
Institut für
Technische Informatik und
Kommunikationsnetze

Valerio Bürker & Roman Hiestand

Report
Tool für die Bewertung von Eingebetteten Systemen

Design und Integration einer Analysemethode in SymTA/S

Student Thesis SA-2004-21
28th April 2004 / Summer Term 2004

Tutor: Simon Künzli
Supervisor: Prof. Lothar Thiele

1

Abstract

A analysis method for embedded systems, called Real Time Calculus (RTC), has been devel-
oped at the institute TIK of ETH Zurich in the last years. The method has not been embedded
in a graphical tool so far and therefore TIK has been looking for a possible implementation.
A tool, called SymTA/S, to analyze embedded systems based on certain known analysis
methods has been developed at TU Braunschweig. This tool fulfills the requirement of the TIK
methods and therefore the idea was to integrate the TIK method into SymTA/S.

This semester thesis shows how this implementation has been done. It starts with an
evaluation of the requirements for the tool and gives then a detailed explanation about the
chosen generic way of integrating the TIK method into this existing tool.

The major part of this thesis explains the exact implementation and the concepts behind
it and further some details about the calculation flow.

Finally, it provides a short user guide which describes the usage of the TIK analysis
method specific parts of the SymTA/S tool. Furthermore, it shows an analysis example.

CONTENTS 2

Contents

1 Introduction 5
1.1 Problem Description . 5

1.1.1 Subject . 5
1.1.2 Semester Thesis Task . 5

1.2 Approach . 5
1.2.1 Understanding Analysis Methods . 5
1.2.2 Define Specifications . 5
1.2.3 Get to Know SymTA/S . 5
1.2.4 Implementation . 5
1.2.5 Documentation . 5

1.3 Related Work . 6
1.3.1 Analysis Method from TIK . 6
1.3.2 SymTA/S . 6

2 Tool Specifications 7
2.1 Drawing Curves . 7

2.1.1 Functionality . 7
2.1.2 Coordinate Plan . 7
2.1.3 Upper and Lower Curve . 7

2.2 Import and Export Format . 7
2.3 Data Structure . 8

2.3.1 Source Task . 8
2.3.2 Regular Task . 8
2.3.3 Sink Task . 8

2.4 Curve Types . 8
2.4.1 Alpha Curve . 9
2.4.2 Alpha Prime Curve . 9
2.4.3 Beta Curve . 9
2.4.4 Beta Prime Curve . 9

2.5 Resources . 9
2.5.1 Scheduling Policies . 9

2.6 Execute Analysis . 10

3 SymTA/S 11

4 The Idea of Generic Objects and Libraries 13
4.1 General Structure . 13
4.2 Libpreferences.xml . 13
4.3 SymTA/S Core . 14
4.4 Data structure . 14

4.4.1 Generic Resource . 14
4.4.2 Generic Process . 14
4.4.3 Further Generic Data Structure Classes 15

4.5 GUI . 15
4.6 Analysis . 15

5 Implementation 16
5.1 GUI . 16

5.1.1 Curve Drawer . 16
5.1.2 Task and Resource Containers . 18

5.2 Data Structure . 19
5.2.1 Class Curve . 20
5.2.2 Class CurveSegment . 20
5.2.3 Class ProcessTIK . 20
5.2.4 Class ResourceTIK . 21
5.2.5 Interface Drawable . 22

5.3 Analysis . 23

CONTENTS 3

5.3.1 Calculation Flow . 23
5.3.2 Class Analysis . 24
5.3.3 Scheduler . 26
5.3.4 FPS Scheduler . 27
5.3.5 TMDA Scheduler . 28
5.3.6 Class WCET_calculation . 29
5.3.7 Package Singlenode . 29

6 Short user manual 30
6.1 How To Use? . 30

6.1.1 Tasks and Resources . 30
6.1.2 Curve Drawer . 32

6.2 Analysis Example . 33

7 Outlook 36

8 Summary 37

A Acknowledgements 38

B Bibliography / References 39

C Example of a Curve XML File 40

D Libpreferences.xml 41

LIST OF FIGURES 4

List of Figures

1 Example for Fixed Priority Scheduling . 8
2 Print Screen of SymTA/S Tool from TU Braunschweig, source: [11]. 11
3 Structure of Library Idea . 13
4 UML Diagram for the Generic Resource . 15
5 UML Diagram for the Generic Process . 15
6 Class Structure . 16
7 Coordinate Transformation . 17
8 Coordinate Rotation . 18
9 Source Tasks and Appendant Curve Drawer Windows 19
10 UML Diagram of Data Structure . 19
11 Curve Segments of a Staircase Function . 20
12 UML Diagram of Process Structure . 21
13 UML Diagram of Resource Structure . 22
14 UML Diagram of Interface Drawable . 22
15 Example to Explain the Calculation Flow Implemented in the Library 23
16 Architecture of the Method Analysis . 24
17 Example of a Deadlock . 25
18 Architecture of the Error Handling . 26
19 UML Diagram of the Environment of Scheduler Class 27
20 Weighted Beta Curves with the Option Evaluate Window Size and a Window Size

of 1.0 . 29
21 Weighted Beta Curves without the Option Evaluate Window Size 29
22 Properties of a Source Task . 30
23 Properties of a Regular Task . 31
24 Properties of a Sink Task . 31
25 Properties of a Resource . 32
26 Curve Drawer Window . 32
27 Simulation Example . 33
28 Alpha Curves Task T1 . 33
29 Alpha Curves Task T3 . 34
30 Beta Curves Resource R0 and R1 (Upper and lower curves are congruent.) . . . 34
31 Alpha Prime Curves Task T2 . 35
32 Alpha Prime Curves Task T5 . 35

1 Introduction 5

1 Introduction

1.1 Problem Description

1.1.1 Subject

During the last year researchers at the institute IDA (Institut für Datentechnik und Kommunika-
tionsnetze) of TU Braunschweig developed a tool, which can be used to analyze embedded sys-
tems consisting of processors and communication devices. The tool is called SymTA/S, which
stands for Symbolic Timing Analysis for Systems. It implements various analysis methods e.g.
the methods described in [3].
In the same time an analytical method has been developed at the computer engineering and
networks laboratory (TIK) of Swiss Federal Institute of Technology Zurich (ETH) to evaluate
embedded system. This method allows to investigate on performance parameters [1], and has
been applied to network processors [2, 7].

1.1.2 Semester Thesis Task

The analysis methods developed at TIK should be integrated into SymTA/S, the tool developed
at TU Braunschweig. The methods should be implemented in a separate library. The choice of
which analyis method to use in SymTA/S, can be made in a separate XML document as [9]
exemplarily shows.

1.2 Approach

The semester thesis has been split into several subtasks. The subtasks have been solved in the
following sequence.

1.2.1 Understanding Analysis Methods

The methods which have been developed at TIK are the core of the library, which has to be de-
veloped during this thesis. Therefore it has been very important to gain an overall understanding
of these analysis methods.

1.2.2 Define Specifications

The next step was to write clear specifications for the tool. They describe what the tool has to
fulfill. The resulting specifications are part of this report and can be found in Section 2.

1.2.3 Get to Know SymTA/S

The library has to fit on an existing tool. A clear understanding of SymTA/S from a user point of
view is therefore the next step. But not only understanding how the user uses the tool, rather
get along with the existing programming work, how the interface looks like and how we can use
the existing tool and adapt it to our requirements, was the next step.

1.2.4 Implementation

The main part of this thesis was to implement the requirements and the adaption onto SymTA/S.
The software has been tested during the programming work.

1.2.5 Documentation

The documentation has been written with LATEX and contains specifications, implementation
and further information. The usage section contains a short user guide. The conclusions and
an outlook of further work and research can be found in Section 7, the summary in Section 8
and the bibliography and acknowledgments in the appendix.

