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Abstract

Distributed Denial Of Service (DDoS) attacks are a serious threat to the Internet in-
frastructure. The importance to fight this threat is growing, as more and more people and
enterprises rely on working computer networks. Lately there has been a veritable flood of
new worms, with the potential to be used for DDoS attacks.

In order to deal with this danger and be able to take countermeasures as early as
possible, it is vital to understand how worms have spread in the past. In this semester theses
we present a detailed analysis of the outbreaks and spreadings of two worms, W32.Blaster
and Sobig.F. They are representatives of two different types of worms, Sobig.F is an E-Mail
worm and Blaster was relying on a former vulnerability in Windows operating systems. The
analysis is based on logged Cisco NetFlow data from the border gateway routers of a Swiss
medium sized backbone network.

While Blaster shows heavy traffic increase from scanning for vulnerable hosts, we could
observe only few successful infections going over the backbone network. Our analysis
showed that because of its design, Blaster is much more successful in spreading within local
networks than over the borders of networks. This poses a challenge for countermeasures
in the backbone network. Before Blaster outbreak we have observerd some scanning traffic
which probably originates from tests with the exploit code used by Blaster.

Filtering E-Mail worms as Sobig.F in a backbone network would require payload inspection
of the transmitted packets. Because payload inspection requires a lot of resources this is
not common practice in todays backbone networks. At the peak of Sobig.F activity we have
observed an increase of 200 % of SMTP flows.
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1 Introduction

1.1 Problem Description

1.1.1 Semester Theses Task

The goal of this semester theses, written in the context of the DDoSVax project (see Sec. 1.2.1),
is to give a detailed analysis of two major outbreaks of worms, Sobig.F and W32.Blaster, by
analyzing archived NetFlow data, collected in a medium-sized Internet backbone. In order to
achieve this, we had to define in a first phase (specification) exact recognition patterns of the
worm traffic. In a second phase (implementation) we extracted the relevant flows from the Net-
Flow data and in the validation phase we analyzed the plots for anticipated worm patterns.

1.1.2 Computer Worms

A computer worm is defined in [1] as

... a self-replicating computer program, similar to a computer virus. A virus attaches
itself to, and becomes part of, another executable program; a worm is self-contained
and does not need to be part of another program to propagate itself.

In the past few years several worms have became famous because of their large impact.
Loveletter, Code Red, Blaster, Sobig and MyDoom are names which not only experts know,
because they were widely covered in the press.

A taxonomy of worms has been published in [2]. Of the 5 criteria of worm characterization
described in this taxonomy, we use 3 to classify the worms analyzed in this theses:

• the way how victims are discovered

• propagation carriers and distribution mechanisms

• the way the worm is activated.

W32.Blaster Blaster discovers its targets by scanning sequential ranges of IP addresses. It
uses two channels for distribution. The exploit uses Remote Procedure Call (RPC) to start a
shell for remote command execution. As a secondary channel it uses the Trivial File Transfer
Protocol (TFTP) for worm code transmission. Blaster is self-activating, which means that no
human interaction is needed to activate the worm, because the command to start Blaster is
issued by the attacker to the remote shell.

Sobig.F Sobig.F is an E-Mail worm, detecting its victims from E-Mail addresses stored on the
hard disk drive. As distribution mechanism it uses its own Mail Transfer Agent (MTA) to send
itself as an attachment of a mail message to the victims. Sobig.F is human-activated, meaning
that the user needs to execute the attachment in order to get infected.

1.2 The DDoSVax Project

1.2.1 Project Description

DDoSVax [3] is a joint project of ETH Zürich and SWITCH [4]. The objectives of the project
is the detection of infection phases of DDoS attacks while infection is in progress, detection
and analysis of massive DDoS attacks when they start in near real-time and the provision of
methods and tools that support countermeasures during both, infection and attack, phases.

The SWITCH network and the DDoSVax infrastructure are shown in Fig. 1. The SWITCH
network has four border gateway routers, on which Cisco NetFlow (see Sec. 1.2.2) data is
collected. The SWITCH network (AS559) connects all Swiss universities, various research labs,
federal technical colleges and colleges of higher education, to the Internet. It carries about 5 %
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Figure 1: SWITCH network and DDoSVax infrastructure

of the Swiss Internet traffic.

For near real-time online analysis, the NetFlow data is forwarded to the DDoSVax data capturer
and to the DDoSVax "UPFrame" framework [5]. For the offline analysis of past events, the
NetFlow data from the border gateway routers gets logged. Archives range back to April 2003,
with only a few missing hours caused by equipment maintenance. For this theses we have used
the archived data from August 2003.

For the offline analysis the DDoSVax team operates a Linux cluster called "Scylla" [6], with 22
identical nodes plus one gateway node, providing enough computation power to analyze the
large amounts of data.

1.2.2 Cisco NetFlow

The traffic statistics for the DDoSVax project are collected with Cisco NetFlow. A good introduc-
tion to NetFlow can be found at [7]. There are different levels of aggregation on which information
about the traffic in a network can be gathered. The highest level of aggregation, providing highly
concentrated, low volume data is SNMP. SNMP can provide for instance information about how
much traffic goes through an interface, but it is not possible to see the source or destination ad-
dresses of the traffic. The lowest level, providing very detailed, high volume data, is the packet
level. Packet level can be used to get information on every single transmitted packet. The draw-
back of collecting information on such a low level is, that it needs a huge amount of storage
space, when used for long-term archives. In between these levels, being a trade-off between
the level of detail and the data volume, traffic statistics can be collected on a flow level.

Flows In Cisco NetFlow, a flow is defined as a unidirectional stream of packets from one host
to another. A flow, according to [8] is identified by the tuple of source IP address, source port,
source interface, destination address, destination port, IP protocol and IP type-of-service. For
instance a TCP connection consists of two flows, one in each direction.
There are different conditions, which cause the flow to be terminated: no packets are transmit-
ted for a certain time, the duration exceeds a maximum time, the flow contains a FIN or RST
packet or the router cache expires.

Table 1 summarizes the most important fields, which are reported in Cisco NetFlow v5 for each
flow.
Relevant for this theses are mainly the pairs of addresses and ports, number of packets, number
of octets and the timing information.

1.3 Approach

1.3.1 Related Work

It is easy to find information about worm behavior from anti-virus enterprises. The worm
analysis we have used in this theses are mainly from Symantec [9].
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Field name Description
prot Protocol
srcaddr Source address
dstaddr Destination address
input Input interface
output Output interface
dPkts Number of packets
dOctets Number of octets
First Start of NetFlow
Last End of NetFlow
srcport Source port
dstport Destination port
tcp_flags TCP flags
tos IP type-of-service

Table 1: Subset of NetFlow v5 Fields (source: [8])

Analysis of worm generated network traffic are more difficult to find, because data as we use
them in the DDoSVax project are rare. The reason for the lack of comprehensive archives of
network traffic may be privacy laws, data security concerns and the high costs of maintaining
large archives.

