
Dynamic Graph Labeling

Andreas Kinell

Instructors:
Regina O’Dell

Roger Wattenhofer

November 6, 2004

1

Contents

1 Introduction 3
1.1 Definition of Dynamic Graph Labeling 3
1.2 Objective . 4
1.3 Our Contribution . 4

2 Static Distance Labeling 4
2.1 Achievements in General Graphs 4
2.2 Achievements in Unit Disk Graphs 4

3 Dynamic Graph Labeling 5
3.1 Applying Static Methods to Dynamic Graphs 5
3.2 Network Model . 6

4 Dynamic Distance Labeling in Special Graphs 6
4.1 The Planar Unit Disk Graph . 6
4.2 Dominating Set Algorithm . 7
4.3 Conclusions . 7

2

Abstract

The object of this term project (Semesterarbeit) is Dynamic Distance
Labeling. A great amount of time has been used to read and understand
related papers. Several (small) proofs in different areas have been shown,
but are not documented here, since there is no direct relation to this
document. While developing an own distance labeling scheme occured
to be impossible due to already very good proposals, it was intended to
apply an existing labeling scheme to a variation of a Planar Unit Disk
Graph. It resulted that the most interesting questions aroused during
the last days of the project and still remain to be answered. The main
achievement, somewhat unsatisfying, lies therefore in providing directions
on which further investigations could be made.

1 Introduction

1.1 Definition of Dynamic Graph Labeling

Using the term dynamic graph labeling we refer to dynamic distance la-
beling in graphs. To define dynamic graph labeling, some preliminary
definitions are recalled:

• Distance: Given an undirected connected weighted graph G and two
nodes u and v, we denote by dG(u, v) the distance between u and v
in G, i.e. the minimum weight of a path between them.

• Node-labeling for graph G: A non-negative integer function L that
assigns a label L(u, G) to each node u of G.

• Distance-decoder: A function f which, given two labels λ1, λ2, re-
turns an integer f(λ1, λ2). Note that f is independent of G.

• Distance labeling: 〈L, f〉 is a distance labeling for G if f(L(u, G), L(v, G)) =
dG(u, v) ∀u, v ∈ V (G). i.e. if f given the labels u, v returns the dis-
tance between u and v.

• Distance labeling scheme: 〈L, f〉 is a distance labeling scheme for
the graph family G if it is a distance labeling for every graph G ∈ G.

• Timestep: A timestep t is an interval of time, such that in any
interval, not more than one action is performed (i.e. the addition or
removal of a node in a graph).

Definition 1.1. Dynamic Graph
A dynamic graph is a graph G ∈ G at a given timestep t, denoted by G(t)
or G(V, E, t), where V ∈ G(t) and V ′ ∈ G(t + 1) may only differ in one
element ∀t ≥ 0.

Note that this definition implies that G(t) ∈ G ∀t.

Definition 1.2. Dynamic Graph Labeling Scheme
Let G(t) ∈ G be a dynamic graph. A dynamic graph labeling scheme is a
distance labeling for all graphs G(t), t ≥ 0.

This is a syntactical redefinition only. It makes sense though, since we
want a dynamic graph labeling scheme to fulfill different requirements.

3

1.2 Objective

The ultimate goal is to achieve a ”good” routing algorithm for dynamic
graphs. This can be achieved using ”good” distance labels. Particularly,
we want the labels to be of small size and the decode-function to be fast.
When it comes to dynamic graphs though, a great concern is the time
needed to construct a label (sub)set for a given graph. That is, the time
complexity of recalculating labels in case of addition or removal of a node.

1.3 Our Contribution

In Section 3.1 it is shown by example that in the worst case, an addition
or removal of one node in a dynamic general graph requires recalculation
of Ω(n) labels, even for s-approximative schemes, where calculation time
of one node is in Ω(n)
A known distance labeling scheme is applied to a Planar Unit Disk Graph.
Thus, the properties of the Unit Disk Graph as a network representation
still hold while the distance labeling scheme is better than any scheme
for normal Unit Disk Graphs. The drawback is a high constant s for the
s-approximative scheme.
Also, a short and simple algorithm is shown to keep the number of nodes
in a dominating subset of a graph smaller or equal to n/2, where n is the
number of nodes of the graph.

2 Static Distance Labeling

2.1 Achievements in General Graphs

Concerning maximum label size and time complexity of the decoder func-
tion, very good proposals have been made. Peleg and Gavoille proved in
[GP01] a lower bound of Ω(n) for the label size and offered 11n+O(log n ·
log log n) as an upper bound with a decode function time complexity of
O(log log n). This time complexity is close to constant for real applica-
tions. Still, the minimum label size for a constant time complexity may
be of interest.

