
 Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Jose Fernandez-Alcon

Scheduling Aircrafts

Student Thesis SA-2004-22
Summer Term 2004

Tutor: Dr. Alexander Hall

Supervisor:
Prof. Dr. Thomas Erlebach

2.7.2004

Institut für Technische Informatik und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Aircraft Scheduling

Fernández Alcón, José

August 10, 2004

1

CONTENTS

Contents

1 Introduction 6

1.1 An easy scenario . 6
1.2 Now a little bit more complicated 6
1.3 What the problem is in reality 7

2 Some useful definitions 7

3 What Aircraft Scheduling is 7

4 Description of the subproblems we are dealing with 8

5 Loading the model 9

5.1 Explanation in plain text . 9
5.1.1 Reading the files . 9

5.2 The classes . 10
5.2.1 AInstance . 10
5.2.2 AAircraft . 12
5.2.3 AAirport . 12
5.2.4 ALeg . 12
5.2.5 ACluster . 13
5.2.6 AVersion . 14
5.2.7 ASubFleet . 14

5.3 loadLHS . 16
5.3.1 numStrings . 16
5.3.2 extractComa . 16
5.3.3 createDataArray . 17
5.3.4 createTable . 17

6 Saving the solutions 17

6.1 Explanation in plain text . 17
6.2 The class ASolution . 17

6.2.1 writeXML . 17
6.2.2 createXmlTail . 18
6.2.3 readXML . 18
6.2.4 readXMLDoc . 18

7 Checking the solutions 19

7.1 How do we check the solutions 19
7.2 The objective function . 21
7.3 The classes . 22

2

CONTENTS

7.3.1 Solchk . 22
7.3.2 CheckAllRoutes . 23
7.3.3 CheckAircraftRoute . 24
7.3.4 OrderClusters . 24
7.3.5 DateTime2int . 24
7.3.6 CostsPerLeg . 25
7.3.7 CostsPerCluster . 25
7.3.8 CostsSchedule . 25

8 Conclusions 26

3

LIST OF TABLES

List of Tables

1 Costs of not serving passengers 22
2 Costs of having empty seats 22
3 Costs of miscellaneous . 23

4

LIST OF FIGURES

List of Figures

1 Example: Creating a 2D array from a file. 9
2 Loading objects . 10
3 The two phases of the load . 11
4 UML Diagram of the model 15
5 Example: Function numStrings 16
6 Example: Solution to XML file 19
7 Example: What a Solution means 20
8 Example: Checking the solution 21
9 Example: Computing the objective function 23

5

1 INTRODUCTION

1 Introduction

The name Aircraft Scheduling covers the interests of an airline of finding an
assignment of the company’s aircrafts to the flights that the company offers.
This assignment should be done taking into account many constrains and
trying to minimize the costs.

The main goal of this project is to develop a system for implementing
and testing the heuristics of tail assignment and also a solution checker for
the assignments.

1.1 An easy scenario

Imagine that we have only one aircraft in our airline, and we can only fly to
one destination, (that means that we have two airports: Home, and London).
Scheduling this scenario will not be difficult, our airplane has to fly from
Home to London, and go back. The main problem here is to decide the time
slots in which the airplane is going to fly. We can do this with paper and
pencil.

1.2 Now a little bit more complicated

Let’s introduce Paris as a new destination, this means that our model has
three airports (Home, London and Paris). You may think that adding a new
airport is not going to add that much complexity to the problem, but now
we have a lot more possible combinations:

• Home → Paris → London → Home

• Home → London → Paris → Home

• Home → London → Home → Paris → Home

• Home → London → Home → London → Paris → Home

• Home → . . .

If we add a second aircraft we have many more options, but also many
more constrains. Trying to schedule this by hand may take very long.

6

3 WHAT AIRCRAFT SCHEDULING IS

1.3 What the problem is in reality

A real-world problem might contain all the possible destinations of a big
airline, and also a large fleet of airplanes. The task to schedule this without
computer aid will be quite hard. Imagine that we got a valid schedule for
our airline, well done!. But what if one of our airplanes can not take off. It
will not only miss that flight but also the other flights that it has to perform.
If we do not have software to help us with the complex problems arising, we
very likely will not be able to react properly, leading to large costs.

