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Abstract

The goal of this thesis was to develop new approaches for the detection of worm
outbreaks in high–speed Internet backbones. We will present three different
methods that use flow–level information exported by backbone border routers.
The first method is based on characteristic port sequences generated by worms
while trying to exploit vulnerabilities on the target hosts. The second method
identifies propagation paths of worms as they spread from host to host. The
third approach is based on the increase of the number of ICMP messages due
to infected hosts scanning for victim hosts. The approaches are generic in the
sense that they do not require any previous knowledge about the exploits used
by the worms or their scanning behaviour. Our presented methods have been
validated against known minor and major worm outbreaks by analysing the
recorded NetFlow data captured in the context of the DDoSVaX project. For
this purpose we have designed and implemented appropriate tools for the offline
analysis of NetFlow data.
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1 Introduction

Many worm outbreaks occur unnoticed by network operators due to the lack
of suitable outbreak detection mechanisms. By the time they get detected a
large number of hosts may already be infected causing lots of damage. The
goal of this diploma thesis was to develop new approaches for near real–time
worm outbreak detection based on the analysis of flow–level data from backbone
border routers. The suitability of the different approaches should be validated
against known minor and major worm outbreaks in the recorded NetFlow data
of the DDoSVaX project. Therefore we had to design and implement tools
for the offline analysis that allowed the testing and evaluation of the presented
approaches.

The three approaches for worm outbreak detection presented in this thesis will
be using:

• Characteristic port sequences

• Propagation triples

• ICMP based analysis

The idea behind the characteristic port sequences is that a self–propagating
Internet worm exploits certain vulnerabilities in order to infect new hosts. For
each infection attempt the worm will try to connect to the destination ports
of vulnerable services according to the worm’s attack vector. This causes an
infected host to repeatedly connect to the same set of destination ports — the
worm’s characteristic port sequence — while scanning for vulnerable victim
hosts. By observing all port sequences that occur within the observed traffic
a worm outbreak will be detectable by a significant increase in the number of
occurrences of the worm’s characteristic port sequence. By using this approach
we were able to reliably identify major as well as minor worm outbreaks.

The second approach is based on discovering the propagation of a worm’s traffic
pattern as it spreads from host to host. After a host infected another host, the
latter will try to connect to other hosts by using the same destination ports
as the former did, due to the worm’s propagation routine. We will investigate
if propagation triples — that is a host connects to a second host by using a
given destination port and thereafter the second host connects to a third host
by using the same destination port — may be identified in the NetFlow data
during worm outbreaks and if their presence reveals an outbreak with respect to
periods without ongoing attack. Due to the nature of the border traffic NetFlow
data this approach may only identify worm outbreaks that occur within the
observed network. We will show that during an internal outbreak a significant
amount of propagation triples may be found. But the detection latency of the
propagation triple based approach varied a lot between the different outbreaks
we have analysed.

A worm causes an infected host to scan randomly generated IP addresses in
order to find vulnerable victims. The scanning will trigger ICMP messages
(e.g. of type Destination Unreachable) generated for instance by routers of the
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corresponding networks or by firewalls. As a third approach we will investigate
the suitability of ICMP based analyses of the NetFlow data for worm outbreak
detection. We found that large scale worm outbreaks have a significant impact
on the number of generated ICMP messages. But the approach is not suited
for detecting worm outbreaks of smaller magnitude because they do not trigger
sufficiently additional ICMP messages in order to be noticed within the existing
ICMP traffic.

1.1 DDoSVaX Project

This thesis is part of the DDoSVaX research project [37] which is a joint project
of ETH Zurich and SWITCH [4]. The goals of the project are the development
of methods and tools to detect and analyse DDoS attacks and worm outbreaks
for supporting appropriate countermeasures. The DDoSVaX project uses the
NetFlow data provided by the SWITCH network (Swiss Education and Re-
search Network). The flows are exported by the backbone border routers of
the autonomous system AS559, operated by SWITCH, and are collected by the
UPFrame [31] framework. UPFrame has previously been developed for this pur-
pose in the context of the DDoSVaX project. In this thesis we also used the
flow–level data from the AS559 backbone border routers for our analyses.

1.2 Related Work

In [38] the authors have presented an entropy based analysis method for de-
tecting outbreaks of fast worms in near real–time. The analysis method uses
flow–level data from an observed network and calculates the entropy (random-
ness) of various attributes within the flows (e.g. number of source IP addresses).
The idea behind the approach is that worm traffic is more structured than nor-
mal traffic in some respects and more random in others. Significant changes in
the characteristics of certain attributes in the observed flows result in signifi-
cant changes in the entropy of the corresponding attribute, hence indicating an
important network event like a worm outbreak.

Another method for detecting worm outbreaks in flow–level data has been pre-
sented in [11]. The method attributes several behavioural properties to individ-
ual hosts, e.g the ratio of outgoing to incoming traffic, the responsiveness and
the number of connections. Based on these properties the individual hosts are
grouped into distinct classes. As the observed attributes are strongly influenced
by a worm outbreak, the number of hosts within a class will significantly change
during a worm outbreak and thereby reveal the outbreak.
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2 Port Sequences

2.1 Introduction

A worm’s propagation routine infects a new victim host by exploiting a given
vulnerability. Some worms carry multiple exploits for different vulnerabilities in
their attack vectors which are employed one by one to increase the probability
for a successful infection. In order to exploit a given vulnerability the worm has
to connect to the destination port(s) of the vulnerable service(s). Hence a worm
causes an infected host to repeatedly connect to the same set of destination
ports of the scanned hosts that the worm tries to infect. As more and more
hosts get infected by a worm, its scanning behaviour will significantly increase
the amount of traffic to the destination ports determined by the worm’s attack
vector. The following approach for worm outbreak detection is based on iden-
tifying such characteristic traffic patterns, in particular patterns that show a
significant increase over a relatively short period of time.

In the following we will describe such a characteristic traffic pattern as a port
sequence which is a set of destination ports used for the TCP and / or UDP
traffic between a source host srcHost and a destination host dstHost1. Provided
that the start times of two consecutive flows are within a given time limit, which
in the following will be five seconds, the destination port of each flow between
srcHost and dstHost will be added to the corresponding port sequence. If
no further flow is observed within the time limit the current port sequence
between the two hosts is considered being completed. A later flow will induce a
new port sequence, even if its destination port is not contained in the previous
sequence. Note that only the unidirectional flows between srcHost and dstHost
are considered for a given port sequence — the flows in the opposite direction
will create a separate port sequence. Figure 1 summarizes these statements.

Figure 1: Two port sequences between two hosts.

1Note that each port is implicitly associated to its corresponding transport protocol (either
TCP or UDP) but for simplicity we will just refer to “port” instead as to “port and protocol”.
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2.2 Problem Statement

Counting the number of occurrences of the various port sequences within the
observed network traffic and aggregating them by interval will result in a set of
time series — one per port sequence that has been found during the analysed
period. During a worm outbreak the number of occurrences of the corresponding
port sequence will significantly increase. Hence the problem of worm outbreak
detection may be reduced to the problem of anomaly detection in the time series
resulting from the port sequence analysis.

This approach poses to major problems to be solved: First, we have to identify
and keep track of a very large amount of different port sequences in the network
traffic to create the time series. Secondly, we have to develop an algorithm
that analyses these time series in order to detect traffic anomalies due to worm
outbreaks.

In Section 2.3 we will present a tool named netflow_port_sequences that
solves the first problem. The tool reads NetFlow data files and outputs the
port sequences found therein. In Section 2.4 we will present a solution for the
second problem: An algorithm for detecting anomalies in the time series of port
sequences.

2.3 netflow_port_sequences Tool

To analyse the port sequences in the archived NetFlow data from the DDoSVaX
project we have implemented a tool called netflow_port_sequences. The tool
reads the NetFlow data files as specified on the command line and outputs the
found port sequences. The tool is written in C and has been developed under
the Linux operating system. It amounts to about 2’700 lines of code.

See Appendix B.1 for a description of the command line options.

2.3.1 Data Processing

Consider three flows from a source host srcHost to a destination host dstHost
as shown in Figure 1. There has been no prior communication between the
two hosts. The first flow to the destination port 1433/TCP generates a new
port sequence between the hosts srcHost and dstHost. The sequence initially
only contains the port 1433/TCP. Because the sequence may be extended by
subsequent flows from srcHost to dstHost that occur within the given time
limit (being five seconds by default) the newly generated sequence is considered
as being an active sequence. It will be inserted into the active_sequences hash
table, containing all active sequences between two arbitrary hosts. The keys of
the hash table elements consist of the two IP addresses of the according source
and the destination hosts. Figure 2 gives a simplified overview of the used data
structures.

When the second flow to port 1025/TCP gets processed the sequence between
srcHost and dstHost is still active. The port 1025/TCP is added to the se-
quence and the timeout counter of the sequence is reset to its original value such
that the sequence is kept active for five more seconds.
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Figure 2: Simplified data structures used by the netflow_port_sequences tool.
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Eventually the sequence’s timeout will expire because no new flow from srcHost
to dstHost has been observed within the given time limit. The sequence is now
considered as being completed and the appropriate sequence counter holding
the information that will be output by the tool, e.g. number of occurrences and
number of unique addresses, of the corresponding interval is updated.

The timeout behaviour of the active sequences is implemented as a ring buffer
(timeout_ring_buffer). Each time the internal time cur_time is incremented
by one second all sequences in the timeout list in timeout_ring_buffer at
the index given by cur_time are processed and removed from the active_
sequences hash table. In order to permit an efficient updating of a sequence’s
timeout value each sequence contains a pointer to its corresponding timeout
entry that belongs to a doubly linked list (see Figure 2). Thereby each entry
can be removed from the list in constant time.

The NetFlow v5 records are processed in the same order as they are read from
the data files. The internal time cur_time used to trigger the timeouts is syn-
chronized by the end times of the processed records. Because the records within
the NetFlow data are not ordered by their start times it is possible that a flow
of long duration is processed after the appropriate active sequence has timed
out (with respect to the internal time), although the current flow would belong
to this sequence according to its start time. In order to account flows with long
durations to their appropriate port sequence the retention period of an active
sequence within the active_sequences hash table constitutes of the timeout
value plus a maximal allowed flow duration (by default 30 seconds).