For Blaster there are some analysis of traffic, for instance in [10] Jose Nazario from Arbor
Networks presents some plots of measured Blaster traffic, including analysis of Blasters effects
on routing. In [13] Symantec shows an analysis of the infection rate during the first days of
Blaster activity.

1.3.2 Definition of Worm Patterns

For the definition of worm patterns we relied mainly on three sources:

• The worm analysis of anti-virus enterprises to gain an overview of what is sent over the
network.

• A testbed we have set up. We have dumped the network traffic with a packet sniffer (Ethe-
real) and analyzed the worm traffic. As the testbed looks differently for Blaster and Sobig,
the according setup is presented in more detail in the particular sections.

• In the archives we have isolated infected hosts and analyzed their traffic for worm patterns.

With these information we gained a clear overview of how the traffic of the worms looks and we
were able to define patterns for filtering the NetFlow records.

1.3.3 Implementation

The implementation of our analysis can be divided in three parts.

Worm Traffic Isolation For collecting the worm relevant flows out of the huge amount of
logged NetFlow data, we have implemented scanning tools in C language. The scanning
tools are based on the netflow_iterator_template3 tool, written by Arno Wagner for
the DDoSVax project. For Blaster traffic, the scanning tool not only extracts the relevant flows,
but also matches the flows to connections and one or more connections to infection attempts.
As the scanning of the archive is consuming a lot of time and resources, the statistic files gen-
erated by the scanning tools are held as detailed as possible and have to be aggregated further
for making plots.



1.3 Approach 7

Aggregation The statistic files from the scanning tools are fed to aggregation scripts written
in awk [11]. These scripts are plot specific and generate statistic files which can be used directly
for plotting.

Plots The plotting part of the implementation was done with gnuplot [12].
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Variant Program file name Program size Discovered Comments
A msblast.exe 6176 Bytes 08/11/2003 The most wide spread variant.
B penis32.exe 7200 Bytes 08/13/2003 A man was arrested in

August 2003 suspected of
having released the B variant.

C index.exe 32045 Bytes 08/13/2003 Variant C comes in a
root32.exe 19798 Bytes package with a backdoor
teekids.exe 5360 Bytes trojan.

D mspatch.exe 11776 Bytes 09/01/2003 Not observed in the wild.
E mslaugh.exe 6176 Bytes 08/28/2003
F enbiei.exe 11808 Bytes 09/01/2003
K mschost.exe 6688 Bytes 02/03/2004
T eschlp.exe 28169 Bytes 04/21/2004

svchosthlp.exe 66048 Bytes

Table 2: Overview of Blaster variants (source: Symantec [16])

2 W32.Blaster

In this section we describe the W32.Blaster worm in detail. First, in Section 2.1 we put together
some general information about Blaster, when and how it first appeared and what was its impact.
In Section 2.2 we describe how the worm works technically. As the aim of this work is to analyze
Internet traffic data collected with NetFlow, we define the characteristics of traffic generated by
Blaster in Section 2.3. The results we achieved with these traffic patterns are presented and
discussed in Section 2.5 of this report.

2.1 Introduction

The Microsoft Windows DCOM RPC Vulnerability In July 2003 the "Last Stage of Delirium
Research Group" published in [14] a report of a buffer overrun in the Microsoft Windows Remote
Procedure Call (RPC) Interface. The RPC protocol defines inter-process communication to allow
code execution on remote systems. This vulnerability affected Windows NT4.0, Windows 2000,
Windows XP and Windows 2003 operating systems and was rated by Microsoft in a Security
Bulletin [15] as critical because it allows the execution of arbitrary code over the Internet. As a
consequence Microsoft made a patch available which fixed the overrun.

The Blaster Worm On August, 11th the Blaster worm was first discovered in the wild.
It uses the above described RPC vulnerability to spread and infects computers running
Windows 2000 and Windows XP operating systems. As no universal rules of how worms
and viruses are named exist, different companies give them different names. W32.Blaster.A
(Symantec) is also known as W32/Lovesan.worm.a (McAffee), Win32.Poza.A (CA), Lovesan
(F-Secure), WORM_MSBLAST.A (Trend), W32/Blaster-A (Sophos), W32/Blaster (Panda) or
Worm.Win32.Lovesan (KAV).

The total number of infections since outbreak vary in a wide rang from between 200’000 and
500’000 (Internet Storm Center) and 8’000’000 (Microsoft, April 2004).

Besides the A version of Blaster there has appeared a number of variants and today there are
still new ones discovered in the wild. They all use the same exploit code, but the worm code is
different. An overview of all variants according to Symantec [16] is shown in Table 2.

2.2 Technical Details

The way Blaster works is described in detail in [17]. This analysis of Blaster is based on the
assembly code and concurs with our observation of Blaster infections described in Section 2.3.
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Figure 2: Blaster infection

The following description is based on that analysis and holds for Blaster.A, though all other
variants work very similar, only some of them have some additional features.

2.2.1 Blaster Analysis

The runtime of the Blaster code can be divided in different phases. Phases 1 to 5 are shown in
Figure 2.

Phase 1: Initialization The first thing Blaster does when the code is executed is making a
registry key in HKLM\Software\Microsoft\Windows\CurrentVersion\Run called "win-
dows auto update" with string value "msblast.exe". This registry entry causes Windows to exe-
cute the Blaster code at Boot time.
Then Blaster makes a mutex called "BILLY" to prevent from multiple infections and tries to ini-
tialize Winsock and make a connection to the Internet. If the connection is successfully set up it
checks the date. If the current day is the 16th or later or if the current month is from September
to December it starts TCP SYN flooding windowsupdate.com with a spoofed source address
which consists of the two first bytes of the local address and the two last bytes generated by
random.
This attempt of a DDoS attack against windowsupdate was not successful because window-
supdate.com is not the real domain name of the windows update server but only forwarded to
windowsupdate.microsoft.com. All Microsoft had to do was to stop that forwarding and the win-
dows update functionality was not affected.
Also in the initialization phase Blaster decides whether it wants to infect Windows 2000 hosts or
Windows XP hosts. This decision is randomized, with 80% probability Windows XP is chosen,
with 20% Windows 2000. These two possibilities differ by a return address sent with the exploit
code described below.
The last step in the initialization phase is to generate an IP address from which scanning will
start. This address is with probability of 60% completely random (the first three bytes) with the
last byte set to zero, with 40% probability it uses the first two bytes of the local address, the third
byte is also taken from the local address, but if it is greater than 20 a random number from 0 to
19 is subtracted from it. The last byte is set to zero.

