
Institut für
Technische Informatik und
Kommunikationsnetze

Jonas Bolliger
Thomas Kaufmann

Detecting Bots in Internet Relay Chat
Systems

Semester Thesis SA-2004.29
May 2004 to July 2004

Supervisor: Thomas Duebendorfer
Co-Supervisor: Arno Wagner
Professor: Bernhard Plattner

Abstract

It is well known that Internet Relay Chat (IRC) is used not only by humans for harmless chatting.
IRC can also be misused as a simple means to send commands to malicious programs (called
bots) running on compromised hosts (so called zombies). A “master” can log into a specific
IRC channel, where hundreds or even thousands of bots are listening to, and e.g. enter the IP
address of a machine. Shortly thereafter, a distributed denial-of-service (DDoS) attack against
the announced host will be launched.
This Semester’s Thesis analyzes two different bot types. First the “longtime standing connection
bot”, a bot that is logged in for a long period of time, and secondly the “fast joining bot”, a bot
that is involved in a fast increase of the number of logged in IRC clients.
Finally we implement a small toolbox that is able to give information about an IRC connection (if
the IRC server is known). Further the tool can detect the fast joining trait and make some further
investigations about their origin (i.e. subnet analysis).
This detection is based on the analysis of Cisco NetFlow data, in other words, recorded network
traffic with highly reduced information content.

Contents

1 Introduction and Problem Description 6
1.1 IRC Network . 6
1.2 Cisco NetFlow Data . 6
1.3 Bots . 6
1.4 DDoS in General . 7
1.5 Internet Relay Chat and DDoS . 7
1.6 The DDoSVax Project . 7
1.7 The Task . 7

1.7.1 Information Gathering . 8
1.7.2 IRC Traffic Measurement . 8
1.7.3 Algorithm Development . 8
1.7.4 Validation . 8

1.8 Deliverables . 8

2 Examined Bot Types 9
2.1 Introduction . 9
2.2 Bots with Longtime Standing Connections . 9

2.2.1 Ping-Pong Signature . 10
2.3 Fast Joining Bots . 13

2.3.1 Number of Logged in IRC Clients . 13
2.3.2 Detect Increase in the Number of Logged in IRC Clients 13
2.3.3 Subnet Analysis . 14

3 Implementation 15
3.1 Offline Analysis . 15

3.1.1 Introduction . 15
3.1.2 Sliding Window . 15
3.1.3 “Longtime Standing Connection Bots” Implementation 17
3.1.4 ”Fast Joining Bots” Implementation . 18

3.2 Online Analysis . 22
3.2.1 Introduction . 22
3.2.2 “Longtime Standing Connection Bots” Implementation 22
3.2.3 “Fast Joining Bots” Implementation . 23

4 Results 28
4.1 Description of Measurement . 28
4.2 “Longtime Standing Connection” Analysis . 28
4.3 “Fast Joining Bots” Analysis . 29

5 Summary 32
5.1 Conclusion . 32

5.1.1 Longtime Standing Connection Bots . 32
5.1.2 Fast Joining Bots . 32

5.2 Outlook . 33
5.2.1 Longtime Standing Connection Bots . 33
5.2.2 Fast Joining Bot Detection . 33

5.3 Acknowledgment . 33

2

CONTENTS 3

A Deployment 35
A.1 Introduction . 35
A.2 Framework in a Nutshell . 35

A.2.1 longtime.pl . 35
A.2.2 fastjoin.pl . 36
A.2.3 NetflowTools.pm . 36
A.2.4 longtime_plot.pl . 38

B Pseudo Code “Offline Longtime Standing Connection” Algori thm 39

C Pseudo Code “Offline Fast Joining Bot Detection” Algorithm 41

D Output of Fast Joining Bot Analysis 44

E Pseudo Code “Online Longtime Standing Connection” Algori thm 45

F Starting Bots on a Huge Number of Hosts Using PSSH 47

List of Figures

2.1 Ping-Pong . 10
2.2 Point scale . 11
2.3 Definition of frame when breach occurs . 13
2.4 Prefix matching of two addresses . 14

3.1 Sliding window . 15
3.2 Flow chart for sliding window . 16
3.3 Implementation of the offline longtime standing connection bots algorithm 17
3.4 Flowchart of the offline longtime standing connection bots algorithm 19
3.5 A plot of the number of logged in IRC clients on the 9th of May 2004 21
3.6 Online implementation of the longtime standing connection bots algorithm 22
3.7 Flow chart of the online longtime standing connection bots algorithm 24
3.8 Structure of the online fast joining bots analysis 25
3.9 Flow chart of the data flow in the online analysis of the fast joining bot 26
3.10 Detail view of the analysis part in the online analysis of the fast joining bot 27
3.11 Realization of the data collection using a ring buffer 27

4.1 Setup of our testing environment . 28
4.2 Analysis of IRC connections . 29
4.3 Zoom of peak in Figure 4.2 . 30
4.4 Result of measurement . 30

4

List of Tables

2.1 Result of IRC channel measurements . 12
2.2 Addendum to Table 2.1 . 12

5

Chapter 1

Introduction and Problem
Description

This chapter will give a brief overview about the environment our thesis took place in and in-
troduces the data our work was based on. It will then present the given task and the way we
established our results.

1.1 IRC Network

IRC (Internet Relay Chat) is a protocol defined 1982 in Oulu, northern Finland. With this protocol
it is possible to easily set up servers to produce complex networks spread all over the world to
provide chat services for a big number of users. Within the IRC network it is possible to log in
without a registration as it is usual in ICQ, IM, MSN or similar networks. Users can open new
separate channels to talk within and they are even able to restrict access to these channels, as
every user can be an operator of a channel.

1.2 Cisco NetFlow Data

The border routers of the SWITCH network produce Cisco NetFlow Records. This data structure
was built to be able to log a huge amount of traffic with a useful CPU usage and disk space, it
only contains information about source and destination of a connection and some information
about duration and the amount of transported data. It contains no information about the payload
of a connection. These NetFlow Records were the basis of our investigation. This means that
we were not able to gain insight into packet payload, but that we had to gather information
out of the context in a broader view. The data monitored in a NetFlow Record are port and
IP address for source and destination, the protocol type, the starting and ending time of a
connection (and therefore also the duration), the amount of transported data and the number
of packets. If a connection lasts longer than 15 minutes, the record will be closed and a new
begins; a connection is assumed to be finished after being idle longer than 4 seconds.

1.3 Bots

Because the IRC Network is very open and easy usable, it is often used by computer pro-
grams, too. Programs installed on different hosts can log onto an IRC server, open new channels
and communicate through these channels. These programs are called bots (an abbreviation of
Robots). There exists a big numbers of bots that serve for every possible purpose, eg. weather
news, FTP messaging, file sharing synchronization, etc. We call these bots “harmless bots”.
Unfortunately, since the protocol is open to every kind of user, there exist also persons who mis-
use this openness for malicious purposes. So the possibility to communicate can also be used
to coordinate SPAM delivery, DDoS attacks, etc. These so called “malicious bots” can spread,

6

1.4 DDoS in General 7

be installed and run, unrecognized by a user, for a long time, just waiting to perform a DDoS
attack.

1.4 DDoS in General

Distributed Denial of Service (DDoS) attacks are a threat to Internet services ever since the
widely published attacks on ebay.com and amazon.com in 2000. ETH itself was the target of
such an attack six months before these commercial sites where hit. ETH suffered repeated
complete loss of Internet connectivity ranging from minutes to hours in duration. Massively dis-
tributed DDoS attacks have the potential to cause major disruption of Internet functionality up to
severely decreasing backbone availability.

1.5 Internet Relay Chat and DDoS

It is well known that Internet Relay Chat (IRC) is used not only by humans for chatting but
can also serve as a means to send commands to malicious programs (the “bots”) running on
compromised hosts (the “zombies”). A person (the “master”) can log into a specific IRC channel,
which hundreds or even thousands of bots are listening to, and issue a command such as e.g.
attack <IP address> that is received and executed by the bots. In this way, the IRC service can
be abused to coordinate and launch DDoS attacks.

1.6 The DDoSVax Project

In the joint ETH/SWITCH research project DDoSVax1 abstract Internet traffic data (Cisco Net-
Flow) is collected at all border gateway routers operated by SWITCH. This data contains in-
formation about which Internet hosts were connected to which others and how much data was
exchanged over which protocols. For this thesis the DDoSVax research team has established
a contact to an administrator of a frequently used IRC system that is temporarily located in the
SWITCH network.

1.7 The Task

Based on tests with real IRC bots, literature research, the results of a previous thesis and traffic
measurements on a real IRC server and on routers in the Internet backbone, algorithms that
detect bots abusing an IRC system will be developed and validated.

The three following approaches to detect bots and botnets will be considered. Further
approaches are optional to this thesis.

• Bots that are installed by a worm will join shortly after each other into the same IRC
network. Such fast joining bots should be detected in the DDoSVax NetFlow data.

• Bots normally stay in an IRC system for a long time. Long standing connections to an IRC
server should be detected in the DDoSVax NetFlow data.

• Bots are usually not talkative in an IRC channel. Therefore, IRC connections that consists
mostly of IRC Ping-Pong traffic and no real conversation should be detected.