Through the extended retention period it is possible that a flow gets processed
for which there is an active sequence but the current flow started after the se-
quence’s timeout (such that the flow would belong to a new sequence). As there
may still be flows that started within the sequence’s timeout, hence extending
the timeout such that the current flow would start within the sequence’s time-
out, the current flow will be postponed by means of the sequence’s replay queue.
Every time the timeout value of the sequence is updated (e.g. because a new port
has been added) the replay queue is inspected for flows that now start within the
timeout such that their destination port may be added to the sequence. If the
replay queue of a sequence still contains some flows after the retention period
has elapsed, the remaining flows will create a new active sequence.

In order to reduce memory usage we have implemented an aging mechanism
for sequence counters. If a given sequence has not been observed within the
last five minutes since the last update of the corresponding sequence counter,
the counter will be removed from the interval. Thereby no memory is wasted
for sequences that occur rarely (e.g. port scans), hence being irrelevant for the
purpose of worm outbreak detection.

2.3.2 Output

Table 1 shows the attributes collected by the netflow_port_sequences tool,
together with the according field position within the tool’s output. The informa-
tion provided for each port sequence can be divided into four sections: Timing
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Field Description
1. Seconds since epoch
2. Date in human readable representation (UTC)
3. Time in human readable representation (UTC)
4. Estimated number of external sources
5. Estimated number of AS559 destinations
6. Total number of inbound occurrences
7. Estimated number of AS559 sources
8. Estimated number of external destinations
9. Total number of outbound occurrences

10. Total number of occurrences (in– and outbound)
11. Port sequence string, sorted by port number

Table 1: Attributes per port sequence returned by the netflow_port_
sequences tool. The field number refers to the attribute’s position within the
tool’s output.

information, statistics about inbound port sequences, statistics about outbound
port sequences and overall number of occurrences.

Due to the amount of data the results are split into individual intervals (of one
hour by default). The timing information of the fields 1. to 3. represent the
start time of the corresponding interval.

The number of unique source and destination addresses that were involved in the
given port sequence and interval respectively, are estimates and do not represent
the exact values. Counting the precise amount of unique addresses for every
port sequence (e.g. by storing the seen addresses in a hash table) would exceed
the available resources by far. Instead we have implemented a multiresolution
bitmap counter that uses very little resources per instance but yields just an
estimated number of unique addresses instead of the exact number [13]. As we
are interested in significant changes of the number of unique addresses over a
certain time period, an estimate thereof has proven to be sufficiently accurate
for our purpose.

The individual ports of the port sequence string (e.g. 139:TCP_445:TCP_) in the
last field are separated (and terminated) by ’_’ characters such that the strings
of variable length may be parsed easily by other tools.

The following line is a sample output from the netflow_port_sequences tool
for the port sequence to port 4672/TCP. For better readability the field numbers
are included, too.

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.

1106038800 18.01.2005 09:00:00 41 39 51 120 185 555 606 4672:TCP_

Note that the netflow_port_sequences tool outputs by default only the se-
quences that occurred at least 500 times during an interval in order to reduce
the number of port sequence time series that have to be analysed afterwards.
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2.3.3 Performance and Memory Usage

The performance and the memory usage of the netflow_port_sequences tool
has been tested by analysing the archived NetFlow data of the Sasser and Zotob
outbreaks, processing ten hours of data captured by three out of four SWITCH
border routers. The tests have been done on a computer with an AMD Athlon
XP 2800+ CPU and 1GB of memory.

Using the tool’s default parameters the analysis of one hour of NetFlow data
took five to eight minutes with a memory usage of about 250MB. There is a
wide scope for analysing more traffic without exceeding any memory limitations.
Furthermore the computing is fast enough to be done in real–time.

2.4 Adaptive Anomaly Detection Algorithm

We have developed an algorithm, called Adaptive Anomaly Detection Algorithm,
that identifies significant deviations within the time series of a port sequence.
The found deviations will eventually trigger an event that indicates an anomaly
in the traffic pattern of the corresponding port sequence. Based on the event’s
properties it may be classified as being due to a worm outbreak or not.

For each port sequence the algorithm performs three steps in order to find
anomalies in the observed traffic pattern:

Determine significant deviations in the individual time series of the port
sequence attributes. The found deviations will be regarded as potential
events.

Identify relevant events by combining the potential events of several at-
tributes.

Calculate event statistics, e.g. duration of the event or the mean number of
sequence occurrences during the event.

These steps will now be discussed in greater detail.

2.4.1 Step 1: Determine Significant Deviations

The first step of our Adaptive Anomaly Detection Algorithm consists in deter-
mining significant deviations in the attributes’ time series of a port sequence.
A value at a given interval i is considered to be a potential event if this value
surpasses a certain threshold. Instead of being fixed the threshold is adapted
for each interval based on the windowed mean µw and the windowed standard
deviation σw of the attribute values that occurred in previous intervals. The
number of intervals that are taken into account for the calculations is specified
by the window size w. The threshold value tw(i) for the interval i and a given
window size w is defined as

tw(i) := µw(i− 1) + dwσw(i− 1)
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with µw(i− 1) and σw(i− 1) being the windowed mean and windowed standard
deviation respectively over the interval [i−w, . . . , i−1]. A value x(i) is considered
as a potential event if it surpasses the threshold value tw(i):

x(i) > tw(i)

In other words a potential event is triggered if the deviation x(i)− µw(i− 1) is
larger than dwσw(i−1). The constant deviation factor dw controls the sensitivity
of the algorithm — the larger dw the more a value x(i) may be off of its expected
domain without triggering a potential event.

2.4.2 Step 2: Identify Relevant Events

Compared to periods without ongoing attack a worm outbreak entails a signif-
icantly increased amount of connection attempts as well as a significantly in-
creased number of unique destination addresses within the traffic pattern used
by the worm’s propagation routine. Our algorithm uses this behaviour to gen-
erate relevant events that may indicate a worm outbreak and for discarding
irrelevant events from the potential events that were found in the first step.

A significant deviation in the number of port sequence occurrences during a
given interval has to be accompanied by a significant deviation in the number
of unique destination IPs during the same interval in order to trigger an event.
A singly appearing potential event is discarded.

The algorithm distinguishes between inbound and outbound events. With re-
spect to Table 1 it tries to match the attributes “estimated number of AS559
destinations” and“total number of inbound occurrences” for inbound events and
“estimated number of external destinations” and “total number of outbound oc-
currences” respectively for outbound events.

2.4.3 Step 3: Calculate Event Statistics

The last step consists in calculating and assigning various properties to each
event which will help classifying an event in whether it was due to a worm
outbreak or not. Among others our implementation of the algorithm (see Sec-
tion 2.4.4) determines the following properties:

• Duration of the event

• Mean number of sequence occurrences. . .

– during the event

– before the event

– after the event
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An accurate estimation of an event’s duration is an important factor for discern-
ing its cause. An event lasting several days is more likely to be due to a worm
outbreak than an event that lasts only a few hours. In our algorithm an event is
supposed to be over if the value of at least one involved attribute is back to nor-
mal, that is its value is smaller than the corresponding threshold value tw(istart)
during the interval when the event started. To smoothen possible fluctuations
the values of an attribute have to remain below the trigger threshold during a
given amount of time in order to terminate an event (which has been four hours
in our analyses).

2.4.4 Algorithm Implementation

We have written a tool named analyse_port_sequences that implements our
Adaptive Anomaly Detection Algorithm. The tool offers an interactive analy-
sis and plotting environment that processes the output of the netflow_port_
sequences tool. It uses the aforementioned algorithm do detect traffic anoma-
lies in the port sequences returned by netflow_port_sequences. The analysis
environment has been implemented in Python — a programming language that
is well suited for the rapid prototyping approach that we used for the tool’s
development. The tool consists of about 1300 lines of code.

In the following analyses the window size w used by the algorithm was set to
108 intervals — with an interval duration of one hour each, the window size
corresponds to 4.5 days — whereas the deviation factor dw was set to three.
These values have proven to give reliable results during our tests.

2.4.5 Using Multiple Window Sizes Simultaneously

Initially we designed the previously described algorithm to use multiple windows
of different sizes in order to find significant deviations. The threshold values of
small windows would adapt more quickly to the data (hence being closer to the
actual data) while the thresholds of large windows would be smoother, reflecting
the variance of the data over a longer period. A potential event would only be
created if a value x(i) exceeded at least half of the windows’ thresholds.

The implementation of the algorithm in the analyse_port_sequences tool sup-
ports the usage of multiple windows. But we found that for detecting large scale
anomalies, as they result during worm outbreaks, the usage of multiple windows
did not perform better than the usage of a single window. It is important though
that the size of the single window has to be large enough to avoid overfitting
the data. As mentioned previously a window size covering at least 4.5 days
performed very well in our analyses.

2.5 Analysis of Known Worm Outbreaks

To validate the presented port sequences based approach and the Adaptive
Anomaly Detection Algorithm we have analysed the archived NetFlow data from
the DDoSVaX project that has been captured during the four worm outbreaks
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that have been reported during 20052. Further details about the individual
worms are given in Appendix A.

We first used the netflow_port_sequences tool to get the statistics of all port
sequences that occurred during the corresponding time periods. The NetFlow
data files were processed by using the tool’s default settings (see Appendix B.1).
Thereafter we analysed all the found port sequences with the analyse_port_
sequences tool in order to automatically find all network events in the analysed
NetFlow data.

As stated in Section 2.4.4 the algorithm’s window size parameter w was set to
108 hours (4.5 days) and the deviation factor dw to three. Note that the values
of the first 4.5 days of the analysed data are used to initialize the windowed mean
as well as the windowed standard deviation in order to calculate the threshold
value. Hence the algorithm will not report any events within this first period.

2.5.1 Decision Criterion for Significant Events

The Adaptive Anomaly Detection Algorithm reports any anomaly that matches
the requirements given in Section 2.4 as an event. An event does not necessarily
has to be due to a worm outbreak. Hence a decision criterion is needed to dis-
tinguish significant events from irrelevant events with respect to worm outbreak
detection. In the analyses of periods with known worm outbreaks given below
we will only present such significant events that were found by the algorithm.

For this purpose we used a very simple rule for the classification of events. In
order for being classified as significant an event has to last more than ten hours
and the mean number of sequence occurrences during the event has to be larger
than 500’000 occurrences per hour for inbound events and larger than 100’000
occurrences per hour for outbound events. Events that do not match this rule
will not be considered as potential worm related events because they are too
small. This simple decision criterion is based on experience while analysing the
events from the worm outbreaks during 2005.

