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Abstract

Determining one’s current position using only the information received from
WLAN base station access points is a challenging task. Several positioning sys-
tems with a varying degree of complexity have been proposed. The positioning
technique used in this report differs from most of the other techniques in one
critical aspect. Our positioning system does not take into account the positions
of the WLAN base stations that the device receives signals from, it just registers
an identifier for those base stations, e.g. their MAC addresses, and the signal
strengths received. Therefore, the goal of such a scheme cannot be to deduce
coordinates indicating the current position, instead the logical position, e.g. a
room, floor or area, represented by a name (such as ”Building IFW - Room
C21”) is to be determined.
Another aspect, in which our system is different, is the statistical approach,
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which makes it possible to specify a confidence interval, yielding a simple pro-
cedure to decide whether certain signals are compatible with a specific logical
position or not.

1 Introduction

In Section 1.1 the problem is described and in Section 1.2 a selection of other pro-
posed systems is introduced. Section 2 presents the system model and provides
insight into the statistical approach taken therein. While Section 3 presents a
possible implementation, Section 4 contains a collection of experimental results
obtained using the aforementioned implementation. Finally, in Section 5 the
system model is analyzed, based on the experimental results.

1.1 Problem Description

Positioning using only identifiers of base stations and the received signal strengths
is hard [1]. Due to noise and interference, the signal strengths vary remarkably.
Scattering and reflection of electromagnetic waves can strongly distort the sig-
nals [2], whereas shielding severely attenuates the signal strength. A single
person can alter the signal strength by up to −3.5dBm [3]. What is more,
when measuring the signal strengths, a high level of measurement noise is to
be expected, especially when using standard hardware [4]. Another potential
problem is that base stations can fail or they can simply be turned off.

Considering those problems, the question arises to what extent or whether
it is feasible at all to determine a user’s logical location. A system ought to
be robust in the sense that, even if some base stations fail or are shielded
temporarily, the outcome of the system should not deteriorate quickly. Clearly,
the system also has to take into account the potentially high variance of the
signal strengths. Fortunately, there is a strong correlation between the distance
of a base station and the signal strength [5], which can certainly be exploited
in the system. If the problem of the high variance can be tackled, then finding
the current logical position with a high probability appears to be feasible.

1.2 Related Work

The goal of the majority of the systems presented in this section is to determine
the mobile user’s physical position. There is one system, called Nibble [6], that is
similar to our system in that it also works with logical locations, yet the system
models differ. Nibble’s modular probabilistic approach for inferring location
uses Bayesian networks. A Bayesian network is a graphical representation of a
joint probability distribution that explicitly declares dependency relationships
between random variables in the distribution.

In the following systems, the physical position of the mobile user is approx-
imated. Therefore, the geometry of the surrounding area has to be known to
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a certain extent. Even the knowledge of the exact positions of all base sta-
tions is often a prerequisite. Due to the correlation between signal strength
and distance, one simple approach used in the RADAR system [3] to solve the
positioning problem is to build up a so-called radio map, which stores position-
signal strength pairs. In order to approximate the user’s current position, the
average of the k nearest neighbors is returned. A problem of this approach is
the choice of k. A variation of this approach is the joint clustering technique [7].
A cluster is a set of positions where signals from exactly the same base stations
are received. This set of base stations is denoted the cluster key. Once the
right cluster is found in the online phase, Baye’s theorem is used to determine
the probability of each location within the cluster. The critical aspect here is
the choice of the dimension of the joint distribution. An advantage is surely
the use of a probability distribution for the signal strengths. It has been stated
that an optimal strategy must consider the probability distribution of the sig-
nal strengths and that taking the average of several signals received reduces the
error [8].

Another system, called GPPS [4], uses a maximum likelihood estimator.
Gaussian process models are built for the distribution of the signal strengths,
using the Matérn kernel function. The resulting maximum likelihood estimator
is returned as the solution, i.e. there is no error bound. The positions of all the
base stations ought to be known, otherwise they are approximated.

A totally different approach is used in the LEASE system [9]. This infras-
tructure based system uses a small number of stationary emitters and sniffers
in order to locate the user. The sniffers collect information about the user and
the stationary emitters. Afterwards, the collected information is forwarded to
the location estimation engine (LEE), which knows the positions of the station-
ary emitters. A similar system called Palantir has been proposed [10]. In this
system, the floor of a building is divided into grids and the signal strength in
the middle of each grid is approximated again using sniffers, which are the main
component of this system. A nearest neighbor search is performed in order to
approximate the user’s current physical position.