2 Some useful definitions

Some new terms needed to understand Aircraft scheduling.

Leg: A flight from one airport at another at a certain time.

Tail: An specific aircraft performing an certain leg.

Cluster: A set of consecutive legs.

Cycles: One take off and one landing.

Fleet: All the aircrafts owned by an airline.

Sub-fleet: Aircrafts of the same type belonging to the same fleet.

Aircraft version: Number of seats of each class that an specific aircraft
has.

3 What Aircraft Scheduling is

Aircraft Scheduling is the name used to refer to the optimization problem
which airlines have to deal with. It is to decide where, when, and which
airplane has to fly. It can be divide into subfields:

• Long Term planning of schedule: Decide about the origin, destination,
date and time of take off and landing.

• Fleet assignment: Assign sub-fleets to legs.

• Tail assignment: Assign specific aircrafts to the individual legs.

• Schedule recovery: How to respond to an anomaly in the schedule
having the smallest costs possible.

• Crew scheduling: Assign crews to legs.

7

4 DESCRIPTION OF THE SUBPROBLEMS WE ARE DEALING

WITH

4 Description of the subproblems we are deal-

ing with

We have data from an airline that we need to process in order to load a
model that we can use to perform the scheduling operations. Once we get
a scheduling solution we have to save it into a file, check that it is a valid
solution, and also, compute the cost of this solution.

This is part of a larger project at TIK institute. The goals of the present
part are loading the data model, create an input/output interface, and de-
velop a solution checker. Meanwhile that the main goals of the other part1 are
the implementation of the optimizer and developing an objective function2

The data that we use in our software is a set of comma separated files,
which means that we have a long string of alpha-numerical data. Each sub-
string between two commas is a datum. If the datum that we need to retrieve
is not a string, first it is necessary to convert it to the data type that we need.

ac version.csv Data related to the version of the aircraft.

aircraft.csv Aircraft relevant data such the owner, the subtype, and stan-
dard version.

airport.csv Airport information necessary for the optimization.

check rules due.csv Data about when a given aircraft has to be checked.

leg.csv All the information necessary to describe a leg.

leg pax.csv Number of passengers of each class flying in each leg.

minimum groundtime.csv Minimum time that an aircraft needs to re-
main on the ground.

Development environment

In the development of this software we use a quite standard environment,
plus two proprietary libraries.

• Operating Systems: Linux, Solaris.

• Programming language: C++

1This part is the content of the Diplomaarbeit of Peter Keller and Simon Schilling
2What an objective function is will be explained later

8

5 LOADING THE MODEL

• Compiler: g++ 3.3

• Property Libraries

1. LEDA 4.4

2. QT 3.3 3

The LEDA library made our programming task much easier, because it
includes a kind of upgraded version of some of the C++ standard classes that
can be handled easier, and additionally many routines for handling graphs.

5 Loading the model

5.1 Explanation in plain text

5.1.1 Reading the files

The data that we have from Lufthansa is given in comma separated files. By
reading each file line by line we create an array of strings for each line,
dividing them using the comma as a separator. We then save these arrays
into an array of arrays of strings creating a two-dimensional array.

Example file content:

Dulles,Washington,0000,2359

Barajas,Madrid,0000,2359

...

Resulting two input array:

<<Dulles,Washington,0000,2359>,<Barajas,Madrid,0000,2359>,<...>,...>

Figure 1: Example: Creating a 2D array from a file.

In a general description of how we load the data into the model, we can
say that there are two phases:

1. Getting the data. This can be done in two different ways. In the first
one, we give two parameters to a 2D-table, and retrieve the data that

3In this project we used the free version of QT, available at www.troltech.com

9

5 LOADING THE MODEL

Example:

If we want to create the object Dulles, which is in the table Airports, we will do something

like:

Name:=Airports[1][1];

Location:=Airports[1][2];

OpeningTime:=Airports[1][3];

...

Figure 2: Loading objects

we want. In the second one, we use a routine called loadRow to parse
the data directly from the strings.

2. Linking the references. Many of the member variables of the classes
are references to objects of other classes, or even to arrays or lists of
objects. In this phase we have to create these links.

5.2 The classes

All the classes that we use in the model describe objects which do not have
any special functions. They have just a function get() for every member
variable to retrieve its value, and sometimes a set(), to change the value of
the variable.

