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Introduction 1

Chapter 1

Introduction

In our research we focus on the development of a polyglot HMM based text to speech system. The

HMM based synthesis uses a vocoder like analysis/synthesis technology. In the last stage of the

synthesis the speech is generated by a MLSA filter using mel cepstral coefficients (MCC) as input

and a simplified residual signal as excitation. This excitation is a generated pulse/noise signal,

TrainingSynthesis

F0 Duration

Text Transcription MCC

Training

Model

Parameter Generation

MCC

Pulse/Noise
Excitation

Excitation

MLSA Filter

Synthesized Speech

Figure 1.1: An overview of our HMM based TTS. F0 and duration values may be generated from the
input text using a prosodic model. But as this is not part of this project, we used values estimated
from recorded data.
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TrainingSynthesis
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Excitation
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Figure 1.2: The task of this thesis is to replace the pulse/noise based excitation generation by a
more sophisticated model. Therefore, in addition the MCC new parameters PNEW for the source
excitation generation may be introduced as well.

similar to the one in a LPC decoder. Although this simplification is useful, it results in a synthetic

and buzzy sound quality of the synthesized speech. A simplified diagram of the system is shown

in figure 1.1.

1.1 Task

The goal of this thesis is the study of a new model of source excitation generation that improves

the quality of the speech synthesized with an HMM based synthesizer.

In a basic HMM based synthesizer, the source excitation is modeled as a sequence of pulses

or noise signal. As a result, the synthesized speech usually has a very metallic sound. The idea to

improve the speech quality consists in modeling the residuals excitation with different types of

noises and pulse forms based on the analysis of the original residuals. In order to integrate this

model into an HMM model, the different noises and pulse forms have to depend on a reduced

number of parameters so that they can be easily generated.

A first approach to this problem was to use an excitation model such as MELP (mixed ex-

citation linear prediction) standard. MELP is able to eliminate the synthetic buzz and has also
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been used with some succes in HMM synthesis as shown by Yoshimura et al. [YTM+01]. How-

ever, mixed excitation produces some other effects on the quality of the synthesized speech that

needed to be investigated.

In a second step, new parameters were introduced and tested. These new parameters were

also incorporated into the HMMs. Figure 1.2 emphasizes the modifications to the old systems

shown in figure 1.1.

Summarizing, the task at the beginning of this thesis were:

• Analysis of the MELP speech coding standard and the effects on the speech quality of its

artifacts.

• Integration of the MELP parameters into an HMM based speech synthesizer.

• Development of a new set of parameters that produces a more robust estimation of the

source excitation when included in an HMM speech synthesizer based on mel cepstral co-

efficients.

• Conducting of a subjective evaluation to compare the quality of the different source excita-

tion models.
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Chapter 2

Speech Coding

2.1 Linear Predictive Coding

The linear predictive coding (LPC) vocoder [IS68], [AH71] uses a fully parametric model to mimic

human speech. In this approach, only the parameters of a speech model are transmitted and a de-

coder is used to regenerate speech with the same perceptual characteristics as the input speech

waveform. Since periodic update of the model parameters requires fewer bits than direct repre-

sentation of the speech signal, an LPC vocoder can operate at low bit rates. Still, the parametric

representation in LPC coefficients preserves the critical information of a speech signal needed for

other applications such as speech recognition.

Block diagrams of a LPC encoder and a decoder are shown in figure 2.1 and figure 2.2, respec-

tively.

LSFs

LPC
Analysis

F0

Pitch
Estimation

GainGain

s(n)

Figure 2.1: Block diagram of a LPC encoder.
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F0

LSFs

Gain

Impulse Train
Generator

Random Noise
Generator

LPC Synthesis
Filter

s̃(n)

Figure 2.2: Block diagram of a typical LPC decoder.

The fact that consecutive samples of a speech signal are statistically dependent led to the idea

of using linear prediction in speech coding. In a linear prediction, the nth sample of a signal s(n)

can be estimated by a weighted sum s̃(n) of K preceding samples.

s̃(n) = −
k=1
∑

K

ak s(n − k) (2.1)

Dividing the signal in overlapping frames of length N results in a system of N independent equa-

tions for every frame, where typically N ≫ K . The coefficients ak can be computed with autocor-

relation based methods like the Durbin algorithm.

The prediction error is

e(n) = s(n) − s̃(n) (2.2)

= s(n) +

K
∑

k=1

ak s(n − k) (2.3)

=
K

∑

k=0

ak s(n − k) (a0 ≡ 1) (2.4)

and can be written in the z-transform as

E(z) = S(z)A(z) (2.5)

= S(z)
1

H(z)
. (2.6)
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The error is also called residual and corresponds to the glottal excitation. The original speech

signal S(z) can be restored from the error E(z) using the synthesis filter H(z):

S(z) = H(z)E(z). (2.7)

In LPC speech coding the actual error e(n) is replaced by a generated signal ẽ(n). This approxi-

mated residual is modelled by an impulse train based on the pitch F0 for voiced speech or random

noise for unvoiced speech. An example of such a signal is shown in figure 2.3(a). Therefore each

frame of speech can be reduced to a set of LPC coefficients, the pitch value which is used for the

voiced/unvoiced decision and the gain value. In the decoder the speech signal is reconstructed by

a synthesizer based on a time varying all-pole filter.

LPC coefficients are very sensible to errors. Transmission errors and quantization errors result

in a strong degradation of the quality of the synthesized speech. Therefore, the LPC coefficients

are generally transformed to the much more robust line spectral frequencies (LSF) for transmis-

sion.

2.2 Mel Log Spectrum Approximation Filter

Imai et al. [ISF83] presented a mel log spectrum approximation (MLSA) filter to synthesize speech

using mel cepstral coefficients (MCC). The advantage of MCC is that it represents spectra that

have logarithmic frequency resolutions similar to the human ear which has a high resolution at

low frequencies. For obtaining the MCC several methods have been proposed. In conjunction

with HMM the most commonly used methods are based on the methods proposed by Fukuda et

al. [FTKI92] and Imai et al. [Ima83].

