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Abstract

This thesis presents analyses of algorithms for aircraft
scheduling. The main focus applies to tail assignment.
Local search, tabu search, simulated annealing, and
modifications of these technics are used for the optimiza-
tion. Simulated annealing based algorithms outmatches
the others because of the topology of the solution space
with its huge number of local minima.
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Chapter 1

Introduction

Today’s big airlines could save several million dollars by reducing the costs of each
takeoff by only 50 dollars. This example illustrates how important it is to optimize
the processes and planning that take place before an aircraft can take off. [1]

Already two years before takeoff, planning starts by estimations of passenger
numbers. Based on these numbers, decisions are made about which cities to con-
nect and the frequency of these flights. About one and a half years before takeoff,
the fleets are assigned to the flights. After that, a plan for each aircraft is made,
accounting also for the needed maintenances — this is the focus of this thesis. Six
weeks before takeoff, the crews are assembled. Notice that one can improve the
contentment of the crews by accounting for personal preferences like flight des-
tinations or personnel who likes to work together. A content crew will increase
the quality of its service, therefore also increasing the contentment of the passen-
gers. But even if everything up to this point is done perfectly, unexpected events
like illness or technical problems will force the airlines to change their plans. One
could therefore judge the quality of a flight schedule not only by the costs, but also
by the additional cost that unexpected events could introduce. Actually the term
“unexpected events” is then no longer valid, because we expect them to happen.

One can see that the process of planning is split into many phases that are
handled independently of their preceding phase. This reduces the complexity, but
also introduces the possibility of “bad” decisions in an early stage that will not be
changed later. Thus, there are also efforts of merging these stages again.

It is important to see that it is not only important how good a solution to all
these problems is, but also how fast it can be found. Faster solutions allow later
planning, therefore the airline is more flexible. And, at least for unexpected last
minute events, a fast reaction is essential.

Most of these problems are NP-hard, this means there is no known algorithm
(it is assumed that there is no algorithm) which is able to find the optimum of
a real-size problem in feasible time. NP-hardness is common for transportation
problems, a famous one is for example the travelling salesman problem. So, the
target is not to find the optimal solution, but to get a good trade-off between quality
and calculation time.
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Chapter 2

Problem Description

People who deal with flight schedule optimization have generally two missions.
Before any aircraft can lift off to transport tourists and businessmen to their des-
tination, it has to be decided which aircraft should perform which flight. This
problem is called tail assignment. Once an aircraft and a crew are allocated to
every flight, the turbines can be powered-on, if it were not for Murphy’s law. Air-
crafts break down, pilots get sick or a storm prevents take offs. To manage these
problems schedule recovery is used. We will be discussing these two topics in the
next two sections.

2.1 Tail Assignment

One and a half years before take off, the allocating of aircraft types to the flights
takes place. Here it is for instance made sure that a domestic flight will not be
flown by a Boeing 747 as well as that an intercontinental flight will never be per-
formed by an Airbus A319. This allocation is called fleet assignment. The next step
is to allocate aircrafts to the flights, doing the tail assignment.

The main difficulty is not to breach any of the numerous constraints. There
are basically two types of constrains: hard and soft ones. Hard constraints are
given by nature or by law. An aircraft has to depart from the same airport at
which it has arrived before. It cannot depart earlier than its arrival time. And
of course it is not possible that one half of an airplane performs one flight while
the other half flies to another airport. That every flight has to be performed and
every airplane has its own maintenance days which are not interchangeable with
other airplanes, are other hard constraints. Soft constraints can be broken but
it is not beneficial for the purse. There are limits for the number of flights and
flight hours between two maintenance events. Passengers should be conveyed and
not left at the airport. The seating of an airplane can be changed, for example by
replacing business class seats with economy class seats, however these changes
are not free. Every time a soft constraint is violated the total costs will rise. A
complete description of the costs is given in Sec. 5.1.2. The target is to minimize
these costs.

2.2 Schedule Recovery

There are plenty of more or less little things that put an airline into a queasy
situation. Thunderstorms avert landings and take offs, black ice can effect the
same. An aircraft can break. A pilot might suffer from a food poisoning and is
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thus not able to fly the plane. These and many more incidents can mix up the
flight schedule. The effort to try to readjust everything is called schedule recovery.
There are a couple of possibilities for such a recovery. If an unusable airport is
the matter of fact the solution can be the use of another airport, and then trains
and buses to take the people to their final destination. Sometimes it is much more
difficult to decide what to do. In a case where an airplane is late or broken it is not
easy to say what is the best back door. Is it better to use a backup aircraft, which
might result in delays for a lot of flights or should one flight be cancelled without
affecting others? These and other questions have to be answered quickly. Mostly,
it is hard to say what effect a change will have. Theory and reality can differ
highly. The real costs with or without changes are hard to evaluate. The reasons
are raised costs for side effects like changed working hours for the employees or
logistic problems.



Chapter 3

Preliminaries

This chapter gives explanations about general structures, terms, and definitions
which are used by the algorithms presented in Chap. 4. We used data which we
generated on our own because the ones we got from Lufthansa are defective, see
also Appendix A.

3.1 Definitions

A leg is nothing more than a flight performed by an aircraft. A leg is described
by its parameters. They are leg type, departure airport, arrival airport, departure
time, arrival time, leg state, and number of passengers (first, second, and economy
class). The leg type defines if it is a normal flight or a maintenance event. The leg
state informs if it is already arrived, departed, cancelled, etc. The others are self-
explanatory. A group of connected legs which are consolidated are called cluster.
These legs must be operated by the same aircraft. In our problem instances all
clusters contain only one leg so that these two terms are interchangeable.

3.2 Structures

It is necessary to use a suitable structure to make the implementation of the al-
gorithms as easy as possible. In our case a special directed graph is an adequate
structure. A directed graph G = (V,E) is a set of vertices V = {vq,...,v,} and edges
connecting these vertices E = {ey, ..., e} where e = (v, w) is an edge between vertex
v and vertex w, pointing at w. A graph can be used as a descriptive way to show
the relations between the clusters. We decided to use the same representation
as the group from Lufthansa Systems is using. The clusters are represented by
the vertices. There is an edge between vertex A and vertex B if it is possible to
perform cluster B directly after cluster A. This means cluster A’s arrival airport
is the same as cluster B’s departure airport and cluster A’s arrival time is earlier
then cluster B’s departure time. To reduce the number of edges of the graph and
thus the size of the problem it is reasonable to use a barrier concerning the time
between arrival and departure. It does not make any sense to connect two clus-
ters by an edge if the time between arrival of the first and departure of the second
cluster is a month. What is a reasonable barrier? If it is too short, valid solutions
get lost, if it is too long, the size increases massively. A good choice seems to put it
somewhere between three and seven days.