1.3 Related Work 6

The main effort has been made for developing a user friendly tool, which fits all the requirements.

1.3 Related Work

1.3.1 Analysis Method from TIK

There have been published several papers about the analysis method Real Time Calculus
(RTC) from TIK. Among others there are [1], [2], [4] and [7], which describe the method which
has been developed at TIK.

1.3.2 SymTA/S

A user guide about how to use SymTA/S has been published by the institute IDA of TU Braun-
schweig [11]. The papers [3], [5] and [6] give information about the implemented analysis meth-
ods. The project web page at [10] gives more information about the SymTA/S project and con-
tains a lot of papers about analysis methods, too.

2 Tool Specifications 7

2 Tool Specifications

This section summarizes the specifications which have been made from a user point of view.
This means the specifications do not give any ideas, how user requirements as for example
’drawing a curve’ are solved from a technical respectively implementing point of view.
This section describes the requirements, we have on the tool.

The SymTA/S tool is enlarged by a library as described in Section 1. The requirements
described in this section concern this library. The library is programmed as generic as possible
to simplify changes. Furthermore there exists a clear interface to use it within other applications.

2.1 Drawing Curves

The idea is to have a separate frame, where the user can input a curve pair consisting of an
upper and a lower curve graphically.

2.1.1 Functionality

A curve is divided into curve segments. The following functionality is provided by the tool:

• drawing a curve segment

• selecting a curve segment

• shifting a curve segment

• deleting a curve segment

Selecting, shifting and deleting can also be applied on several curve segments.
The user has also the possibilty to show the coordinates of one or several curve segments.
When curves are drawn, shifted or selected these coordinates are automatically adjusted.

2.1.2 Coordinate Plan

The coordinate plan consists of two axis and the first quadrant is shown. The drawing ground is
divided into squares. Each square is divided by 10 in both axis directions where a start or end
curve point can be placed.

2.1.3 Upper and Lower Curve

Each curve (α, α’, β, β’)1 consists of two parts, a lower curve and an upper curve as discussed
in [1]. In the drawing window the lower and upper part of the curve are drawn in different colors,
can be saved and loaded separately and are also handled separately. If for example the user
draws a lower and upper curve and then loads an upper curve from an XML file2 the upper
curve is overwritten but the lower one remains unchanged.

2.2 Import and Export Format

Curves can be imported and exported to and from SymTA/S, using the XML format. The format
is defined in the DTD file in [8].
For upper and lower curve separate XML files are created and read. The type (upper or lower)
is also defined within the XML file. Furthermore the four illustration variables3 are also saved in
the XML document.

1Alpha, alpha prime, beta and beta prime stand for arrival, arrival prime, service and service prime curves. To simplify
this name we use alpha and beta as they are defined in [1].

2XML files and their usage are described in Section 2.2.
3xgrid and ygrid indicates the number of squares in the drawing area per axes. Whereas xunit and yunit represents

the unit of one square. These four variables do not have to be defined in import files.

2.3 Data Structure 8

2.3 Data Structure

Figure 1 shows a possible simplified structure of two processes relocated to one resource.

Resource 1

Source Task
Container I:

αU & αL

Sink Task
Container I

αU’ & αL’
Regular Task Container I

Source Task
Container II:

αU & αL

Sink Task
Container II

αU’ & αL’
Regular Task Container II

βU & βL

βU’ & βL’

βU’ & βL’

Figure 1: Example for Fixed Priority Scheduling

Since we use the data structure and graphs, which are already implemented in SymTA/S, we
have to fit the TIK analysis method to this data structure and graphs of TU Braunschweig.

2.3.1 Source Task

The source task contains only the alpha curves. In the tasks internal frame there is a button Edit
Alpha Curves.

2.3.2 Regular Task

The regular task contains all four curve pairs. These are the alpha curves, beta curves, alpha
prime curve and beta prime curve. In the Tasks internal frame there are four buttons Show
Alpha Curves, Show Beta Curves, Show Alpha Prime Curves and Show Beta Prime Curves.
(No curves can be drawn on a regular task.) On the regular task the curves can only be viewed,
but not edited. How to edit alpha curves is described in Section 2.3.1 and for beta curves see
Section 2.5. For more details compare also the Section 2.4.

The Worst Case Execution Time (WCET) is a factor which influences the alpha and al-
pha prime curves. This time is related to a certain task and can therefore be entered on the
regular task internal frame.
In this first version of the library, the WCET is implemented as a factor, by which the alpha
curves are multiplied and the result is divided after calculating the resulting alpha prime curves.

2.3.3 Sink Task

The sink task contains only the resulting alpha curves. In the Tasks internal frame there is a
button Show Alpha Prime Curves.

2.4 Curve Types

The various curves which are implemented are described in this section. Furthermore the way
to enter or to show them is described in this section, too.

2.5 Resources 9

2.4.1 Alpha Curve

The alpha curve pair is placed on a source task. For every alpha curve pair there is a separate
source task.4

To enter the curves, the user can click on the source in the editor internal frame and then can
click on the Edit Alpha Curves button in the task internal frame.

2.4.2 Alpha Prime Curve

One of the outcomes of the analysis is the alpha prime curve pair. The user can see the resulting
alpha curves after executing a global analysis5.
Within the tasks internal frame the user can click on the Show Alpha Prime Curves button. In a
new window he can see the results and by clicking on the save icon he can save them to XML
files. The alpha prime curves on a regular task show the local result, the one ones the sink task
represent the global result.

2.4.3 Beta Curve

Beta curve pairs are related to resources. A certain resource has a certain amount of capacity.
Therefore the curves are not implemented as the alpha curves in a separate task, but moreover
there are directly related to a certain resource.
Consequently the beta curve pair is entered by pressing the Edit Beta Curves button in the
resource internal frame, after selecting the resource.

2.4.4 Beta Prime Curve

The resulting beta prime curves can be viewed on the regular task. The local beta prime curves
can be found on the regular task, the global ones on the resource.
The local beta prime curve, can be viewed by selecting the regular task in the editor internal
frame and then pressing the Show Beta Prime Curves button. A new window with the resulting
beta prime curve pair opens after pressing this button. To look at the resulting beta prime curves
of a resource, the button Show Beta Prime Curves in the resource internal frame shows the
results.

2.5 Resources

The resource internal frame shows the created resources. For each resource a scheduling
policy can be allocated, which are described in Section 2.5.1. Each resource contains a service
curve (so called beta curve) which can be entered by pressing the Edit Beta Curves button.

2.5.1 Scheduling Policies

The first version of this tool supports two scheduling policies, which are described in the subse-
quent paragraphs. The architecture will be chosen as generic as possible to simplify the process
of adding new scheduling policies. The scheduling policy can be chosen in the resource internal
frame. Whereas parameters concerning a policy which are related to tasks can be input in the
task internal frame, after mapping a task to a resource and having already chosen a certain
scheduling policy.

Fixed Priority Scheduling (FPS)

Fixed priority scheduling is a policy which allocates the resource to the task according to the
priority of the tasks. Therefore each task requires a priority. The priority can be entered in the
task internal frame as described above.

4In Figure 1 you can find two source task and each contains both the alpha curves (upper and lower).
5The analysis process is described in Section 2.6.

2.6 Execute Analysis 10

Time Division Multiple Access (TDMA)

The Time Division Multiple Access policy gives each task a certain percentage of the available
resource. The percentage is related to the task and therefore can be entered in the task internal
frame, as well.

2.6 Execute Analysis

To execute the calculation of the resulting curves, memory consumption and delay for each task
the existing icon perform global analysis step can be used. By pressing this button all curves
are calculated and circular relations are solved. After finishing the calculation the user can look
at the curves and save them individually if requested.