Phase 2: Scanning, Send RPC Exploit Code After initialization, Blaster tries to infect other
hosts. Phases 2 - 5 are repeated endlessly with IP addresses growing, starting with the address
created at initialization.

Scanning for vulnerable hosts is done by trying to set up a TCP connection to port 135 (Win-
dows RPC port). Blaster always scans blocks of 20 sequential IP addresses simultaneously.

For the IP addresses where the TCP connection was set up successfully, Blaster tries to send
the code exploiting the DCOM RPC vulnerability described in 2.1. If this code is successfully
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transmitted and the victim is vulnerable, it binds a Windows command shell to port 4444/tcp for
remote command execution.

Phase 3: Remote Download Initialization If the Exploit code was transmitted successfully,
the attacking host tries to connect to port 4444. If that connection setup is successful, it first
starts a TFTP server thread on the local machine and issues a command to download the
Blaster code by TFTP (Trivial File Transfer Protocol) to the remote shell on port 4444/tcp.

TFTP servers listen by default to UDP port 69. Windows contains by default a TFTP client, which
Blaster uses with the command tftp -i IP GET msblast.exe where IP is the address of
the attacking host.

Phase 4: Download of Worm Code If that command is successful, the victim downloads
msblast.exe and after this transmission or after a timeout of 20 seconds, the TFTP server on
the attacker is shut down.

Phase 5: Remote Worm Code Execution If the worm code was downloaded successfully,
the attacker issues the command to the victim to start msblast.exe. The start command is sent
over the same 4444/tcp connection as the download command. If this command is successful,
the victim is infected and starts itself to infect other hosts.

2.3 Blaster NetFlow Data Characteristics

2.3.1 Blaster Traffic

In order to define and find exact patterns in the archived NetFlow data, we had to observe the
traffic generated by Blaster infections and infection attempts. We did so in a small testbed with
two hosts, an attacker and a victim, and captured the IP traffic between them. Both hosts were
running Windows XP, first without the security patch, after that with the patch applied in order
to see the traffic of an unsuccessful infection attempt. The hosts both had IP addresses in the
192.168.0.0 Class C network, the attacker was 192.168.0.2, the victim was 192.168.0.3

Without Security Patch With the victim being vulnerable we performed 10 infection attempts
(msblast.exe was started 10 times on the attacker). After each successful infection we cleaned
and rebooted the victim host. With these 10 attempts we observed the following situations:

• Scan local IP range, Infection (3/10)

• Scan local IP range, no Infection (1/10)

• Scan random IP range (5/10)

• No scan, DNS Query to windowsupdate.com (1/10)

The dump of captured packets in the first case is shown in Figure 3 and Figure 4. We can see
three connections, one for the exploit code, one for the command issue and one for the TFTP
transfer. They are marked in different gray tones.

In the second case the exploit code was transmitted, but the connection to port 4444/tcp was
refused by the victim. We assume that in this case the Windows 2000 exploit code was sent, to
which Windows XP is not vulnerable.

The scan with a random start IP happened in 50% of the attempts, which is close to the 60%
indicated by the analysis.

The last case where no scanning was performed at all, only periodic attempts to resolve the
name of windowsupdate.com is somehow strange, because according the analysis of the as-
sembly code even if the DDoS attack is performed Blaster should still try to infect other hosts.
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Figure 3: Blaster infection packet flow (Part 1)

The date when we carried out these tests was the 28th of April and lies in the range where
DDoS attack should take place.

With Security Patch In the case where the victim had the security patch applied, the infection
attempt was not successful. The exploit code was transmitted, but as the patch fixed the RPC
vulnerability and prevented from the buffer overrun, no shell was bound to port 4444 and the
connection attempt to port 4444 was refused by the victim. The dump of the packet flow is
shown in Figure 5.

2.3.2 Infection Attempt Scenarios

In order to classify Blaster infection attempts we defined 5 different cases, which are distinguish-
able in the NetFlow records:

1. Victim does not exist or does not respond

2. Victim responds but is not vulnerable (port 135/tcp is not open)

3. Victim is vulnerable but the code for the wrong operating system is transmitted or the
security patch is applied1

4. Victim is vulnerable and exploit code is successfully transmitted to port 135/tcp but TFTP
server does not respond2

5. Infection is successful
1These two cases are not distinguishable in the NetFlow records.
2If TFTP traffic is blocked by a firewall or TFTP server was shut down or is congested.
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Figure 4: Blaster infection packet flow (Part 2)

Figure 5: Unsuccessful infection
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2.3.3 Blaster Flows

According to the packet flow analysis in Section 2.3.1 we can make some statements about
how the NetFlow records of infected hosts look. The number of packets being sent from the
attacker to the victim and vice versa and their size are important characteristics to identify the
NetFlow records.

Additionally to the information taken from the packet flow analysis we identified a host generating
a lot of Blaster traffic in the NetFlow data of 12th August 2003, the date where Blaster distribution
reached its climax. The records of this host gave us some more information of how Blaster flows
look.

TCP Port 135 The typical flow properties (number of transmitted packets and their size from
attacker to victim and vice versa) for all of the above defined infection attempt cases are listed
in Table 3. There are two important observations in this table. First, for each case there are
different possibilities of the number of packets. The reason is that some packets are sent
several times because of packet loss or too short timeouts. Most flows with a difference of one
packet differ by 40 or 48 Bytes in length, which is an indication for a repetition of the TCP SYN
packet3. Another reason could be that packets are fragmented. The second observation is that
there are always several flow sizes for the same packet number, which differ by 8 bytes in
length (separated with a "/" in the table). It seems that there are two different TCP SYN packets
in use. Normally a TCP packet without data and the SYN flag set has a size of 40 bytes (20
Bytes IP Header + 20 Bytes TCP Header). In some TCP SYN packets there is a TCP option
field of 8 bytes added with an indication of the maximum segment size accepted. In the table
the package number and size of the flows we observed in Section 2.3.1 are printed in bold. The
flow properties not printed in bold appeared in the NetFlow data of the host identified as Blaster
infected.

Note that cases 1 and 2 can not be uniquely identified as Blaster flows as they look the same
as any other program unsuccessfully trying to access port 135/tcp of another host.