The thesis is divided into four main parts, namely information gathering, IRC traffic measure-
ments, algorithm development and validation.

1See http://www.tik.ee.ethz.ch/~ddosvax/

8 CHAPTER 1. INTRODUCTION AND PROBLEM DESCRIPTION

1.7.1 Information Gathering

Studying the thesis “Analysis of Internet Relay Chat Usage by DDoS Zombies” written by
Stéphane Racine is the first step to familiarize with IRC and its possible misuse by bots.

Further literature research on bots and botnets using IRC, studying real bot code, and
setting up an own IRC server will give further insights.

1.7.2 IRC Traffic Measurement

By using the worldwide distributed computers of Planet-lab, a setup with our own bots con-
necting to a (test) IRC server will be installed and its traffic measured on the server (tcpdump)
and in the backbone (DDoSVax NetFlow data). The attack part of these bots (e.g. for denial of
service attacks) will be disabled to prevent any misuse. The focus of interest lies on the use of
IRC to communicate between a master and the bots.

Other IRC traffic measurements, which provide bot-like traffic patterns and that can be
used to design and validate bot detection algorithms, will be conceived and executed.

Time consuming analysis, especially that of large amounts of DDoSVax NetFlow data,
will be done on the TIK experimental cluster “Scylla”2.

1.7.3 Algorithm Development

With the information gathered and the measurements done, various algorithms to detect
characteristic IRC bot traffic (based on the three approaches) will be developed.

Offline algorithms will be run on the cluster “Scylla” or on a workstation. Online algo-
rithms will run as plugins in the UPFrame UDP processing framework provided by the DDoSVax
project.

1.7.4 Validation

The last step will be to thoroughly test the online and offline detection algorithms and to adjust
important parameters to reduce false positives.

1.8 Deliverables

1. IRC bot traffic signatures The bot signatures obtained from literature research, own mea-
surements and tests that describe which characteristics specific bot traffic has.

2. Offline IRC bot detection algorithms Design decisions and implementation of the various
offline IRC bot detection algorithms.

3. Online IRC bot detection algorithms Design decisions and UPFrame plugin implementa-
tion of the various online IRC bot detection algorithms.

4. Thesis Documentation A concise description of the work conducted in this thesis (task,
related work, environment, measurements, results and outlook).

2see http://www.tik.ee.ethz.ch/~ddosvax/cluster/

Chapter 2

Examined Bot Types

This chapter describes which bot types we examined and why the behavior of these types of
IRC clients seem to be especially typical for bots.

2.1 Introduction

As it is generally difficult to determine whether a flow origins from a human IRC user or whether
a malicious bot caused an IRC connection, we defined two scenarios how a bot will behave
within an IRC network. The simplest possibility is that a bot is running permanently on a host
without the knowledge of the user. Then the bot will log into the server, as soon as the user
connects to the Internet; the pattern then can be observed on the server as a connection that
will last for a long time (if the bot is installed on an office computer, the connection will most
likely last for eight or more hours). This leads to the first examined bot type - bots with longtime
standing connections. The following section will further describe how we proceeded.
Another scenario how a bot would behave, is a worm traveling through a local area network
and infecting hosts that are not appropriately protected. Since infections like this can happen
within a short period of time, we can assume that a bigger number of hosts will log into an
IRC server within a short period of time. This would result in a abrupt change in the number of
logged in clients at an IRC server. All these bots can be considered to be bots with long standing
connections afterward.

2.2 Bots with Longtime Standing Connections

Imagine an Internet user with a host, infected with a malicious bot, so called “Zombie”, going
online in the morning and stands online until after the evening. The bot will log into the IRC
channel and wait there for an order. This is a common scenario of IRC usage. Therefore it is
justifiable to analyze “bots with longtime standing connections”.

To analyze this bot type, the following properties were taken (each per connection):

• duration of the connection

• amount of data sent from the IRC client to the IRC server (only IRC traffic!)

• amount of data sent from the IRC server to the IRC client (only IRC traffic!)

• number of IRC Ping-Pong’s

To categorize these properties, a rating with a point scale was developed. The point scale has
to be flexible, because of further trimming. Therefore we take a parable to distribute points.
To evaluate how to set the parameters of the parables, we made a measurement of real IRC
channels. We logged into several channels on June 24th 2004 13:00-14:00 MET (Swiss local
time) and made a full capturing of the IRC Port 6661. Then we exported the traffic as Cisco

9

10 CHAPTER 2. EXAMINED BOT TYPES

NetFlow to compare the values of the connections. The results found are listed in Table 2.1,
the corresponding addendum in Table 2.2. The values are the ones sent, respectively received
by our IRC client. Because we only logged into the channel without chatting, the values in the
column “Sent” aren’t representative, however the values in the column “Received” are very
useful. Considering the Table 2.2 we can get a feeling what is human, or even more, we can see
what is possible to read for humans. For example, how big the amount of data can be.
Our measurement only shows how a channel is represented in the flows. Taking these values,
we can try to set the parable parameters. We derive the following:

• The duration of the connection is simple to rate. The longer the duration of a connection
is, the more suspicious it is. We remind that here we are searching for longtime standing
connections! We use a linear scale. For one day online we give 100 points. See Figure
2.2(a).

• For the amount of data sent to the IRC sever we can consider Table 2.1. For example the
#mp3_collective is a channel, which is used for mp3 file sharing purposes. That means,
that there are only few human chatters in it. Because of file sharing bots the amount of
data is very high, too hight to be human. If the amount of data gets bigger, then we can
be quite sure that it is not a human chatter. Further, if the amount of data is very high, it is
not so important, what the other properties are. Therefore, we took a parable. To find the
parameters of it we took these values to set the parameters of our point scale shown in
Figure 2.2(b).

• To examine the amount of data sent to the IRC client, we adopt a new value: The quotient.
It is defined as amount of data sent to the IRC Client

amount of data sent to the IRC Server
. Imagine an IRC client logged into an

IRC channel, doing nothing, would have a very big quotient if the others in the channel
would say something. This would be a non-talkative longtime standing connection. On the
other hand, if the others are also quiet, the quotient is not big. Another example is, three
or four clients chatting in a channel. The quotient would not be big. Therefore, it is very
difficult to set this value. We tried it in Figure 2.2(c).

• The Ping-Pong’s are again simple to rate. The more Ping-Pong’s we count, the more sus-
picious the connection is, the more likely it’s a non-talkative longtime standing connection.
Therefore we give 100 points for one whole day Ping-Pong’s. See Figure 2.2(d).

2.2.1 Ping-Pong Signature

In the section before, we spoke about Ping-Pong’s. But what are Ping-Pong’s and why search
for them?

IRC Client IRC Server

IRC[PING]

IRC[PONG]

IRC[ACK]

Figure 2.1: Ping-Pong

If an IRC client is idle for a longer time, then the IRC server has to know, if the IRC client is
still online and for this he sends regularly1 an IRC-Ping to the IRC client. The IRC client has to

1the Undernet IRC server sends a Ping every 180s, if Client is idle

2.2 Bots with Longtime Standing Connections 11

answer this IRC-Ping with an IRC-Pong. The IRC server then sends an Ack to the IRC client.
See Figure 2.1.
Now, it should be clear, why we want to search for Ping-Pong’s: Because Ping-Pong’s are a
relatively sure indication for bots with “non-talkative longtime standing connections”.

 0

 20

 40

 60

 80

 100

 120

 140

 0 20000 40000 60000 80000 100000

P
oi

nt
s

Connectiontime [s]

Connection duration point scale
measurement on June 24th 2004 13:00-14:00 MET (Swiss local time)

y=0.0011574x

1 Day

Point scale

(a) Duration

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 100 200 300 400 500

P
oi

nt
s

Data sent to server [bytes/s]

Sent data point scale
measurement on June 24th 2004 13:00-14:00 MET (Swiss local time)

y=0.000750x2

Point scale
#mp3_collective

#TheHelp
#funchat

#Hamburg
#sexe

#Dragost uferinta
#Cybersex

(b) Amount of Data sent to Server

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250 300

P
oi

nt
s

Data to client/Data to server

Quotient point scale
measurement on June 24th 2004 13:00-14:00 MET (Swiss local time)

y=0.0025x2

Point scale
#mp3_collective

#TheHelp
#funchat

#Hamburg
#sexe

#Dragost uferinta
#Cybersex

(c) Quotient

 0

 20

 40

 60

 80

 100

 120

 140

 0 100 200 300 400 500

P
oi

nt
s

Absolute Number of Ping-Pong’s

Ping-Pong point scale
measurement on June 24th 2004 13:00-14:00 MET (Swiss local time)

y=0.20833x

480 PP mean
1 whole day PP

Point scale

(d) Ping-Pong’s

Figure 2.2: Point scale

12
C

H
A

P
T

E
R

2.
E

X
A

M
IN

E
D

B
O

T
T

Y
P

E
S

Channel Sent [bytes
s

] Received [bytes
s

] Packets sent Packets received Con.-time [min] Received data
Sent data

to IRC server from IRC server to IRC server from IRC server
#mp3_collective 2.25 461 209 11120 115 204
#TheHelp 0.215 6 8 56 45 28
#funchat 0.709 15.3 23 108 38 21
#Hamburg 0.242 6 8 31 40 24
#sexe 1.24 183 29 1024 25 144
#Dragost&Suferinta 0.356 25 10 155 39 67
#cybersex 2.32 91 59 704 29 39

Table 2.1: Result of IRC channel measurements

Channel Explanation
#mp3_collective a very frequented channel, with file sharing bots in it. Amount of data too high, to be human readable.
#TheHelp a normal channel, but very low amount of data.
#funchat a normal channel, but low amount of data.
#Hamburg a channel with no traffic.
#sexe a normal channel, some users are chatting. Agreeable to read everything and not boring.
#Dragost&Suferinta a normal channel, but low amount of data.
#cybersex a normal channel, some users are chatting. Agreeable to read everything and not boring.