3 SymTA/S 11

3 SymTA/S

This section describes the SymTA/S tool developed at the institute IDA of TU Braunschweig.
The idea is to give a high-level overview and not to provide a user’s guide or to go into all
details. We focus on the things, which are interesting regarding the new library which is going
to be implemented during this thesis. For those who require more detailed information, we
recommend to read [11].

Figure 2 shows a print screen of the SymTA/S tool6 as it has been developed at TU
Braunschweig.

Figure 2: Print Screen of SymTA/S Tool from TU Braunschweig, source: [11].

The main GUI contains the following parts:

1. Menu Bar
The menu bar contains the menu. Here a user can for example save or load the current
workspace including all settings of the various tasks.

2. Tool Bar
The tool bar is used as main navigation tool. For example tasks can be inserted, the
various windows can be hidden and shown or the user can execute an analysis by clicking
on the corresponding icon.

3. Editor Window
In this window the user can draw a graph of all involved tasks and how they are connected
with each other.

6The print screen has been taken from version 0.4.

3 SymTA/S 12

4. Tasks Window
In the upper right corner the user can enter the parameters of a task. There exist three
different tasks, which are Source Tasks, Regular Tasks and Sink Tasks. Depending on the
task the window shows a different content. The mapping of regular tasks on resources
can be done as well within this window.

5. Resource Window
The resource window contains the parameters of the hardware resources. Here the sched-
uler can be chosen and further parameters can be defined in this window.

6. Event Streams Window
In the lower right corner the user can define the event stream parameters.

7. Architecture Window
Whereas the mapping of tasks on resources is done in the tasks window, the resulting
architecture is shown in the architecture window. The user can see here the names of
the tasks and resources and which task is mapped on which resource. Furthermore the
scheduling algorithms are displayed for each resource.

8. Output window
The output window in the lower left corner displays the debugging messages. This is the
main communication channel between the user and the tool to display important mes-
sages.

Herewith we mentioned all parts of the program which are relevant for us.

4 The Idea of Generic Objects and Libraries 13

4 The Idea of Generic Objects and Libraries

This section describes how the implementation of the TIK analysis method into the SymTA/S
tool is done and what the idea of the library is.

4.1 General Structure

Figure 3 shows the SymTA/S tool. The core of the tool can be found in the middle of the figure.
This core consists of the main parts of the program which are not dependent on the analysis
method. This is for example the graphical Editor window where the user can draw the tasks and
connect them. This window can be used independently of the analysis method and is therefore
part of the SymTA/S core. One of the reason to implement the TIK method into the SymTA/S
tool is exactly to use this functionality which is provided ty the SymTA/S core and which can be
used in each analysis method.

SymTA/S
Core

Analysis
TIK

Analysis
IDA

GUI
TIK

Datastructure
TIK

Datastructure
IDA

GUI
IDA

Figure 3: Structure of Library Idea

The modules around the core in Figure 3 show the part of the tool, which can be chosen de-
pending on the analysis method. This part is split into three subparts:

• the graphical user interface (GUI)

• the data structure which is needed depending on the analysis method

• and the analytical method itself.

The user can decide which analysis method he wants to use to do his evaluations. If the user
wants to use the TIK analysis method, he chooses the TIK packages GUI TIK, Datastructure
TIK and Analysis TIK, otherwise he chooses the IDA packages.
The SymTA/S core and the IDA package names start with org.spiproject, whereas the TIK
package names start with ch.ethz.ee.tik.rtc7.

4.2 Libpreferences.xml

The selection of the requested parts, respectively the analysis method, is done in a separate
XML file, which is called libpreferences.xml and which can be found in the folder
org.spiproject. This paragraph explains the structure of this file.

The root element <Symta-S> contains four elements, which are:

<gui> In the GUI part pointers to the classes which are used for GUIs are defined.

<datastructure> This element contains the classes which are used for the data structure.
7rtc stands for Realtime Calculus, the name of the TIK analysis method.

4.3 SymTA/S Core 14

<analysis> The analysis element references the analysis class.

<settings> And the last element contains further settings, for example which buttons are used.

An example is given in Appendix D. It shows the file as it is used in the current version of the
tool.
During run time the program reads the XML file and decides which packages respectively
classes are loaded together with the SymTA/S core.

4.3 SymTA/S Core

The Editor Window is part of the SymTA/S core. The user draws here the tasks and con-
nects them. The Architecture Window is as well part of the SymTA/S core and can therefore
used for each analysis method, as the editor window. All tasks and appropriate resources in
SymTA/S are stored in a graph, which extends the open-source library JGraph. The class
ApplicationGraph in the package org.spiproject.application represents this graph
and herewith is part of the core program. A reference to the application graph can be initialized
from every class in the program. This means we can access the tasks and resource from every
location of the program. Within the analysis we can store for example the reference to the appli-
cation graph in the variable ag:
ApplicationGraph ag = parent.getMainGUI().getApplicationGraph();
Now we can use ag to get a map with all resources the user has drawn in the editor window:
Map resourceMap = ag.getCpuMap();
The application graph is a very powerful tool to use the possibility SymTA/S offers.

4.4 Data structure

The data structure is the part of the library where the classes which hold the data are defined.
The following subsections explain details about the parts which are chosen in the libprefer-
ences.xml file.

4.4.1 Generic Resource

The structure which allows to choose between IDA and TIK classes (dependent on the analysis
method), is described in this paragraph for the resource exemplarily. This generic concept can
also be applied to new methods.

Because all libraries rely on their own datastructures, we have to implement the interface
GenericResource for the classes ResourceIDA and ResourceTIK. The application graph
accesses the datastructures through this interface. Figure 4 shows an UML diagram8 of the de-
pendencies of the resource. The package org.spiproject.interface.datastructure
contains the public interface, called GenericResource , which is part of the core SymTA/S
tool. The interface requires certain methods to be implemented which are used in the applica-
tion graph. Depending on the entries the user has written into the libpreferences.xml file, the
corresponding resource is implemented, as Figure 4 shows. This means, if the user wants to
use the ResourceTIK he writes ch.ethz.ee.tik.rtc.datastructure.ResourceTIK
into the libpreferences.xml file and the interface than loads the TIK resource.

4.4.2 Generic Process

The same idea as described in Section 4.4.1 is also used for processes. The corresponding
UML diagram is shown in Figure 5 and the interface GenericProcess can be found in package
org.spiproject.interfaces.datastructure.

8The UML diagrams shown in this thesis are simplified to the elements which are relevant in the used context.

4.5 GUI 15

Figure 4: UML Diagram for the
Generic Resource

Figure 5: UML Diagram for the
Generic Process

4.4.3 Further Generic Data Structure Classes

The XML file also defines GenericInputPort, GenericOutputPort,
GenericEventStream, GenericEventModel as generic classes. Because we do not
use an own derived version of this classes in our library at the moment, we do not explain them
here in detail. The concept is the same as described in Section 4.4.1.

4.5 GUI

There are several graphical user interfaces (GUI). Therefore in the XML file the various GUIs
can be defined, too. These are:

• RegularTaskContainer

• SourceTaskContainer

• SinkTaskContainer

• ResourceContainer

• EventStreamContainer

The first three represent the different tasks, the fourth a resource and the last one an event
stream. The concept is the same as described in Section 4.4.1 and the generic classes can be
found in package org.spiproject.interfaces.gui.

4.6 Analysis

Because the analysis is completely dependent on the analysis method, no common func-
tions are defined in the core of SymTA/S and therefore the reference defined in the XML
file points directly to the analysis class which implements GenericAnalysis. The interface
GenericAnalysis can be found in package org.spiproject.interfaces.analysis. It
is very simpole as it just contains a single method run(), which is called by the SymTA/S core,
if the user wants to analyse the specified system.