2.5.2 MySQL UDF Worm

The outbreak of the MySQL UDF worm occurred on Wednesday, January 26th,
2005. We analysed the time period from January 19th to January 30th, 2005.
During that period the netflow_port_sequences tool found 4116 different port
sequences that occurred at least 500 times in any interval.

The outbreak of the MySQL UDF worm was not perceivable within the AS559
border traffic. Neither the number of inbound connection attempts to the vul-
nerable MySQL port 3306/TCP nor the number of unique AS559 destination
addresses exhibited any evidence for a worm outbreak, as shown in Figure 33.
Too few hosts were infected on a global scale (see Appendix A.1) in order to
have a significant impact on the observed traffic. Accordingly the Adaptive
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Figure 3: Number of inbound 3306/TCP port sequences during the MySQL
worm outbreak.

Anomaly Detection Algorithm did not report any significant event regarding
the 3306/TCP port sequence. Note that there was no internal outbreak neither.

Nevertheless the algorithm reported two significant events that occurred during
the analysed time period. The first event regarded port 6129/TCP. This port
is used by DameWare, a remote control administration software for Microsoft
Windows operating systems. According to [24] this tool was also installed by
some viruses to allow the remote administration of the infected systems.

Figures 4 and 5 show the number of inbound 6129/TCP port sequence occur-
rences and the number of unique AS559 destination addresses respectively. Both
plots contain the threshold values for the corresponding attributes used by the
algorithm. Remember that the algorithm only triggers an event if the values of
both attributes exceed the threshold during the same interval. Also note that
an event is considered to be over if the values of one attribute drop below the
trigger threshold value for more than four intervals in a row.

Regarding the port sequence 6129/TCP the algorithm found a first event on
Tuesday, January 25th, 2005, at 21:00 UTC. Because the number of unique des-
tination addresses was again below the threshold value during the next intervals
the event lasted only one hour. A second, significant event has been found
on Wednesday, January 26th, at 11:00 UTC. Its beginning is indicated by the
first vertical line in the plots. The plots show a significant increase of traffic to
port 6129/TCP, accompanied by a significant increase of AS559 destinations.
The algorithm determined a duration of 33 hours for the event. Its ending is
indicated by the second vertical line in the plots.

During the analysed time period no worm outbreak has been reported that
exploited a vulnerability on port 6129/TCP. However, several worm variants
known to exploit DameWare vulnerabilities were active during that time —
e.g. Agobot (Gaobot) [36], Mockbot [32] or Kobot [32].

2We analysed the traffic data captured by three out of four SWITCH border routers.
3Because the plot for the unique number of AS559 destination addresses is very similar to

the shown plot, it has been omitted for the sake of the plot’s clarity.
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Figure 4: Number of inbound 6129/TCP port sequences.
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Figure 5: Estimated number of unique AS559 destination addresses for inbound
6129/TCP port sequences.
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Note that the plots of the number of sequence occurrences and the number of
unique destination addresses in Figures 4 and 5 show a similar curve progres-
sion. The major difference is the scale between the two plots — the number of
sequence occurrences is about five times larger than the number of destinations.
In the following we will omit the plot of the number of destinations if there is
such a similarity between the plots. But keep in mind that the algorithm only
triggers an event if there are significant deviations within both port sequence
attributes.

The algorithm reported another significant event in the analysed data on Sun-
day, January 23rd, 2005, at 21:00 UTC. The event was due to a considerable
increase of inbound traffic to port 1433/TCP as shown in Figure 6. During the
peak period there were about 30 million inbound connection attempts per hour.
On average there were about 2.8 million connection attempts per hour.

Port 1433/TCP is used by the Microsoft SQL Server and the Microsoft Desk-
top Engine (MSDE). Systems may be compromised by exploiting null or weak
default passwords of the database administrator user ([6], [23]), which has been
exploited by several worms. For the analysed time period no new worm outbreak
was reported that would exploit the vulnerability. Still, according to Symantec
port 1433/TCP was the fourth most attacked port between January 1st to June
30th, 2005 [34], which reflects our findings.
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Figure 6: Number of inbound 1433/TCP port sequences.

Besides the events regarding the port sequences 6129/TCP and 1433/TCP no
other event reported by the algorithm was significant with respect to the decision
criterion given in Section 2.5.1. For all other events there were either too few
connection attempts and / or the events lasted too short in order for being
considered as potential worm related events.
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2.5.3 Zotob

The Zotob outbreak took place on Saturday, August 13th, 2005. We analysed
the archived NetFlow data from August 1st to August 21st, 2005. Therein
3701 different port sequences have been found, in which the Adaptive Anomaly
Detection Algorithm revealed two significant events — both being due to the
Zotob outbreak.

The first event has been found on Saturday, August 13th, 2005, at 3:00 UTC,
where the number of inbound connection attempts to port 445/TCP as well as
the number of unique AS559 destinations exceeded the corresponding threshold
values. Figure 7 illustrates the course of the outbreak. It shows a significant
increase of the inbound traffic to port 445/TCP with an average of over one
million connection attempts per hour during the event. The start time of the
event determined by the algorithm coincides with reports about the Zotob out-
break [29]. Hence we can state that the algorithm detected an event that was
due to the Zotob outbreak.

Note that the algorithm identified a preceding event on Friday, August 12th, at
17:00 UTC. As the reported event duration is only two hours the event is not
considered as being significant.
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Figure 7: Number of inbound 445/TCP port sequences. The begin of the Zotob
outbreak as it has been identified by the Adaptive Anomaly Detection Algorithm
is indicated by the first vertical line.

The second significant event reported by the algorithm occurred on Friday, Au-
gust 19th, at 16:00 UTC and concerned the outbound traffic. It lasted 25 hours
with an average of over 200’000 outbound connection attempts per hour. Com-
paring with Figure 8 there was indeed a significant increase of outbound traffic
to port 445/TCP. This second event represents the AS559 internal outbreak of
the Zotob worm.

Note that the peak of inbound connection attempts that occurred during the
afternoon on Sunday, August 14th, does not represent a significant event as
defined in Section 2.5.1 because it lasts less than ten hours.
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Figure 8: Number of outbound 445/TCP port sequences. The begin of the
AS559 internal Zotob outbreak as it has been identified by the Adaptive
Anomaly Detection Algorithm is indicated by the first vertical line.

No other significant event was reported by the algorithm within the analysed
13 days.
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2.5.4 Lupper

The Lupper worm was discovered on the Internet on Tuesday, November 8th,
2005. The archived NetFlow data we analysed ranged from November 1st to
November 14th, 2005. A total of 3705 different port sequences were found during
that period.

Figure 9 shows the inbound connection attempts to port 80/TCP — the port
that was exploited by Lupper worm. Apparently the outbreak did not have
a very large impact on the inbound network traffic. Our algorithm reported
an inbound event for port 80/TCP that started on Tuesday, November 8th, at
11:00 UTC and lasted 54 hours. With 230’000 connection attempts per hour
the event may not be considered as being significant. Nevertheless it was by far
the most prominent event found during the analysed period, both with respect
to its duration and to the number of sequence occurrences per hour.
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Figure 9: Number of inbound 80/TCP port sequences. The begin of the Lupper
outbreak as it has been identified by the Adaptive Anomaly Detection Algorithm
is indicated by the first vertical line.

Figures 10 and 11 show the number of outbound connection attempts and num-
ber of external destinations respectively destined to port 80/TCP. Especially the
number of external destinations contacted by AS559 hosts shows a significant
increase on Tuesday, November 8th at 13:00 UTC, giving strong evidence that
the Lupper worm propagated into AS559. The number of outbound connec-
tion attempts in Figure 10 was also affected by the internal outbreak, which is
clearly visible in the elevated amount of outbound traffic during the night from
Tuesday, November 8th. Prior and after the outbreak there is only little traffic
during the nights — most people browse the web during the day and not at
night. This changed during the Lupper outbreak that infected web servers. As
the infected servers kept running during the night they generated traffic to port
80/TCP while scanning for further victims, resulting in the increased nightly
traffic.

As indicated by the vertical lines within Figures 10 and 11 the beginning of
the outbreak has been detected by our algorithm, but its duration has been
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estimated to just two hours. The reason for this wrong estimation was that
the number of outbound connection attempts to port 80/TCP soon dropped
below the threshold value and that the algorithm did not take into account the
anomaly in the periodic nature of the data.
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Figure 10: Number of outbound 80/TCP port sequences. The begin of the
internal Lupper outbreak as it has been identified by the Adaptive Anomaly
Detection Algorithm is indicated by the first vertical line.
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Figure 11: Estimated number of unique AS559 destination addresses for out-
bound 80/TCP port sequences. The begin of the internal Lupper outbreak as it
has been identified by the Adaptive Anomaly Detection Algorithm is indicated
by the first vertical line.
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2.5.5 Dasher

We analysed the archived NetFlow data ranging from December 3rd to De-
cember 31st, 2005. According to antivirus vendors the Dasher outbreak took
place on Thursday, December 15th, 2005. During the analysed period the
netflow_port_sequences tool found 6871 different port sequences in which
one significant event has been found.

This event has been reported by the Adaptive Anomaly Detection Algorithm on
Thursday, December 8th, at 13:00 UTC, regarding port 1025/TCP — the same
port that has been exploited by Dasher’s propagation routine. Figure 12 shows
the number of inbound connection attempts to port 1025/TCP. The strong and
fast increase from virtually no connection attempts prior the event to over two
million attempts shortly after the outbreak and to over three million attempts
about 24 hours later suggests that this significant event (with an average of
two million connection attempts per hour) has been due to a worm outbreak.
Puzzling is the fact that antivirus vendors dated the Dasher outbreak a week
later, namely on Thursday, December 15th [35], [14]. However, the Information
Technology Security Center of Japan [19] made the same observations about the
1025/TCP traffic and name the Dasher worm as its cause.
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Figure 12: Number of inbound 1025/TCP port sequences. The begin of the
Dasher outbreak as it has been identified by the Adaptive Anomaly Detection
Algorithm is indicated by the first vertical line.