Table 2.2: Addendum to Table 2.1

2.3 Fast Joining Bots 13

2.3 Fast Joining Bots

In Chapter 2.1, the analysis of fast joining bots was justified. In order to detect these bots, some
more detailed examinations are necessary:

• how to determine the number of logged in IRC clients on an IRC server

• how to detect fast increases in this number

• how to detected whether such bots log in from the same subnet

We developed methods to solve the above mentioned problems and successfully implemented
them in the analysis tools.

2.3.1 Number of Logged in IRC Clients

The Undernet servers are programmed to expect a signal (or a packet) from each client at least
all three minutes. If a client is inactive during this time interval, the server will send an IRC-Ping
and receive an IRC-Pong, if the IRC client is still running. For us this means that from every
active client, we will register a NetFlow flow record at least all three minutes. To be sure to
consider lost records, we defined a time slot with a length of seven minutes. If a host produces
a NetFlow flow record with the IRC server as destination address within this time, we assume
that he is logged in. That reduces the problem significantly; what our program has to do, is to
examine, whether a client was already active in the actual time slot, and if not, to increase the
temporary number of logged in clients. After the time slot is finished, we know the number of
logged in clients during that time.

2.3.2 Detect Increase in the Number of Logged in IRC Clients

Since the method above gives the number of logged in clients at an IRC server, we need to
detect, whether a significant change of this number occurs. We basically defined a frame, where
the number of clients is allowed to move within. The frame consists of a height (∆hosts) and
a width (timewindow). Figure 2.3 shows the case, when the number of logged in IRC clients
changes suspiciously rapid (marked with “BREACH”).

time window

N
um

be
r

of
 lo

gg
ed

 in
 IR

C
 c

lie
nt

s BREACH

change in number

t

Figure 2.3: Definition of frame when breach occurs

The frame moves as time goes forward, and reports all hosts that were part of the breach. The
reported addresses are the ones that were reported as new in the time window.

14 CHAPTER 2. EXAMINED BOT TYPES

2.3.3 Subnet Analysis

A problem is the fact, that the reported addresses do not obviously have to be bots. We mea-
sured a fluctuation of about 20% of the logged in clients every seven minutes. Assuming a total
of approx. 6000 logged in clients, we will detect 1200 false clients apart from the 200-300 bots.
To sort out the bots, we had to develop an additional search pattern. As already mentioned
above, we assume the bots to usually origin from within the same subnets. Therefore we will
compare the addresses of the whole list of reported clients. A prefix matching of the (converted)
binary addresses gives the number of the matching bits (see Figure 2.4. These results are ac-
cumulated for every address. In a case, when a subnet of some dozens of hosts accrues a
breach, these hosts will give a much higher number than casual clients.

129.132.57.75
129.132.57.115

10000001100001000011100101001011
10000001100001000011100101110011

26 Bits match

Figure 2.4: Prefix matching of two addresses

Chapter 3

Implementation

In this chapter the online and offline implementations of the two detection algorithms will be
described in detail. The offline tool is a Perl script, the online tool is written in C.

3.1 Offline Analysis

3.1.1 Introduction

The offline tool takes the NetFlow one hours files from the disk archive. We processed two such
files for each hour. The first file contained data of a single router, the second file contained data
of three different routers. We developed a framework, to handle this various number of routers
in the two files. Fortunately there was a tool1, provided by the DDoSVax group, that was able
to display the NetFlow data in a human readable manner. Further we could use the Perl scrips
from Stéphane Racine, who already wrote some functions, which handles NetFlow files. We
made a collection of useful functions, that they are easy to use in different scripts. This library
called “NetflowTools” will be explained in Appendix A.2.3.
Because this analysis is offline, we have the advantage to “look” into the future. Therefore we
can compose the whole connection first, and then, when the connection is finished, analyze it.

3.1.2 Sliding Window

If we would analyze some hours and days and compose every flow, until the end of our analysis,
it will end in a memory problem. Therefore, we cannot analyze as long as we want without
cleaning up the memory. So we had to search a solution to clean up the memory at the right
time. We decided to take advantage of the “sliding window” technique. The basic idea is to
analyze until a predefined point, and then look, which connections are terminated, so that we
can report them and free memory. The idea is shown in Figure 3.1.

overhead

flows read

next t1

t2 t1t0

Figure 3.1: Sliding window

As we know from Chapter 1.2, the flows are exported at the least every fifteen minutes after
beginning. Furthermore, let us define the overhead as t1 − t2 = 20 minutes.
If we compose the flows (see more about composing flows in Chapter 3.1.3) and we arrive at t1
(the end of the file), we can be sure that every connection that was finished before t2 is really
finished. So we can analyze the connection, report it, and free memory. Surely we can also do
the analysis somewhere in the file. Then we only have to adjust t1 (and also t2) the right way.
How the data flow looks like is show in Figure 3.2.

1netflow_to_text

15

16 CHAPTER 3. IMPLEMENTATION

is last
file?

do Evaluation

is next
file newer?

next

nono

no

yes

yes

exit

List of NetFlow

(sorted by
date/time)

yes
last = 1

file

is last == 1?

Figure 3.2: Flow chart for sliding window

3.1 Offline Analysis 17

3.1.3 “Longtime Standing Connection Bots” Implementation

The NetFlow data is saved on the disc in the archive from where we read it with the
netflow_to_text program. The data flow is shown in Figure 3.3.

Filter for

IRC IP/Port

Net−
Flow

archiv

Flow
Composer

Ping−PongPing−Pong

Sniffer Validator IR
C

 C
o
n
n
e
c
ti
o
n

R
a
ti
n
g

O
u
tp

u
t

Figure 3.3: Implementation of the offline longtime standing connection bots algorithm

Definition of Connection

First let us define what we mean with a connection. A connection is represented by the double
ClientIP:ServerPort . Everything with the same double, belongs to the same connection.

Filter for IRC Connections

Only flows are passed through, that are from the specific IRC server on the specific ports2,
respectively are going to the specific IRC server and specific ports.

Flow Composer

The flow composer takes every flow and checks, if it is a Server to Client or a Client to Server
flow. A new connection is made, if the double is new, and updated if the double already exists.
Normally, a flow belonging to an existing connection, is newer and therefore we can update the
end time of the existing connection with the end time of the flow. Unfortunately there are some
flows delayed and so, from time to time, we have to update the start time of the connection.

Ping-Pong Sniffer/Validator

Every flow coming to the Ping-Pong Sniffer is analyzed, if it could be a Ping or a Pong. To find a
Ping or a Pong, we took the patterns, which Stéphane Racine found in his Master’s Thesis.
Let us define two parameters:

• l: length of flow (Bytes)

• p: number of packets in flow

A Ping has the pattern:
p >= 2 and l >= 86

and a Pong has the pattern:

l >= 46 and l <= 121 and p == 1 or

l >= 86 and l <= 173 and p == 2

26660-6669, 7000, 7777, 8000

18 CHAPTER 3. IMPLEMENTATION

If it could be one of them we try to search the complement of it. If we can find it, we have suc-
cessfully detected a Ping-Pong. Again, there are some delayed flows, and so we have to search
for a Pong, even though the end time of a Ping normally is younger (see Figure 2.1).
The Ping-Pong Sniffer also makes sure, that a Ping-Pong only can appear in a defined dis-
tance3. If there are suddenly two Ping-Pong’s in the same time slot, none counts.

IRC Connection Rating

In this block the rating is made. See Chapter 2.2 for more details.
For a deeper understanding, see the flowchart in Figure 3.4.

