
Institut für
Technische Informatik und
Kommunikationsnetze

Multi-objective Clustering

of Gene Expression Data

with Evolutionary Algorithms

A Query Gene Approach

Michael Calonder

Supervisor: Stefan Bleuler

Co-Supervisor: Dimo Brockhoff Diploma Thesis DA-2006-01

Professor: Eckart Zitzler Nov 11th, 2005 to Feb 20th, 2006

Abstract

Biologists are interested in the discovery of co-regulated genes
since such genes are likely to share a common biological func-
tion. This work describes an evolutionary algorithm to find
groups of genes in expression data that exhibit expression pro-
files similar to that of a given query gene. We are clustering over
multiple data sets, such that the task is to maximize the overall
co-expression. To this end, we treat the homogeneity of a certain
gene group in every data file as an independent objective and
employ a multi-objective evolutionary algorithm. In this con-
text we also discuss three similarity measures, namely Euclid-
ian distance, Pearson correlation and the ranked mean squared
residue measure. We found that there is a clear trade-off be-
tween the abovementioned objectives. The query gene cluster-
ing algorithm is validated by showing that it is able to recover
an already known cluster with 32 genes.
In a second step we introduce the cluster size as another ob-
jective that we require to be maximized. We found that this
additional objective leads to an improvement in the quality of
the clustering result and document this finding by 40 cases with
different parameter settings.

Contents

1 Introduction 5
1.1 Gene Expression . 5

1.2 Microarrays and Data Matrix . 5

1.3 Clustering and Biclustering . 6

1.4 Data sets and Multiple Objectives . 7

1.5 Problem Formulation . 7

1.6 Memetic Algorithms . 8

2 Related Work 9
2.1 Clustering, Biclustering . 9

2.2 Multiple Objectives. 11

2.3 Data Types . 11

3 Problem Outline 13
3.1 The SOSM and SOHM Problems . 13

3.1.1 SOSM Problem . 13

3.1.2 SOHM Problem . 14

3.2 The QGS Problems . 14

3.3 The OPSM Concept . 16

3.4 Distance Measures . 17

3.4.1 Euclidean Distance . 17

3.4.2 Pearson Correlation . 17

3.4.3 Ranked MSR . 18

3.4.4 Comparing Distance Measures . 19

4 Algorithms and Implementations 25
4.1 The Evolutionary Algorithm . 25

4.2 The PISA Framework . 26

4.3 Local Search . 26

4.3.1 SOHM Local Search Strategy . 27

4.3.2 T2QGS Local Search Strategy . 28

4.4 Equal-bit flip Mutation Operator . 33

4 CONTENTS

4.5 Restricting the Local Search . 33

4.6 Implementation Concept. 34

5 Results 37
5.1 Experimental Setup . 37

5.1.1 Data sets. 37
5.1.2 Reference Run . 37
5.1.3 Performance . 37

5.2 Extensive Investigations . 39
5.2.1 SOSM vs. T2QGS . 40
5.2.2 Including the Size Objective . 41

5.3 Observable Tendencies . 54
5.3.1 Baldwinian vs. Lamarckian Evolution . 54
5.3.2 Equal-bit-flip mutation operator . 54
5.3.3 Quality parameter k in gene addition procedure 55
5.3.4 Full Biclustering . 55

5.4 Objectives over Generations . 58

6 Conclusion and Outlook 59

A Selected Run Configurations 63

Chapter 1

Introduction

1.1 Gene Expression

Many cells of most living organisms contain a set of codes called genes describing
their regulation in form of one or more strands of the DNA molecule. The whole
hereditary information encoded in the DNA molecule of an organism is called
genome. The DNA resides in the nucleus of the cell, while most proteins are needed
in the ambient cytoplasm, since it’s where many of the cell’s functions take place.
Thus, DNA is copied into a more transient molecule called RNA and released into
the cytoplasm. The concentrations of certain RNA molecules can be measured and
are called Gene Expression levels.
A gene is a single segment of the coding region of the DNA that is transcribed
into RNA. The RNA that codes for proteins is called messenger RNA, mRNA,
and finally, after another intermediate stage (pre-mRNA), the information of the
mRNA is translated into the target protein by the ribosomal complex, for more
information see [15]. One method to measure the abovementioned expression levels
are microarrays.

1.2 Microarrays and Data Matrix

Microarrays have been invented with the aim to measure the expression levels
of a large number of genes simultaneously; they enabled biologists to study the
regulation of genes and gene products of living organisms on a whole genome level.
With the emerging microarray technology, it has become possible to measure the
expression levels of a few tens of thousands of genes in one single experiment,
which is in some cases the entire genome. Data resulting from such measurements
is usually stored in a m×n gene expression data matrix E, where m is the number
of genes considered in the experiment and n refers to the number of experimental
conditions. Each element of E, eij , is a real value representing the abundance of
mRNA for gene i under condition j, typically relative to a control experiment.
In the context of such data, one is interested in finding a subset of genes that are
co-expressed ; this means that the expression values of the genes of such a set are
varying together over the columns of E. This is interesting from a biological point
of view, since one often assumes that co-expressed genes are related to a common
biological function [7].

6 Introduction

1.3 Clustering and Biclustering

Clustering in general is the partitioning of a data set into subsets (clusters), such
that the data in each subset is somehow similar – this similarity is often defined
as some distance measure.
Clustering applied to gene expression data seeks to find groups of genes that are
more or less co-expressed. This approach may be fair in cases where all the experi-
ments belong together in some sense, but we cannot assume this for gene expression
data while looking for co-expressed genes. We do not have a priori knowledge about
which of the experiments are relevant to the biological function we are trying to
identify. Additionally, expression data is made up of the more or less complete set
of genes but very small portions of all possible conditions (experiments).
To overcome this problem inherent to clustering, one could require the clustering
algorithm not only to select a subset of rows of E but also a subset of columns,
see Figure 1.1.

Figure 1.1: Clustering (left) vs. Biclustering. Traditional clustering
searches a partition of all genes into k disjoint groups. Biclustering
searches for one or a set of blocks containing a consistent local pat-
tern. Three biclusters are shown. Note that is not generally possible to
display several biclusters at the same time as contiguous blocks.

In a more general formulation, not even in the context of gene expression data,
this clustering task is known as biclustering and goes back to the work of Hartigan
[14]. Throughout this work when mentioning the term ’cluster’, the object referred
to may implicitly also be a bicluster. This will be clear from the context.

However, we are not only interested in finding a subset of genes, but also a
subset of experiments, such that the selected genes need to be co-expressed on
the selected experiments only. Obviously, the algorithm has now the possibility
to drop experiments from the cluster that are likely to add unwanted noise.
Any similarity measure between genes based on the available conditions becomes
anyway context-dependent.
Additionally, biclustering allows rows and columns to be included in multiple
clusters, and thus allows one gene or one condition to be assigned to more than
one function. This added flexibility correctly reflects the biological reality [6].
Bleuler et al introduced a framework that is capable of biclustering, based on an

Data sets and Multiple Objectives 7

evolutionary algorithm which explores the search space on a global level [3].

There are cases where biologists have a specific gene under investigation and they
are looking for other genes that are co-expressed with this one. We refer to such a
gene as query gene; in some sense, a query gene defines a search pattern.
The algorithm developed by Owen et al, tailored to this specific problem (and
also to case of multiple query genes), is called gene recommender algorithm [20].

1.4 Data sets and Multiple Objectives

We introduced the data matrix E in Section 1.2. This is one type of data that
could be designated relevant regarding the clustering task but there are also
other data types likely to contain relevant information (e.g., the Gene Ontology,
GO). However, in this work we concentrate on the gene expression data type for
simplicity and we usually work with two or more gene expression data sets.
Obviously, if there is more than one data set, things become more intricate. We
want to look at this case in way that we now have more than one objective to
satisfy. If there is a trade-off between the different objectives of the data sets,
and we will see that this is the case, the problem is naturally one that demands
multi-objective optimization. Therefore, as we introduce one homogeneity objec-
tive for each data set, we suddenly find ourselves in the field of multi-objective
optimization. Our main motivation for using multiple objectives is the considerable
advantage that we do not have to impose artificial information (in form of e.g.
weights for parameterized aggregation) on the problem in advance. We are rather
looking for a front that describes the trade-off between the different objectives,
such that we may decide afterwards whether we are inclined to sacrifice a bit of
one objective to receive a better performance in the other objective.

Additionally and apart from homogeneity maximization in the data sets we de-
mand the cluster to be of a reasonable size (’reasonable’ will be defined at some
later point). To assure such an expedient size, we basically have two possibilities:

• we set a constraint to the minimum number of genes and chips we expect to
be in the cluster, or

• we introduce a further objective favoring larger clusters.

1.5 Problem Formulation

In our approach we try to bring together the two already mentioned aspects,
namely the

• Biclustering of expression data by an evolutionary algorithm (Bleuler et al),

• Gene recommender algorithm (Owen et al)

using a true multi-objective EA. We state our problem as follows: given a query
gene, we search for a subset of genes and experiments that lead to the largest
possible co-expression for all of the given data sets. Additionally, we may demand
the cluster to be as large as possible.

8 Introduction

1.6 Memetic Algorithms

The evolutionary algorithm we employ uses a local search strategy; the combination
of an EA with a local search is called Memetic Algorithm [18]. They differ from
other hybrid evolutionary approaches in that all individuals in the population are
local optima, since after each variation step, a local search is applied. Both, MAs
as EAs are population-based heuristic search methods and have been applied to
a number of different areas, mostly combinatorial optimization problems. It is
known that it is hard for a ”pure” EA to ”fine tune” the search in complex spaces
[8]. Furthermore, it has been shown that a combination of global and local search
is almost always beneficial [16].
MAs are inspired by Dawkin’s [8] notion of a meme. A meme is a ’cultural gene’
and in contrast to genes, memes are usually adapted by the individual who carries
it before they are passed to the next generation. From the optimization point of
view, it is argued that the success of an MA is due to the trade-off between the
exploration abilities of the underlying EA and the exploitation power of the local
search. Consequently, the balance between disruption and information preservation
during variation is very important: on the one hand escaping local optima must
be guaranteed, but on the other hand too much disruption may cause a loss of
important information gained in the previous generation [23].

Chapter 2

Related Work

This chapter gives a brief overview on related work that has influenced this re-
search. In the following we will sketchily focus on three aspects: clustering, multi-
objective optimization and data types.

2.1 Clustering, Biclustering

There are many approaches to clustering and partitioning techniques in gene
expression analysis. Many of them are summarized in a review by Hand and
Heard [11], to name but a few, there are hierarchical clustering approaches,
nonmodel-based partitioning methods as self-organizing maps or techniques based
on a singualar value decomposition of the expression matrix. However, in this
section we want to focus on just a small part of this body of work, namely
clustering and biclustering. For details regarding clustering and biclustering, see
Section 1.3.

An approach to biclustering of expression data has been presented by Cheng and
Church [6]. They introduced both, a straightforward and a more sophisticated
algorithm for biclustering.
The former simply starts from the full expression matrix and subsequently deletes
those nodes1 which decrease some mean squared residue g, a measure for the
inhomogeneity of the bicluster, the most. When g is below some given constraint
value δ, the algorithms stops. δ was found to be a powerful parameter to fine-tune
the similarity requirements.
The sophisticated and more efficient version, starts also from the full expression
matrix and proceeds in three steps: multiple node deletion, single node deletion
and node addition. The main difference to the straightforward version lies in the
criterion raised to remove and add nodes. They proofed a theorem that allows
to remove and add nodes without the need of recalculating g for every node.
Furthermore, there are cases where it is beneficial to remove multiple nodes from
the bicluster at once until the matrix reduces to a size that single node deletion
can handle efficiently. This is realized in the multiple node deletion procedure.
However, this method is designed for biclustering but in this form, it is not

1We use the term node if we don’t want to specify whether we are concerned with a gene or
an experiment/condition.

10 Related Work

applicable to a query gene problem.

Bleuler et al investigated how this procedure, among others, can be integrated
in a global optimizer, namely a framework for evolutionary algorithms (EAs), cf.
[3]. They coupled an EA with a local search procedure implementing the efficient
strategy from Cheng and Church. If possible, the local search improves in every
generation the actual individual that the enclosing EA suggests and seeks to
evaluate. They demonstrated that the quality of the outcome can be substantially
improved by this hybrid approach. While the evolutionary algorithm alone has
failed to produce results comparable to those generated by Cheng and Church’s
algorithm, both algorithms together clearly outperformed the pure greedy strategy
in terms of the quality of the resulting biclustering.
We will be using the above problem setting at a later point for both to check and
to extend our newly developed algorithm.

A distinct approach toward the discovery of similarities in expression data has
been published by Owen et al; they present in [20] the so-called Gene Recom-
mender Algorithm. It aims at finding genes that have a function similar to that
of some given genes. Usually, the members of the given set of genes are a priori
known to have a closely related function themselves. These genes are referred to
as query genes.
The work of Owen et al belongs to a body of research called feature selection. It is
the only source known to the authors that pursues this type of clustering, where
one is interested in finding genes given some pattern. There is some information
on related, but, in view of our task, different investigations in [20].
Basically, we are concerned with a similar but slightly more abstract question
than the Gene Recommender Algorithm because we are not only interested in
up-regulated genes but in co-regulated genes in general. In contrast, we take
multiple datasets into account and use the EA framework from Bleuler et al [3]
briefly mentioned above to implement a new local search strategy (called T2QGS,
type 2 query gene search, the name will become clear later). Our approach can
thus be viewed as the combination of a globally acting optimizer and a local
search, similar to [3] from above.
Another, minor difference lies in the number of query genes: we use exactly
one where the Gene Recommender Algorithm treats more than one query gene.
The extension of the framework to many query genes is not expected to bring
about major problems, especially not for we kept this topic in mind during the
implementation of the T2QGS algorithm.