A second event has been found for the port sequence 1025/TCP, 1433/TCP
on Friday, December 16th, at 0:00 UTC (Figure 13). With an average of only
4000 sequence occurrences per hour the event would certainly not be considered
as being significant. But as the port sequence shares a port (1025/TCP) with
a previously found event that has been classified as being significant, we have
evidence that the new event was due to a variant of the worm that triggered the
last event and thus should also be considered as being significant.

Four hours later, on Friday, December 16th, at 4:00 UTC a third event has
been reported for the port sequence 42/TCP, 1025/TCP, 1433/TCP as shown
in Figure 14. With an average of 40’000 sequence occurrences per hour the event
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Figure 13: Number of inbound 1025/TCP, 1433/TCP port sequences. The begin
of the outbreak of the Dasher variant as it has been identified by the Adaptive
Anomaly Detection Algorithm is indicated by the first vertical line.

alone was also not significant. But now there were two other previous events
sharing common ports (1025/TCP and 1433/TCP) with this event.
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Figure 14: Number of inbound 42/TCP, 1025/TCP, 1433/TCP port sequences.
The begin of the outbreak of the Dasher variant as it has been identified by the
Adaptive Anomaly Detection Algorithm is indicated by the first vertical line.

In fact later variants of the Dasher worm additionally tried to exploit, besides the
MSDTC vulnerability through port 1025/TCP, older vulnerabilities in services
like WINS (42/TCP), LSASS (445/TCP) and MSSQL (1433/TCP), depending
on the variant (see Appendix A.4). Hence the two events after the first Dasher
event were due to Dasher variants. This demonstrates an advantage of the port
sequence based anomaly detection compared to just analysing the occurrence
frequency of single ports. By matching an event with previous events that share
common ports, we may identify worm related events that otherwise would be
considered as being nonsignificant due to their lower amount of occurrences.
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Additionally to the Dasher related events the algorithm found an event con-
cerning port 8080/TCP. As shown in Figure 15 the event started on Thursday,
December 8th, at 19:00 UTC. Although it started the same day as the Dasher
outbreak there is no evidence for a correlation of the events. During the day of
the event an exploit has been released for a buffer overflow vulnerability in the
Oracle 9i XML Database (XDB), exploitable through port 8080/TCP [15]. As
there was virtually no inbound traffic to port 8080/TCP prior the release we
expect that the event was due to scans for vulnerable system. This event was
not significant with respect to worm outbreaks but it shows that the algorithm
may also be used to detect the releases of new exploits.
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Figure 15: Number of inbound 8080/TCP port sequences.
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2.6 Encountered Problems

The biggest challenge during the development of the netflow_port_sequences
tool was performance and memory usage. Our initial intent was to use very
few and simple data structures with few connections between them. The aim
was to keep the code as clean and simple as possible. The optimizations should
be done by the compiler, not the programmer. Due to the large amount of
flow records that have to be processed and the large number of port sequences
that have to be tracked, this approach yielded a very poor performance. We first
optimized the hash table code where the program spent the most computing time
(e.g. inlining often called procedures, avoiding the shrinkage of the table while
deleting elements) to find out later that for the particular task we optimized
the hash tables for (handling of timeouts), using hash tables was the wrong
solution and that doubly linked lists with pointers to their elements was a lot
faster. This resulted in interconnected data structures but also in much better
performance.

The need for counting the number of unique addresses time and space efficiently
posed another very important problem. For every port sequence four address
counters are needed (source and destination addresses for inbound and outbound
flows). Due to the large amount of different sequences that have to be tracked
during a single interval (up to 100’000) we could not use hash tables or bitvector
tables covering the whole address space because they would exceed the available
memory4. We then implemented a bitvector based address counter for a limited
number of addresses that belong to a configurable set of address ranges. For
the address ranges belonging to AS559 — allowing to count the number of
unique destinations for inbound traffic and the number of unique sources for
outbound traffic but no external addresses — one counter needed about 300KB
of memory. This was still too much for the number of instances we needed. We
finally implemented a multiresolution bitmap counter as presented in [13]. One
instance requires only little more than 200 Bytes of memory but provides just
an estimate value of the number of unique addresses. For detecting significant
deviations the accuracy is high enough and the low amount of memory needed
allows us to count the number of internal as well as the number of external
addresses for inbound and outbound sequences.

Few days before the submission date of the thesis we discovered that our script
(analyse_port_sequences) that implements the Adaptive Anomaly Detection
Algorithm did not report an outbound event during the afternoon on August
14th, 2005, during the Zotob outbreak (see Section 2.5.3), although the number
of outbound connection attempts to port 445/TCP as well as the number of
unique destination addresses were larger than their thresholds (Figure 8). Un-
fortunately we never noticed this error before — whether in this particular port
sequence nor in other sequences of the analysed time periods. During our test
the script did always reliably report the events as expected. Regrettably we had
no time left to trace the error in the analyse_port_sequences script. Note
that this error does not affect the algorithm itself. The values of the attributes
are larger than the threshold values and thus represent an event as defined by
the algorithm.

4E.g. the ip_table.c implementation from the DDoSVaX project has an overhead of 64MB
per instance.
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2.7 Future Work

Proposals for further improvements of the presented approach are:

• We expect that the presented Adaptive Anomaly Detection Algorithm may
also be used for detecting (D)DoS attacks. Therefore the algorithm would
have to match significant deviations in the number of sequence occurrences
and unique source addresses (instead of unique destination addresses as
presented in this thesis).

• We have used the decision criterion for the offline analysis of archived Net-
Flow data for which it performed well. Because the duration of an event is
not known when the Adaptive Anomaly Detection Algorithm reports an
event during an online analysis, the decision criterion has to be adapted
to meet the requirements of the online analysis.

2.8 Conclusion

The implementation of the netflow_port_sequences tool shows that it is pos-
sible to monitor efficiently all the port sequences that occur within the border
traffic of an autonomous system like AS559 simultaneously. Our performance
tests have shown that real–time port sequence analysis is feasible in terms of
computing time as well in terms of memory requirements.

We have presented an algorithm that identifies significant events within the
border network traffic based on the results of the port sequence analysis. We
validated the algorithm by analysing known worm outbreaks that occurred dur-
ing 2005. The algorithm detected reliably events due to worm outbreaks and
other significant network anomalies. No false positives were reported. The
events were reported as soon as there was any significant deviation in the ob-
served traffic with a detection latency of about one hour. The detection latency
is primarily given by the interval duration used for the port sequence analysis.

We have shown that the port sequence approach is able to identify worm out-
breaks that are due to variants of previous worms. If one or multiple ports of
an event’s port sequence coincide with ports of the port sequence of a previous
worm outbreak event there is evidence that the current event is due to a variant
of the former worm.





31

3 Propagation Triples

The idea behind the following approach is to detect propagation paths of a
worm as it spreads from host to host. A worm’s propagation routine causes
an infected host X to show a specific traffic pattern. If a second host Y shows
the same traffic pattern while communicating with a third host Z after having
been contacted by the first host X, the pattern may be due to the worm that
propagated from host X to host Y, trying now to infect host Z. In the following
we will investigate if propagating traffic patterns may reveal worm outbreaks.

3.1 Definition

Assume we observe in a network two communication flows as shown in Figure 16.
First host X contacts host Y on port 445/TCP. Thereafter host Y shows the
same traffic pattern as host X while contacting host Z. Thus we have observed
a propagation path from X to Y and from Y to Z for the traffic pattern “contact
the destination host on destination port 445/TCP”. The Zotob worm showed
the same pattern while exploiting a vulnerability of Microsoft Windows 2000
systems through port 445/TCP (see Appendix A.2). Hence the observed prop-
agation path could have been the result from host X infecting host Y with the
Zotob worm, which in turn tried to infect host Z.

Figure 16: Propagation triple of the Zotob worm between the hosts X, Y and
Z.

In order to describe a propagation path of a traffic pattern formally, we introduce
the concept of propagation triples. A propagation triple consists of two distinct
flows between three hosts. One of the hosts has to act as server in the first flow
and as client in the second flow.

A flow is a tuple describing a unidirectional communication between two hosts:

Flow := (srcHost, dstHost, flags, flowstart).

The srcHost and dstHost components identify the two communication end-
points of the flow which started at the time flowstart. The flags compo-
nent is an arbitrary sized set containing information about the communication
(e.g. TCP fields like source and destination ports).
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The two predicates

P1(flow1, f low2) := dstHostflow1 = srcHostflow2

P2(flow1, f low2) := flowstartflow1 ≤ flowstartflow2 .

represent the basic traffic pattern

pattern(flow1, f low2) :=
∧
i

Pi(flow1, f low2)

that has to be met by two arbitrary flows in order to constitute a general prop-
agation triple

PropagationTriple := (flow1, f low2, pattern)

with pattern(flow1, f low2). In order to define a certain class of propagation
triples that show a specific traffic pattern, further predicates may be added to
pattern according to the given application.

3.2 Algorithm

As a worm propagates from one host to another, the latter will show a similar
traffic pattern as the first one due to the worm attempting to infect further hosts.
On a global view every successful infection will induce a new propagation triple
matching the traffic pattern used by the worm’s propagation routine. Therefore
the presence (or a significant increase) of propagation triples belonging to a
given class may reveal a worm outbreak.

In the following we will analyse the presence of propagation triples within the
NetFlow data captured by the SWITCH backbone border routers. Due to the
fact that the available NetFlow data contains only traffic flows that enter or
leave the autonomous system AS559, we may only detect propagation triples
that cross the border of AS559. Therefore we will restrict our analysis in finding
propagation triples where the intermediate endpoint belongs to AS559 while the
two other endpoints are located outside AS559.

The actual algorithm for finding propagation triples within the border router
NetFlow data is as follows: After an AS559 host got contacted by an external
host, all outbound flows of the AS559 host will be observed, yielding eventually
a propagation triple with the observed AS559 host as intermediate host.

In order to narrow the domain of possible propagation triple classes, we will only
consider IP flows using either TCP or UDP as transport protocol. Furthermore
we will restrict our analysis to propagation triples having a constant destina-
tion port, e.g. where both flows have the same destination port (and protocol).
Finally we require the second flow of a propagation triple to occur within ten
minutes after the first flow has been observed.



