
 Institut für
 Technische Informatik und
Kommunikationsnetze

Sommer Semester 2004 Prof. Dr. L. Thiele

Semester Project

Embedded Task Machine

with BTnode and FPGA

Clemens Lombriser

and

Marc André

Advisor: Matthias Dyer

Abstract

The aim of this semester project was to create an Embedded Task Ma-

chine. The system would provide a means of executing applications that

are too large to fit on the available hardware. Such applications would be

broken down into smaller tasks and a description of how they relate to each

other. Synchronous Data Flow is used as the modelling language for the ap-

plications. The Embedded Task Machine then executes the tasks one after

another on reconfigurable hardware. The system at hand consists of a task

repository, a memory management module for the interexchanged data, an

execution unit, and a scheduler.

This report describes the architecture and the the detailed design of the

complete project.

Acknowledgment

We would like to thank Prof. Lothar Thiele for making it possible for us

to work on this interesting project. We also would like to thank our tutor,

Matthias Dyer, who supported us on any problems we had and Jan Beutel

who helped out when Matthias was not present.

We would not have come this far if Roman Plessl would not have taken

time for us in the last few weeks of his Master’s Thesis. The discussions we

had with him about the concepts of his work were very helpful and helped

us a lot to start off our project.

Last but not least we also would like to thank the rest of the TIK-team

for the various small things they did to support us.

Clemens Lombriser Marc André

V

Semester Project Problem Task (German)

Problem Task (German)

Einleitung

Der BTnode und das FPGA Modul

An unserem Institut wurden in Forschungsarbeiten, sowie in früheren Semester-

und Diplomarbeiten diverse Hardware entwickelt, welche im Zusammenhang

mit eingebetteten Systemen und mobilem Computing stehen.

Zum einen gibt es den BTnode [1], ein kleiner “wireless node”, mit einem

Mikrocontroller und einem Bluetooth Modul. Der BTnode wird in verschie-

denen Forschungsprojekten eingesetzt (z.B. Wireless Sensor Networks [2]

oder Wearable Computing [3]).

Zum anderen wurde in einer Diplomarbeit ein FPGA Modul entwickelt,

welches für den batteriebetriebenen Einsatz gedacht ist. Das Modul, beste-

hend aus einem Xilinx SpartanII FPGA, einem CPLD, SRAM und Flash

ist so konstruiert, dass es mit dem BTnode über eine serielle Schnittstelle

kommunizieren kann. Der Verbund von BTnode und FPGA erlaubt nun eine

äusserst flexible Nutzung.

Abbildung 1: BTnode Rev 2.2 and FPGA Module

Es ist zum Beispiel möglich, dass mehrere FPGA Konfigurationen auf

dem FPGA Modul gespeichert sind, welche dann auf Befehl des Mikrocon-

VII

Problem Task (German) Semester Project

trollers auf dem BTnode in das FPGA geladen werden. So kann auch ein

einfacher Scheduling Algorithmus auf dem BTnode implementiert werden,

welcher den Ablauf einer Applikation bestehend aus mehreren Konfiguratio-

nen (Tasks) steuert. Eine Erweiterung dieses Scenarios ist, dass die Tasks

nicht von Anfang an schon zur Verfügung stehen, sondern zuerst noch über

die drahtlose Verbindung (Bluetooth) heruntergeladen werden müssen.

Eine Anwendung eines solchen Scenarios sind Sensor Netzwerke. Sensor

Netzwerke bestehen aus einer Vielzahl von kommunizierenden Sensorkno-

ten. Der BTnode und das FPGA Modul können zusammen einen solchen

Sensorknoten darstellen. Der FPGA, welcher besonders effizient ist für die

digitale Signalverarbeitung, sammelt Sensordaten und bereitet sie auf (Vor-

verarbeitung, Komprimierung, usw.). Der BTnode sendet dann auf Wunsch

diese Daten zu einem Host.

Embedded Machine

Die Embedded Machine kommt ins Spiel, wenn eine Applikation als Gan-

zes zu gross für den FPGA ist. Die Applikation kann trotzdem ausgeführt

werden, in dem man sie in kleinere Tasks aufteilt und definiert, wie die

Task miteinander kommunizieren und interagieren. Diese Definition nennen

wir Koordinationssprache. Eine Applikation besteht in diesem Fall aus zwei

Teilen: aus der Koordinationsbeschreibung und aus den Tasks.

Wird die Koordinationssprache nicht kompiliert sondern interpretiert,

geht die Information, wie die Tasks miteinander agieren, nicht verloren und

kann zur Lade- und Laufzeit verwendet werden.

In [4] wurde das Prinzip der Embedded Machine für die Ausführung

von Prozess Netzwerken auf eingebetteter rekonfiguierbarer Logik erklärt

(siehe auch Abb. 2). Ein Prozess Netzwerk, besteht aus mehreren Prozessen

(Tasks), welche in einem oder mehreren Slots im FPGA laufen können. Ein

Scheduler, der in einer CPU läuft, entscheidet zur Laufzeit, welche Tasks als

nächstes ausgeführt werden.

Die Realisierung der Embedded Machine auf dem FPGA Modul ist

Hauptteil der Masterarbeit MA-2004-03 [5]. Das Ziel dort war es den Me-

morymanager und die Grundlagen für die Rekonfiguration der Taskslots zu

implementieren. In dieser Arbeit wird jedoch ein IPAQ PDA als CPU ver-

wendet.

VIII

Semester Project Problem Task (German)

Abbildung 2: Embedded Machine Runtime System

Aufgabenstellung

Das Ziel dieser Arbeit ist den BTnode und das FPGA Modul zusammen-

zuschliessen und die entsprechende Services und Protokolle für die folgende

Funktionen zu implementieren:

• Speichern einer FPGA-Konfiguration vom BTnode ins Flash vom FPGA

Modul.

• (Partielle) Rekonfiguration des FPGAs aus dem Flash.

• Command/Event Kommunikation zwischen BTnode und FPGA.

Eine mögliche Verbindung zwischen BTnode und FPGA Modul ist die

serielle Schnittstelle. Um die verschiedenen Dienste über eine serielle Ver-

bindung zu multiplexen, braucht es ein durchdachtes Protokoll.

Es werden zur Zeit eine neue Version von BTnodes entwickelt. Diese

haben zwar ein neues leistungsfähigeres Bluetooth Interface basieren aber

auf demselben AVR Mikrokontroller wie die bisherigen BTnodes. Da die

neuen BTnodes erst diesen Sommer erscheinen, soll diese Arbeit noch die

bisherigen BTnodes verwenden.

Um Bluetooth mit den bisherigen BTnodes zu nutzen, wurde ein eige-

nes Dispatcher-basiertes Betriebssystem verwendet. Für die neuen BTnodes

IX

Problem Task (German) Semester Project

wird das multitasking Betriebssystem Ethernut [6] verwendet. Dieses RTOS

läuft auch tadellos auf den bisherigen BTnodes, es fehlt zur Zeit nur noch

die Unterstützung der Bluetooth Funktionen.

Teilaufgaben

1. Erstellen Sie in den ersten zwei Wochen zusammen mit Ihrem Betreuer

einen realistischen Zeitplan, welcher Meilensteine festlegt. überlegen

Sie sich, wie Sie die Arbeit effizient aufteilen können.

2. Machen Sie sich mit den beiden Hardwareplattformen (BTnode und

FPGA Modul) vertraut.

3. Arbeiten Sie sich in die Grundlagen der AVR Mikrokontroller bzw.

FPGA/CPLD Programmierung ein.

4. Definieren Sie ein Protokoll für die Kommunikation zwischen BTnode

und FPGAModul und erstellen Sie ein Konzept, wie dieses im BTnode

bzw. im CPLD/FPGA verarbeitet wird.

5. Implementieren Sie das Protokoll im BTnode und im FPGA Modul.

6. Definieren und Implementieren Sie ein oder mehrere Beispielsscenari-

en, mit welchen Sie das Funktionieren der Kommunikation demons-

trieren können.

7. Dokumentieren Sie Ihre Arbeit sorgfältig mit einem Vortrag, einer klei-

nen Demonstration, sowie mit einem Schlussbericht.

Durchführung der Semesterarbeit

Allgemeines

• Der Verlauf des Projektes Semesterarbeit soll laufend anhand des Pro-

jektplanes und der Meilensteine evaluiert werden. Unvorhergesehene

Probleme beim eingeschlagenen Lösungsweg können Änderungen am

Projektplan erforderlich machen. Diese sollen dokumentiert werden.

• Stellen Sie Ihr Projekt zu Beginn der Semesterarbeit in einem Kurz-

vortrag vor und präsentieren Sie die erarbeiteten Resultate am Schluss

im Rahmen des Institutskolloquiums Ende Semester.

X

Semester Project Problem Task (German)

• Besprechen Sie Ihr Vorgehen regelmässig mit Ihren Betreuern. Verfas-

sen Sie dazu auch einen kurzen wöchentlichen Statusbericht (EMail).

Abgabe

• Geben Sie zwei unterschriebene Exemplare des Berichtes spätestens

am 2. Juli 2004 dem betreuenden Assistenten oder seinen Stellvertreter

ab. Diese Aufgabenstellung soll vorne im Bericht eingefügt werden.

XI

CONTENTS Semester Project

Contents

1 Introduction 1

1.1 Notation . 3

2 System Architecture 5

2.1 The Execution Model . 5

2.1.1 Modules of the Execution Model 5

2.1.2 Mapping the modules to the hardware 6

2.2 MC-Protocol . 7

2.2.1 Commands to the CPLD component 7

2.2.2 Commands to the FPGA 8

2.2.3 Response from FPGA module 10

2.3 FPGA-Protocol . 11

2.3.1 Data flow . 11

2.4 FIFO structure in the SRAM 12

2.5 Task slots in Flash . 14

3 CPLD-Design 15

3.1 CPLDTop . 15

3.2 CPLDControl . 16

3.3 RS232Core . 16

3.3.1 Description . 16

3.3.2 Usage . 18

3.4 FlashCore . 19

3.4.1 Description . 19

3.4.2 Usage . 19

3.4.3 The state machine . 22

3.5 FPGAConfigurator . 22

3.5.1 Description . 22

XII

Semester Project CONTENTS

3.5.2 Usage . 22

3.6 FPGAComm . 24

3.6.1 Description . 24

3.6.2 Usage . 24

4 FPGA-Design 26

4.1 FPGATop . 26

4.2 FPGAControl . 27

4.2.1 Description . 27

4.3 CPLDComm . 28

4.3.1 Description . 28

4.3.2 Usage . 29

4.4 OutputControl . 31

4.5 SRAMCore . 31

4.5.1 Description . 31

4.5.2 Usage . 31

4.6 MemoryControl . 33

4.6.1 Description . 33

4.6.2 Usage . 34

4.7 FIFOControl . 34

4.7.1 Description . 34

4.7.2 Usage . 36

4.8 TaskControl . 37

4.8.1 Description . 37

4.9 Task . 38

4.9.1 Description . 38

4.9.2 The TaskWrapper . 40

4.9.3 TaskTestbench . 41

4.9.4 Requirements for a task 41

4.10 Drivers . 41

4.10.1 Input Driver . 42

4.10.2 Output Driver . 42

4.10.3 DriverWrapper . 42

5 MC Software 44

5.1 Introduction . 44

5.2 Synchronous Data Flow (SDF) 44

XIII

CONTENTS Semester Project

5.2.1 SDF formalism . 46

5.2.2 Scheduling . 46

5.3 Ethernut . 49

5.4 User Interface . 49

5.5 Messages . 52

5.6 Scheduler . 53

5.6.1 Data structures . 53

5.6.2 Communication with the BTnodeFPGA board 55

5.7 Loading tasks . 55

6 Evaluation 57

6.1 Time Measurements . 57

6.2 Power Measurements . 58

6.3 Demo application . 58

6.3.1 Setup . 59

6.3.2 Running the Demo . 60

7 Summary 62

A How to start the Embedded Task Machine 63

A.1 Cabling . 63

A.1.1 BTnodeFPGA . 63

A.1.2 BTnode . 63

A.2 Task setup . 66

A.3 Running the Scheduler . 66

B Future Work 67

B.1 Partial Reconfiguration . 67

B.2 Several Task Slots . 68

B.3 Extension to Kahn Process Networks 68

B.4 BRAM access . 69

B.5 Bluetooth . 69

B.6 Error handling . 69

B.7 Improved FIFOControl architecture 69

Bibliography 72

XIV

Semester Project LIST OF FIGURES

List of Figures

1 BTnode Rev 2.2 and FPGA Module VII

2 Embedded Machine Runtime System IX

1.1 Mealy automaton . 3

1.2 Overview diagram of a state machine 4

2.1 Overview of the Embedded Task Machine 6

2.2 Wires between CPLD and FPGA 11

2.3 Timing details of a single write cycle from CPLD to FPGA . 12

2.4 SRAM FIFO structure . 13

2.5 Organization of the task slots in the Flash 14

3.1 CPLD Architecture . 16

3.2 FSM of the CPLDControl entity 17

3.3 Timing diagram of the Flash access 20

3.4 FlashCore FSM . 21

3.5 Overview of the Finite State Machine of the FlashCore . . . 22

3.6 FPGAConfigurator FSM . 23

3.7 FPGAConfigurator FSM Interface 23

3.8 Overview of module FPGAComm 25

3.9 FPGAComm FSM . 25

4.1 FPGA Architecture . 27

4.2 Symbolic state chart of FPGAControl 28

4.3 Overview of the module CPLDComm 29

4.4 CPLDComm FSM . 30

4.5 Interface of the SRAMCore entity 32

4.6 SRAMCore handshake . 33

4.7 Structure of the MemoryControl entity 34

XV

LIST OF FIGURES Semester Project

4.8 FIFOControl interface . 35

4.9 TaskControl state chart . 38

5.1 SDF graph . 45

5.2 Schedule sequence parser diagram 54

5.3 possible linkage of the EXECUTION STEP structures 55

6.1 SDF graph of the demo application 59

A.1 BTnodeFPGA BTnode connection schematic 64

A.2 The connections used at the BTnodeFPGA-board 64

A.3 The connections used at the BTnode-board, rev2.2. 64

A.4 Interconnections when using the Embedded Task Machine . . 65

A.5 Development phase wiring . 65

B.1 Proposed FIFOControl structure 70

XVI

Semester Project LIST OF TABLES

List of Tables

2.1 Resources on the hardware modules 6

2.2 CPLD commands . 8

2.3 List of response messages codes 11

3.1 FlashCore operation codes 20

4.1 SRAMCore handshake timings 32

5.1 Commands accepted by the RS232 software 50

5.2 Commands accepted by the BTnode user interface 56

6.1 time requirements of significant processes 57

6.2 power requirements of significant processes 58

A.1 BTnode UART settings . 66

A.2 BTnodeFPGA UART settings 66

XVII

Introduction Chapter 1

Chapter 1

Introduction

The next generation computing environment is called ubiquitous computing.

It will substantially change the way people interact with computers, because

any person will continuously be interacting with hundreds of nearby com-

puters, which are interconnected and not visible to the user. Computers will

be assisting people requiring no or just minimal interaction over new kinds

interfaces that are subject of current research.

In order to invisibly integrate computers or at least not impeding into

the environment, devices have to be small. This requirement forces a de-

signer of a system to reduce the number of components to a minimum, and

to use every module optimally not only in terms of area, but also over time.

Reconfigurable hardware allows to reduce the size of the hardware by exe-

cuting only the parts that are actually needed at every point in time. Other

hardware configurations can be temporally stored using much less area on

a mass storage device.

The aim of this thesis is to develop the software for a prototype system

which can accept applications over a wireless connection and execute them.

If the applications require more hardware over time than the system can

provide permanently, the applications will be split into a number of tasks

which then will be executed sequentially on the reconfigurable hardware

part.

The execution model for the applications for the Embedded Task Machine

defines an application to be a set of tasks which do some kind of operation on

1

Chapter 1 Introduction

data, and a description of how this data is passed from one task to another.

This description is given in some coordination language.

The Execution Model of the system specifies four main entities: The

task repository, which holds the different tasks of the application, the rela-

tion memory, where the data communicated between the tasks is stored, the

task runner, where the tasks are actually executed, and finally the scheduler

which controls the sequence in which the tasks are executed.

The report at hand describes how the system has been implemented. It

is organized in the following chapters:

1. System Architecture

This chapter explains how the system is build up. It explains what the

most important parts are and where they are placed on the hardware.

Additionally it explains the protocols used on the external interfaces

of the hardware modules.

2. CPLD-Design

The CPLD is one of the two programmable modules on the BTnodeFPGA

board. This chapter explains the entities placed on the CPLD and how

they collaborate.

3. FPGA-Design

The FPGA is the reconfigurable module and thus the heart of the

system. This is the hardware on which the tasks of the application run.