At this point, it is natural to inquire after finer differences between the approach
from Owen et al and ours. In order to achieve a clear distinction, we briefly outline
the idea of the Gene Recommender Algorithm. It basically follows the five steps
given below. Let Q be the set of query genes.

1. Normalize the expression data in E. This is done by first assigning each
element the ranks within its row and then normalizing these ranks to the
interval [−1, 1]. E′ is the matrix of the normalized values.

2. Assign a Z-score to every condition. This score prefers conditions that show

Multiple Objectives 11

a tight clustering over Q in the sense of variance and extreme mean values
of E′ of Q.

3. Collect the conditions with the highest Z-scores (which are deemed relevant
to the query genes Q) in the set ǫ. The threshold defining the number of
topmost conditions that should be included in ǫ is set by some appropriate
procedure.

4. Assign a score SG(m) to every gene m /∈ Q. This score measures the extent to
which gene m matches the query Q and is calculated based on the conditions
in ǫ only. This yields a hit list, having the gene with highest SG(m) at the
top.

5. Truncate hit list such that it contains the same number of genes as G does.

2.2 Multiple Objectives

In the introduction we explained our interest in multi-objective optimization. In the
context of clustering of data, not specifically expression data, Handl and Knowles
investigated the effect of multiple, complementary objectives and found that there
is promising potential to such an approach [12]. However, their work differs from
ours mainly in two aspects: Handl and Knowles suggest a method

• for clustering (instead of biclustering).

• to cluster one data matrix (instead of several).

They applied an EA to optimize two conceptually orthogonal objectives simul-
taneously, and for comparison, each objective has been optimized independently.
They found objectively better solutions for the multi-objective optimization sce-
nario and thus they concluded that it is advantageous to optimize several objectives
concurrently. – A result that strengthens our intent to tackle the query gene search
problem by multi-objective optimization.

2.3 Data Types

Using as much information as possible for the clustering task is desirable and also
indirectly related to multi-objective optimization. Data types like metabolic path-
ways, PPI (protein-protein interaction), sequence analysis, Gene Ontology2, and
others are such candidates. These could be e.g. included as further objectives.
One step into this direction has been made by Speer et al [23]. They intro-
duced a memetic co-clustering algorithm called MST-MA (maximum spanning tree
memetic algorithm) that incorporates gene expression data and the GO. MST-MA
calculates on each of these two data types a distance, given a pair of genes. In the
case of the GO this is some semantic distance measure where for the expression
profiles this is the Pearson correlation between the two expression profiles. The
MST-MA has been designed for single objective optimization and accordingly the

2In general, ontologies offer a mechanism to capture knowledge in a sharable form that is also
processable by computers. They provide a set of vocabulary terms that label domain concepts
and at the same time terms are placed within a structure of relationship.

12 Related Work

two distances are merged into one distance that serves as an objective value. This
has been achieved by parameterized aggregation (or rather a weighted sum).
Apart that MST-MA and our approach differ in the GO data type, there are at
least two other differences:

• Representation. MST-MA represents a solution in form of a tree and is
therefore left with a tree partitioning problem. The idea is to find a set of tree
edges to delete, such that the resulting unconnected components determine
the clustering. As documented later, we rely on a bit string representation.

• Number of objectives. MST-MA embodies single objective optimization
achieved by parameterized aggregation of the distances where we pursue
true multi-objective optimization (see also Section 2.2).

At a future date we intend to work with several different data types, but at the
moment we only operate on one type of data, namely expression data. From a
biological point of view, this is interesting as well, because already the expression
data sets show a trade-off among each other, as we will see later.

Turning now to expression data, a further research based on more than one data set
has been conducted by Bleuler and Zitzler [5]: they pursued an order preserving
clustering approach over multiple time course experiments. – Usually, the mea-
surements of different experiments are mixed together in a single gene expression
matrix. Hence the information about the shared identity of the experiments of the
data sets is eliminated. To avoid this loss of information, they operate with the
data sets separately. In order to exploit the information therein, they adopt the
concept of the order preserving submatrix, OPSM [1] and cluster on transformed
data. Furthermore, a new score that measures the degree of order preservation is
introduced. The measure is basically a combination of the mean squared residue
score [6] and the OPSM [1] concept. Again, the node deletion and addition strategy
from Cheng and Church is implemented as a local search in an EA framework, sim-
ilar to [3]. The local search first removes genes until the homogeneity constraints
are met for all data types (files) and in a second step all genes that can be added
without increasing the homogeneity of the cluster are added to the cluster.
Our approach is quite similar to this one. The T2QGS algorithm is embedded in
the same framework that is already able to handle a number of data files separately
and we basically introduced a new local search. We also make use of the OPSM
concept which we detail below, but we additionally explore two other distance
measures, the straight forward Euclidian distance as well as the Pearson correla-
tion.
The framework already provides the option for both, multiple objectives and bi-
clustering. Traditional clustering can be achieved as a special case of biclustering,
where the constraints for the number of experiments to include is set to the number
of experiments for each file. When dealing with multiple objectives, the Selector
for PISA (see below) has also to be chosen appropriately. For our purposes, we
used IBEA, an indicator based evolutionary algorithm [25].

Chapter 3

Problem Outline

In a first part we are going to define two groups of problems relevant to this work,
SOSM/SOHM and T1QGS/T2QGS respectively.
The section on the QGS problems, but also Section 1.3 call the attention to the need
for a distance measure between two genes. Therefore we expand in a further section
on three such measures, namely the Euclidian distance, the Pearson correlation and
the ranked mean squared residue (MSR) measure.
For the remainder of this work, let G denote the subset of genes of E and C the
subset of experiments of E defining the bicluster {G, C}.

3.1 The SOSM and SOHM Problems

After having introduced the notion of distance or similarity between genes, we are
ready to mathematically describe the problems.
The SOSM and SOHM problems are related to each other in an opposed sense.
SOSM asks to maximize the size of a bicluster, constrained to some maximum
dissimilarity where the task in SOHM is to maximize the similarity constrained to
some minimum cluster size. The former problem has already been implemented in
the EA framework [3, 5] such that it will basically serve for validation in principle.
Extending the framework to enable it to handle the latter case is the minor of two
parts of this work.

3.1.1 SOSM Problem

SOSM stands for single objective size maximization. We already addressed this
single objective problem in Section 2.1 in an informal way and we now want to
define it quantitavely. The mean squared residue (MSR) of some bicluster {G, C}
indicated by the subsets G and C of genes and conditions respectively, is given by

g(G, C) =
1

|G| |C|

∑

i∈G
j∈C

(eij − eiC − eGj + eGC)2 (3.1)

where

eGj =
1

|G|

∑

i∈G

eij , eiC =
1

|C|

∑

j∈C

eij (3.2)

14 Problem Outline

are the mean column and row expression values for {G, C} and

eGC =
1

|G| |C|

∑

i∈G
j∈C

eij (3.3)

is the mean column and row expression value over all cells contained in the biclus-
ter. Using this notation we can now quantify the SOSM problem. Following [6],
the optimization goal is to find a bicluster of maximum size that does not exceed
some MSR value δ.

max f = |G| · |C|
subject to g(G, C) ≤ δ

{G, C} ∈ X = 2{1,...,|G|} × 2{1,...,n},

(3.4)

where X denotes the search space consisting of all possible combinations of genes
and experiments. Note that the size of the search space |X | = 2|G|+|C| is exponential
in both, number of genes and number of experiments. Typical values for |G| are
between 1’000 to 25’000 and |C| usually ranges from 10 to about 100. Obviously,
this induces a huge search space. Additionally, the problem has been shown to be
NP-complete [6].

3.1.2 SOHM Problem

SOHM stands for single objective homogeneity maximization. In terms defined in
the previous section, the problem reads

min g(G, C)
subject to |G| · |C| ≥ σmin

(3.5)

where σmin denotes a lower bound on the cluster size.

3.2 The QGS Problems

QGS stands for query gene search. There are basically two such problems,
T1QGS (type-1 QGS) and T2QGS (type-2 QGS) which fundamentally differ from
the two other problems above (SOSM and SOHM) in that they are clustering
around a given query gene. The two types of QGS problems arise naturally
from the fact that one is given some query gene. See Table 3.1 for the defini-
tions. Even though this work is mostly concerned with the T2QGS problem, we
will also compare the results from T2QGS runs against results from the SOMS runs.

In the T2QGS definition we stated that the cluster size σ may be included as a
further objective or not. There is still a third possibility: we could directly integrate
the size into the calculation of the objective values f1, . . . , fn. For instance, we could
reassign the objective values

∀1 ≤ i ≤ n : fi ←−
fi

σ
.

Approaches to include the size in the objective assignment of this type are
left aside in this work since we are mainly interested in true multi-objective

The QGS Problems 15

Name Definition

T1QGS

This is the identical problem as SOSM plus the requirement that
the query gene must be part of the bicluster. Consequently, the
query gene may lie anywhere inside the cluster with respect to
some distance measure. We call this a type 1 problem.

T2QGS

For a given number of data sets n, select a subset of genes G and
n subsets of experiments Ci, 1 ≤ i ≤ n, such that the overall sim-
ilarity is maximizeda. The term ’similarity’ is quantified as total
distance from a query gene to the remaining genes in the clus-
ter. Additionally, we may include a further objective that favors
large clusters. Later, it will be stated for every case whether this
objective has been included or not. The analytical form is given
below.

min f1 = dist (G, C1)
...

...
...

...
min fn = dist (G, Cn)
min fn+1 = σ−1

subject to |G| ≥ Gmin

|Ci| ≥ Cmin
i ∀ 1 ≤ i ≤ n

where σ := |G| · |C| = |G| ·
∑n

i=1 |Ci| and dist (G, Ci) is the total
distance between all genes in G and the query gene, measured on
experiments Ci.

aNote that the genes are the same for all data sets where the selected chips
may differ for each dataset.

Table 3.1: Definition of the QGS problems. See Figure 3.1 for an illus-
tration.

16 Problem Outline

Figure 3.1: (Left) Type 1 problem, the query gene (5) may lie anywhere
in the cluster. (Right) Type 2 problem, the query gene (5) is in any
case somewhere in the center of the cluster.

optimization. Furthermore, note that T2QGS implicitly includes the size σ as a
constraint, since both |G| and |Ci| are constrained and σ = σ(|G|, |Ci|).

We are now going to discuss three distance measures in detail. Because we don’t
want to tear apart the discussion on these, we first introduce the OPSM concept
that underlies the ranked MSR measure.

3.3 The OPSM Concept

The term OPSM already appeared in section 2.3; we will now define it more pre-
cisely. A submatrix is called order-preserving, if there exists a permutation of its
columns under which the sequence of values in every row is strictly increasing. In
the case of expression data, an OPSM is determined by a set of genes G and a set
of experiments C, such that within C the expression levels of all the genes in G
have the same linear ordering [1]. Figure 3.2 illustrates this idea.

0.34 0.01 0.23 0.21

0.43 0.69 0.49 0.58

0.10 0.12 0.19 0.30

0.13 0.22 0.34 0.52

0.71 0.19 0.77 0.34

4 1 3 2

1 4 2 3

1 2 3 4

1 2 3 4

3 1 4 2

0.34 0.01 0.23 0.21

0.43 0.69 0.49 0.58

0.10 0.12 0.19 0.30

0.13 0.22 0.34 0.52

0.71 0.19 0.77 0.34

2 1 2 1

1 2 1 2

1 2 1 2

1 2 1 2

2 1 2 1

-

-

ranking

ranking

Figure 3.2: (top row) A gene expression matrix with the expression
values and the related ranks within the row. (bottom row) The same
situation as above, but now the two data sets (each with two columns)
are treated separately. Effect: In the second case exists one extra gene
that can be attributed to the OPSM, compared to the first case.

Distance Measures 17

3.4 Distance Measures

Since a distance measure represents the actual link between a bicluster and its
resulting fitness values, we especially strive for a deeper understanding of such
quantizations. We have investigated three different measures for distance or rather
for similarity, since similarity is what we are finally interested in; these are

• Euclidean Distance

• Pearson Correlation

• Ranked MSR (Mean Squared Residual)

From the considerations in the following three subsections, we expect the best
performance from the ranked MSR measure. A description of the data sets is
given in Section 5.1.

3.4.1 Euclidean Distance

The Euclidian distance between two genes i and j corresponds to the Euclidean
distance between their row vectors of the expression matrix. If gene j is set to the
query gene q, this reads

de(i, q) :=

(

∑

k∈C

(eik − eqk)
2

)
1

2

.

For a randomly selected query gene we plotted the Euclidean distances over the
sorted gene indices for three different data sets, see Figure 3.3.

On real data (Figure 3.3a and 3.3b) the distances are distributed differently for
every data set1 as expected. Since the two data sets in RAND N are sampled from
the same distribution, we would anticipate that the distance plots for these two sets
coincide, especially for a large number of samples as we have in our case. However,
the upper part of Figure 3.3c shows that there is a discrepancy between the two
curves. Since this artifact has been observed for other, also random data sets, we
interpret this fact as a tendency of the Euclidean distance measure to introduce
some kind of bias.

