
Institut für
Technische Informatik und
Kommunikationsnetze

Bernhard Tellenbach

Visualisation of
Client/Server Behaviour

Semester Thesis SA-2004.24
April 2004 to July 2004

Tutor: Thomas Dübendorfer
Co-Tutor: Arno Wagner
Supervisor: Prof. Bernhard Plattner

2

Abstract

This thesis is part of the DDoSVax project. The goal of this project is to detect Distributed Denial
of Service (DDoS) attacks and Internet worms and to develop and initiate countermeasures. In
this thesis, a model to characterise the behaviour of Internet hosts as well as the host classi-
ficator algorithm that uses this model are presented. Furthermore the tool VISTOOL that was
developed to visualise and evaluate the output of the host classificator algorithm is shown. The
VISTOOL was implemented as Common Gateway Interface(CGI) program. It provides besides
the known XY visualisation plot, new plot methods like the Venn diagram plot and the port map
plot. They were necessary to display the huge amount of data in a meaningful way. Since the
goal of the characterisation and visualisation was to be able to detect anomalous activity in the
Internet traffic, a validation of the developed tools with normal and anomalous Internet traffic
is also part of this thesis. For the validation the Cisco Netflow v5 data generated by the border
gateway routers of the Swiss Education and Research Network SWITCH could be used. About
5% of the Internet traffic in Switzerland and crossing Switzerland is routed by these routers.
It is shown that with the developed host classificator algorithm and the visualisation tool VIS-
TOOL, significant changes can be seen when comparing the plots from normal traffic and from
anomalous traffic.

Contents

1 Introduction 5
1.1 Motivation . 5
1.2 Task Description . 5
1.3 Overview . 6
1.4 Related Work . 6

2 Characterisation of Client/Server Behaviour 7
2.1 Server Characteristics . 8
2.2 Client Characteristics . 8
2.3 How to Identify a Host as a Client and/or Server 9

2.3.1 Choosing Relevant Parameters for a Client/Server Classification 9
2.3.2 Mapping Hosts to Classes . 10

2.4 Port Activity . 11

3 Host Classification Algorithm and Data Structures 13
3.1 Software Restrictions . 13
3.2 Hardware Restrictions . 13

3.2.1 Memory Limitation . 14
3.2.2 Processing Time Limitation . 14

3.3 Data Structures and their Memory Usage . 14
3.3.1 Traffic and Connector Class . 14
3.3.2 Responder Class . 14

3.4 Port Activity . 16
3.5 Memory usage calculation . 18
3.6 Host Classificator Algorithm . 18

3.6.1 Responder Classification . 22
3.6.2 Port Activity Analysis . 22
3.6.3 Possible Loss of Information . 24

3.7 Statistic File Format and the Directory Structure 24

4 Visualisation 27
4.1 Global Settings . 27
4.2 Host Classification . 28

4.2.1 Venn Diagram . 28
4.2.2 X-t Plot . 28

4.3 Port Activity . 28

5 Validation 33
5.1 Memory Usage and Performance Analysis . 33
5.2 Normal Traffic . 34
5.3 W32.Blaster Traffic . 34

5.3.1 Comparison of the Results . 34

3

4 CONTENTS

6 Conclusion and Outlook 47
6.1 Conclusion . 47
6.2 Outlook . 47

6.2.1 Using the Host Classificator Plug-in Output for Anomaly Detection 47
6.2.2 Further Use of the Connection Tracking Capability 48

6.3 Acknowledgements . 48

A Appendix 49
A.1 The Converter Tool . 49
A.2 Host classificator Readme.txt . 49
A.3 VISTOOL Readme.txt . 50
A.4 Provided Files . 51

Chapter 1

Introduction

1.1 Motivation

In the year 2000, when some of the worlds leading dotcom companies suffered a severe eco-
nomical damage caused by distributed denial of service (DDoS) attacks, the red light was seen
by every businessman or businesswoman responsible for clients or servers connected to the
Internet. Despite the fact that this problem was already known to some non-commercial sites
like the ETH since they were attacked before, the private sector of the economy had almost no
interest in basic research with the goal to develop detection algorithms and countermeasures.
This interest was necessary to get the support to carry out projects like DDoSVax1.

DDoSVax project A cooperation of the ETH with the operator of the Swiss Education and
Research Network SWITCH2, gave the researchers at ETH for the first time access to enough
flow-level Internet traffic data to make a scientific analysis of if and how an identification
and analysis of DDoS attacks is possible with the long-term objective to be able to initiate
countermeasures. The traffic data is collected by four border gateway routers operated by
SWITCH using Cisco Netflow V5 [1]. Unfortunately only about 5% of the Internet traffic inside
or crossing Switzerland is routed by SWITCH, furthermore Cisco Netflow v5 records contain
only few information about each detected connection3 so that the detection of a DDoS attacks
is non trivial. Altogether the data provided by SWITCH permitted the development of some
sophisticated algorithms and applications to detect and visualise anomalous network behaviour.

This thesis Since Internet worms can be used to distribute software with which the infected
hosts could be misused for a DDoS attack, it is obvious, that the detection of a worm, spreading
over the Internet, is useful. What makes a detection difficult is the wide variety of distribution
methods causing different anomalies when different worms are spreading. To detect and visu-
alise these anomalies by characterising and evaluating server vs. client behaviour is therefore
a challenging task and at the same time the motivation for this thesis. The focus of this thesis is
laid on the characterisation and not on the detection.

1.2 Task Description

After characterising server vs. client behaviour of Internet hosts, a new type of graphical plot will
be developed and implemented to show the current distribution of client and server behaviour
in the Internet. A second type of graphical plot will be used for visualising how the behaviour of
Internet hosts changes over time. For both plots, measurement parameters, efficient algorithms

1See http://www.tik.ee.ethz.ch/∼ddosvax/
2See http://www.switch.ch/
3a connection in the sense of Cisco Netflow v5 is identified by protocol, source IP address, destination IP address,

source port and destination port and a few other parameters. It contains only data about the data flowing from the
source to the destination. For more details see [1]

5

6 CHAPTER 1. INTRODUCTION

and visualisation plots will be conceived. The task is split in three major subtasks: Specification,
Implementation, and Validation.

Specification Efficient aggregation algorithms and meaningful visualisation plots for the cur-
rent state of observed hosts and for showing the change of host states over time have to be
specified. A rough estimation on the needed processing power will have to be made. If perfor-
mance will be a problem, a simple online and a more detailed but slower offline algorithm might
be considered.

Implementation The goal is to generate the new visualisation plots for client/server behaviour
by a plug-in for UPFrame4 and to make the plots accessible on the web. In addition, character-
istic parameter values should be made available for further processing by anomaly detection
tools.

Validation As a validation of the usefulness of the plots and the efficiency of the algorithms,
the archived NetFlow data prior and during the Blaster worm of August 2003 will be used. The
plots should show significant visible changes during the outbreak of the worm.

1.3 Overview

The structure of the thesis is the following: First of all, in Chapter 2 criteria to identify when
a host acts as a server and when it acts as a client are defined. The question, if the Cisco
Netflow v5 data provides enough information to take an unambiguous decision, is discussed.
Chapter 3 specifies the data structures and the host classificator algorithm that were developed
to classify the host behaviour according to the criteria described in Chapter 2. Afterwards the
visualisation plots are presented in Chapter 4 while the algorithm of the UPFrame plug-in and
the visualisation software with the data prior and during the Blaster worm outbreak of August
2003 is validated in Chapter 5. Finally this document ends with Chapter 6 where proposals for
the further development of the algorithm and the visualisation part are made.

1.4 Related Work

The paper ’Network Flow-Based Anomaly Detection of DDoS Attacks’ [8] by Georgios Androul-
idakis et al. presented at the TERENA Networking Conference 2004 in Rhodes, Greece de-
scribes an algorithm that is used to detect DDoS attacks based on network traffic in the form of
Cisco Netflow. Despite the fact that this thesis’s topic is not the detection of DDoS attacks but
of anomalous behaviour of Internet hosts, some similarities with the paper are obvious: Both
define characteristics based on which an analysis could be made and both use Cisco Netflow
data for the analysis.
The paper ’Correlation between NetFlow System and Network Views for Intrusion Detection’ [9]
was published in the time this thesis was in progress and therefore only later seen by the author.
Parameters for port activity are similar to this thesis but the visualisation method is different. An-
other difference is, that the focus of that paper is laid onto inspection of every single host, but
that of this thesis onto visualisation of the behaviour of the hosts of the entire network under
observation. Nevertheless the paper could have been inspiring if published earlier.