The chapter also explains the additional entities that are implemented

on the FPGA to support the tasks.

4. Microcontroller Software

The microcontroller is the ”mind”of the whole system. It is used to

schedule all the tasks and initializes the hardware for the applications.

It also provides a user interface which can be used to describe the

application using a language which builds a Synchronous Data Flow

graph.

5. Evaluation

Some measurements on timings and power consumption have been

carried out on the implemented and running system. The results are

presented in this chapter.

2

1.1 Notation Chapter 1

Additionally, a demo application has been implemented. The chapter

explains what calculations are performed by the application and how

it can be run on the system.

6. Summary

This chapter concludes the report and summarizes the achievements

of the project.

7. How to Start the Embedded Task Machine

When using the system, the hardware has to be correctly intercon-

nected. This chapter shows how it has to be done.

8. Future Work

Some ideas to what can further be done with the system is described

in this chapter.

1.1 Notation

All modules in the FPGA and the CPLD have been designed as finite state

machines (FSM). Since the state machines are all explained along with this

text, a uniform way to describe their interface is introduced here.

A state machine generally can be written as a Mealy Automaton. A

symbolic view of a Mealy Automaton is show in Figure 1.1. This view of an

automaton is used to introduce a diagram, which shows all involved signals

of the state machine and their influence on the automaton. Figure 1.2 shows

a detailed description of this diagram.

��� �����	�
� �

� � ����	��� �

� ����� ��� ��� �
��� ��� ���

��� �

���

Figure 1.1: Mealy automaton

3

Chapter 1 Introduction

���! #" $&%'�!($*)

+*,

- ,

. ,

/*,

0 ,

1 ,

2 ,

Figure 1.2: Overview diagram of a state machine

a) Input signals that can only affect the next state

b) Input signals that can directly change the output

c) Input signals that can directly affect both the output and the next state

d) Reset and clock signals

e) Output signals that only change with the clock (generated from the state)

f) Output signals that may change between clock cycles

g) Optionally: Registers used to store the state of the FSM

4

System Architecture Chapter 2

Chapter 2

System Architecture

The Embedded Task Machine runs on two hardware modules: the BTnode[1]

and the BTnodeFPGA[7]. These modules have been developed at the TIK

institute and used for earlier projects. The idea behind the project was to

use the FPGA on the BTnodeFPGA board as a computing device, since the

microcontroller of the BTnode would be too weak for many signal process-

ing applications. The execution of this kind of applications is the intended

purpose of the system, which is supposed to run in a network of intelligent

sensing devices. These sensors would process much of the data before send-

ing it to some controlling device, reducing the data volume transmitted and

spreading the computation load over many devices.

Since the sensor hardware may be too small to hold an entire applica-

tion configuration, the application is split into smaller parts, called tasks,

and a description of how these tasks exchange data, called the coordination

description. These two information items are then send to the executing

device, where the tasks then can be scheduled to run separately over time

on the hardware. This way area is saved by requiring a longer execution

time.

2.1 The Execution Model

2.1.1 Modules of the Execution Model

In order to be able to execute an application which is split into different

tasks and a coordination description, different modules are needed. A first

module is the task repository which holds the different tasks to be executed in

5

Chapter 2 System Architecture

35476�8595:

35476�8595:�;5<>=@?
A�BDC�EF�GDH�I�C�J K	I�L MN�O N�PRQ F�GDS B'K	J IUTWV7GDXYI�L M
Z

A�BDCDE*[�\
GD]D^	K_J I�T
`�a	bdcfe

g]Dh�G�iU^�S G�L

`�a	bdckj

`�a	bdckl
`ma_bdc_e

AUB�CDE7F�^�T�T�GDL

Figure 2.1: Overview of the Embedded Task Machine

a form which is smaller than when it is actually executed. A second module

is the relation memory, where all the data is kept, which is interchanged

between the tasks. The relation memory must be able to keep the data

while the tasks are switched and executed. A third module would be the

task runner, this is where the tasks are actually executed. It must be a

reconfigurable device with a short enough reconfiguration time. Last, but

not least, a scheduler is needed, which controls, at what time which task

runs. This module is interpreting the coordination description.

2.1.2 Mapping the modules to the hardware

In order to design the system, the different modules of the Execution Model

need to be mapped to the available hardware. The resources on the hardware

modules are listed in Table 2.1. The different chips on the hardware modules

have different properties which should be exploited for the system.

Obviously the task runner module needs to be placed on the FPGA of

the BTnodeFPGA, since this is the only reconfigurable hardware module which

BTnode BTnodeFPGA

ATMega128L Microcontroller Xilinx CoolRunner CPLD

ROK 101 007 Bluetooth module Xilinx Spartan II FPGA

AMIC 500kBit or 2MBit SRAM AMD 1MByte Flash

AMIC 4MBit SRAM

Table 2.1: Resources on the hardware modules

6

2.2 MC-Protocol Chapter 2

provides enough space to be able to execute tasks of sufficient size.

For the relation memory it is best to use the 4MBit SRAM since it has

a direct connection to the FPGA, where the data is needed. A memory

manager is needed to control the access of the data stored in the SRAM. It

has to be placed between the task and the SRAM and is also placed on the

FPGA.

The task repository is assigned to the Flash memory. The Flash does

not loose the stored data on a power loss and thus provides a save place for

the rather big configuration files which do not need to be retransmitted after

a restart of the BTnodeFPGA. The administration of the different task slots

on the Flash is implemented in the CPLD. The advantage of the CPLD is

that it does not loose its configuration on a power-down as the FPGA does.

The CPLD can also be used for an initialization of the whole board. The

CPLD also gets the duty of reconfiguring the FPGA.

The scheduler is programmed for the microcontroller on the BTnode,

since its work is highly data dependent and thus well suited to be executed

on a microcontroller. The scheduler also calculates the sizes of the FIFOs

in the relation memory and initializes the memory access structures used by

the memory manager on the FPGA.

2.2 MC-Protocol

The microcontroller (MC) on the BTnode and the CPLD on the BTnodeFPGA

communicate using an UART serial interface. The microcontroller uses this

connection to control the the whole BTnodeFPGA board. The board also can

send back messages through this connection. The protocol has two layers,

differentiated between CPLD and FPGA commands.

2.2.1 Commands to the CPLD component

In order to create a fast communication the protocol header size is kept very

small. I does not even contain any checksums. The length varies depending

on the command. Each command consists of one byte header and a custom

number of bytes as parameter:

4 4

CPLD Cmd Slot Parameters

7

Chapter 2 System Architecture

The parameter ”Slot”indicates the Flash slot addressed for most CPLD com-

mands. If this parameter is not used, it should be set to 0x0. The CPLD

understands the commands listed in Table 2.2. If a command is expected

to be sent to the FPGA, the CPLD command FPGA Cmd must be sent as

further explained in Table 2.2.

Command Code Slot Parameter

Store Task 0xA yes 24

Len of Data Data

Conf Slot 0x9 yes none

Read Task 0x5 yes none

Erase Chip 0xC no none

Erase Slot 0x3 yes none

FPGA Cmd 0xF no 8 8

Len of Cmd Cmd Param

Len of Cmd defines size of Cmd

and Param.

Table 2.2: Commands interpreted by the CPLD. Column Slot shows if this

field is used with this command. If it is not used, this parameter must be

set to 0x0.

2.2.2 Commands to the FPGA

The commands to the FPGA have two layers, the first layer contains the

FPGA Cmd command to the CPLD, which routes the next Len of Cmd bytes

to the FPGA. The first of these bytes contains the command for the FPGA,

the remaining its parameters. The following commands can be sent to the

FPGA:

8

2.2 MC-Protocol Chapter 2

Run Task

FPGA-Command code: 0x01

This command is used to start an already loaded task for a given number of

cycles. The FIFO buffers used for the task and the input/output tasks are

supplied with the command message. If the task has completed it replies

with TASKTERMINATED. The command may reply with a NACK if a task is

already running. A list of response codes can be found in Section 2.2.3.

The syntax of the command is given here:

8 8 8 8 8 8 8 16

0x01 Port1 Port2 Port3 Port4 Port5 Port6 Cycles

Note: Cycles indicates the number of iterations the task has to be exe-

cuted (and not the clock cycles!). The Port-parameters have the following

setup:

2 6

Driver config FIFO-Number

Driver config defines if this port is used by input or output driver. Please

make sure you always configure an input and an output port. If you don’t

need the drivers, attach it to an unused FIFO.

Value Description

00 No driver attached

10 Output driver attached

11 Input driver attached

01 Not allowed

FIFO-Number is the FIFO number to be mapped to this port. See Sec-

tion 2.4 for more detail.

Write SRAM

FPGA-Command code: 0x10

You can directly write to the SRAM on the BTnodeFPGA. Since data is writ-

ten to the SRAM in 16-bit WORDS, the supplied data must have an even

byte length. The Length parameter holds the number of WORDs to be

9

Chapter 2 System Architecture

written. The first WORD is written to the address passed along in the

Address parameter. Because the address has a 18-bit width, it needs two

additional bits which are taken from the length parameter byte. With this

setup a maximum of 64 WORDs (128 Bytes) can be written at once. The

command replies with an ACK if it has successfully completed.

The syntax of the command is given here:

8 6 18

0x10 Length Address Data

Note: Only the 6 most significant bits of the second byte contain the

Length parameter. Length means data size in 16-bit WORDs.

Read SRAM

FPGA-Command code: 0x11

This command reads data from the SRAM. The Length parameter holds

the number of WORDs to be read. The first WORD will be read from the

supplied address. Because the address has a size of 18-bit it uses the two

most least significant bits of the second byte. Each WORD is returned sep-

arately in a data packet. The packet header is DATA. See Section 2.2.3 for

more detail.

The syntax of the command is given here:

8 6 18

0x11 Length Address

Note: Length indicates the data size in 16-bit WORDs.

2.2.3 Response from FPGA module

The CPLD may answer to a command from the MC either with an ACK or

a NACK. In these cases, there is no additional data attached. If the FPGA

sends information, the message contains a message code and one WORD of

data. Possible message codes can be found in Table 2.3.

The packets have the following setup:

8 16

Message Code Data

10

2.3 FPGA-Protocol Chapter 2

Message Code Data Description

ACK 0x33 no

NACK 0x66 no

TASKFINISHED 0xCC no The running task has finished.

DATA 0xAA yes Data returned answering a FPGA

command. E.g. SRAM read.

OUTPUT 0x99 yes Data sent by output driver.

Table 2.3: List of response messages codes

2.3 FPGA-Protocol

There are 16 wires available between the CPLD and the FPGA. Eight out

of them are used to create a 8-bit data bus. 5 are used for communication

control and one is used to reset the FPGA. Two lines are left unused. An

overview of the connections can be seen in Figure 2.2.

n&oUp orq sut>v>wyx�p vuz�{
|&}>~#��}>�Dp��&�U�Y�
���&�Y�5�U�Y�

|&}>~#��}U��p>�y�#�>n
���&�#�y���Un

|&}>�D}>p

�y�Y�*� �
�Y���

|&}>�D}�� ��}Ut��5�U�Y�

Figure 2.2: Wires between CPLD and FPGA

2.3.1 Data flow

The protocol setup is designed to work with differing clocks on the CPLD

and the FPGA. This requires a longer handshake but since most communi-

cation will be forwarded trough the RS232 interface anyway, this does not

matter. The transmission of one byte requires at least 5 clock cycles.

Communication starts by setting request line high. The receiver accepts

by setting its acknowledge line high. If the receiver is still busy, it will not

11

Chapter 2 System Architecture

accept until it is ready to do so. When the acknowledge line is high, data

can be placed on the data lines and request line turns low. Communication

is terminated by setting the acknowledge line to low. The data line access

must remain on high impedance if the remote acknowledge line is not high.

A timing diagram of the whole communication is shown in Figure 2.3.

�Y�5�&�&�#�7���

�7�U�U�&�#�7���

 @¡&¢ ¡

Figure 2.3: Timing details of a single write cycle from CPLD to FPGA

The implementation of the protocol slightly differs between the CPLD

and the FPGA. In case both modules try to send to the bus, the CPLD

has a higher priority. There is an additional line named FPGA_Res, which

the FPGA uses to signal a multi-byte packet is being sent to the CPLD.

This line is used by the CPLD to ensure that the packet will be transmitted

without interruption to the RS232 module. This way a complete packet can

safely be sent from the FPGA to the MC. The signal does not change the

communication priority between the CPLD and the FPGA in any way.

2.4 FIFO structure in the SRAM

The FIFOs is where the drivers and the tasks store their input and output

data. This data is stored in the SRAM on the module, since it has to survive

a reconfiguration of the FPGA but not a power down of the BTnodeFPGA

board.

The data structure used to store the structure of these FIFOs has been

imported from [5] and can be examined in Figure 2.4. The FIFO access

information is stored in the lowest address space of the SRAM, occupying

12

2.4 FIFO structure in the SRAM Chapter 2

4 addresses per FIFO. The rest of the address space is free for FIFO data.

For every FIFO the following items are stored:

£
¤
¥k¦_§¨k© ¤_ª

¥k¤d« §'¬® ¯ § ¯ ¥'°�±_ª	ª	_² ¤_³ ±_§ ¯ ´'¤>§ ¦�µ_± © ¯ © ±_ª	ª	 ¤ © © ¶
¥'¤'« §d ¤f±	ª	¯ ¥'°�±	ª	ª	f² ¤	³ ±	§ ¯ ´k¤>§ ¦�µ_± © ¯ © ±	ª	ª	 ¤ © © ¶

© ¯ · ¤>¦ £d¸ ¹ ¸ º�»
µf± © ¯ © ±	ª	ª	 ¤ © © ¦ £d¸ ¹ ¸ º�»

¼ ½ »¾À¿

£
¤
¥'¦_§¨ © ¤fª

¥'¤'« §'¬® ¯ § ¯ ¥'°�±	ª	ª	f² ¤	³ ±	§ ¯ ´k¤>§ ¦
µ_± © ¯ © ±	ª	ª	 ¤ © © ¶
¥k¤d« §d ¤f±	ª	¯ ¥'°�±	ª	ª__² ¤_³ ±	§ ¯ ´'¤>§ ¦�µ_± © ¯ © ±	ª	ª_ ¤ © © ¶

© ¯ · ¤>¦ £d¸ ¹ ¸ º!Á ½ ½
µ_± © ¯ © ±	ª	ª	 ¤ © © ¦ £d¸ ¹ ¸ º!Á ½ ½

ÂÂ
Â

Ã Ä Ã ÅÆ Ç È É�Ê�ËdÆ

» »k» »kÌkÍ

» »k» »k»kÍ

» »kÌk¸ ¸ Í

» »kÌk¸ Î�Í

Ï Ð�ÐmÑdÒ ÓmÔDÒ Õ ÖD×DØ ÙÚ'Û ÚdÜuÝ

Ï Ð�ÐmÑdÒ ÓmÔDÒ Õ ÖD×DØ ÙÚ'Û ÚdÜßÞ_à_à

Ìk¸ ¸ ¸ ¸ Í

Figure 2.4: SRAM FIFO structure (image from [5])

• The base address indicates where the FIFO starts in the SRAM

memory. Since the SRAM address is 18bit wide, and the SRAM word

only 16 bit, the base address needs to be multiplied by 4 to get the

actual address. A FIFO can thus only start at every fourth address.

• The second entry is the FIFO size. It indicates how many 16 bit

words a FIFO can store. Together with the base address, the FIFO

size determines the address range a FIFO occupies in the SRAM. This

way, the FIFO structure would allow other data to be stored in the

unused space of the SRAM.

• The next reading address is a relative address that indicates which

data item is to be read next. After every read, it is incremented and

wrapped around to 0 if the maximum relative address (the FIFO size)

is reached. The address is given relative to the base address and must

be added to it.

• Similarly, the next writing address points to the data item which

can be overwritten on the next write access. This address is relative

to the base address as well.

13

Chapter 2 System Architecture

• In case the next reading address and the next write address point to the

same address, two full and empty bits are stored at the addresses

most significant bits to indicate whether the FIFO is full or empty.

The FIFO structure is accessed by the FIFOControl (see Section 4.7) to

determine the FIFO locations. The FIFO structure must be created before

starting the task by the microcontroller using the FPGA commands listed

in Section 2.2.2.

2.5 Task slots in Flash

The BTnodeFPGA comes with an AM29LV081B[8] Flash chip that has 1

MByte of storage space. It is organized in 16 blocks of 64 KBytes. This is

enough space to store 5 tasks with a full FPGA configuration size of 167’053

bytes, which uses three slots on the Flash. A detailed organization scheme

of the Flash can be found in Figure 2.5.