5 Implementation 16

5 Implementation

This section describes the implementation of the library and the concepts behind it. It is divided
into the three parts GUI, data structure and analysis.

5.1 GUI

This part will describe all implemented Graphical User Interfaces (GUI) which consist of internal
frames and different panels.

5.1.1 Curve Drawer

The Curve Drawer allows the user to draw or view upper and lower curves graphically in a
separate frame.

General Class Structure

The curve drawer consists of four classes. The visible frame is represented by the
class DrawCurveWindow which extends JInternalFrame. The area where the user
can paint curves is represented by the class DrawCurvePanel which extends JPanel.
DrawCurvePanel uses a class named Grid which paints the curves and the grid. The Class
GridDialog which extends JInternelFrame opens a new frame and allows the user to
change the grid properties. Figure 6 shows a simplified UML diagram of the class structure.

Figure 6: Class Structure

Class DrawCurveWindow

This class has a BorderLayout. In the north one can find a tool bar. All buttons and
check boxes are placed in the tool bar. The DrawCurvePanel is placed in the center of the
JInternalFrame. DrawCurveWindow uses a boolean variable named editable which is
set in the constructor. The variable editable decides whether the user can draw curves in the
frame or whether curves can only been shown.

Class DrawCurvePanel

DrawCurvePanel offers the whole functionality to draw curves. A MouseListener is waiting
for user inputs and calls the appropriate methods. If the variable selectmode is set to 0, curve
segments can be selected and moved. If selectmode equals 1, an upper curve can be drawn.

5.1 GUI 17

If selectmode equals 2, a lower curve can be drawn. The drawing happens by getting the
x and y coordinates, when the mouse has been pressed, and getting the x and y coordinates,
when the mouse has been dragged. The two points are now connected by a line. As soon as the
user releases the mouse a curve segment can be stored. Selecting and shifting curve segments
as well as storing them is delegated to the Grid class described in the next section.
The functionality to save curves into the data structure and reload them is also implemented in
this class. To save curves into an XML file and to reload them, the methods from the Curve
class are called.
Starting from java 1.4 the user is given the possibility to save the curves into a png file. In this
case DrawCurvePanel draws all graphics into a image instead of the screen. The image then
can be saved to a png file by using the java ImageIO class.

Class Grid

This class is the most complex part of the Curve Drawer. It has to provide different methods
used by DrawCurvePanel. As it would be to detailed to explain every method of the class
some key spots are presented.
The user can determine how many squares in the x and the y direction he wants to be shown
on the coordinate plan. The Grid class now draws the grid with its wished number of squares. If
the size of the DrawCurvePanel changes, Grid is notified and the grid is drawn fitting to the
new panel size.
The most important part of this class is to save and show the curves the user has entered.
The curves are saved in a Vector in real coordinates9. Consequently a transformation from
screen coordinates to real coordinates as shown in Figure 7 has to be done. The methods
addUpperCurveSegment and addLowerCurveSegment get the coordinates of a curve seg-
ment the user has drawn in pixels, calculate the real coordinates by mirroring the coordinate
plan and stretching it depending on the grid properties the user has chosen and save them into
the Vector. To help the user entering curve segments, a square is divided into 10 subsquares
in both axis directions. A start or end point can be placed on the angles of this subsquares. This
subdivision is done by using following rounding function:
segment[i] = segment[i] * 10;
segment[i] = java.lang.Math.round(segment[i]);
segment[i] = segment[i] / 10;
When the drawGrid method is called, the curves are read from the Vector, the
real coordinates are transformed to screen coordinates as shown in Figure 7 again
and the curves then are drawn. If the user wants to select a curve segment, the

Panel.Width x[pixel]

y[pixel]

y

x

User Defined

User Defined

Panel.Height

Figure 7: Coordinate Transformation

methods findLowerCurveSegment(int x,int y) or findUpperCurveSegment(int
x,int y) are called. x and y are the coordinates, where the mouse has been pressed. To
determine whether a curve segment has been selected, a virtual rectangle is placed around
each curve segment and every rectangle is controlled if the mouse click lies inside it. But as it is
difficult to place a rectangle around a curve which is not parallel to x or y axis and as it is even
more difficult to determine whether a point lies inside a rectangle whose edges are not parallel
to the x or y axis, a coordinate transformation is done. To do so each curve segment is moved

9Real coordinates are the coordinates chosen by the user.

5.1 GUI 18

to the zero point of the coordinate plan and the end point of the curve segment is rotated in the
following way:

x2new = x2 ∗ cos(α) + y2 ∗ sin(α) (1)

y2new = 0 (2)

Figure 8 shows this rotation and movement. The coordinates of the mouse click are moved

�

x1

y1

Figure 8: Coordinate Rotation

and rotated by the same parameters. Now a rectangle can easily be placed around the curve
segment and it can easily be controlled if the mouse click lies inside the rectangle.

Class GridDialog

This class opens a new JInternalFrame. The user has the possibility to choose the number
of squares to be drawn in both axis directions and the number of units per square for both axis.
Additionally a JColorChooser allows to define the color of the upper and lower curves as well
as the background color of the grid.

5.1.2 Task and Resource Containers

When a task or a resource is selected, the following classes derived from JPanel are shown:

• source task selected: SourceContainerTIK and SourcePanel

• regular task selected: RegularContainerTIK and RegularPanel

• sink task selected: SinkContainerTIK and SinkPanel

• resource selected: ResourceContainerTIK and ResourcePanel

The container classes only represent the generic part of the GUI and are empty, whereas the
panel classes are filled with objects and placed on the container classes.
The instantiation of these classes is done by the SymTA/S core and therefore cannot be
influenced by our library. As the core only creates one instance of each of these classes, all
tasks of the same type and all resources have to share one container and one panel. For this
reason the context has to be changed every time another task or resource is selected. This is
done by using the methods setCurrentProcess or setCurrentResource, which assign
the selected task or resource to the panel. For the selected process the parameters are shown
in the panel.

On the other hand every task and every resource has a curve drawer window for every curve.
The reason for this is, that the access to each curve drawer window from different tasks of the
same type has to be kept. Herewith curves can be edited in several windows simultaneously
and the data structure can be forced to save them in the corresponding tasks when a simulation
is started. This leads to the structure shown in Figure 9, where several windows are mapped on
the same panel.
For this reason the panels have a Vector where the actual curve drawer windows are stored.
This Vector is updated when a new window on a task or a resource is created or when a task

5.2 Data Structure 19

or a resource has been deleted.

Figure 9: Source Tasks and Appendant Curve Drawer Windows

Additionally for the RegularTaskContainer the correct text fields must be shown depending
on the resource it is mapped on. This information is taken out from the data structure.

5.2 Data Structure

The main purpose of the data structure is to store task and resource information the user has
entered or that has been calculated by the tool. A whole set of classes offers this functionality.
Figure 10 shows an UML diagram of the classes and their dependencies which will be discussed
in the subsequent paragraphs.

Figure 10: UML Diagram of Data Structure

5.2 Data Structure 20

5.2.1 Class Curve

This class represents one curve. This means an instance of this class stores either an upper or
a lower curve. The String variable type which can be set to "upper" or "lower" determines the
curve type to be stored.
A curve is approximated by a number of linear curve segments as shown in Figure 11 and
can be composed in different ways. It can be periodic, which means the curve is repeated af-
ter a period T. On the other side it can be aperiodic, which means the last curve segment is
extended to infinity. A combination of these two options is possible, too, but not implemented
yet. Depending on whether a curve is periodic or aperiodic the curve segments are stored in a
Vector AperiodicCurveSegments or in a Vector PeriodicCurveSegments. The period
if needed is saved in the double variable period. The methods isStrictlyPeriodic and
isStrictlyAperiodic return true if a curve is strictly periodic respectively strictly aperiodic.
If both methods return false, the combination of the two possibilities is used.

