hoc
networks

Middleware between application and system layer

~

Based on the peer-to-peer approach, thus completely distributed and

nodes act autonomously from each other
Support heterogeneous services

Lightweight, modular design

Make little assumptions on the underlying platform, be independent

from a particular execution environment

6/21

/

Slide 7

Slide 8

-

-

Application Layer

Service Provisioning Middleware jt
ROSAMON

Service Specification Service Indication

<:> Environment Observer

Interface to
other instances

of ROSAMON
Service Deployment Service Management

(s

4| Device Resource Manager

F__

Device Hardware and Operating System

/

-

-

Service Specification

e Universal service description
— implemented part of service (code & requirements)
— compound part of service (subservices & ports)
— remote part of service (invocation)
— different implementations
— service sessions

— roles in the service
e Services described by an XML infoset
e Services labeled by hierarchical service identifier tree

e Specific services and service categories

8/21

Slide 9

Slide 10

-

Service Description in ROSAMON

uri

SERVICE
url

ATTRIBUTES IMPLEMENTATION

COIED

\

Example Service Identifier Tree

Resource

| Computatlon Storage

| Chess | RolfsBIast| |DeathMatch|

Sessions

Sessionl || Session2

~

Slide 11

Slide 12

-

\

Service Component Model

e Service can be assembled from sub-services

e Port mechanism for data exchange

Music Player

User Interface
for Music Player

ik

Music
Decoder

Music
Library

11/21

-

~

e Service engagement: different service implementations that differ in

Service Management

service quality and in their contribution to the service community

e Adaptation of a service to environment changes

— service intelligent adaptation: service does the adaptation
independently from the framework
— service adjusted adaptation: interaction between the service and

the framework

— service independent adaptation: the framework does the
adaptation independently from the service

12/21

Slide 13

Slide 14

-

-

Demonstration

e ROSAMON running a client/server based multiplayer game
— Service Specification
— Service Indication
— Service Deployment
— Service Management

— Enivronment Observer

e Implemented in Java (J2SE)

13/21

-

Demonstration Setup

@\ /@

©

e Wireless connections (802.11b)
e Each node runs ROSAMON

e Communication: unicast (multihop routing) and flooding

14/21

Slide 15

Slide 16

@/@\
N
O

15/21

/@

\

Client/Server Game Deployment

3
O Game player (client) @ Server

16/21

~

Slide 17

Slide 18

Redundant Server Deployment

4

O Game player (client) @ Server

17/21

\

Game Running with 3 Players

4

Slide 19

Slide 20

A Server Disappears

8
o
Se”

O Game player (client) @ Server

19/21

4

O

New Redundant Server is Deployed

© O
No?

O Game player (client) @ Server

20/21

~

Slide 21

Service Provisioning in
Mobile Ad hoc Networks
(ROSAMON)

Thank you for your attention!

Questions?

21/21

\

Appendix E

Used Abbreviations

ad hoc for this (latin); for a particular case without any form of centralized

administration (refer to Section 3.1).

AMRIS Ad hoc multicast routing protocol utilizing increasing id-numbers;

Core-tree-based multicast protocol [29].

AMRoute Ad hoc multicast routing protocol; Core-tree-based multicast

protocol [28].

AODV Ad hoc On-Demand Distance Vector; Reactive routing protocol
for mobile ad hoc networks based on distance vector [18] (refer to
Section A.4.1).

CAMP Core Assisted Mesh Protocol; Mesh-based multicast protocol [32].

CBRP Cluster Based Routing Protocol; Routing protocol for mobile ad hoc
networks [25].

DAML DARPA Agent Markup Language; Language to describes objects
and the relationships between objects, to express semantics, and to

create a high level of interoperability.

DSR Dynamic Source Routing; Reactive routing protocol for mobile ad hoc

networks based on source routing [19] (refer to Section A.4.2).

DVMRP Distance Vector Multicast Routing Protocol; Source-tree-based

multicast protocol [27].

195

APPENDIX E USED ABBREVIATIONS

IETF Internet Engineering Task Force; The IETF is the protocol engineer-

ing and development arm of the Internet.