2.2 Achievements in Unit Disk Graphs

As will see later in Section 3.2, some special graphs, like the Unit Disk
Graph [CCJ90] are better fitted to model real networks compared to
general graphs. Therefore, we try to find some better labeling scheme
for this type of graphs. Concretely, we will try to convert a Unit Disk
Graph to a planar graph, and then apply an approximate distance la-
beling scheme for planar graphs. One possible solution is to transform a
Unit Disk Graph to a Gabriel Graph. However, this transformation does
not guarantee s-approximative distances for a constant s. This means
dUDG(u, v) > s · dGG(u, v) in the worst case.
A better approach is given by Yu Wang and Xiang-Yang Li, who pro-
posed a planar spanner for the Unit Disk Graph, such that distances have
constant stretch factor both hop-wise and length-wise [WL03].

4

3 Dynamic Graph Labeling

In the following Section 3.1, we note that for general graphs the cost of
adding a node to the graph and updating the existing labels accordingly
lies in Ω(n2). This means, virtually speaking, the recalculation of the
whole label set, every time a new node is added. Thus, no great speedup
can be gained by improvements. The solution seems to be a focused view
on special graph families. If a certain degree of locality can be defined,
inserting a new node does not affect the whole graph and therefore can
be done in less time.

3.1 Applying Static Methods to Dynamic Graphs

As we will see, distance labeling is not fitted for dynamic graphs, since
the lower bound of creating a label set is in Ω(n2).

Claim 3.1. Any distance labeling scheme on general dynamic graphs
needs at least Ω(n2) time to create a label in the worst case. This holds
even for s-approximative schemes.

Argumentation. We construct an unweighted graph G as follows:

• Let H1 be a general graph and H2 a graph with a diameter diamH1 ≥
diamH2

• Let B be a Bridge that connects x ∈ H1 with y ∈ H2 such that the
distance d(x, y) ≥ 2s(diamH1 + 1)

• Let 〈L, f〉 be a distance labeling scheme for the graph family G,
G ∈ G. Let L be the set of labels for G. f is the distance calculation
function (decode-function).

Now, we add a vertex v, such that ∃w ∈ H1 : d(w, v) = 1 and ∃z ∈
H2 : d(z, v) = 1. The distance d(w, z) is now obviously 2. fL(w, z)
computes d(x, y) + d(x, w) + d(y, z). As d(x, y) ≥ 2s(diamH1 + 1) it is
clear that fL(w, z) > d(w, z) · s. In fact, ∀a ∈ H1, b ∈ H2 the distance
d(a, b) = d(a, x) + d(x, y) + d(y, b) has changed to d(a, b) = d(a, w) +
2 + d(z, b) ≤ 2 + 2 · diamH1 . The distance function computes fL(a, b) ≥
2s(diamH1 + 3) > 2 + 2 · diamH1 · s ≥ d(a, b) · s, ∀a 6= x, b 6= y. Hence,
every label of every node a ∈ H1 has to be recalculated, as well as every
label of every node b ∈ H2.
It remains to be shown, that the calculation of every label needs Ω(n)
time: Clearly, ∃w ∈ V (H1) s.t. creation of the label needs Ω(n) time,
since for every node z ∈ V (H2) it has to be tested, if the newly added
vertex v reduces d(w, z) or not (v may or may not be connected to every
z ∈ V (H2)).
Knowing the label of one w ∈ V (H1) does not speed up calculation of
w′ 6= w ∈ V (H1). Suppose we know d(w′, z) ∀z ∈ V (H2) and d(w, w′).
We then know, that d(w, z) ≤ d(w′, z) + d(w′, w) ∀z ∈ V (H2). Since v
may or may not be connected to any w′ ∈ V (H1), we still have to test
d(w, w′) ∀w′ ∈ V (H1).

5

3.2 Network Model

While there are distance labeling schemes for general graphs which allow
calculating the distance between two nodes in O(log log n) time and la-
belsize 11n + O(log n · log log n), those schemes are not necessarily suited
for dynamic graphs since the cost of calculating the label set may be too
high. Therefore, the better approach is to use graph families that better
approximate a given network model, yet to be defined.
From the mobile computing point of view, a node of a graph is a device
and its edges represent the connections to other devices. As the devices
usually communicate wireless, they have a transmission radius.
For our network model, we make the following assumptions:

• All nodes are equal (i.e. they only differ in their label).

• Every node has a ”transmission radius” r. Since all nodes are equal,
we can assume r = 1.

• The nodes are distributed on a plane.

• A node has a restricted (constant) maximum of connections

• A node may join or leave the graph. In one timestep, only one node
may do so.

The resulting dynamic k-bounded unit disk graphs may be used to model
for example a mobile cell phone network. Planar distribution of the nodes
of course does not imply a planar graph. The model does however intro-
duce a geometric locality.