Another interesting idea is the combination of various localization tech-
niques [11]. Since it’s not clear, whether a single positioning algorithm can
find the optimal solution, several different methods are combined in order to
achieve more accurate results. The contributions of all methods have to be
weighted to minimize erroneous information.

2 System Model

In our system model, the positions of the base stations are not required. In the
so-called calibration phase, the system learns the logical mapping between base
station identifers, their signal strengths and the logical locations. The system
memorizes this mapping and uses it in the online phase, when the current logical
position is to be determined.

The system allows for the specification of a confidence interval. The result
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of the system is the logical location that best matches the received signals.
However, if the measured signals are not compatible with any logical location,
considering the given confidence interval, then no solution is to be returned.
Alternatively, all logical locations that are compatible with the given confidence
interval can be returned.

2.1 Calibration Phase

Let M denote the mobile user and bi denote the ith base station. bi is a pair
(ai, si), where ai is the identifier of the base station and si is the received signal
strength, in dBm or mW. M collects data in order to characterize a logical
location L. For that purpose, M performs k measurements within that logical
location.

A measurement is a set of pairs bi=(ai, si), i.e. a measurement has the form
S(j)={b1, b2, . . . bn}, where j ∈ [1,k]. n is the number of different base stations
from which signals are received. Technically, n is not known until the kth
measurement has been carried out. Each measurement probably receives a
signal from one or more base stations that another measurement does not and
vice versa. If there is no signal of bi in the jth measurement, then s

(j)
i is set to

0.
The characteristics of L have to be determined utilizing this data. First, S

is calculated, which for each ai stores all the average signal strengths si, i.e.
S= {(a1, s1), . . . , (an, sn)}, where si = 1

k

∑k
j=1 s

(j)
i ∀ i ∈ [1, n]. Either all bi are

considered, or the dimension is reduced by excluding those base stations from
which signals were rarely received in those k measurements.1 Assuming that
such a reduction has been performed, let there be m ≤ n base stations that did
not violate this constraint. Because of noise and interference, it is surely not
sufficient to consider only S as the characteristics for L. In order to take those
factors into account, a probabilistic approach seems to be appropriate. The
normal distribution is used as an approximation of the distribution of the signal
strength. For that purpose S has to be extended to include the variance vi

of each of its associated base stations, i.e. S∗ = {(a1, s1, v1), . . . , (am, sm, vm)}
and vi = 1

k−1

∑k
j=1(s

(j)
i − si)2 ∀i ∈ [1,m] where S∗ is the extended form of S.

Not only does S∗ describe the average signal strengths, but also the variance
of the individual contributions, therefore S∗ captures the characteristics of a
particular location more precisely.

2.2 Online Phase

In the online phase, the system is interrogated. In order to derive M’s current
logical location, a fresh set of measurements S = {b1, b2, . . . , bd} is acquired. Let
L = {L1, L2, . . . , Lp} be the set of all logical locations known to the system

1This reduction is included in the implementation presented in Section 3. A parameter
describes how often a base station has to appear, given the number of measurements k.
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and let ni be the dimension of Li, i.e. the number of base stations constituting
the characteristics of Li. In addition, let S∗i denote the characteristic set of Li.

Given that all measurements are probabilistic, it is desirable to find the
logical location L∗ ∈ L that maximizes the probability of M being at this
location, as opposed to being at any of the other locations of L . Naturally, L∗

also has to respect the given confidence interval. As mentioned in Section 2,
alternatively all locations that comply with the confidence interval could be
given as the result.

In order to achieve these goals, the value Zi is calculated for each logical
location of L according to the following formula.

Zi :=
ni∑

j=1

(sij − sj)2

vij
(1)

sij and vij denote the average signal strength of the jth base station of the
logical location Li and the variance thereof, respectively. sj denotes the signal
strength obtained from the same base station in the new measurements, that
means, the canonical order of S is adapted to S∗i . If there is a particular base
station bj that appears in S∗i , but not in S, then sj is simply set to 0.2 If on the
contrary, there is a base station appearing in S, but not in S∗i , then it is ignored,
since it is not part of the characteristics of Li. Alternatively, the characteristic
signal strength of this base station could be set to 0; however, filtering certain
base stations in the calibration phase could not be applied in that case.