ISOC Internet Society; The Internet Society is a professional membership
organization of Internet experts that comments on policies and prac-
tices and oversees a number of other boards and task forces dealing

with network policy issues.

J2ME Java 2 Platform, Micro Edition; Java programming language and

execution environment for resource-constrained mobile devices [9].

Jini Open architecture by Sun Microsystem that enables network-centric

services, that are highly adaptive to change [48] (refer to Section A.2.2).
LBM Location-based multicast algorithm (LBM); Geocast protocol [33].
MAC Medium Access Control; Handles access to a shared medium.

MANET Mobile Ad hoc Networks; Temporary network in which devices
want to communicate with each other, with a continual changing net-
work topology and without any form of centralized administration.
MANET is also the name of an IETF working group, that is working
in the field of ad hoc networks. (refer to Section 3.1).

ODMRP On Demand Multicast Routing Protocol; Mesh-based multicast
protocol [30] [31].

OLSR Optimized Link State Routing Protocol; Proactive routing protocol
for mobile ad hoc networks based on link state [20] (refer to Sec-
tion A.4.3).

OSI Model Open System Interconnection Model; Networking framework

for implementing protocols in seven layers.

OSPF Open Shortest Path First; TCP/IP internet routing protocol based
on link state algorithm [12] (refer to Section A.4).

OTcl MIT Object Tcl; An extension to Tcl/Tk for object-oriented pro-

gramming.

OWL Web Ontology Language; A semantic markup language for publishing
and sharing ontologies, standardised by the World Wide Web Consor-
tium (W3C).

196

APPENDIX E

OWL-S Ontology Web Language for Services; Semantically rich, ontology

based service description language [67] (refer to Section A.3.3).

peer-to-peer (P2P) Network that does not have fixed clients and servers,
but a number of peer nodes that function as both clients and servers
to the other nodes on the network. Any node is able to initiate or

complete any supported transaction.

RIP Routing Information Protocol; Routing protocols based on the dis-
tance vector (or Bellman-Ford) algorithm. This algorithm has been

used for routing computations in computer networks since the early

days of the ARPANET [11] (refer to Section A.4).

Rolf’s Blast Rolf’s Blast is a real-time multiplayer game, specially devel-
oped for this thesis. A player can walk in a labyrinth and shoot at
other players (refer to Section 6.3).

Rosamon Rolf’s Service Framework for Mobile Ad hoc Networks; Service
provisioning framework for distributed applications in mobile ad hoc

networks that is designed in this thesis.

Rosamon address Fixed multicast address of Rosamon, used for commu-

nication among peers in the framework.

RPF Reverse Path Forwarding; Multicast uses unicast routes to determine
path back to source [26].

RTP Real-Time Transport Protocol; End-to-end delivery service for data
with real-time characteristics over multicast or unicast network ser-

vices [37]. Typically runs on top of UDP.

SIRAMON Service Provisioning Framework for Mobile Ad-hoc Networks;
A proposal of a generic, decentralized service provisioning framework

for mobile ad-hoc networks [45].

SLP Service Location Protocol; Scalable framework for the discovery and

selection of network services [47] (refer to Section A.2.1).

SOAP Simple Object Access Protocol; XML based protocol for exchange of
information in a decentralized, distributed environment, standardised

by the World Wide Web Consortium (W3C).

197

APPENDIX E USED ABBREVIATIONS

TBRPF Topology Dissemination Based on Reverse-Path Forwarding; Rout-

ing protocol for mobile ad hoc networks [23].

TCP Transmission Control Protocol; Highly reliable host-to-host protocol

between hosts in packet-switched computer communication networks.

TORA Temporally-Ordered Routing Protocol; Routing protocol for mobile
ad hoc networks [24].

UDP User Datagram Protocol; Unreliable host-to-host protocol between

hosts in packet-switched computer communication networks [36].

URI Uniform Resource Identifier; Internet standard that consists of a com-
pact string of characters for identifying an abstract or physical resource

[72].

URL Uniforml Resource Locator; Internet standard that formalizes infor-

mation for location and access of resources via the Internet [72].

WAP Wireless application protocol; Enables Internet access for mobile de-

vices [8].