Figure 11: Curve Segments of a Staircase Function

The information on how a curve has to be drawn in the grid is saved in this class, too. The whole
grid information including number of squares to be drawn, units per square, curve color and
background color are saved in the accordant variables. This offers the advantage the user has
to enter the grid properties only once per curve.
A curve can be saved to an XML file. This provides the possibility to make the curves portable
and to use them in different programs. To save a curve the method saveCurve with the file-
name as parameter is used. As this method is public it can be called on every instance of Curve
and the user does not need to know about details on saving a curve into an XML file. Depending
on the variable type the curve is saved as upper or lower curve. The library used to write the
XML file is JDOM. JDOM allows it to create a well structured XML file in an easy and fast way.
Appendix C shows an example of an XML file representing a curve.
To load a curve from an XML file an instance of Curve must first be created. Then the method
loadCurve with the name of the XML file can be called and the data is written into the class
variables. In this way it can be automatically recognized if a upper or a lower curve has been
loaded.
The method compareCurves is able to compare two curves by comparing each curve seg-
ment. If they are equal, the method returns true, otherwise false.
The method prune is used to remove unused curve segments and can be applied to every
instance of Curve.

5.2.2 Class CurveSegment

A curve segment is represented by this class. It can simply store the x and y value of the starting
point and the slope assigned to the curve segment. Some more methods offer the option to
clone a curve segment or to compare it to another one.

5.2.3 Class ProcessTIK

This class represents the different types of tasks. The main idea was to derive it from a generic
process as described in Section 4.4.2 and in this way make it replaceable with the process class

5.2 Data Structure 21

from IDA. But as SymTA/S was created in a monolithic approach, the whole tool including the
message passing and the whole graph structure had to be adapted to a generic framework. This
adaption turned out to be very complex and therefore took much more time than scheduled. As
a result the entirely generic solution could not be implemented and another solution close to the
desired one had to be found.
The finally chosen option is shown in Figure 12. ProcessTIK is derived from ProcessIDA
instead of GenericProcess. In this way all methods and variables needed by the graph struc-
ture and the message passing are supplied by the parent class ProcessIDA and all methods
that work on an object of ProcessIDA do also work on an object of ProcessTIK. Using this
solution the step to an entirely generic solution should be very small and the only drawback is
the fact, that the TIK part can only be used if the IDA part is available. This means the TIK library
can not be loaded fully independently yet.

Figure 12: UML Diagram of Process Structure

All functionality that is specific to a TIK task is implemented in this class. Eight Curve variables
can save all four curve pairs. Whether an object of this class represents a source task, a regular
task or a sink task is determined in the int variable type, which is set to 0 for a regular task, 1
for a source task and 2 for a sink task. Depending on the task type an object represents, not all
Curve variables are used and thus can reference to null.
A regular task must additionally be able to save the scheduling options. If a TDMA Scheduler
is used, the task must get a weight defined in the double variable weight, which describes
the time share of the resource the tasks get. If a FPS Scheduler is used, the task must get a
priority stored in the int variable priority. The GUI is able to load automatically the correct
scheduling options depending on the selected scheduler by using the methods getWeight and
getPriority.
There are some more parameters needed only by a regular task. On the one hand it is the Worst
Case Execution Time stored in the double variable wcet. This parameter can be chosen by the
user. On the other hand the double variables memory and delay, which are calculated during
the analysis, are used.

5.2.4 Class ResourceTIK

For this class a similar solution to the one for the class ProcessTIK had to be chosen. Figure 13
shows the corresponding UML diagram.
All methods and variables needed by the graph structure and the message passing are supplied
by the parent class ResourceIDA.
All functionality specific to a TIK Resource instead are stored in the child class. A beta curve and
a beta prime curve can be saved. Every object of this class owns a variable schedulerTIK
which is set to a FPS Scheduler by the constructor.

5.2 Data Structure 22

Figure 13: UML Diagram of Resource Structure

5.2.5 Interface Drawable

The curve drawer must be able to access curves for editing the classes ProcessTIK and
ResourceTIK in the data structure. For this reason the interface Drawable has been intro-
duced. It is implemented by both classes ProcessTIK and ResourceTIK as shown in Fig-
ure 14. The interface guarantees, that the necessary methods to save and store curves are
implemented.
The curve drawer accesses the data structure through the interface Drawable using a variable
of the type Drawable in the class DrawCurveWindow which can be filled by an object of type
ProcessTIK and ResourceTIK.
Using this solution the curve drawer can be completely generic and does not have to know if it
is used in connection with a process or a resource.

Figure 14: UML Diagram of Interface Drawable

5.3 Analysis 23

5.3 Analysis

The analysis package contains all analysis relevant classes. These are all scheduler classes,
the classes, which do the calculation, and the classes, which do the main processing of the
analysis.
In this subsection the analysis package is described in detail. But first we provide an explanation
how we run with the calculation through the various tasks that the user has drawn in the editor
window.

5.3.1 Calculation Flow

Figure 15 shows a simple example with four regular tasks placed on two resources. The tasks
T1, T2, T3 and T4 are connected in one line and therefore we call them a Row. The tasks T5,
T6, T7 and T8 show the second row. T2 and T6 are mapped on resource R1 which uses the
scheduling policy Fixed Priority Scheduling (FPS). T6 has priority 1, whereas T2 has priority
2. T3 and T7 are mapped on resource R2 with the scheduling policy Time Division Multiple
Access (TDMA) with a weight of 0.6 respectively 0.4.

T1

T5

T2
2

T6
1

T3
0.6

T7
0.4

T4

T8

R1:
FPS

R2:
TDMA

Source Tasks Regular Tasks Regular Tasks Sink Tasks

αT2 α’T2 α’T3αT3

αT6 α’T6 α’T7αT7

Figure 15: Example to Explain the Calculation Flow Implemented in the Library

T1 contains the original alpha curves, T4 holds the resulting alpha prime curves after the
calculation. T2 gets his alpha curves from T1 (αT2) and his beta curves come from the
resource. The resulting alpha prime curves of T2 (α′

T2) are the input alpha curves of T3 (αT3).
The same can be applied to the tasks in the second row.
There are two directions to pass through the tasks. The first direction is along the rows from
the left to the right. As soon, as the alpha prime curves are calculated, they can be forwarded
to the next task and are used there as alpha curves.
It may happen that not all curves which are needed for the calculation are available and that we
cannot continue from the left to the right. A reason for such an interrupt in the calculation flow
can be seen in Figure 15. The calculation methods starts at T1 and proceeds to the connected
regular task T2 on the right hand. Because we need the resulting beta prime curves on resource
R1 from the regular task with priority 1, we cannot continue our calculation and have to stop
it here and first proceed on the second row. Therefore we need the second direction, which is
from the top to the bottom, or with other words from one row to the next one.

We use a vector to retain the information how fare we could proceed in our calculation
flow. The vector contains the references on the tasks which could be successfully handled, for
regular tasks this means that all curves could be calculated successfully. The vector contains
as many elements as rows exist and is initialized together with the sources.
In our example from the former paragraph the first element has not been replaced by a
reference on T2 because we could not successfully calculate the curves to T2 and it shows that
we have started with this row and have been stopped at T1 and therefore have to continue there

5.3 Analysis 24

after calculating in row two. In the last paragraphs we have picked out a part at the beginning
of the calculation flow. The other tasks are handled in a similar way.
We have now introduced the two directions in which we need to proceed our calculation. The
description of the implementation of this concept is given in the next subsection.