3.2 Algorithm 33

These restrictions yield the following additional, specialised predicates for the
pattern component of the propagation triples being considered:

PDirection(flow1, f low2) := dstflow1 ∈ AS559 ∧ srcflow1 , dstflow2 /∈ AS559
PProtocol(flow1, f low2) := protocolflow1 = protocolflow2 = (TCP ∨UDP)

PConstPort(flow1, f low2) := dstPortflow1 = dstPortflow2

PTimeDelta(flow1, f low2) := flowstartflow2 − flowstartflow1 ≤ 10min

Figure 17 summarizes the statements above. Only the traffic between the hosts
A, B and C represents a propagation triple matching the required traffic pattern.
The traffic between the hosts A, D and E forms a non–constant destination
port propagation triple and the traffic between the hosts F, G and H won’t
be considered because the second flow did not occur within the requested time
limit.

Figure 17: In our analysis we only consider propagation triples like the one
between the hosts A, B and C. The other two propagation triples do not match
the required traffic pattern.
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3.2.1 Algorithmic Limitations

As our view in the context of the DDoSVaX project is limited to traffic entering
or leaving the autonomous system AS559, we may only identify propagation
triples during a worm outbreak if hosts within AS559 get infected. As long as
no internal infections take place the algorithm will not be able to detect the
outbreak, because no internal host will show the worm’s traffic pattern while
contacting external hosts.

Also note that due to the limited amount of time a contacted host is observed
and due to the lack of a global view, we may not associate a new propagation
triple to a new infection5. The corresponding host may as well have been infected
earlier but its observation timeout expired before the host began scanning any
external hosts. A subsequent scan by an external host then made the host in
question being observed again, when it eventually scanned an external host to
trigger the propagation triple. The internal host may also have been infected
by another internal host and the propagation triple emerged only after the host
was contacted by an external host.

3.3 Propagation Triples Without Ongoing Worm Outbreak

In order to validate the concept of propagation triples with respect to worm
outbreak detection we have analysed the NetFlow data from the DDoSVaX
archive. For this purpose the netflow_triples tool was developed, whose
implementation details will be discussed in Section 3.5.

Before we are going to analyse the propagation triples emerging during known
worm outbreaks we will have a look at two periods of time without any major
ongoing worm outbreak as a reference. Therefore we analysed intervals of 48
hours of the traffic data captured by three out of four SWITCH border routers
prior the Blaster and Zotob outbreaks.

3.3.1 Prior the Blaster Outbreak

The analysed data prior the Blaster outbreak ranges from Wednesday, August
6th, 2003, 0:00 UTC to Thursday, August 7th, 2003, 24:00 UTC. The Blaster
outbreak took place four days later on Monday, August 11th, 2003.

During the analysed 48 hours we found 1685 propagation triples with constant
destination ports. Out of 728 different traffic patterns only 18 traffic patterns
generated five or more propagation triples during the 48 hours. 899 triples
belonged to one of these 18 classes, hence over 53% of all triples were due to
only 2.4% of the classes.

Table 2 lists these 18 propagation triple classes that generated at least five
triples during the analysed 48 hours. The table also specifies the total number
of occurrences as well as the maximum number of occurrences during a one hour
interval. The last column contains the common usage of the triples’ destination
ports.

5Assuming we analyse the propagation triples that emerge during a worm outbreak.



3.3 Propagation Triples Without Ongoing Worm Outbreak 35

Occurrences Max occ.
Port Protocol during 48h in 1h Usage
80 TCP 490 113 HTTP
53 UDP 115 16 DNS
25 TCP 97 12 SMTP
4662 TCP 50 10 eDonkey P2P
1214 TCP 25 3 Kazaa P2P
3531 UDP 24 2 Joltid PeerEnabler P2Pa

3531 TCP 14 6 Joltid PeerEnabler P2P
6346 TCP 12 2 Gnutella P2P
113 TCP 10 3 Ident Service
4672 UDP 10 2 eDonkey P2P
2234 TCP 9 2 Soulseek P2P
137 UDP 8 2 MS NetBios Name Service
6881 TCP 7 3 Bittorrent P2P
6882 TCP 6 2 Bittorrent P2P
6883 TCP 6 1 Bittorrent P2P
500 UDP 6 2 VPN Key Exchange
6699 TCP 5 2 winMX P2P
6257 UDP 5 1 winMX P2P

Table 2: Most frequent propagation triples found during an interval of 48 hours
prior the Blaster outbreak.

aBundled with Kazaa

As shown in the table two thirds of the propagation triple classes (12 out of 18)
were due to P2P traffic. These propagation triples are due to the functioning
of P2P networks, where a client often acts as server as well, hence representing
a triple’s intermediate endpoint. The second and third most propagation triple
classes were generated by DNS and SMTP traffic — both being widely used
protocols which are also used for inter–server communication. The majority
(13 out of 18) of the found triples occurred at most 3 times during a one hour
interval.

By far the most frequently observed traffic pattern was port 80/TCP, commonly
used for HTTP, amounting to 29% of all found triples. We don’t know the reason
for this large amount of propagation triples compared to the other classes.

One possibility for this large amount of triples could be port scans. HTTP is
one of the most used protocols in the Internet6. Hence the probability that
a host initiates a connection to a web server within ten minutes after having
been scanned on port 80/TCP is significantly higher compared to other, less
used protocols. Traffic to port 80/TCP may also be due to P2P clients as users
configure their P2P clients to use port 80/TCP instead of their default ports in
order to circumvent firewalls.

Analysing the data revealed that only twelve different hosts were the initiating
endpoint for 262 out of 490 HTTP propagation triples — hence these twelve

6Over 42% of SWITCH’s transatlantic traffic in 2001 was due to HTTP [22]
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hosts triggered over 50% of all HTTP propagation triples. The temporal suc-
cession of the corresponding triples — for each source they occurred within a
few minutes — does suggest that these triples were initiated by a scan to port
80/TCP.

As the traffic data to port 80/TCP does not show any anomalies during the
analysed period, this analysis endorses the assumption that a large amount of
the HTTP propagation triples was due to (human) scanning activities and not,
for instance, to worm related communication patterns.

3.3.2 Prior the Zotob Outbreak

The second propagation triple analysis during a period without ongoing worm
outbreaks has been done on the archived data prior the Zotob outbreak, more
precisely from Wednesday, August 10th, 2005, 0:00 UTC to Thursday, August
11th, 2005, 24:00 UTC. The Zotob outbreak took place two days later on Sat-
urday, August 13th, 2005.

In total we found 2399 propagation triples belonging 1028 different classes during
the analysed 48 hours. 29 traffic patterns generated at least five propagation
triples — they represent 2.8% of all classes and generated 1357 triples, being
over 56% of all found triples.

These propagation triple classes that generated at least five triples during the
analysed 48 hours are listed in Table 3. The table also specifies the total number
of occurrences as well as the maximum number of occurrences during a one hour
interval. The last column contains the common usage of the triples’ destination
ports.

As in the analysis prior the Blaster outbreak the top three propagation triple
classes belong to the HTTP, SMTP and DNS protocols and there is still a fair
amount of P2P propagation triple classes. The maximum number of triples
per hour is also comparable to the one prior the Blaster outbreak and averages
(without the top three triple classes) at less than three triples per hour.

However, the three top classes are followed by a new type of propagation triple
classes, destined to ports 1026/UDP and 1027/UDP. These ports are used by
spammers to display anonymously pop–up messages on Microsoft Windows sys-
tems running the messenger service [25].

Note that much of the messenger spam propagation triples are due to a limita-
tion of the netflow_triples analysis tool. In 65% of all the 1026/UDP and
1027/UDP triples the source port of the second flow was 53/UDP. The corre-
sponding propagation triples emerged while a spam server sent a UDP spam
message to port 1026/UDP or 1027/UDP of a DNS server. If this server then
replied to a legitimate DNS request that had a source port of 1026/UDP or
1027/UDP (being the destination port in the reply), a new propagation triple
has been created. This happens if the reply flow is processed before the actual
request flow (see Section 3.6.1 for further details).
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Occurrences Max occ.
Port Protocol during 48h in 1h Usage
80 TCP 524 194 HTTP
25 TCP 199 40 SMTP
53 UDP 171 26 DNS
1027 UDP 89 7 Windows Messenger Spam
1026 UDP 87 9 Windows Messenger Spam
123 UDP 57 7 NTP
4662 TCP 29 6 eDonkey P2P
6346 TCP 23 3 Gnutella P2P
6346 UDP 14 2 Gnutella P2P
23127 UDP 14 2 Unknown
22 TCP 13 4 SSH
6881 TCP 11 1 Bittorrent P2P
4672 UDP 11 1 eDonkey P2P
23126 UDP 10 2 Unkown
4661 TCP 9 2 eDonkey P2P
4000 TCP 9 1 Terabase Search Engine
3531 UDP 9 2 Joltid PeerEnabler P2Pa

1863 TCP 8 2 MSN Messenger Protocol
500 UDP 8 2 VPN Key Exchange
0 UDP 8 2 Unknown
3124 TCP 7 2 Beacon Port
2492 TCP 7 3 Groove Virtual Office P2P
10000 UDP 7 1 CISCO VPN-Client
6882 TCP 6 1 Bittorrent P2P
21 TCP 6 4 FTP
5850 UDP 6 2 Open DHTb

6348 TCP 5 1 Gnutella P2P
119 TCP 5 2 NTP
10000 TCP 5 2 CISCO VPN-Client

Table 3: Most frequent propagation triples found during an interval of 48 hours
prior the Zotob outbreak.

aBundled with Kazaa
bDistributed hash table for P2P networks
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3.3.3 Conclusion

Except for the propagation triple classes of the HTTP, SMTP and DNS proto-
cols, only few propagation triples can be found for any class. The vast majority
of the found classes appeared less than five times per hour — most of them even
appeared less than five times over the analysed 48 hours.

3.4 Analyses of Known Worm Outbreaks

In the following we will present the results of the propagation triple analyses
of three known worm outbreaks. Each one of the worms was able to propagate
into AS559, triggering an internal outbreak. The data is split into one hour
intervals. The time given in the plots is the start time of such an interval. All
analyses have been conducted on the captured NetFlow data of three out of four
SWITCH border routers.

3.4.1 Blaster

The Blaster worm [7] was first observed in the Internet on Monday, August
11th, 2003. Its propagation routine exploited a buffer overflow vulnerability in
the DCOM RPC service of Microsoft Windows 2000 and Windows XP operating
systems. A detailed description of Blaster and its propagation technique can be
found in [12].