Output

The found connections are written to a file. Each line represent a connection with all the found
properties. Furthermore, the points are also reported. The file format looks like4:

#
2 # Result of offline plugin ’longtime’

File written at: 05.07.2004 14:18:34
4 # Using the following sheme:

CLIENTIP SERVERPORT BYTES_TO_SERVER BYTES_TO_CLIENT PACKETS_TO_SERVER PACKETS_TO_CLIENT ←↩

CONNECTIONS_TO_SERVER PINGPONGS POINTS[] STARTTIME ENDTIME
6 # POINTS[CON_TIME BYTES_TO_SERVER QUOTIENT PINGPONG]

#
8 #

x.x.x.x 6667 720 0 15 0 2 0 4 1 0 0 ←↩

1087924924.3660 1087926620.6720
10 x.x.x.x 6667 288 0 6 0 2 0 2 1 0 0 ←↩

1087925170.4440 1087926256.3200
x.x.x.x 6667 144.0 0 3.0 0 1 0 0 1 0 0 ←↩

1087926431.2970 1087926440.1290
12 x.x.x.x 6667 288 0 6 0 1 0 1 1 0 0 ←↩

1087924567.4390 1087924917.2000
x.x.x.x 6667 288 0 6 0 1 0 0 1 0 0 ←↩

1087923577.8140 1087923713.4950
14 x.x.x.x 6667 311961 390418 6013 6943 1 0 0 69112 13 0 ←↩

1087927185.5900 1087927192.8230
x.x.x.x 6667 128.0 473 3.0 4 1 0 0 1 37 0 ←↩

1087925722.7570 1087925733.9570
16 x.x.x.x 6667 73888 83128 1373 840 1 0 8 1 11 0 ←↩

1087923253.3350 1087926683.4570
x.x.x.x 6667 448760 550995 8507 9858 1 0 0 766352 12 0 ←↩

1087927189.0480 1087927192.1210
18 x.x.x.x 6667 3523 4277 59 48 1 0 6 1 12 0 ←↩

1087924090.2640 1087926894.4630
x.x.x.x 7000 3896 4428 66 51 1 0 6 1 11 0 ←↩

1087924087.1260 1087926891.6480

A pseudo code of the offline longtime standing connection bots algorithm can be found in Ap-
pendix B.

3.1.4 ”Fast Joining Bots” Implementation

The implementation of the fast joining bot analysis follows the description given in Chapter
2.3. The first thing to implement was the bucket counting for number of connections. After the
number is evaluated, we can check for possible breaches in our defined frame. Whenever the
number of IRC clients at our server increases more than our variable boundary_top within the
boundary_time timeslots, a breach is reported, accompanied by the suspicious IP addresses.
After this file is written, a second program called postanalysis is run, that will perform the
subnet analysis and print the results in a fancy format. This program is the same as for the online
analysis and excepts equivalent inputs for both methods (online/offline) and gives therefore the
same results.

Data Collector

This part checks every incoming flow for an appropriate destination address (IRC server) and
destination port (IRC ports). Afterwards the start and end time is taken and examined, whether

3the Undernet IRC server send a Ping every 180s, if a Client is idle
4IP addresses marked with “x.x.x.x” are faked for security reasons

3.1 Offline Analysis 19

is IRC
connection?

is Flow
to IRC
Server?

is new
connection?

add new

connection

is time to
evlaluate?

do evaluation,
free unused

memory,
write file

no

no

yes

yes

no

no

next

yes

yes

yes

Ping?
is is

Pong?

yes

add to Pong

candidates

add to Ping

candidates

update
existing

connection

nono

NetFlow
flow entry

Figure 3.4: Flowchart of the offline longtime standing connection bots algorithm

20 CHAPTER 3. IMPLEMENTATION

this NetFlow record fits in the actual time slot. If yes, the address is checked, whether it already
performed a connection and the counter increased for every time slot the flow appears, if it is
new. If the record is newer, the actual time slot increases and the the same action is performed
as described above. If the record comes late, it is entered one time slot in the past. Records
delayed more than one time slot are ignored.
After this, a moving average calculation is performed. Therefore, depending on the size of the
average window, several bucket values in the future must be known. This is the reason, why this
calculation is done on the offline analysis only. The now flattened values are given to the breach
detector.

Breach Detector

Since we know the recent numbers of logged in IRC clients, we step backwards in time until we
reach the end of our frame and search for breaches. When we detect a breach, we search for
the IP addresses, that are active in this slot and were not in the last one; these addresses are
written into the new hash. After we successfully found breaches all found addresses are written
to #basename.pdat and the post analysis tool is called. Additionally we write the number of
logged in IRC clients into #basename.number every time a time slot is finished.
Typical outputs of this program can be seen here5:

Result of offline tool ’fastjoin’
2 # File written at 07.07.2004 09:19:36, contains data of 14:30:00

Using the following sheme: ADDRESS NUMBEROFCONNECTS LAST TIME OF CONNECT
4 x.x.x.x 25 1089027660

x.x.x.x 5 1089028080
6 x.x.x.x 5 1089027240

x.x.x.x 5 1089021360
8 x.x.x.x 10 1089027240

x.x.x.x 5 1089021780
10 x.x.x.x 5 1089021780

x.x.x.x 10 1089027660
12 x.x.x.x 5 1089021360

x.x.x.x 10 1089027240

Number of Connections
2 # Format: TIME NUMBER

12:03:00-2004-07-05 5295.6
4 12:10:00-2004-07-05 5905.8

12:17:00-2004-07-05 5903
6 12:24:00-2004-07-05 5908.6

12:31:00-2004-07-05 5950.4
8 12:38:00-2004-07-05 6046

Post Analysis

The post analysis tool first reads the list with the suspicious addresses, then performs a subnet
analysis. This analysis uses every IP address, and does a prefix matching as described in
Chapter 2.3 with every other address. This leads to a problem with the complexity of O(n2).
At first, this calculation was made using Perl. Surprisingly we were not able to get a proper result
within a useful amount of time. Using more than 1000 addresses resulted in calculation times
of 15 minutes and more. Although we tried extensive optimization and analysis of the algorithm,
we couldn’t reduce the calculation time. As we tried to do the same in C, the (almost) same
code needed about two seconds for 10000 addresses. Perl seems to be extremely slow when
using big hash tables (this observation was made at several other points, by other people also).

Output

In order to visualize our results, we add the suspicious addresses with their results for each time
grid point. The running algorithm writes several files:

• a file with the extension #basename_data.pdat that contains a list with all the ad-
dresses, the corresponding result of the subnet analysis, the number of breaches it oc-
curred in, and the time it breached last.

5IP addresses marked with “x.x.x.x” are faked for security reasons

3.1 Offline Analysis 21

• a file with the extension #basename_plot.pdat that counts the number of addresses
that occurred in a breach at each time grid point.

• a file with the extension #basename_plot.gnuplot that sets every setting for GNUPlot
to perform a nice plot in the file #basename.eps.

• finally a file called #basename_number.gnuplot that prints the number of logged in IRC
clients. A nice plot can be seen in Figure 3.5. The obvious peak is the result of a DDoS
attack of the Undernet IRC server. First the bots gather at the Undernet Server (increase
of numbers) and then the IRC server breaks down.

Examples of these files can be found in Appendix D. A pseudo code of this implementation
is in Appendix C. In despite to the longtime standing connection bot analysis we are counting
IP addresses instead of the double ClientIP:ServerPort, since the number of hosts connected
contain information enough to detect a bot during a fast joining sequence.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

09.05
07:00

09.05
08:00

09.05
09:00

09.05
10:00

09.05
11:00

09.05
12:00

09.05
13:00

09.05
14:00

09.05
15:00

09.05
16:00

09.05
17:00

09.05
18:00

N
um

be
r

of
 H

os
ts

Time

Number of Hosts at Undernet-Server

Number during Attack

Figure 3.5: A plot of the number of logged in IRC clients on the 9th of May 2004

22 CHAPTER 3. IMPLEMENTATION

3.2 Online Analysis

3.2.1 Introduction

The Online Analysis should, in contrast to the Offline Analysis, be able to operate in real time.
The framework “UPFrame” to perform these operations was provided by the DDoSVax group.
UPFrame means UDP NetFlow Processing Framework and provides the necessary functionality
to directly process incoming NetFlow records. What we had to do was to implement our functions
using the provided netflowtools (netflow_v5). The incoming records are filtered for IRC ports
and a predefined IRC server. Afterwards the records are processed differently for the long time
standing connection bots and the fast joining bots.

3.2.2 “Longtime Standing Connection Bots” Implementation

The online implementation of the algorithm discussed in Chapter 3.1.3 is at first view more or
less the same. But there are some differences. The basic functionality is the same, but how the
data is processed is different. The glow chart is shown in Figure 3.3.

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

Net−
Flow
Data

Border Gateway Router

O
u

tp
u

t

Flow Composer

Flow Analyzer

Ping−Pong
Analyzer

Point Calculator

Filter for

IRC IP/Port

UPframe Plugin
UPFrame

Figure 3.6: Online implementation of the longtime standing connection bots algorithm

Definition of Connection

A connection is represented by the double ClientIP:ServerPort . See also Chapter 3.1.3.

Filter for IRC Connections

Only flows are passed through, that are from the specific IRC server on the specific ports,
respectively are going to the specific IRC server and specific ports6.

Flow Analyzer

The flow analyzer takes every flow and checks, if it is a Server to Client or a Client to Server
flow. A new connection is made, if the connection (identified by a double) is new, and updated if
it already exists. Normally, a flow belonging to an existing connection, is newer and therefore we
can update the end time of the existing connection with the end time of the flow. Unfortunately,

66660-6669, 7000, 7777, 8000

3.2 Online Analysis 23

there are some flows delayed and so, from time to time, we have to update the start time of
the connection. Furthermore, every flow is checked, if it could be a Ping or Pong. If so, the flow
analyzer tries to find its complement. Exactly like in the offline analysis, this is made for Ping’s
and Pong’s. For more see Chapter 3.1.3.
How this works is shown in Figure 3.7.

Here we have a causal system, i.e. we cannot look to the future. The points have to be calculated
before the connection is finished. Therefore, the points are calculated immediately.
For further understanding see the flow chart in Figure 3.7.