4 Dynamic Distance Labeling in Special
Graphs

4.1 The Planar Unit Disk Graph

[WL03] shows a planar spanner for the Unit Disk Graph using an under-
lying dominating set of the graph. [GKKP00] shows a 3-approximative
distance labeling scheme for planar graphs with O(n1/3) bit labels.
We can now construct a planar spanner of a Unit Disk Graph and ap-
ply the mentioned distance labeling scheme to it. This results in a s-
approximative scheme, since the planar spanner assures a (big) constant
hop stretch factor (< 49 ∗ 64 + 36).
The main interest lies in the behavior of this scheme in dynamic graphs.
The planar spanner can be constructed locally. A node either is a dom-
inatee or a dominator. If a newly inserted node connects to at least one
dominator, it becomes itself a dominatee. It cannot connect to more than
five dominators (due to the property of the UDG). If it connects to dom-
inatees only, it becomes a dominator. Since the whole spanner can be
computed locally, the changes caused by the insertion of the new node
also can be computed in a localized manner. Moreover, the construction
of the new spanner takes constant time ([WL03], page 2).
For the following notes, the research of the mentioned planar distance la-
beling scheme is required.

6

The used distance labeling scheme partitions the graph into regions and
subregions. Every node is either an internal node, or it is a boundary
node. If the newly inserted node n connects to nodes of one subregion
only, it becomes an internal node of that subregion. Its label can then
be constructed locally, since d(n, u) = d(v, u) + 1 ∀u ∈ G, where v is the
neighbor of n with shortest distance to u.
If n connects to several regions/subregions, it becomes a boundary node.
Then, naivly, all nodes must check, if some pu(Ri′) has changed and all
nodes in same subregions as n must check, if some pu(Sj′) has changed.
This prevents a locally bounded update. There might exist a locally com-
putable solution.

4.2 Dominating Set Algorithm

The following algorithm determines a dominating set S of a graph G of
size |S| ≤ n/2, where n is the number of nodes in G. An application may
be a distance labeling scheme with some bound directly depending on the
size of the dominating set. Inserting nodes into an existing graph could
make the size of the dominating set up to five times as big as the size of the
dominatee set. Then, the dominating set eventually has to be recalculated

Algorithm 4.1. Construction of a Dominating Set S of a graph G

1. pick a node n ∈ V (G) and color it A

2. color all uncolored neighbors of all nodes with color A with the color
B

3. color all uncolored neighbors of all nodes with color B with the color
A

4. if there are uncolored nodes, goto step 2

5. if |SA| > |SB | then: S = SB, else: S = SA.

SA is the set of nodes with color A, SB is the set of nodes with color
B. The resulting dominating set is not necessarily minimal but fulfills
|S| ≤ n/2.

4.3 Conclusions

There are two points of interest. First, it remains to be shown, if the
label of a newly inserted node into the Planar Unit Disk Graph, acting
as a boundary node in the proposed distance labeling scheme, can be
computed locally. The second point is the big constant s in the resulting
s-approximating distance labeling scheme. Wang and Li said, that the
constant can be improved by more careful analysis of their spanner.
The exact costs of adding a node to a Planar Unit Disk Graph remain
to be calculated. If the answer to the first point is negative, only an
amortized analysis makes sense. Also, it is assumed that removing a node
is a ”reversed” action of inserting a node. It remains to be shown if this
holds.

7

References

[GP01] C. Gavoille, D. Peleg: Distance Labeling in Graphs. Proceed-
ings of the twelfth annual ACM-SIAM symposium on Discrete
Algorithms, 2001.

[CCJ90] B.N. Clark, C.J. Colbourn, D.S. Johnson: Discrete Mathe-
matics. 86(1-3): 165-177 , 1990.

[WL03] Yu Wang, Xiang-Yang Li: Geometric Spanners for Wireless
Ad Hoc Networks. Proc. 22nd IEEE Int’l Conf. Distributed
Computing Systems (ICDCS), 2002.

[GKKP00] C. Gavoille, Michal Katz, Nir A. Katz, Christophe Paul: Ap-
proximate Distance Labeling Schemes. Proceedings of the 9th
Annual European Symposium on Algorithms, 2000.

[KWZ02] F. Kuhn, R. Wattenhofer, A. Zollinger Geometric Ad-hoc
Routing for Unit Disk Graphs and General Cost Models. Tech-
nical Report TR 373, ETH Zurich, June 2002.

[KPR02] A. Korman, D. Peleg and Y. Rodeh Labeling Schemes for Dy-
namic Tree Networks. In Proc. 19 Symp. on Theoretical As-
pects of Computer Science, 2002.

8