5.2.1 AInstance

One object of class AInstance is a whole model. Loading one object of class
AInstance you have access to all the objects belonging to the model.

Its member variables are:

Type Description

airports array of AAirport All the airports used in the model
versions array of AVersion The aircraft versions of the model
aircrafts array of AAircraft The aircrafts to be scheduled
subFleets array of ASubFleet The subFleets
clusters array of ACluster The clusters to be flown

10

5 LOADING THE MODEL

Example:

Here we have a line of an example file describing a leg:

Dulles, 170220051245, Madrid, 170220051922, ...

This line says that the fight departs from Dulles airport on the February the 17th 2005

at 12:45, and arrives at Madrid the same day at 19:22

In the first phase the following will occur:

The function loadRow is called. It reads the line and create an object of class ALeg:

pDepartureAp= not set

departureTime= 17th, February, 2005, 12:45

pArrivalAp= not set

arrivalTime= 17th, February, 2005, 19:22

...

In this first phase we have also created all the objects of class AAirport. We will focus

on two of them:

Object Dulles

Name= Dulles

Location= Washington

OpeningTime= 00:00

...

Object Barajas

Name=Barajas

Location= Madrid

OpeningTime= 00:00

...

After the second phase the object ALeg will look like:

pDepartureAp= => Object Dulles

departureTime= 17th, February, 2005, 12:45

pArrivalAp= => Object Barajas

arrivalTime= 17th, February, 2005, 19:22

Figure 3: The two phases of the load

11

5 LOADING THE MODEL

5.2.2 AAircraft

This class defines the objects that represent the airplanes.

Its member variables are:

Type Description

id int Identification number.
pSubFleet ASubFleet* Pointer to the subfleet the aircraft be-

longs to.
pStdVersion AVersion* Pointer to the standard version of the

aircraft.

5.2.3 AAirport

The objects of class AAirport represents airports used in the model.

Its member variables are:

Type Description

id int Identification number.
codeIATA String International identification code of the airport

used by IATA.
codeICAO String same as above but the one used by ICAO.
name String Name of the airport.
openFrom QTime Opening time.
openTo QTime Closing time.
longitude String Geographical location.
latitude String Geographical location.

5.2.4 ALeg

A leg is a flight from one airport to another at a certain time.
This class has also an special method called loadRow whose task is to set

the values for all the member variables in the object. None of the variables
of this class has a set method.

12

5 LOADING THE MODEL

Its member variables are:

Type Description

id int Identification number.
pDepartureAP AAirport* Indicates the departure airport.
pArrivalAP AAirport* Indicates the arrival airport.
departureTime QDateTime Time and date of the departure.
arrivalTime QDateTime Time and date of the arrival.
flightTime int Duration of the flight.
paxFirst int Number of First class passengers.
paxBusi int Number of Business class passengers.
paxEcon int Number of Economy class passenger.
legState String State of the leg.
legType String Type of the leg.

5.2.5 ACluster

A cluster is a set of consecutive legs that are going to be flown by the same
aircraft.

Its member variables are:

Type Description

id int Identification number.
legs AArray<ALeg> All the legs that conform the clus-

ter.
validACPenalties AArray<double> For each valid aircraft there is

penalty.
validAircraftPs AArray<AAircraft*>. List the aircraft that can fly this

cluster.
maintenance bool The cluster can be a maintenance

flight, so it is not a commercial clus-
ter.

pFixedAircraft AAircraft* Aircraft assigned to the cluster.
checkCode String This variable is only set if mainte-

nance is true.

This class has three extra functions:

loadRow: Sets the values of some variables of the object.

13

5 LOADING THE MODEL

getFirstLeg: Returns a pointer to the first leg of the cluster. This method
is for making simplify checking the validity of the solution.

getLastLeg: Returns a pointer to the last leg of the cluster. It is a useful
method because of the same reason as above.

5.2.6 AVersion

An aircraft version is the number of seats in first, business, and economy
class that the aircraft has.

Its member variables are:

Type Description

id int Identification number.
seatsFirst int Number of First class seats.
seatsBusi int Number of Business class seats.
seatsEcon int Number of Economy class seats.
name string Name of the version.
subType string Aircraft subtype this version belongs to.