2.3 Mixed Excitation LPC Vocoder Model

The major drawback of the simple model for the source excitation generation in the LPC vocoder

is that the decoded speech sounds synthetic. To improve the perceptual quality of the speech en-

coded with the LPC model McCree [MB95] proposed a mixed excitation LPC vocoder model (MELP).

The main idea behind MELP is to split the speech signal in a set of frequency bands. For each

band a separate excitation based on pulse train and noise is generated. This excitations are then

combined into a single mixed excitation. Figure 2.3(b) shows an example of a mixed excitation

signal.

Figures 2.4 and 2.5 show block diagrams of the MELP encoder and decoder. To achieve a more

natural sound for the synthesized speech the MELP model has the following five additional fea-

tures:

• Mixed pulse and noise excitation
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(a)

(b)

Figure 2.3: Pulse and noise based (a) and MELP based (b) excitation.

• Pulse Generation

– Periodic or aperiodic pulses

– Transmission of the Fourier magnitudes

• Adaptive spectral enhancement filter

• Pulse dispersion filter

2.3.1 Mixed Excitation

The most important feature of a MELP coder is the mixed pulse and noise excitation. Its primary

effect is the reduction of the buzzy quality of the basic LPC vocoder.

The mixed excitation LPC encoder generates an excitation signal with different mixtures of

pulse and noise in each of a number of frequency bands. The standard MELP vocoder uses five

bands of 0–500 Hz, 500–1000 Hz, 1000–2000 Hz, 2000–3000 Hz and 3000–4000 Hz. The pulse
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Bandpass
Filter

LSFsLPC
Analysis

F0

Pitch
Estimation

Gain
Gain
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correlation

Fourier
Magnitudes

FFT

Aperiodic
Flag

Aperiodic
Flag Decision

Bandpass
Voicing
Strengths

Voiced
or
Unvoiced
Decision

s(n)

Figure 2.4: Block diagram of the MELP Encoder
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Bandpass Voicing Strengths
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Fourier
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Shaping
Filter

Noise
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Filter

Adaptive Spectral
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LPC Synthesis
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Figure 2.5: Block diagram of the MELP Decoder
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Figure 2.6: Magnitude response of the five shaping filters.
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excitation epulse(n), n ∈ [0, 1 . . . T − 1] is computed using an inverse discrete Fourier transform of

one pitch period in length of a signal M(k).

epulse(n) =
1

T

T−1
∑

k=0

M(k)e
j2πnk

T (2.8)

M(k) is a sequence of ones except for the first K terms that may be set according to the Fourier

magnitudes as explained in subsection 2.3.2.2. The phases of M(k) are set to zero. The noise

is generated by a uniform random number generator and then normalized. The pulse train and

noise signal are each passed through time-varying spectral shaping filters and then added to-

gether to give a fullband excitation. For each frame, the ith frequency shaping filter coefficients

cpulse(i) and cnoise(i) are generated by a weighted sum of the fixed coefficients cbp(i) of N band-

pass filters.

cpulse(i) =

N
∑

j=1

wjc
(j)
bp (i) (2.9)

cnoise(i) =
N

∑

j=1

(1 − wj)c
(j)
bp (i) (2.10)

In the standard MELP coder the bandpass voicing strengths are simplified to a voiced/unvoiced

decision. Therefore the weights wj are either 1 or 0. The bandpass filters are FIR filters of 32th

order. The magnitude responses of these filters are shown in figure 2.6.

2.3.2 “Modifications” to the Pulse Generation

2.3.2.1 Periodic or Aperiodic Pulses

Another problem of standard LPC is a distortion called tonal noise. This distortion is introduced

when periodicity is present in speech frames which are actually unvoiced. This is often encoun-

tered in the voicing transition region, especially for female speakers. In order to reduce this kind

of distortion, the periodicity in the voiced excitation is destroyed by varying each pitch period

length with a pulse position jitter uniformly distributed up to ± 25 %. This allows the synthesizer

to mimic the erratic glottal pulses which are often encountered in voicing transitions or in vocal

fry. However, this cannot be done for strongly voiced frames without introducing a hoarse quality.

Therefore a control algorithm is used to determine when the jitter should be added. In the stan-

dard MELP coder a jitter will be added if the lowest bandpass voicing strength does not exceed a

certain threshold.
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2.3.2.2 Fourier Magnitudes

The Fourier magnitudes of the first ten harmonics of the residual signal are used to improve the

quality of the synthesized speech. This is particularly effective for male speakers and when back-

ground noise is present. By using the Fourier series, the magnitudes of the selected harmon-

ics of the fundamental pitch frequency are reproduced and as a result the performance of the

speech production model at the perceptually important lower frequencies is improved. The first

ten Fourier magnitudes are determined from the peaks of the Fourier transform of the predic-

tion residual signal. These coefficients are used in the generation of the pitch pulse of the mixed

excitation signal.

2.3.3 Adaptive Spectral Enhancement Filter

Another feature in the mixed excitation LPC vocoder model is adaptive spectral enhancement.

This adaptive filter helps the bandpass filtered synthetic speech to match natural speech wave-

forms in the formant regions. Typical formant resonances usually do not completely decay in the

time between pitch pulses in either natural or synthetic speech. However, the synthetic speech

waveforms reach a lower valley between the peaks than natural speech waveforms do. This is

probably caused by the inability of the poles in the LPC synthesis filter to reproduce the features

of formant resonances in natural human speech.

The adaptive spectral enhancement filter provides a solution to the problem of matching for-

mant waveforms. This adaptive pole/zero filter is widely used in CELP coders [CG87] to reduce

quantization noise in between the formant frequencies. The poles are generated by a bandwidth

expanded version of the LPC synthesis filter, with β equal to 0.8. Since this all-pole filter A(βz−1)

introduces a disturbing lowpass filtering effect by increasing the spectral tilt, a weaker all-zero fil-

ter A(αz−1) calculated with α equal to 0.5 is used to decrease the tilt of the overall filter without

reducing the formant enhancement. In addition a simple first order FIR filter (1 + µz−1) is used

to further reduce the lowpass muffling effect.