4see http://www.tik.ee.ethz.ch/∼ddosvax/upframe/

Chapter 2

Characterisation of Client/Server
Behaviour

This chapter describes client and server characteristics useful for deciding which class a host
belongs to. To characterise a host, a definition of both terms, server and client, has to be given.
In the World Wide Web (WWW) several definitions of the term ’server’ can be found:

A network device that provides service to the network users by managing shared
resources. Note 1: The term is often used in the context of a client-server architec-
ture on a Local Area Network(LAN). Note 2: Examples are a printer server and a
file server. ’Server’. Telecom Glossary 2000. Vers.T1.523-2001. American National
Standard for Telecommunications. 29.06.2004 <http://www.atis.org/tg2k>

A computer or device on a network that manages network resources. For example
a file server is a computer or a storage device dedicated to storing files. Any user on
the network can store files on the server. A print server is a computer that manages
one or more printers, an a network server is a computer that manages network
traffic. A database server is a computer system that processes database queries.
Servers are often dedicated, meaning that they perform no other tasks besides their
server tasks. On multiprocessing operating systems, however, a single computer can
execute several programs at once. A server in this case could refer to the program
that is managing resources rather than the the entire computer. ’Server’. Webopedia.
29.06.2004 <http://webopedia.com/TERM/server.html>

Because the focus of this thesis is on Internet traffic, only servers using the Internet as commu-
nication medium are of interest. Since the first and second definition imply that there are many
different use cases for servers, a characterisation for every use case seems impossible. An ex-
ample of a use case is a FTP Server. In this case the server copies one or more files between
two computers providing file organisation as well as transfer control. A characterisation on a
higher abstraction level is a possible solution to that problem and is discussed in Section 2.1.
For the technical term ’client’ several definitions exist on the WWW:

A client is:

• a computer that needs access to a server to use applications or documents

• a program that uses a server application to access a service Example: The
client offers an interface for entering, manipulating and querying data but the
processing of the request is done by a server application. In the Internet a client
is a program that provides all rules and methods to access a specific service1.
’Client’. Net-Lexikon. Vers.Beta 0.71. 10.10.2003. 29.06.2004 <http://www.net-
lexikon.de/Client.html>

Due to the wide variety of services offered by servers, the variety of clients is enormous and can
be characterised best on a higher abstraction level than the service level. Possible character-
istics are discussed in Section 2.2 whereas in Section 2.3 it is explained which characteristics

1services like FTP,E-mail. . .

7

8 CHAPTER 2. CHARACTERISATION OF CLIENT/SERVER BEHAVIOUR

were selected and why they were selected for the use with the classification algorithm presented
in Section 3.

2.1 Server Characteristics

Since Netflow v5 does not include the content of the IP packets in a flow and since a service can
normally only be identified if their content is known, a characterisation based on the kind of ser-
vice a server provides is impossible However, even if the content of the IP packets were known,
such a characterisation is difficult. The problem is, that the services used over an encrypted
link can not be detected and that there exist simply too many different services. Therefore other
characteristics than the type of service a server provides are needed. Possible characteristics
are:

A server. . .

• responds to connection requests.

• does not initiate connections to clients.

• receives a request with few data and sends a response with lots of data.

• is contacted by many different hosts.

• has a static IP address.

• offers a service on a well-known port which identifies at the same time the type of service

• uses a well-known port as source port

• generates traffic in more or less regular intervals

The list will be compared to the client characteristics in Section 2.3, where the resulting classi-
fication is presented too.

2.2 Client Characteristics

A list of client characteristics is provided here:

A client. . .

• initiates connections.

• does not respond to connection requests.

• sends a request with few data and gets a response with lots of data.

• contacts only few other hosts.

• often has a dynamic IP address.

• uses unprivileged ports as source port for its communication.

• communicates almost always with a well-known destination port

• generates few traffic in sporadic intervals

It will be compared to the list of server characteristics in Section 2.3

2.3 How to Identify a Host as a Client and/or Server 9

2.3 How to Identify a Host as a Client and/or Server

The lists of characteristics for a client and a server given in the two previous sections provide
some information about how a host can be identified as a client or a server. Nevertheless the
identification is not that easy, since the exception proves the rule and unfortunately some or
even a lot of exceptions exist for every mentioned characteristic. One of the most important
exceptions to the property that a client does only respond to connection requests, but does not
answer them - a server acts vice versa - , is FTP in active mode2. If every TCP connection is
observed for itself, the server seems to initiate connections without a previous request. Other
examples, e.g. for the property of a server only to send data with a source port in the range of
the well known ports identifying at the same time the service requested, exist. Passive FTP3

where the request is not sent to the same port as the requested data will be received from later
is such an example. Furthermore two special kinds of hosts have to be taken into consideration:
the hosts of a P2P network and the hosts participating in an Internet Relay Chat(IRC). For
those the characteristics listed in Section 2.2 and 2.1 are, if at all, only valid for some time and
therefore do not qualify a host as a server or a client but rather as behaving server-like or client-
like. But since research about P2P networks or IRC is the topic of other theses like [3] or [4],
no special characteristics to identify such hosts were defined. A not yet mentioned problem is
what the second definition of the term server in Section 2.1 implies, namely that a host can be
a server, a client or both at the same time, only depending on the software running on it.

2.3.1 Choosing Relevant Parameters for a Client/Server Classification

The remarks in Section 2.3 imply, that a classification of a host as a server using the listed
characteristics, can be ambiguous and therefore is not very useful. A more promising approach
is to select characteristics from the lists in Section 2.1 and 2.2 and to decide for each of them
if a host matches it or not. An overview of the behaviour of hosts in the Internet can then be
given by observing how many hosts match a certain characteristic. The following parameters
were deduced from the lists and will be used to characterise a host:

1. the number of connections

2. the amount of data sent and received

3. the number of bidirectional connections a host responds to

4. port activity of a host

It remains to justify the choice of the four characteristics, taken into consideration that they have
to be useful for the DDoSVax project where anomaly detection has the highest priority, while
gathering information about the distribution of e.g. file servers or http servers, is less important.
The first characteristic, the number of unidirectional connections a host opens to other hosts
within a certain timespan, was chosen because a host with many of these connections is on the
one hand probably a host providing service, but on the other hand, it could be a member of a
peer-to-peer network or a host infected by a worm currently trying to infect other hosts.
The second characteristic can be used on the one hand to detect hosts that produce a lot of
traffic, but on the other hand if the amount of data sent is greater than the amount of data
received this host probably acts, as discussed in Section 2.3, as server.
The third item in the list is probably the most important characteristic for anomaly detection
since most worms turn a host, that was beforehand only initiating connections, into a connection
accepting host [5].
The fourth item is valuable for behaviour characterisation and anomaly detection if kept in mind
that worms or zombies4 communicate via certain ports or within certain portranges. If multiple
hosts show suddenly activity on a port they didn’t use before, it can be an indication for an
anomalous behaviour and needs further investigation.
Finally, hosts that match the same characteristics are grouped and each group is identified by
a class name. The mapping of hosts to classes, using the first three characteristics in the list,

2see http://slacksite.com/other/ftp.html‚for details
3see http://slacksite.com/other/ftp.html#passive for details
4hosts that can be remote controlled e.g. to use them for spaming or DDoS attacks

10 CHAPTER 2. CHARACTERISATION OF CLIENT/SERVER BEHAVIOUR

is described in the following section. Why the fourth characteristic is not used as criteria for the
classification, but is treated separately, is also explained there.

2.3.2 Mapping Hosts to Classes

Each host can match none, one or multiple of the first three characteristics listed in the preced-
ing section, hence it is necessary to define a class for each possible combination. The class
diagram in Figure 2.1 shows the resulting classes. The fourth characteristic, the port activity of
a host, does not get it’s own basic class since it would only be reasonable to do so if the basic
class contains few sub classes. Unfortunately this would require a reduction of the whole port
information to a few parameters, e.g. to a counter that counts each port on which a host showed
for the first time activity, whose significance for anomaly detection were very questionable. As
a consequence there is no basic class for the fourth characteristic but a separate analysis tool
that is presented in detail in Section 4.3.
To continue, the requirements of the three basic classes are briefly explained.

Traffic Class: To be a member of this class a host has to fulfil the following requirement:

data sent
data received

> traffic class threshold (2.1)

Since Cisco Netflow v5 provides for each flow only information about the amount of network
layer data sent by the source, the parameters ’data sent’ and ’data received’ represent the layer
three data sent and received. It is possible that the actual amount of layer three data and the
measured amount differ because the input filter described in Section 3.6 possibly5 filters out
some traffic.

Connector Class: To be a member of this class, a host has to fulfil the following requirement:

number of outgoing connections > connector class threshold (2.2)

Only flows with the hosts IP address as source address are counted and their number is stored
for each host. The reason for it is, that a host that scans certain IP address ranges would
otherwise create many probably nonexisting connector class hosts. To count the flows where a
host appears as source can be problematic too if IP address spoofing is present. IP address
spoofing can falsify the result by counting connections for a host that is actually not responsible
for it. But because IP address spoofing is not the rule but rather an exception and IP address
spoofing can anyway not be detected except in special cases6, it is neglected.

Responder Class: To be a member of this class a host has to fulfil the following requirement:

number of bidirectional connections as responder > responder class threshold (2.3)

Since a Netflow v5 flow contains only information about one direction of a bidirectional connec-
tion, it is in a first step necessary to determine corresponding flows. To get in a second step
the number of bidirectional connections as responder, it is necessary to count only those flow
pairs, where the host is not the initiator7. A flow pair consists of a flow of which host H18 is the
source and host H2 the destination and of a flow of which host H2 is the source and host H1
the destination.