With the knowledge about size and number of packets of the 135/tcp flows we have introduced
the following two filters for the NetFlow fields (see Table 1 for the meaning of the field names):

prot == TCP && dstport == 135 &&
((dOctets == 40 && dPkts == 1) || (dOctets == 48 && dPkts == 1) ||
(dOctets == 80 && dPkts == 2) || (dOctets == 88 && dPkts ==2) ||
(dOctets == 96 && dPkts == 2) || (dOctets == 120 && dPkts == 3) ||
(dOctets == 144 && dPkts == 3) || (dOctets == 2056 && dPkts == 7) ||
(dOctets == 2064 && dPkts == 7) || (dOctets == 2096 && dPkts == 8) ||
(dOctets == 2104 && dPkts == 8) || (dOctets == 2136 && dPkts == 9) ||
(dOctets == 2144 && dPkts == 9) || (dOctets == 2176 && dPkts == 10) ||
(dOctets == 2184 && dPkts == 10)|| (dOctets == 2216 && dPkts == 11) ||
(dOctets == 2224 && dPkts == 11)|| (dOctets == 2256 && dPkts == 12) ||
(dOctets == 2264 && dPkts == 12))

prot == TCP && srcport == 135 &&
((dOctets == 40 && dPkts == 1) || (dOctets == 48 && dPkts == 1) ||
(dOctets == 80 && dPkts == 2) || (dOctets == 88 && dPkts == 2) ||
(dOctets == 96 && dPkts == 2) || (dOctets == 120 && dPkts == 3) ||
(dOctets == 144 && dPkts == 3) ||
(dOctets >= 148 && dOctets <= 448 && dPkts >=3 && dPkts <=6))

TCP Port 4444 The identification of TCP port 4444 flow characteristics is more difficult than
with TCP port 135 flows. This is on one hand due to the fact that 4444 is not a well known port,

3The TCP SYN packet is a minimal sized TCP packet composed of only 20 bytes IP header and 20 bytes TCP
header



2.3 Blaster NetFlow Data Characteristics 14

Case Attacker -> Victim Victim -> Attacker
# Packets Flowsize (Bytes) # Packets Flowsize (Bytes)

1 1 40/48 - -
2 80/88/96 - -
3 120/144 - -

2 1 40/48 1 40/48
2 80/88/96 2 80/88/96
3 120/144 3 120/144

3 7 2056/2064 3 - 6 148 - 448 (188)
8 2096/2104
9 2136/2144
10 2176/2184
11 2216/2224
12 2256/2264

4 7 2056/2064 3 - 6 148 - 448 (188)
8 2096/2104
9 2136/2144
10 2176/2184
11 2216/2224
12 2256/2264

5 same as case 4

Table 3: Port 135/tcp flow characteristics

that means it can be used by any application as source port for outgoing connections. On the
other hand the behavior of the shell bound to port 4444 can differ for the same situation. This
means that for instance for a successful command the shell sends some status messages over
the network which are either sent as one message or split up in several messages. Sometimes
the TCP port 4444 connection is split in 2 flows (per direction) because there can be a gap of
20 seconds between the issue of the download command and the execution command. This
splitting is controlled by the inactive_timeout variable 4, which determines when a flow is
considered as completed.

Anyway for case 3 (wrong exploit code sent or system is patched) characteristic numbers of
packets and flow lengths can be defined. This is shown in Table 4. For the case where the
commands are issued successfully we could only define boundaries of the number of packets
and Bytes in the flow.

For the 4444/tcp flows we have applied the following filters:

prot == TCP && dstport == 4444 &&
((dOctets >=40 && dOctets <= 188 && dPkts >= 1 && dPkts <= 3) ||
(dOctets >= 200 && dOctets <= 700 && dPkts >= 3 && dPkts <= 15))

prot == TCP && srcport == 4444 &&
((dOctets == 40 && dPkts == 1) || (dOctets == 80 && dPkts == 2) ||
(dOctets ==120 && dPkts == 3) ||
(dOctets >= 200 && dOctets <= 800 && dPkts >= 3 && dPkts <= 12))

UDP Port 69 If a UDP flow with source or destination port 69 (TFTP) has the same source
and destination IP addresses as the TCP flows on port 135 and 4444, it is with high probability
generated by Blaster. We distinguished two cases: either there is only one flow from the victim
to the attacker, unsuccessfully trying to download Blaster, or there are flows in both directions

4This variable defines the maximum inactivity time of a flow at the router before it expires. (It is currently set to 30s
at the SWITCH routers)
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Case Attacker -> Victim Victim -> Attacker
# Packets Flowsize (Bytes) # Packets Flowsize (Bytes)

1 no flow no flow
2 no flow no flow
3 1 - 3 40 - 188 1 40

2 80
3 120

4 3 - 15 200 - 700 3 - 12 200 - 800
5 same as case 4

Table 4: TCP Port 4444 flow characteristics

Case Attacker -> Victim Victim -> Attacker
# Packets Flowsize (Bytes) # Packets Flowsize (Bytes)

1 no flows
2 no flows
3 no flows
4 no flow 1 - 10 40 - 450
5 13 6592 14 464

Table 5: UDP Port 69 flow characteristics

with specific number of packets and flow lengths as indicated in Table 5.

For 69/udp flows we have applied the following filters:

prot == UDP && srcport == 69 &&
(dOctets == 6592 && dPkts == 13)

prot == UDP && dstport == 69 &&
((dOctets >= 40 && dOctets <= 450 && dPkts >= 1 && dPkts <= 10) ||
(dOctets == 464 && dPkts == 14))

2.4 Implementation

For the scanning and aggregation of the NetFlow data we have written a tool called
blaster_analysis in C language.

Parameters The programme takes a list of log files as parameter. As the DDoSVax infrastruc-
ture generates two log files for every hour, one file with the log of the router with the majority of
the traffic, the other file with an aggregation of the logs of the three other routers, both files have
to be in the list of the input files and are processed in parallel. The list of input files has to be in
chronological order, first the list of the files from the first router and then the list of the files from
the other routers.

Scanning The scanning part of the programme traverses the records in the input files
sequentially and writes all records matching the filters described in Section 2.3.3 into hashed
tables. We use separate tables for each connection (135/tcp, 4444/tcp and 69/udp) and
direction (in total 6 hashed tables).

Because sometimes the packets are routed through two routers, duplicate records with a
small time difference appear in the logs. For each new flow matching the filters, the ac-
cording hashed table is searched for a record with the same address and port pair. If the
search is successful and the difference of the start times of the flows is smaller than 50 ms, the
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new packet is considered to be such a duplicate packet and is not inserted into the hashed table.

After 5 minutes of scanned traffic, blaster_analysis tries to match the records in the
hashed tables to infection cases 1 - 5 (see Section 2.3.2). This is done by matching the IP
addresses and ports for each connection. Furthermore we check that the start time of every
flow lies within a time interval of 10 seconds starting with the first 135/tcp flow. This time
restriction should reduce the probability of counting a sequence of flows not generated by
Blaster but showing the same port numbers as Blaster traffic.

Because the NetFlow infrastructure sometimes loses records, in some cases not all flows have
to be recorded to match an infection attempt case. For instance, if all flows are present for a
successful infection except the 135/tcp flow from victim to attacker, the infection is still counted
as successful. Table 6 shows a list of the flows which have to be present for each of the infection
cases.