A closer look at the graph concerning the aircrafts shows that not every cluster
can be flown by every aircraft. This is because of the maintenance events. These
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events are fixed in time and are for a specific aircraft. I.e. each aircraft regularly
has to be at certain predefined airports to get maintained. Thus, this aircraft
is not able to perform flights during these times. Therefore, it is reasonable to
consider only the flights an aircraft is actually able to fly. We used an attempt
proposed by Barnhart et al. [2]. The goal is to find strings. A string is the group of
flights an aircraft performs between two maintenance events. If we examine each
string by itself and bring all clusters together that can be in a certain string we
get subgraphs. A subgraph has a maintenance event as the first vertex and the
following maintenance event as the last vertex. It contains all vertices of the whole
graph that can be reached from the first maintenance event and from which the
end maintenance event can be reached. The goal is to find in each subgraph exactly
one path from the start maintenance to the end maintenance vertex. The difficulty
is that most clusters are part of more than one subgraph, but every cluster can be
flown only by one aircraft, i.e. every cluster can be only contained by one string.

3.3 Using an Overflow Aircraft

An initial solution does not necessarily need to be already a good solution. One
could even define that in the initial solution, the hard constraints do not have to
be met (e.g. not all legs must be flown). In the model, such unmet constraints
can be realized by overflow aircrafts, which perform the legs that are not flown.
In this case, the optimizer must take care of finding a solution which meets all
conditions, so it will penalize unmet conditions (legs flown by overflow aircrafts)
heavily. The advantage of this approach is that it is much easier to find an initial
solution, because it need not meet the hard constraints. On the other hand, this
leads to an optimizer which also needs to deal with unmet hard constraints.

The advantage of an initial solution where all hard constraints are met, is a
less complex optimizer, which will always stay in the solution space limited by
the hard constraints. The risk of this approach is, that it might be easier for
the optimizer to find a good solution, when it also can take some steps over the
“forbidden” solutions, instead of always staying in the “allowed” solution space.
Think of it as a “shortcut”. To overcome this, it is necessary to ensure that the
solution space is well connected, so that such shortcuts are not needed.
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Initial Solution

This chapter elucidates the different algorithms we propose to find a basic
solution. The results of an extensive empirical evaluation are given in Chap. 6.
Such solutions should not violate any hard constraints. They will be used as
starting points for the optimizer algorithms explained in Chap. 5.

The reader may wonder why we gave such unordinary names to the algo-
rithms. There is just one simple reason. We did not find any meaningful names
which are shorter then a whole sentence. And just using our own name — like the
most algorithms are labelled by their developer — is in our opinion uncool, so we
used the names of movies.

4.1 A Correct Solution

Before we can start searching a solution, we have to define what a solution is. A
correct solution allocates the clusters to the aircrafts in a way, that it is possible
for all the aircrafts to perform these allocated clusters without violating any hard
constraints. But that is not enough. It is demanded that all clusters are allocated.

4.2 The First Attempt

The assumption that an initial solution can be found quite easily brought us to
the idea of a straightforward algorithm. Considering subgraphs one by one is the
basic idea. The subgraphs will be processed in order of the departure time of
its first maintenance cluster, or the arrival time of its last maintenance cluster.
These two possibilities yield the same result. That is because the time span of all
the subgraphs (time between the departure of the first and the arrival of the last
maintenance cluster) is almost the same and therefore the order is more or less
equal. As soon as a cluster is assigned to a subgraph it will be cancelled in all the
other subgraphs and in the graph. A cluster will only be assigned if it is a successor
of the last which was assigned. There are two possibilities for backtracking. When
cancelling a cluster in a subgraph, because it was assigned to another, it is possible
that there is no longer a connection between the start and the end maintenance
cluster. So it is necessary to backtrack. The other reason for backtracking is the
isolation of a cluster in the graph. I.e. that a cluster can lose all outgoing edges
because all succeeding clusters have been cancelled. This can happen without that
any subgraph loses the connection between start and end cluster.
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Figure 4.1: The end cluster problem.
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We first thought that this algorithm works well, but then we had a closer look
at the computed assignments. Much to our surprise we found that there are clus-
ters that have not been assigned. The reason was found in the clusters at the very
end of the graph. Have a look at Fig. 4.1, which shows the last part of the graph.
The red (2) clusters are maintenance clusters, the greens (1) allocated clusters.
There is no path from a yellow (3) cluster to a maintenance cluster, therefore it is
not possible to allocate them, but that is no problem. The blue (4) ones are clusters
with a path to a maintenance cluster, but which are not allocated. The algorithm
is not able to prevent this, because it only backtracks when a not allocated cluster
loses all outgoing edges. The blue (4) ones will never lose the path to a yellow (3)
cluster and so never lose all outgoing edges.

The First Attempt

1. Take the subgraph with the earliest departure time that has not
been considered yet.

2. Assign a cluster to the subgraph which has a common edge with the
last assigned cluster.

3. Delete this cluster in all the other subgraphs (if it is contained).

4. If a subgraph lost the connection between its two maintenance clus-
ters during step 3 — backtracking.

5. Go on with step 2 until the last inserted cluster has a connection to
the second maintenance cluster of the subgraph and it is not possible
to put another cluster between these two.

6. Go on with step 1 until all subgraphs are performed.

There was no way to prevent this fault without slowing down the algorithm
immensely. One attempt is after finishing a subgraph to check if there is still a
cluster not allocated whose arrival time is earlier then the departure time of the
first maintenance cluster of the last performed subgraph. If there is one, it is
necessary to backtrack. The loophole was an algorithm with another approach. So
Shrek saw the light of day.
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4.3 Shrek

We found that it is smarter to assign the legs chronologically to the subgraphs,
which means the legs are sorted according to their departure time, and then as-
signed one by one to an aircraft! which can fly this leg.

Shrek

1. Get the first/next leg I, sorted by departure time.

2. Search a valid aircraft for leg I (the first/next possible aircraft). If
there are no more aircrafts, return no success (backtrack)

3. If ] is the last leg, a solution is found

4. Recursively call (1)
(a) When no success is returned, try another aircraft (Step 2)

4.3.1 Choosing an Aircraft

We used two different methods of choosing an aircraft in this algorithm. One
possibility is to choose aircraft 1 first. If that does not work, aircraft 2 etc. If none
of the aircrafts leads to a solution, backtracking is needed. The second possibility
is choosing an aircraft randomly. In this case, the algorithm behaves differently
every time it runs. This is not really a big help for finding a solution, but helped
us getting a better insight to the nature of the whole problem, because this way it
can be distinguished between problems that always occur and problems that are
specific to one run.

To improve the random selection, we added a heuristic: The idea is to prefer
short idle times for the aircrafts. I.e. after an arrival, the aircraft takes the next
flight as soon as possible. The probability for selection of aircraft a; with idle time
t; is

Pa) = =
TLjt

If one idle time is twice as big as another, then the chance for selection is only half.

4.3.2 Early Backtracking

Without any further modification, this algorithm will only backtrack when there is
no other possibility. The bad thing about trying all possibilities is that in practice
it often does not backtrack deep enough, if the critical decision is located too far
behind. That is why we may want to backtrack even before we tried all possibili-
ties, so we get more diversity. On the other hand, we might miss a good solution
because we backtrack early.

So, the question is what is more important? Our idea was that there must be
many possible solutions, and thus it is not so bad if we miss one, but it would be
much worse if we spent a lot of time searching for a solution where there is none.

It seemed that the main weakness of this algorithm is the way it chooses the
aircrafts, so we searched for better heuristics and implemented a new algorithm,
Zoolander.