WTP Wireless Transaction Protocol; Light-weight transaction oriented pro-
tocol, suitable for wireless datagram networks [8]. Part of the WAP

standard.

WSDL Web Services Description Language; Syntactical service description
languages, standardised by the World Wide Web Consortium (W3C)
[65] (refer to Section A.3.1).

XML FExtensible Markup Language; Simple, very flexible text format for
electronic publishing and data exchanging [68], standardised by the
World Wide Web Consortium (W3C).

XSD XML Schema Definition; Specifies how to formally describe the el-
ements in an XML document [70], standardised by the World Wide
Web Consortium (W3C).

ZRP Zone Routing Protocol; Hybrid routing protocol for mobile ad hoc
networks [21] (refer to Section A.4.4).

198

Bibliography

Mobile Ad hoc Networks

[1]

[4]

Fred Baker. An outsider’s view of MANET. Internet-Draft, Network
Working Group, Internet Society, March 2002.

Neeraj Poojary, Srikanth V. Krishnamurthy and Son Dao. Medium Ac-
cess Control in a Network of Ad Hoc Mobile Nodes with Heterogeneous
Power Capabilities. In proceedings of ICC2001, June 2001.

Jorjeta G. Jetcheva, Yih-Chun Hu, Santashil PalChaudhuri, Amit Ku-
mar Saha and David B. Johnson. Design and Evaluation of a Metropoli-
tan Area Multitier Wireless Ad Hoc Network Architecture. Proceedings
of the 5th IEEE Workshop on Mobile Computing Systems and Appli-
cations (WMCSA 2003), IEEE, Monterey, CA, October 2003.

Hung-Yun Hsieh and Raghupathy Sivakumar. A Hybrid Network Model
for Cellular Wireless Packet Data Networks. In Proceedings of the IEEE
Global Communications Conference (GLOBECOM), November 2002.

A. Striegel, R. Ramanujan and J. Bonney. A Protocol Independent In-
ternet Gateway for Ad Hoc Wireless Networks. In Proceedings of the
Proc. of Local Computer Networks (LCN), November 2001.

Alex Ali Hamidian. A Study of Internet Connectivity for Mobile Ad
Hoc Networks in NS 2. Master’s thesis, Lund Institute of Technology,
Sweden, January 2003.

Basavaraj Patil, Phil Roberts and Charles E. Perkins. IP Mobility Sup-
port for IPvj. RFC 3344, Network Working Group, Internet Society,
August 2002.

WAP Forum. Wireless application protocol.
http://www.wapforum.org/

199

APPENDIX BIBLIOGRAPHY

[9]

[10]

Sun Microsystems. Java 2 Platform, Micro Edition (J2ME).
http://java.sun.com/j2me/

Jose Costa-Requena. Ad-Hoc routing tazonomy and Resource Discov-
ery. Ad Hoc Mobile Wireless Networks, Research seminar on Telecom-

munications Software, Autumn 2002.

Routing and Transport

[11]

[12]

[13]

[17]

Gary Scott Malkin. RIP Version 2. RFC 2453, Network Working
Group, Internet Society, November 1998.

John Moy. OSPF Version 2. RFC 2328, Network Working Group, In-
ternet Society, April 1998.

Jaehoon Paul Jeong, Jungsoo Park, Hyoungjun Kim and Dongkyun
Kim. Ad Hoc IP Address Autoconfiguration Internet Draft, February
2004.

Kilian Weniger and Martina Zitterbart. IPv6 Autoconfiguration in
Large Scale Mobile Ad-Hoc Networks. Institute of Telematics, Univer-
sity of Karlsruhe, Februar 2002.

Scott Corson and Joseph Macker. Mobile Ad hoc Networking
(MANET): Routing Protocol Performance Issues and Evaluation Con-
siderations. RFC 2501, Network Working Group, Internet Society, Jan-
uary 1999.

Santhosh R. Thampuran. Routing Protocols for Ad Hoc Networks of
Mobile Nodes. Department of Electrical and Computer Engineering,

University of Massachusetts, Amherst.

Tony Larsson and Nicklas Hedman. Routing Protocols in Wireless Ad-
hoc Networks—A Simulation Study. Master’s thesis, Lulea University of
Technology, Stockholm, 1998.