Output blaster_analysis generates two output files. The first is called
infip_STARTTIME_ENDTIME.out, where STARTTIME is the Unix timestamp5 of the
first input file and ENDTIME is the Unix timestamp of the last input file. In this statistics file,
blaster_analysis writes for every 5 minutes of analyzed traffic the actual timestamp,
followed by a list of active IP addresses with the number of case 1 to 5 infection attempts
(see list in Sec. 2.3.2) for this address. A sample of a stat file is given in Tab. 76. The second
file contains a list of all observed successful infections in more detail. This file is called
infec_STARTTIME_ENDTIME.out. It contains the attacker IP, the victim IP and the exact
timestamp of the infection. A sample is given in Tab. 87.

Plots In order to draw the plots presented in Figure 6 to Figure 10 we had to fur-
ther aggregate the statistic files. We wrote an awk script which sums the infection
attempts for a variable number of 5 minutes intervals and makes the distinction be-
tween infection attempts from inside or outside AS559. The script is executed by
cat infip_STARTTIME_ENDTIME.out | awk -f awk_sumcases i=12 >plot_file.out
where i is the number of 5 minutes intervals to aggregate and plot_file.out is the output file. The
output file can then be used to make the plots.

Limitations in the Observations There are several potential sources of errors in our obser-
vations. One is that a small part of traffic is not recorded in NetFlow at the routers. We tried to
deal with this loss of records by being not too strict in the matching of flows to infection cases.
Table 6 shows which flows have to be present for each infection case. This should minimize the
effect of record loss.

An other source of error is that for cases 1 and 2, which only require one resp. two flows, we
can not uniquely say that they originate from Blaster. If there were some large scale scannings
for port 135/tcp during the analyzed interval they are included in our statistics. We believe that
the distortions from other events are small, as no larger network events other than Blaster were
reported publicly during the analyzed time interval.

2.5 Traffic Analysis

Our analysis focuses on a time interval starting shortly before Blaster outbreak, 10th of August
2003, ending on 16th of August.

5Seconds since standard epoch of 1/1/1970
6Because of privacy concerns, the IP addresses have been replaced with x.x.x.x. Every line represents a different

IP address.
7x.x.x.x is a placeholder for the attacker IP address, y.y.y.y for the victim IP address. Different lines may have the

same attacker address, as one attacker can infect several victims.
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Case 135/tcp 4444/tcp 69/udp
A -> V A <- V A -> V A <- V A -> V A <- V

1 x - - - - -
2 x x - - - -

- x - - - -
3 x x x x - -

x x x - - -
x x - x - -
- x x x - -
- x x - - -
- x - x - -
x - x x - -
x - x - - -
x - - x - -

4 x x x x - x
x x x - - x
x x - x - x
- x x x - x
- x x - - x
- x - x - x
x - x x - x
x - x - - x
x - - x - x

5 x x x x x x
x x x - x x
x x - x x x
- x x x x x
- x x - x x
- x - x x x
x - x x x x
x - x - x x
x - - x x x
x x x x x -
x x x - x -
x x - x x -
- x x x x -
- x x - x -
- x - x x -
x - x x x -
x - x - x -
x - - x x -
x x x x - x
x x x - - x
x x - x - x
- x x x - x
- x x - - x
- x - x - x
x - x x - x
x - x - - x
x - - x - x

Table 6: Flows required for infection cases 1 - 5. ’A->V’: Flow from attacker to victim, ’A<-V’: Flow
from victim to attacker.
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********************************************************************
1060388093
********************************************************************
x.x.x.x 0 1 0 0 0
x.x.x.x 22 0 0 0 0
x.x.x.x 0 1 0 0 0
x.x.x.x 146 3 0 0 0
x.x.x.x 0 3 0 0 0
x.x.x.x 8 0 0 0 0
x.x.x.x 888 0 0 0 0

Table 7: Sample output file infip_STARTTIME_ENDTIME.out

x.x.x.x y.y.y.y 1060623734
x.x.x.x y.y.y.y 1060624838
x.x.x.x y.y.y.y 1060624967
x.x.x.x y.y.y.y 1060625896
x.x.x.x y.y.y.y 1060627748
x.x.x.x y.y.y.y 1060628838
x.x.x.x y.y.y.y 1060629790
x.x.x.x y.y.y.y 1060629958

Table 8: Sample output file infec_STARTTIME_ENDTIME.out

2.5.1 Infection Attempts and Successful Infections

Figures 6 to 10 show the number of infection attempts for each of the 5 cases defined in
Section 2.3.2. In Figure 6 we can see that the number of unsuccessful connection attempts
to port 135/tcp (case 1) drastically increases from around 1 mill. to about 13 mill. flows per
hour on August 11, at about 17:00. This can be regarded as the outbreak of W32.Blaster. At
the same time the number of case 2 (victim responding but not being vulnerable) grows from
about 50’000 to 1 mill connection attempts per hour. While the number of case 3 (Figure 8) and
case 4 (Figure 9) show no heavy increase at that time we can see a sharp peak of successful
infections (Figure 10) of 4 infections between 17:20 and 18:20 and even 9 infections between
20:20 and 21:20. The lack of heavy increase of cases 3 and 4 can be explained by the surprise
effect of Blaster, as anti-virus software did not yet recognize it. Once the exploit code was
transmitted successfully chances were high that the whole infection would be successful.

Before August 12 the vast majority of Blaster traffic came from outside the SWITCH net-
work.This changes at bout 06:00 and can be considered as the internal outbreak. Before that
only few hosts within AS559 have been infected. The 7 successful infections coming from
internal addresses between 20:20 and 21:20 on August 11, all originate from the same host,
which just happened to scan a range of IP addresses with many vulnerable hosts. The reason
for the delay of the internal outbreak may be that the external outbreak happened not during
working time and most internal hosts are probably switched off during the night.

In the plots of cases 1 and 2 we can observe a drop of connections from external hosts from
08:20 to 09:20 on August 12. This was probably caused by some inbound port 135/tcp filter
installed somewhere near AS559. We can observe another, smaller, drop of infection attempts
coming from external hosts, with its lowest point about 05:00 on August 13. This also might be
the effect of filtering.

About the same time there is a peak of cases 3 and 4 infection attempts coming from internal
hosts. The first peak of case 3 has its summit between 10:20 and 11:20 on August 12, with
11’681 infection attempts. Our analysis showed that 73 % of the case 3 infection attempts in
that interval came from one single class B network. The number of infected machines in that
subnet was at that time only 6 % of the total number of infected machines. The vast majority
of the victims of these infection attempts are in the next higher class B net lying outside of
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AS559. These connections were probably generated by Blaster scanning the local subnet, but
the scanned address range growing out of the local subnet and therefore the infection attempts
got routed over the SWITCH border gateways. At the same time interval the infected hosts of
that subnet generated only 4 case 4 and not a single case 5 infection attempt. The reason for
this lack of successful infections may be that in the destination subnet the hosts were already
patched.
The same picture but even clearer shows the second case 3 summit from 19:20 to 20:20 on
August 14. There, 90 % of the case 3 attacks originate in one single /16 subnet and destinations
are almost uniquely in the next higher class B subnet lying outside of AS559. In that subnet
too, the hosts were apparently already patched as there were only 8 case 4 and no successful
infections.
The reason why these scans show up as peaks in the plot is that probably most of the hosts
were infected in a small time range internally and therefore started their scanning about the
same time. Consequently, they also reach the next network at the same time and when they
have passed the address space of that subnet, they came probably to a network less populated
or with some filtering, which caused a drop of case 3 infection attempts. The scanning then
appears as case 1 or case 2.