The individual terms of Zi are squared normal variables, hence Zi is χ2-
distributed with ni degrees of freedom. Li can only be considered M’s current
location, given a confidence interval p, if Zi is lower or equal to γi, where γi

denotes the value for which it holds that the integral of χ2
ni

(t) from 0 to γi is
equal to p, where χ2

ni
(t) is the χ2-probability density function with ni degrees of

freedom. In order to obtain the value γi, the inverse cumulative density function
is used.

inverseCumulativeDensity(ni, p) = γi ⇐⇒
∫ γi

0

χ2
ni

(t) dt = p (2)

For example, if ni = 5 and p = 0.95, then Zi ≤ 11.07, otherwise the confidence
interval constraint is violated.

Given the Zi for all logical locations, it is quite simple to determine the best
logical position. By choosing the Li ∈ L for which Zi is minimal, we obtain the
solution that both minimizes the least squares error weighted with the inverse
of the variance and constitutes the maximum likelihood estimator:
It is clear that the chosen Li minimizes the least squares error, but it remains
to be shown that it is at the same time the maximum likelihood estimator:
For that purpose, the characteristic set S∗ of one logical location is considered.
Since there is a canonical order imposed on the elements of S∗, it is possible
to omit the identifiers in each element. Furthermore, all the average signal

2This is only reasonable if signal strengths are stored in mW and not in dBm.
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strengths and the variances thereof are renamed, in order to emphasize their
probabilistic meaning, i.e. S∗ has the form {(µ1, σ

2
1), . . . , (µn, σ2

n)}. In order to
simplify the formulae, the variances, which are also given, are not displayed.
According to our assumption about the distribution of the signal strength, the
following formula holds:

∀ bi : prob(x|µi) =
1√

2πσi

e
− (x−µi)

2

2σ2
i . (3)

The base stations bi are the base stations that constitute the characteristics of
the logical location with the characteristic set S∗. The formula can be extended
to include all those base stations together:

prob((x1, . . . , xn)|(µ1, . . . , µn)) =
n∏

i=1

( 1√
2πσi

e
− (x−µi)

2

2σ2
i

)
. (4)

The definition of lik((µ1, . . . , µn)) is useful in the analysis:

lik((µ1, . . . , µn)) = prob((x1, . . . , xn)|(µ1, . . . , µn)). (5)

Clearly, the maximum likelihood estimator maximizes lik((µ1, . . . , µn)). The
following formulae show both the function to be maximized and a transformation
thereof:

max{lik((µ1, . . . , µn))} =
n∏

i=1

( 1√
2πσi

)
max

{ n∏
i=1

e
− (x−µi)

2

2σ2
i

}
=

n∏
i=1

( 1√
2πσi

)
max

{
e

(
−
∑n

i=1

(x−µi)
2

2σ2
i

)}
. (6)

It holds that

e

(
−
∑n

i=1

(x−µi)
2

2σ2
i

)
(7)

is maximal if and only if
n∑

i=1

(xi − µi)2

σ2
i

(8)

is minimal. That means, the maximum likelihood estimator is in fact obtained
by minimizing the weighted error in the least squares sense.3

Finding all logical locations that comply with the given confidence interval p
is straightforward: All logical locations Li for which Zi ≤ γi holds are possible
solutions.

3This is true if the distribution of the signal strength is the normal distribution.
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3 Implementation

The system, which has been implemented in Java, mainly consists of two parts.
One is the Environment class and the other is the SignalRetriever interface.
While the Environment class provides all the functionality needed to both cal-
ibrate the system and use it in the online phase, the SignalRetriever interface
deals with the acquisition of measurements.

3.1 Environment Class

The Environment class offers methods to add, remove and also reset logical
locations, which are objects of the Location class. Measurements can be added
to any location at any time. For this purpose, the Environment class provides
the following method.

• void addMeasurementsToLocation(Measurement[] meas, java.lang.String
locName)

Each Location object stores all the BaseStation objects that characterize this
location, i.e. the BaseStation objects store the average signal strength and the
variance of the signal strengths received from a specific base station. It has to be
noted that, in order to be able to update the variance once new measurements
are added, it is necessary not only to store the average and the variance, but also
all single measurements received. In this implementation, up to 200 measure-
ments are stored. Once new measurements are added and the maximum of 200
is reached, then the oldest measurements are removed. In our implementation,
not more than 5 base stations can constitute the characteristics of a certain
location. If a new base station appears, then the base station with the least
amount of associated measurements is replaced with the new base station. Of
course, other strategies are possible to handle this problem.