á&âDã�ä åUæ á
â�ãDä åUæ&á
ç èmâ éêUêUækâDë�ë�ì íî�ïUðUâ ñUîDë�òóá
ô åUä
õ&ö
÷ ø�ùóú
û ÷D÷�÷�÷D÷�üDý ÷�þUþUþUþUü ÿ���ÿ������
õ&ö�� ø�ùóú
û �D÷�÷�÷D÷�üDý ��þUþUþUþUü

õ
	 ����÷ ÷�÷�÷D÷�üDý þUþUþUþUü
� ÷�÷�÷D÷�üDý � þUþUþUþUü

ø�ùóú
û
ø�ùóú
û

õ&ö
õ&ö �
õ&ö
ù ø�ùóú
û ùD÷�÷�÷D÷�üDý ù�þUþUþUþUü

õ
	 ������ ÷�÷�÷D÷�üDý � þUþUþUþUü
øD÷�÷�÷D÷�üDý ø�þUþUþUþUü

ø�ùóú
û
ø�ùóú
û

õ&ö �
õ&ö
ø
õ&ö�� ø�ùóú
û �D÷�÷�÷D÷�üDý ��þUþUþUþUü

õ
	 ��� � ÷�÷�÷D÷�üDý � þUþUþUþUü
� ÷�÷�÷D÷�üDý � þUþUþUþUü

ø�ùóú
û
ø�ùóú
û

õ&ö �
õ&ö �
õ&ö���÷ ø�ùóú
û ö
÷�÷�÷D÷�üDý ö&þUþUþUþUü

õ
	 ��� �� ÷�÷�÷D÷�üDý � þUþUþUþUü
�÷�÷�÷D÷�üDý �þUþUþUþUü

ø�ùóú
û
ø�ùóú
û

õ&ö����
õ&ö��
õ&ö�� � ø�ùóú
û �÷�÷�÷D÷�üDý �þUþUþUþUü

õ
	 ����ù� ÷�÷�÷D÷�üDý � þUþUþUþUü
þU÷�÷�÷D÷�üDý þUþUþUþUþUü

ø�ùóú
û
ø�ùóú
û

õ&ö���ù
õ&ö�� �

Figure 2.5: Organization of the task slots in the Flash

14

CPLD-Design Chapter 3

Chapter 3

CPLD-Design

The CPLD is the controlling unit on the BTnodeFPGA[7] board. Over an

UART interface, it receives the commands to be executed by the different

components. Its duties include writing and reading to the Flash and config-

uring the FPGA.

3.1 CPLDTop

The CPLDTop entity is main entity of the CPLD. It does not include any logic

but only interconnects the different entities of the CPLD and the external

interfaces as shown in Figure 3.1.

The entities interconnected by CPLDTop are:

• The RS232Core, which handles all communication over the UART in-

terface

• The FlashCore realizes all transactions to the Flash storage of the

BTnodeFPGA board

• The FPGAConfigurator controls the configuration interface of the

FPGA during the reconfiguration process

• The FPGAComm forwards the communication between the FPGA and

the microcontroller to the RS232Core

• The CPLDControl finally controls all operations within the CPLD

15

Chapter 3 CPLD-Design

�����������!

"�#�$&%&$ ���!' (

)�* +&,�- ���!' (

) ��.0/1���!24345 6!7�' +98 �!'

�
�:���
���!2 8 ' � *

) ��.0/;���!<=<

>�?�@&A&@CB D&E F9G H I&JKF

LNM I9OKPCB D9E F&G H I9JKF

L�Q:R0SUT�V&D&H W X&Y&G I&E W V9D
B D&E F&G H I&JZF

L�Q:R0SUB D&E F&G H I&JZF

[&\�]�O

Figure 3.1: The architecture of the CPLD

3.2 CPLDControl

The CPLDControl is the ”mind”of the CPLD. It accepts commands coming

from the BTnode and controls their execution. It essentially executes the

MC-Protocol described in Section 2.2.

The Finite State Machine (FSM) of the CPLDControl is shown in Figure 3.2.

3.3 RS232Core

3.3.1 Description

The RS232Core handles the communication over the UART interface of the

BTnodeFPGA board. The entity has originally been programmed by Silvan

Wegmann and further improved Roman Plessl. It is easily adapted to differ-

ent baud rates and entity clocks. The baud rate for this project has been set

to 115’200 bps with a clock of 18.432 MHz1. This is the highest baud rate

that most devices support. Higher baud rates can be used by changing the

generics of the instantiation of the RS232Core in the CPLDTop entity code.

However, this should well considered because different handshakes between

1The original BTnodeFPGA oscillator with 10Mhz has been replaced on this board. The

UART interface can better be controlled with the new oscillator

16

3.3
R
S
232C

ore
C

h
a
p
t
e
r

3

^_ `:a bc de

fgh i jNk lm no lp k qr st

uv wx yz { | j no fgh i j t h |hq} ~� ~Nk } yz w o �� �

^_ `:a �� � c �� �9a � e � � ��

f gh i jNk lm no lp k q r st

uv wx y z { | j no fgh i j t h |hq} ~� ~Nk } yz w o �� �

^_ `:a �� � c �� � a ` � � �

� uv wx yz { | j u� � z | y� o � �

� q} ~� ~Nk q y� �k t h |h o � u k x � h w �

fgh i jNk l m no lp k � q�� r

uv wx yz { | j no q} ~� ~Nk q y � �k t h |hfgh i j t h |h no q} ~� ~ k q y� �k t h |hq} ~� ~Nk q yh w no �� �

^ _ `:a � �� � �� �9a � e � � ��

fgh i jNk lm no lp k � q �� r

uv wx yz { | j no uv wx yz { | j� �fgh i j t h |h no q} ~� ~Nk q y � �k t h |hq} ~� ~Nk q yh w no �� �

^_ `:a � �� � �� �9a ` � � �

� q} ~� ~Nk q y� �k t h |h o � u k } |� � y �

fgh i jNk lm no lp k r q s} r u� � p

fgh i jNk } g � | no q} ~� ~Nk q y� �k t h |h

^ _ `:a � � �� e a � d �� �

� q } ~� ~Nk q y � �k t h |h o � u k r � h i y �

fgh i jNk lm no lp k r q s} r } r u� l q

fgh i jNk } g � | no q} ~� ~Nk q y� �k t h |h

^ _ `:a � � �� e a � d� �

� fg h i jNk � � i� o �� � �

q} ~� ~Nk } yz w

� q } ~� ~Nk q y� �k t h |h o � u k r � h i y} g � | �

� fgh i jNk � � i� o �� � �

q} ~� ~Nk } yz w

� uv w x yz { | j o � �

� uv wx yz { | j u� � z | y� n � �

� uv wx y z { | j� � �
� u v wx yz { | j� � �

� uv wx yz { | j u� � z | y� n � �

� uv w x yz { | j o � �

fgh i jNk lm no lp k q r st

uv wx y z { | j no fgh i j t h |h

^_ ` a ^ � � � �¡ �e a � e � � ��

fgh i jNk lm no lp k q r st

fp ¢ s u � z £k � � ¤ | y no �� �

uv w x yz { | j no uv wx yz { | j� �

^_ `:a ^ � � � �¡ �e a ` � � �

^ _ `:a ^ � � � �¡ �e a ¥ � � � ` � � e

� q} ~� ~Nk q y� �k t h |h o � u k u� z £ ¤ { � � y �

� uv wx y z { | j u� � z | y� o � �

� uv w x yz { | j o � �

� fp ¢ s u� z £k � � i� o �� � �

� uv wx yz { | j u� � z | y� o � �

� uv wx yz { | j u� � z | y� n � �

� uv wx yz { | j� � �

F
igu

re
3.2:

F
S
M

of
th
e
C
P
L
D
C
o
n
t
r
o
l
en
tity

17

Chapter 3 CPLD-Design

the entities have been simplified with the assumption of the RS232Core hav-

ing a long delay to send and receive data.

The final interface for the RS232Core module is the following:

entity r s 232co r e i s

generic (

Clockfrequency : natura l := 18432000;

Baudrate : natura l := 115200

) ;

port (

−− i n t e r n a l po r t s

Send : in s t d l o g i c ;

WE : in s t d l o g i c ;

Send Ready : out s t d l o g i c ;

Send Data : in s t d l o g i c v e c t o r (7 downto 0) ;

Read : in s t d l o g i c ;

Data Ready : out s t d l o g i c ;

Recv Data : out s t d l o g i c v e c t o r (7 downto 0) ;

−− e x t e r na l po r t s

RX : in s t d l o g i c ;

TX : out s t d l o g i c ;

−− s tandard por t s

ClkxCI : in s t d l o g i c ;

RstxRBI : in s t d l o g i c

) ;

end r s 232co r e ;

Listing 3.1: Entity declaration of the RS232Core

3.3.2 Usage

If data has been received, the Data_Ready signal turns high to indicate

that the data lying on Recv_Data is valid. The Data_Ready signal turns

low again as soon as it is acknowledged by the other part setting the Read

signal to high. The Recv_Data will then remain valid until the next whole

byte has been received over the RS232 interface. If a new byte has arrived,

the Recv_Data buffer data will be replaced, regardless if the existing data

has been acknowledged or not.

18

3.4 FlashCore Chapter 3

To send data, the send buffer first has to be filled with data. This is done

by setting the WE signal high while the data to be sent lies on Send_Data.

The sending process is started when the Send signal is set to high. The

Send and WE signals can be set concurrently. Send_Ready turns to low when

sending and will return to high when all data has been sent.

RS232Core implements two separate buffers for reading and writing such

that these operations can be carried out concurrently.

3.4 FlashCore

3.4.1 Description

The FlashCore is used to read, write (program) and erase the AM29LV081B

Flash chip. It is the only entity with direct contact to the Flash chip to hide

the details of the protocol to the other entities on the CPLD.

The AM29LV081B needs exact timing settings. These can be found in the

AM29LV081B data sheet[8]. The FlashCore FSM uses a clock at half the

speed of the original clock. A timing diagram of the Flash access procedure

can be examined in Figure 3.3. FlashCore has been designed such that no

external entity needs to know about the timing details of the Flash chip.

3.4.2 Usage

The Flash memory has been organized in task slots. Further details are ex-

plained in Section 2.5. Data cannot be written explicitly to certain addresses

of the Flash. Read and write operations always start at the beginning of a

slot. An internal counter increments the memory address after each Flash

read/write cycle.

The FlashCore has a simple internal interface: OpxSI defines the current

operation of the entity. This signal may only be changed when BusyxSO is

low. If an operation is completed, the FSM is returned to its idle state by

setting OpxSI to 000 (None code). The available operation codes are listed

in Table 3.1. The SlotNumberxDI signal defines the slot number on which

the operation has to be performed. This number must be between 0 to 4

and needs to be valid for the whole duration of the operation. ReadDataxSI

is used initiate the read or write operation of the next byte of the stream.

19

Chapter 3 CPLD-Design

¦¨§ ©�ª9¦

¦¨§ ©9«�ª9¦

¬ § �®9¯�°
±�±�² ³�®9®�ª9´

¬ § �®9¯�´¨�µ �ª9´

¬ § �®9¯�¶¸·
ª9´¨¹�º

¬ § �®9¯�¦¨·
ª9´¨¹�º

»¸¼¾½ ¿ À=Á¨Â�¿ À=Ã »¸¼¾½ ¿ À=Á¨Â�¿ À=Ä »¸¼¾½ ¿ À=Á¨Â�¿ ÀÆÅ Ç�È�É ®

Figure 3.3: Timing diagram of the Flash access. This diagram shows a

write operation of three bytes. The FlashWE# pin is directly connected to

Clk2xC during the write process. This makes it possible to implement the

write operation of one byte in a single FSM state. FlashDataxD has to be

delayed.

The signal must be set high for one clock cycle. BusyxSO is high when a

Flash operation is in progress, inputs should not be changed during this

time for safe operation. DataxDO and DataxDI are used to access written

or read data. DataxDI is buffered, so the input signal can be changed one

clock cycle after ReadDataxSI had been high at the rising clock edge.

Operation Code

None 000

Read 001

Write 010

EraseSector 100

EraseChip 101

Table 3.1: FlashCore operation codes

20

3.4
F
lash

C
ore

C
h
a
p
t
e
r

3

ÊËÌ Í Î ÏÐ Ñ ÒÓ ÔÕ Ö ×Ø ×ÊËÌ Í Î ÔÐ Ñ ÒÓ ÔÕ Ö ×Ø ×ÊËÌ Í ÎÙ Ð Ñ ÒÓ ÔÕ Ö ×Ø ×Ê ËÌ Í ÎÚ Í Û Ñ Ò Ó ÔÕ Ö ×Ø ×ÒÌ ÛÌ Ñ ÒÜ ÔÕ Ö ×Ý Ý ×

Þßà á

Íâ Û Ïãä å Ûâæ çè èæ Ñ Ò

éê ëì á Þí ëì

Ó ä Íî Ñ ï ÔÕ Ö ×Ø ×

éê ëì á ðà ñ òó íô

õÚ â Ì è ÒÌ ÛÌ Ñ ïÜ Ö ×Ø ×ö
ÊËÌ Í Î ÒÌ ÛÌ Ñ ÒÜ ÔÕ Ö × ç ç ×ÊËÌ Í Î ÏÐ Ñ ÒÓ Ô Ö ×÷ ×ÊËÌ Í ÎÙ Ð Ñ Ò Ó ÔÕ Ö Ï Ëø ù Ñ Ï

éê ëì á ú ú

õ Ï Ëø ù Ñ Ï Ö ×÷ ×ö

Ê ËÌ Í Î çè èæ â Í Í Ñ Ò ÔÕ Ö ×÷ ×ÊËÌ Í Î ÒÌ ÛÌ Ñ ÒÜ ÔÕ Ö ×û û ×ÊËÌ Í ÎÙ Ð Ñ Ò Ó ÔÕ Ö Ï Ëø ù Ñ Ï

éê ëì á ü ü

õ Ï Ëø ù Ñ ÏÜ Ö × ÷ ×ö

Ê ËÌ Í Î çè èæ â Í Í Ñ Ò ÔÕ Ö ×÷ ×Ê ËÌ Í Î ÒÌ ÛÌ Ñ ÒÜ ÔÕ Ö × ç ÷ ×ÊËÌ Í ÎÙ Ð Ñ Ò Ó ÔÕ Ö Ï Ëø ù Ñ Ï

éê ëì á úý

õ Ï Ëø ù Ñ ÏÜ Ö ×÷ ×ö

ÊËÌ Í Î çè èæ â Í Í Ñ Ò ÔÕ ÖÏãä å Ûâæ çè èæ Ñ ÒÊ ËÌ Í Î ÒÌ ÛÌ Ñ ÒÜ ÔÕ Ö ÒÌ ÛÌ Ñ ÒÜ ÔÊ ËÌ Í ÎÙ Ð Ñ ÒÓ ÔÕ Ö Ï Ëø ù Ñ Ï

éê ëì á þÿ ì ÿ

õ Ï Ëø ù Ñ ÏÜ Ö × ÷ ×ö

ÊËÌ Í ÎÙ Ð Ñ Ò Ó ÔÕ Ö ×Ø ×ÊËÌ Í Î ÏÐ Ñ ÒÓ ÔÕ Ö ×Ø ×ÊËÌ Í Î ÒÌ ÛÌ Ñ ÒÜ ÔÕ Ö ×Ý Ý ×

éê ëì á éÿ ëì�

õ Ï Ëø ù Ñ ÏÜ Ö ×÷ ×ö
õ Ô � Ñ ïÜ Ö � ã å â ö

Íâ Û Ïã ä å Ûâæ çè è æ Ñ ÒÓ ä Íî Ñ ï ÔÕ Ö ×Ø ×

� áÿ ß Þí ëì

Ó ä Íî Ñ ï ÔÕ Ö ×Ø ×

� áÿ ß ðà ñ òó íô

Ê ËÌ Í Î çè èæ â Í Í Ñ Ò ÔÕ Ö Ïãä å Ûâæ çè èæ Ñ ÒÊËÌ Í Î ÏÐ Ñ ÒÓ ÔÕ Ö × ÷ ×Ê ËÌ Í Î Ô Ð Ñ ÒÓ ÔÕ Ö × ÷ ×