Blaster’s propagation routine exploited the RPC vulnerability through port
135/TCP. Figure 18 shows the result of the propagation triple analysis con-
ducted on archive data of the Blaster outbreak. The plot covers the range from
Monday, August 11th, to Thursday, August 14th, 2003. In order to show the
development of the internal outbreak, the plot does also show the number of
outbound connection attempts to port 135/TCP initiated by AS559 hosts.

As shown in the plot the internal outbreak of the Blaster worm took place
in the early morning working hours of Tuesday, August 12th, namely between
7:00 UTC and 10:00 UTC. The internal outbreak is accompanied by a signif-
icant amount of propagation triples — during the interval from 9:00 UTC to
10:00 UTC over 100 propagation triples have been found, followed by another
60 triples within the next two hours. Compared to the number of propagation
triples found during periods without any outbreak (see Section 3.3) this is a sig-
nificant number. The propagation triples emerged two hours after the beginning
of the internal outbreak.

3.4.2 Sasser

The Sasser worm affected Microsoft Windows 2000 and Windows XP operating
systems [33]. It was first observed on Saturday, April 30th, 2004. The Sasser
worm exploited a buffer overflow in the LSASS (Local Security Authority Sub-
system Service) component of the affected Windows systems.
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Figure 18: Number of propagation triples and number of outbound connection
attempts to destination port 135/TCP during the Blaster outbreak.

The vulnerability was exploitable through port 445/TCP. Figure 19 shows the
number of corresponding propagation triples per interval from Thursday, April
29th, to Wednesday, May 5th, 2004. The number of outbound connection at-
tempts to port 445/TCP initiated by AS559 hosts is also shown in the plot.
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Figure 19: Number of propagation triples and number of outbound connection
attempts to destination port 445/TCP during the Sasser outbreak.

The plot shows a first significant increase of outgoing connection attempts to
port 445/TCP about noon on Sunday, May 2nd, 2004, followed by a second
increase on Monday, May 3rd, during the early morning working hours. Com-
pared to the Blaster outbreak the internal outbreak of the Sasser worm was quite
small, peaking at about 1.5 million outbound connection attempts (compared
to over one billion outbound connection attempts during the Blaster outbreak).
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As a result only few propagation triples emerged, reaching a peak of seven found
triples on Monday, May 3rd. Compared with the maximum number of propaga-
tion triples without any worm outbreak from Section 3.3, the numbers of triples
during the Sasser outbreak do not represent a significant signal.

By cumulating the number of found propagation triples over several intervals
the signal becomes stronger. Figure 20 shows the cumulated number of found
propagation triples. Between Monday, May 2nd, 18:00 UTC and Tuesday, May
3rd, 16:00 UTC the number of propagation triples increased from five triples so
far to 20 triples, representing an increase of 15 triples within less than 24 hours.
A second increase by 13 triples can be seen during Tuesday, May 4th.
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Figure 20: Cumulated number of propagation triples and number of outbound
connection attempts to destination port 445/TCP during the Sasser outbreak.

In contrast to the Blaster outbreak the internal Sasser outbreak has not been
strong enough to yield a significant amount of propagation triples within a single
interval. But by considering the number of propagation triples over several
intervals, the signal becomes much more significant.

3.4.3 Zotob

On Saturday, August 13th, 2005, the Zotob worm has been discovered exploiting
a vulnerability in the Plug and Play service of Microsoft Windows 2000 systems
through port 445/TCP. The plot in Figure 21 shows the number of 445/TCP
propagation triples from Monday, August 15th, to Sunday, August 21st, 2005.
The plot does also show the number of outbound connection attempts to port
445/TCP initiated by AS559 hosts during that period of time.

The internal outbreak started on Friday, August 19th around 16:00 UTC, appar-
ent in the strong increase of outbound connection attempts to port 445/TCP.
Two hours after the internal outbreak 31 propagation triples were found, pro-
viding a clear signal for an ongoing outbreak. The outbreak was proceeded by
a total of another eleven propagation triples around noon of the same day.
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Figure 21: Number of propagation triples and number of outbound connection
attempts to destination port 445/TCP during the Zotob outbreak.

3.5 Implementation

The algorithm described in Section 3.2 has been implemented in a tool called
netflow_triples. The tool reads the NetFlow data files as specified on the
command line and outputs all propagation triples matching the traffic patterns
as described in Section 3.2. The tool is written in C and has been developed
under the Linux operating system. It amounts to about 1’200 lines of code.

See Appendix B.2 for a description of the command line options.

3.5.1 Data Processing

The netflow_triples tool processes the NetFlow v5 records in the order as
they are read from the data file(s). Only the records that match the specified
traffic pattern and that are either in– or outbound get processed.

For an inbound flow we first check the hash table processed_as559_triple_
hosts if a propagation triple has already been found for the corresponding
AS559 destination host and destination port7. If so we discard the current
flow because it cannot generate a new propagation triple we do not know yet.
Thus the tool will only output the first occurrence of a propagation triple for
a given traffic pattern and intermediate AS559 host combination, preventing
triple duplicates.

If there was no propagation triple yet for the AS559 destination host and its
destination port, the current flow may eventually represent the first flow of a
new propagation triple. Therefore the AS559 destination host and destination
port combination will be inserted into the as559_destinations hash table as

7In this context a port is implicitly associated to either the TCP or UDP protocol. For
simplicity we will not refer every time to “port and protocol” but just to “port”.
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Figure 22: Data structures used by the netflow_triples tool.

key together with additional information about the source host and time stamps
as element in a dest_element struct (see Figure 22).

For outbound flows the processed_as559_triple_hosts hash table is also
checked in order to determine if a propagation triple has been found yet for
the AS559 source host and the corresponding port. Again the flow gets dis-
carded if this is the case. Otherwise the as559_destinations hash table is
checked if the current outbound flow represents a response flow to a previously
processed inbound request flow. Therefore the flow_infos list of the corre-
sponding dest_element is searched for the appropriate endpoint. If the current
flow is a response flow the processing will be aborted because it may not be part
of a propagation triple (it does not initiate a new connection).

If there is no corresponding request flow the current flow it is assumed to
initiate a new connection. If the AS559 source host has been registered to
as559_destinations together with the current flow’s destination port a new
propagation triple has been found. The AS559 host and the destination port
will be added to the processed_as559_triple_hosts hash table and the found
propagation triple is written to stdout.

If a previously contacted AS559 host does not initiate an outbound connection
with the same destination port within a certain timeout value (which is ten
minutes by default), the corresponding entry in the as559_destinations hash
table has to be removed. Therefore every hash table entry has to be added
to the timeout_buffer on creation or if being updated. timeout_buffer is a
ring buffer, implemented as an array, containing a doubly linked list at every
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index (each index represents a second), which in turn contains pointers to the
dest_element entries of the as559_destinations hash table that will timeout
at the given time.

The main() loop keeps track of the internal time cur_time (in seconds since
epoch) which is used as index pointer into the timeout_buffer ring buffer.
Every time cur_time is increased by one second, all hash table entries of the
corresponding timeout_buffer list will be removed.

Note that if an AS559 host that is already in as559_destinations is contacted
by another external host on the same port, the timeout will be reset for the
corresponding hash table entry, e.g. the entry will again be valid for the whole
timeout period. Therefore each dest_element holds a pointer to its timeout
node in the timeout_buffer such that the node can be removed instantly from
the corresponding list.

3.5.2 Output

The output of the netflow_triples tool for a found propagation triple has the
following form (line wrapped for readability):

1124477639 19.08.2005 18:53:59 6 445

10.235.165.110 1039 --> 445 192.168.102.116 1579 --> 445 172.17.146.64

The first two numbers after the timing information (start time of the second
flow) specify the protocol number and the destination port number of the prop-
agation triple. The three IP addresses are the involved endpoints of the triple.
If multiple hosts contacted the intermediate endpoint only the first one will be
output. The two arrows denote the two flows of the propagation triple. The
numbers to their left specify the source port of the flow and the numbers to
their right the destination port of the corresponding flows.

3.5.3 Performance and Memory Usage

Table 4 shows the results of the performance and memory usage measurements
of the netflow_triples tool. The tests have been conducted on archived data
of the Sasser and Zotob outbreaks, analysing ten hours of data captured by
three out of four SWITCH border routers. For both outbreaks the first analysis
has been limited to the traffic pattern of the corresponding worm. In the sec-
ond analysis the propagation triples of any traffic pattern were analysed. The
timeout value (-t parameter) was set to ten minutes. The tests have been done
on a computer with an AMD Athlon XP 2800+ CPU and 1GB of memory.

Analysing the propagation triples of all traffic patterns requires lots of resources,
as shown in Table 4. Note that the memory usage differs strongly for the two
analysed periods. The netflow_triples tool is not suitable for the simulta-
neous analysis of all types of propagation triples in real–time (analysing one
hour of data needed more than one hour of computing time). But note that the
tool has not been optimized yet. As the primary objective was determining the
potential of the propagation triples based approach the tool’s performance was
sufficient in order to analyse archived NetFlow data.
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Zotob Zotob Sasser Sasser
(445/TCP) (all patterns) (445/TCP) (all patterns)

Total number 286’122’401 286’122’401 373’397’202 373’397’202
of records
Total 24m 40s 607m 0s 76m 58s 1040m 30s
Duration
Duration per 2m 28s 60m 42s 7m 42s 104m 3s
1h interval
Memory usage 75MB 360MB 240MB 670MB

Table 4: Performance and memory usage measurements of the netflow_
triples tool.

3.6 Limitations and Encountered Problems

3.6.1 Propagation Triples Containing Reply Flows

The netflow_triples tool processes the flows in sequential order as they are
being read from the NetFlow data files. Hence it is possible that a request
flow (e.g. the flow initiating a connection) will be processed after the corre-
sponding reply flow although it started earlier in time. This can, under certain
circumstances, result in propagation triples not expected by the user.

Consider the sample scenario as shown in Figure 23, where host Y is an arbitrary
DNS server replying to a legitimate DNS request from host Z and host X being
a spam server sending Windows pop–up spam messages to random hosts. As
shown in the figure host Z is using the non–privileged port 1026 as source port
for its DNS request (flow b). As a result the DNS server Y will use this port as
destination port for replying to the client’s request (flow c).