1Finding an aircraft is equivalent to finding a subgraph, because each aircraft has exactly one
subgraph where it currently “flies”.
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Figure 4.2: Searching the same twice.

4.4 Zoolander

Zoolander is very similar to Shrek. The difference is how the aircraft is chosen.
First we should have a closer look at our problem. The main objective is to avoid
the time-consuming backtracking. A second goal is to identify as early as possible
blind alleys.

4.4.1 Avoiding Backtracking

To cope with the first issue it is essential to analyze the reasons for backtracking.
Backtracking is necessary if a subgraph has no longer a path from the start to
the end maintenance cluster after some cluster was assigned to another subgraph
(and therefore erased in the current subgraph). It might be reasonable to choose
the subgraph in such a way that the possibility that one of the others will break
after erasing the cluster is as small as possible. This brought us to the idea of
considering the minimum cut. The minimum cut endows the number of disjoint
paths in a graph respectively subgraph, in the case every edge has the value one.
If a subgraph has a minimum cut bigger than one, there will still be a path after
erasing an arbitrary cluster. This led us to the heuristics of choosing the subgraph
with the smallest minimum cut value.

4.4.2 Earlier Identification of Dead-ends

When having a closer look at the structure of the subgraphs one notices that they
are very well connected. Fig. 4.2 gives us an understanding why this leads to
difficulties. Let us assume that the blue (1) cluster was the last allocated cluster.
Now the yellow (2) cluster will be allocated and all the following up to the red
cross, which marks a breaking of a subgraph. So there will be backtracking back
to the blue (1) one. In the next step, the purple (5) one will be chosen, and all the
succeeding again up to the dead-end. But this was not necessary. After allocating
the orange (3) one it should have stopped, because one reached the exact same
situation as before, when the orange (3) cluster was allocated the first time. As a
conclusion we realize that it is useful to memorize already encountered situations.

Other analysis of the behavior of backtracking produced Fig. 4.3. On the x-
axis the clusters are listed in order of their processing. The first cluster on the
left is allocated first. On the y-axis the number of attempts to allocate a cluster
to a subgraph are shown in logarithmic scale. Because of backtracking, clusters
are often allocated more than once. The vertical red lines mark the maintenance
clusters.

Before the algorithm reaches the maintenance clusters, it has to backtrack a
lot. It seems that clusters directly in front of the maintenance events constitute
a bottleneck. Hannibal was created to tackle this problem. Simultaneously, Rain-
man was developed, following a completely different approach.
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Figure 4.3: Behavior of backtracking

Zoolander

1. Get the first/next cluster, sorted by departure time.

2. Search the valid aircraft for leg ¢ whose subgraph has the fewest
node disjoint path (smallest min cut value).

3. Delete this cluster in all the other subgraphs (if it is contained).
4. Go on with step 1.

Backtracking is necessary if a subgraph breaks during step 3.

4.5 Hannibal

Hannibal revives the idea of the first attempt. The clusters are not in a strict
order, like they were in Shrek and Zoolander. The basic idea of this algorithm is
putting the clusters into the subgraphs, starting at both ends.
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Hannibal

1. Mark the start and the end maintenance clusters in all subgraphs.

2. Calculate for all neighbors of all marked clusters the time between
arrival and departure of the marked clusters, respectively the other
way round.

3. Take the cluster with the smallest time, assign it to the subgraph,
and mark it.

4. Delete this cluster in all the other subgraphs (if it is contained).

5. Delete all clusters in the subgraph which are not reachable from the
chosen cluster.

6. Go on with step 2.

Backtracking is necessary if a subgraph breaks during step 4 or if a clus-
ter is deleted in all subgraphs after step 5.

4,6 Rainman

Rainman has not evolved from the other algorithms, but follows a completely dif-
ferent approach. The idea behind it is to see as early as possible if an assignment
from a leg to an aircraft leads to a problem. To achieve this, we will reserve needed
resources when doing an assignment. If a reservation is not possible, because
there are already too many reservations, then we cannot do the assignment that
caused those reservations. This procedure is also known as constraint propagation
[3]. Let us look at the example in Fig. 4.4. These nodes are part of a bigger graph.

Figure 4.4: A cut-out of a bigger graph

For now, we look only at the reservations of one single aircraft.

In the preceding step, our aircraft arrived at node 1. Think of the aircraft as
a flow through the graph — the reservations represent the conditions for every
dotted line in the graph. They are as follows: The aircraft must fly

e At t;: Either edge 1a xor 1b

o At . If we take 1la, then we need either 2a or 2b, else we need 1b. So we
need (2a xor 2b) xor 1b
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e At t3: Nodes 2 and 3 cannot be flown both, so (2a xor 2b) xor (3a xor 3b)

e At t4: Now it becomes more complex: (4a xor 4b) xor 2b xor (3a xor 3b)

Lxor” is exclusive or, which means that we can choose either the first or the second,
but not both. When more than two variables are connected by xor, i.e. A xor B xor
C, only one of these can be true. You may wonder why we used parentheses in the
expressions above, although they are mathematically unnecessary. We grouped
the edges that have the same source, because the algorithm works on these groups,
rather than on single edges. They are formed by grouping at every time step ¢; all
edges which have the same source.

In the next step, we choose a succeeding node from node 1, e.g. node 3, and
assign it to our aircraft. This means we annul the reservations for all other suc-
ceeding nodes of node 1, in this case this is node 2. So we change the reservations:

e At t1: Reservation now obsolete
e At tp: Only 1b is reserved

o At t3: 3a xor 3b

o At t4: 3a xor 3b

As you can see, when we assign a node, we do not reserve more, but we annul
existing reservations. This annulation needs to be propagated through the graph.
In the example above, you can see that node 4 can not be flown anymore, so its
outgoing edges? are annulled too. Also note that we always annul such groups
that were defined above, not single edges.

The term “annul node A” is used frequently. This means we annul all groups
that contain edges from node A2, and then propagate the annulation. In the ex-
ample above, you could also say that we annulled node 2 and then propagated the
annulation to node 4 and 7 (but not to node 5, because the aircraft can still reach
node 5)

Rainman

1. Initialize reservations
2. Choose the first/next leg [

3. Choose an aircraft a which can fly leg !
(a) If there are no more aircrafts, backtrack to last leg

4. Do the necessary annulations for aircraft a flying leg [
(a) If these annulations are not possible, go to (3)

(o1}

. Goto(2)

24its outgoing edges” means all groups that contain the outgoing edges, to be correct.

3Remember that in a group of edges, all edges have the same source.
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4.6.1 Initialization

We have to initialize the reservations such that:
1. An aircraft can not fly maintenance legs of other aircrafts
2. An aircraft must fly all of its own maintenance legs

To do this, we first reserve all groups of edges for all aircrafts. Then we annul for
aircraft a;

e All legs that can not be reached because aircraft 4; must fly one of its main-
tenance legs

e All maintenance legs that can not be flown by aircraft a; because they are
already assigned to other aircrafts.

e Groups of edges that would allow to bypass a maintenance leg (Fig. 4.5)

WO

Figure 4.5: The hatched group must be annulled, else it would allow the
aircraft to bypass its maintenance leg ‘M’.