5.3.2 Class Analysis

The method performAnalysis is described in this paragraph. Figure 16 shows the program
flow of this method.

boolean performAnalysis()

- check all parameters

- create Vector (all SOURCE tasks)

- Loop: until Vector contains only SINK tasks

For: Vector size (= number of Rows)

- Test: if actual task is not a SINK

Loop: until error or SINK has been reached

get next task in Row

Test: if REGULAR

- prepare all curves for this new task

-

- if calculation successful -> write new position in Vector

Test: if SINK

- write new position in Vector

(loop)

- Test: if Vector has changed

if not: BREAK! – because of Deadlock!
(for)

(loop)

boolean startScheduler()

Calculates alpha and beta prime curves for a given scheduler

boolean totalBetaPrime()

Calculates the total beta curve of a resource

Figure 16: Architecture of the Method Analysis

5.3 Analysis 25

There are three nested loops. In Figure 16 the three loops are colored red. The first loop is a
while-loop and is repeated as long as not all sinks are reached. When all sinks are reached, the
vector contains only sink tasks. Within this loop there is an if-statement, which might break
this first loop. If all elements of the vector have not changed during a loop, the if statement is
true and herewith the loop will be broken. This behaviour shows a deadlock. This means not all
sink tasks are reached yet but the vector does not change anymore. This may occur in the
case of the example given in Figure 17. The resource uses a FPS policy and the tasks have
the priorities 2 and 1.

T1 T2
2

T3
1

T4

R1:
FPS

Figure 17: Example of a Deadlock

The second loop, is a for-loop and is repeated as many times as rows exist. It starts with the
first element of the vector and runs through all elements. These two outer loops represent the
second dimension introduced at the end of Section 5.3.1.
The first dimension is represented by the innermost loop, a while-loop. This loop is repeated
as long as the end of a row, a sink, is not reached and no error has occurred. If the calculation
could not be finished, for example because of a reason discussed in Section 5.3.1, the variable
calcSuccess will be set to false and the loop will be stopped.
In the inner loop there are some if-statements, which test if the next task is a regular or a sink
task and based on this the decision is taken if a calculation has to be done or if the end of the
row has been reached. If the current task is a regular task, the method startScheduler is
called, which is described in Section 5.3.3.

Figure 18 shows an abstract program flow of the environment of the analysis class. The
three loops described in the previous paragraph are summarized in the Calculation part of
Figure 18 starting at line "while (not all sinks are reached)". This while loop is the first of the
three mentioned loops.
The user clicks on the Analysis Button and herewith the analysis is started. The next steps are
preparations for the analysis as it can be seen in Figure 18. Out of this method the method
performAnalysis is started, which has been described at the beginning of this section. The
task "check all parameters" in Figure 16 is quite a big part of the class performAnalysis and
is shown in Figure 18.

SymTA/S offers a useful possibility to print out information, warnings and errors. The following
line prints an error message into the output window of the SymTA/S tool:
MessageHandler.printToOutput("error!", 0);10

Figure 18 shows all the tests which are made and the resulting messages. Messages are
generated in the part, where scheduling parameters, curves and other elements are checked
as well as in the calculation part. The scheduling parameters depend on the scheduling policy
and the method testSchedulingParameters is therefore implemented in the scheduling
classes, as described in Section 5.3.3.

10The integer value at the end of this statement, gives the message typ. 0 stands for an error message in red, 1 for a
warning in blue and 2 for other information in black.

5.3 Analysis 26

void run()

Saves curves in unclosed windows

Assigns mapped tasks to resources

Calculation:

If false

Deletes allocation to resources

jbutton
pressed

boolean performAnalysis()

Gets application graph and a list of all processes

User input checking:

for all tasks:
SOURCEs:

- checks if all sources have an upper and lower alpha curve

- creates vector with all sources

REGULARs:
- sets all betastable flags to false

- checks if every regular task is mapped on a resource

- checks if there is at least one source task in source vector

- checks if all sources lead to a sink
& that there is at least 1 regular task in between

- checks if there are unconnected regular or sink tasks

Resources:
- checks if all resources have an upper and lower beta curve

Calculation
- while (not all sinks are reached)

- at least one sink has not been reached

analysis finished and no error occurred!

Error: no upper/lower curve!

Error: not mapped!

Error: no source around!

Error: no task at output port!
Error: no regular between!

Warning: unlinked tasks!

Error: no upper/lower curve!

Error: window size = 0!

Error: total weight > 1!

Warning: total weight < 1!

Error: 2 with same priority!

Info: Analysis started

Info: Analysis stopped

Error: analysis not started!

Warning: deadlock!

boolean startScheduler()

Calculates alpha and beta prime curves for a given scheduler

boolean testScheduling Parameters()

for TDMA:
- checks if window size is > 0

- checks total weigth > 1

< 1

for FPS:
- checks if all tasks have different priority

Figure 18: Architecture of the Error Handling

5.3.3 Scheduler

The scheduler is related to everything which has to do with the scheduling policy. The UML
diagram in Figure 19 shows how the scheduler class is embedded into the other classes.
There is a general scheduler class, which can be found in the center of the UML dia-
gram. This class contains among other methods the three methods called startScheduler,

5.3 Analysis 27

computeFinalBetaPrime and testSchedulingParameters:

startScheduler: This method is called from the method performAnalysis11. The first
part of the method decides if the calculation on a certain regular task can be done with
the given information, then does prepare all input curves and finally calls the calculation
methods.

computeFinalBetaPrime: Calculates the resulting beta prime curves on each resource and
is called at the end of the method performAnalysis.

testSchedulingParameters: This method is designed to test the scheduling parameters
and is called from the method performAnalysis.

The methods mentioned above are scheduler dependent and therefore overwritten in the
classes FPSScheduler and TDMAScheduler.

Figure 19: UML Diagram of the Environment of Scheduler Class

For each scheduling policy a separate scheduler class is implemented, which extends
Scheduler as Figure 19 shows. Consequently they have to implement the three methods
mentioned above. In Section 5.3.5 and Section 5.3.4 the implementation of the two scheduling
policies, which have been chosen for the first version of this library, is explained in more details.

The Scheduler contains also the protected Vector relatedTasks, which contains all
tasks, which are mapped on one resource and therefore use the same scheduler.
A further important variable is parentResource from the type ResourceTIK.
parentResource contains a reference to the parent resource the scheduler runs on.
The UML diagram in Figure 19 shows these two dependencies.

5.3.4 FPS Scheduler

The implementation of the FPSScheduler class concentrates on the three methods
testSchedulingParameters, startScheduler and computeFinalBetaPrime as ex-
plained in the previous paragraph. Partitioned in three paragraphs we will explain the ideas
behind the implementation.

testSchedulingParameters

The FPS policy schedules the order of the tasks based on the priority of each task. The priority
is the only parameter which has to be set and accordingly has to be tested in this method.

11The method performAnalysis is described in Section 5.3.2.

5.3 Analysis 28

The test criteria is, if all tasks on one resource have different priorities.12 The method contains
two nested loops which run through all tasks and compare them to all the other ones. Figure 18
contains this error message, too.

startScheduler

The method startScheduler is called out of the method performAnalysis as it can be
seen in Figure 16, too. Before invoking the CurveTransform classes, we first have to check if
we can do the calculation. Therefore we check if this task has the smallest priority. In this case,
we get the beta curves directly from the resource and we can start the calculation. If there is
a task with a smaller priority, than the current one gets the beta curves from the previous one.
But first we have to check if the beta curves of the previous one are already calculated correctly.
The method getStableBetaPrime() called on the the previous task tells us if these beta
curves can be used or not. If we cannot use these beta curves, what means, that the task with
the smaller priority has not been calculated, we cannot do a calculation step and return false.
Otherwise we get the beta curves from the previous task and start the analysis.

computeFinalBetaPrime

With FPS the resulting beta prime curves on a resource are the beta prime curves of the task
with the lowest priority running on it. Therefore this method checks all task on this resource and
stores the beta curves of the task with the lowest priority in the resource class.