Figure 23: Depending on the processing order of the three flows, the flows a
and c may be recognized as a propagation triple.

If the three flows happen to be processed in the order a, c, b, the flows a and c
will be considered as propagation triple by the netflow_triples tool, because
both flows have the same destination port, albeit flow c is merely a reply flow.

Figure 24 shows a sample scenario where two reply flows may be recognized as
a propagation triple. Host Y requests a HTML page from the web server X. At
the same time host Y is running, for instance, a P2P client accepting inbound
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connections to port 4662. If it happens that a third host Z connects to the P2P
client of host Y, using the same source port as host Y, the two flows b and
d are considered as propagation triple with destination port 5300 if flow d is
processed prior to flow c. Otherwise flow d would be recognized as reply flow
to flow c and would not generate a propagation triple8.

Figure 24: Depending on the processing order of the four flows, the two reply
flows b and d may be recognized as a propagation triple.

Note that the propagation triples from these two examples do not violate the
formal definition given in Section 3.2. But we wanted to make sure that a user
of the netflow_triples tool is aware of the described behaviour.

In order to inhibit any propagation triples containing reply flows, the processing
had to be restricted to request flows in netflow_triples. This would require
to sort all flows by their start time in order to match the reply flows with the
corresponding request flows.

3.6.2 netflow_triples Tool Out of Memory

We experienced problems with the netflow_triples tool while analysing the
propagation triples during the Blaster outbreak. As the tool got out of memory
the processing virtually stalled due to swapping. We solved the problem by
restricting the analysis to only a few (overlapping) NetFlow files at a time and
the subsequent manual removal of duplicate entries.

3.7 Future Work

Proposals for further improvements of the approach are:

• Distinguish between request and reply flows and do only process the for-
mer, preventing propagation triples that contain reply flows as described
in Section 3.6.1.

• In this diploma thesis we restricted our analyses to propagation triples hav-
ing a constant destination port. An idea would be to extend this approach

8As noted in Section 3.5.1 outbound flows are recognized as reply flows if the are processed
after the corresponding inbound request flow. These flows will not be further processed.
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to propagation triples with non–constant destination ports (although this
approach would require even more resources). This would possibly allow
to detect botnets and the spreading of the corresponding bots respectively
(i.e. inbound 445/TCP flows and outbound 6667/TCP flows could indi-
cate a new vulnerability exploited by bots which, in turn, connect to their
botnet server).

3.8 Conclusion

The analyses of known worm outbreaks confirmed the assumption that an in-
ternal outbreak is accompanied by the presence of propagation triples matching
the worm’s propagation traffic pattern while only few propagation triples may
be observed during periods without ongoing worm outbreak. Provided that a
worm propagates into the observed network the internal outbreak will induce
the presence of propagation triples.

We have seen in the analysed outbreaks that the detection latency is very vari-
able between the individual outbreaks. While we observed a significant amount
of propagation triples two hours after the internal outbreaks of the Blaster and
the Zotob worm, it took 23 hours during the Sasser outbreak until a significant
number of propagation triples has been found. The detection latency is not de-
pendent from the number of infected hosts or from the scan activities, because
the Sasser and the Zotob worms infected about the same number of internal
hosts, resulting in similar scan activities during the outbreaks. Nevertheless the
detection latency differed significantly between the two outbreaks. We do not
know the reason of this observation.

It is important to note that with the presented propagation triple based ap-
proach a worm outbreak cannot be detected as long as the outbreak is limited
to one side of the observed network, be it internal or external. It is essential
that a considerable number of hosts is infected on both side of the network
border. Otherwise the worm’s connection attempts to the corresponding desti-
nation port will only be observable in one direction. But as long as there are
no connection attempts by a previously contacted host into the opposite direc-
tion no propagation triple will be generated. For instance it would not have
been possible to detect the outbreak of the Witty worm because there were no
infections within AS559.

If the performance issues may be solved (see Section 3.5.3) we expect that the
propagation triple based approach is suitable for detecting worm outbreaks
within an observed network. But this is also a major drawback of this ap-
proach: As long as a worm has not propagated into the network it is by no
means possible to detect an ongoing outbreak, making this approach unsuitable
for networks with typically few internal infections during worm outbreaks (with
respect to the number of worldwide infections) as it is the case for the SWITCH
network.



47

4 ICMP Based Analysis

4.1 Introduction

With IP based communication the Internet Control Message Protocol (ICMP)
[20] is typically used for reporting errors, for diagnostics or for routing purposes.
A host that is infected by a self–propagating worm will trigger a lot of ICMP
messages while trying to infect other hosts. This is due to the worm’s propa-
gation routine that scans randomly generated IP addresses in order to find new
vulnerable victims. During this process the worm will also scan unassigned IP
addresses. This will trigger ICMP messages (e.g. Destination Unreachable mes-
sages) generated by routers of the corresponding networks. Firewalls may also
generate appropriate ICMP error messages for prohibited traffic. In the follow-
ing we will investigate if worm outbreaks significantly increase the amount of
ICMP traffic that would indicate an ongoing outbreak.

4.2 Analyses of Known Worm Outbreaks

Below we will present the ICMP based analyses of three known worms outbreaks,
namely of the Blaster, Witty and Zotob worms. All analyses are based on
archived NetFlow data collected in the context of the DDoSVaX project. The
data is split into one hour intervals. Note that in our analyses we only took
in– and outbound flows into account. Flows with both source and destination
addresses belonging to the same address range (either within AS559 or outside
AS559) were ignored. Flow duplicates of traffic routed through several border
routers were not eliminated, but they are few and are expected not to influence
the results significantly.

4.2.1 Blaster

The outbreak of the Blaster worm took place on Monday, August 11th, 2003.
The AS559 internal outbreak happened in the early morning working hours of
Tuesday, August 12th. A detailed analysis of the Blaster outbreak has been
presented in [12].

Figure 25 shows the number of ICMP messages sent by hosts within AS559 to ex-
ternal hosts and the number of inbound connection attempts to port 135/TCP.
The increase of inbound connection attempts to port 135/TCP due to the out-
break is accompanied by a significant increase of outbound ICMP messages.
The scanning behaviour of Blaster infected hosts had a clear impact on the
number of ICMP messages sent by AS559 hosts. Besides an increased number
of outbound ICMP messages the number of unique AS559 source IP addresses
seen in outbound ICMP messages showed also a significant increase during the
outbreak.

The number of outbound connection attempts to port 135/TCP in Figure 26
shows the internal outbreak of the Blaster worm in the morning working hours
of Tuesday, August 12th. As opposed to the global outbreak there has been
no significant change in the number of inbound ICMP messages. The scanning
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Figure 25: Number of outbound ICMP messages and number of inbound con-
nection attempts to destination port 135/TCP during the Blaster outbreak.

activities of the relatively few infected hosts within AS559 were not able to
trigger enough additional ICMP messages in order for being perceivable with
respect to the number of inbound ICMP messages prior the outbreak.
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Figure 26: Number of inbound ICMP messages and number of outbound con-
nection attempts to destination port 135/TCP during the Blaster outbreak.

4.2.2 Witty

The Witty worm began to spread on Saturday, March 20th, 2004, at about
4:45 UTC [27]. It targeted a buffer overflow vulnerability in several firewall and
other security applications from Internet Security Systems (ISS). The flaw was
located in the ICQ instant messaging protocol parsing routines of the various
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products [21]. It could be exploited by sending a manipulated UDP datagram
with source port 4000 and an arbitrary destination port, pretending to be an
ICQ response datagram from an ICQ server.

Within approximately 45 minutes the worm had infected the majority of the
vulnerable population (about 12’000 hosts). There were two main reasons for
the dramatic spreading speed of the worm. Firstly, the worm began its spreading
from a seed population of about 100 preinfected host. Secondly, the vulnerabil-
ities in the ISS products were exploitable by UDP — there was neither a need
for a 3-way handshake as with TCP nor for waiting on timeouts. The worm
could just send the UDP datagram containing the payload and forget about it.
Refer to [27] for an in–depth analysis of the Witty outbreak. Our analyses of
outbound UDP traffic with source port 4000 have shown that the worm did not
propagate into AS559.

Figure 27 shows the number of outbound ICMP messages sent by AS559 hosts
and the number of inbound potential UDP worm datagrams having source port
4000. The large scale worm outbreak (with respect to the number of inbound
datagrams) was again accompanied by a significant increase of outbound ICMP
messages — after the outbreak almost 2.5 million sent ICMP messages were
registered compared to 1.5 million messages before the outbreak.
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Figure 27: Number of outbound ICMP messages and number of inbound data-
grams with source port 4000/UDP during the Witty outbreak.

However there was a second significant peak of outgoing ICMP messages from
12:00 to 14:00 UTC on Saturday, March 20th. The Witty worm infected the
majority of the vulnerable hosts within 45 minutes. As shown in the plot the
number of inbound Witty datagrams has been declining clearly for several hours
when the second ICMP peak occurred. The number of unique source IP ad-
dresses of the outbound ICMP messages suggests that the second peak has not
been due to random scanning, because the number of unique sources did not
increase significantly during the peak as it did during the actual Witty outbreak.
We expect that the second peak has not been induced by the scanning activities
of Witty infected hosts, but we lack the knowledge for its exact reason.
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4.2.3 Zotob

The Zotob outbreak took place on Saturday, August 13th, 2005. Its scale in
terms of the number of inbound connection attempts was much smaller than
the scale of the Blaster and Witty outbreaks. See Section 2.5.3 and A.2 for
further information about the Zotob worm.

Figure 28 shows the number of outbound ICMP messages and the number of
inbound connection attempts to port 445/TCP during the Zotob outbreak. Al-
though there was a significant increase of inbound connection attempts to port
445/TCP, the plot shows that the outbreak of the Zotob worm did not af-
fect the number of sent ICMP messages by AS559 hosts. The relatively low
amount of inbound scanning of the Zotob worm compared to the Blaster and
Witty outbreaks9 could not trigger enough additional ICMP messages in order
to significantly affect the existing amount of ICMP messages, e.g. due to normal
traffic, P2P traffic, port scans or traffic generated by other worms.
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Figure 28: Number of outbound ICMP messages and number of inbound con-
nection attempts to destination port 445/TCP during the Zotob outbreak.