When all this is done, we are ready to assign the first leg to an aircraft.

4.6.2 Annulling a Node

When a node is to be annulled, we need to propagate the annulation forward and
backwards in the graph. While doing this, it always has to be assured that there
are not too many cancellations. Too many cancellations means that it is not possi-
ble to fly all legs. Now we will discuss how this is to be done exactly. But first, we
need a few definitions, to simplify further descriptions:

e The source node of a group is the node which is the source of all edges in
the group. Remember that all edges in a group have the same source by
definition.

e An edge is called annulled, if the smallest group that contains this edge is
annulled.

e A node is called annulled, if the group that contains all its outgoing edges is
annulled. For example, in Fig. 4.6, node A is called annulled if group Al is
annulled. In this case also all other groups that contain edges from the same
source must be annulled (in the example: A2, A3,...)

Propagate Annulation Forward

The first thing to do is to annul all the groups that contain the outgoing edges.
Then, it must be checked for every succeeding node, if all incoming edges are an-
nulled now. If this is true, this succeeding node is annulled recursively.
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Propagate Annulation Backwards

Let us use Fig. 4.6 for illustration. Assume we are annulling node C. The annula-
tion is already propagated in the forward direction, so C1 is already annulled. A2
can now be annulled, if A3 is annulled. If we annulled A2, then in the next step,
Al can be annulled if B1 is annulled. If we annulled Al, then we must annul node
A recursively. These rules above are those for the first (the upper) incoming edge

A3

A2

Figure 4.6: Illustration for the conditions for propagating an annulation
backwards. Example: A2 must be annulled if A3 and C1 are annulled.

of node C. Of course, this has to be done for all incoming edges of node C.

Checking the Reservations

The problem is kind of a marriage or matching problem. It can be solved as de-
scribed in [4] by iterative algorithms and has a complexity of O(n!->(m/logn)®>).
Each aircraft 4; must be assigned to one of a number of groups g;, while |a| <= |g]
(there are at least as much groups as aircrafts). Not all groups need an aircraft,
but only those who contain all edges from their source node. These groups are
called the must-groups. In Fig. 4.6, for example, the must-groups are Al, B1, C1.
It is not possible to assign multiple aircrafts to the same group, because this would
mean that two airplanes fly the same leg.

If there is no solution for the marriage problem, then the annulation cannot be
processed.

Walking Through the Graph

Finally, we use the parts described above to walk through the graph searching a
path for every aircraft. The nodes of the graph are assigned one by one to the
aircrafts. It is only possible to assign a node to a specific aircraft, if the node
has an edge to the last assigned node of this aircraft, and of course the needed
reservation must be possible (see above). When a node cannot be assigned to any
aircraft, backtracking is needed.
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Chapter 5
Optimization

Now that an arbitrary solution has been found, the next task is to find a better,
preferably the best solution. The quality of a particular solution is expressed by
the costs, which are composed of many things, such as empty seats or violations to
the maintenance rules. To lower these costs, the tail assignment will be changed,
without breaking the hard constraints. This is far from trivial. The first reason
for this is the amount of possible changes: The number of possible changes in a
particular solution is typically about 1000 in our case, for a problem with 10000
legs and 25 aircrafts in 5 different versions. Most of these 1000 changes can be
combined, so we have at least about 2!°% ~ 103" possible solutions as a first rough
estimate.

The main target is now to find a good tail assignment in feasible time. Before
explaining different strategies to achieve this, let us first look at general technical
aspects of the optimization process in more detail.

5.1 Terms and Definitions

5.1.1 Neighborhood

There are basically two types of operations we perform to create a new solution.
First, legs can be moved from one aircraft to another. Second, version changes can
be added or removed between two legs. In our work, we concentrated on the first
type of operations, ignoring the possibility of version changes. Different aircrafts
can have different versions, but an aircraft cannot change its version.

A situation where two aircrafts are at the same airport at the same time, is
called an active swap. A swap consists of 4 legs, i.e. 4 nodes in the cluster graph
that are connected like in Fig. 5.1. If there are other legs in the solution between
these 4 legs in the swap then the swap is called inactive (see Fig. 5.2). It is also
inactive when the two legs on the right of Fig. 5.1 are not flown by the same air-
crafts as the two legs on the left. In other words, either the crossed or the parallel
edges in Fig. 5.1 must be part of the current solution.

,,,,, - ()=

Figure 5.1: An active swap in the cluster graph.
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Figure 5.2: An inactive swap in the cluster graph. The bold arrows rep-
resent the current solution. As soon as the top node is flown by another
aircraft, the swap consisting of the lower four nodes becomes active.

In such a swap situation, two aircrafts can exchange all succeeding legs. But
this is not what we want, because this would mean that the aircrafts arrive at
other maintenance events, however this is not allowed (maintenance events belong
to a specific aircraft, this cannot be changed). To overcome this, we need always
two swaps in the same subgraphs, such that the second swap leads the aircrafts
back to their predefined maintenance events. This way it is guaranteed that the
aircrafts still arrive at their maintenance events. Applying two swaps in this way
is called an exchange. These exchanges lead to the neighbors as we defined them
above.

A closer look at these neighbors shows the following important properties:

1. It is not possible to repeatedly “move in a certain direction”. Doing the same
operation (exchange) twice means nothing else than undoing it.

2. The number of neighbors is not fixed. This is because when moving legs
from one aircraft to another, new swaps can become active, and active swaps
become inactive.

To understand point one, one must understand how the solution space, defined
by our neighborhood, looks like. In a typical, 2-dimensional continuous solution
space, for example, one may try to move to the same direction, as long as it im-
proves the solution. This is not possible in our solution space, because an exchange
can either be done, or not. So we have a high-dimensional binary solution space,
which explains the first property above.

5.1.2 Cost Calculation

Costs can arise from the following situations:

e Spilled passengers

e Empty seats

e Version changes

e Violation of the maintenance check rules

It is obvious that different weights must be assigned to these situations, because
spilled passengers are for example much worse than empty seats, or an empty first
class seat causes more costs than an economy class seat. We choose the weights in
our model according to Tab. 5.1.

The total costs are the weighted sum of the single costs

Crot = z a;wj

i
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] Description \ Symbol \ Weight w; ‘
Spilled passengers
First Mm 12
Business a, 8
Economy as 5
Empty seats
First ay 3
Business as 2
Economy ag 1
Other
Version changes ay 50
Exceeding cycles ag 75
Exceeding flight hours ag 5

Table 5.1: Weights for the calculation of the total costs

fffff -0 OO0

Figure 5.3: Leg exchange. Before the exchange, the upper legs belong to
aircraft 1, the lower ones to aircraft 2. After the exchange, the hatched

ones belong to aircraft 1, the others to aircraft 2. The bold clusters are
those who are exchanged.

where w; are the weights from Tab. 5.1, and 4; denotes the amount, i.e. spilled
passengers, empty seats, version changes or the number of cycles/hours by which
the check rules are violated.

5.1.3 Exchanging Legs

In Fig. 5.3, a situation with two swaps, as described in Sec. 5.1.1, is illustrated. To
actually perform the exchange, the legs whose assignment changes must be found
(those are bold in Fig. 5.3). Then these legs are moved to the other aircraft.