3.4.2 Pearson Correlation

As an attempt to overcome the aforementioned uncertainty about the distance
measure, we conducted the same experiments as before except that we replaced
the Euclidean distance measure with the Pearson correlation. This can be justified
insofar that we are not interested in absolute values (at least not in context with
expression data) but rather their relative ranks. Correlation is a measure that does
not account for differences in the mean of the data.

1Please note the subtle distinction between data set in general, referring to some experiments
that form a set and input data set including one or more (in our case usually two) data sets that
form the input information to the algorithm.

18 Problem Outline

As before in terms of a distance from a gene i to the query gene q, the correlation
based distance is

dc(i, q) = −
1

n− 1

1

σi σq

∑

j∈C

(eij − eiC)(eqj − eqQ),

where σi and σq denote the unbiased sample variances of the corresponding gene
expression profile and eiC as defined in Eq. (3.2). The minus sign accounts for a
consistent perception of distance, since the other two distance measures associate
small values with a high similarity.

Figure 3.4c shows the previously expected result for random data. There is
another qualitative issue to notice. If one could recognize a more or less sharp
”knee” (best in both data sets for the same genes, which cannot be observed from
this kind of plot), we would know where to cut off the sorted list of genes and
would have found our cluster. We cannot observe such a knee from Figure 3.3
whereas in Figure 3.4a or Figure 3.4b one is tempted to recognize such an artifact.
However, Figure 3.4c refutes that this artifact is meaningful, since we can find the
same behavior in randomly sampled input data.
There is no proof that our algorithm needs such a behavior of the distance
measure. But in general, one should avoid to interfere with the algorithm by
introducing a bias through an inept choice of distance measures.

3.4.3 Ranked MSR

We have not yet considered the robustness of the distance measures regarding
noise. Expression data arise from biological experiments that are likely to introduce
measurement uncertainties. A convenient way to overcome this problem is to rank
the data within each row. Let ri,j ∈ {0, |C| − 1} be the rank of the i-th row of E
and scale the ranks according to

r′i,j =
ri,j

|C| − 1
∈ [0, 1].

Then, the ranked MSR distance dr is defined by

dr(i, q) =
1

|C|

∑

j∈C

(

r′i,j − r′q,j

)2
. (3.6)

We find that the Euclidian distance on this ’stabilized’ data passes the sanity check
of the coinciding curves on random data (Figure 3.5c). Since this measure does not
account for differences in the mean value as the neither the Pearson correlation
does, we expect them to serve the purpose equally well (except in the presence of
noise). In 3.4.4 we will find that they show some degree of correlation, as expected.

This conception of similarity goes nicely together with the OPSM concept intro-
duced in Section 3.3. Altogether, we employ a scoring function that proceeds in
the following steps [5]. Suppose we want to score the submatrix D ⊆ E implied by
the bicluster {G, Ci}:

Distance Measures 19

1. Rank the values in D per row and replace the expression values with their
(scaled) ranks.

2. Apply the mean squared residue score to the transformed values to receive
the score for the submatrix D.

The scoring scheme has a remarkable property: a score of zero is equivalent to D
being an OPSM (’perfect’ clusters). However, in most of the relevant simulations
we made use of this measure.

3.4.4 Comparing Distance Measures

Here we want to show that the distance measures are not correlated among each
other with the exception of the Pearson correlation and the ranked MSR distance
measure. The three distance measures are compared in Figure 3.6. If all points
would lie on the ”y = x”-line, this indicated a perfect agreement of the measures
and therefore an indifference regarding our algorithm, since we are acting on an
ordinal, not quantitative scale. To create such a plot that compares measure 1
(vector of distances d1) against measure 2 (d2), sort d1 and d2 in ascending order
resulting in the permutations of indices p1 and p2, respectively. Starting with the
first element of p1, p1(0), find the value p1(0) in p2 and store the index in i. Draw
a point at (p1(0), i) and continue with the next element of p1.

20 Problem Outline

0 0.5 1 1.5 2 2.5

x 10
4

0

5

10

15

sorted gene index

di
st

an
ce

distance measure = euclidian
data set base name = cold_full_

query gene ID = 23

data set 1
data set 2

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

sorted gene index

di
st

an
ce

data set 1
data set 2

3.3a COLD FULL input data set.

0 0.5 1 1.5 2 2.5

x 10
4

0

10

20

30

sorted gene index

di
st

an
ce

distance measure = euclidian
data set base name = hetero_full_

query gene ID = 23

data set 1
data set 2

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

sorted gene index

di
st

an
ce

data set 1
data set 2

3.3b HETERO FULL input data set.

0 0.5 1 1.5 2 2.5

x 10
4

0

2

4

6

8

sorted gene index

di
st

an
ce

distance measure = euclidian
data set base name = randn_data_22747x7_

query gene ID = 23

data set 1
data set 2

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

sorted gene index

di
st

an
ce

data set 1
data set 2

3.3c RAND N input data set.

Figure 3.3: Euclidean distances for three different input data sets. The
subfigures show in their upper part the overall behavior of the measure
where the lower part shows only the first 100 genes. The domain up
to 100 genes is of peculiar importance since it is known from biology
that it is very unlikely to encounter biologically relevant clusters with
hundreds of genes (let alone with thousands of genes).

Distance Measures 21

0 0.5 1 1.5 2 2.5

x 10
4

−1

−0.5

0

0.5

1

sorted gene index

di
st

an
ce

distance measure = pearson_correlation
data set base name = cold_full_

query gene ID = 23

data set 1
data set 2

10 20 30 40 50 60 70 80 90 100
−1

−0.95

−0.9

−0.85

−0.8

sorted gene index

di
st

an
ce

data set 1
data set 2

3.4a COLD FULL input data set.

0 0.5 1 1.5 2 2.5

x 10
4

−1

−0.5

0

0.5

1

sorted gene index

di
st

an
ce

distance measure = pearson_correlation
data set base name = hetero_full_

query gene ID = 23

data set 1
data set 2

10 20 30 40 50 60 70 80 90 100
−1

−0.9

−0.8

−0.7

−0.6

sorted gene index

di
st

an
ce

data set 1
data set 2

3.4b HETERO FULL input data set.

0 0.5 1 1.5 2 2.5

x 10
4

−1

−0.5

0

0.5

1

sorted gene index

di
st

an
ce

distance measure = pearson_correlation
data set base name = randn_data_22747x7_

query gene ID = 23

data set 1
data set 2

10 20 30 40 50 60 70 80 90 100
−1

−0.98

−0.96

−0.94

−0.92

−0.9

sorted gene index

di
st

an
ce

data set 1
data set 2

3.4c RAND N input data set.

Figure 3.4: Negative Pearson correlation for three different input data
sets.

22 Problem Outline

0 0.5 1 1.5 2 2.5

x 10
4

0

0.1

0.2

0.3

0.4

sorted gene index

di
st

an
ce

distance measure = rank_msr
data set base name = cold_full_

query gene ID = 23

data set 1
data set 2

10 20 30 40 50 60 70 80 90 100
0

0.005

0.01

0.015

0.02

sorted gene index

di
st

an
ce

data set 1
data set 2

3.5a COLD FULL input data set.

0 0.5 1 1.5 2 2.5

x 10
4

0

0.1

0.2

0.3

0.4

sorted gene index

di
st

an
ce

distance measure = rank_msr
data set base name = hetero_full_

query gene ID = 23

data set 1
data set 2

10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

sorted gene index

di
st

an
ce

data set 1
data set 2

3.5b HETERO FULL input data set.

0 0.5 1 1.5 2 2.5

x 10
4

0

0.1

0.2

0.3

0.4

sorted gene index

di
st

an
ce

distance measure = rank_msr
data set base name = randn_data_22747x7_

query gene ID = 23

data set 1
data set 2

10 20 30 40 50 60 70 80 90 100
0

0.002

0.004

0.006

0.008

0.01

sorted gene index

di
st

an
ce

data set 1
data set 2

3.5c RAND N input data set.

Figure 3.5: Rank MSR distance for three different different input data
sets. One conspicuous feature of the plots is that there are some discrete
distance levels; their number does not exceed 37, even though there are
6! = 720 possible levels.

Distance Measures 23

0 0.5 1 1.5 2

x 10
4

0

0.5

1

1.5

2

x 10
4

Euclidean rank

P
ea

rs
on

 C
or

re
la

tio
n

ra
nk

distance measure = euclidian−vs−pearson_correlation
data set base name = cold_full_−vs−cold_full_

query gene ID = 23−vs−23

3.6a Euclidean vs. Correlation

10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

Euclidean rank

P
ea

rs
on

 C
or

re
la

tio
n

ra
nk

3.6b Euclidean vs. Correlation (detail)

0 0.5 1 1.5 2

x 10
4

0

0.5

1

1.5

2

x 10
4

Euclidean rank

ra
nk

ed
 M

S
R

 r
an

k

distance measure = euclidian−vs−rank_msr
data set base name = cold_full_−vs−cold_full_

query gene ID = 23−vs−23

3.6c Euclidean vs. ranked MSR

10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000
2100

Euclidean rank

ra
nk

ed
 M

S
R

 r
an

k

3.6d Euclidean vs. ranked MSR (detail)

0 0.5 1 1.5 2

x 10
4

0

0.5

1

1.5

2

x 10
4

Pearson Correlation rank

ra
nk

ed
 M

S
R

 r
an

k

distance measure = pearson_correlation−vs−rank_msr
data set base name = cold_full_−vs−cold_full_

query gene ID = 23−vs−23

3.6e Correlation vs. ranked MSR

10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800

Pearson Correlation rank

ra
nk

ed
 M

S
R

 r
an

k

3.6f Correlation vs. ranked MSR (detail)

Figure 3.6: Exemplary comparison of three distance measures on the
data set COLD FULL. The results are principally identical for the other
data sets.

24 Problem Outline

Chapter 4

Algorithms and Implementations

The first two sections abstractly introduce the evolutionary algorithm and the
PISA framework. A third extended chapter is dedicated to the local search proce-
dure since it is, together with some extensions of the framework, at the heart of
this work. We will give a few algorithms in detail but will forgo any source code
in favor of implementation concepts.
We will then introduce a mutation operator that flips the same number of ones
to zeros as vice versa and compare it later against the standard, independent bit
flip operator. Furthermore, we describe a method to constrain the search radius
of the local search, because it tends to gather individuals in identical local optima
(especially on multi-modal search landscapes).

4.1 The Evolutionary Algorithm

We briefly want summarize points concerning the evolutionary algorithm. The
following list gives a few cornerstones of the EA encapsulating the T2QGS local
search strategy. A schematic view of the EA is depicted in Figure 4.1.

Figure 4.1: Schematic view of an iteration in an evolutionary algorithm.
Adopted from [4].

26 Algorithms and Implementations

• Solution representation. An individual is encoded as two bit strings of the
lengths |G| and |C| respectively, which is straightforward. There are other
suggestions towards the representation of a solution, like minimum spanning
trees [23] or group oriented encodings [9].

• Fitness Assignment. The local search is delegated to assign the fitness val-
ues to an individual. Since the new local search T2QGS will be extensively
discussed at some later point, we will not go into details here.

• Mating Selection. The mating selection scheme is implemented as a tourna-
ment selection and is usually of size 2.

• Variation Operators: Mutation and Recombination. There are two muta-
tion strategies we employed. One was independent bit mutation, where and
arbitrary bit is flipped with some fixed probability. However, we considered
a method that flips the same number of bits from 1 to 0 as from 0 to 1 for
it appeared a more adequate operator for variation. For the recombination
part, we use an uniform crossover strategy that assigns a bit from the first
individual to the second with a random but fixed probability and vice versa.

• Environmental Selection Scheme. Selection is entirely left up to IBEA, for
details see [25].

In the next section will be briefly introducing the PISA framework that constitutes
the EA.

4.2 The PISA Framework

The framework for the EA called PISA is a platform and programming language
independent interface for search algorithms [2] completely implemented in C++.
It consists of two independent modules, the Variator and the Selector that com-
municate via text files. This separation in a problem specific and an optimization
algorithm specific part is especially beneficial in multi-objective search algorithms,
since it allows the application engineer to test several optimization algorithms in
a plug-in fashion, see Figure 4.2. In this work, we are concerned with the problem
specific part where the T2QGS algorithm is implemented. For the optimization
algorithm we employed IBEA for all runs.

4.3 Local Search

In the introduction we presented the fundamental notion of a memetic algorithm:
it tries to combine the exploitation strength of a local search with the exploration
power of a global optimizer, the EA. This entails that the EA is concerned with
locally optimal solutions only but potentially, the local search is too strong and
its neighborhood needs to be restricted.

From a global point of view, this works as follows (Figure 4.3). To indicate to
the system that we wish to solve a problem with, say, the T2QGS local search,
we introduce a parameter in ebica_param.txt named evaluation_type that

Local Search 27

Figure 4.2: Schematic view of the PISA framework.

can be set to the name of the method, in this example qgs_t2_ls. Based on this
parameter, the framework allocates a local search object of the desired type. For
the individual, it suffices to hold a static reference to a local_search object
which receives its dynamic type through the aforementioned initialization. The
invocation of the correct functions can then be abandoned to polymorphism.

The PISA framework in its modular architecture perfectly allows for the imple-
mentation of a new local search strategy in a plug-in fashion. PISA is innately
able to deal with multiple objectives and since the local search is accountable for
the assignment of fitness values, we only need to focus on the implementation of
the local search that must be able to assign multiple objectives (apart from all
other functionality of course). The following two sections describe the SOHM and
T2QGS strategies.

4.3.1 SOHM Local Search Strategy

Section 3.1.2 outlined the optimization goal of the SOHM problem. We tackled
this problem by implementing a new local search strategy as an alternative to the
local search that solves the SOSM problem. We will now consider some details.