5.2.7 ASubFleet

A subfleet is all the aircrafts of the same type which belong to the same fleet.
A fleet is all the aircrafts owned by an airline.

Its member variables are:

Type Description

id int Identification number.
owner String Aircraft owner.
subType String Sub-type of the aircraft.
subtypeName String Name of the sub-type.
aircraftPs AArray<AAircraft*> All the aircrafts of the sub-

fleet.
versionPs AArray<AVersion*> Versions of the aircrafts.
checkCodes AArray<string> Types of checks to be per-

form.
flightTimeUntilCheck AArray<int> Flight times until next

check.
cyclesUntilCheck AArray<int> Cyles until next check.

14

5 LOADING THE MODEL

Figure 4: UML Diagram of the model
15

5 LOADING THE MODEL

5.3 loadLHS

This is the class that actually loads all the data into the model. It reads the
files, and parses the tables into two-dimensional arrays as described before.

5.3.1 numStrings

This function returns how many times a substring appears inside of an string.

input: The big string that we are analyzing. It is of type string.

selStr: The substring whose repetition we are calculating. It is also of type
string.

A small example:

input=francekkkkfrance

selStr=france

Then this function will return 2.

Figure 5: Example: Function numStrings

5.3.2 extractComa

Extract substrings using the comma as a separator. It is necessary to separate
all the different data contained in a line of a comma separated file.

commaLine: The comma-separated string which is going to be divided into
substrings.

tokensInArray: The output of the function. It is an array of the substrings
of the comma separated line.

16

6 SAVING THE SOLUTIONS

5.3.3 createDataArray

The task of this method it to create a list with all the lines contained in a
file. Each line is a different list entry.

inputFileStr: It is the input file we are dividing into lines. It is of type
String

lines: It is the output list.

5.3.4 createTable

CreateTable uses the functions described above to transform a file into the
two-dimensional array explained in the first paragraphs.

inputFileStr: It is a string that tells where the file is.

arr: This is the 2D array that this function returns.

6 Saving the solutions

Once we get a solution we need to store it and read it. We decided to use the
XML to store the solution, because, nowadays, it is the standard for data
storage.

6.1 Explanation in plain text

The solution of the optimization is given in an array of integers, in which the
index number represents the identifier of a cluster, and the integer stored the
id. of the aircraft which is going to flight the cluster. The clusters in this
array have the same order as in AInstace.

6.2 The class ASolution

The main function of an object of this class is to write and to read the
solutions into/from an XML file

6.2.1 writeXML

Writing the solution into an XML file, is quite simple, first, we create a
QDomDocument object, then we set the root of the document to <TAILS>

and, executing a loop, for each of the integers of the solution array we create

17

6 SAVING THE SOLUTIONS

the children tags by calling the function createXmlTail. Once we have finished
with the array we save the QDomDocument object into a file.

This function has only one argument. It is a string which tells the function
the file name of the file to be written. If no path is given, it will write the
document in the same directory as the executable is.

6.2.2 createXmlTail

This method has been created is to perform the task of producing a XML
document departing from the array of integers in which the solution is stored.

This function appends the children tags <TAIL> to the root tag. It has
three arguments:

doc: It is the QDomDocument object we are working with.

root: It is the QDomElement root tag inside doc. It is the element to which
we want to append the children.

value: The value of the tag that we are going to append.

6.2.3 readXML

Reading the solution from an XML file works the other way around. First, we
read the file, and then we transfer its contents to a QDomDocument object,
afterwards, we find the root <TAILS> in this object, and then, by calling
the function readXMLDoc we get an array with the values of the children
<TAIL>.

6.2.4 readXMLDoc

Once the root tag is parsed as an argument to this function, it executes a
loop that reads all the children of the root and saves them into an array of
integers.

root: It is a QDomDocument object. The function has to read all the chil-
dren of this object.

We need to parse to this function the file to be read.