5.3.5 TMDA Scheduler

The structure of the TDMAScheduler class is similar to the FPSScheduler class.

testSchedulingParameters

When the user chooses a TDMA scheduling policy, the parameter which reallocates the re-
source is the weight of a task. The total weight is normally 1.0. This method adds all weights on
a resource up and checks the result. If the totalized weight is greater than 1.0, the analysis will
be stopped. If it is smaller then 1.0 a warning will be printed out.13

The second parameter which has to be tested is the window size. The window size has to be
greater than 0.0 if the window size is evaluated, otherwise we do not care about the entered
value.

startScheduler

The resource capability is split based on the weight. Therefore a calculation can always be
started, contrary to the FPS scheduler.
There are two possible scenarios now. The first one is, that we evaluate the window size
and calculate the weighted beta curves regarding the window size. Such curves can be seen
in Figure 20.14 On the other hand the user can choose to weight the beta curves without
evaluating the window size, which can be seen in Figure 21.

After having finished the preparation of all needed curves we can calculate the curves using
again the methods of the CurveTransform class.

computeFinalBetaPrime

If we have not evaluated the window size, we can calculate a beta prime curves, which are the
sum of all beta prime curves on this resource. Otherwise the tool does not calculate a resulting
beta prime curves.

12The analysis is only started, if there are no task on a resource with the same priority. Otherwise the analysis would
not work properly.

13A totalized weight of smaller then 1.0 means that there are other tasks which run on this resource, which are not
drawn here.

14The method accepts for the case "evaluate window size" only curves which consist of exactly one curve segment.

5.3 Analysis 29

Figure 20: Weighted Beta Curves with
the Option Evaluate Window Size and
a Window Size of 1.0

Figure 21: Weighted Beta Curves
without the Option Evaluate Window
Size

5.3.6 Class WCET_calculation

The class WCET_calculation is a very simple class and consists only of two methods. The
Worst Case Execution Time (WCET) influences the alpha curves and the resulting alpha prime
curves as described in Section 2.3.2.
The current version of the library provides the possibility to enter a value for the WCET for each
task. The two methods in this class provide multiplication and division of an alpha curves with
this chosen WCET value. They are called out of the scheduler, the multiplication at the beginning
and the division at the end of the calculation process.

5.3.7 Package Singlenode

The package ch.ethz.ee.tik.rtc.analysis.singlenode contains all classes which
do calculations based on the TIK analysis method on a single node. The most important class
is the CurveTransform class, which can be used to call calculations. The other classes are
only used within the package.

The class CurveTransform contains the following methods:

getLowerArrivalPrime(...) returns the lower alpha prime curves based on the alpha
lower, beta lower and beta upper curves.

getUpperArrivalPrime(...) returns the upper alpha prime curves based on the alpha
upper, beta lower and beta upper curves.

getLowerServicePrime(...) returns the lower beta prime curves based on the beta lower
and alpha upper curves.

getUpperServicePrime(...) returns the upper beta prime curves based on the beta up-
per and alpha lower curves.

getDelay(...) returns the delay of a node based on the alpha upper and beta lower curves.

getMemory(...) returns the memory consumption of a node based on the alpha upper and
beta lower curves.

addCurves(...) can be used to add two curves.

multCurve(...) can be used to scale curves with a factor.

This package has not been implemented by us and we therefore do not explain any further
details.

6 Short user manual 30

6 Short user manual

6.1 How To Use?

This section will give a short introduction on how to use SymTA/S focusing on the new features
that have been added by the TIK library.

6.1.1 Tasks and Resources

The user has the possibility to add three different tasks by clicking on the appropriate icon in the
tool bar:

• a source task,

• a regular task,

• and a sink task.

Afterwards he can select a task and the properties of the selected task are shown in the task
window and can be edited.
Figure 22 shows an example of a source task. The only thing that can be edited are the alpha
curves by pressing on the button "Edit Alpha Curves". A new curve drawer window described in
Section 6.1.2 will open.

Figure 22: Properties of a Source Task

Figure 23 shows an example of a regular task. Here, the user has the possibility to view all four
curves by pressing on the buttons "Show Alpha Curves", "Show Beta Curves", "Show Alpha
Prime Curves" and "Show Beta Prime Curves". The worst case execution time of the task can
be entered in a text field. The important thing here as for all other text fields is, that an input has
to be confirmed by pressing the return key.
After a calculation the calculated memory and delay are shown in the two lowest text fields.
If a resource is available, a regular task can be mapped on it by selecting the resource in the
combo box. The selected scheduling policy on the resource will also be shown in the task
properties and depending on it different options can be chosen.
Using TDMA, the weight, which describes the share of the resource and can vary between 0
and 1, must be entered. If a calculation is started, it is controlled if the summation of all weights
on a resource equals 1. In case it is smaller than 1, a warning is printed out and the dispensable
resource share remains unused.

6.1 How To Use? 31

Using FPS, the priority of a task must be entered. After starting a calculation it is controlled if
there are not any tasks with the same priority on the same resource.

Figure 23: Properties of a Regular Task

Figure 24 shows an example of a sink task. Here, the resulting alpha prime curves can be
viewed by pressing on the button "Show Alpha Prime Curves".

Figure 24: Properties of a Sink Task

The properties of a resource can be chosen in the resource window as shown in Figure 25. The
beta curves can be entered by pressing the button "Edit Beta Curves". The resulting beta prime
curves on the resource are calculated depending on the scheduling policy and can be shown
by pressing the button "Show Beta Prime Curves".
The scheduling policy can be chosen in a combo box. At the moment TDMA and FPS are
available.

6.1 How To Use? 32

If TDMA is selected, two different calculation models are supported. The first model evaluates
the window size, the second one does not.

Figure 25: Properties of a Resource

6.1.2 Curve Drawer

Figure 26 shows an example of an editable curve drawer window. All icons in the tool bar from
the left to the right are described in this paragraph.

Figure 26: Curve Drawer Window

Curves can be painted by selecting the icons "Draw Upper Curve" or "Draw Lower Curve".

6.2 Analysis Example 33

Afterwards a single curve segment or a set of curve segments can be selected, if the "select"
icon is active. The selected elements can be moved or deleted by pressing the "Delete" icon.
The "Grid Properties" icon allows to change the grid properties in a new window.
The next four icons are used to load and save curves to an XML file or to save the curves as a
screen shot into a png file.
In the radio button group it is decided, whether a the curves are periodic or aperiodic. If periodic
is selected, the period text field becomes editable.
The check box "Show Positions" allows tho show the positions of the mouse cursor and all
selected curve segments.
By clicking on the "Close Window" icon or the cross icon in the upper right corner the window
is closed and the curves are saved to the data structure. If a curve is loaded from the data
structure and shown in the curve drawer window, the last curve segment gets automatically the
length 1 in the x direction, because the ending point is not defined.

6.2 Analysis Example

In this section an example of a simulation which has been done using the new TIK library will
be presented. Figure 27 shows the structure of the tasks and resources.

Figure 27: Simulation Example

T1 uses the alpha curves shown in Figure 28. T3 uses the alpha curves shown in Figure 29.

Figure 28: Alpha Curves Task T1

6.2 Analysis Example 34

Figure 29: Alpha Curves Task T3

R0 has the following properties:

• FPS Scheduler

• mapped tasks: T1, T4

• priority T1: 1

• priority T4: 2

• beta curves shown in Figure 30

Figure 30: Beta Curves Resource R0 and R1 (Upper and lower curves are congruent.)

R1 has the following properties:

• TDMA Scheduler

• mapped tasks: T6, T7

• weight T6: 0.5

• weight T7: 0.5

6.2 Analysis Example 35

• evaluate: not selected

• beta curves shown in Figure 30

The resulting alpha prime curves can be seen in Figure 31 for T2 and in Figure 32 for T5.