Output

The output would be the same like in the offline analysis
A pseudo code of the online longtime standing connection bots algorithm can be found in Ap-
pendix E.

3.2.3 “Fast Joining Bots” Implementation

The implementation of the online analysis should perform the same actions as the offline anal-
ysis, with the restriction to not acquire a high latency, since every packet should be processed
fast due to a restriction of the buffer size. Additionally the latency of the program as a whole
should not be too big; we want to be able to obtain results exactly when they appear.
This made it impossible to make use of the moving average to flatten the results. It is predictable
that the measurements with the online tool for the fast joining bots will not be as exact as those
with the offline tool.

Structure

Figure 3.8 shows how the online tools is structured. The implementation is basically the same
as the one in the offline tool, the NetFlow flow records are processed (added to the bucket) and
the results sent to the post processor. This module is the same as the one used for the offline
analysis, also the output of all the modules is the same. (An example can be seen in Appendix
D).

Implementation

The data path of a NetFlow flow record can be seen in the flow chart in Figure 3.9, the data
analysis is described in Figure 3.10.
Data is collected into a ring buffer as shown in Figure 3.11. This data type was chosen because
it makes the breach detection much easier. In contrast to the Offline Analysis where the whole
frame is searched for breaches, here we only compare the newest with the oldest ring buffer
entry. If we detect a breach, the list of new IP addresses is already stored at the actual position
of the ring buffer; this step was taken to reduce latency (the NEW list is refreshed with every
incoming flow).
After seven minutes (when the bucket is filled) the post processor is called and performs its
operation. Therefore an external process is started, this will, especially when applied on the
DDoSVax Scylla Cluster, reduce load problems because the system will be able to give the post
processor a lower priority than the data collector.

Output

The output of the online analysis tool is the same as in Section 3.1.4, and some samples can
be seen in Appendix D.

24 CHAPTER 3. IMPLEMENTATION

next

no

no is Flow
Client to IRC

Server?
Server to IRC

Client?

yes yes

is new no

yes

no

no

yes

add Ping
to connection

no

yes

no

yes

increment
Number of
Ping−Pong’s/
connection

calculate

Point/

connections

yes

increment
Number of
Ping−Pong’s/
connection

is it time

to report?

yes

no

set new report−

free memory

update
existing

connection

NetFlow
flow record

is Flow

is Ping?
add
new

connection

update
existing

connection

is Pong?

add Pong

to connection

is there a
corresponding

Ping?

report,

time

Connection?

is there a
corresponding

Pong?

Figure 3.7: Flow chart of the online longtime standing connection bots algorithm

3.2 Online Analysis 25

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

NetFlow
Data

Border Gateway Router

Plotting Tool

Visualization

Plot Result
List Addresses

Post Processor
Sophisticated

(high latency)
Analysis

Subnet
Analysis

Fastjoin Plugin

Data Collector
Simple Analysis
(low latency)

Count number
of breaches

Online Plugin
UPFrame

Figure 3.8: Structure of the online fast joining bots analysis

26 CHAPTER 3. IMPLEMENTATION

yes

NetFlow flow next

record

no

advance with
global timeslot

start
analysis

no

does it end
earlier?

nois record
finished in
timeslot?

yes yes

no

new?
address
is source

yes

enter into NEW
list and increase
number of clients

is IRC
connection ?

decrease temporary
timeslot

Figure 3.9: Flow chart of the data flow in the online analysis of the fast joining bot

3.2 Online Analysis 27

compare newest
with oldest
ringbuffer entry

breach
occured?

no

yes

for the whole
ringbuffer
write out NEW ips

print whole list

Figure 3.10: Detail view of the analysis part in the online analysis of the fast joining bot

...

4

3

2

1

0

n

time

number of connections
NEW list

ringbuffer

time goes forward

...

Figure 3.11: Realization of the data collection using a ring buffer

Chapter 4

Results

To validate our algorithms, we needed a testing environment. Fortunately we were able to use
the “PlanetLab” network, where the DDoSVax Group is a part of. This project basically provides
more than 400 hosts, distributed all over the world, where we could install and run different
programs for testing purposes. Figure 4.1 shows the application of this network. We were able
to simulate a fast joining scenario as well as long time standing connections.

eunuch

PlanetLab

Router

pc−4526.ethz.ch

geneva.ch.eu.undernet.org

IRC

Figure 4.1: Setup of our testing environment

The program installed on the PlanetLab nodes was a modified version of the malicious “kaiten”
bot, an IRC bot written in C. We removed the attack and malicious command support and called
it “eunuch”. We control them using PSSH (see Appendix F).

4.1 Description of Measurement

The results described below mainly refer to a measurement taken at noon of the 5th of July
2004. At this time, we started our 150 bots, and sent them to the Undernet IRC server. The goal
of the measurement was to first detect fast joining scenarios and analyze the longtime standing
connection characteristics afterward.

4.2 “Longtime Standing Connection” Analysis

As said in Chapter 3.1.3, the output of the offline and the online analysis is a tabular. To give a
fast overview over the analyzed time, or to see irregularities, we made a Perl script, that takes

28

4.3 “Fast Joining Bots” Analysis 29

this table and writes a gnuplot file. Such a plot is shown in Figure 4.2.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00

A
bs

ol
ut

e
N

um
be

r
of

 C
lie

nt
s

pe
r

60
 s

Time

Analysis Of IRC Connections Time (01:44:00 05.7.2004 - 23:59:00 05.7.2004)
Server: geneva.ch.eu.undernet.org, Ports: 6660-6669, 7000, 7777, 8000

> 24 hours
< 24 hours
< 10 hours

< 5 hours
< 3 hours
< 1 hour

< 15 minutes

Figure 4.2: Analysis of IRC connections

In this plot, we can see, how many clients are online and (for) how long. Only the clients that are
logged in on the geneva.ch.eu.undernet.org server are shown. The script takes an analyzed
connection and draws it into the plot everywhere it is online. That means that if an IRC client
is online for two hours, he would be blue for the whole two hours he is online. This is again an
acausal analysis! We look several hours into the future in this case.

If we pay further attention to the plot in Figure 4.2, we can see, that there are some
peaks. For example there is one at noon. There we have an abrupt rise of short connections.
This piece of the plot is zoomed in in Figure 4.3.
This peak is two times bigger than the normal level. This is an appearance of a fast joining
action, which is shown in the next chapter. Such a “longtime” plot can give further information
about elapsed attacks, or are a good tool to proof a made supposition.

4.3 “Fast Joining Bots” Analysis

Concerning the measurement, the analysis should give some clear results:

• Detect Breach at the moment the bots were activated

• Find irregularities with help of the subnet analysis (the PlanetLab network consists of a
compound of usually four up to ten or more nodes within one subnet)

The results obtained from the analysis are plotted in Figure 4.4. The plot contains several in-
formations: on the left scale there is the accumulated number of hosts that were involved into
a breach during this time. On the right hand side is the accumulated value gained through the
subnet analysis, divided by the number of involved clients. (

∑
Ptsubnet

#clients
)

This plot should give information about the importance of the breach (number of involved clients)
and give a guess whether this breach contained hosts from the same subnet, or whether the

30 CHAPTER 4. RESULTS

Figure 4.3: Zoom of peak in Figure 4.2

 0

 500

 1000

 1500

 2000

 2500

05.07.
11:00

05.07.
11:15

05.07.
11:30

05.07.
11:45

05.07.
12:00

05.07.
12:15

05.07.
12:30

05.07.
12:45

05.07.
13:00

05.07.
13:15

05.07.
13:30

05.07.
13:45

05.07.
14:00

 0

 50

 100

 150

 200

 250

N
um

be
r

of
 S

us
pi

ci
ou

s
C

lie
nt

s

P
oi

nt
s

of
 S

ub
ne

t A
na

ly
si

s
pe

r
U

se
r

Time

Result of Fastjoin Analysis at 13:48:00-2004-07-05

Number of Clients

Points of Subnet Analysis

Figure 4.4: Result of measurement

4.3 “Fast Joining Bots” Analysis 31

nodes were randomly distributed all over the Internet. This case would result in a low result of
the subnet analysis.
Taking a closer look at the plot of our measurement of the 5th of July gives a clear result: the
arrival of the bot network was detected, the peak of the red graph shows a significant increase
in this number. Additionally it results in a remarkable higher value of the subnet analysis. This
shows that the analysis detected the relationship between the logged in clients that were in-
volved into the breach!
Below listed is an extract of the data file given by the analysis1:

Address Subnet Analysis Time
2

169.229.50.10 399 1089021780
4 169.229.50.11 399 1089021780

169.229.50.12 398 1089021780
6 169.229.50.13 398 1089021780

169.229.50.15 397 1089021780
8 ...

x.x.x.x 0 1089021360
10 x.x.x.x 0 1089027660

x.x.x.x 0 1089027660
12 x.x.x.x 0 1089021360

The clear difference between the upper and the lower addresses inspired us to further investi-
gation about the origin of of these hosts. A DNS lookup of the first five addresses showed, that
they all came from the PlanetLab network, where our bot were installed.

1IP addresses marked with “x.x.x.x” are faked for security reasons

Chapter 5

Summary

5.1 Conclusion

In this chapter we try to conclude the results of our analysis and to outline the possibilities of
the examined methods to detect the two Bot types.