5depending on the filter parameters
6e.g. if all existing hosts of a network are known and a packet with an IP address of a not existing host as source

address appears, it has to be spoofed
7the criteria used to decide if a host is a responder is explained in Section 3.6.1
8identified by it’s IP address and port number

2.4 Port Activity 11

Figure 2.1: Class diagramm with requirements for each class

No Class: A host that is not a member of any of the other classes, belongs to this class.

To sum it up it is not possible to characterise a host unambiguous as a server or a client
but it is reasonable to decide if a host behaves rather server like or client like for a specific
characteristic. To be a member of one or more of the specified classes, a host has to show
rather server like behaviour for theses characteristics. As the comments in Section 2.3 showed,
behaving server like does not imply, that the host is actually a server.

2.4 Port Activity

If the source and the destination ports used by a host are known and if only the well known
ports are considered, the type of service a host uses or provides can be supposed. Furthermore
the probability that the assumption is correct, is very high, since for each well known port the
corresponding service is defined. It follows, that counting the hosts using a specific port would
give a good overview of the behaviour of hosts in the Internet, but since it provides not much
more information than already existing analysis tools that count all flows for a specific port, the
following approach was chosen; Each port used by a host in the current interval is logged and
afterwards compared to the ports used in the next interval. Those ports that were not used
before are then reported. Hence a HTTP server showing continuous activity, would ideally only
be reported once. Why the ideal case is unrealisable in a near real-time application and what
the algorithm actually does, will be explained in Section 3.6.2.

12 CHAPTER 2. CHARACTERISATION OF CLIENT/SERVER BEHAVIOUR

Chapter 3

Host Classification Algorithm and
Data Structures

After the characterisation of the client/server behaviour of Internet hosts in Section 2 it remains
to extract the information needed for a characterisation from the Cisco Netflow v5 data. Since
the characterisation has to be done in real time, it is necessary to specify memory saving data
structures and an algorithm that processes the data on average faster than it is coming in. In
it the term ’record’ is used for the first time. It stands for the Cisco Netflow v5 data structures
contained in the UDP packets provided by UPFrame, representing the information about the
flows. UPFrame1 is an application framework that is able to receive and process incoming UDP
packets at fast rates, buffer several megabytes of incoming data to smoothen out data bursts
and feed the received packets to plugins that independently process the data in the packets.
The specification process was rather challenging since the amount of flows in a certain timespan
can increase dramatically, e.g. during a worm outbreak. Only repeated testing and modification
of the algorithm and data structures allowed to finally meet the memory and processing time
limitations. The test results of the final version of the algorithm, using the flow data generated
during the W32.Blaster worm outbreak in August 2003, can be found in Section 5.1.

3.1 Software Restrictions

The only software restriction is that UPFrame with it’s plug-ins can only be used on a computer
running Linux or UNIX without adapting the code for the shared memory handling.

3.2 Hardware Restrictions

It is very important to meet the hardware restrictions since they assure that the plug-in does not
need separate hardware for execution but that it runs together with UPFrame and other plug-ins
on the same computer. The restrictions limit the memory available to plug-ins and processing
time. It is important to know that several UPFrames running on different computers can be
chained so that every UPFrame receives the same Netflow data. Unfortunately the header data
with the IP address of the sender of the UDP packet is changed when the packet is transmitted
from UPFrame to UPFrame. It follows, that to get the IP address of the router that sent a specific
UDP packet, the computer running UPFrame has to be the first link in the chain of frameworks.
A different solution would be to fake the sender IP address when transmitting it, but since to
fake the source IP address, UPFrame has to be run as ’root’, this is not an option. To run an
application as ’root’ is too risky. If e.g. it contains a security hole that allows the execution of
some commands, these commands are executed with the rights of the administrator.
For the following considerations it is assumed, that UPFrame runs on a computer fast enough
to avoid that flow data are lost and fast enough to allow at the same time the execution of the
plug-in.

1see http://www.tik.ee.ethz.ch/∼ddosvax/upframe/ for details

13

14 CHAPTER 3. HOST CLASSIFICATION ALGORITHM AND DATA STRUCTURES

3.2.1 Memory Limitation

The goal of a memory limit is to avoid failures due to a lack of memory and to be able to run
UPFrame with several plug-ins on the same machine. The key to keep the memory usage low
is to design data structures that use as little memory as possible and contain only information
that can not be derived from already stored data. Another possibility to keep it low is to filter2

data not adding to the significance of the analysis. To stay below the limit of 150 MBytes even
while processing the W32.Blaster data of August 2003, the data structures and the filter method
were adapted several times during the development process. It may be astonishing that not
all adaptions reduced the memory usage, but if the processing time limitation discussed in the
following section is taken into consideration too, the reason becomes clear.

3.2.2 Processing Time Limitation

To comply with the requirement to use not more than a certain amount of processor time, it is
desirable to have an algorithm whose complexity is linear in the number of flows and unique IP
addresses since the amount of flows can easily increase by a factor of ten and more when e.g.
a new worm is spreading over the Internet. Hence if the complexity of the algorithm is O(n2)
rather than O(n) and if a processor load of 1% is assumed when processing normal traffic, the
processor load is already 100% when the traffic increases only by a factor of ten. It follows that
to use more main memory can be reasonable if with the additional memory, the complexity in
the number of flows of the algorithm can be changed from O(n2) to O(n).

3.3 Data Structures and their Memory Usage

First of all the data needed to classify each host according to the criteria in Section 2.3 has to
be identified. But since Section 3.6.1 gives a detailed description of the classification algorithm
and the reason for some data fields become obvious only there, the focus of this section is set
on the used data structures and their memory usage.

3.3.1 Traffic and Connector Class

To check if a host fulfils the requirements given in Section 2.3 the first six fields of the hostinfo
data structure in Table 3.5 are sufficient provided that the data for a host is updated immediately
after a flow with the IP address of that host as source or destination, has arrived. Actually only
the first three fields are necessary for the check but because a certain lookahead for the analysis
of an interval is needed3, a distinction between flows valid for the current and the next interval
has to be possible. Hence another three fields are needed to store the information for the next
interval. The memory usage of the hostinfo data structure is analysed in Section 3.4, after which
the entire hostinfo structure has been discussed.

3.3.2 Responder Class

To determine the number of bidirectional connections a host responds to only the Netflow data
is available. Since a flow represents only one direction of a bidirectional connection, this data
should be organised in a way that corresponding unidirectional connections can be found with
complexity 1. This is important because for each unidirectional connection a search for the
corresponding connection in the other direction has to be performed and therefore the total
complexity is already O(n). If no hash table was used at all, the complexity of a search would
be O(n× log(n)) and doing the search n times would result in a complexity of (n2 × log(n)). To
achieve a complexity of 1, the nested hash table structure shown in Figure 3.1 is used.
The structure of the keys and elements used with the nested hash table are described in the
following tables:

2Section 3.6 describes the used filtering method
3the reason for this is explained in Section 3.6

3.3 Data Structures and their Memory Usage 15

Source IP
......

<Dest.IP><SPort><DPort><count>......

Key: Source IP of the flow

Key: <Dest.IP><SPort><DPort><count>

Hash table with one entry per IP addr.

Element: Hash table pointer

Hash table with one entry for each flow
with ’"source IP" as source

Element: Record_info pointer

Host reference table

Connection reference table

Record_info structure

Figure 3.1: Data structure to store the required data of each record

Host reference table entry
name format size [bit]
Element bucket struct hashed_table_bucket 128
Key structure uint32 32
Data structure referenced by an element struct hashed_table 1120

Total: 160 Bytes

Table 3.1: Used memory for a host reference table entry

Connection reference table entry
name format size [bit]
Element bucket struct hashed_table_bucket 128
Key structure (see table 3.3 80
Data structure referenced by an element record_info 144

Total: 44 Bytes

Table 3.2: Used memory for a connection reference table entry

Connection reference table key
name format size [bit]
Dest. IP uint32 32
Source port uint16 16
Dest. port uint16 16
Conn. counter uint16 16

Total: 10 Bytes

Table 3.3: Structure of the keys used with the connection reference table

16 CHAPTER 3. HOST CLASSIFICATION ALGORITHM AND DATA STRUCTURES

struct record_info
name format size [bit]
protocol uint16 16
num_of_packets uint32 32
start_time long long uint 64
duration uint32 32

Total: 18 Bytes

Table 3.4: The record_info structure

The memory usage of the nested hash table structure can be calculated with the following
equation:

m = number of records

n = number of unique source IP’s in the table

ehref = size of a host reference table entry

ecref = size of a connection reference table entry

ehref × n + ecref ×m = used memory in Bytes

160× n + 44×m = (3.1)

If taken into consideration that the used hash table has more slots for elements than are actually
filled, and that every slot uses 16 Bytes of memory for a structure that is able to take up an
element the Equation 3.1 has to be modified. To calculate the memory usage with the modified
equation, the number of elements in each table as much as the load factor must be known. The
resulting equation is:

l = load factor of host reference table]0...1]

lj = load factor of connection reference table]0...1]

ej = number of elements in table j

m =
n∑

j=1

ej

Used memory=

n∑

j=1

(
ehref +

ej∑

i=1

(
ecref +

(
ej

lj
− ej

)
× 16

))
+

(n

l
− n

)
× 16

=
n∑

j=1

(
160 +

ej∑

i=1

(
44 +

(
ej

lj
− ej

)
× 16

))
+

(n

l
− n

)
× 16 (3.2)