Thus the transfer function of the enhancement filter Hasz(z) is given by

Hasz(z) =
A(αz−1)

A(βz−1)
· (1 + µz−1) (2.11)

where α = 0.5p and β = 0.8p. The tilt coefficient µ is calculated as min(0.5 · k1, 0) multiplied

by the signal probability p. The first reflection coefficient k1 is calculated from the decoded LSFs.

The signal probability p is estimated by comparing the power in the current speech frame with a

long-term estimate of the noise power. It is a linear ramp value between 0 and 1 corresponding to

an estimated gain value between 12 dB and 30 dB. The signal probability is introduced to reduce

the fluctuations caused by this adaptive filter when background noise is present [McC99].
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2.3.4 Pulse Dispersion Filter

The pulse dispersion filter improves the match of bandpassed filtered speech waveforms in fre-

quency bands which do not contain a formant resonance. At these frequencies, the synthesized

speech often decays to a very small value between the pitch pulses. This is also true for fre-

quencies near the higher formants, since these resonances decay significantly between excita-

tion points, especially for the longer pitch periods of male speakers. In these cases, the bandpass

filtered natural speech has a smaller peak-to-valley ratio than the synthesized speech. In natural

speech, the excitation may not all be concentrated at the point in time corresponding to closure

of the glottis. This additional excitation prevents the natural bandpass envelope from falling as

low as the synthetic version. This could be due to a secondary excitation peak from the opening

of the glottis or aspiration noise resulting from incomplete glottal closure.

The pulse dispersion filter is a fixed FIR filter, based on a spectrally flattened synthetic glottal

pulse which introduces time-domain spread to the synthetic speech. A triangle pulse based on

a typical male pitch period is used. The filter coefficients are generated by taking a DFT of the

triangle pulse, setting the magnitudes to unity, and taking the inverse DFT.

This filter decreases the peakiness of the synthesized band passed signal in frequencies away

from the formants. This results in more natural sounding LPC speech output.

2.4 Wideband MELP Coder

The original MELP coder proposed by McCree [MB95] was designed as a narrowband coder with

low bit rate. However, we are interested in high quality rather than in low bit rates. Therefore we

used the wideband MELP coder proposed by Lin [Lin00], [LKL00].

Because the standard MELP model has been altered to code the full speech band, i.e. 50–

7000 Hz, the sampling rate has been changed from 8 kHz to 16 kHz. The frame period has been

set to 11.25 ms (180 samples) which is half the duration used in the MELP Standard. The filter or-

ders and cut-off frequencies have been adapted and the analysis windows have been resized to fit

the higher sampling rate and shorter frame period. The 10 th order LPC filter of the standard MELP

coder used for narrow band speech signals is no longer adequate to model the spectral envelope

of wideband speech signals. The LPC order order has been increased to 20. The pulse disper-

sion filter has been eliminated as the 20 th order LPC synthesizer has been found experimentally

[Lin00] to be sufficiently good in representing the envelope of the speech spectral envelope.

The MELP model was not only changed from a narrowband to wideband model, but the pitch

estimation has also been modified to improve its accuracy. In the MELP standard the final pitch

estimate is calculated from the original speech signal, a residual signal and a candidate pitch from

an earlier stage in the analysis. The wideband MELP coder evaluates every pitch in set of values in

the range of valid pitch values. The pitch that corresponds to the maximum normalized autocor-

relation value among this set is selected as the final pitch estimate. Furthermore a pitch tracking
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Figure 2.7: Waveform (a), spectrum (b) and cepstrum (c) for a voiced speech frame.
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method has been added in order to preserve continuity of the pitch estimates between neighbor-

ing speech frames and to reduce sudden pitch changes that lead to perceptual distortions. If the

pitch estimated in the current frame exceeds the range of the pitches estimated for the previous

and the next frame by a certain percentage, the current pitch is set to the average of the pitch of

the previous and the next frame.

In an informal listening test of preference [Lin00] the 8.4 kpbs wideband MELP coder per-

formed equal to the 48 kbps ITU G.722 coder [Mai88]. Furthermore, it was even preferred at a 3:2

ratio over the 14.4 kpbs MPEG4 wideband CELP coder [Mot98].
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Chapter 3

HMM Based Synthesis

The hidden Markov models (HMMs) are statistical models widely used to characterize the se-

quence of speech spectra. HMMs have successfully been applied to speech recognition systems.

Based on these facts it was obvious that HMMs may also be useful in speech synthesis. Tokuda

et al. [TMY+95] proposed an algorithm for speech parameter generation from HMMs using mel

cepstral coefficients. Masuko et al. [MTKI96] proposed a new algorithm which includes delta and

delta-delta parameters.

3.1 Hidden Markov Models

A hidden Markov model (HMM) is a finite state machine which generates a sequence of discrete

time observations. At each time unit the HMM changes states according to the state transition

probability distribution and then generates an observable output according to the output proba-

bility distribution of the current state. The challenge is to determine the hidden parameters from

the observable outputs.

There are three different problems to solve with HMMs.

• The computation of the probability of a particular output sequence, given the model pa-

rameters, which can be solved by the forward algorithm.

• Calculate the most likely sequence of (hidden) states which could have generated a given

output sequence given the model parameters. This can be found by using the Viterbi algo-

rithm.

• Find the most likely set of state transition and output probabilities for a given output se-

quence. This can be solved by the Baum-Welch algorithm.
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3.2 HMM Based Synthesis

In HMM based synthesis the first stage is to train a model. This is common to HMM based speech

recognition. In an optional second stage the model is adapted to a specific speaker. Although

this is optional, it is often either desired as a feature or done because it might help improving the

quality of the synthesized speech. Finally speech is synthesized by extracting parameters out of

the model given the text converted to a sequence of phonemes.