5.1.1 Longtime Standing Connection Bots

Results

We have developed a tool, that is able to analyze IRC connections in Cisco NetFlow data, if the
IRC server is known.

Our algorithm can show, everything included in the NetFlow data for each connection. That
especially is:

• the online time of each IRC client

• the amount of data

Further we can show, if an IRC client is idle or not and how many Ping-Pong’s were sent.
We can also proof the results by comparing the output of this algorithm with the one of the
fastjoining tool.

Limits

As said in the chapter before, we are able to display nearly everything about the connection,
that was saved in the NetFlow data. But with all this, we haven’t found the malicious bots.
If for example, we have a “human chatter” that logs into an channel in the morning, and then
stays online, waiting for some action in the channel, then we will have a typical non-talkative
longtime standing connection. This sample is far away from special. IRC often is used for a kind
of IM (Instant Messenger), or last but not least, for some kind of Groupware what would end in
extremely long time standing connection (several weeks!) with nearly no traffic!
On the other hand, IRC also often is used for good-natured bots like file sharing purposes.
Because these are also bots with “non-human” characters, it will be nearly impossible to make
a difference between malicious and good-natured bots.
Considering this, we will have a very high number of false positives, if we would try to detect ma-
licious bots with the defined properties. Nevertheless, the properties give knowledge for further
analysis.

5.1.2 Fast Joining Bots

Results

During our work on the fast joining algorithm we developed several algorithms and methods:

32

5.2 Outlook 33

Number counter: The developed algorithm is able to count the number of logged in clients out
of NetFlow flow records. This means that we were able to concentrate the data and gain
new information out of it.

Breach detection: This method can detect the breach out of a given frame. It will report all
the addresses that were involved in a breach.

Subnet Analysis: The last method shows the relationship between addresses, whether they
belong to the same subnet. This is a reliable help to decide, whether hosts may contain
malicious Bots or whether they accidentally joined an IRC server at the same time as a
gathering of Bots occurred.

This methods were successfully evaluated and can serve as a tool to detect breaches.

Limits

Although the success of our measurement, there are some obvious limits. At first, the clients
at the IRC server fluctuate approx. 20% every seven minutes. This means that whatever data
we obtain, these 20% will always give false positives. We tried to diminish this problem by
introducing the subnet analysis, but this analysis mainly shows which subnets were involved. If
there are Bots installed on single hosts with no relationship to others, they will result as a false
negative.
Another problem is the blurriness in the measurement of the number of logged in IRC clients.
This number sometimes jumps with values of more than 100 clients. The calculation of the
moving average solved this problem, but this wasn’t possible using the online version. There
this problem remains.

5.2 Outlook

5.2.1 Longtime Standing Connection Bots

As said in the Chapter 5.1.1, we are able to display some properties of an IRC connection,
but it’s nearly impossible to assign these values to a malicious bot. Therefore there should be
further analysis about the behavior of this bots to trim the made point scale.
A home user, infected with a malicious bot, is normally offline during night. A lot of them are
only online after work, i.e. five o’clock. Hence, a daytime analysis could be interesting.
Further, today a lot of Internet users have a broadband Internet Access. So many of them don’t
change the IP numbers, respectively get the same IP on the next login. So an analysis over
more than one connection could also be interesting, to see regularities.
We found different values and made an additive rating. Perhaps it is better to make a multiplica-
tive scale, or in general, put the values in touch with each other.

5.2.2 Fast Joining Bot Detection

It is well possible to imagine the use of these tools to observe other chatting systems, as for
example IM or ICQ (in the ICQ system there already exists a Bot called “Phat Bot”).
Another possible application of our methods might be to detect load problems for web servers
or other public services. The breach detection would be a useful tool.
A further examination of the subnet analysis could give very interesting results. Since this algo-
rithm became quite fast due to strict optimization, an application in a real time environment is
possible.

5.3 Acknowledgment

We would like to thank our tutor Thomas Duebendorfer and our co-tutor Arno Wagner for their
support during our work on this thesis and their patient answers to so many desperate ques-
tions. An additional “thank you” concerns their tolerance on our working method on this report

34 CHAPTER 5. SUMMARY

(Thomas Kaufmann has left Switzerland in the middle of July for an internship abroad and the
documentation had to be written on two different continents).
Most of all we are grateful to them and our supervisor Prof. Dr. Bernhard Plattner to give us the
opportunity to apply our first thesis in such a sophisticated and professional environment; it is
incredible what insight we gained within 3 month of intensive work on this interesting subject.

Appendix A

Deployment

A.1 Introduction

Here we will describe how our programs actually work. We describe the necessary commands
to obtain the results we did so far. A big part is the description of the Perl framework we worked
on, with all the necessary functions to perform the analysis.

A.2 Framework in a Nutshell

A.2.1 longtime.pl

The longtime.pl is the offline longtime standing connection detection tool. The usage is as
follows:

-b <Identification> Special Identification to identify the conducted analysis
-d <Path> Path to NetFlow files
-h Usage (Help)
-l <Minutes> Output length (gives output, every ’l’ minutes. Default: only one file is re-

ported)
-t <Seconds> Longtime threshold (every Connection, shorter than ’t’ won’t be reported.

Default: Every Flow will be reported)
-n <Path> Path to the ’netflow_to_text’ program (only path!)
-o <Path> Outputpath
-s <Date/Time> Startpoint of the filter (format: "13.05.2004 00:00:00")
-e <Date/Time> Endpoint of the filter (format: "13.05.2004 00:00:00")

The input are NetFlow files and the output is a file in form of a tabular. It would look like
this1:

#
2 # Result of offline plugin ’longtime’

File written at: 05.07.2004 14:18:34
4 # Using the following sheme:

CLIENTIP SERVERPORT BYTES_TO_SERVER BYTES_TO_CLIENT PACKETS_TO_SERVER PACKETS_TO_CLIENT ←↩

CONNECTIONS_TO_SERVER PINGPONGS POINTS[] STARTTIME ENDTIME
6 # POINTS[CON_TIME BYTES_TO_SERVER QUOTIENT PINGPONG]

#
8 #

x.x.x.x 6667 720 0 15 0 2 0 4 1 0 0 ←↩

1087924924.3660 1087926620.6720
10 x.x.x.x 6667 288 0 6 0 2 0 2 1 0 0 ←↩

1087925170.4440 1087926256.3200
x.x.x.x 6667 144.0 0 3.0 0 1 0 0 1 0 0 ←↩

1087926431.2970 1087926440.1290
12 x.x.x.x 6667 288 0 6 0 1 0 1 1 0 0 ←↩

1087924567.4390 1087924917.2000
x.x.x.x 6667 288 0 6 0 1 0 0 1 0 0 ←↩

1087923577.8140 1087923713.4950

1IP addresses marked with “x.x.x.x” are faked for security reasons

35

36 APPENDIX A. DEPLOYMENT

14 x.x.x.x 6667 311961 390418 6013 6943 1 0 0 69112 13 0 ←↩

1087927185.5900 1087927192.8230
x.x.x.x 6667 128.0 473 3.0 4 1 0 0 1 37 0 ←↩

1087925722.7570 1087925733.9570
16 x.x.x.x 6667 73888 83128 1373 840 1 0 8 1 11 0 ←↩

1087923253.3350 1087926683.4570
x.x.x.x 6667 448760 550995 8507 9858 1 0 0 766352 12 0 ←↩

1087927189.0480 1087927192.1210
18 x.x.x.x 6667 3523 4277 59 48 1 0 6 1 12 0 ←↩

1087924090.2640 1087926894.4630
x.x.x.x 7000 3896 4428 66 51 1 0 6 1 11 0 ←↩

1087924087.1260 1087926891.6480

To use the longtime.pl tool, the NetflowTools.pm have to be in the same directory!

A.2.2 fastjoin.pl

The fastjoin.pl is the offline fast joining bot detection tool. The usage is as follows:

-b <Identification> Special Identification to identify analysis. This name will be used for all further
files

-d <Path> Path to NetFlow files
-h Usage (Help)
-n <Path> Path to the ’netflow_to_text’ program (only path!)
-o <Path> Outputpath
-s <Date/Time> Startpoint of the filter (format: "13.05.2004 00:00:00")
-e <Date/Time> Endpoint of the filter (format: "13.05.2004 00:00:00")

A.2.3 NetflowTools.pm

NetflowTools.pm is a library with useful functions, managing NetFlow files. The following
functions are in it:

A.2 Framework in a Nutshell 37

ip2int int ip2int(string IP);
Convert the human readable IP (like: 132.129.57.115) and return
the int value.

ip2bin array ip2bin(string IP);
Convert the decimal human readable IP (like: 132.129.57.115) and
return the binary IP (10000100100000011110011110011);.

ipsplit int ipsplit(string IP);
Convert the human readable IP (like: 132.129.57.115) and return
an array with four entries (array[0]=132 ...).

dec2bin int dec2bin(string IP);
Convert decimal value to a binary value.

checkipmatch int checkipmatch(string IP);
Return the value or the prefix matching.

getNextGridPoint int getNextGridPoint(float UNIX_timestampt);
Return next lower gridpoint. For this function the constant
GridLength [s] has to be set in the main program first!

round int round(float number);
Round like in other languages.