3.4 Port Activity

The fundamental idea of the port activity analysis is to report source ports that a host did not
use before but just started doing so. A host did not use a port before, if this port did not appear
as source port in Netflow data, where the field source IP address contained the IP address of
this host for some time. To perform the port activity analysis, all these ports have to be stored
for each host. Furthermore a distinction between their usage as UDP or TCP port has to be
made. Unfortunately the memory that the host classificator plug-in is allowed to use, is limited
and not all but only a limited number of ports per host can be stored. The decision to provide
eight slots to store port numbers for each of the categories privileged UDP ports/unprivileged
UDP ports and privileged TCP ports/unprivileged TCP ports, proved to be well since at least
for the privileged category almost in any case all the ports meeting the requirement could be

3.4 Port Activity 17

logged. Further details about the number of missed ports can be found in Chapter 5.
Please refer to Section 2.3 for an explanation why the first six fields of the hostinfo data structure
are necessary to check if a host matches the requirement for the traffic and/or connector class.
In addition to these six fields there is a field for storing the current class and activity code4 and
a pointer to a port_info data structure. The port_info structure is accessible via a pointer in the
host_info data structure and contains the data necessary to analyse the port activity of a host.
The reason for using a pointer to another data structure is, that by allocating memory for the
port_info structure only in case a host appears as source5 of a flow, a lot of memory can be
saved.

Host_info data structure
Data type Name Total size [bit]
unsignet int data_sent 32
unsignet int data_sent_next 32
unsignet int data_received 32
unsignet int data_received_next 32
unsignet int num_connections 32
unsignet int num_connections_next 32
port_info* portinfo 32
char activity_and_class 8

Total: 29 Bytes

Table 3.5: Host_info data structure

Port_info data structure
Data type Name Total size [bit]
char[8] first_TCP_ports_priv 8x16
char[8] first_TCP_ports_unpriv 8x16
char[8] first_UDP_ports_priv 8x16
char[8] first_UDP_ports_unpriv 8x16
unsigned short int not_first_TCP_new_privcounter 16
unsigned short int not_first_TCP_new_unprivcounter 16
unsigned short int not_first_UDP_new_privcounter 16
unsigned short int not_first_UDP_new_unprivcounter 16

Total: 72 Bytes

Table 3.6: Portinfo data structure

The host_info structures are stored in a hash table using the IP as key. Since there is an ad-
ministration overhead of 16 Bytes per entry, the total main memory used by the host information
hash table is:

htot = number of unique IP’s

hact = number of active hosts (appear as source of a flow)

l = load factor of the hash table]0...1]

used memory = htot × (29 + 16 + 4) + hact × (72) +
(

htot

l
− htot

)
× 16

= htot × 49 + hact × (72) +
(

htot

l
− htot

)
× 16 (3.3)

Equation 3.1 and 3.3 are important for the soft memory limit of the host classificator plug-in
introduced in Section 3.5.

4see Section 3.6 for details
5Only the source ports in flows where the host appears as source are stored. See Section 3.6.2 for details.

18 CHAPTER 3. HOST CLASSIFICATION ALGORITHM AND DATA STRUCTURES

3.5 Memory usage calculation

Now that equations to calculate the memory usage of the different data structures were pre-
sented, it is shown why they are not suitable for realising a fast algorithm, and what functionality
to limit the memory is used instead.

To limit the memory usage of the algorithm a soft limit was included in the algorithm. It
is called a soft limit because the memory currently used by the plug-in is calculated and not
checked via an operating system command. The reason for calculating the amount of used
memory is, that a simple calculation is faster than reading the used memory e.g. from the /proc
filesystem. Even though it would be possible to check the used memory less frequent, what
would allow to read the amount of used memory form the /proc filesystem, this is no real option
since the used memory can easily increase by 10 MBytes or more per half a second.
The algorithm that limits the used memory works like that: The used memory is calculated after
fetching a new flow and if the limit is reached no more flows are accepted. Additionally the
status bit for reaching the memory limit is set. Afterwards it is still checked if an advancement to
the next interval and an hence an evaluation of the current interval is necessary. Because after
the evaluation some memory is freed, the status bit for reaching the memory limit is reset and
flows are accepted again.
To calculate the memory needed by the different data structures, the in Section 3.3 provided
equations could be used. Unfortunately on the one hand not only the data structures use
memory but also their administration and on the other hand some parameters of Equation 3.2
have to be calculated also. In addition some memory is only allocated during the evaluation
phase and it is not known in the acquisition phase how much that will be. To avoid using more
memory than specified, it is assumed that all memory that could be allocated, will be allocated.
Considering all this, the calculations in Section 3.3 can only serve as start point of search
for an equation approximating the actually used memory. The equation was adapted until the
result of the calculation corresponded well enough to the value reported by the /proc system.
Well enough means, that though the result of the calculation can indicate more memory than is
actually used, the opposite should never be the case. The equation used is the following:

n = total number of unique source IP addresses in the flows

m = total number of acquired flows for the current and the next interval

h = total number of hosts in the host information hash table

used memory in MBytes = (n ∗ 160 + m ∗ 84 + hostcounter ∗ 68 + h ∗ 72)/1048576 + 6 (3.4)

The additional 6 MBytes in Equation 3.4 stand for the amount of memory used by the host
classificator plug-in when no data is processed. If Equation 3.1 and 3.3 are summed up without
considering the memory used for empty elements and assumed that for all host information
structures a port information structure is allocated, the following equation is the result:

used memory in MBytes = (n ∗ 160 + m ∗ 44 + hostcounter ∗ 49 + h ∗ 72)/1048576 (3.5)

3.6 Host Classificator Algorithm

The host classificator algorithm, one of the core pieces of this thesis, is now presented with the
focus on data processing. Furthermore it is explicitly shown where, depending on the param-
eters, eventually some Netflow data is discarded. Figure 3.2 shows the relevant stages of the
algorithm. It follows a description of each block’s functionality.

Reading Record/Header The first step of the acquisition phase is to check the UDP packet
received from UPFrame. The source IP address listed in the header of the packet is extracted

3.6 Host Classificator Algorithm 19

loop over all
intervals

filteredrecord filter

until interval end

check failed

all hostinfo
entries

loop over

checking/adapting interval bounds

memory cleanup

checking memory limit/
checking time conditions/

reading record/header

evaluate the acquired data

update hash tables

output data to a file/

Figure 3.2: Structure of the host classificator algorithm

and the engine ID in the Netflow v5 header is stored for further use. Currently only packets with
engine ID zero are processed because only those are created by the hardware engine of the
router. Packets with another engine ID are discarded.

Perform checks In this stage the following checks are performed:

• Checks if the interval bounds are still valid. If not, the status bit for adapting the interval
bounds is set and the new bounds are determined. Assuming that e.g. a router fails and
there is no incoming data for some time, the next received packet, when the router is work-
ing again, has a time stamp much later than the end of the interval where the router failed.
Due to the check described in the previous item, the algorithm evaluates the current inter-
val and advances to the next by adding the interval length to it’s bounds. But if the router
was down for an hour 60 such advancements are necessary until the host classificator
again observes a valid interval. That’s why some checks to adapt the interval bounds in
theses cases are made.

• Calculate the memory used by the host classificator plug-in (approximation) as it is shown
in Section 3.5. If a memory limit was set and it is reached, the check fails. From now
on, information about incoming flows is not stored anymore and it is only checked if the
end of the current interval is reached. If it is reached, an evaluation based on the already
acquired data is done. Since not all data in the interval is analysed, it should be possible
to identify these intervals. Therefore the status byte value that is written to the statistic file
is set accordingly for this interval.

• Check if the condition to advance to the next interval is fulfilled. Figure 3.3 illustrates that
an advancement is initiated if a flow with a start time later than the end of the current
interval plus a certain read ahead is detected. The used interval and read ahead lengths
are one minute.

20 CHAPTER 3. HOST CLASSIFICATION ALGORITHM AND DATA STRUCTURES

Figure 3.3: Advance to the next interval

Record filter To reduce the amount of data to process, all flows with another protocol identifier
than TCP or UDP are filtered. Additionally, a minimum number of packets that a flow must have
to not to be filtered can be specified. For the validation in Chapter 5 the minimal packet number
was set to two6. With this setting, the memory usage can be reduced from 106 MBytes to 39
MBytes when analysing the Netflow data of the hour starting at 12.08.2003 12:21 (UTC)7.

Update hash tables Generate hash table keys and store the needed fields of the currently
analysed record. Furthermore it is checked to which interval the record belongs so that the
activity bit can be set accordingly.