Concerning the implementation, we could build upon previous work: given the im-
plementation of the SOSM in PISA [2, 3, 5], we mostly needed to re-implement
parts of the local search (moop_rank_ls::ls_so_size). This local search resem-
bles the three-step strategy of SOSM insofar as that it also follows the idea of
Cheng and Church, mentioned in Section 2.1. Furthermore, it also guarantees that
only feasible solutions result from the local search.
We are finally left with the implementation of three moop_rank_ls member func-

28 Algorithms and Implementations

Figure 4.3: UML diagram to show the interdependence of the two
classes individual and local_search (and their descendants)
in the PISA framework. This class structure allows for a modular han-
dling of the local search strategies (STRATEGY design pattern [10]).

tions alg_1, alg_2, and alg_3 newly merged into the following two functions:

• alg_1_sizeconstraint implements a single and multiple node deletion al-
gorithm for multiple data sets. Each dataset is considered independently. The
single node deletion removes the node whose exclusion leads to the largest
increase in homogeneity, i.e. to the largest decrease of the MSR. The mech-
anism for multiple node deletion should help to improve the performance;
under the assumption that some threshold measure (that needs to be recal-
culated in every iteration) remains valid for the removal of several nodes, we
can remove nodes based on this approximate measure. To avoid too much
inaccuracy, we allow this procedure only for cluster sizes above some thresh-
old value (row_threshold, defined in moop_rank_ls_param.txt; typical
value: 1’000).

• alg_3_sizeconstraint implements a single node addition algorithm. First
it checks all genes, whether its addition would increase the MSR for any of
the participating files. The gene is added if and only if this is not the case.
Then the same procedure is repeated for the chips.

We are not going to present results to this problem. Firstly, it served as a quick
way to get familiar with PISA framework and yielded preliminary results only.
Secondly, this local search is computationally still very expensive and prevents us
from extensive statistical analyses unless the code is optimized. And thirdly, this
work is dedicated to the query gene approach that we want to investigate in detail.
However, we documented the SOHM local search for completeness.

4.3.2 T2QGS Local Search Strategy

Compared to the SOHM algorithm in the previous chapter, the T2QGS is
a fundamentally different clustering approach. This is also reflected on the

Local Search 29

Algorithm 1: Deterministic repair function.

no genes : number of genes in cluster
min no genes : constraint on minimum number of genes
r mean : row mean value over all data sets
if no genes < min no genes then

pi← sort r mean in ascending order and store the resulting
permutation of indices
add the first no genes−min no genes genes of pi that are not in
the cluster to the cluster

end

implementation side, where we developed the T2QGS local search from scratch
instead of just adopting some functions to fit the new requirements as we did
beforehand; there are 1600+ lines of source code dedicated to the local search only.

A key function is qgs_t2_ls::ls which is called from inside the evaluation func-
tion of each individual (Figure 4.3). Its task is both to assure the feasibility of the
resulting solution and to assign all objective values. It operates in four stages:

1. Repair individual to ensure feasibility. The EA may generate individuals that
violate a constraint. For instance, this is the case if the number of experiments
|C| of the bicluster is smaller than the minimum number of experiments the
constraint min_chips_constraint (defined in qgs_t2_ls_param.txt) de-
mands. Of course, the neatest way would be to have an encoding that makes
infeasible solutions impossible. Since this does not hold for our representa-
tion, we can apply a repair function that transforms an infeasible individual
into a feasible one. We now have at least two possibilities to achieve this, in
particular in a deterministic or in a stochastic fashion. EAs are inherently
randomized algorithms and on one hand one could consider it appropriate
to randomize the repair function and with this the evaluation function. On
the other hand one does not feel certain about the outcome of this practice
because two identical (and in our case infeasible) individuals will not neces-
sarily evaluate to the same objective values anymore. There are algorithms
that can handle randomized evaluation functions, but for our purpose we
employ a deterministic scheme. For details see Algorithm 1.

2. Remove genes far away from the query gene. Removing genes from the
bicluster should be done such that the genes closest to the query gene re-
main in the bicluster. We first employ a multiple node deletion algorithm
that achieves an exponential reduction of the number of genes in the cluster
over the iterations, Algorithm 2. To this end, it calculates the overall mean
distance d̄ of all genes ∈ G over the selected experiments C of all files. Then
those genes with a mean distance above d̄ are removed. If the number of genes
in the cluster drops below some threshold value tr, the algorithm switches to
single node deletion. The threshold tr is usually set to twice the minimum
number of genes constraint, because if tr would be chosen below that value,
we might produce an infeasible solution that would not be repaired anymore.
Above we would (probably needless) suffer from additional CPU time. The

30 Algorithms and Implementations

Algorithm 2: Single and multiple node deletion algorithm.

no genes : number of genes in cluster
min no genes : constraint on minimum number of genes
while no genes > min no genes do

foreach gene ∈ G do

row avg[gene]← calculate average over all data files of gene
end

overall avg ← mean of row avg
foreach gene ∈ G do

if row avg[gene] > overall avg then

remove gene from cluster
no genes← no genes− 1

end

if no genes ≤ 2 ·min no genes then

break
end

end

end

overtaking single node deletion algorithm removes the farthermost gene until
we reach the minimum number of genes constraint.

3. Add closest genes. For the gene addition, we have at least two options to
accomplish the task:

(a) Add gene if its distance to the query gene is among the closest q% of
all genes ∈ G. q is a parameter named ls_add_genes_q, defined in
qgs_t2_ls_param.txt and typically set to 0.5 in our case. From this
strategy it is not clear how it respects every objective value fi: it tries
to add as many genes as possible (→ favoring size objective) but it does
not add genes that are too far away from the query gene regarding G
(→ restricting maximum dissimilarity). The other option distinguishes
the influence of the fi more clearly.

(b) Make explicit use of the objective values by applying some dominance-
based measure. This would make sense insofar that it emulates the
selection strategy imposed from the selector (i.e. IBEA). Unfortunately,
this is a population-based measure that requires population wide infor-
mation we do not have available in an individual’s local search. This
obstacle cannot be avoided, but for instance, we could alternatively ap-
ply a local dominance based search strategy: add a gene if it improves all
objectives fi. Indeed, such dominators potentially exist, since our dis-
tance measures are based on mean values where adding below-average
gene decreases the its value. The size objective fn+1 will always be de-
creased by the addition of a gene1.

However, since the latter option implies consequences that are difficult to

1Strictly speaking, this holds only for moderately small clusters with a number of genes below
the maximum genes constraint, see below.

Local Search 31

Algorithm 3: Gene addition algorithm.

no genes : number of genes in cluster
r mean : row mean value over all data sets
foreach gene ∈ G do

row avg[gene]← calculate average over all data files of gene
end

overall avg ← mean of row avg
set threshold
t← min(row avg[]) + q · (max(row avg[])−min(row avg[]))
foreach gene in G do

if row avg[gene] < t then

add gene to the cluster
end

end

estimate, we decided to implemented option (a). A more detailed description
of the addition algorithm is shown in Algorithm 3

4. Assign appropriate objective values. In memetic algorithms in general and
also in ours, the assignment of objective values is often left to the local
search. There are actually two perceptions of evolution regarding what hap-
pens over an individual’s lifetime, named after their initiators: Lamarck and
Baldwin. In the theory of Lamarck, individuals genetically inherit skills ac-
quired by their parents, where Baldwin stated that an individual can only
pass on genetic information that it inherited itself (with some attenuation).
This carries over to our case as follows: if we want to simulate Lamarckian
evolution, an individual is assigned the point (local optimum) that emerged
from the local search. In contrast, Baldwinian evolution attributes an indi-
vidual its fitness value from the solution found by the local search but the
individual undergoes no genetical changes after the local search. Two such
runs will be discussed in the section on results.
The computation of the fitness values is described in Algorithm 4. As given
in the problem description, all objectives are to be minimized. We have two
types of fitnesses to assign: homogeneity and size.

• We base the calculation of the homogeneity objective on the actual
distance measure. The bicluster {G, C} induces an objective value fd

for file d,

fd =
∑

g∈G

dist (g, Cd)
2

where Cd denotes the set of columns of the bicluster that belong to file
d. We have a total of n files.

• The size objective calculation involves at the same time a constraint
handling technique to penalize large clusters. Basically, a bicluster is
assigned a size objective value of

fn+1(σ) = 1/σ (4.1)

32 Algorithms and Implementations

where σ indicates its size. If we don’t intervene, the algorithm will make
use of the whole domain of cluster sizes ranging from the minimum num-
ber of genes constraint up to the total number of genes. From a biological
point of view this is not desirable because we are not expecting to find
biclusters of that size at all. Therefore we introduce a soft constraint
on the cluster size. Earlier, we mentioned two techniques for constraint
handling; here we apply a third one and penalize the cluster size if it
exceeds some given value. There is a variety of possibilities to achieve
this; anyhow there are two conditions one could reckon as meaningful:

(a) fn+1 should be C0-continuous. Since EAs are essentially zero-order
algorithms, one can argue that any higher order continuity will
probably not influence the performance.

(b) fn+1(M +k)
!
= fn+1(1)

(4.1)
= 1, where M is the maximum number of

genes constraint. The kth larger gene than M (k ∈ N) is demanded
to have the same value as the smallest feasible cluster.

We saw in a preliminary test that an exponential penalty appears to
be too severe compared to a polynomial penalty. Using a (continuous)
ansatz with a polynomial of oder p, fn+1(x) = a + b xp, one finds that
in general

a =
Mp+1 − (k + M)p

M (Mp − (k + M)p)
, b =

M − 1

M ((k + M)p −Mp)
. (4.2)

There is no good argument for higher order polynomials and that is
why we set p = 1. This reduces Eq. (4.2) to

a =
−M2 + M + k

k M
, b =

M − 1

k M
.

From this we define the size objective as

fn+1(σ) =

{

1/σ if m ≤ σ ≤M
−M2+M+k

k M
+ M−1

k M
σ if σ > M

, (4.3)

with σ ∈ N and m ∈ N minimum number of genes constraint.

Note that this function is invertible only for k = 1 (and strictly speaking
fn+1 6= 1), which can be may be valuable for understanding and comparing
the algorithm with versions where the size objective is not an optimization
target. Figure 4.4 visualizes Eq. (4.3).

We were also concerned with the normalization of objective values which
would facilitate the comparison between the different objectives. At this
point, we suffer from a problem that we have already faced in the context
of gene addition; to normalize the objective values to a certain range, e.g.
[0,1], one would need population wide information that is not available at
the level of the local search. Neither we are allowed to scale each objective
vector, which would be normalization within every individual instead of nor-
malization over the generation.
One way out would be to run one generation and then store the minimum

Equal-bit flip Mutation Operator 33

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

cluster size σ

si
ze

 o
bj

ec
tiv

e
va

lu
e

f n+
1

4.4a Parameters: M = k = 100.

0 20 40 60 80 100 120
0

1

2

3

4

5

6

7

8

9

10

cluster size σ

si
ze

 o
bj

ec
tiv

e
va

lu
e

f n+
1

4.4b Parameters: M = 100, k = 1.

Figure 4.4: Size objective function with penalty for soft constraint vio-
lations.

values for each objective globally such that this can be used by the sub-
sequent fitness calculations for normalization. Since doing so destroys the
possibility of comparing between the different runs and furthermore did not
improve the performance of the algorithm, we decided not to apply a scaling
to the objectives. Typical orders of magnitude for the values of homogeneity
objectives are 10−2 where for the size objective values this is approximately
10−3.

4.4 Equal-bit flip Mutation Operator

The PISA framework implements two standard mutation strategies: independent
bit flip and single bit flip. The former strategy flips every gene and every chip
bit with some fixed probability. Single bit flip performs one single bit flip drawing
from an uniform distribution. Both of these strategies potentially disrupt solu-
tions because the individuals we are interested in tend to have much more zeros,
O(10′000), than ones, O(10), where a method that balances ones and zeros in ex-
pectation will impose a bias towards much larger clusters. Therefore we introduce
a new bit flip strategy that flips as many ones to zeros as zeros to ones. It chooses
a random number in [0, total_genes−1] and seeks for the next zero in order to
flip it to 1 (wrap around). It counts how many times a one was flipped. Then it
applies the same procedure to flip the same number of ones to zero. Details are
given in Algorithm 5. For this mutation operator, the number of bits in a cluster
is only changed by cross-over. By ’uniform initialization’ we ensure that there are
not only individuals with all bits set to one.

4.5 Restricting the Local Search

The local search is known to be quite strong in finding local optima. This can
be a cause for a low diversity of the population but also prevent the algo-
rithm from exploring certain solutions. Therefore we implemented a restriction

34 Algorithms and Implementations

Algorithm 4: Objective assignment.

dist arr : array of distances to the query gene for each file and each
gene (total n files)
max no genes : maximum number of genes (soft constraint)
obj val : array of objective values (n + 1 objectives)
foreach file of the problem do

obj val[file]← 0
foreach gene ∈ G do

obj val[file]← obj val[file] + (dist arr[file][gene])2

end

end

if use size objective then

size← no genes · no chips
if no genes ≤ max no genes then

obj val[n + 1] ← 1/size
else if penalty type == exponential then

obj val[n + 1] ← apply exponential penalty
else if penalty type == linear then

obj val[n + 1] ← apply linear penalty
end

end

for the local search: it does not allow the algorithm to add or remove more than
max_add_del_genes genes from a solution. This rule only applies if the number of
genes in the cluster is below some threshold value, typically max_no_genes defined
in Algorithm 4. If this threshold was omitted it would take many generations for
large clusters to shrink to a feasible size. The user may choose via the parameter
file qgs_t2_ls_param.txt whether this restriction strategy should be applied or
not.