Charles E. Perkins. Ad hoc On-Demand Distance Vector (AODV) Rout-
ing. RFC 3561, Network Working Group, Internet Society, July 2003.

David B. Johnson, David A. Maltz and Yih-Chun Hu and Rice Univer-
sity. The Dynamic Source Routing Protocol for Mobile Ad Hoc Networks
(DSR). Internet Draft, IETF MANET Working Group, April 2003.

200

BIBLIOGRAPHY APPENDIX

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Thomas Heide Clausen and Philippe Jacquet. Optimized Link State
Routing Protocol (OLSR). RFC 3626, Network Working Group, Inter-
net Society, October 2003.

Zygmunt J. Haas, Marc R. Pearlman and Prince Samar The Zone Rout-
ing Protocol (ZRP) for Ad Hoc Networks Internet Draft, July 2002.

Shanmukha Rao Voona. Designing Efficient Mulitcast Protocols in Mo-
bile Ad Hoc Networks. Master’s Thesis, University of Texas at San An-
tonio, August 2000.

Richard G. Ogier, Fred L. Templin and Mark G. Lewis. Topology Dis-
semination Based on Reverse-Path Forwarding (TBRPF) RFC 3684,
Network Working Group, Internet Society, February 2004.

Vincent D. Park and M. Scott Corson. The Temporally-Ordered Routing
Protocol (TORA) Specification Internet Draft, IETF MANET Working
Group, July 2001.

Mingliang Jiang, Jinyang Li and Y.C. Tay. Cluster Based Routing Pro-
tocol(CBRP) Internet Draft, July 1999.

Yogen K. Dalal and Robert M. Metcalfe. Reverse path forwarding of
broadcast packets. Communications of the ACM, 21(12), pp.1040-1048,
December 1978.

D. Waitzman, C. Partridge and S. Deering. Distance Vector Multicast
Routing Protocol RFC 1075, Network Working Group, Internet Society,
November 1988.

Mingyan Liu, Rajesh R. Talpade, Anthony McAuley, Ethendranath
Bommaiah. A MRoute: Ad hoc multicast routing protocol. Technical Re-
port 8, University of Maryland, 1999.

C. W. Wu, Y. C. Tay and C-K. Toh. Ad hoc multicast routing proto-
col utilizing increasing id-numbers (AMRIS) Functional Specification.
Internet draft, IETF, November 1998.

S.-J. Lee, M. Gerla and C.-C. Chiang. On-demand multicast routing
protocol. Proceedings of IEEE WCNC99, New Orleans, LA September
1999.

S. Lee and W. Su and M. Gerla. Demand Multicast Routing Protocol
mn Multihop Wireless Mobile Networks Computer Science Department,
University of California, Los Angeles, 2001.

201

APPENDIX BIBLIOGRAPHY

[32]

[33]

[34]

J.J.Garcia-Luna-Aceves and Ewerton L. Madruga. The Core-assisted
mesh protocol. IEEE Journal on Selected Areas in Communications,
Special Issue on Ad-Hoc Networks, vol.17, no.8, August 1998.

Y.-B. Ko and N. H. Vaidya. Geocasting in mobile ad hoc net-
works: Location-based multicast algorithms. Technical Report TR-98-
018, Texas A&M University, September 1998.

Sung-Ju Lee, William Su, Julian Hsu, Mario Gerla and Rajive Bagro-
dia. A performance comparison study of ad hoc wireless multicast pro-
tocols. IEEE Infocom 2000, 2000.

David A. Maltz. Resource Management in Multi-hop Ad Hoc Networks.
CMU School of Computer Science Technical Report, November 1999.

J. Postel. User Datagram Protocol. RFC 768, Internet Society, August
1980.

H. Schulzrinne, S. Casner, R. Frederick and V. Jacobson. RTP: A
Transport Protocol for Real-Time Applications. RFC 3550, Network
Working Group, Internet Society, July 2003.