Evaluate the acquired data Figure 3.4 shows the stages of the evaluation process. Before it
is tested if a host meets the requirements for the traffic class, it is checked if the data for the
host is evaluated at all. It is not whenever the IP address of the host does not appear as source
IP address of a flow. Since this is an indicator that this host does not exist, no classification
relevant data is lost. Afterwards it is checked if the host is active in the current interval and if it
is, all classification relevant criteria are checked and the host is assigned to the corresponding
class(es). If it is not active in the current interval only the activity and class field is updated. The
check if a host is a member of the responder class is a bit more complicated than the check for
the traffic or connector class and is therefore explained in detail in the following section. Finally
the port activity is evaluated. Details about this evaluation can be found in Section 3.6.2.

6This configuration eliminates a lot of port scan traffic
7Over 680’000 flows per minute due to W32.Blaster activity are registered

3.6 Host Classificator Algorithm 21

active in
current
interval

host not

calculate class affilation of the host

to be a member of the traffic class
check requirement

check the number of

check the number of
bidirectional connections as responder

host active in current interal

For each host do:

evaluate the acquired data

analyse the port activity

mark host for deletion / update hostinfo

unidirectional connections

until all

checked

until all

checked

hosts

hosts

Figure 3.4: Stages of the evaluation process

22 CHAPTER 3. HOST CLASSIFICATION ALGORITHM AND DATA STRUCTURES

3.6.1 Responder Classification

To be a member of the responder class a host has to fulfil the following condition:

number of connections as responder > threshold

In Section 2.3.2 it was not yet specified when a host responds to a connection and when it
initiates one or when even no decision can be made. The criteria used is the following: Host H1
is responder for a connection to host H2 identified by H1:h1/H2:h28 if a connection in the other
direction identified by H2:h2/H1:h1 can be found where

abs (flow start time (H1)− flow start time (H2)) > time threshold (3.6)

holds. The time threshold is set to 50ms, the flow start times are in UTC time.
The problem of this check is, that if e.g. the data form H1 to H2 is routed by a router R1 and the
data from H2 to H1 by a router R2, it is not save to assume that the result of the check is correct.
The problem is, that the clocks of the two routers may not be synchronous. Nevertheless this
scenario was unaccounted for because to test the behaviour of the plug-in, it has to run on a
server directly connected with the boarder routers9. Furthermore the clocks in the routers are
synchronised so that this problem may not exist. Nevertheless preparations for a flow handling
with respect to the routers who reported it are made. Only the code for handling the data in the
different cases has to be inserted. Another problem is the duplication of flows caused e.g. by
a connection from host H1 to host H2 via router R1 and router R2. Both router report a flow
form H1 to H2 and from H2 to H1. To eliminate these duplicated flows the following check is
performed before putting the information about the flow into the hash table:

abs (flow start time (current)− flow start time (all flows with (H1:h1/H2:h2))) < time threshold
(3.7)

If this condition holds, the flow is already in the hash table and is therefore not inserted. The
plug-in version provided with this thesis uses a time threshold of 5ms.

3.6.2 Port Activity Analysis

In Section 2.4 it is proposed to store ports used by a host and report for each interval only those
ports not used before. But if the goal is to keep memory consumption low, it is not possible
to store each port a host uses. Another problem would be, that no data structure with a fixed
size can be used, what again complicates the calculation of the utilised memory. Hence the
algorithm stores for each category 10 only eight port numbers. Another restriction is that the
information about the used ports is only available of the last interval. The consequences are,
that if a host was not active in the last interval but in the one preceding it, every11 port it uses
is reported anew. Figure 3.5 shows the structure of the port evaluation algorithm. It is shown
that only information about the source ports used by a host is stored. This is sufficient since
a successfull attack, at least when using TCP, needs communication in both directions so that
the destination port of a request will appear as the source port of the reply. Hence no relevant
information is lost since the destination port of a request will be logged at the destination host.
The only destination ports not logged are those of hosts not answering to the requests. But if
they don’t answer on that port, it is not interesting for the evaluation of the port activity as it is
done here. Nevertheless for scan detection it could be indeed of interest. The two described
communication scenarios are shown in Figure 3.6.

8format: IP address of host X:port used by host X/IP address of host Y:port used by host Y
9since the router IP address is not contained in the Netflow data it can currently only be identified by the sender IP

address of the UDP packets containing the Netflow records
10these are: TCP privileged, TCP unprivileged, UDP privileged, UDP unprivileged
11the first eight of each category, afterwards only the missed port counter for this category is increased

3.6 Host Classificator Algorithm 23

store
port info for category

miss counter
increment

until all
flows
read

until all
flows
read

already
stored
& not all
flows
read

read source port of flow

check if port number already

and if privileged/unprivileged
check if TCP/UDP

with host x as source

stored (used in previous interval)

not stored

Get hash table with all flows

not yet eight
ports stored

already eight
ports stored

in category y in category y

increment port counter pf
catecory y

check if already eight port numbers
are stored in this category

Figure 3.5: Port activity evaluation

H1:x/H2:yH1:x/H2:y

port x
stored

port y
stored

port x
stored

Other host responds Host 2 does not respond

t

H1 H2

Src IP:src port/Dest. IP:dest. port

Legend:

H1 H2

H2:y/H1:x

Figure 3.6: Communication scenarios

24 CHAPTER 3. HOST CLASSIFICATION ALGORITHM AND DATA STRUCTURES

3.6.3 Possible Loss of Information

The following list sums up where data can be discarded or is lost:

• Reading record/header: Netflow v5 packets with engine ID other than zero are discarded

• If a specified memory limit is reached, no more data is acquired for this interval

• Record filter: Only TCP and UDP flows pass the filter

• Record filter: Depending on the setup, flows with less than x packets are filtered

3.7 Statistic File Format and the Directory Structure

What data the algorithm has to make available is determined by the purpose of use. Since that
is the topic of Chapter 4, this section discusses only how the data is stored. Even though there
are different methods to provide data to other applications, like message passing or shared
memory, only by saving the data to disk the main memory usage can be kept low. To easily
find the data corresponding to a specific date and time, the following directory structure and file
naming is used:

<base_dir>/<year><month>/<day><hour>.stat<number>
<base_dir> defined in the host_classificator.cfg file
<year>,. . . UTC date and time of the data stored in this file
<number> is only added if a file with the same name already exists

Though it is important to reduce the data written to disk for each interval as much as possible, it
is desirable to have a lot of information about the traffic. Since the answer to the question, what
data should be saved to disk, depends on what data is needed by the visualisation software,
there is little scope for optimisation of disk space usage here. It remains to choose the smallest
possible representation of that data, where basically two possibilities exist: binary or ASCII. The
ASCII representation has the advantage that the file content is human readable, but it’s disad-
vantage is the bigger filesize. To reduce the filesize, compression could be used but because
that would need valuable processor power, the statistic files of the host classificator are saved
using the binary format. To compensate the disadvantage that the file content is not human
readable, a binary to ASCII converter12 has been implemented. An additional advantage of this
approach is, that e.g. if only the amount of hosts in each class is of interest, the converter can
write only this information into the ASCII file. If considered that else one had to find these num-
bers in a file that contains 130’000 numbers per stored interval, this is a great advantage. Now
that the format of the statistic file is known, the structure of the file can be described. The host
classificator saves for each interval the data shown in Table 3.8 to the corresponding statistic
file.
The status information in bit 0..7 of each entry allows the identification of faulty or, e.g. due
to the memory limitation16, not entirely aggregated intervals. The allowed values for the status
information are listed in Table 3.9.
The entire file consists of a format identifier and the entries for each interval. Table 3.7 sums
this up.
The resulting file size of a type 0 file containing all data for an hour with one entry per minute is:

size = 1× sizeof(char) + 60× ((2× 65536 + 17)× sizeof(int) + 1× sizeof(char))
= 60× (131′089× 4 + 1) = 1 + 60× (524′357)
= 31′461′421Bytes(∼= 30MB)

and for a type 1 file it is:

size = 1× sizeof(char) + 60× ((14)× sizeof(int) + 1× sizeof(char))
= 1 + 60× (14× 4 + 1)
= 1 + 60× (57)
= 3421Bytes(∼= 3.34kB)

12some details about the converter can be found in Appendix A.1
16see Section 3.2.1 for details

3.7 Statistic File Format and the Directory Structure 25

statistic file format
bits type description
0..7 char statistic file type (0 or 1)
8+n*(entry)..(n+1)*entry+8 entry entry type specified in Table 3.8

Table 3.7: Format of the statistic file
bits data type description
0..7 char status information
8..39 unsigned int number of active hosts13

40..71 unsigned int number of hosts not member of a class
72..103 unsigned int number of hosts only in the traffic class
104..135 unsigned int number of hosts only in the connector class
136..167 unsigned int number of hosts only in the responder class
168..199 unsigned int number of hosts in the traffic and connector class
200..231 unsigned int number of hosts in the traffic and responder class
232..263 unsigned int number of hosts in the connector and responder class
264..295 unsigned int number of hosts that are a member of all three classes
296..327 unsigned int number of hosts that are newly in the traffic class
328..359 unsigned int number of hosts that are newly in the connector class
360..391 unsigned int number of hosts that are newly in the responder class
if file format indicator is 1
392..423 int number of hosts with activity on the specified tcp port
if file format indicator is 0
392..423 unsigned int number of missed privileged tcp ports
424..455 unsigned int number of missed unprivileged tcp ports
456..487 unsigned int number of missed privileged udp ports
488..519 unsigned int number of missed unprivileged udp ports
520..524’807 65536*uint number of hosts with first activity on tcp port x14

524’808..1’049’095 65536*int number of hosts with activity on port x for the first time15

Table 3.8: Format of the entries in the statistic file

status information of an interval
0 valid entry
32 no data available
64 memory limit reached
128 interval bounds adapted during acquisition
192 code 64 and 128 together

Table 3.9: Status info values

Despite the fact that the files are as small as they can be if no compression is used, the size of
the type 0 file is not suitable for long term archiving. It is therefore recommended to compress
a whole subdirectory containing the statistic files for an entire month, if the acquisition of the
data for this month is finished. Several tests with bzip2 showed, that compression rates up to
1:10 can be achieved while a rate of 1:3 or 1:4 can be expected. Assuming a compression rate
of 1:4, approximately 5.5 GBytes17 of disk space are needed to store the output of the host
classificator plug-in of a full month. To generate the output, the plug-in processes the Netflow
v5 data sent to a computer running UPFrame. This data is the Netflow v5 data of about 5% of
the Internet traffic in Switzerland and crossing Switzerland.