4.6 Implementation Concept

We conclude this chapter with a an important implementation concept we fol-
lowed: we tried to never dismiss a former functionality for the sake of an extension
or even new one. So at many points throughout the code you will find branches
where new functionality is implemented but yet is not in conflict with already
existing code. The decisions at these branches are controlled by the parameter files
and for this reason, at each level (PISA, ebica, and xxx ls) there is a parameter file.

Implementation Concept 35

Algorithm 5: Equal bit flip mutation operator. It is applied to the gene and
chip bit string independently. Here we show the case for genes.

length : length of input bit string
no genes : number of genes in cluster
mut prob : probability for a bit mutation
for i = 1 to N do

if double rand([0,1[) < mut prob then

if no genes 6= 0 then

b← int rand([0, total genes])
flip the next 1 to a 0 beginning at position b
no genes← no genes− 1

end

b← int rand([0, total genes− 1])
flip the next 0 to a 1 beginning at position b

end

end

36 Algorithms and Implementations

Chapter 5

Results

This section summarizes the outcome of our investigations. To this end we doc-
ument the experimental setup and define therein a reference case we can refer to
later. The actual results are split in two sections: the first compares the output of
a SOSM run versus a T2QGS run for a sanity check and then details the perfor-
mance of the T2QGS algorithm by comparing several 2D size constrained and a
3D size optimized runs. The parameters we thereby varied are presumed to behave
sensitive. In a second and shorter section, we present observations made during
the development of the T2QGS algorithm. These preliminary results are meant
to indicate tendencies only, since they lack statistical validation. In a last section
we turn to convergence and consider to this end the development of the objective
values over the generations.

5.1 Experimental Setup

5.1.1 Data sets

For the runs we made use of two real and one artificial input data set. All
simulations were performed on gene expression data generated with Affymetrix
GeneChips from Arabidopsis thaliana, a small plant. A more detailed description
is given in Table 5.1.

5.1.2 Reference Run

We want to define a reference run and specify its parameters in detail. Doing so
allows us to give only the deltas for other runs compared to this datum run. Table
5.2 shows the settings.

5.1.3 Performance

The run time for T2QGS runs strongly depends on several parameters. Of course,
increasing the population size, the number of generations etc. makes the run more
expensive. Apart from this, the evolution type (Lamarck/Baldwin), the distance
measure and clustering/biclustering have a strong impact on the run time. The
reference run with 150 generations (instead of 100) took about 288 mins1 to

1All simulations were run on a Intel Xeon 3.06 GHz CPU with 2 GB RAM.

38 Results

Name Description

COLD_FULL

A series of experiments investigated the response of Arabidopsis
thaliana to different kinds of stresses. The related data was pro-
vided by the AtGenExpress consortium and consists of 8 time se-
ries with 6 time points each. Therefrom we chose 2 time series to
form the COLD FULL input data set that contains 22’746 genes
and 12 experiments.
This data set represents a case where the expression values are
well comparable across the different time courses; the experimen-
tal setup was identical for all different kind of stresses, all mea-
surements were performed by the same laboratory using the same
microarray technology, the expression values were normalized and
log ratios were calculated using measurements from an untreated
control plant.

HETERO_FULL

This input data set also consists of two data sets, where the first is
the same as for the COLD FULL input data set. The second has
been taken from a measurement series that is much more diverse
than those of the first data set; it includes different types of treat-
ments such as heat stress, infection with Pseudomonas syringae,
and measurements of diurnal changes. All expression values were
normalized. In contrast to the first data set absolute expression
values are used. Our input data set has the dimensions 2 × 22’746
genes × 6 experiments.

RAND_N

Again, RAND N consists of two data sets with 22’746 genes and
2 × 6 experiments that were sampled from a standard Normal
distribution N (0, 1). We chose this distribution since it is the dis-
tribution with maximum entropy and thus the least information
content. This input data set served mostly for the study of distance
measures.

Table 5.1: Input data sets in use.

Extensive Investigations 39

Parameter Value

Data set HETERO FULL
Query gene (specific for data set) 23
Size objective yes
Min. number of genes constraint 10
Max. number of genes constraint, k 200, 100
Min. number of experiments 6 (all), 11 (all)
Mutation probability 0.1
Number of generations 100
Evolution type baldwinian
Tournament size 2
Soft constraint type linear
Distance measure ranked MSR
Rank scaling yes
Constrain local search no

Table 5.2: Parameters of the Reference Run.

complete where a 2D reference run (constraint on the size) yielded a run time of
about 212 mins.

Regarding the T2QGS algorithm, there is a highly promising optimization poten-
tial: if the user agrees to be content with clustering instead of biclustering, the
internal distance tables, holding the distance from every gene to the query gene
for every file, become only data dependent. They have to be calculated only once
for the whole run. For biclustering, we have to recalculate the distance table for
every generation and each individual, since in- or excluding experiments changes
the distance; using look-up tables is in the case of biclustering infeasible, because
there would be 2

P

i
|Ci| many tables to keep in the memory (where ≈ 3 MB each).

If the user insists on biclustering, we can apply a less powerful but yet worthwhile
optimization: provided that we use any distance measure that is the mean of a
quantity q,

q̄ =
1

N

N
∑

i=1

qi,

and want to, say, remove one element from qk from the average to receive the new
mean p̄, we can achieve this by

p̄ =
1

N − 1
(N q̄ − qk).

5.2 Extensive Investigations

We have introduced a few new concepts and a lot of related parameters. Since we
are confronted with a combinatorially large number of possible constellations we
selected a small subset of parameters that are potentially sensitive with respect to
the outcome of a run. This set encloses the boolean whether or not to include the
size objective, the query gene, the minimum number of genes constraint and the

40 Results

random generator seed. In Section 5.2.2 we present extended results on the impact
of these parameters.
During this project we have also set up single simulations that indicated tendencies
we did not pursue further in statistical evaluable runs, because we concentrated on
the abovementioned investigation of parameters. Nevertheless those results may
be of use and we will summarize them in Section 5.3.
But before we start out to study the performance of the algorithm on the selected
parameter set, we show that the T2QGS algorithm is able to recover an OPSM the
SOSM algorithm already found. Further we define a reference run that serves as
datum for the other simulations.

5.2.1 SOSM vs. T2QGS

Here we want to perform a basic sanity check of the T2QGS algorithm. To this
end we show that the multi-objective T2QGS approach is able to recover the same
perfect2 bicluster of size 32 genes × 12 experiments the SOSM algorithm finds in
the COLD FULL data set.
First we ran the SOSM algorithm with the homogeneity constraint δ set to zero.
This forces the SOSM algorithm to search for OPSMs only. The number of exper-
iments constraint is set to the number of experiments, such that we are concerned
with clustering. The largest bicluster of this kind that can be found has the above-
mentioned size of 32×12; see Figure 5.1 for the expression profiles of both datasets.

1 2 3 4 5 6 7 8 9 10 11
−4

−3

−2

−1

0

1

2

timepoint index

ex
pr

. v
al

ue

proj1.stdrun.out.2005..., cold_full_, 32 genes
MSR

overall, scaled
=0.0068303, MSR

each, scaled
=0 0

Figure 5.1: The largest cluster that was revealed by both the SOSM
algorithm and the T2QGS approach. It contains 32 genes and 12 ex-
periments and is an OPSM.

2With ’perfect’ we refer to a bicluster that is an OPSM and therefore has a vanishing MSR
score.

Extensive Investigations 41

Second, given the above run, we chose a gene from the 32×12 cluster and input
it to the T2QGS algorithm as the query gene. There is no size objective for this
comparison and we have only the two data files from the COLD FULL data set,
each of them acting as one objective. The solutions were constrained to a minimum
of 10 genes and all experiments in both data sets.
For three out of three different query genes, all of them being members of the
32×12 cluster, T2QGS returned the same cluster that we found earlier with the
SOSM approach depicted in Figure 5.1. The algorithm seems to work as expected.

5.2.2 Including the Size Objective

Here we compare the performance of the T2QGS algorithm in a case where we
include the cluster size as an additional, competing objective versus a case where
we constrain the EA to a minimum number of genes. We are clustering on the
HETERO FULL input data set containing 22’746 genes and 2 × 6 experiments.
Thus, we have

• two homogeneity objectives f1, f2 and

• one size objective f3

to minimize. The result of the reference run (3-objective optimization) is given in
Figure 5.2 in the objective space. The front has quite a narrow shape which can be
ascribed to scaling. We neither made use of IBEA’s option to scale the objectives
nor did we introduce a scaling on the variator side. Since scaling is something we
imposed on the problem and that has not changed over all runs, we will not run
into troubles because of that. However, this can be illustrated by multiplying the
third objective by 50 such that it is transformed into the same absolute order of
magnitude as the first and the second. Figure 5.3 shows that the shape of the front
has become wider.

In order to compare the 2D and 3D results (without and with the size objective,
respectively), we proceed as follows. Since the size objective f3 of a 3D run (namely
the reference run) is directly related to the size σ = |G| · |C| of the cluster, f3 = 1

σ
,

one can treat the iso-objective line f3 = ξ, use |G| = 1
ξ |C| and set up a 2D run

with a minimum number of genes constraint set to |G|. Since we want to compare
the two cases in two dimensions, we select all individuals from the 3D run with
f3 ≤ ξ and filter them to obtain non-dominated solutions only. After filtering out
all dominated solution from the 2D run as well, we can summarize the two fronts
in one single plot. This conservative strategy has been applied to a variety of cases
as shown in Figures 5.5–5.8 for a first query gene and in Figures 5.9–5.12 for the
other query gene. We carried out simulations for the query genes 23 and 1313 in
HETERO FULL, neither of them belonging to a known cluster and for each of
them with and without optimizing the size. Those runs that do not use the size as
an objective have four different size constraints (15, 37, 58 and 66 genes). Every
of these combinations has been run with five random number generator seeds to
make sure we’re not looking into an artifact caused by the very seed. The same
applies to those cases including the size as an objective.
Summarizing, there are 2 · 4 · 5 + 2 · 5 = 50 runs in total to investigate, Figure 5.4
tries to give a rough overview. The runs are identical to the reference run (Section
5.1.2) except for the four abovementioned varied parameters plus the number of

42 Results

0
0.02

0.04
0.06

0.08
0.1

0.12
0.14

0.16
0.180

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

1

2

3

4

5

6

x 10
−3

unscaled objective value f
2

objective space at generation 150
distance measure = rank_msr, data set base name = hetero_full_

run = proj2.eval.3.4, query gene ID = 23

unscaled objective value f
1

un
sc

al
ed

 o
bj

ec
tiv

e
va

lu
e

f 3

1

1.5

2

2.5

3

3.5

4

4.5

x 10
−3

Figure 5.2: An approximation of the Pareto front of a 3-objective opti-
mization problem (parameters conforming with the reference run).

generations parameter which we increased from 100 to 150.

The 2D and 3D runs both have the same number of individuals in their popula-
tions. When we leave all parameters unchanged and move from 2 to 3 objectives,
the algorithm has to distribute the individuals in an additional dimension. This
drastically affects the resolution, even if we add only one single dimension and
besides, it makes it more difficult for the algorithm to explore/exploit the search
landscape. This finding reminds of a known phenomenon called curse of dimen-
sionality which in general describes the observation that the number of points
needed to sample a space equidistantly grows exponentially in the dimension of
the space. For our case this translates into a massive increase in the number of
non-dominated solutions (if drawn randomly). Note that if we wanted to work
against this problem, we had to increase the number of individuals exponentially
which would yield an exponential increase in CPU time. Observing Table 5.3 shows
the expected tendency. We ran one simulation (for query gene 23 and seed no. 4,
cf. lowest plot in Figure 5.8) with a population size of 1000 individuals, which
visibly improves the number of solutions that are non-dominated (and therefore
displayed), see Figure 5.13.

Extensive Investigations 43

0
0.01

0.02
0.03

0.04
0.05

0.06
0.07

0.08
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

unscaled objective value f
2

objective space at generation 150
distance measure = rank_msr, data set base name = hetero_full_

run = eval.8, query gene ID = 23

unscaled objective value f
1

un
sc

al
ed

 o
bj

ec
tiv

e
va

lu
e

f 3 ⋅
50

0.1

0.15

0.2

0.25

Figure 5.3: The identical problem as in Figure 5.2 but with rescaled
size objective f3 ← 50 f3.

Another interesting point is the size distribution of the individuals in the last popu-
lation for we can learn something about how the algorithm distributes the solutions
over the front and simultaneously check whether the soft constraint accomplishes
its task. We have upper bounded the cluster size to 200 genes by a soft constraint
on f3. Figure 5.14 shows the mean, minimum and maximum number of genes over
5 runs of the two 3D runs from above. The number of genes in the clusters are
almost uniformly distributed in the interval [15, 60] for the first (Figure 5.14a) and
[15, 80] for the second query gene (Figure 5.14b). However, this is a range for the
size where biologically relevant clusters are expected to occur.

44 Results

Figure 5.4: Total 50 runs that investigate the impact of including the as
size constraint in the optimization. The tree is symmetrical, reoccurring
branches are shown only once.

eval.1.1.{0–4} eval.1.2.{0–4} eval.1.3.{0–4} eval.1.4.{0–4}

min. # genes 15 37 58 66
2D: # non-dom. sol. 218.4 (27.5) 162.4 (23.0) 40 (14.5) 59.8 (37.8)
3D: # non-dom. sol 367.4 (5.4)

Table 5.3: Number of non-dominated solutions for the different 2D/3D
comparison runs. Regarding the population size of 400 individuals, the
impact of the additional dimension is heavy. All runs used query gene 23.
We gave the means over 5 runs and in brackets the sample’s standard
deviation.