3.2.1 Training

The HMMs used in speech synthesis are often left-to-right models with no skip.

Initially, a set of monophone models is trained. These models are cloned to produce triphone

models for all distinct triphones in the training data. The triphone models are then reestimated

with the embedded version of the Baum-Welch algorithm. The states of the triphone HMMs are

clustered using the furthest neighbor hierarchical clustering algorithm [YW94]. The output dis-

tributions in the same cluster are tied to reduce the number of parameters and to balance model

complexity against the amount of available data. Tied triphone models are reestimated with the

embedded training again.

3.2.2 Speaker Adaptation

In the speaker adaptation stage, initial model parameters, such as mean vectors of output distri-

butions, are adapted to a target speaker using a small amount of adaptation data uttered by the

target speaker. The initial model can be speaker dependent or independent, however for a speaker

dependent model the speaker for the initial model has to be selected carefully to get an optimal

result.

3.2.3 Synthesis

The text to be synthesized is transformed into a sequence of phonemes. According to this se-

quence of phonemes, triphone HMMs are concatenated to a model representing a whole sen-

tence. For single mixture HMMs the speech parameters can be calculated out of this sentence

HMM using the algorithm presented by Tokuda et al. [TKI95]. Tokuda et al. [TMY+95] later pro-

posed an improved version of the algorithm that can generate parameters from multi mixture

HMM.

Let O = {o1,o2, . . . ,oT } be the vector sequence of speech parameters. Further, let Q =

{(q1, i1), (q2, i2), . . . , (qT , iT )} be the state sequence of an HMM λ where (q, i) indicates the ith

mixture of state q. Assume that the vector of speech parameters ot at frame t consists of the
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static feature vector ct and the dynamic feature vector ∆ct.

ot = {ct,∆ct} (3.1)

where

ct =
[

c(1), c(2), . . . , c(M)
]T

(3.2)

∆ct =
[

∆c(1),∆c(2), . . . ,∆c(M)
]T

(3.3)

and ∆ct is defined as

∆ct =
L

∑

i=−L

wict+i. (3.4)

The problem is to determine the parameter sequence c =
[

cT
1 , cT

2 , . . . , cT
T

]T
which maximizes

P [O|λ] =
∑

all Q

P [Q,O|λ] (3.5)

for a given HMM λ. However, since the problem is difficult to solve, the optimum sequence is

considered in a similar manner of the Viterbi algorithm.

P̄ [O|λ] = max
Q

P [Q,O|λ] (3.6)

has to be maximized with respect to c. Since Q and c have to be determined simultaneously,

dynamic programming methods cannot be used in contrast to the Viterbi algorithm. To solve this

problem Tokuda et al. [TMY+95] proposed to maximize with respect to c

log P [O|Q, λ] =α

K
∑

k=1

log pqk
(dqk

) +

T
∑

t=1

log cqt,it

− 1

2
ǫ(c) − 1

2
log |U| − 3MT

2
log 2π (3.7)

where

ǫ(c) = (O − µ)TU−1(O − µ) (3.8)

= (Wc − µ)TU−1(Wc − µ) (3.9)
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and

µ =
[

µT
q1,i1

, µT
q2,i1

, . . . , µT
qT ,iT

]T
(3.10)

U = diag [Uq1,i1,Uq2,i2 , . . . ,UqT ,iT ] (3.11)

W = [w1,w2, . . . ,wT ]T (3.12)

wt =
[

w
(0)
t ,w

(1)
t

]

(3.13)

w
(0)
t = [0M×M , . . . ,0M×M , IM×M ,0M×M , . . . ,0M×M ]T (3.14)

w
(1)
t = [0M×M , . . . ,0M×M ,

w−LIM×M , . . . , w0IM×M , . . . , wLIM×M ,

0M×M , . . . ,0M×M ]T . (3.15)

By setting ∂ log P [O|q,λ]
∂c

= 0TM×TM we obtain a set of equations

Rc = r (3.16)

where

R = WTU−1W (3.17)

r = WTU−1µ. (3.18)

The iterative algorithm to solve the equations (3.16) is derived from the standard RLS algorithm.

In the case of multi mixture states, a sub-optimal sub-state sequence can be found by means

of an iterative algorithm. The outline of the algorithm is as follows:

1. Initialization

(a) Determine a initial sub-state sequence Q.

(b) For the initial sub-state sequence obtain c, ǫ and P where P = R−1.

2. Iteration

(a) For t = 1, 2, . . . , T

i. For each possible sub-state at frame t obtain the value of log P [Q,O|λ] from equa-

tion (3.7)

ii. Choose the best sub-state in the sense that log P [Q,O|λ] is most increased by the

sub-state replacement.

(b) Choose the best frame in the sense that log P [Q,O|λ] is most increased by the sub-

state replacement.
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(c) If log P [Q,O|λ] cannot be increased by the sub-state replacement at the best frame,

stop the iteration.

(d) Replace the sub-state of the best frame and calculate c, ǫ and P for the next iteration

step.

(e) Go to 2a.

3.3 HMM Based Polyglot Synthesizer

A special application of HMM based synthesis is the polyglot HMM based TTS (text to speech)

synthesis. We call a system polyglot if it can generate intelligible speech in several languages

having the same voice identity.