� áÿ ß ò á ì
õ Ï Ëø ù Ñ Ï Ö ×÷ ×ö

ÒÌ ÛÌ Ñ ÒÜ ÔÕ Ö Ê ËÌ Í Î ÒÌ ÛÌ Ñ ÒÜ ÔÓ ä Í î Ñ ï ÔÕ Ö × ÷ ×

� áÿ ß � ëí ë� � á ß

õ Ï Ëø ù Ñ ÏÜ Ö ×÷ ×ö

õÚ â Ì è ÒÌ ÛÌ Ñ ïÜ Ö ×Ø ×öÏ ãä å Ûâæ çè èæ Ñ Ò� �

õ Ô � Ñ ïÜ Ö � ã å â ö

Ó ä Í î Ñ ï Ô Õ Ö ×Ø ×

�ê ÿ � á ðà ñ òó í ô

ÊËÌ Í Î ÒÌ ÛÌ Ñ ÒÜ ÔÕ Ö × ç ç ×Ê ËÌ Í Î Ï Ð Ñ Ò Ó Ô Ö ×÷ ×Ê ËÌ Í ÎÙ Ð Ñ ÒÓ ÔÕ Ö Ï Ëø ù Ñ Ï

�ê ÿ � á ú ú
	 �

Ê ËÌ Í Î ÒÌ ÛÌ Ñ ÒÜ ÔÕ Ö × û û ×Ê ËÌ Í Î Ï Ð Ñ Ò Ó Ô Ö ×÷ ×Ê ËÌ Í ÎÙ Ð Ñ ÒÓ ÔÕ Ö Ï Ëø ù Ñ Ï

�ê ÿ � á ü ü	 �
õ Ï Ëø ù Ñ Ï Ö × ÷ ×ö

õ Ï Ëø ù Ñ Ï Ö ×÷ ×ö
Ê ËÌ Í Î ÒÌ ÛÌ Ñ ÒÜ ÔÕ Ö ×� ÷ ×Ê ËÌ Í Î Ï Ð Ñ Ò Ó Ô Ö ×÷ ×Ê ËÌ Í ÎÙ Ð Ñ ÒÓ ÔÕ Ö Ï Ëø ù Ñ Ï

�ê ÿ � á �ý

õ Ï Ëø ù Ñ Ï Ö ×÷ ×ö
Ê ËÌ Í Î ÒÌ ÛÌ Ñ ÒÜ ÔÕ Ö × ç ç ×Ê ËÌ Í Î Ï Ð Ñ Ò Ó Ô Ö ×÷ ×Ê ËÌ Í ÎÙ Ð Ñ ÒÓ ÔÕ Ö Ï Ëø ù Ñ Ï

�ê ÿ � á ú ú
	

õ Ï Ëø ù Ñ Ï Ö ×÷ ×ö
Ê ËÌ Í Î ÒÌ ÛÌ Ñ ÒÜ ÔÕ Ö × û û ×Ê ËÌ Í Î Ï Ð Ñ Ò Ó Ô Ö ×÷ ×Ê ËÌ Í ÎÙ Ð Ñ ÒÓ ÔÕ Ö Ï Ëø ù Ñ Ï

�ê ÿ � á ü ü	

ÊËÌ Í Î ÒÌ ÛÌ Ñ ÒÜ ÔÕ Ö ×Ø ÷ ×ÊËÌ Í Î ÏÐ Ñ ÒÓ Ô Ö ×÷ ×ÊËÌ Í ÎÙ Ð Ñ Ò Ó ÔÕ Ö Ï Ëø ù Ñ Ï

�ê ÿ � á ð � ë� � ý

õ Ï Ëø ù Ñ Ï Ö ×÷ ×ö

õ Ô � Ñ ïÜ ÖÐ æ Ì Íâ Ï Î� � ö

�ê ÿ � á ð � ë� éÿ ëì

õ Ï Ëø ù Ñ Ï Ö ×÷ ×Ì å èÔ � Ñ ïÜ ÖÐ æ Ì Íâ Ï Î� � ö

õ Ê ËÌ Í Î Ú � Ñ Ò Ó Ü Ö ×÷ ×ö

õ Ô � Ñ ïÜ Ö � ã å â ö

Ê ËÌ Í Î ÒÌ ÛÌ Ñ ÒÜ ÔÕ Ö ×� ÷ ×Ê ËÌ Í Î Ï Ð Ñ Ò Ó Ô Ö ×÷ ×Ê ËÌ Í ÎÙ Ð Ñ ÒÓ ÔÕ Ö Ï Ëø ù Ñ ÏÊËÌ Í Î çè èæ â Í Í Ñ Ò ÔÕ Ö Ïã ä å Ûâæ çè èæ Ñ Ò

�ê ÿ � á ò áô ì �ê �ý

õ Ï Ëø ù Ñ Ï Ö × ÷ ×Ì å èÔ � Ñ ïÜ ÖÐ æ Ì Íâ ï â � Ûã æ ö

Ó ä Íî Ñ ï Ô Õ Ö ×Ø ×Ï ãä å Ûâæ Ñ Ò Õ Ö ùÍâ Û Ïãä å Ûâæ çè è æ Ñ Ò

�ê ÿ � á ò áô ì �ê ðà ñ òó í ôõ Ô � Ñ ïÜ ÖÐ æ Ì Íâ ï â � Ûã æ ö

õ Ê ËÌ Í ÎÚ � Ñ Ò Ó Ü Ö ×Ø ×Ì å èÏ ãä å Ûâæ Ñ Ò� ÷ öÏãä å Ûâæ çè èæ Ñ Ò � Ö �� øÏ ãä å Ûâæ Ñ Ò� �

õ Ï Ëø ù Ñ Ï Ö ×÷ ×ö

Ó ä Íî Ñ ï ÔÕ Ö ×÷ ×

�ê ÿ � á ò áô ì �ê � ëí ë� � á ß

õ ÊËÌ Í ÎÚ � Ñ ÒÓ Ü Ö ×Ø ×Ì å èÏãä å Ûâæ Ñ Ò Ö ÷ ö

õ Ô � Ñ ïÜ Ö � ã å â ö

õ Ô � Ñ ïÜ ÖÚ â Ì è ö

Ê ËÌ Í ÎÚ Í Û Ñ ÒÓ ÔÕ Ö ×÷ ×Ïãä å Ûâæ Ñ Ò Ö �Ó ä Í î Ñ ï ÔÕ Ö ×Ø ×

� á � á ì

õÚ Í Û ÑÚ Ó Ü Ö ×÷ ×ö

õ Ô � Ñ ïÜ Ö � ã å â ö

õ Ô � Ñ ïÜ Ö � ã å â ö

õ Ô � Ñ ïÜ ÖÙ æ � Ûâ ö

õ Ï ãä å Ûâæ Ñ Ò Ö ÷ ö

� á � á ì éÿ ëì õ Ïãä å Ûâæ Ñ Ò� ÷ öÏãä å Ûâæ Ñ Ò� �

ÊËÌ Í ÎÙ Ð Ñ Ò Ó ÔÕ Ö ×Ø ×ÊËÌ Í Î ÏÐ Ñ ÒÓ ÔÕ Ö ×Ø ×ÊËÌ Í Î ÒÌ ÛÌ Ñ ÒÜ ÔÕ Ö ×Ý Ý ×

�ê ÿ � á ð � ë� éÿ ëì�

õ Ï Ëø ù Ñ Ï Ö × ÷ ×ö

éê ë ì á éÿ ëì

õ Ê ËÌ Í ÎÚ � Ñ ÒÜ Ö ×÷ ×ö

Ó ä Íî Ñ ï ÔÕ Ö ×÷ ×

éê ëì á � ëí ë� � á ß

õ Ê ËÌ Í ÎÚ � Ñ ÒÜ Ö ×Ø ×ö

õÚ â Ì è ÒÌ ÛÌ Ñ ïÜ Ö ×Ø ×öÏ ãä å Ûâæ çè èæ Ñ Ò� � Ó ä Íî Ñ ï ÔÕ Ö ×÷ ×

�ê ÿ � á ð � ë� � ëí ë� � á ß

õ ÊËÌ Í ÎÚ � Ñ ÒÜ Ö ×Ø ×ö

�ê ÿ � á ò áô ì �ê éÿ ëì

õ Ê ËÌ Í Î Ú � Ñ ÒÜ Ö ×÷ ×ö
Ê ËÌ Í ÎÙ Ð Ñ ÒÓ ÔÕ Ö ×Ø ×Ê ËÌ Í Î ÏÐ Ñ ÒÓ ÔÕ Ö ×Ø ×Ê ËÌ Í Î ÒÌ ÛÌ Ñ ÒÜ ÔÕ Ö × Ý Ý ×

�ê ÿ � á ò áô ì �ê éÿ ë ì�

õ Ï Ëø ù Ñ Ï Ö ×÷ ×ö

õ åã Û Ô � Ñ ïÜ ÖÐ æ Ì Íâ Ï Î� � Ì å èåã Û Ô � Ñ ïÜ ÖÐ æ Ì Íâ ï â � Ûã æ ö

F
igu

re
3.4:

F
in
ite

S
tate

M
ach

in
e
of

th
e
F
l
a
s
h
C
o
r
e
.
N
ote

th
e
im

p
lem

en
ta-

tion
of

th
e
th
ree

com
m
an

d
s:

w
rite,

read
an

d
erase.

21

Chapter 3 CPLD-Design

�

�

��� �"! # $ � % #'&

(�)
*)
+
(-,
.�/ 0
* 132 465
7 8 +9.3,
:;/)
<>= (�)
*)
+
(-, ?

@�7
) A;(�)
*)
+9.3,
?CB>+9.3,

:;/) <>= @EDE+ (-FE,

G-/ HI+>GJ,

(�)
*)>+ (�?

:;/)
<>=;(�)>*)
+ (-, ?
:;/)
<>=9K3A
A;8 7
<9<L+
(�?

:;/)
<>= GJMN+
(JF"?
:;/)
<>=
?CM"+
(-F'?

:;/)
<>=;@�<I* +
(-F"?

:;/)
<>=>OPMN+ (-F"?

@�<I* + @-FE,

F'2
<LQL+>.E?

R .'*)>* 7
+ (-S
R :N/)
<>=;(�)>*)
+ (-S
R G30;2
T>* 7;8 +
(-S
R G30;2
T>* 7;8 K3A
A;8 + (-S

R OU8 V * 7>+>.3S
R (�)>*)>+ (-S

Figure 3.5: Overview of the Finite State Machine of the FlashCore

3.4.3 The state machine

The FlashCore FSM is build out of 31 states. An interface overview is

presented in Figure 3.5. The detailed FSM can be examined in Figure 3.4.

3.5 FPGAConfigurator

3.5.1 Description

The FPGAConfigurator entity reconfigures the FPGA connected to the

CPLD using the configuration port in Slave Parallel Mode. The configura-

tion data is provided by the FlashCore module which is synchronously con-

trolled by the CPLDControl entity during the configuration process. Thus,

the FPGAConfigurator just drives the configuration controls ports and does

not care about the configuration data ports on the FPGA.

The configuration process for a Spartan2 FPGA is described in more detail

in [9]. The process has been modeled as the FSM as shown in Figure 3.5.1

and Figure 3.5.1.

3.5.2 Usage

To start a configuration of the FPGA, ConfigurexSI has to be set to high

and should remain high. BusyxSO will then immediately turn high and not

return to low until the FPGA is ready to accept the configuration data. As

22

3.5 FPGAConfigurator Chapter 3

WNX9Y ZI[9\']U^
_a` b9`
c"dEeU^
_f` gI`
hidi^
_f` gI`
jEkl^>_a` g `

mEn-o�pLq;r sEt u

WNX9Y ZI[9\']P^>_a` g `
cNdEeU^
_f` b>`
hidi^
_a` g `
jEkl^>_a` g `

mEnJoEp9q v"w'x

WNXLY ZI[L\']P^
_f` gI`
c"dEeU^>_a` g `
hidi^>_a` g `
j�ky^
_a` g `

mEnJoEp9q>zy{3r |
q
m�t u;{3w

WNXLY ZI[L\']P^
_a` b9`
c"dEeU^>_a` g `
hidi^>_a` b9`
jEky^
_a` g `

mEnJoEpLq
z}{3r |>q
zlwEr |;u

W"XLY Z [9\']P^>_a` g `
cNdEeU^
_a` g `
hldi^
_a` b9`
jEkl^>_a` b9`

mEnJoEp9q>zlwEr |;u

W"XLY ZI[9\']P^>_a` g `
cNdEeU^
_f` gI`
hidi^
_a` g `
jEkl^>_a` g `

mEnJoEp9q>zy{3r |
q s'nJoEu

~ jE�
�I� � �>X9� �L[Lk'�9_f` gI` �
W"XLY Z [LkN]P^
_a` g `

~ � ��� �}_a` b9` �

~ � ��� �}_a` g ` �

~ hi� � � �9[IkE�L_a` g ` �

~ jE�>�L� � �
X9� �L[IkE�L_a` b9` �

~ \']J�E�y_a` g ` �>�
jE�>�L� � �
X9� �L[Lk'�L_a` g ` �

Figure 3.6: The FSM model for the FPGA configuration process

�3�
�9� � � �>� �>�9���
� � � � �>�9���

�;�"�3� �3� �9� � �L�"�E C¡3¢;�
�3�
�N�"�3� �3� �L� � �9�"� ¡3� £N�
��¤E�

�-¥ ¦ �9�J�

¤'�9§I¨L�9�'

�N�"�3� �3� �L� � �9� �'©�� �>��¤'
�N�"�3� �3� �L� � �9� �U© � £E¢;�
��¤"
�N�"�3� �3� �L� � �9�;�3�"�
��¤"

© §I� � © ¤E�

ª

«

�"� ¬>� �9�
� �

�®>¯"° ±
² ®
³ ±N´

Figure 3.7: The interface of the FPGAConfiguratorFSM

23

Chapter 3 CPLD-Design

soon as BusyxSO is low, the configuration data writing cycles start. The

controlling unit should make sure that valid data lies on the parallel slave

configuration data ports of the FPGA and set the WritexSI signal to high.

The FPGAConfigurator then signals the FPGA to read the configuration

data. BusyxSO will turn high for this time and return to low again as soon

as the FPGA is ready for the next configuration data byte.

When all configuration data has been written, the ConfigurexSI signal can

be set to low. The FPGAConfigurator will answer by setting BusyxSO to

high, and waiting for the FPGA to complete the reconfiguration. Then,

BusyxSO is set low again, and FPGAConfigurator is ready for another con-

figuration process

Note: The configuration data is not checked to be valid. If the con-

figuration is not accepted by the FPGA, it does indicate this by leaving

its FPGAConfig_INITxDBI signal low. FPGAConfigurator does ignore this

signal in this state. Thus it may happen that the FPGA has not been

reconfigured and remains in its previous configuration.

3.6 FPGAComm

3.6.1 Description

The FPGAComm module is used to implement the interface to the CPLD. The

custom protocol described in Section 2.3 is used for communication. The

state machine used is shown in Figure 3.9. An interface description can be

examined in Figure 3.8.

3.6.2 Usage

The state machine works asynchronously. All communication lines are

buffered. To write a byte to the FPGA, DataxDI must be set and SendxSI

tied to high for one clock cycle. BusyxSO then goes low until the byte could

be successfully sent. Newly received data is signaled by the NewDataxSI

signal turning high. Data then can be read from DataxDO. ReadxSI must be

tied high for one clock cycle to acknowledge the reading of the received byte.

Because the state machine works asynchronously, it is possible to receive a

byte before the byte waiting to be sent is actually sent.