Extensive Investigations 45

0 0.005 0.01 0.015 0.02 0.025 0.03
0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

comparing proj2.eval.1.1 <−−> proj2.eval.3, seed no. 0
min_genes: 15, min_chips: 17, dominators: 226 (2D), 377 (3D) of 400

unscaled objective value f
1

un
sc

al
ed

 o
bj

ec
tiv

e
va

lu
e

f 2

no size objective, use size constraint
use size objective, linear penalty

0 0.005 0.01 0.015 0.02 0.025
0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

comparing proj2.eval.1.1 <−−> proj2.eval.3, seed no. 1
min_genes: 15, min_chips: 17, dominators: 225 (2D), 366 (3D) of 400

unscaled objective value f
1

un
sc

al
ed

 o
bj

ec
tiv

e
va

lu
e

f 2

no size objective, use size constraint
use size objective, linear penalty

0 0.005 0.01 0.015 0.02 0.025 0.03
0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

comparing proj2.eval.1.1 <−−> proj2.eval.3, seed no. 2
min_genes: 15, min_chips: 17, dominators: 235 (2D), 363 (3D) of 400

unscaled objective value f
1

un
sc

al
ed

 o
bj

ec
tiv

e
va

lu
e

f 2

no size objective, use size constraint
use size objective, linear penalty

0 0.005 0.01 0.015 0.02 0.025
0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

comparing proj2.eval.1.1 <−−> proj2.eval.3, seed no. 3
min_genes: 15, min_chips: 17, dominators: 236 (2D), 362 (3D) of 400

unscaled objective value f
1

un
sc

al
ed

 o
bj

ec
tiv

e
va

lu
e

f 2

no size objective, use size constraint
use size objective, linear penalty

0 0.005 0.01 0.015 0.02 0.025 0.03
0.02

0.03

0.04

0.05

0.06

0.07

0.08

comparing proj2.eval.1.1 <−−> proj2.eval.3, seed no. 4
min_genes: 15, min_chips: 17, dominators: 170 (2D), 369 (3D) of 400

unscaled objective value f
1

un
sc

al
ed

 o
bj

ec
tiv

e
va

lu
e

f 2

no size objective, use size constraint
use size objective, linear penalty

Figure 5.5: Impact of size as objective: query gene 23, comparing clus-
ters of size 15.

46 Results

0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07
0.12

0.14

0.16

0.18

0.2

0.22

0.24

comparing proj2.eval.1.2 <−−> proj2.eval.3, seed no. 0
min_genes: 37, min_chips: 17, dominators: 136 (2D), 377 (3D) of 400

unscaled objective value f
1

un
sc

al
ed

 o
bj

ec
tiv

e
va

lu
e

f 2

no size objective, use size constraint
use size objective, linear penalty

0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07
0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

comparing proj2.eval.1.2 <−−> proj2.eval.3, seed no. 1
min_genes: 37, min_chips: 17, dominators: 184 (2D), 366 (3D) of 400

unscaled objective value f
1

un
sc

al
ed

 o
bj

ec
tiv

e
va

lu
e

f 2

no size objective, use size constraint
use size objective, linear penalty

0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07
0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

comparing proj2.eval.1.2 <−−> proj2.eval.3, seed no. 2
min_genes: 37, min_chips: 17, dominators: 178 (2D), 363 (3D) of 400

unscaled objective value f
1

un
sc

al
ed

 o
bj

ec
tiv

e
va

lu
e

f 2

no size objective, use size constraint
use size objective, linear penalty

0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07 0.075
0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

comparing proj2.eval.1.2 <−−> proj2.eval.3, seed no. 3
min_genes: 37, min_chips: 17, dominators: 175 (2D), 362 (3D) of 400

unscaled objective value f
1

un
sc

al
ed

 o
bj

ec
tiv

e
va

lu
e

f 2

no size objective, use size constraint
use size objective, linear penalty

0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065
0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

comparing proj2.eval.1.2 <−−> proj2.eval.3, seed no. 4
min_genes: 37, min_chips: 17, dominators: 139 (2D), 369 (3D) of 400

unscaled objective value f
1

un
sc

al
ed

 o
bj

ec
tiv

e
va

lu
e

f 2

no size objective, use size constraint
use size objective, linear penalty

Figure 5.6: Impact of size as objective: query gene 23, comparing clus-
ters of size 37.

Extensive Investigations 47

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

comparing proj2.eval.1.3 <−−> proj2.eval.3, seed no. 0
min_genes: 58, min_chips: 17, dominators: 30 (2D), 377 (3D) of 400

unscaled objective value f
1

un
sc

al
ed

 o
bj

ec
tiv

e
va

lu
e

f 2

no size objective, use size constraint
use size objective, linear penalty

0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12
0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

comparing proj2.eval.1.3 <−−> proj2.eval.3, seed no. 1
min_genes: 58, min_chips: 17, dominators: 53 (2D), 366 (3D) of 400

unscaled objective value f
1

un
sc

al
ed

 o
bj

ec
tiv

e
va

lu
e

f 2

no size objective, use size constraint
use size objective, linear penalty

0.04 0.06 0.08 0.1 0.12 0.14 0.16
0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

comparing proj2.eval.1.3 <−−> proj2.eval.3, seed no. 2
min_genes: 58, min_chips: 17, dominators: 33 (2D), 363 (3D) of 400

unscaled objective value f
1

un
sc

al
ed

 o
bj

ec
tiv

e
va

lu
e

f 2

no size objective, use size constraint
use size objective, linear penalty

0.05 0.055 0.06 0.065 0.07 0.075 0.08 0.085 0.09 0.095
0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

comparing proj2.eval.1.3 <−−> proj2.eval.3, seed no. 3
min_genes: 58, min_chips: 17, dominators: 26 (2D), 362 (3D) of 400

unscaled objective value f
1

un
sc

al
ed

 o
bj

ec
tiv

e
va

lu
e

f 2

no size objective, use size constraint
use size objective, linear penalty

0.05 0.06 0.07 0.08 0.09 0.1 0.11
0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

comparing proj2.eval.1.3 <−−> proj2.eval.3, seed no. 4
min_genes: 58, min_chips: 17, dominators: 58 (2D), 369 (3D) of 400

unscaled objective value f
1

un
sc

al
ed

 o
bj

ec
tiv

e
va

lu
e

f 2

no size objective, use size constraint
use size objective, linear penalty

Figure 5.7: Impact of size as objective: query gene 23, comparing clus-
ters of size 58.

48 Results

0.06 0.07 0.08 0.09 0.1 0.11 0.12
0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

comparing proj2.eval.1.4 <−−> proj2.eval.3, seed no. 0
min_genes: 66, min_chips: 17, dominators: 40 (2D), 377 (3D) of 400

unscaled objective value f
1

un
sc

al
ed

 o
bj

ec
tiv

e
va

lu
e

f 2

no size objective, use size constraint
use size objective, linear penalty

0.06 0.07 0.08 0.09 0.1 0.11 0.12
0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

comparing proj2.eval.1.4 <−−> proj2.eval.3, seed no. 1
min_genes: 66, min_chips: 17, dominators: 29 (2D), 366 (3D) of 400

unscaled objective value f
1

un
sc

al
ed

 o
bj

ec
tiv

e
va

lu
e

f 2

no size objective, use size constraint
use size objective, linear penalty

0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15
0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

comparing proj2.eval.1.4 <−−> proj2.eval.3, seed no. 2
min_genes: 66, min_chips: 17, dominators: 51 (2D), 363 (3D) of 400

unscaled objective value f
1

un
sc

al
ed

 o
bj

ec
tiv

e
va

lu
e

f 2

no size objective, use size constraint
use size objective, linear penalty

0.06 0.08 0.1 0.12 0.14 0.16 0.18
0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

comparing proj2.eval.1.4 <−−> proj2.eval.3, seed no. 3
min_genes: 66, min_chips: 17, dominators: 54 (2D), 362 (3D) of 400

unscaled objective value f
1

un
sc

al
ed

 o
bj

ec
tiv

e
va

lu
e

f 2

no size objective, use size constraint
use size objective, linear penalty

0.065 0.07 0.075 0.08 0.085 0.09 0.095 0.1 0.105 0.11 0.115
0.32

0.34

0.36

0.38

0.4

0.42

0.44

comparing proj2.eval.1.4 <−−> proj2.eval.3, seed no. 4
min_genes: 66, min_chips: 17, dominators: 125 (2D), 369 (3D) of 400

unscaled objective value f
1

un
sc

al
ed

 o
bj

ec
tiv

e
va

lu
e

f 2

no size objective, use size constraint
use size objective, linear penalty

Figure 5.8: Impact of size as objective: query gene 23, comparing clus-
ters of size 66.

Extensive Investigations 49

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
0.005

0.01

0.015

0.02

0.025

comparing proj2.eval.2.1 <−−> proj2.eval.4, seed no. 0
min_genes: 15, min_chips: 17, dominators: 299 (2D), 378 (3D) of 400

unscaled objective value f
1

un
sc

al
ed

 o
bj

ec
tiv

e
va

lu
e

f 2

no size objective, use size constraint
use size objective, linear penalty

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
0.005

0.01

0.015

0.02

0.025

comparing proj2.eval.2.1 <−−> proj2.eval.4, seed no. 1
min_genes: 15, min_chips: 17, dominators: 336 (2D), 366 (3D) of 400

unscaled objective value f
1

un
sc

al
ed

 o
bj

ec
tiv

e
va

lu
e

f 2

no size objective, use size constraint
use size objective, linear penalty

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0.005

0.01

0.015

0.02

0.025

0.03

comparing proj2.eval.2.1 <−−> proj2.eval.4, seed no. 2
min_genes: 15, min_chips: 17, dominators: 219 (2D), 382 (3D) of 400

unscaled objective value f
1

un
sc

al
ed

 o
bj

ec
tiv

e
va

lu
e

f 2

no size objective, use size constraint
use size objective, linear penalty

0 0.002 0.004 0.006 0.008 0.01 0.012
0.005

0.01

0.015

0.02

0.025

0.03

comparing proj2.eval.2.1 <−−> proj2.eval.4, seed no. 3
min_genes: 15, min_chips: 17, dominators: 231 (2D), 366 (3D) of 400

unscaled objective value f
1

un
sc

al
ed

 o
bj

ec
tiv

e
va

lu
e

f 2

no size objective, use size constraint
use size objective, linear penalty

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
0.005

0.01

0.015

0.02

0.025

0.03

comparing proj2.eval.2.1 <−−> proj2.eval.4, seed no. 4
min_genes: 15, min_chips: 17, dominators: 301 (2D), 360 (3D) of 400

unscaled objective value f
1

un
sc

al
ed

 o
bj

ec
tiv

e
va

lu
e

f 2

no size objective, use size constraint
use size objective, linear penalty

Figure 5.9: Impact of size as objective: query gene 1313, comparing
clusters of size 15.

50 Results

0.01 0.015 0.02 0.025 0.03 0.035 0.04
0.045

0.05

0.055

0.06

0.065

0.07

0.075

comparing proj2.eval.2.2 <−−> proj2.eval.4, seed no. 0
min_genes: 37, min_chips: 17, dominators: 38 (2D), 378 (3D) of 400

unscaled objective value f
1

un
sc

al
ed

 o
bj

ec
tiv

e
va

lu
e

f 2

no size objective, use size constraint
use size objective, linear penalty

0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
0.045

0.05

0.055

0.06

0.065

0.07

0.075

comparing proj2.eval.2.2 <−−> proj2.eval.4, seed no. 1
min_genes: 37, min_chips: 17, dominators: 38 (2D), 366 (3D) of 400

unscaled objective value f
1

un
sc

al
ed

 o
bj

ec
tiv

e
va

lu
e

f 2

no size objective, use size constraint
use size objective, linear penalty

0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

comparing proj2.eval.2.2 <−−> proj2.eval.4, seed no. 2
min_genes: 37, min_chips: 17, dominators: 49 (2D), 382 (3D) of 400

unscaled objective value f
1

un
sc

al
ed

 o
bj

ec
tiv

e
va

lu
e

f 2

no size objective, use size constraint
use size objective, linear penalty

0.01 0.015 0.02 0.025 0.03 0.035 0.04
0.045

0.05

0.055

0.06

0.065

0.07

0.075

comparing proj2.eval.2.2 <−−> proj2.eval.4, seed no. 3
min_genes: 37, min_chips: 17, dominators: 34 (2D), 366 (3D) of 400

unscaled objective value f
1

un
sc

al
ed

 o
bj

ec
tiv

e
va

lu
e

f 2

no size objective, use size constraint
use size objective, linear penalty

0.01 0.015 0.02 0.025 0.03 0.035 0.04
0.045

0.05

0.055

0.06

0.065

0.07

0.075

comparing proj2.eval.2.2 <−−> proj2.eval.4, seed no. 4
min_genes: 37, min_chips: 17, dominators: 35 (2D), 360 (3D) of 400

unscaled objective value f
1

un
sc

al
ed

 o
bj

ec
tiv

e
va

lu
e

f 2

no size objective, use size constraint
use size objective, linear penalty

Figure 5.10: Impact of size as objective: query gene 23, comparing
clusters of size 37.