There are many parameters that can be set in the Environment class, such as
the number of measurements to be performed in the calibration and the online
phase, the confidence interval and the measurement quotient, which indicates
how often signals from an individual base station have to be received, given
the number of measurements performed. The Environment class and all associ-
ated classes, i.e. the Location and BaseStation class implement the Serializable
interface, providing a simple way to store entire environments.

So far, solely the calibration phase has been discussed. The Environment
provides two methods for the online phase.

• java.lang.String findBestLocation(Measurement[] meas)

• java.lang.String[] findPossibleLocations(Measurement[] meas)

As the name indicates, the first method is used to find the logical location
with the minimal Zi among all locations. The return value is the name of
this location. The second method returns the name of all locations compatible
with the confidence interval. They operate exactly as described in Section 2.2.
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In particular, the Location class provides two methods which are used in the
implementation of the aforementioned methods.

• double getQuadError(Measurement[] meas)

• boolean isPossibleForMeas(Measurement[] meas, float prob)

While the first method calculates the weighted quadratic error, the second
method decides, whether the given array of Measurement objects is compat-
ible with this location’s characteristics, given the confidence interval prob.

3.2 SignalRetriever Interface

Measurements have to be retrieved from the WLAN card. The SignalRetriever
interface defines only one method that can be used for this purpose.

• Measurement[] getMeasurements(int n)

The parameter n indicates how many times measurements are retrieved. It is
important to note that each Measurement object collects all the signal strengths
received from one particular base station, where its MAC address is used as its
identifier. The Measurement class could have been defined in such a way that it
collects all base stations from which signals were received in one measurement.
However, this would complicate the addition of measurements to base stations
and therefore the other approach has been chosen.

In our implementation, the class WRAPISignalRetriever, which implements
this interface, is used to retrieve the signals. When it is instantiated, it loads
the Java Native Interface library WRAPIJNILibrary.dll, which itself uses the
WRAPI.dll [12] to retrieve the MAC addresses and the signal strengths of all
base stations. Since measurements are performed very quickly, which results
in many equal measurements, it is appropriate to delay consecutive measure-
ments, e.g. by using the static method Thread.sleep(long millis) with a suitable
parameter.

4 Experimental Results

The experiments can be grouped in two parts. In the first part, which is treated
in Section 4.1, the problems and limitations of positioning with WLAN are
depicted. The second part focuses on the performance of the system presented
in this report. In particular, the effect of parameters, such as the number of
measurements performed and the confidence interval are analyzed. This analysis
can be found in Section 4.2.

4.1 Problems and Limitations

A critical aspect that ought to be addressed first is whether it is sensible to
assume a normal distribution for the signal strengths. Two base stations, one
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with predominantly strong signals and one with weaker signals have been se-
lected and their signal strengths have been measured. The results are shown in
Figure 1 and Figure 2, respectively.

Figure 1: Histogram of measured signal strengths of a base station with strong
signals

Figure 2: Histogram of measured signal strengths of a base station with weak
signals
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Even though only 50 measurements have been performed, the histograms
show the shape of a normal distribution, thus it can be used as an approximation.

Another aspect that has to be taken into account is the variance of the signal
strengths over time. To illustrate the problem, the characteristics of one specific
logical location are depicted:

Base station Average Variance
00-07-50-D6-00-FC 1.640386e-7 1.664545e-15
00-07-50-D6-01-0F 2.299025e-5 8.428953e-11
00-07-50-D6-02-F8 2.384267e-9 3.631800e-19
00-07-50-D6-02-FA 2.760481e-6 1.499120e-12
00-07-50-D6-03-CB 4.656942e-9 1.664351e-18

If the characteristics are determined merely 15 minutes later at exactly the
same position, the difference is apparent:

Base station Average Variance
00-07-50-D6-00-FC 1.762277e-7 4.949886e-15
00-07-50-D6-01-0F 2.219300e-5 1.057022e-10
00-07-50-D6-02-F8 3.073024e-9 3.603822e-18
00-07-50-D6-02-FA 1.809146e-6 7.098445e-13
00-07-50-D6-03-CB 4.461042e-9 3.218017e-18

While the average signal strength differs from the older measurements by a
factor of at most 1.5, the variance reaches a factor of 10. The situation is even
worse, when the period of time between those measurements is increased to one
day:

Base station Average Variance
00-07-50-D6-00-FC 1.481586e-7 8.501779e-16
00-07-50-D6-01-0F 1.974024e-5 1.851989e-11
00-07-50-D6-02-F8 1.798881e-8 7.769301e-17
00-07-50-D6-02-FA 6.498956e-7 5.176300e-14
00-07-50-D6-03-CB 2.202195e-8 1.167230e-16

In this case, even the average signal strength differs by a factor of up to 7.5,
while the variance reaches a factor of 214. It has to be noted that there are
differences between base stations. The signal strength of some base stations
appear to be more stable than those of others. For example, the base station
with the MAC address 00-07-50-D6-02-F8 is responsible for the highest factors
as far the average and the variance is concerned.