18

7 CHECKING THE SOLUTIONS

An small solution could look like this:

solution[1]=3

solution[2]=6

solution[3]=34

solution[4]=9

solution[5]=12

Then our XML file will be like this:

<TAILS>

<TAIL>3</TAIL>

<TAIL>6</TAIL>

<TAIL>34</TAIL>

<TAIL>9</TAIL>

<TAIL>12</TAIL>

</TAILS>

Figure 6: Example: Solution to XML file

7 Checking the solutions

Although we are really good programmers, we need to check that the obtained
solution is valid. We have to verify:

• An aircraft has to depart from the last airport in which it has landed.
If an airplane has landed in London the next flight of this airplane has

to take off from London

• The departure time of an aircraft from an airport must be later that
its arrival time to this airport. A solution can not be valid if an aircraft

which is supposed to take off from Athens at 08:30 is only arriving there

at 09:00.

• An aircraft can not be assigned to more that one leg at he same time.
Airplanes don’t have the gift to be in different places at the same time

7.1 How do we check the solutions

To be able to check our schedule, we first transform the solution from an
array of integers to an array of arrays of integers. In this new array the

19

7 CHECKING THE SOLUTIONS

Example:

solution[1]=4

solution[2]=3

solution[3]=4

solution[4]=2

solution[5]=2

solution[6]=2

solution[7]=1

solution[8]=1

solution[9]=4

.

.

.

solution[87]=23

solution[88]=4

solution[89]=24

solution[90]=23

That means:

Aircraft Which clusters is it flying

1 7,8

2 4,5,6

3 2

4 1,3,9,88

23 87,90

24 89

Figure 7: Example: What a Solution means

20

7 CHECKING THE SOLUTIONS

Example:

aircraft[1]=<7,8>

aircraft[2]=<4,5,6>

aircraft[3]=<2>

aircraft[4]=<1,3,9,88>

aircraft[23]=<87,90>

aircraft[24]=<89>

Figure 8: Example: Checking the solution

index is the identifier of the aircraft, and the array of integers are the id’s of
the cluster that the aircraft is flying.

In this new array we have the route which was assigned to an aircraft.
We know that the legs within a cluster are OK, so, the only thing that we
need to test are the connections between clusters. So what we really need to
check is:

• The departure airport of the first leg of the next cluster must be the
same as the arrival airport of the last leg of the previous cluster.

• The departure time of the first leg of the next cluster must later than
the arrival time of the last leg of the previous cluster.

If these two conditions are fulfilled then the schedule is feasible.

7.2 The objective function

The parameters that we are trying to optimize4 in this project are the costs5

of the schedule. To calculate the cost of each scheduling solution is it neces-
sary to compute the Objective function.

To calculate the objective function, we have assigned penalties to actions
that we consider relevant. Then to compute the final value of this function,
for each of these actions we calculate how many times this action has been
taken and multiply it times its penalty. Once we have done this, we add all
these results.

In our objective function costs are allocated in terms of:

4The optimization is performed by the software that Simon Schilling and Peter Keller

are developing for their Diplomaarbeit.
5As these costs are not easy to assess, we have defined an easy to compute, but still

realistic, objective function.

21

7 CHECKING THE SOLUTIONS

• Passengers not served

• Empty seats

• Others

Costs descriptions:

Passengers not served Value of ωi

First 12
Business 8
Economy 5

Table 1: Costs of not serving passengers

Empty seats Value of ωi

First 3
Business 2
Economy 1

Table 2: Costs of having empty seats

Objective function:

cost =
∑

i

aiωi

7.3 The classes

7.3.1 Solchk

This module checks the solution and calculates its cost.
For checking the solution, solchk loads an object of class AInstance, then

transforms the solution array into the array with the routes of each airplane,
as explained above. Later we call the function CheckAllRoutes which obtains
the array of routes as arguments.

22

7 CHECKING THE SOLUTIONS

Miscellaneous Value of ωi

Version change 50
Cycles violation 75
Fly time violation 5

Table 3: Costs of miscellaneous

Example:

Solution A: In this solution we have only two First class passenger which are not

served, so the total cost will be:

Total cost = 2 × 12 = 24

Solution B: Here we have three empty seats in Business class, but we also have to

change one aircraft version.

Total cost = 3 × 2 + 1 × 50 = 56

Note: Here an optimization algorithm would choose Solution A because it is cheaper.

Figure 9: Example: Computing the objective function

In order to calculate the cost, solchk calls the function costs Schedule,
which returns an integer with the value of the total cost of the schedule.
How this function works will be explained later.

The functions whose name begins with check- are used for checking the
feasibility of the solution, and the functions whose name begins with costs-

are used for computing the costs of the solution.