Extensive Investigations 51

0.04 0.045 0.05 0.055 0.06 0.065 0.07 0.075 0.08
0.09

0.1

0.11

0.12

0.13

0.14

0.15

comparing proj2.eval.2.3 <−−> proj2.eval.4, seed no. 0
min_genes: 58, min_chips: 17, dominators: 138 (2D), 378 (3D) of 400

unscaled objective value f
1

un
sc

al
ed

 o
bj

ec
tiv

e
va

lu
e

f 2

no size objective, use size constraint
use size objective, linear penalty

0.04 0.045 0.05 0.055 0.06 0.065 0.07
0.095

0.1

0.105

0.11

0.115

0.12

0.125

0.13

0.135

0.14

comparing proj2.eval.2.3 <−−> proj2.eval.4, seed no. 1
min_genes: 58, min_chips: 17, dominators: 116 (2D), 366 (3D) of 400

unscaled objective value f
1

un
sc

al
ed

 o
bj

ec
tiv

e
va

lu
e

f 2

no size objective, use size constraint
use size objective, linear penalty

0.04 0.045 0.05 0.055 0.06 0.065 0.07
0.09

0.095

0.1

0.105

0.11

0.115

0.12

0.125

0.13

0.135

0.14

comparing proj2.eval.2.3 <−−> proj2.eval.4, seed no. 2
min_genes: 58, min_chips: 17, dominators: 132 (2D), 382 (3D) of 400

unscaled objective value f
1

un
sc

al
ed

 o
bj

ec
tiv

e
va

lu
e

f 2

no size objective, use size constraint
use size objective, linear penalty

0.04 0.045 0.05 0.055 0.06 0.065 0.07
0.09

0.1

0.11

0.12

0.13

0.14

0.15

comparing proj2.eval.2.3 <−−> proj2.eval.4, seed no. 3
min_genes: 58, min_chips: 17, dominators: 161 (2D), 366 (3D) of 400

unscaled objective value f
1

un
sc

al
ed

 o
bj

ec
tiv

e
va

lu
e

f 2

no size objective, use size constraint
use size objective, linear penalty

0.04 0.045 0.05 0.055 0.06 0.065 0.07
0.09

0.1

0.11

0.12

0.13

0.14

0.15

comparing proj2.eval.2.3 <−−> proj2.eval.4, seed no. 4
min_genes: 58, min_chips: 17, dominators: 145 (2D), 360 (3D) of 400

unscaled objective value f
1

un
sc

al
ed

 o
bj

ec
tiv

e
va

lu
e

f 2

no size objective, use size constraint
use size objective, linear penalty

Figure 5.11: Impact of size as objective: query gene 1313, comparing
clusters of size 58.

52 Results

0.06 0.07 0.08 0.09 0.1 0.11 0.12
0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

comparing proj2.eval.1.4 <−−> proj2.eval.3, seed no. 0
min_genes: 66, min_chips: 17, dominators: 40 (2D), 377 (3D) of 400

unscaled objective value f
1

un
sc

al
ed

 o
bj

ec
tiv

e
va

lu
e

f 2

no size objective, use size constraint
use size objective, linear penalty

0.06 0.07 0.08 0.09 0.1 0.11 0.12
0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

comparing proj2.eval.1.4 <−−> proj2.eval.3, seed no. 1
min_genes: 66, min_chips: 17, dominators: 29 (2D), 366 (3D) of 400

unscaled objective value f
1

un
sc

al
ed

 o
bj

ec
tiv

e
va

lu
e

f 2

no size objective, use size constraint
use size objective, linear penalty

0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15
0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

comparing proj2.eval.1.4 <−−> proj2.eval.3, seed no. 2
min_genes: 66, min_chips: 17, dominators: 51 (2D), 363 (3D) of 400

unscaled objective value f
1

un
sc

al
ed

 o
bj

ec
tiv

e
va

lu
e

f 2

no size objective, use size constraint
use size objective, linear penalty

0.06 0.08 0.1 0.12 0.14 0.16 0.18
0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

comparing proj2.eval.1.4 <−−> proj2.eval.3, seed no. 3
min_genes: 66, min_chips: 17, dominators: 54 (2D), 362 (3D) of 400

unscaled objective value f
1

un
sc

al
ed

 o
bj

ec
tiv

e
va

lu
e

f 2

no size objective, use size constraint
use size objective, linear penalty

0.065 0.07 0.075 0.08 0.085 0.09 0.095 0.1 0.105 0.11 0.115
0.32

0.34

0.36

0.38

0.4

0.42

0.44

comparing proj2.eval.1.4 <−−> proj2.eval.3, seed no. 4
min_genes: 66, min_chips: 17, dominators: 125 (2D), 369 (3D) of 400

unscaled objective value f
1

un
sc

al
ed

 o
bj

ec
tiv

e
va

lu
e

f 2

no size objective, use size constraint
use size objective, linear penalty

Figure 5.12: Impact of size as objective: query gene 1313, comparing
clusters of size 66.

Extensive Investigations 53

0.07 0.08 0.09 0.1 0.11
0.32

0.34

0.36

0.38

0.4

0.42

0.44

comparing proj2.eval.1.1 <−−> proj2.eval.7, seed no. 4
min_genes: 66, min_chips: 17, dominators: 125 (2D), 818 (3D) of 1000

unscaled objective value f
1

un
sc

al
ed

 o
bj

ec
tiv

e
va

lu
e

f 2
no size objective, use size constraint
use size objective, linear penalty

Figure 5.13: The same run as in Figure 5.8 (seed 4), but with 1000
instead of 400 individuals. Obviously, the number of points of the (pro-
jected) 3D front has increased.

0 50 100 150 200 250 300 350 400
0

20

40

60

80

100

120

sorted individual index

nu
m

be
r

of
 g

en
es

 in
 c

lu
st

er

maximum size over 5 runs
mean size over 5 runs
minimum size over 5 runs

5.14a Query gene 23.

0 50 100 150 200 250 300 350 400
0

20

40

60

80

100

120

140

sorted individual index

nu
m

be
r

of
 g

en
es

 in
 c

lu
st

er

maximum size over 5 runs
mean size over 5 runs
minimum size over 5 runs

5.14b Query gene 1313.

Figure 5.14: Distribution of the number of genes in two size-optimized
runs.

54 Results

5.3 Observable Tendencies

Here we address observations made during the development of the T2QGS algo-
rithm and note tendencies on the basis on a few preliminary results. Since the
results in this section are not scientifically validated by statistical means, the re-
sults below are mainly given to indicate directions for further investigations and/or
for completeness.

5.3.1 Baldwinian vs. Lamarckian Evolution

Baldwinian evolution increases the runtime of the algorithm substantially but
brings about a more diverse final population regarding the sizes of the individ-
uals. Since the T2QGS approach is anyway restricted by giving a query gene, we
are not concerned with the diversity. Figure 5.15 compares two runs, one with
Baldwinian and one with Lamarckian evolution. The final Lamarckian population
contains almost exclusively the same individual.

0 20 40 60 80 100
10

1

10
2

10
3

10
4

sorted individual index in last generation

nu
m

be
r

of
 g

en
es

 in
 c

lu
st

er

Baldwinian (out.5c)
Lamarckian (out.6)

Figure 5.15: Diversity of cluster sizes: Baldwinian vs. Lamarckian evo-
lution.

5.3.2 Equal-bit-flip mutation operator

Section 4.4 already introduced the new mutation operator. We set up a run that
does not optimize the size but is directly derived from the reference run, differing
only in in the mutation strategy. From this single run we don’t have reason to
believe that the mutation strategy has a fundamental impact on the solution;
Figure 5.16 compares the final populations of the two runs.

Observable Tendencies 55

0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

unscaled objective value f
1

un
sc

al
ed

 o
bj

ec
tiv

e
va

lu
e

f 2
equal_no_bits mutation
independent_bit_flip mutation

Figure 5.16: The impact of the new mutation strategy on the front
appears negligible.

Besides, we noticed an increase in run time for the equal number of bits strategy
compared to independent bit flip of about 5%.

5.3.3 Quality parameter k in gene addition procedure

We are mainly interested how the maximum size soft constraint parameter influ-
ences the related size objective. The test runs differ from the reference run only
in the way too large clusters are penalized, here we used an exponential instead of
linear penalty function. However, this does not affect the meaning of the parame-
ter.
From Figure 5.17 we mainly observe that admitting a larger size constraint en-
tails the advantage of a smaller size objective value. At the same time, however,
we observe a larger fraction of individuals that received a size penalty. The seem-
ingly plausible tendency here is that with an increasing size constraint we sacrifice
feasible individuals.

5.3.4 Full Biclustering

From the SOSM problem it is known that if the constraint on the number of
experiments is lowered, the resulting bicluster will most likely follow this lower
limit closely. In other words it seeks to maximize the bicluster’s size by adding
more genes rather than including more experiments.
Since the T2QGS problem is fundamentally different from the SOSM problem,
it is natural to ask what happens to the number of experiments included in the
bicluster, if we set the minimum genes constraint for every file to 1. Obviously, and

56 Results

Figure 5.17: Influence of the maximum number of genes constraint. The
segments in red (dashed and solid) indicate that the related individuals
received an infeasible objective value.

different from the SOSM solution, the T2QGS algorithm decided to include in 25
of 100 individuals all of the experiments, and for the remaining 75 individuals all
except one. The sizes of the biclusters vary from 33 to 86 genes, see Figure 5.18. The
plot also shows on the secondary axes (red) the number of experiments included in
the bicluster. Interestingly, from a certain number of genes, it sees an advantage in
excluding an experiment. This is the point where the competing objectives meet:
additional genes in the cluster must be bought by excluding experiments due to
the homogeneity objectives.
For this run we clustered on the COLD FULL input data set that is known to
contain quite similar data and thus facilitates large, homogeneous clusters. For
instance, the largest cluster of the above investigation with 86 genes has still very
low MSR values (Figure 5.19): 1.5·10−31 (≪ machine eps) on the first and 6.5·10−3

on the second data set. Biologically meaningful clusters may have MSR values up
to 5 · 10−2 [4], depending on the data set.

Observable Tendencies 57

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

nu
m

be
r

of
 g

en
es

0 20 40 60 80 100
11

11.5

12

sorted individual index

nu
m

be
r

of
 e

xp
er

im
en

ts

Figure 5.18: Size distribution of the last generation for a run differing
from the reference run in the mutation strategy (independent bit flip)
and max. number of genes constraint set to 40 (k = 80).

1 2 3 4 5 6 7 8 9 10 11
−4

−3

−2

−1

0

1

2

timepoint index

ex
pr

. v
al

ue

out.11, cold_full_, 86 genes
MSR

overall, scaled
=0.0090086, MSR

each, scaled
=1.5061e−031 0.0064762

Figure 5.19: A large bicluster in COLD FULL with 86 genes.

58 Results

5.4 Objectives over Generations

Plotting the objective values over the generations gives an idea whether conver-
gence takes place or whether there are unwanted fluctuations in the solution. In
Figure 5.20 we depict the development of the three objectives of the reference run
over the generations. The values remain stable after some initial transient oscil-
lations. Obviously, f1 and f2 increase after a few generations. This is most likely
an artifact from multi-objective optimization rather than intrinsic to this very
problem, since we could observe this behavior in almost all of the runs.

0 50 100 150
10

−3

10
−2

10
−1

10
0

generation

ob
j v

al
ue

 f 1

0 50 100 150
10

−2

10
−1

10
0

generation

ob
j v

al
ue

 f 2

0 50 100 150
10

−4

10
−3

10
−2

10
−1

10
0

generation

ob
j v

al
ue

 f 3 max of generation
mean of generation
min of generation

Figure 5.20: Residuals over 150 generations of the reference run (except
that we have 150 generations here, instead of 100).

Chapter 6

Conclusion and Outlook

In our query gene clustering problem, we are looking for a subset of genes of the
expression matrix (a cluster), such that the expression profiles yield maximum
homogeneity over multiple data sets. In terms of an EA this translates to multiple
criterions that we need to satisfy and we tackle this by assigning each objective
the homogeneity of a data set. However, we saw that there exists a clear trade-off
between these objectives. For a basic validation of the newly developed T2QGS
algorithm1, we showed that it is able to recover an already known cluster that
has been discovered by a single objective evolutionary algorithm. This validation
algorithm tries to maximize the size of the cluster constrained to a minimum
homogeneity value.

Usually, one is interested in maximizing the size of a cluster and therefore we
included the size as a further objective in the search. Again, we found that this
objective is clearly competing with the other objectives. For a comparison, we set
up a run with two data files and another run with the same data files but with
the size as a third, additional objective. In most cases we observed objectively
better solutions for the 3D runs, even though the number of individuals was held
constant. Including the size as a further objective forces the algorithm to explore
an additional dimension which decreases the resolution. To compensate this loss
one has to increase the population size, which directly affects the computational
costs. However, in view of the still moderately small run time of about 2 hours2 for
a standard run, one usually accepts the additional costs in favor of the substantial
improvement of the cluster quality.
Interestingly, the cases where the 3D run is superior to the 2D run reside in a size
range that is potentially meaningful from a biological point of view3. For small
clusters of about 17 genes and for an equal number of individuals, the results from
the 3D run were slightly inferior to those of the 2D run. For clusters with 37, 58
and 66 genes we found a substantial improvement in the clustering outcome for
almost all of the cases. We compared a total of 40 cases that affirm these assertions.

1The T2QGS algorithm is implemented in an existing framework tailored to multi-objective
optimization with an evolutionary algorithm (PISA).