We are using a HMM based TTS system to investigate various aspects for polyglot TTS syn-

thesis [LIF05c], [LIF05b], [LIF05a]. Figure 3.1 illustrates the layout of such a system. Our approach

consists in combining monolingual corpora from several speakers in different languages to train

a language independent and speaker independent HMM based synthesizer [LIF05b]. Since in our

method no human polyglot talent is required we can expand it to any number of languages we

want. Furthermore, since no phone mapping is needed for the languages included in the mixture,

the perceptual intelligibility and the level of foreign accent when synthesizing these languages is

lower than with other methods based on phone mapping.
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Voice Data of NL Speakers
of Language LL

Voice Data of N1 Speakers
of Language L1

HMM Training

Languages L1 . . .LL

multi-lingual

Speaker Adaptation

Voice of a
Speaker S of
Language Y

MLLR

Languages L1 . . .LL

multi-lingual

Synthesis

Text of
Language X

Synthesis

Synthesized Speech of Language X

with a Voice of a Speaker S of Language Y

Figure 3.1: Overview of a possible layout of our polyglot HMM based TTS system. In this illustrative
example the HMM is adapted to the voice of a speaker S of language Y ∈ {L1 . . . LL}. A given
text in any language X ∈ {L1 . . . LL} is synthesized with the same voice of speaker S.
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Chapter 4

Distortion Measurement

The evaluation of speech quality is of critical importance in the field of speech coding. Not only

is it necessary to have consistent subjective tests for the comparative assessments of alternative

coders, it is also essential to have an objective distortion measure which, during the development

phase, can give an immediate and reliable estimate of the anticipated perceptual quality of a

particular coding algorithm.

We tried two different methods for distortion measurement. One is based on the cepstrum,

while the other is based on the bark scale.

4.1 Cepstral based Distortion

The cepstral distortion D(k) for the kth segment can be calculated as

D(k) =
1

N

N
∑

i=1

(

M (k)
x (i) − M (k)

y (i)
)2

(4.1)

where

M (k) = IDFT (log |DFT (s(k))|). (4.2)

The signal s is divided in overlapping segments of length N .

4.2 Bark Spectral Distortion

A psychoacoustically motivated measure is the bark spectral distortion (BSD) [WSG92]. The bark

spectrum L reflects the ear’s nonlinear transformations of frequency and amplitude, together

with important aspects of its frequency analysis and spectral integration properties in response

to complex sounds. Figure 4.2 shows examples of the bark spectrum.
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Figure 4.1: The nineteen weighting functions used to calculated the BSD. The functions are based
on Gaussian distributions where the µs are set to the center frequencies of the corresponding
critical band and the σs are set to the corresponding critical bandwidth.

For a value b in Bark the transformation to the value f in Hertz is defined as

f = 600 sinh(
(b + 0.5)

6
) (4.3)

To calculate the bark spectrum L(k) of the kth segment, intermediate coefficients P (k) are

calculated first. A Discrete Fourier transform is applied to the kth segment of the signal. The

coefficients from the DFT are then piecewise squared. The obtained values are then weighted

by the functions shown in figure 4.1. The coefficients P (k) are finally transformed to the bark

spectrum L(k) by

L(k)(i) =
(

P (k)(i)
)

1

3

(4.4)
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Figure 4.2: Bark spectra for four different segments of speech.

The BSD for the kth segment is given by

BSD(k) =
N

∑

i=1

[

L
(k)
x (i) − L

(k)
y (i)

]2

[

L
(k)
x (i)

]2 (4.5)

where N is the number of critical bands, L
(k)
x the bark spectrum of the kth segment of original

speech and L
(k)
y the bark spectrum of the kth segment of coded speech. We used 19 critical bands.

A major drawback of the BSD is, that it only works for voiced speech. In the calculation of the

BSD we only used voiced speech segments.
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Chapter 5

Results

5.1 Vocoder

In a first step we worked with the MLSA filter on its own without considering the HMM. Therefore,

the mel cepstral coefficients as well as the parameters for the source excitation generation have

been extracted from recorded data.

5.1.1 Pulse Forms

In a first experiment we tried to find a function to replace the pulse. Previously, the pulse that

we used in the pulse/noise based source excitation was a simple delta function (cf. figure 2.3(a)).

Delta functions for pulses have the disadvantage that their DFT result in delta functions with

high frequencies instead of reflecting the corresponding frequency of the pulse. This effect is

illustrated in figure 5.1.

However, by using other functions for the pulse generation we had to recognize that the range

for modifying the pulse is very narrow. Widening the pulse form resulted in smearing the syn-

thesized speech, while a pulse form approaching the delta function resulted in sharpening the

synthesized speech.

5.1.2 MELP

Several approaches have been proposed to eliminate the synthetic sound of LPC vocoder models.

This includes e.g. CELP, RELP and MELP. MELP has also been used with some success in HMM based

speech synthesis. Yoshimura et al. [YTM+01] proposed the idea to incorporate MELP parameters

into the HMM based speech synthesis.

Figure 5.2 shows an example of a voicing transition from unvoiced to voiced speech. The MELP

based excitation can model a smooth transition. In contrast, standard pulse/noise based excita-

tion suddenly changes from unvoiced to voiced speech.
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(a) (b)

(c) (d)

Figure 5.1: The DFT of a delta function (a) results in another delta function with a high frequency
(b) instead of reflecting the corresponding frequency. In contrast, the DFT of a simple sine func-
tion (c) reflects its frequency (d).

In a setup as shown in figure 5.3 we extracted the source excitation from the standard MELP

coder proposed by McCree [MB95]. We tried to modify this MELP coder to our needs. We experi-

mented with different filter orders and analysis window sizes. A major focus was to increase the

sampling rate of 8 kHz of the standard MELP coder which is far to low for our purposes. However,

we decided to use the wideband MELP coder proposed by Lin [LKL00]. This MELP coder has already

been optimized for a sampling rate of 16 kHz.

Figure 5.4 shows how we created the source excitation based on the wideband MELP coder.

The MELP parameters were calculated by the analysis stage of the wideband MELP coder.

By using the source excitation from the MELP coder we could eliminate the synthetic buzz.

The audio samples myi a01.voc.wav that uses pulse/noise based excitation and myi a01.vocm.wav

that uses the source excitation from the wideband MELP coder illustrate the differences. How-

ever, the use of the source excitation from the wideband MELP coder together with mel cepstral

coefficients for synthesis has a lowpass muffling effect, since we did not yet use a postfiltering

technique.

It also introduces another distortion, which may be due to the fact, that the bandwidths in the

wideband MELP coder are simply the bandwidths of the standard MELP coder multiplied by two.