Figure 31: Alpha Prime Curves Task T2

Figure 32: Alpha Prime Curves Task T5

7 Outlook 36

7 Outlook

The generic approach of the solution which has been pursued offers the possibility to improve
the tool.

The first step that will surely have to be taken is the implementation of the completely
generic data structure. As soon as the generic framework is available, it should be possible
to adapt the concerned classes in an easy manner. As the data structure classes are already
prepared for this solution, some small changes will be necessary.

Probably, new scheduling policies will be desired. In this case a new class derived from
Scheduler can be added and the methods specific to the new scheduling policy must be
overwritten. Some modification in the GUI container for the resource will also be necessary,
but totally the modifications should be very small as the structure of the resource is already
prepared to add new schedulers.

A further problem to deal with is the improvement of the calculation performance. Simu-
lations have shown, that a calculation can take a not negligible amount of time. An optimization
of the calculation algorithms or a limitation to a certain number of curve segments which is not
defined yet would surely improve the performance.

8 Summary 37

8 Summary

During this thesis a library to the SymTA/S tool has been developed to use the Real Time
Calculus methods efficiently. A generic approach has been almost totally implemented.The
requirements on the library could be fulfilled and the two scheduling policies Fixed Priority
Scheduling and Time Division Multiple Access have been implemented successfully.

The program contains a useful tool to draw curves. The curves drawn can be used for
the analysis or be stored into XML files to use them in other programs. The major part of the
work was to design a userfriendly solution and to develop a comprehensive error handling.

The current version of the library provides a stable solution which can be used to gain
first experiences with this new tool.

A Acknowledgements 38

A Acknowledgements

Various helpful comments and ideas were received from Simon Künzli.

Furthermore, mainly lively discussions with colleagues created input to the work.

B Bibliography / References 39

B Bibliography / References

References

[1] S. Chakraborty, S. Künzli, and L. Thiele,
A general framework for analysing system properties in platform-based embedded system
designs.;
Proc. 6th Design, Automation and Test in Europe (DATE), pages 190 - 195, Munich, Ger-
many, March 2003.

[2] S. Chakraborty, S. Künzli, and L. Thiele, A. Herkersdorf, and P. Sagmeister,
Performance evaluation of network processor architectures: Combining simulation with an-
alytical estimation.;
ComputerNetworks, 41(5): 641 - 665, April 2003.

[3] C. L. Liu and James W. Layland,
Scheduling algorithms for multiprogramming in a hard-real-time environment.;
J. ACM, 20(1):46-61, 1973.

[4] A. Maxiaguine, S. Künzli, and L. Thiele,
Workload characterization model for tasks with variable execution demand.;
Proc. 7th Design, Automation and Test in Europe (DATE), pages 1040 - 1045, Paris,
France, February 2004.

[5] Kai Richter, Marek Jersak, and Rolf Ernst,
A formal approach to mpsoc performance verification.;
Computer, 36(4): 60 - 67, 2003.

[6] Kai Richter, Razvan Racu, and Rolf Ernst,
Scheduling analysis integration for heterogeneous multiprocessor SoC.;
Proceedings of the IEEE Real-Time Systems Symposiums (RTSS), Cancun, Mexico, 12
2000. IEEE Computer Society.

[7] L. Thiele, S. Chakraborty, M. Gries, and Simon Künzli,
Design spaces exploration of network processors architectures.;
Mark Frankling, Patrick Crowley, Haldung Hadimioglu, and Peter Onufryk, editors, Network
Processor Design Issues and Practices, Volume 1, chapter 4, pages 55 - 90. Morgan Kauf-
mann, October 2002. A preliminary version of this paper appeared in the Proc. 1st Work-
shop on Network Processors, held in conjunction with the 8th International Symposium on
High-Performance Computer Architecture, Cambridge, Massachusetts, 2002.

[8] flowspec.dtd;
available at http://www.tik.ee.ethz.ch/˜ kuenzli/dtds/flowspec.dtd, April 2004.

[9] libpreferences.xml;
document within source folder: /src/org/spiproject, March 2004.

[10] Institute IDA at TU Braunschweig,
SymTA/S project webpage.;
http://www.ida.ing.tu-bs.de/research/projects/symta-s/home.g.shtml, May 2004.

[11] Institute IDA at TU Braunschweig,
Symta System, Quick Reference for advanced user;
http://www.ida.ing.tu-bs.de/research/projects/symta-s/home.g.shtml, May 2004.

C Example of a Curve XML File 40

C Example of a Curve XML File

The example below shows an XML file of an upper curve, as it has been stored in the Curve
Drawer Window.

<?xml version="1.0" encoding="UTF-8"?>
<curvecontainer xunit="1.0" yunit="1.0" xgrid="10" ygrid="10">
<curve name="uppercurve" type="upper">

<aperiodic burstlength="0.0">
<curvesegment x="0.0" y="2.0" slope="0.0" />
<curvesegment x="11.0" y="4.0" slope="0.0" />
<curvesegment x="22.0" y="6.0" slope="0.0" />
<curvesegment x="33.0" y="8.0" slope="0.0" />
<curvesegment x="44.0" y="10.0" slope="0.0" />
<curvesegment x="55.0" y="12.0" slope="0.0" />
<curvesegment x="66.0" y="14.0" slope="0.0" />
<curvesegment x="77.0" y="16.0" slope="0.0" />
<curvesegment x="90.0" y="18.0" slope="0.18181818182" />

</aperiodic>
<periodic period="0.0" />

</curve>
</curvecontainer>

D Libpreferences.xml 41

D Libpreferences.xml

The Libpreferences.xml file defines which modules are used as described in Section 4.

<?xml version="1.0" encoding="UTF-8"?>
<!--
$Id: libpreferences.xml,v 1.1.1.1 2004/06/03 16:31:15 kuenzli Exp $

project : SPI / SYMTA
copyright : (C) IDA 2002

-->

<Symta-S>

<!-- here we define pointers to all classes that are used for the GUI -->
<gui>

<RegularTaskContainer>
ch.ethz.ee.tik.rtc.gui.RegularTaskContainerTIK

</RegularTaskContainer>
<SourceTaskContainer>

ch.ethz.ee.tik.rtc.gui.SourceTaskContainerTIK
</SourceTaskContainer>
<SinkTaskContainer>

ch.ethz.ee.tik.rtc.gui.SinkTaskContainerTIK
</SinkTaskContainer>
<ResourceContainer>

ch.ethz.ee.tik.rtc.gui.ResourceContainerTIK
</ResourceContainer>
<EventStreamContainer>

ch.ethz.ee.tik.rtc.gui.EventStreamContainerTIK
</EventStreamContainer>

</gui>

<!-- classes used as datastructures -->
<datastructure>

<GenericProcess>
ch.ethz.ee.tik.rtc.datastructure.ProcessTIK

</GenericProcess>
<GenericResource>

ch.ethz.ee.tik.rtc.datastructure.ResourceTIK
</GenericResource>
<GenericInputPort>

org.spiproject.lib.datastructure.InputPortIDA
</GenericInputPort>
<GenericOutputPort>

org.spiproject.lib.datastructure.OutputPortIDA
</GenericOutputPort>
<GenericEventStream>

org.spiproject.lib.datastructure.EventStreamIDA
</GenericEventStream>
<GenericEventModel>

org.spiproject.lib.datastructure.EventModelIDA
</GenericEventModel>

</datastructure>

<!-- classes used for analysis -->
<analysis>

<GenericAnalysis>

D Libpreferences.xml 42

org.spiproject.lib.analysis.AnalysisIDA
</GenericAnalysis>

</analysis>

<!-- Here we define which of the buttons and menu points in the SymTA/S
tool are enabled/disabled -->

<settings>
<!-- to be defined... -->

</settings>

</Symta-S>