Game Architectures

[38]

[39]

[41]

[42]

Nokia. Introduction to Mobile Game Development. 2002.

http://www.forum.nokia.com

Laurent Gautier and Christophe Diot. Design and FEvaluation of Mi-
Maze, a Multi-Player Game on the Internet. International Conference

on Multimedia Computing and Systems, 1998.

FEric Cronin, Burton Filstrup and Anthony Kurc. A Distributed Mul-
tiplayer Game Server System. FElectrical Engineering and Computer

Science Department, University of Michigan, May 2001.

Sebastidn Matas Riera, Oliver Wellnitz and Lars Wolf. A Zonebased
Gaming Architecture for AdHoc Networks. Proceedings of NetGames,
May 2003.

Grenville Armitage. Lag Over 150 Milliseconds is Unacceptable. May
2001.
http://gja.spacedme.com/things/quake3-latency-051701.html

202

BIBLIOGRAPHY APPENDIX

[43] Eric Cronin, Anthony R. Kurc, Burton Filstrup and Sugih Jamin. An
Efficient Synchronization Mechanism for Mirrored Game Architectures
Article in Multimedia Tools and Applications (Volume 23, Issue 1),
May 2004.

[44] Nathaniel E. Baughman and Brian Neil Levine. Cheat-proof Playout
for Centralized and Distributed Online Games. Proceedings of IEEE
InfoCom, 2001.

Service Provisioning

[45] Karoly Farkas, Lukas Ruf, Martin May and Bernhard Plattner. STRA-
MON, a Service Provisioning Framework for Mobile Ad-hoc Networks.
Computer Engineering and Networks Laboratory, ETH Zurich, 2004.

[46] Roy Friedman. Caching web services in mobile ad-hoc networks: oppor-
tunities and challenges. Proceedings of the Workshop on Principles of
Mobile Computing (POMC 2002), Toulouse, France, October 2002.

[47] Erik Guttman, Charles Perkins, John Veizades and Michael Day. Ser-
vice Location Protocol, Version 2 RFC 2608, Network Working Group,
Internet Society, June 1999.

[48] Sun Microsystems. Jini Network Technology.

http://wwws.sun.com/software/jini/

[49] UPnP Forum. Universal Plug and Play.
http://www.upnp.org/

[50] Bluetooth. Bluetooth Specification Documents.
https://www.bluetooth.org/spec/

[51] Salutation Consortium. Salutation Architecture.
http://www.salutation.org/

[52] Yuan Yuan and Ashok Agrawala. A Secure Service Discovery Proto-
col for MANET. Technical Report, Department of Computer Science,
University of Maryland, 2003.

[53] Reto Hermann, Dirk Husemann, Michael Moser, Michael Nidd, Chris-
tian Rohner, Andreas Schade. DEAPspace - Transient ad hoc net-

working of pervasive devices. Computer Networks Volume 35, Issue 4,
pp-411-428, March 2001.

203

APPENDIX BIBLIOGRAPHY

[54]

[55]

[56]

[57]

[59]

[60]

[61]

[62]

Michael Klein, Birgitta Konig-Ries and Philipp Obreiter. Lanes A
Lightwetght Overlay for Service Discovery in Mobile Ad Hoc Networks.
Technical Report 2003/6, Universitit Karlsruhe, Faculty of Informatics,
May 2003.

Jivodar B. Tchakarov and Nitin H. Vaidya. Efficient Content Location
i Mobile Ad hoc Networks. University of Illinois at UrbanaChampaign,
June 2003.

Dipanjan Chakraborty, Anupam Joshi, Yelena Yesha and Tim Finin.
GSD: A Nowvel Group-based Service Discovery Protocol for MANETS.
4th TEEE Conference on Mobile and Wireless Communications Net-
works (MWCN 2002), Stockholm, September 2002.

Diego Doval and Donal O’Mahony. Nom: Resource Location and Dis-
covery for Ad Hoc Mobile Networks. in Proceedings of The First An-
nual Mediterranean Ad Hoc Networking Workshop, Med-hoc-Net 2002,
Sardegna, September 2002.

Olga Ratsimor, Dipanjan Chakraborty, Anupam Joshi and Timothy
Finin. Allia: Alliance-based Service Discovery for Ad-Hoc Environ-
ments. Proceedings of the 2nd international workshop on Mobile com-
merce, Atlanta, Georgia, USA, September 2002.