Therefore the higher frequency bands may be emphasized to much. Because of the logarithmic
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Figure 5.2: Waveform (a), spectrum (d) and cepstrum (e) for a speech frame with a transition from
unvoiced to voiced speech. While the LPC based excitation (b) has a sudden change from voiced
to unvoiced excitation, the MELP based excitation (c) can model a smoother transition.



Results 27

s(n)

Pitch
Estimation

F0

Mel-Cepstral
Analysis

Pulse/Noise
Excitation Generation

MLSA Filter

s̃(n)

(a)

s(n)

MELP
Analysis

Mel-Cepstral
Analysis

Mixed
Excitation Generation

MLSA Filter

s̃(n)

(b)

Figure 5.3: The setup used to evaluate LPC like source excitation (a) versus MELP based excitation
(b).
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Figure 5.4: The Generation of the MELP based source excitation.
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ATR (Male Japanese Speaker) Average Standard Deviation
MCC Mixed Excitation 0.003732 0.000178

Mixed Excitation (modified bands) 0.004375 0.000269
Pulse/Noise Excitation 0.003316 0.000129

LSF MELP coder 0.005846 0.000274
MELP coder (modified bands) 0.006105 0.000282

Table 5.1: Average cepstral distortion for approxamately 38 minutes of speech data of a male
Japanese speaker from the ATR speech corpus.

GlobalPhone (Male German Speaker) Average Standard Deviation
MCC Mixed Excitation 0.003036 0.000107

Mixed Excitation (modified bands) 0.003732 0.000165
Pulse/Noise Excitation 0.002544 0.000114

LSF MELP coder 0.004575 0.000311
MELP coder (modified bands) 0.004894 0.000355

Table 5.2: Average cepstral distortion for approxamately 15 minutes of speech data of a male Ger-
man speaker from the GlobalPhone speech corpus.

behavior of the human ear we experimented with mel scale sized frequency bands. However, we

could not get a perceptual improvement of the quality by using such modified frequency bands.

Although we think this two distortion effects to be perceptually far less disturbing than the buzzy

sound of the pulse/noise excited synthesis, it has a considerable impact on distortion measure-

ments.

For further investigations we made distortion measurements. We used the two different

methods described in chapter 4. For this objective evaluation, we resynthesized the recorded

speech data from one of the Japanese male speakers of the ATR speech corpus and a German male

Speaker from the GlobalPhone speech corpus. The 500 utterances from the Japanese speaker

summed up to about 38 minutes of audio data, the 162 utterances from the German male speaker

summed up to about 15 minutes. The results are shown tables 5.1–5.4.

Even though the decoded output from the wideband MELP sounds very natural it got very bad

results compared to the speech synthesized with the MLSA filter. A possible reason may be the

ATR (Male Japanese Speaker) Average Standard Deviation
MCC Mixed Excitation 0.279637 0.169124

Mixed Excitation (modified bands) 0.351270 0.184925
Pulse/Noise Excitation 0.170400 0.181339

LSF MELP coder 0.676615 0.244784
MELP coder (modified bands) 0.676350 0.245344

Table 5.3: Average BSD for approximately 38 minutes of speech data of a male Japanese speaker
from the ATR speech corpus.
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GlobalPhone (Male German Speaker) Average Standard Deviation
MCC Mixed Excitation 0.134708 0.041371

Mixed Excitation (modified bands) 0.183611 0.053087
Pulse/Noise Excitation 0.073733 0.029991

LSF MELP coder 0.688848 0.223638
MELP coder (modified bands) 0.689751 0.223065

Table 5.4: Average BSD for approximately 15 minutes of speech data of a male German speaker
from the GlobalPhone speech corpus.

fact that improvement of the MELP coder is the better model for unvoiced speech and partially

voiced speech. But distortion measurement methods have difficulties reflecting the human per-

ception for unvoiced speech, or even fail as in the case of the BSD, and only work well for strong

voiced speech segments. This result may suggest that MCCs are more appropriate for speech

synthesis than LSFs.

A comparison of the mixed and the pulse/noise based excitation shows, that there is some

distortion present in the mixed excitation. This is due to the lowpass muffling effect of the mixed

excitation and another distortion that may be due to a too strong noise signal for certain bands.

We used two version of the wideband MELP coder in this objective evaluation. One had the

original frequency bands proposed by Lin [LKL00] of 0–1000 Hz, 1000–2000 Hz, 2000–4000 Hz,

4000–6000 Hz and 6000–8000 Hz. In the other version we had modified the bands to have five

bands of equal bandwidth on the mel scale. The bands were thus set 0–459 Hz, 459–1218 Hz,

1218–2475 Hz, 2475–4556 Hz and 4556–8000 Hz. It is interesting to note, that the modification of

the frequency bands had almost now effect on the MELP coder, but significantly influenced the

distortion measurements for speech synthesized with MCC and the mixed excitation signal from

the MELP coder.

5.1.3 Simplified Mixed Excitation

During the process of building the HMM we implemented a simplified model for the source exci-

tation generation. The most basic part of the MELP coder are the bandpass voicing strengths. We

first built a very simple model that only used a pitch value and the bandpass voicing strengths. A

possible weakness of the MELP coder may be that if a band is not consider voiced it is assumed

as unvoiced. But this may not be true, the band may just be a weak powered band. In the MELP

coder this is most probably compensated by using signal probabilities in the spectral enhance-

ment filter and by using the gain values. However, in our simplified mixed excitation generation

model this produced a strong distortion. To solve this problem we first tried different methods

of weighting the noise signal depending on the bandpass voicing strengths. We then used the

gain value from the MELP coder to scale the noise signal. By using this very simple method we

got good results. The simplified source excitation generation model we built uses a pitch value,
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Figure 5.5: The model for the generation of the simplified mixed source excitation signal. It is only
based on the pitch F0, the bandpass voicing strengths and a gain value we used to scale the noise
signal.
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Parameter Model M1 Model M2 Model M3
MCC

√ √

Bandpass Voicing Strenghts
√ √

Aperiodic Flag
√ √

Fourier Magnitudes
√ √

Gain
√ √

Table 5.5: The three different Models that were trained for evaluation.

the bandpass voicing strengths and a gain value. Figure 5.5 shows a diagram of this model.