About 82 % of the peak of case 4 infection attempts with its summit from 12:20 to 13:20 on
August 12, has its origin also in the two above-mentioned class B networks.

The plot of case 3 infection attempts shows a small peak on August 10, between 19:20 and
20:20, before the outbreak of Blaster. Our analysis showed that this peak originates from a
single source address. At that time the exploit code used by Blaster was already published and
we assume that someone was testing it. From that specific IP address we observed a scanning
of port 135/tcp and for the addresses the scanning was successful the exploit code was sent.
It is possible that this was some testing in the development phase of Blaster, but more likely
someone just tried out the exploit code for fun or for some other kind of abuse.

The plot of successful infections shows a peak at the right end with 40 infections within 3 hours,
from 21:20, August 15, to 0:20 August 16. 36 of these infections originate from one host and
have their victims in one class B network. This host obviously scanned by chance a network
with plenty of vulnerable hosts and no filtering.

Surprising in Figure 10 is, that, despite the high number of infected hosts, we can only observe
very few successful infections going over SWITCH routers. Over the analyzed time period, from
outbreak, on August 11, to August 16, 00:20, there is only a total of 302 registered infections.
The reason for this low number may be that the vast majority of infections happen locally. An-
other reason is inherent in the design of Blaster, relying on 3 different connections. Because not
widely used services (as TFTP) are filtered in many networks, this is a source of errors. Blaster
was very successful in spreading within local networks but for being successful in spreading
over the border of networks, there were too many connections and ports involved.

2.5.2 Successful Infections

In order to get a better overview of the observed successful Blaster infections, we have made
some statistics with all infections in the interval from the outbreak to August 16, 00:20. We have
observed a total number of 302 infections in that time interval. 80 % of the infections originate
within AS599 and 20 % are from external hosts.

In total 88 hosts have successfully infected others. The 10 most successful hosts have per-
formed 186 (62 %) of all observed infections. The hosts in the top 10 list happened to coin-
cidentally scan networks with high numbers of vulnerable computers. The 46 infections of the
"winner" all go to addresses in a range of 21 adjacent class B networks. The fact that 6 of the
10 hosts in the list are in the same /16 subnet is an evidence that this network suffers from slow
patching procedures.
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Figure 6: Number of ’case 1’ Blaster infection attempts from Aug 10th to Aug 15th
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Figure 7: Number of ’case 2’ Blaster infection attempts from Aug 10th to Aug 15th
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Figure 8: Number of ’case 3’ Blaster infection attempts from Aug 10th to Aug 15th
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Figure 9: Number of ’case 4’ Blaster infection attempts from Aug 10th to Aug 15th
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Figure 10: Number of ’case 5’ Blaster infection attempts from Aug 10th to Aug 15th
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Subject Body text Attachment filename
Re: Details See the attached file for details your_document.pif
Re: Approved Please see the attached file for details. document_all.pif
Re: Re: My details thank_you.pif
Re: Thank you! your_details.pif
Re: That movie details.pif
Re: Wicked screensaver document_9446.pif
Re: Your application application.pif
Thank you! wicked_scr.scr
Your details movie0045.pif

Table 9: Sobig.F message subject, body and attachment (source: Symantec [18])

3 Sobig.F

3.1 Introduction

In this section we present our analysis of the Sobig.F worm. After giving a general overview of
the worm in this section, Sobig.F is described from a technical point of view in Section 3.2. Our
analysis of Sobig.F traffic is presented in Section 3.4.

E-Mail Worms As opposed to Blaster and other worms and viruses using vulnerabilities in
the operating system or other programs, most E-Mail worms depend on the user executing an
attachment of an E-Mail. The first famous E-Mail worm, and probably the best example of how
E-Mail worms spread by using a clever E-Mail subject and text, is the famous ILOVEYOU worm
first discovered in May 2000. Since then a lot of E-Mail worms with large impact have appeared,
some famous names are MyDoom, Bagle and Sobig.

The Sobig.F Worm Sobig.F was first discovered August 19, 2003. It is an E-Mail worm that
spreads as attachment of E-Mails with varying subject, message body and attachment filename.
All possible variations are listed in Table 9. The F variant is the successor of Sobig.A 8 to So-
big.E but was by far the most successful in terms of impact of the Sobig series.
Affected operating systems are Windows 2000, Windows 95, Windows 98, Windows Me, Win-
dows NT and Windows XP.
Sobig.F is also known as W32/Sobig.f@MM (McAffee), WORM SOBIG.F (Trend), W32/Sobig-F
(Sophos), Sobig.F (F-Secure), Win32.Sobig.F (CA) or I-Worm.Sobig.f (KAV).
A noticeable feature of Sobig is that it has an automatic deactivation routine and stopped spread-
ing on September 10, 2003.

3.2 Technical Details

The following is based on the Symantec Security Response - W32.Sobig.F@mm [18] and con-
curs with our observations of Sobig.F infections in our testbed.

3.2.1 Sobig.F Analysis

When the worm binary is executed it performs the following actions: It first installs it-
self as winppr32.exe in the Windows installation directory (usually C:\Windows) and
adds the value "TrayX"="%Windir%\winppr32.exe /sinc" in two registry keys,
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run and
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run in order
to get started automatically at Windows startup.
Sobig.F then enumerates all network shares to which it has write access, but because of a bug
in the code it is not able to spread over the shares. After that, it uses NTP9 to determine the

8The A variant was discovered in the wild on January 09, 2003
9NTP: Network Time Protocol runs over port 123/udp



3.3 Implementation 22

**********************************************************************
timestamp 0-200 400-500 103k-125k <200 <500 <125k total
**********************************************************************
1061338845 46036 17626 25751 46036 81401 163698 163986
1061342445 52075 18098 28217 52075 86916 173135 173420
1061346046 59943 13903 25397 59943 92346 175965 176205
1061349646 56309 16501 27254 56309 91055 174396 174682
1061353247 55475 18700 31943 55475 93884 182219 182639
1061356847 70425 22077 50477 70425 115530 233956 234797
1061360447 91477 23388 74384 91477 138567 307008 308350
1061364047 96292 28183 97029 96292 150220 367406 369112

Table 10: Sample output file distr_STARTTIME_ENDTIME.out

time from one of 19 hardcoded NTP servers10. This time fetch operation is repeated every hour.
If the date is later than August 22, 2003, weekday is Friday or Sunday and the time is between
1900 and 2200 UTC it tries to contact one of the 20 hardcoded master server IP addresses on
port 8998/udp. This feature was probably intended to be an automatic update functionality, with
the master servers providing a URL from which Sobig would download an executable. But all
the master servers were taken from the net before Sobig could use them.
After this initialization phase it starts the spreading phase. It has its own MTA included for
sending the E-Mails. The destination addresses are taken from all files it finds on the harddisk
with extensions

• .dbx
• .eml
• .hlp
• .htm
• .html
• .mht
• .wab
• .txt

The sender address of the E-Mails is spoofed and also taken from these files.