2All simulations were run on a Intel Xeon 3.06 GHz CPU with 2 GB RAM.
3The crucial quantity for biological relevance is the homogeneity of the cluster, rather than the

absolute number of genes. However, for a given input data set, one can roughly state a number
of genes that corresponds to the critical cluster homogeneity.

60 Conclusion and Outlook

From previous work it is known that the abovementioned validation algorithm
tries to maximize the size of a bicluster by including more genes rather than more
experiments. Lowering the constraint on the minimum number of experiments
entails that the algorithm will most likely follow this lower bound closely. However,
this does not hold for the T2QGS algorithm: setting the minimum constraint on the
experiments to 1 for each file yielded biclusters containing nearly or even all of the
experiments. This shows that the two problems fundamentally differ in this aspect.

Furthermore, we investigated Lamarckian and Baldwinian evolution. The latter
uses the result of the local search only for the assignment of the objective
values where the former immediately updates the individual with the result.
Thus, Baldwinian evolution is in general computationally more expensive than
Lamarckian. Nevertheless we showed that in the case of a query gene search
the diversity of the cluster size is not significantly affected and that the cheaper
Lamarckian evolution shows a sufficient performance for the query gene search
problem.

There are many interesting questions in this context that are worth being addressed
in further work. In the list below, we name a few of them.

• Normalization. For many selection strategies it is desirable to work with
objective values that are of a comparable order of magnitude. Normalization
has to take place on the population level and is already provided by IBEA
for example. We urgently suggest to explore its effect.

• Multiple Data files. In this thesis we presented cases with two data files
where each was assigned an objective. If we do so for more and more data
sets, we will find a rapidly increasing number of non-dominated solutions
in the population. Thus we are looking for a method that can handle this
problem. A possible approach could use dimension reduction techniques from
statistics, e.g. PCA/ICA (principal/independent component analysis), EPP
(exploratory projection pursuit), or LLE (locally linear embedding).

• Multiple Query Genes. Our algorithm can handle exactly one query gene;
straightforward, an extension would allow to have more than one query gene.
If we assign each of them an objective, we face the same problem as above.
For instance, this could be bypassed by taking the mean of the distances from
all genes in the cluster and using this quantity as a new distance measure.
Alternatively, one could apply the gene recommender algorithm from Owen
et al as a local search strategy. A third possibility consists in solving a one
single-query gene case for each query gene and then to combine the resulting
clusters in an adequate way.

• Imitating the Selector’s Strategy. IBEA implements a dominance-based
selection scheme where the local search pursues a different strategy in the
gene removal and addition procedures. The question arises whether it was
beneficial for the local search to imitate the selector more closely. Unfortu-
nately one faces the problem that the local search does not have access to

61

population-wide information that would be needed. Perhaps one could ap-
ply a dominance-based scheme that compares the actual and a new solution
generated by the local search.

62 Conclusion and Outlook

Acknowledgment

At this point I want to grab the chance to thank my supervisor Stefan Bleuler
for the many clarifying and helpful comments and questions that he enriched by
profound arguments and a great interest from his side in the progress of the work. I
highly appreciate that he always took time whenever I went by to ask for assistance;
this is not at all to be taken for granted.
Moreover I am indebted to my supervising Professor Eckart Zitzler who offered me
the great opportunity for this exciting and very instructive diploma thesis in his
research group. If there was a second one to accomplish, I’d be back to his group
at any time.

Appendix A

Selected Run Configurations

64 Selected Run Configurations

List of Figures

1.1 Clustering (left) vs. Biclustering. Traditional clustering searches a
partition of all genes into k disjoint groups. Biclustering searches for
one or a set of blocks containing a consistent local pattern. Three
biclusters are shown. Note that is not generally possible to display
several biclusters at the same time as contiguous blocks. 6

3.1 (Left) Type 1 problem, the query gene (5) may lie anywhere in the
cluster. (Right) Type 2 problem, the query gene (5) is in any case
somewhere in the center of the cluster. 16

3.2 (top row) A gene expression matrix with the expression values and
the related ranks within the row. (bottom row) The same situation
as above, but now the two data sets (each with two columns) are
treated separately. Effect: In the second case exists one extra gene
that can be attributed to the OPSM, compared to the first case. 16

3.3 Euclidean distances for three different input data sets. The subfig-
ures show in their upper part the overall behavior of the measure
where the lower part shows only the first 100 genes. The domain up
to 100 genes is of peculiar importance since it is known from biol-
ogy that it is very unlikely to encounter biologically relevant clusters
with hundreds of genes (let alone with thousands of genes). 20

3.4 Negative Pearson correlation for three different input data sets. 21

3.5 Rank MSR distance for three different different input data sets.
One conspicuous feature of the plots is that there are some discrete
distance levels; their number does not exceed 37, even though there
are 6! = 720 possible levels. 22

3.6 Exemplary comparison of three distance measures on the data set
COLD FULL. The results are principally identical for the other data
sets. 23

4.1 Schematic view of an iteration in an evolutionary algorithm.
Adopted from [4]. 25

4.2 Schematic view of the PISA framework. 27

4.3 UML diagram to show the interdependence of the two classes
individual and local_search (and their descendants) in the
PISA framework. This class structure allows for a modular handling
of the local search strategies (STRATEGY design pattern [10]). 28

4.4 Size objective function with penalty for soft constraint violations. . . 33

66 LIST OF FIGURES

5.1 The largest cluster that was revealed by both the SOSM algorithm
and the T2QGS approach. It contains 32 genes and 12 experiments
and is an OPSM. 40

5.2 An approximation of the Pareto front of a 3-objective optimization
problem (parameters conforming with the reference run). 42

5.3 The identical problem as in Figure 5.2 but with rescaled size objec-
tive f3 ← 50 f3. 43

5.4 Total 50 runs that investigate the impact of including the as size
constraint in the optimization. The tree is symmetrical, reoccurring
branches are shown only once.. 44

5.5 Impact of size as objective: query gene 23, comparing clusters of size
15. 45

5.6 Impact of size as objective: query gene 23, comparing clusters of size
37. 46

5.7 Impact of size as objective: query gene 23, comparing clusters of size
58. 47

5.8 Impact of size as objective: query gene 23, comparing clusters of size
66. 48

5.9 Impact of size as objective: query gene 1313, comparing clusters of
size 15.. 49

5.10 Impact of size as objective: query gene 23, comparing clusters of size
37. 50

5.11 Impact of size as objective: query gene 1313, comparing clusters of
size 58.. 51

5.12 Impact of size as objective: query gene 1313, comparing clusters of
size 66.. 52

5.13 The same run as in Figure 5.8 (seed 4), but with 1000 instead of
400 individuals. Obviously, the number of points of the (projected)
3D front has increased. 53

5.14 Distribution of the number of genes in two size-optimized runs. 53
5.15 Diversity of cluster sizes: Baldwinian vs. Lamarckian evolution. 54
5.16 The impact of the new mutation strategy on the front appears neg-

ligible. 55
5.17 Influence of the maximum number of genes constraint. The segments

in red (dashed and solid) indicate that the related individuals re-
ceived an infeasible objective value. 56

5.18 Size distribution of the last generation for a run differing from the
reference run in the mutation strategy (independent bit flip) and
max. number of genes constraint set to 40 (k = 80). 57

5.19 A large bicluster in COLD FULL with 86 genes. 57
5.20 Residuals over 150 generations of the reference run (except that we

have 150 generations here, instead of 100). 58

List of Tables

3.1 Definition of the QGS problems. See Figure 3.1 for an illustration. . . 15

5.1 Input data sets in use. 38
5.2 Parameters of the Reference Run.. 39
5.3 Number of non-dominated solutions for the different 2D/3D com-

parison runs. Regarding the population size of 400 individuals, the
impact of the additional dimension is heavy. All runs used query
gene 23. We gave the means over 5 runs and in brackets the sam-
ple’s standard deviation. 44

68 LIST OF TABLES

List of Algorithms

1 Deterministic repair function. 29
2 Single and multiple node deletion algorithm. 30
3 Gene addition algorithm. 31
4 Objective assignment. 34
5 Equal bit flip mutation operator. It is applied to the gene and chip

bit string independently. Here we show the case for genes. 35

70 LIST OF ALGORITHMS

Bibliography

[1] Amir Ben-Dor, Benny Chor, Richard Karp, and Zohar Yakhini. Discover-
ing local structure in gene expression data: the order-preserving submatrix
problem. In RECOMB ’02: Proceedings of the sixth annual international con-
ference on Computational biology, pages 49–57, New York, NY, USA, 2002.
ACM Press.

[2] Stefan Bleuler, Marco Laumanns, Lothar Thiele, and Eckart Zitzler. PISA
— a platform and programming language independent interface for search
algorithms. TIK-Report 154, ETH Zürich, Computer Engineering and Net-
works Laboratory (TIK), Gloriastrasse 35, ETH-Zentrum, CH-8092 Zürich,
Switzerland, October 2002.

[3] Stefan Bleuler, Amela Prelić, and Eckart Zitzler. An EA framework for bi-
clustering of gene expression data. In Congress on Evolutionary Computation
(CEC-2004), pages 166–173, Piscataway, NJ, 2004. IEEE.

[4] Stefan Bleuler, Philip Zimmermann, Markus Friberg, Anja Wille, Simon
Barkow, Dimo Brockhoff, Daniel Schöner, Lars Hennig, Peter Bühlmann, Wil-
helm Gruissem, Lothar Thiele, and Eckart Zitzler. Cluster analysis of multiple
time course data sets. Article, ETH Zürich, Computer Engineering and Net-
works Laboratory (TIK), Gloriastrasse 35, ETH-Zentrum, CH-8092 Zürich,
Switzerland, 2006.

[5] Stefan Bleuler and Eckart Zitzler. Order preserving clustering over multiple
time course experiments. In EvoWorkshops 2005, number 3449 in LNCS,
pages 33–43. Springer, 2005.

[6] Yizong Cheng and George M. Church. Biclustering of expression data. In
ISMB, pages 93–103, 2000.

[7] Seokkyung Chung, Jongeun Jun, and Dennis McLeod. Mining gene expres-
sion datasets using density-based clustering. In CIKM ’04: Proceedings of
the thirteenth ACM international conference on Information and knowledge
management, pages 150–151, New York, NY, USA, 2004. ACM Press.

[8] Richard Dawkins. The Selfish Gene. Oxford University Press, New York,
1976.

[9] Emanuel Falkenauer. Genetic Algorithms and Grouping Problems. John Wiley
& Sons, Inc., New York, NY, USA, 1998.

72 BIBLIOGRAPHY

[10] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
patterns: Abstraction and reuse of object-oriented design. Lecture Notes in
Computer Science, 707:406–431, 1993.

[11] David J. Hand and Nicholas A. Heard. Finding groups in gene expression
data. Journal of Biomedicine and Biotechnology, pages 215–255, 2005.

[12] Julia Handl and Joshua Knowles. Evolutionary multiobjective clustering.
In Proceedings of the Eighth International Conference on Parallel Problem
Solving from Nature. Springer-Verlag, 2004.

[13] Julia Handl and Joshua D. Knowles. Exploiting the trade-off - the benefits of
multiple objectives in data clustering. In EMO, pages 547–560, 2005.

[14] J. A. Hartigan. Direct clustering of a data matrix. In Journal of the American
Statistical Association, volume 67, pages 123–129, March 1972.

[15] Isaac S. Kohane, Atul J. Butte, and Alvin Kho. Microarrays for an Integrative
Genomics. MIT Press, Cambridge, MA, USA, 2002.

[16] Peter Merz. Memetic algorithms for combinatorial optimization problems:
Fitness landscapes and effective search strategies, 2000.

[17] Zbigniew Michalewicz and David B. Fogel. How to solve it: Modern Heuristics.
Springer, 2., rev. and ext. ed. edition, 2004.

[18] P. Moscato and M. G. Norman. A memetic approach for the traveling sales-
man problem implementation of a computational ecology for combinatorial
optimization on message-passing systems. In M. Valero, E. Onate, M. Jane,
J. L. Larriba, and B. Suarez, editors, Parallel Computing and Transputer Ap-
plications, pages 177–186, Amsterdam, 1992. IOS Press.

[19] Pablo Moscato. On evolution, search, optimization, genetic algorithms and
martial arts: Towards memetic algorithms. Technical Report C3P 826,
Pasadena, CA, 1989.

[20] A. Owen, J. Stuart, K. Mach, A. Villeneuve, and S. Kim. A gene recommender
algorithm to identify coexpressed genes in C. elegans. In Genome Res, pages
1828–1837, 2003.

[21] John Quackenbush. Computational analysis of microarray data. Nature Re-
views Genetics, pages 418–427, 2001.

[22] Lukas Ruf. LATEX Essentials – HowTo Create Your LATEX-based documents.
Computer Engineering Laboratory TIK, ETH Zurich, 2002.

[23] N. Speer, C. Spieth, and A. Zell. A memetic co-clustering algorithm for gene
exression profiles and biological annotation. In Proceedings of the IEEE 2004
Congress on Evolutionary Computation, CEC 2004, volume 2, pages 1631–
1638. IEEE Press, 2004.

[24] Eckart Zitzler and Anne Auger. Bioinspired Computation and Optimization.
Lecture script at ETH (Swiss Federal Institute of Technology) Zurich, 2005.

BIBLIOGRAPHY 73

[25] Eckart Zitzler and Simon Künzli. Indicator-based selection in multiobjective
search. In Xin Yao et al., editors, Parallel Problem Solving from Nature (PPSN
VIII), pages 832–842, Berlin, Germany, 2004. Springer-Verlag.