When the legs are assigned to their new aircraft, the active swaps must be
adopted to this new situation. Swaps that include two legs that are no longer
assigned to the same aircraft will become inactive and vice versa.

5.1.4 The Problem with Planes

The number of aircrafts usually is much greater than the number of aircraft ver-
sions. Therefore, a lot of equal airplanes exist, which produce the same costs when
performing the same clusters. Hence, during the optimization process many of the
neighbors of a current solution have equal costs. Metaphorically speaking there
is a “plane” in the solution space. Here, a plane means solutions with equal costs
that are neighbors. In other words, two solutions are in the same plane if it is
possible to get from one to the other passing only solutions with equal costs.
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These planes need special attention from optimization algorithms like local
search. If an algorithm meets a solution whose neighbors have all equal or higher
costs, it is not certain which neighbor leads to the local minimum. Therefore it
is necessary to check all neighbors of all solutions of this plane. The navigation
on this plane is not simple. It is essential to avoid cycles, that means not passing
the same solution twice, and it should be possible to assert that the whole plane is
searched, in the case that the plane is not a local minimum.

5.2 Local Search (LS)

Local search is the simplest but nevertheless often successfully applied method for
searching the minimum. All neighbors are considered and the one with the lowest
costs is chosen. This is repeated until no neighbor has lower costs then the current
solution (see e.g. [5]). This is of course easy to implement, but a disadvantage is
that each time the costs of all neighbors have to be calculated.

The planes described in Sec. 5.1.4 need some attention. There are two possi-
bilities to handle this circumstance. If LS meets one solution of such a plane, just
stop and take these costs as an approximation of the costs of the real minimum.
The second possibility is to search the whole plane for a neighbor with lower costs.
Depth-first search should be able to solve this problem. Take care of cycles!

5.3 Tabu Search

A way to find an exit from the numerous local minima is tabu search (see [5]).
The basic idea is to forbid exchanges that were already performed recently. These
exchanges are tabu for a certain time, hence the name of the algorithm. All current
tabu exchanges are in the so called tabu list.

An important parameter is the size of the tabu list or, in other words, for how
long a move is tabu. In our model, this should not be constant, because the num-
ber of neighbors is also not constant. Instead, the size of the tabu list is defined
relative to the number of neighbors. Another parameter is needed to stop the opti-
mization when the best known solution did not improve over the last t,, iterations
of tabu search.

Tabu Search

1. Calculate cost of all neighbors

2. Choose the best neighbor which is not tabu (Either the move is not
in the tabu list, or it meets some “aspiration criteria”)

Move to the chosen neighbor
Add this move to the tabu list

If tabu list is longer than some f,,, remove the oldest element.

AU T

Iterate until the best known solution did not improve over some pre-
defined number of steps tstop.
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Figure 5.4: Cost development during the optimization process (from left to
right). The last local minima are marked. Overriding the tabu restriction
is symbolized as a dashed arrow.

5.3.1 Aspiration Criteria

Aspiration criteria are introduced in tabu search to determine when tabu restric-
tions can be overridden, thus removing a tabu classification otherwise applied to
a move. In the first attempt, we used a simple criterion, saying a tabu restriction
can be overridden if the cost after the exchange are lower than the best known cost
so far.

This aspiration criterion was used frequently only at the beginning of the op-
timization process, but not later on, when things really start to get interesting.
A more sophisticated idea is to override the restriction already when the solution
improves compared with the last local minimum. Fig. 5.4 illustrates this. A list of
the last minima is maintained, containing the three marked minima in Fig. 5.4.
Notice that the minimum on the left is not more in our list, thus not marked,
because we remove all minima from the list that are greater than our current so-
lution. This way, we end up with a list of increasing minima, the first being the
lowest, best known solution yet.

Local Minima

Local minima are detected during the normal optimization process, without ex-
plicitly looking for them. The rule says there is a local minimum when

1. The cost rise in the next operation
2. No tabu operation could lower the cost

This is no guarantee for a local minimum, it is also possible that a plane in the
solution space is found and misinterpreted as a minimum (see Sec. 5.1.4).

5.4 Simulated Annealing (SA)

The basic structure of simulated annealing is very simple. [5] It works similar to
LS. The difference is, that SA accepts not only solutions with lower costs. There-
fore it is possible to leave a local minimum and search in a wider area. The prob-
ability that a neighbor with higher costs is accepted, is decreasing over the time.
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This is done by a temperature 7. A neighbor is accepted if the costs C(x") — where
x’ is the neighbor of x, the current solution — is lower then C(x). Otherwise it is
accepted with the likelihood p:

p=exp ) (5.1)

The challenging part is to find a well performing function to update the tem-
perature and to find good bounds for its range.
The algorithm is described in the following box:

Simulated Annealing

1. Let x be the current solution, take an arbitrary neighbor x’ (selected
uniformly at random).

2. If C(x) > C(x’) OR p > rand[0; 1] then x « x’.
3. Update temperature T « next(T)

4. Tterate until the end temperature is reached.

5.5 Combination of SA and LLS

Simulated annealing finds the global minimum if the cooling is done by evanescent
steps. But that needs infinite time. To finish the calculations in feasible time the
cooling steps need to be of reasonable size.

5.5.1 Local Search with Different Starting Points (LSwDSP)

Let us have a closer look at the solution space and how SA traverses it. Experi-
ments show that there are a huge number of local minima. Therefore the quality of
LS depends on the starting solution. Using a bunch of different starting positions
is a problem. As we have seen in Chap. 4, it takes a lot of time to find one sin-
gle starting solution. So we started to think about a way to get different starting
points. Now, what is SA doing? In the beginning it travels around in the solution
space almost without any restrictions. That means it accepts most neighbors. If
the end temperature is not too high it ends in a local minimum. Say x1,x»,...,x;,
are the accepted solutions of SA during the cooling process. So, what do we have?
In the beginning of its process, SA finds many different solutions, not really caring
about their costs. Now you can find a local minimum for each of them, using LS.
Say ¢1,¢5,...,{, are the corresponding local minima. Finally, we found a way to get
different starting points.

It is probable that a good local minimum is missed in the beginning of the SA
process and that there is no return because of fast cooling. Instead of slowing the
cooling, one can calculate for each x; the corresponding ¢; and save the lowest.