We also tried to filter the white noise signal by a second order FIR shown in figure 5.6 to

weaken the noise in higher frequencies. The function for this filter H(z) is

H(z) = 0.2473 + 0.6503z−1 + 0.2473z−2. (5.1)

However, we could not find any difference in the synthesized speech.

A major advantage of this simplified mixed excitation generation model is, that it can be easily

incorporated into HMM.

5.2 HMM

In the system we used before (see figure 1.1) the HMM was trained by mel cepstral and mel cepstral

delta coefficients. Given the input text and duration information, the HMM was used to calculate

mel cepstral coefficients. This coefficients were passed to a MLSA filter to synthesize the speech.

This filter was excited with a pulse/noise signal according to the pitch information. For our tests

we used pitch and duration information that are estimated from recorded data. In future, these

will be generated from the text using a prosodic model.

5.2.1 HMM Training

We built our system mainly from components provided by the Hidden Markov Model Toolkit (HTK)

[YOVW05]. An outline of the system for the training of the HMM is shown in figure 5.7.

We trained three different models shown in table 5.5 with the data of a male Japanese speaker

from the ATR speech corpus. By setting the order of the cepstrum lifter to 20 the size of the feature

vector containing the MCC is 21. For each frame there are five parameters for the bandpass voicing

strengths, one for the aperiodic flag, ten Fourier magnitudes and two gain values.

We encountered some problems with the parameter generation from the HMM for large

feature vectors. Numerical underflows caused the program that implements the algorithm ex-

plained in subsection 3.2.3 to produce parameter sequences of bad quality. Therefore the model

M3 has not been used for further testing. In comparison with the samples myi a01.m2.wav and



Results 32

Prototype Model

Speech Database

La
b
els

MELP
Analysis

Mel-cepstral
Analysis

Add Delta Coefficients

Create Initial Models (HCompV)

Train Monophone Models (HERest)

Clone Models (HHed)

Train Triphone Models (HERest)

Tie Models (HHed)

Train Tied Models (HERest)

HMM
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Results 33

myi a01.m2w.wav that were synthesized with parameters extracted from the models M1 and M2,

the samples myi a01.m1.wav and myi a01.m1w.wav synthesized with parameters from the model

M3 point out this degradation of quality.

For the further discussion the following three different types of synthesized speech are impor-

tant:

Pulse/Noise Excitation The MCC are generated from model M1 and the speech is synthesized by

using pulse/noise source excitation. An example is the sample myi a01.old.wav.

Simplified Mixed Excitation The MCC are generated from model M1. By using the bandpass voic-

ing strengths and gain values generated from model M2, the source excitation is created

with the simplified mixed excitation generation model introduced in subsection 5.1.3. Sam-

ple myi a01.m2.wav is such an example.

MELP Based Excitation The MCC are generated from model M1. The source excitation is created

with the wideband MELP coder using the bandpass voicing strengths, aperiodic flag and

Fourier magnitudes generated from model M2. An example of this kind is the audio sample

myi a01.m2w.wav.

By using the mixed excitation the synthetic buzz is eliminated. Another problem with the

pulse/noise excitation in the HMM based TTS Synthesizer is that sometimes the generated MCC

are poorly aligned with the pitch data. This results in a creaking distortion that occurs especially

at the beginning of words, after pauses of the speech. Due to smoother modelling of the voicing

transitions, this distortion can also be removed by using mixed excitation. However, the synthe-

sized speech using pulse/noise excitation is sharper and cleaner. The speech that is synthesized

by using mixed excitation suffers from a lowpass muffling effect and another light distortion,

that is stronger for the MELP based excitation than for the simplified mixed excitation.

5.2.2 Subjective Test

We conducted an subjective listening test with nine subjects. Ten sentences that were not in-

cluded in the training data were synthesized with pulse/noise excitation, MELP based excitation

and simplified mixed excitation, respectively. Table A.2 lists the samples used in this test. For each

of the 30 pairings the subject had to decide which of the two samples had better sound quality.

After each decision the next pair was selected at random and then presented to the subject.

The result of the listening test were quite unexpected. Experts who knew the details about

this research projects preferred the mixed excitation over the pulse/noise excitation. Because

of the stronger distortion in the MELP based excitation they also preferred the simplified mixed

excitation over the MELP based excitation. However, the subjects of the listening test preferred

the pulse/noise excitation over the simplified mixed excitation by a 4:3 ratio. Anyway, a statistical

analysis of the test result shows, that the error probability of this 4:3 ratio is higher than 10%.
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Therefore the test result of this pairing is not reliable. The subjects were also indecisive about the

preference of MELP based excitation and the pulse/noise excitation. The MELP based excitation

was preferred over the simplified mixed excitation by a 2:1 ratio.

This unexpected result is subject to further investigations. The subjects may have consid-

ered a clear voice as a more important factor for quality than the naturalness of the voice. By

using a postfilter similar to the pulse dispersion filter of the MELP coder or the postfilter pro-

posed by Kishimoto et al.[KZT+02] we may obtain different results. For comparison, samples

myi a01.old.p.wav, myi a01.m2.p.wav and myi a01.m2w.p.wav have been postfiltered with the fil-

ter proposed by Kishimoto.
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Chapter 6

Conclusion

The synthetic buzz of speech synthesized with a pulse/noise excitation can be eliminated by using

mixed excitation. The creaking distortions due to poor alignment of the excitation and the MCC

can also be removed by using mixed excitation. However, mixed excitation introduces a lowpass

muffling effect.