17assumed that the month has 31 days

26 CHAPTER 3. HOST CLASSIFICATION ALGORITHM AND DATA STRUCTURES

Chapter 4

Visualisation

After the specification and implementation of the algorithm, the focus can be set onto how
to visualise the output of the algorithm. Since the task was to make the plots accessible
over the web, the visualisation software VISTOOL was implemented as Common Getaway
Interface(CGI). Since the post-processing of the data and the generation of the plots as much
as the handling of binary files should be as fast as possible, not Perl or PHP were used to
implement VISTOOL but C. Since the presentation of all the data for each of the up to 80’000
hosts per interval in a single plot is unlikely to be clear, separate visualisation plots to show the
port activity and the other characteristics were designed. Nevertheless it would be still difficult
to find a visualisation method that shows for each host it’s classification and that presents the
information in a way that the detection of anomalies is easy. At first a similar approach as A.
Weisskopf used in its semester thesis "Plug-ins for DDoS Attack Detection in Realtime" for the
visualisation of the IP activity in the Internet [6], seemed to be the solution to the visualisation
problem. Further analysis showed that with the host classificator output and some colour coded
pixels per host it is difficult to get a good overview about each hosts behaviour and to realise
significant changes in the plot in case of an anomaly. After checking some methods to further
reduce the information to display, it became clear that basically only the total number of hosts
in each class is necessary to show significant changes in the behaviour of the hosts. Since that
meant a reduction of the data to nine numbers and was therefore ideal to keep the disk space
usage of the statistic files low, finally only the total number of hosts and the number of hosts in
each class were saved per interval1. The plots based on these nine numbers are presented in
Section 4.2.
It remains to display the port information for the hosts in a meaningful way what requires
without doubt again a reduction of the information to display. The following approach reduces
the amount of data for the visualisation of the port activity of the hosts considerably; It is not
stored which host used which ports for the first time but only how many hosts used a specific
port for the first time2. To allow a separate analysis of TCP and UDP ports, the total number
of hosts using a certain port for the first time is saved to disk separately for the UDP and TCP
ports3. The graphical representation, which is named "port map", is discussed in Section 4.3.

4.1 Global Settings

Despite the fact that different analysis methods need different parameter fields, some fields are
common to all methods. These are the radio buttons to specify the analysis method, the input
fields for the date and time in offline mode and finally the refresh field in online mode. Although
the data input for most of the fields should be self-explaining just as the various analysis modes,
a short description of the difference between the online and offline mode shall be given. Both
modes operate on the data generated by the host classificator algorithm. To analyse data not

1see Section 3.7 for details of the statistic file format
2see Section 3.6.2 for details
3details about the file format are in Section 3.7

27

28 CHAPTER 4. VISUALISATION

yet processed by the host classificator plug-in, it has to be fed to the plug-in first. This can be
done e.g. by replaying it with the netflow_replay tool developed by Arno Wagner. In online mode,
the statistic file name is generated out of the current UTC time of the computer running the CGI.
In offline mode any data and time can be specified. It is then searched in the corresponding
file for the data belonging to the current or the specified interval. For plots needing more than
the data of one interval, the specified time in offline mode or the current time in online mode
represents the end time of the data to present. When using the online mode due to the delay
of the output to the input, no data for the current time is available. Therefore it is searched for
data of the preceding intervals, up to a maximum of a four intervals look-back. In offline mode
the look-back is too active, but since there the data is normally available at the time specified
by the user, no look-back is necessary. In online mode the time in UTC of the computer running
VISTOOL may not differ too much from the time in UTC of the NetFlow data generating routers
since the host classificator plug-in writes the statistic file entries using the time stamps set by
the router. A feature of the online mode is, that a refresh rate can be set at which the plot is
updated.

4.2 Host Classification

There exist a lot of different variants such as bar, line or pie charts to visualise the amount of
hosts in each class over time. Unfortunately none of theses variants allow both, to compare the
number of hosts in a class to the number in all others and to follow the change in the number
of hosts over time in a single plot. Therefore two separate plots are generated, a kind of a Venn
diagram to visualise the proportions between the classes and a x-t plot to show the number of
hosts in one or more class(es) over time.

4.2.1 Venn Diagram

Figure 4.2 shows the Venn diagram based on the data of 11.08.2003 21:20(UTC). The Venn
diagram shows only the number of hosts in each class for a specific interval and not the change
of proportions over time. The number of hosts in a class determines the diameter of the circle
as much as the colour by using a logarithmic scale where the maximum can be specified. The
status information4 about the interval is displayed in the lower right corner.

4.2.2 X-t Plot

Figure 4.3 shows the x-t plot of the hour before 11.08.2003 21:50 (UTC) for the traffic, connector
and responder class. The plot below the x-t plot, the error code plot, shows for each interval the
status information. The plots are both created with the round robin database tool RRDTool [7]
and can display up to 60 hours of data. It would be possible to display more data by modifying
the CGI code, but since displaying 48 hours of data already takes approximately 2 minutes on
a Intel Pentium 4 2.5 GHz with 512 MB RAM, the limit was set to 60 hours.
The advantage of this plot is, that it allows the identification of anomalies in the number of hosts
per class but it’s disadvantage is that the proportions between the number of hosts in each class
can hardly be seen. The disadvantage is traced back to the fact that if the results for multiple
classes are plotted for, either the lines are too close together and crossing each other or the
used scale is bad because one class has much more hosts in it, so that the amplitude variations
of the others can hardly be seen. Using a logarithmic scale for the number of hosts could help.

4.3 Port Activity

As already mentioned, the statistic file contains not the data about the used UDP and TCP
ports per host, but only the total number of hosts that use a specific port for the first time.
Nevertheless there are 65’536 values for the TCP ports and also for the UDP ports that have to
be visualised. Since this is still too much data to present it clearly arranged, a further reduction

4see Table 3.9 for absolute values

4.3 Port Activity 29

of the data is unavoidable. Displaying only the results for a certain port range is therefore an
option. Fortunately two port ranges are already defined; The privileged ports from 0 to 1023 and
the unprivileged ports from 1024 to 65535. Since almost all popular services5 are offered via a
privileged port, and because the goal of an attack is normally to do harm to as many hosts as
possible, only exploiting a security hole of a popular service is interesting. Therefore the data for
the 1024 privileged ports has to be presented in a way that the number of hosts using a specific
port for the first time can be identified at a glance. To identify fluctuations not only the results
for one interval but for several are shown. The developed plot displays the results for the 9 last
intervals. An example of the plot that is called port map is shown in Figure 4.4. If the privileged
ports are displayed, each port has it’s own rectangular. Else the results for 64 ports are added
up and presented in a rectangular. The port number, in case of the unprivileged ports it is the
number of the first of the 64 ports, that correspond to a specific rectangular can be calculated by
adding the numbers displayed above the column and besides the row in which the rectangular
is located. Figure 4.1 illustrates what exactly is displayed in the rectangular.

Figure 4.1: Detailed view of a cell of the port map

It emanates from that Figure, that not the total number of hosts active for the first time on a
specific port in a specific interval is shown, but the difference of the total number from the
current and the last interval. If the difference from one interval to the other is big enough, the
background colour indicating the basis may change. An increase or decrease from interval
to interval is shown with an amplitude in the corresponding direction. If the amplitude of a bar
corresponds to the smallest possible amplitude it means that the absolute value of the change is
smaller or equal the basis value. If no bar at all is displayed the difference was zero. If the status
information value does not indicate that an interval is alright, the bars have special colours. A
colour legend is available by clicking the status information link on the port map analysis page.

5Exception: P2P. P2P services are the topic of various other theses and are not treated here.

30 CHAPTER 4. VISUALISATION

Figure 4.2: Venn diagram

4.3 Port Activity 31

Figure 4.3: x-t plot

32 CHAPTER 4. VISUALISATION

Figure 4.4: Port map

Chapter 5

Validation

In this section it is verified if the output of the host classificator plug-in shows significant changes
during the outbreak of the W32.Blaster worm. Furthermore the performance and memory usage
for two use cases is measured to verify if the plug-in can be used for real time processing of
Netflow data.