5.5.2 Chained Local Optimization (CLO)

Oliver C. Martin and Steve W. Otto had a similar idea as we had. Their attempt
is described in [6]. CLO is also a combination of SA and LS. The basic idea is the
following. Instead of comparing C(x) and C(x’) to decide for or against the neighbor
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Figure 5.5: Illustration of a CLO-step from x over x’ to £(x’).

they compare the corresponding local minima C(¢(x)) and C(£(x")). If the new value
is accepted not x’ is the new starting point but ¢(x’). A problem is that in a lot
of cases all the neighbors of x have the same corresponding local minimum £(x).
The result is that it makes no headway. Therefore it is necessary that the new
candidate is not a direct neighbor but a “n-step neighbor”. That means to take
the neighbor of the neighbor of the ... Fig. 5.5 illustrates one CLO-step. The
algorithm is described in the following box:

Chained Local Optimization

1. Take an arbitrary n-step neighbor x’.
2. Use Local Search to find the corresponding minimum £(x’).

3. If C(x) > C(€(x")) OR p < rand[0; 1] then x « £(x"). (p is defined accord-
ing to (5.1).)

4. Update temperature T « next(T)

5. Iterate until the end temperature is reached.
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Chapter 6

Results and Conclusions

6.1 Initial Solution

6.1.1 Shrek

The use of early backtracking, as explained in Sec. 4.3.2, improved the Shrek al-
gorithm, but one more parameter need to be adjusted: The probability py, for
backtracking after an unsuccessful assignment. If py, is (too) high, then Shrek
happens to backtrack back to the first leg. In this case, no solution is found, Shrek
fails. Trying many values of py, to find an optimum would not be very useful, be-
cause the optimal value is different for every data set. Instead, when Shrek fails to
find a solution, py, is decreased by 0.02 and the Shrek algorithm is started again.
This way, pp.« Will be decreased until Shrek does not fail anymore.

When choosing the aircrafts using the described heuristic from Sec. 4.3.1, the
runtime of the algorithm is very irregular. If one has the possibility to run multiple
instances in parallel, several Shrek instances can be started, and when a solution
is found by anyone of them, all can be terminated. There is still no guarantee for
a fast solution this way, but it is more likely to find a solution soon.

6.1.2 Zoolander

Zoolander has the ability to find a solution for the most generated data sets. The
choice of the min cut as the criterion how the subgraph (see Sec. 4.4.1) is chosen
had reliability entail. The method for the early detection of dead-ends explained
in Sec. 4.4.2 brought a speedup of 40%. Bigger data sets, i.e. many clusters
(more than 5000) and especially many aircrafts (more than 10), need too much
time (more than a day).

6.1.3 Hannibal

Hannibal is not completely implemented yet. At the moment it is able to find an
initial solution that is correct — every string contains clusters that can be flown in
order — but not all clusters are allocated. But the speed is impressive. Hannibal
solves some data sets in a few minutes where Zoolander needs more than an hour.
There is a good chance that Hannibal will still be faster then Zoolander even if the
must of allocating every cluster is respected.
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6.1.4 Rainman

The difficulties of this algorithm boil down to the so-called marriage or matching
problem: Given a aircrafts, ¢ groups of legs and a <= ¢, assign every aircraft to a
different group.

Rainman is implemented except for this matching problem. We tried a very
basic implementation which tests only that an aircraft can be assigned to every
first group succeeding each node. This means it tests only if every leg can still
be reached by an aircraft. This way it was possible to solve small problems, but
of course such a basic implementation does not show what the algorithm could
do otherwise. We stopped the implementation of Rainman, or more precisely the
matching algorithm, because it would have consumed a lot of our limited time for
this thesis. Instead we investigated the optimization algorithms.

Nevertheless, some things can be said about important things in this algo-
rithm: The initialization and the matching problem.

Initialization

Unlike the other algorithms, Rainman needs a lot of initialization before doing the
first assignment. This needs time, but more important is, it needs memory. The
memory consumption depends strongly on the length of the edges in our graph, or,
in other words, how long an aircraft can possibly stay at an airport.

Matching Problem

For every annulation, the matching problem needs to be solved several times, de-
pending on how far the annulation needs to be propagated. It must be solved so
many times that the performance of Rainman mainly depends on the performance
of the matching algorithm!

6.1.5 Comparison

It is difficult to compare Shrek and Zoolander, because Shrek’s runtime is very
irregular and for a given problem size, both algorithms behave differently for dif-
ferent problem instances (with the same parameters), as can be seen in Tab. 6.1.
All data sets use the same parameter values, but some seem to be “simpler” than
others. Both algorithms seem to have difficulties with the same problems. Data
set 4 for example, was solved in 5 of 6 runs in less than 2 minutes, while data set
5 was never solved in less than 6 minutes.

While Shrek is generally faster than Zoolander for the problems in Tab. 6.1,
Zoolander is more reliable for more complex problems. Often Shrek does not find a
solution in feasible time for these problems. An example is given in Tab. 6.2 where
Shrek only found a solution in one of five runs.

There are also problem instances with the same parameters as in Tab. 6.2,
that could not be solved, neither by Shrek nor by Zoolander (3.5h runtime). Our
assumption is that these problems happen to have only few solutions, so finding
one of them is very difficult.

6.2 Optimization

There are basically two points we want to examine. The first point is the quality
of the solution the optimizer produces. I.e. answering the question: How high are
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[Dataset | 4-10-7-3-1 | 4-10-7-3-2 [ 4-10-7-3-3 | 4-10-7-3-4 | 4-10-7-35 |

| Zoolander | 89.2s | 1816.0s | 1251.3s | 112.0s | 1466.0s |
Shrek run 1 54.4s 147.1s 134.9s 60.1s 1661.8s
Shrek run 2 521.1s 2019.9s | 22784 .4s 89.8s 1476.6s
Shrek run 3 688.9s 388.1s 458.7s 160.5s 409.3s
Shrek run 4 91.9s 1736.0s 490.7s | no solution 2521.2s
Shrek run 5 335.7s 146.5s 285.7s 37.6s 1844.5s

Table 6.1: Runtimes for finding an initial solution on a AMD Athlon XP
2800+, using Shrek or Zoolander. Shrek was limited to 50 million itera-
tions. The data sets were generated with 4’000 legs, 10 airports, and 7
aircrafts in 3 versions.

| Data set | 4-35-7-3 ]
] Zoolander \ 156.7s ‘
Shrek run 1 | no solution
Shrek run 2 | no solution
Shrek run 3 4243.1s
Shrek run 4 | no solution
Shrek run 5 | no solution

Table 6.2: Runtimes for finding an initial solution on a AMD Athlon XP
2800+, using Shrek or Zoolander. Shrek was limited to 50 million itera-
tions(about 3.5h runtime). The data sets were generated with 4’000 air-
crafts, 35 airports, and 7 aircrafts in 3 versions.

the savings of costs? The second point is the calculation time. Therefore, how long
does it take to get these costs?

6.2.1 Test Methods

We generated several data sets to compare the different optimization methods.
Tab. 6.5 shows the four data sets with their parameters. The columns 2 to 5 show
the number of clusters , airports, aircrafts, and versions. The basic data set is
Set A. Set B has half as many clusters, Set C has half as many airports and
finally Set D has half as many aircrafts. In Set D is the number of versions suited
to the number of aircrafts, which is five times as much. The reason why we used
these data sets is, because we do not really know what data the real world makes
available. So we think it is possible to gather from the evaluation of these four
data sets to the most others. We used the data from Lufthansa as an indication.

Because of earlier tests we know that different data sets with the same pa-
rameter values can produce various behaviors during the optimization. These
variations are relevant especially for small data sets with less than 3000 clusters.
Therefore we created of each data set five instances. Since the calculation time of
some algorithms exceeds twenty-four hours we used only two of each data set.