24

3.6 FPGAComm Chapter 3

µ

¶

·�¸ ¹Eº »
¼ ¸;½ »'¾

¿�ÀLÁ Â ¿-Ã�Ä
ÅJÆ Ç Â Å Ä

ÈEÉ;Ê
Ë Â È Ä

¿ É Ì Ë Â È Ä
Å-Í;ÎÏÎCÐ ¿ É Ñ;ÅfÒ�Ó Ô Â È Ä

Å-Í;ÎÏÎCÐ Õ3Ö>Ç>×"ÒEØJÕ Â È Ä

Å3Í;Î}ÎaÐ'Ô�Ì Á Ì Â Ô Ä Ù

Ô3Ì Á Ì Â Ô Ä

Å-Í;ÎÏÎCÐ'Ô�Ì Á Ì Â Ô Ä Ù
Å-Í;ÎÏÎCÐ ¿ É ÑN×"ÒEØ-Õ Â È Ù

Å-Í;ÎÏÎCÐ Õ-Ö>Ç9ÅJÒ�Ó Ô Â È Ù
Ô3Ì Á Ì Â Ô Ù
Ú É
ÛCÔ�Ì Á Ì Â È Ù

ÃEÜ
ÀLÝ9Â È Ù

È Á Ì Á É Â È-Ò
Ô�Ì Á Ì ÈEÉ;Ê
Ë Â ÔJÒ
Ô�Ì Á Ì ¿ É Ì Ë Â ÔJÒ
Ã'Ü
ÀLÝ9Â È-Ò
Ú É
ÛCÔ�Ì Á Ì Â È-Ò

Figure 3.8: Overview of module FPGAComm

Þ ßNà á

âEã
äaäJå;æ'ç>è é
ê"ë�ì'íLî"ïfð
ñ>ò óIò

ôEá>õ ö"á
÷
ß

â�ã
äaä-å;øEù9ú ù9í9ø3û ïfð
ñ
øEù9ú ù9íIüiý þ ú çLí9ø�ê
âEã
äaäJå;æ'ç>è é
ê"ë�ì'íLî"ïfð
ñ>ò ÿ>ò

ö'á>÷ ß

â�ã
äaä-å>ì���� â3ê��>ø'íLî"ïfð
ñ>ò óIò

ô'á>õNôEá����

	Eá�
�����

� â�ã
äaä-å>ì����Lé ê"ë�ì'íLîEû ñ>ò ÿ9ò �
����� � íLî��Eð ñ>ò ÿ>ò

� â�ã>äCä-å9ì����Lé
ê"ë�ì'íLîEû ñ>ò óIò �

� ����� � íLî'ê"ñ
ò óIò ã
ý
î"ç����9íLîEû ñ>ò ó ò � � âEã
äaäJå;æ'ç>è>â3ê��>ø"íLî�û ñ>ò óIò ù����

�'ç��-øEù9ú ù9íLî'ê"ñ>ò ÿ>ò �

Þ ß;à á ��� � � � ÷��
� ü ý þ ú ç9íLîEû ñ>ò óIò ù���� ����� � íLî'ê'ñ>ò ÿ>ò �

øEù9ú ù9üiý þ ú ç9í9ø���ð
ñ
øEù9ú ù9í9ø3û
����� � í9î ��ð
ñ>ò óIò

ü ý þ ú ç9íLîEû ñ>ò ÿ>ò

� â�ã
äaä-åNæ'ç>è>â�ê �9ø'íLîEû ñ>ò ÿ>ò �
�Eç��-øEùLú ù9íLî ��ð
ñ>ò óIò

øEù9ú ù æ'ç>ù��9í9ø���ð
ñ>â�ã
äaä-å;øEùLú ù9í9ø3û ï
â�ã
äaä-å>ì���� â3ê��>ø'íLî"ïfð
ñ>ò ÿ>ò

Þ ß;à á

� �Eç��-øEù9ú ù9íLî'ê"ñ
ò óIò �

� æ'ç9ù!�9íLîEû ñ>ò óIò �
�'ç��-øEù9ú ù9íLî ��ñ>ò ÿ>ò

Figure 3.9: FPGAComm FSM

25

Chapter 4 FPGA-Design

Chapter 4

FPGA-Design

The FPGA is the execution unit for the tasks. It starts and stops the tasks

and controls their memory accesses. The FPGA also holds drivers for its

external interfaces, where input data for the applications can be collected.

4.1 FPGATop

The FPGATopmodule interconnects the different entities of the FPGA design.

Figure 4.1 shows the structure of the architecture. A short description of

the different entities is given below:

• CPLDComm handles the communication to the CPLD

• SRAMCore reads and writes to the SRAM on the BTnodeFPGA board

• MemoryControl handles concurrent access requests to the SRAMCore

by the FIFOControl or the FPGAControl entities

• FIFOControl acts as a cache for FIFO accesses by the Task, InputDriver,

and OutputDriver entities

• The InputDriver generates or reads data from an external interface

of the FPGA and feeds it to a FIFO

• The OutputDriver sends data from a FIFO over the CPLD to the

microcontroller

• The FPGAControl accepts commands passed by the CPLD from the

microcontroller and executes these on the FPGA

26

4.2 FPGAControl Chapter 4

"�#%$'&�(*)*+

,�#%-/. ,�)/010

"/#*$'&�,�)*2!3 4)*5

6�7%8!9;: <>= ?�@ A B�C>? D�E &'F�,�)*4 G

(*H�I�J

"�K "!LM,�)*2!3 4)*5

F�G!0N)*4 O�,�)*2�3 4)/5
LQP!3 +�P!3 .�4 R S!G!4

T U%V�W

K 2/+�P!3 .�4 R S!G!4 X B�@ Y Z![�\: <�= ?!@ A B�C>?�\

(*H�I�J�,�)*2!3 4)*5

LMP!3 +/P!3 ,�)/2!3 4)*5

Figure 4.1: FPGA Architecture

• The Task entity is where the custom tasks are configured to and exe-

cuted

4.2 FPGAControl

4.2.1 Description

FPGAControl is the main controller on the FPGA. It has two general pur-

poses: Firstly, it accepts incoming commands from the CPLD and executes

them. Secondly, it stores back the cached FIFO structure data and signals

the termination of the task to the CPLD when the running task has finished.

Three commands are currently understood by the FPGAControl: the com-

mands to read and write to the SRAM and to start the task. How these

commands can be sent to the FPGA is described in Section 2.2.2.

Read SRAM and Write SRAM

These two commands are used to read and write directly to the SRAM. Writ-

ing is usually used to initialize the FIFOs before an application is started.

Reading has been implemented for debugging purposes.

Start task

Before a task can be started, the FIFO structure data used by the task

must be loaded into the cache. Section 4.7 describes the procedure in fur-

27

Chapter 4 FPGA-Design

ther detail. The required FIFO numbers are submitted as parameters of

the StartTask command. After the initialization of the FIFOs, a signal to

TaskControl allows it to start the task.

Figure 4.2 shows a symbolic state chart of FPGAControl. It is not speci-

fied when the transitions occur to simplify the figure.

] ^�_ `

a�b�^�c%d�e�f g!h�d�i j k%j l�m�n/] n!o

c*d!e�f'p i b�e�q�`!^

r's ^>g�h;t i j `!k�u d s g/k%j d�t j r's ^�g*u `!d!^�k�u�d s g/k%j d!t j r's ^�g/k%j d!t j c*d!e�f g%] b!i j

r l svs d�b�^
h�t i j `�k�u d s

r l svs d�b�^
u `!d�^!k�u d s

r l svs d�b�^
k%j d!t j c*d!e�f

r's ^�g�h�t i j `!k�u d s g�h�t i j ` r's ^�g%u�`!d!^!k�u d s g*u `!d!^ r's ^�g/k%j d�t j c*d!e�f g%] b!i j w%l�t j

r's ^�g/k%j d�t j c%d!e�f g*] b!i j n�i b!i e�q!w%l�t j

r's ^�g�k%j d�t j c*d!e�f g%] b�i j r l�x!b�j `�t

r's ^>g/k%j d�t j c*d!e�f g/k%j d!t j

a%b�^�c*d!e�f g*y%`!z�i b�k%j l!t `/n*] n!o

a%b�^�c%d!e�f g�k�j l�t `/n/] n�o

Figure 4.2: Symbolic state chart of FPGAControl

4.3 CPLDComm

4.3.1 Description

The CPLDComm module is used to handle the interface to the CPLD which

uses the FPGA-Protocol described in Section 2.3. CPLDComm is very similar

to the FPGAComm on the CPLD described in Section 3.6. The most important

difference is that the access priorities differ. If the CPLD requests to send

a byte, it has priority over the FPGA. Because the FPGA won’t accept a

new byte if the old one hasn’t read and the CPLD has priority to send, it is

important that every data that has arrived is taken from the receiver’s buffer.

If the FPGA tries to send a byte and doesn’t read received data a deadlock

28

4.3 CPLDComm Chapter 4

may happen! The FSM modeling the protocol is shown in Figure 4.4. An

interface description can be found in figure 4.3.

{

|

}�~/��� ��� ~*� � �

����� �/�M���
�Q� � � � �

���*��� � � �

� �/�/� � � �
�'�*���v� � �/�%��� �Q� � � ���

�M�*���N�/�'�!�������/� � � �

�'�*���v� ��� � � � � �

�'� � � � � �

�M�*���N� ��� � � � � �
�M�*���N� � �/�*�����/� � � ��

�M�*���N�/�M�!�!�%���Q� � �
�'� � � � �
¡ ��¢N��� � � � �

��£���¤�� �

� � � � � � �M�
��� � �/���*��� � �Q�
��� � � � �/�/� � �Q�
� £���¤�� �M�
¡ ��¢N��� � � � �M�
¥ ���%� �/�!��� � � �'�

¥ ���%� �/�!��� � � � �

�M�*���N� � � � �����M� � �

Figure 4.3: Overview of the module CPLDComm

4.3.2 Usage

The state machine works asynchronously. All communication lines are

buffered. To write a byte to the CPLD, DataxDI must be set and SendxSI

tied high for one clock cycle. BusyxSO goes low when the byte could be

successfully sent. Newly received data is signaled by the signal NewDataxSI

turning high. Data can then be read from DataxDO. Then, ReadxSI must

be tied high for one clock cycle to acknowledge the byte. Because the state

machine works asynchronously, it is possible to receive a byte before the the

byte to send could be sent.

The FPGA-Protocol provides a special line for the FPGA to reserve

a communication line to the Btnode. It is automatically used and there-

fore the last byte of any packet must be marked by additionally setting

EndPacketxSI to high when sending the last byte by triggering SendxSI.

This must even be done for a single byte packet.

29

Chapter 4 FPGA-Design

¦ §%¨ ©

ª�«�¬v¬M%® ¯�°!ª'±�²!³ ´�µ�¶Q·/¸!¹ º>¹

»�©!¼/½�©�¾�§

ª�«�¬v¬M*³�¿�À ¿�´�³'Á ¶�·�¸�³�¿�À ¿�´>Â�Ã Ä À ¯�´!³�±
ª�«�¬v¬M%® ¯�°!ª'±�²!³ ´�µ�¶Q·/¸!¹ Å!¹

½�©�¾�§

ª�«�¬v¬M!Æ�Ç�È�É/±�Ê�Æ ´�µ�¶Q·�¸!¹ º ¹

»�©�¼%»�©�Ë�Ì

Í�©�Î�Ï�Ð�Ñ Ð

Ò ª�«!¬N¬M!Æ�Ç�È ª'±�²!³�´�µ�Á ¸!¹ Å!¹ Ó
Ô�Õ�Ö × ´�µ Ø�·/¸!¹ Å!¹

Ò ª�«�¬v¬M!Æ�Ç�È ª'±�²!³ ´�µ�Á ¸�¹ º>¹ Ó

Ò Ô�Õ�Ö × ´�µ ± ¸!¹ º>¹ «�Ã
µ�¯�Ù�Ú�´�µ�Á ¸!¹ º ¹ Ó Ò ª�«�¬v¬M%® ¯!°/É�±�Ê�Æ ´�µ�Á ¸�¹ º>¹ ¿�Ù�Ú

Ø ¯�ÛM³�¿�À ¿�´�µ ±�¸!¹ Å�¹ Ó

¦ §*¨ © Ü�Ý Þ Ñ Þ ¾�ß
Ò Â�Ã Ä À ¯�´�µ�Á ¸!¹ º>¹ ¿�Ù�Ú Ô�Õ�Ö × ´�µ�±�¸!¹ Å!¹ Ó
³�¿�À ¿�Â�Ã Ä À ¯�´�³�Ø�·�¸�³�¿�À ¿�´�³'Á

Ô Õ�Ö × ´�µ Ø�·�¸!¹ º>¹

Â�Ã Ä À ¯�´�µ�Á ¸!¹ Å!¹

Ò ª�«�¬v¬M%® ¯!°�É/±�Ê�Æ�´�µ�Á ¸!¹ Å�¹ Ó
Ø�¯�ÛM³�¿�À ¿�´�µ Ø�·�¸!¹ º>¹

³�¿�À ¿/® ¯!¿�Ú�´�³�Ø�·�¸!ª�«�¬v¬M*³�¿�À ¿�´�³'Á ¶
ª�«�¬v¬M!Æ�Ç�È�É/±�Ê�Æ ´�µ ¶Q·�¸!¹ Å�¹

¦ §*¨ ©

Ò Ø�¯�ÛM³�¿�À ¿�´�µ ±�¸�¹ º>¹ Ó

Ò ® ¯�¿!Ú�´�µ�Á ¸!¹ º>¹ Ó
Ø ¯�ÛM³�¿�À ¿�´�µ Ø�¸!¹ Å!¹

Ò ª�«�¬v¬M%® ¯!°�É/±�Ê�Æ ´�µ�Á ¸!¹ º ¹ ¿�Ù�Ú
Ø ¯�ÛM³�¿�À ¿�´�µ ±�¸!¹ Å!¹ Ó

Figure 4.4: CPLDComm FSM

30

4.4 OutputControl Chapter 4

4.4 OutputControl

The OutputControl entity is used to share the CPLDComm communication

entity between the the FPGAControl and the output driver. The same pack-

eting mechanism as used on the CPLDComm interface is used to reserve the

interface for a multi-byte data transmission. FPGAControl has a higher

priority when writing to the data bus.

The advantage of using the same interface as the CPLDComm entity is that

the connected modules do not have to be changed when directly connected

to the CPLDComm. The entities do not notice that other modules are currently

sending data since the OutputControl signals to the requesting entity that

the external interface busy until its first byte has been transmitted.

4.5 SRAMCore

4.5.1 Description

The SRAMCore entity controls the SRAM of the BTnodeFPGA board that is

connected to the FPGA. A detailed description of how the data in the SRAM

can be accessed can be found in [10].

A problem has been encountered on BTnodeFPGA boards with a 18 MHz

clock: since their clock cycle is 54ns, and the read and write cycles of the

SRAM takes 55ns according to the specifications. Thus the SRAM should be

slightly to slow for this clock. Two clock cycles are thus needed to access data

on the SRAM. However, on the BTnodeFPGA board used for development,

the SRAM worked with one clock cycle of the 54ns clock, too. The SRAMCore

entity supports both access cycles, the required code for a two cycle access

is commented in the source code.

4.5.2 Usage

To write a byte, the data and the address have to be set to DataxDI and

to AddressxDI respectively. When WritexSI is set to high, the address and

data must not change until the writing procedure has been acknowledged by

the SRAMCore setting its AckxSO signal to high. The data can be considered

written as soon as the WritexSI and the AckxSO signal have been high at

a rising clock edge. If the WritexSI signal is kept high after AckxSO has

been set, a new write cycle is initiated. Thus before changing any data, the

31

Chapter 4 FPGA-Design

à

á

â�ã�ä'å æ�ç�ã è æ�é
êvë�ì;í1îNï�ð ñ ð ò*ï�ó ô

õ�ö ÷*ò*õ�ó

ï�ð�ñ ð�ò*ï�ô

êvë�ì;íùø*ú û ñ ü ú ö*ý*þ ÿ û�ð ö ý

�Mö ð ý���ë�ý*ñ ò*ï��vô

ì;ø*÷*ò/êvô

ë�ý*ñ ò*ë��vó
� ï�ð ñ ð�����	 	
 ü ò*ï� ì���� ü
 ý*ý�����	 	
 ü ò*ï

ì���� ü
 ý*ý*ò*ï�ó
 ü þ ñ
�ò/êvóë�
�ð�� ò*êvó

Figure 4.5: Interface of the SRAMCore entity

WritexSI signal must be removed immediately after the AckxSO signal has

gone to low.

Setup times Hold times

tws ≥ 1 cycle twh 0

tas ≥ 1 cycle tah 0

tds - tdh ≥ 1 cycle

Table 4.1: SRAMCore handshake timings

To read data, the address has to be set on AddressxDI and the ReadxSI

signal has to be set to high. The address should not be altered until

SRAMCore acknowledges the reading procedure by setting the AckxSO sig-

nal to high. A read cycle is considered complete when the AckxSO and the

ReadxSI signal have been high at a rising clock edge. After this event, the

data liess on DataxDO for at least one clock cycle. If the ReadxSI remains on

high after the AckxSO has been set to low, a new read cycle is initiated. The

data is buffered in the SRAMCore and will not change until another operation

(read or write) is started.

32

4.6 MemoryControl Chapter 4

����� �������

�������������
� �!�!���#"$"%���&�

� '$(%���*)

+�, (%� + �

-

.��!�#�����

� �!�!���!"$"%�����

� '$(%���*)

+�, (%� + �

������������)

/�0 - /21

-43 0 -43 1

- /20 - /�1

-43 0
- 3 1

-45 1

Figure 4.6: SRAMCore handshake, timing values are listed in Table 4.1

Note: If both the ReadxSI and the WritexSI signal are set, the read

operation is executed since it does not change the data stored in the SRAM.

4.6 MemoryControl

4.6.1 Description

The MemoryControl entity coordinates the access to the SRAM. Two units

can write to the SRAM: FPGAControl and FIFOControl. MemoryControl

takes care that only one of these two units is accessing the SRAM at any

point in time. It blocks the interface to an entity while another is accessing

the SRAM.

Priority is given to the FIFOControl since the task or the drivers are do-

ing the actual work and should not be impeded by configuration messages

received from or sent to the controller.