Not only is there such a high variance over time, the signals measured at
different positions in the same room can also vary strongly. In the same room,
the following characteristics were obtained at a different position a few seconds
after the first measurements:
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Base station Average Variance
00-07-50-D6-00-FC 8.590684e-9 2.350362e-17
00-07-50-D6-01-0F 9.444324e-6 5.584365e-12
00-07-50-D6-02-F8 2.700181e-9 1.164344e-18
00-07-50-D6-02-FA 1.877516e-5 1.999351e-10
00-07-50-D6-03-CB 2.871098e-7 1.592052e-14

Naturally, the signal strengths vary, but given such a strong deviation, it is
scarcely reasonable to consider those measurements the characteristics for the
same logical location. This is certainly a limitation of the model presented in
this report.

4.2 Accuracy of the System

The question is, given the problems and limitations mentioned, how accurately
the system is able to determine the correct position. In one building, the system
learnt five logical locations, which in fact are five different rooms. Four of them
are on the same floor, while the fifth room (H02) is on the next higher floor.
60 measurements have been performed in the calibration phase with a timeout

Figure 3: Topology of the building

of 100ms between consecutive measurements. In the first experiment, 10 mea-
surements with the same timeout have been performed in the online phase. The
confidence interval has been set to 80%. Since the system has never displayed
an incorrect location, i.e. it either displayed the correct answer or it concluded
that no location matched the new measurements, it suffices to depict how often
it found the right solution:

Room Match No match
G05 70% 30%
G21 90% 10%
G26 70% 30%
G31 60% 40%
H02 80% 20%
Total 74% 26%

The accuracy can be improved by prolonging the online phase. In the sec-
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ond experiment, 20 measurements were performed in the online phase with a
timeout of 1s between successive measurements:

Room Match No match
G05 75% 25%
G21 50% 50%
G26 75% 25%
G31 100% 0%
H02 100% 0%
Total 80% 20%

Since the system has never returned a bad result, the confidence interval can
be increased in order to allow more inaccurate measurements to be considered
and thus reduce the frequency of no matches. However, in doing so, the set
of possible locations increases and the system starts yielding erroneous results.
There is clearly a tradeoff between obtaining a result—which is a certain logical
location—in most cases and allowing the system to make mistakes. Therefore,
the appropriate setting of the confidence interval is crucial. As an extreme
example, in the following experiment, the confidence interval has been set to
100%, i.e. every logical location is considered to be a possible location. On this
account, it is only reasonably to retrieve the best matching location. The sys-
tem then always returns the location with the lowest least squares error:

Room Match No match
G05 90% 10%
G21 90% 10%
G26 100% 0%
G31 100% 0%
H02 100% 0%
Total 96% 4%

Surprisingly, the best matching location is in most cases the right location, indi-
cating that the confidence interval can be set to a high value without rendering
the localization scheme inoperative.

5 Conclusion

In Section 4.1, it is shown that it is plausible to assume that the signal strengths
are normally distributed. Furthermore, it is shown that it is difficult to de-
termine the characteristics of a logical location, due to the variance of signal
strengths over time and the fact that the received signal strengths at different
positions of the same logical location vary strongly.

However, the scheme presented in this report is still able to determine the
current position of the mobile user with a high probability. In order to achieve
a high accuracy, many measurements ought to be performed in the calibration
phase. By repeatedly adding measurements after a longer period of time, the
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problem of the variance over time can be controlled to a certain extent. As
illustrated in Section 4.2, the accuracy of the system can be further improved
by prolonging the online phase.

With a confidence interval of 80%, the system returned either the right
solution or no solution at all. If the confidence interval is set to a higher value,
then more positive results are returned, since the logical location with the lowest
Zi is often the right solution. However, by accepting more inaccurate data, at a
certain point the system starts making mistakes and returning wrong answers.
This indicates that there is a tradeoff between high accuracy and error rate.
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