getLokaleZeit string getLokaleZeit();
Returns the actual date and time as a string (Format: 13.05.2004
13:18:33)

stamp2date string stamp2date(float UNIX_timestamp);
Returns the actual date as a string (Format: 13.05.2004)

stamp2time string stamp2time(float UNIX_timestamp);
Returns the actual time as a string (Format: 13:18:33)

epochseconds2dmyhms string epochseconds2dmyhms(float UNIX_timestamp);
Returns the actual date and time as a string (Format: 13.05.2004
13:18:33)

dmyhms2epochseconds float dmyhms2epochseconds(sting datetime);
Convert human readable date/time (Format: 13.05.2004 13:18:33)
and returns the UNIX timestamp

getLogTime float getLogTime(string NetFlowFileName);
Return the log time as a UNIX timestamp. Input is the name of the
NetFlow file

getEintraegeZeile void getEintraegeZeile(string Zeile);
Input is a line from the netflow_to_text tools (netflow_to_text
-d -f ...). The function return the values: Protokoll; Sour-
ceIP; DestinationIP; SourcePort; DestinationPort; AnzahlBytes;
AnzahlPakete; AnfangsZeit (seconds.milliseconds); AnfangsZeitM-
SEK; AnfangsZeitSEK; EndZeit (seconds.milliseconds); EndZeitM-
SEK; EndZeitSEK; Dauer (seconds.milliseconds); DauerMSEK. By
calling this function, the values are accessible.

getFilesToProcessInFolder float getFilesToProcessInFolder(string Path);
Return a sorted list (sorted by date/time of the logtime) of NetFlow
files in Path. Only NetFlow files are returned, even if there are oth-
ers.

38 APPENDIX A. DEPLOYMENT

A.2.4 longtime_plot.pl

The longtime_plot.pl is the plotting script for the output files generated by longtime.pl of the
UPFrame plugin ’longtime’. The usage is as follows:

-b <Identification> Special Identification to identify the conducted analysis
-d <File> File to process
-h Usage (Help)
-o <Path> Outputpath

The output is a .dat file and a .gplot file, which can be plotted by calling
gnuplot Identification.gplot. The output of this command is a file called
Identification.eps. The file looks like Figure 4.2.

Appendix B

Pseudo Code “Offline Longtime
Standing Connection” Algorithm

###
2 # Pseudo code of the "Long Standing IRC Bots Detection" algorithm #

###
4

l: length of flow (Bytes)
6 # p: number of packets in flow

s: start time of flow
8 # e: end time of flow

10 # connection key always is [ClientIP:ServerPort] and is swaped if necessary

12 # OutputTimeOut: Time between Output is reported

14 # Step 1a: Generating the data structure of connections and
Ping-Pong analysis using the "Sliding Window" technique

16 ###

18 for (each FlowFile) {
for (each Flow) {

20 if (Flow is an IRC Connection)
addToConnectionList(Flow);

22 addToPingPongList(Flow);

24 if ((window(next FlowFile) != window(FlowFile)) ||
OutputTimeout is reached

26) {
doEvaluation();

28 }
)

30 }
}

32

34 # Step 1b: addToConnectionList
###

36 addToConnectionList(Flow) {
if (DstIP == IRCIP) {

38 if (Flow exists in Connections) {
update Flow #start or end time

40 }
else {

42 add Flow to Connections
set dataToClient 0 in this Flow

44 }
}

46 else if (SrcIP == IRCIP) {
#reverse means other direction

48 update reverse(Flow) #dataToClient only
}

50 }

52 # Step 1c: addToPingPongList
###

54 addToPingPongList(Flow) {
if (

56 (DstIP == IRCDP) &&
(((l >= 46) && (l <= 121) && (p == 1)) ||

58 ((l >= 86) && (l <= 173) && (p == 2))
) {

60 if (connection allready extist in this timeslot) {
mark this PongCandidate as deleted

39

40
APPENDIX B. PSEUDO CODE “OFFLINE LONGTIME STANDING CONNECT ION”

ALGORITHM

62 }
else {

64 add Flow to PongCandidates in corresponding timeslot
}

66 }
else if ((SrcIP eq IRCIP) && (p >= 2) && (l >= 86)) {

68 if (connection already extist in this timeslot) {
mark this PingCandidate as deleted

70 }
else {

72 add Flow to PingCandidates in corresponding timeslot
}

74 }
}

76

Step 2: Evaluating collected data
78 ###

doEvaluation () {
80 for (each closed Connection) {

#closed means totally inative for 20 minutes
82 add "calculated points depending on connection time" to Points

add "calculated points depending on amount of sent data" to Points
84 add "calculated points depending on number of connections" to Points

add "calculated points depending on quotient of amount of sent/received data" to ←↩

Points
86

#evaluating ping-pong
88 for (each Ping) {

if (corresponding PongCandindate is in the same timeslot or in the next ←↩

timeslot) {
90 # s1: start time of ping

e1: end time of ping
92 # s2: start time of pong

e2: end time of pong
94 #if ((s2 <= s1) && (e2 >= e1)) {

if ((s1 <= s2) && (e1 >= e2)) {
96 --> found ping-pong

add "calculated points dependet on number of ping-pongs" ←↩

to Points
98 }

}
100 }

102

}
104 write found connections with appropriate points to output file

}
106

Appendix: Used Functions
108 ###

getNextGridPoint (timeStamp) {
110 #the time is splitted into timeslots of 180s, mesured from 01.01.1970

return next smaller timeStamp;
112 }

114 # Data Stucture
###

116

#{...} means, that this is a hash-key
118

#Connections
120 {ClientIP:ServerPort} || startTime | endTime | #Packets | #BytesToServer | #Connection | # ←↩

BytesToClient

122 #PingCandidates
{ClientIP:ServerPort}{timeSlot} || startTime | endTime | #Packets | #BytesToClient | # ←↩

deletedFlag
124

#PingCandidates
126 {ClientIP:ServerPort}{timeSlot} || startTime | endTime | #Packets | #BytesToServer | # ←↩

deletedFlag

Appendix C

Pseudo Code “Offline Fast Joining
Bot Detection” Algorithm

##
2 #

Pseudo Code for the Offline Analysis of Fastjoining Bots
4 #

Thomas Kaufmann <thomaska@ee.ethz.ch>
6 #

##
8

window: 1 hour
10 time slot: 420s (to be sure that there is at least one ping/pong sequence

boundary_time: 4 time slots
12 boundary_top: 120 hosts

14 ##
#

16 # Step 1: Data Aquisition

18 for all windows within specified time {
for each flow within a window {

20 if (within IRC port range and destination address is IRC server) {
doProcessing //enter only IRC netflows

22 }
}

24 }

26 ##
#

28 # Step 2: Data Processing

30 doProcessing {
for incoming flow {

32 for every time slot { // calculate number of hosts
// and reorganize CONNECTION list

34 increase number of clients within this time slot into NUMBER list
enter address into IPLIST

36 }
}

38 }

40 calculateAverage {
for all entries in NUMBER list { // calculate average of NUMBER list

42 calculate moving average and enter into AVERAGE list
}

44 }

46 ##
#

48 # Step 3: Data Analysis

50 findBoundaryBreach { // find moments where jump in the
// number of connection occurs

52 for each time slot t_1 look into future until t_1+boundary_time
and search for upper boundary breach

54 if boundary breach occured at t_n{
searchNewHost()

56 enter every address of NEW list from t_1 to t_n into
SUSPICIOUS list or increase number of breaches if already existent

58 }
look until t_1+boundary_time and find out if further breaches detected

60 if yes {
enter these addresses too into SUSPICOUS list or increase number of breaches

41

42APPENDIX C. PSEUDO CODE “OFFLINE FAST JOINING BOT DETECTION ” ALGORITHM

62 }

64 delete old data
}

66

68 searchNewHost {
for all time slots in AVERAGE list {

70 for each address of IPLIST there {// find out new addresses for every time slot
if address unknown in last time slot {

72 enter address into NEW list
}

74 }
}

76 }

78 ##
#

80 # Step 4: Data Output

82 printList {
for every address in SUSPICIOUS list {

84 print suspicious address
print number of breaches of this address

86 print the last time this address committed a breach
}

88 }

90 ###
#

92 # Step 5: Post Analysis

94 readEntries {
read all entries from the output file generated above

96 generate POINT list
generate TIME list

98 }

100 subnetAnalysis {
for all addresses in IPLIST {

102 for all addresses in IPLIST {
if addresses are different and if they were recorded at the sime time ←↩

for the last time {
104 do a prefix matching of the two binary addresses

}
106 }

if result > 16 Bit {
108 accumulate and enter into POINT list and TIME list

}
110

}
112 }

114 generatePointList {
for every entry in POINT list {

116 print address, number of connects, the subnet points and the time it occured ←↩

last time
}

118 }

120 generateTimeList { // prepare gnuplot data
for every entry in TIME list {

122 sort time
print time, number of suspicious users at this time, subnet points and subnet ←↩

points per user
124 }

}
126

generateGnuplotFile {
128 prepare a GnuPlot configuration file with all the necessary settings, inclusive time, ←↩

scale, ...
}

130

doPlot {
132 execute gnuplot with the produced gnuplot file

}
134

136 ##
#

138 # Data Structures:

140 IPLIST:
key is time stamp

142 element is a client ip address

144 NUMBER list:

43

key is a time slot
146 element is the number of logged in clients at this time slot

148 NEW list:
key is a time slot

150 element is a list of new client ip addresses for this time slot

152 POINT list:
key is a address

154 elements are the number of breaches, the time the last breach occured and the result of the ←↩

subnet analysis

156 TIME list:
key is a time stamp

158 elements are the number of clients for this time stamp, accumulated number of breaches of all ←↩

addresses during this time stamp and the result of the subnet analysis

Appendix D

Output of Fast Joining Bot
Analysis

The actual data we were seeking for which assigns our results to the distinguished IP addresses
(#basename_data.pdat)1:

Format:
2 # Time Number of Clients that breached Number of Breaches Points of Subnet Analysis ←↩

Points of Subnet Analysis per User
x.x.x.x 5 30 1089021780

4 x.x.x.x 5 30 1089021780
x.x.x.x 10 0 1089027660

6 x.x.x.x 5 0 1089021360
x.x.x.x 10 0 1089027240

8 x.x.x.x 5 0 1089020520
x.x.x.x 10 0 1089021780

10 x.x.x.x 5 0 1089020520
x.x.x.x 15 0 1089027240

12 x.x.x.x 5 0 1089021360
x.x.x.x 5 61 1089021780

14 x.x.x.x 5 61 1089021780
x.x.x.x 5 60 1089021780

16 x.x.x.x 10 0 1089027240
x.x.x.x 10 0 1089027660

18 x.x.x.x 5 0 1089020520
x.x.x.x 5 0 1089021360

20 x.x.x.x 5 0 1089021360
x.x.x.x 5 0 1089020940

22 x.x.x.x 5 0 1089021360

24 ...

26 169.229.50.5 5 397 1089021780
169.229.50.6 5 397 1089021780

28 169.229.50.7 5 397 1089021780
169.229.50.8 5 399 1089021780

30 169.229.50.9 5 399 1089021780

The data put into a format that can be easily printed and show significant
occurrences(#basename_plot.pdat)2:

Format:
2 # Time Number of Clients that breached Number of Breaches Points of Subnet ←↩

Analysis Points of Subnet Analysis per User
11:07:00-2004-07-05 131 655 6286 47.984733

4 11:14:00-2004-07-05 121 605 2435 20.123967
11:21:00-2004-07-05 116 610 1714 14.775862

6 11:28:00-2004-07-05 120 630 2032 16.933333
11:42:00-2004-07-05 604 3175 24634 40.784768

8 11:49:00-2004-07-05 514 2675 18833 36.640078
11:56:00-2004-07-05 2397 12090 551045 229.889445

10 12:03:00-2004-07-05 768 3895 45050 58.658854
13:27:00-2004-07-05 807 5600 59293 73.473358

12 13:34:00-2004-07-05 911 6300 70251 77.114160
13:41:00-2004-07-05 921 7020 62436 67.791531

14 13:48:00-2004-07-05 615 4600 41550 67.560976

1IP addresses marked with “x.x.x.x” are faked for security reasons
2IP addresses marked with “x.x.x.x” are faked for security reasons

44

Appendix E

Pseudo Code “Online Longtime
Standing Connection” Algorithm

###
2 # Pseudo code of the "Long Standing IRC Bots Detection" algorithm #

implemented as an plugin for the UPFrame
4 ###

6 # l: length of flow (Bytes)
p: number of packets in flow

8 # s: start time of flow
e: end time of flow

10

PINGPONGTIMEOUT = 180 seconds
12

connection key always is [ClientIP:ServerPort] and is swaped if necessary
14

16 # this function is called by the UPFrame for each flow header
addConnection(Header) {

18 #each Header has a number of flows
for (each Flow) {

20 if (is IRC Connection to IRC Server)
key = ClientIP:ServerPort

22 if (Flow exists in Connections) {
Connections{key}.lastActivity = Connections{key}=endTime;

24 update Connections{key} #start or end time and the other values
#look, if this flow could be a Pong

26 if (((l >= 46) && (l <= 121) && (p == 1)) ||
((l >= 86) && (l <= 173) && (p == 2))

28) {
Connections{key}.pongStartTime = s

30 Connections{key}.pongEndTime = e
if (Connections{key}.pingStartTime <= Connections{key}. ←↩

pongStartTime &&
32 Connections{key}.pingEndTime >= Connections{key}. ←↩

pongEndTime &&
Connections{key}.lastActivity+PINGPONGTIMEOUT < ←↩

Connections{key}.pingStartTime
34) {

Connections{key}.numberOfPingPong++
36 }

}
38

}
40 else {

add Flow to Connections
42 }

44 calculatePoints(key)
}

46 else if (is IRC Connection to IRC Client) {
key = ClientIP:ServerPort

48 update Connections{key}
#look, if this could be a Ping

50 if ((p >= 2) && (l >= 86)) {
Connections{key}.pingStartTime = s

52 Connections{key}.pingEndTime = e
if (Connections{key}.pingStartTime <= Connections{key}. ←↩

pongStartTime &&
54 Connections{key}.pingEndTime >= Connections{key}. ←↩

pongEndTime &&
Connections{key}.lastActivity+PINGPONGTIMEOUT < ←↩

Connections{key}.pingStartTime

45

46
APPENDIX E. PSEUDO CODE “ONLINE LONGTIME STANDING CONNECTI ON”

ALGORITHM

56) {
Connections{key}.numberOfPingPong++

58 }
}

60 calculatePoints(key)
}

62

if (is Time to report) {
64 writeFile()

give unused memory free
66 }

}
68 }

70

72 # Data Stucture
###

74

#{...} means, that this is a hash-key
76

#Connection is a Hash of FlowEntries, a struct
78

#typedef struct {
80 # unsigned int startTime;

unsigned int endTime;
82 # uint32_t packetsToServer;

uint32_t packetsToClient;
84 # uint32_t bytesToServer;

uint32_t bytesToClient;
86 # unsigned int connectionsToServer;

unsigned int connectionsToClient;
88 # unsigned int dataSentPoints;

unsigned int dataReceivedPoints;
90 # unsigned int connectionsToServerPoints;

unsigned int connectionsToClientPoints;
92 # unsigned int dataQuotientPoints;

unsigned int connectionTimePoints;
94 # unsigned int numberOfPingPong;

unsigned int pingPongPoints;
96 # unsigned int lastActivity;

unsigned int pingStartTime;
98 # unsigned int pingEndTime;

unsigned int pongStartTime;
100 # unsigned int pongEndTime;

#} flowentry;

Appendix F

Starting Bots on a Huge Number of
Hosts Using PSSH

This script called startpssh #hostlist starts our bot on all hosts given in the file passed as
first argument. After a timeout of three seconds for each host, the start process will be canceled
for this host (see the -t option).

#!/bin/sh
2 # Start a program defined in this script on a huge number of hosts

#
4 # USAGE: startpssh $hostlist

6 UNAME=ethz_ddosvax
PROG=/home/$UNAME/eunuch

8

pssh -h $1 -t 3 -l $UNAME $PROG

47

Bibliography

[1] DDoSVax,
http://www.tik.ee.ethz.ch/~ddosvax/.

[2] LEO - Link Everything Online,
http://dict.leo.org/.

[3] SWITCH - The Swiss Education & Research Network,
http://www.switch.org/.

[4] Lukas Ruf, Latex Essentials – HowTo Create Your LaTeX-based Documentation,
TIK, ETH Zuerich, 2002.

[5] Stéphane Racine, Analysis of Internet Relay Chat Usage by DDoS Zombies,
ftp://www.tik.ee.ethz.ch/pub/students/2003-2004-Wi/MA-2004-01.pdf.

[6] UPFrame, An Extendible Framework for the Reception and Processing of UDP Data,
TIK, ETH Zuerich, 2004,
http://www.tik.ee.ethz.ch/~ddosvax/upframe/.

[7] Ove Ruben R Olsen irciiman.txt,
http://www.irchelp.org/irchelp/ircii/irciiman.txt.

[8] The Undernet IRC network,
http://www.undernet.org/.

[9] tcpdump,
http://www.tcpdump.org/.

[10] Ethereal,
http://www.ethereal.org/.

[11] PSSH Parallel Secure Shell,
http://www.theether.org/pssh/

[12] ntop - a network traffic probe,
http://www.ntop.org/.

[13] Larry Wall, Tom Christiansen & Jon Orwant Programming Perl, O’Reilly, 3rd Edition July
2000
http://www.oreilly.com/.

[14] Tobias Oetiker, The Not So Short Introduction to LATEX 2ε, Version 4.14, 04 April, 2004
http://people.ee.ethz.ch/~oetiker/lshort/.

[15] Herbert Schuldt C/C++ GE-PACKT, MITP-Verlag, 1. Auflage 2001
http://www.mitp.de/, http://www.ge-packt.de/

[16] Martin Schader, Stefan Kuhlins Programmieren in C++, Springer-Verlag, 5. Auflage, 1998
http://www.springer.de/.

[17] Puri Ramneek Bots&Botnet: An Overview, SANS Institute, 2003

[18] Ferngesteuerte Spam-Armeen, c’t 2004, Heft 5, 2004

48