3.3 Implementation

For the analysis of Sobig.F traffic we have implemented a tool called sobig_analysis.

Parameters sobig_analysis takes as parameter a list of log files, which have to be ordered
as described for blaster_analysis in Sec. 2.4.

Scanning The records in the log files are scanned for port 25/tcp flows with sizes typical for
Sobig.F E-Mails (see Sec. 3.4.3). For every typical flow size a counter counts the flows of a time
interval of one hour.

Output After every hour of scanned traffic, sobig_analysis writes the counters together
with a timestamp in a file called distr_STARTTIME_ENDTIME.out, where STARTTIME and
ENDTIME are the Unix timestamps of the first/last input file. A sample of the output file is shown
in Tab. 10.

10The server it tries to contact first is the NTP Server of ETH Zurich
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infected
host

Sobig.F

NTP (< 09/10/2003)
123/udp

53/udp
DNS (named)

129.132.2.20

129.132.2.21

Server

MTA (sendmail)
25/tcp

Figure 11: The testbed for Sobig.F

Limitations of the Observations As there is some transit traffic in the SWITCH network,
some flows are counted twice in our analysis. This is only a small percentage of the total traffic
and the distortion from these duplicate records should be small. Furthermore the filtering criteria
which are only based on the size of the flows do not distinguish between Sobig.F E-Mails and
other messages of the same size. In order to get an idea of how much of the flows really come
from Sobig we have added graphs of one day before Sobig.F outbreak.

3.4 Sobig.F Traffic Analysis

3.4.1 The Testbed

In order to observe Sobig.F operation we have set up a testbed with two computers, an attacker
and a server (see Fig. 11). The attacker was a Windows XP host on which we ran Sobig.F.
On the server machine (Linux Fedora Core1) we set up three services: NTP, MTA and DNS.
Because Sobig.F determines the time with NTP from servers with hardcoded addresses and
the date has to be earlier than September 10, 2003, we ran an NTP server and gave the server
machine the IP address 129.132.2.21, which is the hardcoded address Sobig first tries to con-
tact. The DNS service (bind) was configured to resolve all name queries from the attacker to the
server IP address (129.132.2.21) so that the E-Mails from Sobig are sent to the MTA (sendmail)
running on the server. For packet capturing we ran Ethereal on the server machine.

3.4.2 Observed Worm Transmissions

On the testbed we captured the packets of several Sobig.F transmission. A dump of the first few
packets of a successful transmission is shown in Figure 12. Over several such transmissions
we observed an average of about 100 port 25/tcp packets sent from attacker to MTA with a total
size (including IP and TCP headers) of about 104’000 Bytes. The flows in the other direction
consisted of about 40 packets with a total size of about 2’000 Bytes.
On our testbed we observed that only about 5 % of the Sobig.F transmissions were listed
complete and correct in the Ethereal dump files. The rest of the transmissions showed up
incomplete in the dumps, most of them with only about 80 packets and 80’000 Bytes from
attacker to MTA. As sendmail accepted the incomplete transmissions anyway with a "Message
accepted for delivery" status report, we can only speculate that the server machine might have
been overloaded and Ethereal could not capture all packets. If the packets would really have
been lost on the network, the TCP flow control would have caused retransmissions, which we
did not observe.

Because of the increasing number of spam mails many MTAs have installed some kind of filter.
There are two important kinds of filters, whitelist and blacklist, which reject E-Mails, depending
on the sender address, before they are even transmitted and therefore show special flow char-
acteristics. Whitelist filters only accept mails from MTAs known to be spam free, while blacklist
filters only reject mails from MTAs known to send a lot of spam. Both kinds of filters possibly
filter Sobig mails. Whitelists do because they do not know the infected host. Blacklists on the
other hand filter Sobig traffic only if there is already some other spam relay program installed
on the infected host, which is known to send spam. In order to see how the flows of rejected E-
Mails look we installed a filter on the MTA and ran the packet sniffer. A dump of such a rejected
transmission is shown in Figure 13. The flow from attacker to MTA consists of 8 packets with a
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total size of about 400 Bytes, while the flow in the opposite direction shows 11 packets with a
total size of about 850 Bytes.

3.4.3 Flow Size Distribution

The number of packets in a flow and the flow size of Sobig.F flows vary and therefore we can
not define flow characteristics as precise as with Blaster. In order to find some boundaries of
flow size we analyzed one hour of NetFlow data, where Sobig transmission had its summit,
on August 19, from 12:20 to 13:20. The plots of the flow size distribution are shown in
Figures 14 to 17. For comparison we added the same distribution plots of August 18, before
Sobig.F outbreak.

Figure 14 to 16 show different intervals of flow sizes with destination port 25/tcp. We see
some clear peaks of small flow sizes (Figure 14) which come from requests to servers not
responding. The comparison of August 18 and 19 show that the peaks lie at the same sizes but
are significantly higher after the outbreak. On Figure 15 we see that there are two wide peaks
originating from Sobig.F flows, one from about 400 Bytes to 440 Bytes and the other, less high,
from 450 to 490 Bytes with a sharp peak at 478 Bytes. These peaks are probably caused
by filtered transmissions. About 70% of the flows of the sharp peak have the same source
and destination IP address, the peak is generated by a single Sobig infected host probably
trying to send the same E-Mail hundreds of times. The plot of August 18 shows only two sharp
peaks at 444 and 491 Bytes. These peaks are not caused by Sobig and we can only speculate
about their origin. As they have many different source and destination IP addresses, they might
be caused by some other E-Mail worm. While the first peak is still present on August 19 the
second has disappeared. Figure 16 shows the wide peak of successfully transmitted Sobig.F
E-Mails, starting at about 103’000 Bytes then decreasing at about 109’000 Bytes but still being
significant up to about 125’000 Bytes.