The next sections describe how the different algorithms work on these data
sets and what results they produce. The last section compares all of them.
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] Set Name \ Clusters \ Airports \ Aircrafts \ Versions ‘

Set A 10000 40 30 6
Set B 5000 40 30 6
Set C 10000 20 30 6
Set D 10000 40 15 3

Table 6.3: Data sets

6.2.2 Local Search

Local search is not a usable algorithm to find a good solution for our problem. That
is because of the topology of the solution space. The number of local minima is so
huge that it is pure matter of luck how good the solution is. It depends only on the
starting solution.

We used two local search methods. The first one stops as soon as all neighbors
of the current solution have higher or equal costs. The second one stops when all
neighbors of the current solution have higher costs and all neighbors with equal
costs are visited.

Results

The great handicap of LS is that it has to calculate the costs of all neighbors. The
number of the neighbors depends on the data set. Of course it is proportional to
the number of clusters. Therefore Set B has half as much as Set A. But more
important is the proportion between the number of aircrafts and the number of
airports. If the number of airports is much bigger then the number of aircrafts
(Set D) then the possibility that two aircrafts are at the same time at the same
airport is little. Therefore the number of neighbors is small. Set D has only a
third as much neighbors as Set A; and Set C has double as much as Set A.

Using LS for Set C takes much more time then SA with fast cooling (around 50
times), and gets similar costs. The second method of LS gets only unessentially
lower costs then the first one but needs around a third more time.

6.2.3 Tabu Search

The main difficulties when using tabu search are to find the optimal values for
the length of the tabu list, t,.,, and the stop criterion t,,, which is the number of
iterations in which the best known solution did not improve.

tsiop 18 ot very difficult to adjust. When it is too low, optimization will stop
very early. This was the case for values below 1000. When ¢y, is set to infinity,
optimization will never stop automatically, but must be stopped manually. The
tabu list size t;,, is more difficult to set. See Fig. 6.2 for an illustration of the
behavior of tabu search for different values of t,,. When it is set too low, the
algorithm will get stuck in local minima. You can see in Fig. 6.2 that the cost
development is rather flat in this case. Chances are bad that the algorithm gets
out of a minimum. But when {,, is set too high, the solution will not improve
because the needed operations are tabu. An indication for ¢, being too high are
rare big steps in the cost development. Many runs are needed to find the optimum
for t,,;, which turned out to be somewhere around 0.23, as can be seen in Fig. 6.1.
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Figure 6.1: Costs of the best solutions found by tabu search. For all runs
tstop is 5000.

Tabu search turned out to successfully overcome local minima, but a consider-
able disadvantage is the need to evaluate the cost of each neighbor at every iter-
ation. This evaluation time is proportional to the number of possible exchanges.
The more exchanges are possible, the worse this problem gets.

In Tab. 6.4 are the results of tabu search optimization for data sets according
to Tab. 6.5. The first instance of each set is the same that was used for the SA
results. Comparing these, one can see that they are always worse than SA with
with temperature factor f = 0.999°99.

6.2.4 Simulated Annealing

Simulated annealing turned out to be a very usable algorithm to solve this kind of
problem. The difficult thing is to find a good temperature function. Good means
that the result should be as close as possible to the global minimum and the run-
ning time has to be feasible. We used the update function (6.1) for the temperature
T with the factor f.

T ranges between a start temperature s and an end temperature e. Using (6.1)
the number of steps n, the algorithm proceeds, is

_In(e) —In(s)
~ In(f)

The choice of the range for T is not sensitive as we will see. You can set the
lower limit using the following idea. If the possibility, that a solution, whose costs
are 1 higher than the actual costs, is chosen, is around 1%, it is not possible that
it will ever leave the local minimum. Using equation (5.1) you get 1.4 for T = e.

(6.2)
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Figure 6.2: The optimization process for different relative tabu list sizes.

To be sure to get the local minimum use local search with the final point from
simulated annealing as the starting point. The idea for the upper limit: Say m
is the maximal difference of the costs between two neighbors. In the beginning
a neighbor with costs that are m higher should be accepted with a probability
of around 99%. Therefore s can be calculated with equation (5.1). Choosing the
limits as described above, we can be sure that a bigger range cannot produce a
better solution.

The temperature factor f gives us enough elbowroom to influence the calculat-
ing time and the quality of the solution. If f is close to 1, the quality of the solution
will be good but the number of steps will be high. If f is much smaller then it is
the other way round. We used four different values for f: 0.999,0.999°9, 0.999°99
and 0.999°999 to optimize the data sets.

Results

The advantage of SA is that the calculation time does not depend on the data set,
only on its parameters. Fig. 6.3 shows the optimization steps of simulated an-
nealing optimizing Set A. On the x-axis is the temperature displayed starting at
100’000 and ending at 0.2. The scale is logarithmic because the temperature de-
creases exponentially. The costs are assigned on the y-axis. Displayed are twenty
series, for each temperature factor f (0.999 ...0.999°999) five series. One serial
shows the propagation of the decreasing of the costs, during the cooling. For each
temperature step simulated annealing calculates costs. If these costs are lower
than all calculated costs before they are displayed in the serial. Keep in mind that
the number of temperature steps in each decade is for each f different. For f =
0.999°9 the number of steps is around 10 times higher then for f = 0.999. The
same for the others.
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] Instance \ Set A \ Set B ‘
Min. Cost | atiteration | Min. Cost | at iteration
1 2’040°223 7075 1047876 3’354
2 1785776 11’516 1019233 3’503
3 1’934’624 4’139 915’168 6’282
4 1’939’365 8751 979’559 12’773
5 2°018°049 3640 1058933 7061
] Instance\ Set C \ Set D ‘
Min. Cost | at iteration | Min. Cost | at iteration
1 1’991’736 9039 1’631’988 2’167
2 1’864’834 10’293 1'644°437 12’103
3 1’857°965 9442 1’648’584 2’926
4 1'929’453 8184 1’553’597 2’896
5 1’892’335 9616 1’808’409 1’314

Table 6.4: Tabu search results for 5 instances of each set. The first in-
stance is the one that was also used for the simulated annealing tests.
Parameters: t;,,=0.23, t,,=5000

The shape is for all more or less the same. There are two sharp bends in each
graph, one around 2’000 the other around 200. The series 0.999 are a bit different,
the second bend is not sharp.

The graphs for Set B and Set C look similar. Set D represented by Fig. 6.4 is
different. (For each f are only 3 series plotted.) The series 0.999 is good cognizable,
but the other series are overlapping. This behavior is the same in all instances of
Set D. Figs. 6.5 and 6.6 show the minima which simulated annealing found for the
four different data sets. Here we sea the statement written before clearer. Only in
Set D the best result produced a serial with f = 0.999°99. Therefore it is obvious
that the choice of the factor f depends on the data set. If the number of airports is
much higher than the number of aircrafts — so the number of solutions is small —
the cooling can be faster than when it is the other way round.

Tab. 6.5 shows the calculation time against temperature factor f. The calcu-
lations run on a Sun Fire V60x with 3060Mhz. With a calculation time less then
seven minutes pretty good results can be produced. Investing an hour it is getting
close to the best results we have calculated. To top them you need much more
time.

| Temperature factor f | Calculation time [h:min:sec] [ Iterations |

0.999 0:01:34 13116
0.999°9 0:06:46 131217
0.999’99 0:57:27 1312230
0.999°999 9:02:01 13122357

Table 6.5: calculation time against temperature factor f.
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Figure 6.3: Set A optimized by simulated annealing.