7.3.2 CheckAllRoutes

This function returns a boolean value, true if the schedule is feasible, and
false otherwise. What we do is to check if the routes of each aircraft are OK
by calling the function CheckAircraftRoute.

This function has two arguments:

• aircraftRoute: Is the array of array of integers which represents the
routes of the aircrafts.

• clusters: An array with all objects of class ACluster. It is neces-
sary for getting the clusters, because in aircraftRoute we only have the

23

7 CHECKING THE SOLUTIONS

identifiers of the clusters, not the real object.

7.3.3 CheckAircraftRoute

This function returns a boolean value. If the route is OK then it returns true,
and false otherwise. We look for incompatibilities between to consecutive
clusters. To do so we first order the array clustersId calling the function
orderClusters. After that, we iteratively get an id from clustersIds and the
its respective cluster. Once we have two consecutive clusters we check the
two conditions explained in the beginning of this section. If both conditions
are accomplished it returns true.

To check the whole schedule this function is called once per aircraft inside
the function CheckAllRoutes.

The two arguments of this function are:

• clustersIds: It is an array of integers with the identifiers of the cluster
that this aircraft is going to fly

• clusters: An array with all the objects of class ACluster.

7.3.4 OrderClusters

The array clustersId might not be given in the scheduled order. If that is the
case, the solution checker will return that the schedule is unfeasible when
it actually is. So, in order to prevent that, this function orders the array
considering the departing time of the first leg of the cluster.To do this first,
we get the ids of the clusters and store them into a priority queue. The
parameter used to compare the priority is the departing time, so the last
cluster will have the highest priority. Then we iteratively take the cluster
with the lowest priority and save it into the new clustersId array.

• arrayToOrder: The array of integers representing clusters that we
have to order.

• clusters: All the objects of class ACluster are stored in this array.

7.3.5 DateTime2int

The departing time of an object of class ALeg is of type QDateTime. The
priority queue can not compare two QDateTime objects, so it can not assign
priorities based on this data type. The function dateTime2int transforms a
QDateTime into an int so that the priority queue can compare the two dates
and assign a priority.

24

7 CHECKING THE SOLUTIONS

• date: The QDateTime data that is going to be converted into an
integer.

7.3.6 CostsPerLeg

The function costsPerLeg calculates the costs of one tail. That means the
costs of having an special aircraft flying one specific leg.

This function calculates the costs derived from the difference between
the number of first class passengers of the leg and the number of first class
seats in the aircraft, then we do the same with Business and Economy. The
final value that this function gives back, is the addition of the three values
computed before.

This function has two arguments:

• leg: It is an object of class ALeg. It is the leg whose cost we are
calculating.

• aircraft: It is an object of class AAircraft. It represents the aircraft
which is flying the leg above.

7.3.7 CostsPerCluster

The purpose of this function is to calculate the costs of assigning an aircraft
to a cluster. We do this by calling the function costsPerLeg for each of the
legs of the cluster, parsing the same aircraft as an argument all the times. It
returns an integer with the cost.

Arguments:

• cluster: Object of class ACluster. It is the cluster whose cost we are
computing

• acs: Object of class AAircraft. The aircraft that is flying the cluster.

7.3.8 CostsSchedule

CostsSchedule computes the objective function of the whole schedule. For
each aircraft, it calls the function CostsPerCluster for each of the clusters
which were assigned to the aircraft. It returns an integer with the cost of the
whole schedule.

This function has three arguments:

25

8 CONCLUSIONS

• assignment: It if type array clusters id that we have defined in this
class. This typedef is an array of arrays of integers. Assignment tells
us which clusters are going to be flown by which aircraft.

• acs: An array with all the aircrafts of the model. We need it because
in an assignment we only have the id of the aircraft, but not the real
object.

• cluster: An array containing the clusters of the model. It is necessary
because in assignment we have the id’s of the cluster, and we need the
objects.

8 Conclusions

This Semmesterarbeit is part of a larger project whose target is to create an
optimal schedule for an airline. Our main goals have been to create the I/O
system of the whole system. That means:

• To create and load a model using real data from an airline

• To store and load the solutions given by the optimizer.

• Analyze the feasibility and the cost of a solution.

We programed the software using C++ and some proprietary libraries.

26