33

Chapter 4 FPGA-Design

687�9;:2<>=@?A:AB�CD<>:8E
FHGIGIJ K>L>LNM�OHP

O�Q>R QSM�OHP

T UV UW
TX

YZZ [
\]]W
TX

T UV UW
T^

O�QSR QSM4O�_
Fa`NbcM4O�_

Y de W
T^

f

f

g \UZ W
hX

i [j
V \W
hX

k�K>QNG�MNl�P
m$J n R KSM�l�P k�o�pNR K�qrJ o4`NKSL>L

FaG4GIJ KSLNL>M4O�_

O�QSR Q>M�O�_

O�Q>R QSM�OHP
Fa`�bcMNl�P

m$J n R K>MNlr_
k�K>QNG�MNlr_

s�t>s�u!?8:AB�CD<>:AE

vw
xy
z {
|} ~{
�

��y
�z {
~�

Figure 4.7: Structure of the MemoryControl entity

4.6.2 Usage

FIFOControl and MemoryControl can both use the interfaces of the MemoryControl

as if they would directly be connected to the SRAMCore (see Figure 4.6 for

details on the protocol used). There is no additional delay inserted, since

MemoryControl observes the handshake and knows when it can switch from

one to the other entity.

4.7 FIFOControl

4.7.1 Description

This entity wraps two modules that have been inherited from an earlier

project[5]. These are the Address_Register and the LUT_Address entities.

These modules handle the data structure of the FIFOs in the SRAM. This

structure is explained in more detail in Section 2.4.

To reduce the latency of a memory access, the FIFO configurations are

loaded into a cache in the Address_Register module. The module keeps

track of every read and write access and increments the associated pointers.

34

4.7 FIFOControl Chapter 4

�

�

��� �������
����� �������

������� �r� � �r���$�����r�����
�����r���������

�����r� � ������� �������

���r��� � ���r� �r����� � ���r� �����������

�����r�������
 !� � � �������

��¡ �������

�����r������� �������

 ¢� � � ������� �������£D¤���� � ���2�
£D�������r�����
£ ¢� � � �r�����

£ ��¡ �������

£ ���r� �����2�
£D����� �������

Figure 4.8: FIFOControl interface. Signals marked with a * are common

interface signals for the different consumers

It also handles wrap overs1. The FIFO data structure in the SRAM is not al-

tered. Before changing the task, the modified data in the Address_Register

needs to be written back into the SRAM.

The Address_Register only keeps hold of as many FIFOs as are allowed to

be ports of a task, plus two for the input and output drivers. Thus it auto-

matically maps the port number to the corresponding FIFO in the SRAM.

This mapping is conducted during the initialization process when the FIFO

data is loaded into the different ports in the Address_Register module.

The proper addresses for loading the FIFO data structure are generated by

the LUT_Address module. The mapping is also stored into a buffer which is

used to again generate the FIFO data structure addresses in the write back

phase after a task has finished its execution cycles.

The FIFOControl entity has five interfaces. It provides three interfaces

to the entities who use the FIFOs: the task, the input driver, and the

output driver. These interfaces are basically used for requests to write or

read something to a FIFO. Using the interface to the MemoryControl entity,

1When data is written to the last entry of the reserved FIFO space, the pointer is set

back to its beginning

35

Chapter 4 FPGA-Design

the FIFOControl can access the memory after having computed the physical

address the request needs. The last interface connects to FPGAControl and

is used for configuration purposes as further explained below.

4.7.2 Usage

Before the FIFOControl can be used, the FIFO data structure must already

be present in the SRAM. This configuration has to be done externally us-

ing the MC-Protocol as defined in Section 2.2. The required structure is

explained in Section 2.4.

If the FIFO data structure is present in the SRAM, the FIFOControl can be

configured with other commands over the MC-Protocol. The FPGAControl

extracts the necessary information from these commands and configures

the FIFOControl unit. After the configuration is done, the FIFOs can be

accessed by the task, the input, and the output drivers. After the task

has finished its cycles, the FIFOControl needs to be instructed to write

back its data before a new task FIFO configuration can be loaded into the

FIFOControl.

These steps are now explained in further detail:

Configuration

When the ReadyxSO signal is high, the FIFOControl can be driven into

configuration mode by setting OperationModexSI to LoadFIFO. ReadyxSO

will turn to low and will return to high as soon as FIFOControl is ready

to accept its first configuration byte. Now it expects the FIFO number of

the first port, which can be submitted by setting ConfigDataxDI to the

FIFO number and setting ConfigurexSI to high for one clock cycle. The

ConfigDataxDI must remain high until ReadyxSO turns back to high again.

After the impulse on ConfigurexSI, FIFOControl loads the data associated

with that FIFO2 into its buffer for its first port.

Subsequent impulses on ConfigurexSI will initiate the configuration of

the next port with the FIFO data for the FIFO number given by ConfigDataxDI.

New impulses are not accepted until ReadyxSO turns back to high. This con-

figuration procedure is halted by changing OperationModexSI to AccessFIFO.

If more ports are loaded than there are physically provided, a wrap around

2The physical address of for the first data item (base address) is computed by multi-

plying the FIFO number by 4

36

4.8 TaskControl Chapter 4

occurs and the configuration of the first port will be overwritten. Thus the

configurator is responsible of not assigning too many FIFOs to the ports.

Write Back

After the task has finished its execution, the FIFO state must be writ-

ten back to the SRAM before a new configuration is loaded. This can

be done by driving OperationModexSI to StoreFIFO when ReadyxSO is

high. FIFOControl will now start to write the FIFO configurations into

the SRAM. OperationModexSI must remain on LoadFIFO until ReadyxSO

returns to high. Changing OperationModexSI before the time will force

FIFOControl back into idle mode, but leaving all FIFOs not yet written to

the SRAM as they are.

FIFO Access

After a configuration has been loaded into FIFOControl,OperationModexSI

can be changed to AccessFIFO, and FIFO accesses can be made. The hand-

shake works like the one presented for the SRAMCore and displayed in Fig-

ure 4.6, with the PortxDI signal replacing AddressxDI. Priorities are given

in the following order: Task Read, Task Write, InputDriver Write, Output-

Driver Read.

It is important that *PortxDI does not change while *WritexSI or *ReadxSI

are driven high.

4.8 TaskControl

4.8.1 Description

TaskControl is used to control a task. It receives a cycle count and a start

signal from FPGAControl and executes the task for the given number of

cycles. When the task has finished its iterations, RunningxSO turns low to

signal the task has terminated.

The cycle count holds the number of times the task will be restarted

after termination. Figure 4.9 shows the state chart.

37

Chapter 4 FPGA-Design

¥§¦H¨�©�ª¬«�¨� ®§«�¯±°@²¢³ ´H³¥�¦H¨r©�ª¬µ�¶H¦H·H¸ ¹H®%µ�º»°@²¢³ ´�³«�¼H¶H¶H½ ¶H¾H®�¿¬º»°@²¢³ ´H³

À Á�Â Ã

«�¼H¶H¶�½ ¶H¾H®�¿¬º»°a²�³ ÄN³¥�¦H¨r©�ª¬µ�¶H¦H·H¸ ¹H®%µ�º»°@²¢³ Ä>³¥§¦H¨�©�ª¬«�¨� ®§«�¯±°@²¢³ ÄN³

Å¬Æ ÇHÈÉÆ Ê§ÇHËHÌ

Í ¿¬ ¦HÎ ®r¿AÏN²¢³ ÄN³ ÐÑ�ÒrÓ�¸ ¹HÑ�ÔH¼H¶H ®§Õ�Ö�°@²¢Ñ�Ò�Ór¸ ¹H¨�®%Õ�Ï«�¼H¶H¶H½ ¶H¾H®r¿2º»°@²¢³ Ä

«�¼H¶H¶�½ ¶H¾H®�¿¬º»°a²�³ ÄN³¥�¦H¨r©�ª¬µ�¶H¦H·H¸ ¹H®%µ�º»°@²¢³ Ä>³¥§¦H¨�©�ª¬«�¨� ®§«�¯±°@²¢³ ÄN³

×±ÇHØ Æ Ê�ÇHËHÌ

«�¼H¶H¶�½ ¶H¾H®�¿¬º»°a²�³ ÄN³¥�¦H¨r©�ª¬µ�¶H¦H·H¸ ¹H®%µ�º»°@²¢³ ´�³¥§¦H¨�©�ª¬«�¨� ®§«�¯±°@²¢³ ´H³

À Ù�Ø Æ Ê�ÇHËHÌ

Í ¥�¦H¨r©�ª¬Õ�Ô�¶H¹H®r¿AÏN²¢³ ÄN³ ÐÑ�Ò�Ó�¸ ¹HÑ�ÔH¼�¶H ®§Õ�ÖÚ°@²¢Ñ�Ò�Ó�¸ ¹HÑ�ÔH¼H¶H ®§Õ�Û#Ü�Ä

Í Ñ�Ò�Ó�¸ ¹HÑ�Ô�¼H¶H ®§Õ�Û�Ý@´HÐ

Í Ñ�Ò�Ó�¸ ¹HÑ�Ô�¼H¶H ®§Õ�Û�²@´HÐ

Figure 4.9: TaskControl state chart

4.9 Task

4.9.1 Description

The task module is where the actual work is done. Here custom modules

can be placed which use the interface shown in Listing 4.1.

A task is controlled through the execution control ports. These are used

to start and stop the execution of a task. In every iteration, the following

signal forms are expected:

1. RstxRBI is driven low to reset the task. A task iteration must only

depend on data stored in the FIFOs and no internal state that should

be kept from one iteration to another. DonexSO must now turn to low,

indicating the task is ready to run.

2. When the system is ready to run the task, RstxRBI goes to high. The

execution of the task starts when EnablexEI turns high. On the next

rising clock edge, the task should start its execution. If EnablexEI

turns to low during the execution, no state change must occur in the

task. This signal provides a means of halting in its execution.

38

4.9 Task Chapter 4

3. When a task is done computing, it sets its DonexSO to high, indicating

that it has no further calculations to do. If there are more iterations

scheduled for the task, the procedure restarts at point 1.

entity Task i s

port (

−− data acces s i n t e r f a c e

ReadxSO : out s t d l o g i c ;

WritexSO : out s t d l o g i c ;

AckxSI : in s t d l o g i c ;

PortxDO : out FIFOIDType ;

DataxDO : out s t d l o g i c v e c t o r (15 downto 0) ;

DataxDI : in s t d l o g i c v e c t o r (15 downto 0) ;

−− debug por t s

LEDxDO : out s t d l o g i c v e c t o r (3 downto 0) ;

−− execu t i on con t r o l po r t s

ClkxCI : in s t d l o g i c ;

EnablexEI : in s t d l o g i c ;

DonexSO : out s t d l o g i c ;

RstxRBI : in s t d l o g i c

) ;

end Task ;

Listing 4.1: Task interface

ClkxCI supplies a clock signal at 18.432Mhz, which gives a clock period

of 54.25ns. Registers should only trigger at the rising clock edge for full

compatibility with the rest of implementation. As stated above, the rising

clock edge is only valid when EnablexEI is set to high at the same time and

should be ignored otherwise.

The data access interface allows a task to access the FIFOs on its ports.

The protocol is the same as for the SRAMCore as explained in Section 4.5.2

and illustrated in Figure 4.6. The handshake can most easily be implemented

using a state driven VHDL design.

An code example is given in Listing 4.2.

39

Chapter 4 FPGA-Design

case StatexSP i s

. . .

when stRead =>

PortxDO <= INPORT;

ReadxSO <= ’1 ’ ;

i f AckxSI = ’1 ’ then

StatexDN <= stReadWait ;

end i f ;

when stReadWait =>

StatexDN <= stDoSomething ;

DATA <= DataxDI ;

ReadxSO <= ’0 ’ ;

. . .

when stWrite =>

WritexSO <= ’1 ’ ;

PortxDO <= OUTPORT;

DataxDO <= DATA;

i f AckxSI = ’1 ’ then

StatexDN <= stDoSomethingElse ;

WritexSO <= ’0 ’ ;

end i f ;

. . .

end case ;

Listing 4.2: Sample FIFO access

The additional state when reading is needed because the data is buffered.

It is important to drive the WritexSO signal to low after receiving the ac-

knowledgement since otherwise a new write cycle would be initiated on the

state transition, corrupting the data in the FIFO.

4.9.2 The TaskWrapper

For the ease of implementation of a task into the FPGA structure, the

TaskWrapper module has been introduced. This entity has the same inter-

face as the task and does nothing else than connecting its ports with an

instance of the actual task. This way, a task can be inserted into its slot

by just replacing the component name and instance type, without searching

through too much code.

40

4.10 Drivers Chapter 4

The task wrapper has additional functionality when it comes to partial

reconfiguration. Its ports can be fixed for a design such that only the task

can be newly configured into the device, saving time and memory space in

the Flash holding the task configurations.

4.9.3 TaskTestbench

Since the interface for the tasks is always the same, a test bench for behav-

ioral simulation has been created. It supports FIFO read and write access

and runs the tasks for a given number of iterations. It correctly simulates

the other hand of the interfaces and checks for under- and overflow on the

FIFOs.

4.9.4 Requirements for a task

• The calculations should fit into a clock period of 54ns

• fpgapackage.vhdmust be included in the design file for the FIFOIDType

type

• The files txt util.vhd and TaskTestbench.vhd provide a test bench

for the tasks

4.10 Drivers

Drivers are very similar to tasks. The difference is that they are running in

parallel to the tasks and are allowed to write to the CPLD and/or access

extension ports. In the current system, it is possible to run one input and

one output tasks at a time.

Drivers access FIFOs in a similar way as tasks do. A driver is suspended

if the FIFO is full/empty. In the current implementation, tasks do not need

to know if their calculated result is read by any other task or by the output

driver.

Drivers may only access one FIFO. The port number of this FIFO is sup-

plied by the microcontroller and submitted with the StartTask command

parameters. See Section 2.2.2 for a description of the StartTask command.

The Output driver may be configured to use the same FIFO that is beeing

used by a parallel running task or a different one. It is important to assure

a FIFO is only cached once. Because the FIFO cache is written back to the

41

Chapter 4 FPGA-Design

SRAM when the task has finished, drivers are also stopped for this time.

EnableFIFOxEI is used to signal this procedure. It would require partial

reconfiguration of the FPGA to be able to run drivers continuously.

4.10.1 Input Driver

The interface of an input driver is shown in Listing 4.3. So far no input

driver has been implemented.

entity Driver In i s

port (

−− I n t e r f a c e to acces s FIFO. Port i s c o n t r o l l e d

−− by FPGAControl

WritexSO : out s t d l o g i c ;

AckxSI : in s t d l o g i c ;

DataxDO : out s t d l o g i c v e c t o r (15 downto 0) ;

−− IO por t s

LEDxDO : out s t d l o g i c v e c t o r (3 downto 0) ;

ExtxDIO : inout s t d l o g i c v e c t o r (23 downto 0) ;

−− execu t i on con t r o l po r t s

ClkxCI : in s t d l o g i c ;

EnableFIFOxEI : in s t d l o g i c ;

RstxRBI : in s t d l o g i c

) ;

end Driver In ;

Listing 4.3: Input Driver interface

4.10.2 Output Driver

The interface of an output driver is shown in Listing 4.4. Currently an

output driver exists, which reads data from its FIFO and transmits it to the

microcontroller.

4.10.3 DriverWrapper

Similar to the TaskWrapper (see Section 4.9.2), a DriverWrapper is provided

to simplify the implementation of new drivers.

42

4.10 Drivers Chapter 4

entity DriverOut i s

port (

−− I n t e r f a c e to acces s FIFO. Port i s c o n t r o l l e d

−− by FPGAControl

ReadxSO : out s t d l o g i c ;

AckxSI : in s t d l o g i c ;

DataxDI : in s t d l o g i c v e c t o r (15 downto 0) ;

−− S e r i a l Output

Comm SendxSO : out s t d l o g i c ;

Comm DataSendxDO : out s t d l o g i c v e c t o r (7 downto 0) ;

Comm BusyxSI : in s t d l o g i c ;

Comm EndPacketxSO : out s t d l o g i c ;

−− IO por t s

LEDxDO : out s t d l o g i c v e c t o r (3 downto 0) ;

ExtxDIO : inout s t d l o g i c v e c t o r (23 downto 0) ;

−− execu t i on con t r o l po r t s

ClkxCI : in s t d l o g i c ;

EnableFIFOxEI : in s t d l o g i c ;

RstxRBI : in s t d l o g i c

) ;

end DriverOut ;

Listing 4.4: Output Driver interface

43

Chapter 5 MC Software

Chapter 5

MC Software

5.1 Introduction

The microcontroller on the BTnode board is the ”mind”of the whole system.

It controls when which task is to be executed and sends the commands to

configure the task environment.

To facilitate the implementation of the controlling functions on the micro-

controller, an existing operating system has been chosen, which has already

been used at the institute for several projects on the BTnode. It provides an

ideal environment for the implementation of the software part of the project.

5.2 Synchronous Data Flow (SDF)

Data flow programs can be described using directed graphs. An example of

an SDF graph is shown in Figure 5.1. Nodes represent functions and arcs

carry data from one node to the other. The execution of the function of

a node is called firing. When firing, a node consumes a certain amount of

data tokens from all of its input arcs and produces a number of data tokens

at its outgoing arcs. The number of consumed or produced data tokens is

noted at the arc start or end point. A node may only fire when sufficient

data tokens are available on its input arcs.