5.1 Memory Usage and Performance Analysis

To test the performance and the memory usage of the plug-in, an hour of Netflow data from
before the outbreak of the W32.Blaster worm and an hour from the ongoing outbreak was re-
played. The name of the files containing the replayed Netflow data and the corresponding start
time are:

1. File 1:
19993_00004791_1060690791.dat.bz2, start date=12.08.2003, time=14:19:51(UTC)

2. File 2:
19993_00004740_1060507174.dat.bz2, start date=10.08.2003, time=11:19:34(UTC)

Since different filter1 settings lead to different results, the test was made twice; once filtering no
flows and once filtering flows with a packet count greater than one.
The hardware used for the test was a Intel Pentium 4 with a clock rate of 2.5 GHz and 512 MB
RAM. The measurement of the maximum memory usage was made with the process table of
the KDE System Guard using a refresh rate of half a second. The time needed to process the
data of a file was acquired using the process information command ps. The results in Table 5.1
show, that even during the outbreak of the W32.Blaster worm, an additional filtering of flows with
less than x packets2, is not necessary, as long as enough memory is available. Nevertheless a
memory limit set to 150 MBytes or more is recommended if no additional filtering is used. The
average processor load of 16.25% when replaying the file where the W32.Blaster worm was
active, seems to be acceptable. Furthermore an optional filter that filters all flows reporting only
one packet, reduces the processor load to 4.8%.

File Filter Max. used memory [MB] Processing time [sec] φ processor load [%]
File 1 - 103.5 585 16.25
File 1 >1 47.7 170 4.8
File 2 - 53.3 238 6.7
File 2 >1 27.3 118 3.28

Table 5.1: Performance measurements

1see Section 3.6 for details
2x can be any 32-bit number

33

34 CHAPTER 5. VALIDATION

5.2 Normal Traffic

Figure 5.1 shows an 48 hour x-t plot of the number of hosts in the traffic, connector and
responder class, Figure 5.2 shows an 48 hour x-t plot of the number of hosts in the traf-
fic&connector, traffic&responder, connector&responder and traffic&connector&responder class.
Both show flow data acquired before the outbreak of the W32.Blaster worm. The output was
generated with no memory limitation and with flows with less than 2 packets filtered. The nor-
mal daily fluctuation can be seen.
Figure 5.3 and Figure 5.4 are port maps generated at 19:00 and 12:00 of the 07.08.2003. Since
the W32.Blaster Internet worm uses the destination port 135 to infect other computers, special
attention shall be given to port 135 when examinating the port maps.

5.3 W32.Blaster Traffic

Figure 5.5 shows the plot of the two first days of the W32.Blaster worm spreading for the traffic,
connector and responder class. Figure 5.6 does this for the traffic&connector, traffic&responder,
connector&responder and traffic&connector&responder class. The output was generated with
no memory limitation and with flows with less than 2 packets filtered.
Figure 5.7 and Figure 5.8 are port maps generated at 19:00 and 12:00 of the 11.08.2003.

5.3.1 Comparison of the Results

X-t plot The requested significant change in the plots during the spreading of the W32.Blaster
worm can be seen best in Figure 5.5. There are around 4000 hosts and more in the responder
class whereas Figure 5.1 illustrates, that before the outbreak only around 2000 hosts could be
counted. Responsible for the increase in this class is most likely the W32.Blaster worm trying to
contact other hosts that were before only initiating connections on port 135. These hosts then
eventually respond and appear as member of the responder class. The increase of hosts in
the traffic&responder class in Figure 5.6 is anomalous too when compared to the number of
hosts in this class before the W32.Blaster activity. The following perhaps a bit bold statement
could serve as explanation; Inactive hosts that are contacted by a infected host respond while
transmitting at least data of the size of three times the request data. Since the size of the data
transmitted during a W32.Blaster contact or infection is very small, only otherwise inactive hosts
or hosts, where the traffic requirement is almost met, can become traffic class members.
Another interesting fluctuation in Figure 5.2 is the increase in the traffic&responder class around
19:00, 21:30 and 23:30. If the port maps in Figure 5.3 and 5.9 are consulted it stands out that
many ports above port 600 show exactly the same behaviour. Most likely this is the result of
a large scale port scan since all ports are scanned in a single interval. All in all a significant
change during the W32.Blaster spreading can be seen as much as other interesting fluctuations
that could be further investigated.

Port map The port map too shows significant changes during the outbreak of the W32.Blaster
worm. If the two port maps before and the two port maps during the activity of the worm are
compared, it stands out, that there are big fluctuations in the number of hosts using port 135
for the first time3. Since the port map allows to see any fluctuation in the number of hosts
using a specific port as source port and since within normal use only the server side avails
itself of source port numbers in the range of the well known ports, these are with little doubt
fluctuations in the number of active hosts behaving like servers. It follows that any worm that
causes an infected host to act server-like on a specific port, can be detected if it’s spreading is
wide enough.

Example: Combined analysis It is clear that if the x-t plot and the port map are used in
combination, more information about an anomaly or in general, more information about the
behaviour of the hosts in the Internet can be extracted. Figure 5.10 illustrates how such an
analysis could look like. For the analysis data from the 11th of August was used. In the x-t plot

3see Section 3.6.2 for the definition of ’first time’

5.3 W32.Blaster Traffic 35

showing the number of hosts in the responder class for the hour before 22:00, a significant
decrease can be seen around 21:26. But what sort of traffic is responsible for the decrease?
The two extracts of the port map from 21:26 and 21:27 illustrate, that at 21:27 between 2000 and
3000 hosts less than at 21:26 use port 135 for the first time. Since the decrease in responder
class hosts is a bit more than 2000 hosts and considering that the observed peak is as much
anomalous as an orange coloured port 135 field, the decrease in responder class host can be
ascribed to the decrease of hosts using port 135 for the first time.

36 CHAPTER 5. VALIDATION

Figure 5.1: x-t plot: generated using data from before the outbreak of the W32.Blaster worm

5.3 W32.Blaster Traffic 37

Figure 5.2: x-t plot: generated using data from before the outbreak of the W32.Blaster worm

38 CHAPTER 5. VALIDATION

Figure 5.3: Port map using data from before the outbreak of the W32.Blaster worm

5.3 W32.Blaster Traffic 39

Figure 5.4: Port map using data from before the outbreak of the W32.Blaster worm

40 CHAPTER 5. VALIDATION

Figure 5.5: x-t plot: generated using data acquired during the outbreak of the W32.Blaster worm

5.3 W32.Blaster Traffic 41

Figure 5.6: x-t plot: generated using data acquired during the outbreak of the W32.Blaster worm

42 CHAPTER 5. VALIDATION

Figure 5.7: Port map using data from before the outbreak of the W32.Blaster worm

5.3 W32.Blaster Traffic 43

Figure 5.8: Port map using data from before the outbreak of the W32.Blaster worm

44 CHAPTER 5. VALIDATION

Figure 5.9: Port map probably showing a large scale port scan

5.3 W32.Blaster Traffic 45

Figure 5.10: Combining the port map with the x-t plot

46 CHAPTER 5. VALIDATION

Chapter 6

Conclusion and Outlook

6.1 Conclusion

It could be shown that with appropriate data structures it is possible to implement an algorithm
that is fast enough to do a near real time search to find for every acquired flow the correspond-
ing flow in the other direction, even if the complexity of this task without the use of nested hash
tables was O

(
n2 × log (n)

)
. Furthermore it could be shown that the algorithm can be used for

near real time traffic data analysis even with the traffic generated during the W32.Blaster worm
spreading. The moderate use of main memory and processing time would allow to analyse even
more traffic while to ensure that not more memory than specified is used, a memory limit can
be set.
The developed visualisation methods show significant changes during the W32.Blaster spread-
ing whereby it could be shown that the defined characteristics provide significant information
about the behaviour of hosts in the Internet. But still a lot could be done to improve the algo-
rithm and the visualisation of the behaviour of the hosts. The following section explicates some
of these improvements and proposes two applications for the host classificator plug-in.

6.2 Outlook

Since the task was to develop an analysis method that provides results in near-real-time, using
only a limited amount of main memory and processing ressources, the tracking of the host
behaviour over more than minutes was not applicable. But for a more detailed analysis of their
behaviour, the tracking of every class change could be interesting. Only hosts that changed their
class from interval to interval could be reported. Nevertheless it seems not to be very useful for
the near real time algorithm because if a host is not active for more than two intervals1 its class
information is lost. If it becomes active again, it is reported as new host and a change in class is
not detected. If near-real-time results are not required and a lot more resources were available,
the interval length could be increased to improve the class change analysis. A first impression
of an analysis based on reporting only the hosts that change their class can be gained easily.
With slight changes in the source of the host classificator plug-in, only the number of hosts
that changed their class are reported. These changes consist of a replacement of the counters
written into the statistic file by the counters counting the hosts that were in the previous interval
not in the same class as in the current interval.