6.2.5 Chained Local Optimization and Local Search with Differ-
ent Starting Points

CLO has the advantage that the cooling can be much faster than by SA. Also
the starting temperature can be lower because all the solutions, because of the
used LS, have costs close to the reachable minimum. The number of SA-steps n
has to be decided. We tested values between 1 and 10 steps. It turned out that a
value in the middle delivers usable results, so we took 6 for our calculations. The
temperature range was [100 ...0.2]. f has been set to 0.999. The results have
always been worse than the ones of SA with f = 0.999°99.

If you are interested not only in better results than simulated annealing
produces but also in similar calculation time LSwDSP cannot use slower cooling
rates than 0.999°9. With this adjustment it is almost as fast as SA with f =
0.999°99. As written in Sec. 6.2.2 the calculation time depends on the data set.
The results have been worse than SA with aforesaid factor f for all data sets.

6.2.6 Conclusions

A common weakness of the LS and Tabu algorithms is that they are very slow
because they evaluate the cost of all neighbors at every iteration. Tabu search
reaches only about 1 iteration per second, for a neighborhood of about 1000 on a
SunFire V60x (Intel Xeon 3.06 GHz CPU). Simulated annealing reaches about 400
iterations per second, independently of the data set. We will give suggestions how
the speed can be increased in Sec. 7.2.2.

Due to the results written above it is obvious that local search attempts are of
little value. This is because of the topography of the solution space. Like the name
says it only acts in the local environment and therefore it stumbles on the huge
number of local minima.
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Figure 6.4: Set D optimized by simulated annealing.
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Figure 6.5: The minimum costs of Set A and Set B found by simulated
annealing.
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Figure 6.6: The minimum costs of Set C and Set D found by simulated
annealing.
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Chapter 7

Outlook

We only had six months to finish this thesis, but with all the ideas we have now,
we could work on it for another six months! This chapter will show where it is
worth to spend more time.

7.1 Initial Solution

The algorithms Hannibal and Rainman are not completely implemented and
tested. Hannibal has the ability to solve some data sets much faster then Zoolan-
der or Shrek, but without allocating all clusters. So it is worth to complete the
implementation because there is a good chance that it will still be faster than the
others.

Rainman is surely also worth a complete implementation, because it is based
on a new idea which holds different pieces of information about the graph than
the other algorithms. There is also much room for improvement, as for example
by saving the groups in another way. One could save a lot of memory and compu-
tation time by implementing subgroups, which are part of another group, just like
subsets of sets. Looking at Fig. 4.6 one can see that A2, A3 etc. are all subgroups
of Al. In our implementation, A1, A2, A3 etc. are all handled separately.

Another idea for an initial solution finder is an algorithm that takes some soft
constraints, like the number of cycles between two maintenance events, into ac-
count, so the optimizer can start with a better solution. But the fact that a quite
good solution can easily be found by the optimizer shows that it would only add
unnecessary complexity to the solution finder. The better way to combine solu-
tion finding and optimization is the method with the overflow aircraft described in
Sec. 3.3. We have not tried that yet, but Lufthansa follows this approach in their
NetLine/Ops optimizer [7]. If there is no way to develop a reliable initial solution
finder for real world data sets, this method is absolutely worth having a look at.

7.2 Optimization

7.2.1 Algorithms
Simulated Annealing and Local Search

As we have seen, algorithms which are based on local search are weak compared
to simulated annealing. The latter has still some potential. We did not spend
much time in the evaluation of temperature functions. It might be difficult to find
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a solution with lower costs but it should be possible to find one that is as good as
ours but in less time.

Genetic Algorithms

There are other types of optimization algorithms that are of value to have a look
at, in particular genetic algorithms. Two solutions can be analyzed string by string
and produce a new solution merging these two together and use this solution as
a new start solution. It is necessary to take care of conflicts between strings, i.e.
every cluster must only be in one string.

Another idea is to start several instances of simulated annealing at a time
and stop after predefined time steps. After each of these steps only the ones with
the best solutions will go further (again with several instances). This idea seems
interesting because it is possible to execute a huge part of the whole solution space.
And it is easy to let it run on a multiprocessor system.

It is also possible to combine these two ideas.

7.2.2 Implementation of Cost Calculation

Evaluating the costs of all neighbors of a solution is a very time-consuming pro-
cess, because the neighborhood can be big. But when looking at the cost of these
exchanges, one can see that most of them do not change during an exchange. This
is because an exchange will have no influence on another exchange which per-
forms an operation on different subgraphs. Even exchanges which operate on the
same subgraphs have no influence to each other, if the maintenance check rules
are not exceeded and no version changes are involved. By maintaining more infor-
mation in the subgraphs, for example the number of flight hours left until the soft
limit of the maintenance rules, one could save most of the computation time. The
time for evaluating all neighbors would no longer be proportional to the number
of neighbors, but only proportional to the number of aircrafts. The result would be
a significant speedup for the local search based algorithms. Simulated annealing
could not benefit that much, because it does not need the cost of all neighbors.



Appendix A

Data Generator

Lufthansa Systems gave us three data sets with real world data but they have not
been usable. Overlapping maintenance clusters and not assigned maintenance
clusters made them to garbage. Therefore we used programmed a data generator.
The data have exactly the same structure as the ones from Lufthansa.

The input values are:

e Number of airports AP
o Number of clusters CL
o Number of aircrafts AC

o Number of versions VN

The generator places AP airports at random over the whole world using the
usual coordinate system. On airport is special, it is the home airport. Only at the
home airport maintenances can be done. It calculates the flight times between
the airports as follows: A flight around half the world takes 24 hours. All other
flights are shorter. The flight time is proportional to the distance between the
airports. As next the aircrafts will be produced. The AC aircrafts will get one
of the VN versions. The allocation is at random. The most complicated part
is the generation of the clusters. Each aircraft will fly g—é clusters. Every 30
days an aircraft has to fly to the home airport to do the maintenance. The first
maintenance of each aircraft will be at any time during the first 30 days. The
clusters are created as follows. The first cluster defines the starting airport; it is a
flight from the home airport to this airport. The following flight uses this airport
as the departure airport and arrives at any of the other airports. The next flight
uses the last airport as the new departure airport and so on. This guarantees
that there is at least one solution. The time between arrival and departure called
ground time is randomly distributed over a fix interval. These procedure will be
done for each aircraft separately.

The generated solution was used by the optimization algorithms described
in Chap. 5 as the initial solution. It is interesting that the algorithms which
search an initial solution described in Chap. 4 always found another solution than
the one which was generated.
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Appendix B

Data Viewer

To visualize data sets from our generator or from Lufthansa, we implemented
a viewer. It can call the routines for initial solutions and optimization, as well
as saving and loading calculated solutions. Clusters are visualized as boxes in
different colors, for the different states of a cluster (arrived, deleted, maintenance
event). It was very helpful to see the arrangement of clusters to fix bugs in our
algorithms. In Fig. B.1 one can also see the reason why we could not use the data
from Lufthansa: Clusters are overlapping.
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