Figure 17 shows the distribution of flow size in the other direction, with source port 25/tcp. The
figure shows that on August 19 there are about twice as much flows of size 0 - 1000 Bytes
as on August 18. These are probably generated by rejected Sobig.F messages. There is also a
significant increase of flows with size ranging from about 1800 Bytes to 5500 Bytes. These flows
originate probably from successful transmissions. Besides some peaks between 2500 Bytes
and 2800 Bytes there are some noticeable sharp peaks between 4800 Bytes and 5100 Bytes.
Our analysis showed that all these peaks originate from flows with only two source addresses,
which lie in the same subnet. As Sobig.F infected hosts can be used as open relay mail servers
(see [18]) these servers might have been abused for sending spam.

3.4.4 Flow Sizes

In Figure 18 we plotted the development of flow sizes with destination port 25/tcp over the time,
in an interval from August 18 to August 21. The figure shows three levels of flow sizes. The
first level is the number of flows with size less than 200 Bytes. These flows originate from failed
connection attempts to mail servers not existing, or rejecting the connection for some reason.
The second level shows all flows smaller than 500 Bytes. These flows originate from either
very small or rejected (by some filter) Mail messages. The third level shows the total number
of flows, including successful Sobig.F transmissions. The plot clearly shows a daily rhythm in
the number of flows with traffic increasing at about 06:00 in the morning, a peak around noon
and decreasing until about 18:00. After the outbreak of Sobig.F we see an increased number of
flows of all sizes. The biggest increase show the flows larger than 500 Bytes, where the number
goes up from around 50’000 on August 18 to about 250’000 on August 19, at noon.

3.4.5 Number of Worm Transmissions

Our analysis of the flow sizes in Section 3.4.3 showed that the number of flows with destination
port 25/tcp and size between 103’000 and 125’000 Bytes is about 350 on August 18, 12:20
to 13:20 and drastically increases to about 137’000 on August 19, between 12:20 and 13:20.
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Figure 12: Dump of (part of) Sobig.F transmission

Figure 13: Dump of rejected Sobig.F transmission
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Figure 14: Distribution of flow sizes (dest port 25/tcp, 0 - 500 bytes)
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Figure 15: Distribution of flow sizes (dest port 25/tcp, 400 - 500 bytes)
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Figure 16: Distribution of flow sizes (dest port 25/tcp, 70’000 - 130’000 bytes)
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Figure 18: Cumulative number of flow sizes over time
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Figure 19: Number of Sobig.F transmissions over time

So we can assume that less than one percent of the flows of these size are not Sobig.F gen-
erated. The rest originates from successful Sobig.F transmissions. Figure 19 shows a plot of
the number of flows with size between 103’000 and 125’000 Bytes, from which we can assume
that they originate from successfully transmitted Sobig.F Mails. As the number of E-Mails in that
size range starts to increase on August 19 at about 09:00, this can be regarded as the Sobig.F
outbreak. The number of successful transmissions raises drastically until about 12:00 and then
starts to decrease until the end of the working day at about 18:00. The peak of 137’000 trans-
missions on August 19 is by far the highest, on August 20 the peak reaches about 100’000 and
on August 21 only 50’000 transmissions. This decreasing height of the peaks probably originate
by people updating their anti-virus software and cleaning up their machines. During the night
the number of transmissions reaches only about
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4 Conclusion and Outlook

4.1 Conclusion

In this semester thesis we presented our analysis of Blaster and Sobig generated network
traffic. We now draw our conclusion of this analysis with respect to the goal of the DDoSVax
project to detect infection and attack phase of DDoS attacks in near real-time and to take
countermeasures as early as possible.

4.1.1 Blaster

The goal of the thesis, to define exact worm traffic pattern, implement them and observe the
worm traffic in the generated plot was achieved. With the analysis of the plots we gained a
good insight on how Blaster spread.

The most obvious observations in the Blaster traffic is, that there is loads of scanning traffic and
unsuccessful infection attempts recorded at the gateway routers, but only very few successful
infections. This lack of large numbers of infections comes from the design of Blaster. Blaster
relies on three connections to be successful, ports 135/tcp, 4444/tcp and 69/udp have to be
open in the network. In many networks where some sort of security is implemented, ports
135/tcp and 69/udp are filtered. The vast majority of Blaster infections happen in the local
network and can not be seen on the gateway routers.

The scanning traffic can be used to detect the worm outbreak in a very early stage. This can be
achieved by scanning the network traffic in real-time for some worm typical patterns. Plug-ins
for the UPFrame framework which perform these scans have been implemented in the context
of the DDoSVax project, for instance the flow size histogram [19], which plots in near real-time
the distribution of flow sizes. The effectiveness of such detection tools has been confirmed with
our analysis.

On the other hand, the low number of successful worm transmissions makes it very hard to take
countermeasures in an early phase in the backbone network. Once the detection tools have
shown a pattern of the worms scanning traffic, filters could automatically be adapted to block
the worm traffic. This potential automatic countermeasure holds the risk to filter regular traffic,
for instance filtering port 135/tcp or 69/udp would cause the regular services running on these
ports to stop working. More promising would be to identify infected hosts and only block their
traffic on the relevant ports. This would minimize the negative impact of the filtering, but has to
be handled carefully, as for instance the filters have to be opened as soon as a host is cleaned
or the IP address is handed over to another host. Furthermore it would require a very powerful
filtering infrastructure.

4.1.2 Sobig.F

For Sobig.F we had to rely mainly on the criteria of the flow sizes to isolate the traffic. Patterns
as exact as for Blaster could not be defined. However, by finding boundaries for these flow
sizes, we could still gain good criteria for successful Sobig.F transmissions. The plots gave us
a good picture of the amount of transmitted Sobig.F E-Mails.

Our analysis shows that detecting an E-Mail worms like Sobig.F is possible by analyzing the
distribution of the size of SMTP flows over time.

The problem with countermeasures is about the same as with Blaster. Filtering SMTP traffic is
not possible in the backbone network without analyzing the payload of the packets. A possibility
to reduce worm traffic would be, as with Blaster, to first identify infected hosts and block their
SMTP traffic. This would cause a Denial of Service for all E-Mails of infected hosts and therefore
can not be regarded practical. The effect would even be worse if a worm does not have its own
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MTA, but uses the standard mail gateway of the network. Filtering the mail traffic of this gateway
would cause a Denial of Service for E-Mail traffic of the whole network.

4.2 Outlook

In the DDoSVax project a lot of interesting work is still to be done.

Based on the knowledge gained from this and other theses, other worms could be analyzed. At
the time this theses was written most of the worm activity was caused by two E-Mail worms,
Bagle and MyDoom. But it is no question that also in the future new "interesting" worms will
appear.

Besides analysis, automatic detection of new worm activity is an interesting subject to which
the insights from this theses can contribute.

As we have seen that simple countermeasures like blocking are difficult to take in the backbone
network, automatic identification of infected hosts together with dynamic, IP specific filters could
be worth to take a closer look at.
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