6.2.1 Using the Host Classificator Plug-in Output for Anomaly Detection

Since the output of the host classificator plug-in is written to a file, it can be accessed by any
other application. As it is already specified in Section 3.7, the file provides for each interval the
number of hosts per class as much as the number of hosts per port that use this specific port
for the first time2. Some of these parameters show significant changes when the data collected

1see Section 3.6 and Figure 3.3 for details
2for limitations and description see Section 3.6.2

47

48 CHAPTER 6. CONCLUSION AND OUTLOOK

during the outbreak of the W32.Blaster worm is replayed and analysed. Though the output could
be used for anomaly detection, one should not neglect that the choice of the threshold value for
the assignment of hosts to a class, can be critical for a successful detection. So if the output
of the plug-in will be used for an automated anomaly detection, the evaluation of traffic with
different thresholds should be an important part of the development process. Another topic in
relation with the analysis of parameters could be to find a filter that reduces the amount of data
to process, while eliminating none or only very few data that is critical to anomaly detection.

6.2.2 Further Use of the Connection Tracking Capability

The host classificator plug-in provides algorithms and data structures to search very efficient
for special ’communication’ patterns3 . Based on this algorithm a sort of virus scanner for the
Internet could be developed. The scanner does not search, like a conventional virus scanner,
for patterns in the data, but for special communication patterns.

6.3 Acknowledgements

Various helpful comments and ideas were received from Thomas Dübendorfer and Arno Wag-
ner. Their support was always competent and swift. Furthermore, discussions with colleagues
and fair comments of them created input to the work.

3a communication pattern is a specific sequence of connections which themselves are identified by the quadruple
source IP address /destination IP address//source port/destination port

Appendix A

Appendix

A.1 The Converter Tool

The converter tool converts the binary statistic files into human readable ASCII files so that an
analysis without the visualisation software VISTOOL is possible. Since the information needed
for an analysis of the port activity is part of one of the two possible file formats and because the
port information consists of more than 130’000 numbers per interval, the option to ignore these
information seems useful. Otherwise the ASCII files with more than 60 times 130’000 numbers
are not much more human readable than the binary files. The other file format has only the
information about one TCP port. It is used, if the host classificator plug-in is started with the -p
parameter and a valid port number.
The following syntax is used to convert a file:

converter <filename> <Options>
Options: -p converts port information too (!large file if statistic file contains port infor-
mation for all ports!)

The resulting file is names XXXX.conv where XXXX is the name of the binary file. It is stored in
the directory where the converter tool is located. If already a file with that name exists, no output
is generated but a warning.

A.2 Host classificator Readme.txt

File: Readme.txt
Author: B.Tellenbach (bernhard.tellenbach@airmail.ch)
Requirements: see Installation.txt file.

Host classificator plug-in

This plug-in analyses the Netflow v5 data provided by the UPFrame
framework of Thomas Schlegel. The goal of the analysis is to characterise
each host that appears in the Netflow v5 data. This is done by assigning it
to one of the following eight classes:

-Traffic class
-Connector class
-Responder class
-Traffic and connector class
-Traffic and responder class
-Connector and responder class
-Traffic, connector and responder class
-no class

49

50 APPENDIX A. APPENDIX

Additionally the port activity of each host is observed. Each port a host
did not use in the previous interval but does so in the current interval is
logged if the eight slots for the corresponding category (UDP/TCP
privileged/unprivileged) are not yet filled.

To save disk space, only the number of hosts in each class and the total
number of hosts using a specific port for the first time is stored in the
statistic file that contains one entry per interval. The interval length
is currently one minute. For details about the statistic file format see
http://www.tik.ee.ethz.ch/pub/students/2004-So/SA-2004-24.pdf.

The settings are defined in the host_classificator.cfg file. The
parameters are described there. Nevertheless a parameter can be
overwritten by providing it as argument when the host classificator
plug-in is started. The following parameters are possible:

-f <number> Filter flows with fewer packets than <number>
<number> must lie between 0..1000

-h Prints this message.

-p <number> Port mode. Saves only info for port <number>
in statistic file. <number> is 0..65535

-r <path> update rrd tool data, rrdtool at <path>
in a browser)

-m <number> set memory limit for application in MBytes
ignores data received after limit is reached
but evaluates interval with data received up
to when the limit was reached.

-w <command> enable watchdog, restart command script <scr_name>

-t <time> watchdog timeout in seconds

-b <path> path to fifo

-d log to stdout

-l <file> log to file <file>

-s log to syslog

A.3 VISTOOL Readme.txt

File: readme.txt
Author: B.Tellenbach (bernhard.tellenbach@airmail.ch)

Vistool

Installation instructions can be found in the file
installation.txt.

A.4 Provided Files 51

Since this tool depends on the CGIC library and the
GD library of Thomas Boutell, you have to accept the terms
and conditions set by him too. See the files license.txt and
support.txt for terms of use and support information.
--

To use the vistool, only a web browser is needed and the
cookie set by the tool has to be accepted.
The vistool visualises the output of the host classificator
plug-in. Hence to analyse data with the vistool the Netflow
data has to be fed first to the host classificator plug-in
for processing. The plug-in classifies each host according to
its characteristics and stores how many hosts use a
specific port in the current interval they did not use in
the last interval. For more details see:
www.tik.ee.ethz.ch/pub/students/2004-So/SA-2004-24.pdf

The following analysis modes are available:

-Venn diagram: Shows the number of hosts in each class
for the current (in online mode) or
the specified interval (in offline mode)
as Venn diagram with logarithmic scaling.

-XY-Plot: Plot the number of host in each class for
the last x hours ending at the current time
in online mode or at the time specified
by the user.

-Port map: Draw a port map that shows the port activity
of the hosts for each port. For each port the
difference of the number hosts of the current
and the last interval, that sent for
the first time packets with this port as source
port, is plotted. For the first time means that
a host did not use this port in the previous
interval.

All the three described modes can either work in online or
offline mode.

-online mode: The current time in UTC is used to fetch
the data from the statistic files and a
refresh rate can be set.

-offline mode: The time used to fetch the data from the
statistic files can be specified by the
user.

A.4 Provided Files

Directory structure and files provided with the host classificator plug-in and the VISTOOL.

The VISTOOL files:

./cgi:
vistool.c

52 APPENDIX A. APPENDIX

./cgi/www:
cgi-bin index.html pmaplegend.html pmaplegend.jpg

./cgi/www/cgi-bin:
cgi_config.cfg venn.jpg

Other libraries needed by the vistool:

• cgic library

• gd library (requires: jpeg-6b, libpng and zlib libraries)

The host classificator files:

Base directory: UPFrame base directory

./include:
adminpage.h getenvs.h libwrite.h rawsendconfig.h
buffer.h hashed_table.h log.h shmemblk.h
bufferpacket.h hostinfo_hashed_table.h message.h sysvipc.h
cfile_tools.h libnetflowutil.h mysignal.h udppacket.h
collection.h libread.h netflow_v5.h
fifo.h libwatchdog.h rawsend.h

./plugins:
Makefile.hostcl hashed_table.c hostinfo_hashed_table.c
Readme.txt host_classificator.c starthostcl.sh_dist
converter.c host_classificator.cfg_dist

In the include directory only the hostinfo_hashed_table.h and the hashed_table.h file were
edited by the author. The other files are provided with the UPFrame distribution.

Bibliography

[1] NetFlow FlowCollector Installation and User’s Guide, 3.5
http://www.cisco.com/en/US/products/sw/netmgtsw/ps1964/. . .
. . . products_installation_guide_book09186a00800ed0ac.html
29.06.2004

[2] NetFlow Export Datagram Format. CISCO CNS NETFLOW COLLECTION ENGINE.
http://www.cisco.com/en/US/products/sw/netmgtsw/ps1964/. . .
. . . products_installation_guide_chapter09186a00800ed343.html#wp1006108
29.06.2004

[3] Jardas, P. (12.08.2003).
P2P Filesharing Systems: Real World NetFlow Traffic Characterization
http://www.tik.ee.ethz.ch/∼ddosvax/sada/
29.06.2004

[4] Racine, S. (03.11.2003).
Analysis of Internet Relay Chat Usage by DDoS Zombies
http://www.tik.ee.ethz.ch/∼ddosvax/sada/
29.06.2004

[5] Blaster Worm Analysis (11.08.2003)
eEye Digital Security
http://www.eeye.com/html/Research/Advisories/AL20030811.html
29.06.2004

[6] Weisskopf, A. (05.2004) Plug-ins for DDoS Attack Detection in Realtime
http://www.tik.ee.ethz.ch/∼ddosvax/sada/
10.07.2004

[7] Oetiker, T. (05.09.2003)
RRD Tool
http://people.ee.ethz.ch/∼oetiker/webtools/rrdtool
14.07.2004

[8] Georgios Androulidakis, Vasilis Chatzigiannakis et al. (June 2004)
Network Flow-Based Anomaly Detection of DDoS Attacks
www.terena.nl/conferences/ tnc2004/core_getfile.php?file_id=219
20.07.2004

[9] Cristina Abad,Yifan Li,Kiran Lakkaraju,Xiaoxin Yin,William Yurcik (April 2004)
Correlation between NetFlow System and Network Views for Intrusion Detection
www.ncassr.org/projects/sift/papers/icdm04.pdf

53