Synchronous Data Flow [11] demands that the number of consumed and

produced data tokens is known a priori for all nodes. This requirement al-

lows to compute a schedule for the nodes before the execution starts. This

schedule is called static, meaning that it will not change during the execu-

44

5.2 Synchronous Data Flow (SDF) Chapter 5

Þ

ß à
á

â

ã ä

å

æ

ç

è
é è

ç

ç ê

é

ë ì

Figure 5.1: SDF graph

tion of the graph.

In the project, a SDF execution algorithm has been implemented. A

large application, whose implementation is too large to fit on the given

hardware is broken down into smaller tasks, which represent the nodes of a

SDF graph and are executed one after another on the reconfigurable device.

FIFOs are provided to exchange data and represent the arcs in the SDF.

SDF has mainly been chosen for the advantage of the ability to pre-

compute a schedule. This way, a task is not preempted and its state must

not be preserved1. The preemption process would significantly complicate

the whole process.

Some asynchronous behavior is introduced with the input and output

driver tasks, which communicate over some interfaces of the BTnodeFPGA

board (input driver) or with the microcontroller (output driver). The drivers

are always running and can produce or consume data tokens with an incon-

sistent rate. These drivers pose the only aberration to the SDF model.

However, assuming a constant rate for these tasks should not be a too harsh

approximation.

1If a task is blocked during the execution and is exchanged for another, the partially

processed input data already removed from the input FIFOs must somehow be saved and

restored before continuing the task

45

Chapter 5 MC Software

5.2.1 SDF formalism

Any SDF graph can be described by a topology matrix Γ [11]. In this matrix,

every row describes an arc and every column represents a node of the SDF

graph. A negative entry in the matrix indicates that a node consumes tokens

from an arc, whereas the production of tokens is noted as a positive number.

Note that the sum of a row specifying an arc starting and ending on the same

node (a self-loop) needs to be zero for a correctly constructed graph. If the

sum would be positive, data would be accumulated on this arc without ever

being removed. A negative sum would constantly reduce the amount of

data on the arc and eventually reach a value which prohibits the node of

ever being executed again.

A B C D

a 2 -3 0 0

b 0 2 -1 0

c 8 0 -6 0

d 1 0 0 -1

e 4 0 -3 0

topology matrix Γ for the SDF graph shown in Figure 5.1

A schedule for the SDF graph can be represented by a vector q ∈ N s

where s is the number of nodes of the SDF graph. Every element of the

node indicates how many times the associated node is to be executed during

a single schedule iteration.

A necessary condition for the existence of a schedule with bounded FIFO

memory requirements is: rank(Γ) = s−1. This follows from the fact that in

a schedule with bounded memory, a multiplication of the topology matrix

with the schedule vector needs to give a zero vector (Γq = 0) in order to

avoid an accumulation of tokens on the arcs. The prove can be found in [12].

5.2.2 Scheduling

A simple scheduling algorithm as presented in [11] has been chosen for im-

plementation. It basically works as follows:

46

5.2 Synchronous Data Flow (SDF) Chapter 5

1. set qi = 0

2. set q1 = 1, the first node runs one time

3. if qi is connected to qj through arc a and qi is scheduled (nonzero), set

qj = qi

∣

∣

∣

γa,i

γa,j

∣

∣

∣
. If qj is already scheduled with a different number, the

graph cannot be scheduled

4. repeat step 3 until nothing can be changed anymore. If not all nodes

could be scheduled, the SDF graph contains subgraphs which are not

connected to others. Repeat the algorithm for the rest of the nodes in

the schedule.

5. multiply q by the least common multiple of all denominators of the

elements. The resulting schedule contains now only natural numbers

As an example, the schedule of the SDF graph pictured in Figure 5.1 is

calculated in the following steps:

1. Initialization:

q′ =

1

0

0

0

2. after evaluating row 1:

q′′ =

1
2

3

0

0

3. after evaluation of all rows

q′′′ =

1
2

3

4

3

1

47

Chapter 5 MC Software

4. to get rid of the fractions, we multiply q′′′ by the least common multiple

of all denominators, in this case 3:

q =

3

2

4

3

This algorithm generates a schedule with arbitrary order. However, this

project needs a single appearance schedule (SAS), where every node should

be executed only once and as many times as possible. This will not give

a schedule with optimal memory requirements, but be optimal in terms of

runtime, since the least FPGA reconfigurations need to be made. A simple

algorithm to find this sequence would be [13]:

1. schedule all root nodes, respectively those with no input

2. iteratively schedule all nodes, whose parents have already been sched-

uled

3. all nodes are scheduled with qi, that is, with all their iterations per

schedule

The produced schedules are usually written in some form of sequence like

XYXXYZZ. A short hand notation exists for these sequences which consists

of two shortcuts:

• If a task is executed consecutively a number of times, this number is

written in front of the task and it is not repeated, this way, XYYYZ

can be written as X3YZ.

• Loops can be expressed using parentheses and the iteration count, this

means XYXY can be written as 2(XY).

This short hand notation allows to express complex schedules using only a

few characters and is supported by the scheduler implemented along with

this thesis.

In the example used in this section, the presented algorithms return two

possible sequences: 3A2B3D4C or 3A3D2B4C.

48

5.3 Ethernut Chapter 5

5.3 Ethernut

Ethernut [6] is an Open Source Hardware and Software Project for building

Embedded Ethernet Devices. The hardware part is a small board with

similar modules as on the BTnode. The operating system, Nut/OS, developed

for the Ethernut board, is being adapted at the TIK for the BTnode, so that

it can handle the Bluetooth interface.

Nut/OS has been chosen for this project as background operating sys-

tem so that a Bluetooth communication could be added to the system. The

drivers needed were still under development when this project was con-

ducted. The interfaces of the different threads have been designed to make

it possible to use a Bluetooth connection to upload an application for the

BTnodeFPGA board.

The main reason for choosing Nut/OS was the fact that it supports

threads. The scheduling is priority based and the threads need to yield

themselves in order to give other threads a chance to run. This system is

very basic, but suffices for the processes needed for this project.

5.4 User Interface

The user interface consists of a terminal application that runs over a software

controlled UART interface. Both modules have been written at the TIK for

other projects and have been imported to this project.

A user of the Embedded Task Machine can connect to the system through

the software UART interface of the BTnode using communication tools such

as telnet on UNIX or Hyperterminal on Windows. The user then can enter

commands on a console provided by the terminal application on the BTnode.

The serial interface needs to be set to the fairly slow rate of 2400 baud/sec-

ond to assure correct communication to and from the board. Higher rates

may work, but sporadic errors are introduced into the streams going both

ways. However, since only human typed commands and its responses are

passed over this interface, the communication speed should be sufficient.

The terminal application has been extended with some commands to

build the structure of a SDF graph, to evaluate it, and to execute it. These

commands essentially wrap the messages the scheduler accepts to perform

these actions. The answer messages from the scheduler are checked to en-

sure the command has correctly executed in the scheduler. On a failure,

49

Chapter 5 MC Software

help Lists all available commands (short list TAB-TAB)

threads Lists all running threads in Nut/OS

alive Tests if the BTnodeFPGA board is active by reconfiguring

FPGA with the task in slot 0

process Defines a new task

relation Defines a new arc between the tasks

input Enters initial data into a FIFO

sequence Defines the task execution sequence (schedule)

start Starts the execution of the application

configure Creates the FIFO setup in the RAM

Table 5.1: Commands accepted by the RS232 software

a message is printed to inform the user. The implemented commands are

listed in Table 5.2.

The sequence of commands for an execution of an application is the

following:

1. first some calls of process to define all the tasks

2. some calls of relation to interconnect the tasks

3. optional: initial data can be provided with input

4. sequence enters the schedule of the tasks

5. configure sets up the data structure in the RAM

6. The execution of the application finally is started with start

The most important commands used to build the SDF structure are

explained here:

process ID Slot

The different task configurations of the application that will be run on the

BTnodeFPGA must be loaded in advance using the program described in Sec-

tion 5.7. These configurations then reside in the different task slots of the

Flash memory. With the process command, an ID can be assigned to a con-

figuration in one of the slots. The ID can be any single upper- or lowercase

letter.

50

5.4 User Interface Chapter 5

relation InputID IPortNum OutputID OPortNum Size

The data flow between the tasks can be defined using the relation com-

mand. These relations are implemented as FIFOs2 storing the data produced

by the task OutputID on its port OPortNum. The data will be read by the

task identified by InputID on its port IPortNum. The size of the FIFO is

set using Size and must be large enough to hold all the data produced by

the OutputID task during its maximum amount of consequent iterations in

the schedule.

Connections to the input and the output driver can be made by using the

reserved process ID I for the input driver, and O for the output driver. The

port numbers do not matter in this case since the drivers can only connect

to one FIFO.

sequence SequenceString

SequenceString defines the execution sequence of the different tasks of

an application. The syntax used for the sequence is further explained in

Section 5.2.2.

input FIFONum Data

Using the input command, initial data can be stored to any of the defined

relations. If the relation command has been successfully executed, a FIFO

number is assigned to this relation and can be used as parameter FIFONum

with the input command. The data is to be provided as decimal or hex-

adecimal3 numbers, separated by spaces. The values stored in the FIFOs

are 16-bit wide. Larger numbers will be truncated to that size.

2First In First Out buffers
3hexadecimal numbers use the prefix 0x as in the C programming language

51

Chapter 5 MC Software

As an example, the commands needed to create the SDF graph structure

for the SDF graph presented in Figure 5.1 are presented here.

>process A 0

>process B 1

>process C 2

>process D 3

>relation B 0 A 0 6

>relation C 0 A 1 24

>relation D 0 A 2 3

>relation C 1 B 1 4

>relation C 2 D 1 12

>sequence 3A2B3D4C

>configure

>start

When the schedule is done executing, the terminal returns and displays the

time needed for the whole schedule iteration. The execution can then be

restarted with the same settings by issuing another start command.

5.5 Messages

One of the biggest drawbacks of Nut/OS is the lack of a message passing

system. A rudimentary system has been implemented to provide a means of

communication between the different threads of the Embedded Task Machine

project. The requirements were the following:

• simple use

• no use of heap memory for efficiency considerations

• can be used to synchronize threads

The implemented system reserves for every thread a fixed amount of memory

for message data and two semaphores for the synchronization of thread

access to this data. The first semaphore blocks a sending thread if an older

message has not been processed. The second semaphore blocks a reading

thread until a message has been sent. Non-blocking functions have not

been implemented since the thread scheduling algorithm of Nut/OS requires

52

5.6 Scheduler Chapter 5

a thread of high priority to suspend itself in order to allow a low priority

thread to run.

The message passing system is implemented through four functions:

• All data needed is set up with InitMessageQueues. It must be called

before any other message function is called.

• SendMessage sends a message. The function blocks if the receiving

thread has not yet read its last message.

• Messages can be retrieved using the RecvMessage function. This func-

tion blocks until a message has been sent to the thread.

• ClearMessage must be called by the thread that received the message

when it is done processing it. Otherwise, the message will not be

cleared and no further message can be sent to this thread by any

other threads. If ClearMessage is not called, any thread trying to

send a message to the thread with the uncleared message will also be

blocked.

5.6 Scheduler

The scheduler thread does the actual work on the BTnode. It receives mes-

sages with commands which it executes. Basically these messages are the

same as the UI commands listed in Table 5.2 (except help and threads,

which are system commands). The most important data structures the

scheduler works on are three linked lists describing the processes, the FI-

FOs, and the execution steps. For each of these lists, structures have been

created, which hold the corresponding data.

5.6.1 Data structures

The PROCESS structure contains the ID assigned to a task and its location

in the Flash, or its Slot. It further contains a list of pointers to the FIFOs

connected to its ports. No difference is made here between input and out-

put ports. All the information stored in the PROCESS structure is received

through command messages.

53

Chapter 5 MC Software

The FIFO structure contains all data needed to allocate the FIFO mem-

ory on the BTnodeFPGA board. The data field uiSize is received by the

scheduler with the relation command message. This field defines the num-

ber of addresses that will be reserved in the SRAM for this FIFO. It must

be calculated along with the execution sequence entered with the sequence

command.

If the FIFO connects to a driver, its field cDriverFIFO is set to the

corresponding value, indicating that the driver must be rerouted to use this

FIFO when configuring the FPGA for the new task. Together with the uiID

value, it defines the routing information to the BTnodeFPGA board, where it

is used by FIFOControl to configure its FIFO structure caches.

In case initial data is assigned to the FIFO by the input command mes-

sage, this data is placed on the pData pointer and its length stored in the

uiDataLength field.

The list of EXECUTION_STEP structures is created by interpreting the

SequenceString passed along with the sequence command message. A

diagram of how the parser works is shown in Figure 5.2. It creates a linked

list of this structure which then can be used to execute the given schedule.

The structure can stand for two possible execution steps: a task or a

loop. If it is a task, the pProcess pointer is valid and the associated task is

executed uiIterations times. The execution then passes on to pNext.

If the structure represents a loop, execution continues with the next step

pointed to by pLoop. The step behind pLoop is called uiIterations times,

then pNext is called. In order to allow an execution of the loop without using

the stack, the last step of the loop points back to the root loop structure.

If pNext is not valid, the sequence has ended and the execution stops.

Figure 5.3 shows a possible execution list build with EXECUTION_STEP struc-

tures.

íïîaðïñ�îïò�órî

ôïõ öaórîa÷r÷%ø ù

ú û
üýñaþ¢ÿ�îïõ

Figure 5.2: Schedule sequence parser diagram

54

5.7 Loading tasks Chapter 5

���������
�
	������

���������
�
	������

�����
���
�
	
�
���

���������
�
	������

�����
���
�
	
�
���

Figure 5.3: possible linkage of the EXECUTION STEP structures

5.6.2 Communication with the BTnodeFPGA board

The scheduler writes commands to the BTnodeFPGA board directly to its

UART interface. Answers of the module are received by a special thread

which separates the output driver’s data messages from the control messages

send to the BTnode. Only control messages are passed on to the scheduler.

The output driver data is converted to ASCII and directly printed to stdout

for the lack of any target it could be send to.

5.7 Loading tasks

The BTnode software does not support loading of the FPGA configuration

files holding the tasks. The main reason for the lack of this feature is that

the software controlled UART interface is not reliable enough to run at high

speed and introduces random errors into the stream.

As a workaround, an earlier test program written for direct communica-

tion with the BTnodeFPGA board can be used to preload the tasks into the

BTnodeFPGA Flash before connecting the board to the BTnode and entering

the SDF graph information. The tool is called RS232Comm and supports

commands listed in Table 5.1. Instead of typing in the whole command,

only the letter in parantheses must be used. Everything after the first space

character is considered to be an argument for the command.

The following sequence of commands is used to load some tasks to the

Flash. load takes two arguments: the slot to load the configuration to and

the filename of the configuration.

55

Chapter 5 MC Software

(E)rase_Flash Erases the whole Flash chip

(S)lot_Erase Erases just one task slot on the Flash

(L)oad Loads a FPGA configuration file into a slot

(R)ead Reads back a slot into a file

(C)onfigure_FPGA Configures the FPGA with a configuration

from a slot

(B)yte_Send Sends a byte over the RS232 interface

Send_(F)PGA_COMMAND Sends a command for the FPGA

(W)rite_SRAM Stores data from a file to the SRAM

Re(a)d_SRAM Reads data from the SRAM into a file

E(x)ecute_Task Executes a task

(H)elp Prints the available commands

(Q)uit Exits the program

Table 5.2: Commands accepted by the BTnode user interface

>e

>l 0 task1.bit

>l 1 task2.bit

...

To make sure the configuration has correctly been loaded into the Flash,

a read back can be made using the command r 0 test1.bit. The newly

created or overwritten file can then be checked against the original using

tools as diff on Unix or WinDiff on Windows.

56

Evaluation Chapter 6

Chapter 6

Evaluation

6.1 Time Measurements

It is very important to consider on what ressources the different tasks of an

application are to be run. It may happen, that a ressource may very well be

much faster executing a task than the main central ressource, but if all the

setup and result retrieval procedure needs too much time, it may be more

efficient not to use the faster ressource.

Table 6.1 shows the measured time for the most significant processes

when running an application. The times have been measured with a clock

of 18.432 MHz on the BTnodeFPGA and the UART interface running at 115

kBaud.