Yoshimura et al. [YTM+01] proposed to use a mixed excitation model derived from the wide-

band MELP coder proposed by Lin et al. [LKL00], even though they are using mel cepstral coeffi-

cients for synthesis. But this MELP coder works on classical LPC coefficients transformed into LSFs

for transmission. The additional features besides the mixed excitation are therefore mainly aimed

to improve the quality of speech synthesized with LPC coefficients. Based on the results we got

by using our simplified mixed excitation generation model, we also think that the basic principal

of mixed excitation is a powerful option to improve the quality of a MLSA filter based synthesizer.

However, we think that the model has first to be adapted to the characteristics of the synthesis

with a MLSA filter.

Moreover, recent work by Pérez and Bonafonte [PB05] and Dinther et al. [vDVK05] on glottal

pulse parameterization may also inspire new ideas for parametric residual generation.

The unexpected result of the subjective test has still to be analyzed. To further improve the

quality of the synthesized speech it is also important to understand why one sample is preferred

over another one.
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Chapter 7

Further Work

7.1 Postfilter

The next step that has to be made is the evaluation of using a postfilter technique. In future

evaluation we want to use the postfilter proposed by Kishimoto et al.[KZT+02] that is designed to

improve the quality of speech synthesized by a MLSA filter.

7.2 Simplified Mixed Excitation

Our model for the simplified mixed excitation generation may be further developed into a model

for mixed excitation generation adapted for MLSA filter synthesis. Also the analysis to retrieve

the parameters from the audio data should be redesigned, rather then using the analysis of the

wideband MELP coder. Other ideas include to have adaptive frequency bands, e.g. based on the

cepstrum and pitch.

7.3 Speaker Adaption

The speaker adaptation is done with unconstrained maximum likelihood linear regression (MLLR)

by using the HERest tool from HTK. The transformation matrices are obtained by solving a max-

imization problem using the Expectation-Maximization (EM) technique. Figure 7.1 shows a dia-

gram of the speaker adaptation using HTK. As of version 3.3 which is the latest by now, the HTK

[YOVW05] supports speaker adaptive training (SAT) with constrained maximum likelihood linear

regression (CMLLR) transforms. This new feature should help to improve the speaker adaptation.

When it comes to polyglot synthesis, it is particularly difficult to get good performance for

target speakers who’s training data does not include the target language. By using CMLLR and

SAT in our polyglot HMMs we hope to increase the similarity between the original and synthesized

voiced of such a target speaker.
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Figure 7.1: In speaker adaptation, HERest from the HTK first calculates an transformation A that
is applied to the HMMs.

7.4 Polyglot HMM Based Synthesis

The mixed source excitation methods discussed in this thesis still need to be incorporated into

our polyglot HMM based TTS synthesizer. Until now mixed excitation has only be tested with

monolingual models.
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Appendix A

Samples

The audio samples that are included in this thesis as listening examples all derive from the same

utterance. It is a sample of a male Japanese speaker from the ATR speech corpus. The text of this

sample reads B���R�Xdþ��YyfXv�ê�n{FxmX ~òR_n`�
The transcription in kunreishiki reads “arayuru genjitu wo subete jibun no hou e nejimageta no da.”

Parameter Source Method Sample
Original Audio Data myi a01.rec.wav

Recorded Data Pulse/Noise myi a01.voc.wav
Wideband Melp myi a01.vocm.wav

HMM (Models M1 and M2) Pulse/Noise myi a01.old.wav
Simplified Melp myi a01.m2.wav
Wideband Melp myi a01.m2w.wav

HMM (Models M1 and M2) Pulse/Noise (postfiltered) myi a01.old.p.wav
Simplified Melp (postfiltered) myi a01.m2.p.wav
Wideband Melp (postfiltered) myi a01.m2w.p.wav

HMM (Model M3) Simplified Melp myi a01.m1.wav
Wideband Melp myi a01.m1w.wav

Table A.1: Audio samples referenced in this thesis.
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Pulse/Noise Excitation Simplified Mixed Excitation MELP based Excitation
myi a34.old.wav myi a34.m2.wav myi a34.m2w.wav
myi b43.old.wav myi b43.m2.wav myi b43.m2w.wav
myi d30.old.wav myi d30.m2.wav myi d30.m2w.wav
myi e16.old.wav myi e16.m2.wav myi e16.m2w.wav
myi e26.old.wav myi e26.m2.wav myi e26.m2w.wav
myi g04.old.wav myi g04.m2.wav myi g04.m2w.wav
myi h44.old.wav myi h44.m2.wav myi h44.m2w.wav
myi i11.old.wav myi i11.m2.wav myi i11.m2w.wav
myi i36.old.wav myi i36.m2.wav myi i36.m2w.wav
myi i41.old.wav myi i41.m2.wav myi i41.m2w.wav

Table A.2: This audio samples have been used in the informal listening test described in subsec-
tion 5.2.2. They were synthesized by parameters from the HMMs mentioned in subsection 5.2.1.
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Appendix B

Tools

In the scope of this thesis we have used, modified and implemented several tools.

Tools that we have used:

HTK To build the HMM we used the Hidden Markov Model Toolkit (HTK) [YOVW05].

SPTK We used several tools from Speech Signal Processing Toolkit (SPTK), e.g. the MLSA filter

mlsadf.

MATLAB MATLAB was often used to analyze synthesized speech and excitation signals, to

design filters etc.

Tools that we have modified:

MELP First, we used the implementation by Texas Instruments, Inc. of the standard MELP

coder as a basis for our experiments with the MELP model.

Wideband MELP Later, we worked with the wideband MELP coder by Lin [Lin00].

Tools that we have implemented:

Simplified Mixed Excitation Generator For a proof of concept we have implemented a sim-

plified mixed excitation generator. This model turned out to be useful for further re-

search.

Listening Test Interface To conduct the listening test we built a web interface in php using

a mysql database. This helped us to have generated on the fly an individually random-

ized test for each subject.

Distortion Measurements The distortion measurements have been implemented as MAT-

LAB scripts.

Data Handling We wrote several tools for data conversion, handling and manipulation, e.g.

for the MELP delta parameter creation for HMM training.
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