Ulas C. Kozat and Leandros Tassiulas. Network Layer Support for Ser-
vice Discovery in Mobile Ad Hoc Networks Proceedings of IEEE INFO-
COM 2003, April 2003.

Sumi Helal, Nitin Desai, Varun Verma and Choonhwa Lee. Konark
A Service Discovery and Delivery Protocol for Ad-Hoc Networks. In
Proceedings of the Third IEEE Conference on Wireless Communication
Networks (WCNC), New Orleans, March 2003.

Matthias Bossardt, Roman Hoog Antink, Andreas Moser and Bern-
hard Plattner. Chameleon: Realizing Automatic Service Composition
for Extensible Active Routers. In Proceedings of Fifth Annual Interna-
tional Working Conference on Active Networks (IWAN 2003), Kyoto,
December 2003.

Z. Morley Mao and Randy H. Katz. A Framework for Universal Service
Access using Device Ensemble. Grace Hopper Celebration of Women in
Computing, May 2002.

204

BIBLIOGRAPHY APPENDIX

[63] Foundation for Intelligent Physical Agents. FIPA Agent Management
Specification.
http://www.fipa.org

[64] Telecom Italia Lab. JADE (Java Agent DEvelopment Framework).
http://jade.tilab.com

Service Description

[65] World Wide Web Consortium (W3C). Web Services Description Lan-
guage (WSDL).
http://www.w3.org/TR/wsdl

[66] World Wide Web Consortium (W3C). Semantic Web.
http://www.w3.org/2001/sw/

[67] DARPA Agent Markup Language Program (DAML). DAML Services
(OWL-S).
http://www.daml.org/services/owl-s/

[68] World Wide Web Consortium (W3C). Extensible Markup Language
(XML).
http://www.w3.org/ XML/

[69] World Wide Web Consortium (W3C). XML Information Set.
http://www.w3.org/TR/xml-infoset/

[70] World Wide Web Consortium (W3C). XML Schema.
http://www.w3.org/XML/Schema

[71] International Organization for Standardization (ISO). Abstract Syntaz
Notation One (ASN.1). ISO/IEC 8824, ISO/IEC 8825.

[72] Tim Berners-Lee, Roy T. Fielding and Larry Masinter. Uniform Re-
source Identifiers (URI): Generic Syntaz. RFC 2396, Network Working

Group, Internet Society, August 1998.

205

APPENDIX BIBLIOGRAPHY

Simulation

[73] David Cavin, Yoav Sasson and André Schiper. On the Accuracy of
MANET Simulators. Proceedings of second ACM workshop on Prin-
ciples of Mobile Computing, Toulouse, October 2002.

[74] Qifa Ke, David Maltz and David B. Johnson. Emulation of Multi-Hop
Wireless Ad Hoc Networks. Proceedings of International Workshop on
Mobile Multimedia Communications, October 2000.

[75] Virtual InterNetwork Testbed. The Network Simulator - ns-2.
http://www.isi.edu/nsnam/ns/

[76] Kevin Walsh and Emin Giin Sirer. Staged Simulation for Improving the
Scale and Performance of Wireless Network Simulations. In Proced-
ings of the Winter Simulation Conference, New Orleans, LA, December
2003.

[77] UCLA Parallel Computing Laboratory. GloMoSim.
http://pcl.cs.ucla.edu/projects/glomosim/

[78] Scalable Network Technologies (SNT). QualNet.
http://www.qualnet.com/

[79] OPNET Technologies. OPNET Modeler
http://www.opnet.com/

[80] OMNeT++ Community Site. OMNeT++ http://www.omnetpp.org/

Implementation

[81] K. Grace. Mobile Mesh Routing Protocol. Internet-Draft, IETF
MANET Working Group, September 2000.

http://www.mitre.org/work/tech_transfer /mobilemesh

[82] Sun Microsystems. Java 2 Platform, Standard Edition (J2SE).
http://java.sun.com/j2se/

[83] Eclipse Foundation. Standard Widget Toolkit (SWT).
http://www.eclipse.org/platform/

206