The longest time is required to load a task configuration. This is because

a full configuration file for the FPGA has a size of 160 kBytes which needs

14.5 s just to be transmitted over the UART interface. The same data is

sent during a FPGA reconfiguration from the Flash to the FPGA and takes

only 40 ms.

task loading 14500 ms

FPGA reconfiguration 40 ms

FIFO configuration 4.6 ms

starting a task 1 ms

Table 6.1: time requirements of significant processes

57

Chapter 6 Evaluation

Task loading 62 mA 279 mW

FPGA reconfiguration 91 mA 410 mW

Demo application run 83 mA 374 mW

Idle 40 mA 180 mW

Table 6.2: power requirements of significant processes

6.2 Power Measurements

Since the purpose of the Embedded Task Machine is to use it as an intelli-

gent sensor using batteries as the power supply, its power consumption is

important .The BTnode and the BTnodeFPGA modules have been designed as

low-power devices and thus should not consume too much energy.

The power requirements have been evaluated by measuring the current

flow in the VDD path to the BTnodeFPGA board. The current required by

the BTnode has not been measured. The supply voltage was 4.5 Volts.

The results are shown in Table 6.2. The FPGA reconfiguration current

has been measured by repetitively issuing reconfiguration commands using

the RS232Comm software. To measure the current during the execution of a

schedule, the demo application has been used which was controlled by the

BTnode, which will be presented in Section 6.3. This demo application is

not well suited for a power measurement, since the different tasks do not

do much work and the FPGA is reconfigured very frequently. The result is

that the reconfiguration current takes a major part of the measurement.

6.3 Demo application

To demonstrate the correct functionality of the Embedded Task Machine, a

simple demo application has been written, which utilizes all implemented

parts of the execution model. A simple division checker has been chosen to

be implemented.

Figure 6.1 shows the SDF graph of the application. The task A is a

counter which stores its current value and the increment in a self-loop. It

produces the same data to two buffers. One holds the reference numbers,

the other one is the input to the divider, which is represented as task B.

The result of the division is then multiplied by the same factor in task

C and compared with the reference numbers in task D. The errors are added

58

6.3 Demo application Chapter 6

� �

�

��

�

� � � � �����

�����

�

�

Figure 6.1: SDF graph of the demo application

up over 256 calculations and then written to the output task’s FIFO.

6.3.1 Setup

In order to run the demo, the hardware first has to be configured. For this

purpose, the devices have to be interconnected as shown in Figure A.5. In

this configuration, the CPLD configuration can be uploaded over the JTAG

chain of the BTnodeFPGA and the scheduler software can be loaded to the

BTnode via the programmer.

As soon as the hardware has been configured, the tasks of the demo

application have to be uploaded. The PC’s COM port has to be connected

to the BTnodeFPGA on the UART interface which is usually connected to the

BTnode. The settings needed are listed in Table A.1.2. With the RS232Comm

application (described in Section 5.7) the tasks can be loaded into the task

repository slots with the following command sequence:

>e

>l 1 divmulcounter.bit

>l 2 divmuldivider.bit

>l 3 divmulmultiplier.bit

>l 4 divmulstat256.bit

The setup described here has only to be done to set up all the hardware.

After turning off the power, the configuration up to this point will not be

lost, and only the description in Section 6.3.2 has to be followed to run the

application.

Note: There must be a configuration for the FPGA stored in slot 0.

This configuration must include the support system for the task, but not

59

Chapter 6 Evaluation

necessarily a task that can be run. The support system is needed by the

configure command (see Section 6.3.2) to be able to write FIFO configu-

ration data to the SRAM.

6.3.2 Running the Demo

If all hardware is configured as described in Section 6.3.1, the demo appli-

cation can be run with the module interconnections shown in Figure A.4.

The settings of the serial interface for the PC connected to the BTnode are

given in Table A.1.2.

When the BTnode is started, Nut/OS enters the terminal application

where commands can be entered. Details about these commands are given

in Section 5.4. The SDF graph for the demo application is entered using the

following commands:

>process A 0

>process B 1

>process C 2

>process D 3

>relation A 0 A 0 2

>relation D 0 A 1 256

>relation B 0 A 2 256

>relation C 0 B 1 256

>relation D 1 C 1 256

>relation O 0 D 2 256

>sequence 100(256A256B256CD)

Note: In the last relation command, the first parameter is the letter O,

not the number zero as everywhere else.

The SDF graph has now completely been entered. The next step is to

supply some initial data to the self-loop of task A. There are two items to

be written: The increment (0x0001), and the current count (0x0000). After

specifying this data, the demo application is ready to be run. The following

commands will lead to the execution of the application:

>input 1 0x0001 0x0000

>configure

>start

60

6.3 Demo application Chapter 6

After the execution, the application can be re-run with the last counter

value by issuing another start command. Alternatively, the three com-

mands above can be used to set another range for the counter and execute

the SDF graph. Note that the configure command needs to be executed

to write the FIFO data to the SRAM on the BTnodeFPGA board, and is thus

needed to be executed after the input command.

During the execution of the application, the output task sends back the

collected error information, in this case 100 times the following line:

Received from output driver: 0x0080

The division/multiplication tasks produce 128 errors. This is because the

division task divides by 2 by simply cutting off the last bit. During multi-

plication, a zero is inserted at this place and thus the check fails on half of

the supplied values.

61

Chapter 7 Summary

Chapter 7

Summary

A proof of concept system of the Embedded Task Machine has successfully

been implemented on the BTnode and the BTnodeFPGA board. It is able to

execute applications that consists of a set of tasks and a specification of how

they interact. The system includes a task repository, a relation memory, a

task runner, and a scheduler which can execute a precalculated static sched-

ule. An algorithm to calculate this schedule is presented in the report.

To verify the functionality of the system, a demo application has been

built which needs all the different support functions in order to be correctly

executed. The application has successfully been run on the system. During

the development of the demo application, sample tasks and a adjustable

task testbench have been developed which will hopefully assist in building

applications for the Embedded Task Machine.

62

How to start the Embedded Task Machine Appendix A

Appendix A

How to start the Embedded

Task Machine

A.1 Cabling

Depending on how the Embedded Task Machine is used, a different wiring

of the modules has to be used. It is possible to connect the BTnodeFPGA

module to the BTnode or directly to a PC.

A.1.1 BTnodeFPGA

The BTnodeFPPGA is either connected to the BTnode using a wiring as shown

in Figure A.1 or directly to a serial port on a PC. In the second case a level

shifter must be used. A JTAG programmer must also be connected to set

up the CPLD. The ports to use are shown in Figure A.2.

A.1.2 BTnode

The BTnode is connected to the BTnodeFPGA using a serial connection. A

diagram of the required wiring is shown in Figure A.1. A level shifter has

to be used to connect the BTnode to the RS232 interface of a PC. The pro-

grammer interface of the BTnode is only needed for development purposes.

Figure A.3 shows the location of the ports on the BTnode.

63

Appendix A How to start the Embedded Task Machine

���

�������

� �"!�#�$�%

&��

&�� � �')(+*

',(-*

.

.

Figure A.1: The cable between BTnodeFPGA and BTnode. The connectors

are shown in front view.

Figure A.2: The connections used at the BTnodeFPGA-board

Figure A.3: The connections used at the BTnode-board, rev2.2.

64

A.1 Cabling Appendix A

Figure A.4: Interconnections when using the Embedded Task Machine

Figure A.5: Wiring during the development phase. The new devices are the

JTAG programmer for the BTnodeFPGA and the programmer for the BTnode

65

Appendix A How to start the Embedded Task Machine

Property Value

Baud rate 2400

Data bits 8

Parity None

Stop bits 1

Table A.1: Connection properties for the UART connection to the BTnode.

Property Value

Baud rate 115200

Data bits 8

Parity None

Stop bits 1

Table A.2: Connection properties for the UART connection to the

BTnodeFPGA

A.2 Task setup

Before the Embedded Task Machine can be started, the tasks must be loaded

into the task repository (Flash) on the BTnodeFPGA board. This can only be

done using a PC. The BTnodeFPGA has to be connected using a level shifter

to the PCs serial port and the RS232Comm application has to be started. See

Section 5.7 for a description of this program.

The e command erases the complete Flash chip. Then the l command

can be used to load task files to the different task slots on the Flash.

A.3 Running the Scheduler

The BTnodeFPGA needs to be connected to the BTnode and the BTnode to the

PCs serial port. A list of commands understood by the scheduler is listed in

Section 5.4. How the demo application is run is explained in further detail

in Section 6.3.

66

Future Work Appendix B

Appendix B

Future Work

Many things have been implemented during the progress of this project. The

Embedded Task Machine has been shown to be working and satisfactorily

performs on the applications supplied. However, there are more features

that could be added to the system, some of which are presented in this

chapter.

B.1 Partial Reconfiguration

In the current system, the whole FPGA is reconfigured when the tasks are

exchanged. Since the task support system as well as the input and output

drivers are always present in all the configurations loaded onto the FPGA, it

would be nice to be able to leave these parts of the FPGA untouched during

the reconfiguration process. This would have different advantages.

Firstly, the configuration files would become smaller, allowing more tasks

to be stored in the task repository on the Flash. The smaller configurations

would also be faster to load onto the FPGA, increasing not only the appli-

cation’s maximum size, but also its execution speed.

Secondly, a partial reconfiguration would also allow the input and out-

put drivers to run continuously, omitting a possible data loss during the

reconfiguration time. Since the external interfaces are not served during at

least the 40ms of reconfiguration time, a noticeable data loss is introduced

into a stream with the current system.

A drawback is that the current FIFO access structure would not work

with the partial reconfiguration. A concept for an adapted FIFOControl

structure is presented in Section B.7.

67

Appendix B Future Work

B.2 Several Task Slots

Along with the partial reconfiguration comes the wish for several task slots.

These slots would be separately reconfigured and could be run simultane-

ously. This would give the scheduler more possibilities to place the tasks in

space and time.

Placing and executing several tasks has been investigated in [14]. Prob-

lems have been encountered around the placing of the tasks into the different

slots. Different configuration files are needed for different slots and could

not be exchanged. For a flexible schedule, many tasks configurations would

thus be needed, occupying a lot of space on the Flash.

An additional problem is the size of the FPGA. It has to be well consid-

ered if the size of a single task slot would be big enough to supply enough

area for a reasonable task complexity.

The FIFOControl entity would again not be able to handle several tasks

at its current configuration and would have to be replaced by the structure

presented in Section B.7.

B.3 Extension to Kahn Process Networks

The current Embedded Task Machine executes an SDF graph, which allows

to compute a static schedule before the execution of an application. After

loading the task, it is executed for a fixed number of iterations. The model

requires that all the rates on the graph are known a priori. A Kahn Process

Network (KPN) would run a task until one of its inputs is empty on a read

access, or one of the outputs is full on a write access. The KPN requires

dynamic scheduling that recalculates the next task to be loaded at runtime.

The KPN model introduces a major problem: since a task is preempted

during its execution, its internal state must be stored until it is loaded again.

In [5] a solution with a scan chain has been presented. It is an elegant

solution but no tests have been made to determine if it actually works and

how much additional wiring resources are used up such a system.

A simple solution would be to leave it up to the task to save its internal

state. This would require a deeper insight into the system by the engineer

and is thus not an acceptable solution.

Additionally a mechanism would have to be provided to give the sched-

uler some information about the FIFO states after the execution of the

68

B.4 BRAM access Appendix B

tasks. The scheduler needs to know this information in order to compute

the optimal successor task.

B.4 BRAM access

In order to provide more fast memory to the task, access to the FPGAs

BRAM resources could somehow be granted. A task would have additional

memory during its execution and such a storage would not have to be mod-

eled as self-loops in a SDF graph.

B.5 Bluetooth

The next step for the project would be to make it possible to use the Blue-

tooth interface on the BTnode module to load applications to the Embedded

Task Machine. This should not pose too harsh problems as soon as the

drivers for the Bluetooth protocol stack are available.

What remains to be developed is some kind of buffer mechanism to

receive the task configurations over Bluetooth and sending it to the task

repository on the BTnodeFPGA Flash. An interpreter for the coordination

description would also be needed. The interpreter would have to generate

the messages for the scheduler thread described in Section 5.6.

B.6 Error handling

A big drawback of the current system is that it does not include any real

error generating and handling system. Some processes have a success/failure

feedback but not a real error handling. Many processes do not even detect

if they have failed and the system could run into a deadlock.

Although the experiences made so far have been very positive, and the

system seems to be generally stable, it would be nice to have more security

on this behalf.

B.7 Improved FIFOControl architecture

The current FIFOControl functionality lacks two features: it cannot be ex-

tended for several independently running tasks and it does not support a

69

Appendix B Future Work

/
0 1�243 /
051�2�6

798 :�;�; :=<�> <�?A@�0�@�B�C 7D8 :�;�; :+<�> <�?E@50�@�B�C

<�> <�?E@�05@�B�C51

FHG I J�C�GD3

FHG I J�C�G
6 KDL�M

1�8 :�;�N�O�PRQ�C�G 1

<
> <�?E@50�@�B�C
N�O
PRQ�C�G 1

S B�T51�I @�0�8
0�U�U
G C5151�C 1

Figure B.1: Proposed FIFOControl structure

separate partial reconfiguration of a single task. This section presents a

solution for the FIFOControl architecture that would provide the desired

features.

The current system requires the drivers to change their FIFO caches if

the task is connected to a FIFO used by a driver. A task can only access

the first few FIFO caches in the FIFOControl, the other FIFO caches are

reserved for the drivers when running on different FIFOs than the ones the

task uses.

A pretty simple solution with the additional features would be to intro-

duce an additional set of registers which map the task ports to the FIFO

caches. This way, the port number the task provides on a memory ac-

cess would first be translated to a FIFO cache number using a multiplexer,

then the physical address would be calculated using the cached FIFO access

structure. The new structure is shown in Figure B.1.

A driver would always access the same FIFO and thus this FIFO cache

would never have to be written to the SRAM or read from there once the

application has started. The FIFOControl would have to be changed in a

way that it supports driver memory accesses during a new configuration of

the tasks port mapping and the FIFO access structures loading procedure.

This solution has the same drawback as the current solution does: it

does not scale well. It utilizes a lot of registers for the cache and for the

mappings. Would even more concurrent task be allowed, the number of

registers would increase very fast. The total number of registers needed is

70

B.7 Improved FIFOControl architecture Appendix B

given by the following formula:

rtotal = (n · s + d) · 4 · 18 + n · s log2(Fa) + n log2(s) log2(n · s + d)

where n denotes the number of concurrent tasks, s is the allowed number of

ports per task, d is the number of drivers connected to one FIFO, and Fa

is the total number of FIFOs that can be used in an application which is

confined by the MC-Protocol as 26 = 64.

This means that a system with 3 concurrent tasks, 4 allowed ports per

task, and 2 drivers would use 1104 registers, which is quite a lot, considering

the FPGA on the BTnodeFPGA has 4704 slice flip flops. In this case, the space

left for the tasks on the FPGA would be very slim.

71

Appendix BIBLIOGRAPHY

Bibliography

[1] BTnodes – A Distributed Environment for Prototyping Ad Hoc Net-

works. http://www.btnode.ethz.ch.

[2] NCCR - MICS – Project IP9 Abstract.

http://www.mics.ch/micsProjects.php?groupName=IP9&action=abstract.

[3] Wearable Computing Lab. ETH Zrich. http://www.wearable.ethz.ch.

[4] Matthias Dyer and Marco Platzner and Lothar Thiele. Efficient Ex-

ecution of Process Networks on a Reconfigurable Hardware Virtual

Machine. In 12th Annual IEEE Symposium on Field-Programmable

Custom Computing Machines (FCCM), page to appear, April 2003.

[5] Roman Plessl. Downloadable Hardware and DSP for Mobile FPGA.

Master’s thesis, Swiss Federal Institute of Technology (ETH) Zurich,

2004.

[6] Ethernut – Embedded Ethernet. http://www.ethernut.de.

[7] Peter Fercher. Btnode fpga: Mobiler fpga mit bluetooth kommunika-

tion. diploma thesis, Swiss Federal Institute of Technology, Zürich,

Switzerland, 2003. Under the supervision of Professor Lothar Thiele.

[8] Am29LV081B Data Sheet.

[9] Spartan-II 2.5V FPGA Family:Functional Description.

[10] LP62S16256E-I Series: 256K X 16 BIT LOW VOLTAGE CMOS

SRAM.

[11] David G. Messerschmitt Edward A.Lee. Synchronous data flow. In

Proceedings of the IEEE, 1987.

72

BIBLIOGRAPHY Appendix

[12] David G. Messerschmitt Edward A.Lee. Static scheduling of syn-

chronous data flow programs for digital signal processing. In IEEE

Trans. Comput., 1987.

[13] Shuvra S. Bhattacharyya, Joseph T. Buck, Soonhoi Ha, Edward A. Lee.

A compiler scheduling framework for minimizing memory requirements

of multirate dsp systems represented as dataflow graphs. Memoran-

dum No. UCD/ERL M93/31, Department of Electrical Engineering

and Computer Sciences, University of California, Bekeley, April 1993.

[14] Simon Steinegger. Hardware Tasks auf FPGAs. Master’s thesis, Swiss

Federal Institute of Technology (ETH) Zurich, 2004.

73