We also have analysed the number of inbound ICMP messages during the in-
ternal Zotob outbreak. As during the internal Blaster outbreak the scanning
activities of infected AS559 hosts did neither affect the number of inbound ICMP
messages nor the number of unique source or destination IP addresses thereof.

4.3 Extended ICMP Based Analysis

According to the NetFlow specifications the type and code of an ICMP message
record is provided in the destination port field of the flow record, encoded as
256*type + code. That is the type is stored in the high–order byte and the
corresponding code in the low–order byte of the destination port field. An

9During the Zotob outbreak there was about ten times less inbound worm traffic than
during the Blaster and Witty outbreaks.
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extended analysis of the ICMP messages by their types and codes would allow
us to possibly gain additional information. We were especially interested in
ICMP messages of type Destination Unreachable that would be triggered by
the worms’ random scanning procedures.

In the recorded NetFlow data from the Blaster and Witty outbreaks from 2003
and 2004 respectively, the type and code of virtually all ICMP records were set
to zero (representing Echo Reply messages). On average only about 0.02% of
the records were of another type, which were too few to make statistically sound
conclusions.

The ICMP NetFlow data from the Zotob outbreak of 2005 provided more infor-
mation about the types and codes of the different ICMP flows. About 25% of
all flows had an ICMP type and code unequal than zero. We could not deter-
mine the reason for these differences between the various outbreaks. We found
that during the Zotob outbreak the hardware engines as well as the software
engines of the routers created ICMP flows with types and codes unequal than
zero. Hence we do not expect the differences being (solely) due to changes in
the software engines.

4.3.1 Missing Information

Although the NetFlow data of the Zotob outbreak contains considerably more
messages with another type than zero, there were still missing information in
the data. In other words there were still many ICMP flows with incorrect types
and codes. In order to clarify this claim Figure 29 shows the number of ICMP
messages of type Echo Request (type 8) sent from external hosts to hosts within
AS559 and the number of ICMP messages of type Echo Reply (type 0) sent
in the opposite direction. The outbound Echo Reply messages prevailed by far
the inbound Echo Request messages, although the latter are responses to the
former. Hence there were still many ICMP flows of other types than zero whose
destination fields have not been set correctly.

4.3.2 Observed Peculiarities

Another oddity is the fact that many ICMP flows provide their type and code in
the source port field of the flow record (with destination port set to zero) instead
of the destination port field as stated in the specifications. Such flows have the
additional peculiarity that type and code are stored the other way around as
they should be, namely the type in the low–order byte and the corresponding
code in the high–order byte. Our tool netflow_icmp_stats circumvents this
by taking the source port into account if the destination port is equal to zero
(if the destination port was set to zero correctly the source port will still be set
to zero, yielding the same result).

4.3.3 Results

Being aware of these characteristics we still performed an analysis of the ICMP
messages of type Destination Unreachable in order to determine if the Zotob
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Figure 29: Number of inbound ICMP Echo Requests and outbound ICMP Echo
Replies during the Zotob outbreak.

outbreak was perceivable therein. Having 25% of ICMP flows with type other
than zero should provide sufficient data to work with. Because we do not know
when an ICMP flow is recorded in the NetFlow data with a different type than
zero, we analysed the data under the following assumptions in order for being
able to draw any conclusions:

1. The ICMP type and code information is written into a flow record (either
into the destination port or the source port field) with probability p.

2. With probability 1−p a type and code of zero is written into a flow record,
regardless of the correct values.

3. The probability p is constant over time (although it does not have to be
the same for all border gateway routers).

4. A router never writes the wrong type or code into a flow record.

Except for messages of type zero these assumptions turn the available ICMP
data of every interval into random samples drawn uniformly with probability p
from all recorded ICMP messages. According to the law of large numbers the
individual interval sample distributions will converge to their actual distribu-
tions.

In other words: Plotting the number of sampled messages for the different types
will result in curves that are — if the number of drawn samples is high enough
— very similar to their original ones but only p in size. Hence we analysed the
ICMP messages according to their types as if there were no missing information
in the NetFlow data.

We analysed the following types of Destination Unreachable messages (ICMP
type 3) that occurred during the Zotob outbreak and that could have been
influenced by a worm outbreak:
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• Net Unreachable

• Host Unreachable

• Port Unreachable

• Communication with Destination Network Administratively Prohibited

• Communication with Destination Host Administratively Prohibited

• Communication Administratively Prohibited

• Cumulated Destination Unreachable messages of all types

For each type of Destination Unreachable messages we analysed the number
of messages, the number of unique source addresses and the number of unique
destination addresses for inbound as well as for outbound messages. None of
the analysed data sets showed a significant change during the Zotob outbreak,
neither for the external nor for the internal outbreak. Hence the extended ICMP
analysis could not reveal the outbreak of the Zotob worm and gave no further
information than the plain ICMP based analysis.

4.4 netflow_icmp_stats Tool

To analyse the ICMP messages in the archived NetFlow data from the DDoSVaX
project we have implemented a simple tool called netflow_icmp_stats. The
tool reads the NetFlow data files as specified on the command line and outputs
the number of ICMP messages per interval. The tool is written in C and has
been developed under the Linux operating system. It amounts to just over 860
lines of code. Due to the simplicity of the code we will not go into further details
about its implementation.

4.4.1 Output

Table 5 shows the attributes collected by the netflow_icmp_stats tool, to-
gether with the according field position within the tool’s output. For each
interval the tool outputs the statistics about all ICMP messages found in the
input data. Additionally the tool outputs the number of occurrences for each
ICMP type / code and the aggregated number of messages of type Destination
Unreachable (aggregated over all codes).

The following line is a sample output from the netflow_icmp_stats tool for
ICMP Destination Unreachable messages of type Communication Administra-
tively Prohibited (ICMP type 3, ICMP code 13). For better readability the field
numbers are included, too, and the output line is split over two lines.

1. 2. 3. 4. 5. 6. 7. 8. 9.

1124193600 16.08.2005 12:00:00 3_13 1207 32040 28590 0 61837

10. 11. 12. 13. 14. 15.

54 342 396 184 7310 7494

By default the interval length the output gets divided into is one hour. The
user may set another duration by using the -m command line option.
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Field Description
1. Seconds since epoch
2. Date in human readable representation (UTC)
3. Time in human readable representation (UTC)
4. ICMP type and code (encoded as type_code)
5. Number of inbound ICMP messages
6. Number of outbound ICMP messages
7. Number of ICMP messages with both external source

and destination addresses
8. Number of ICMP messages with both internal source

and destination addresses
9. Total number of ICMP messages

10. Number of unique AS559 source addresses
11. Number of unique external source addresses
12. Total number of unique source addresses
13. Number of unique AS559 destination addresses
14. Number of unique external destination addresses
15. Total number of unique destination addresses

Table 5: Attributes returned by the netflow_icmp_stats tool. The field num-
bers refer to the attribute’s position within the output.

4.5 Future Work

A possible improvement of the presented approach would be to correlate ICMP
flows to the TCP or UDP flow that triggered the ICMP messages. This would
allow to analyse the ICMP messages in the context of the communication chan-
nel in which they occurred (e.g. analyse only the ICMP messages that were
triggered by flows to destination port 445/TCP during the Zotob outbreak). A
small but significant change in the ICMP traffic pattern of a given communi-
cation channel having few ICMP messages would then not be superimposed by
other channels carrying lots of ICMP messages. It should be investigated if the
additional information about the cause of the ICMP messages can improve the
ICMP based approach such that it could be used for worm outbreak detection.

4.6 Conclusion

We have investigated the suitability of the ICMP based analysis for worm out-
break detection by analysing the three outbreaks of the Blaster, Witty and
Zotob worms. While the large scale outbreaks of the Blaster and Witty worms
had a significant impact on the amount of generated ICMP messages by AS559
hosts, the smaller Zotob outbreak did not trigger enough additional ICMP mes-
sages in order for being noticeable in the existing ICMP traffic. The number
of unique AS559 source addresses that generated ICMP messages did not show
the outbreak neither. The same conclusions hold for the extended analysis of
the Destination Unreachable messages that occurred during the Zotob outbreak
which were neither affected by the outbreak.



4.6 Conclusion 55

Neither the AS559 internal outbreak of the Blaster worm nor the internal out-
break of the Zotob worm resulted in a significant increase of inbound ICMP
messages. For both outbreaks the scanning behaviour of the relatively small
amount of infected hosts within AS559 was not strong enough in order to have
an influence on the number of inbound ICMP messages or on the number of
unique IP addresses.

The ICMP based approach is not suited for worm outbreak detection. Our
analyses have shown that it is not able to identify smaller scaled outbreaks like
the outbreak of the Zotob worm. The same holds for worm outbreaks within
an observed network where relatively few internal hosts get infected as it is the
case for the SWITCH network. These outbreaks do not generate enough traffic
in order to have a significant impact on the number of ICMP messages.
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5 Summary

The task of this thesis was to develop new approaches, based on flow–level traffic
data, for detecting worm outbreaks in high–speed Internet backbones. In order
to validate the proposed methods we had to design and implement appropriate
tools for analysing archived NetFlow data from the DDoSVaX project. We have
presented three generic methods for the detection of worm outbreaks. They do
not require any previous knowledge about the exploits used by the worms or
their scanning behaviour.

The first method is based on the characteristic port sequences used by a worm
in order to infect a victim host. We have implemented a tool named netflow_
port_sequences that returns statistics of all port sequences that occur within
NetFlow data files. We have presented and implemented an algorithm for de-
tecting significant network events by analysing all the sequences found by the
port sequence analysis. The approach proved its suitability for worm outbreak
detection by reliably identifying the outbreak events of large scale as well as of
small scale worms within the analysed data.

The second presented method is based on the identification of propagation
triples, i.e. two flows between three hosts that share the same communication
pattern. We have implemented a tool named netflow_triples for finding prop-
agation triples within NetFlow data files. During periods without ongoing attack
only few propagation triples were present in the border traffic of an observed
network. This changed during a worm outbreak were a significant amount of
propagation triples could be observed. It is important to note that by using the
flow–level data of border traffic only outbreaks within the observed network may
be detected. In our analyses of known worm outbreaks the detection latency of
this method ranged from two hours to 23 hours..

The third approach is based on the analysis of ICMP traffic. An infected host
will trigger ICMP messages while scanning randomly generated IP addresses
in order to find vulnerable victims. We have investigated if the number of
ICMP messages changes significantly during worm outbreaks. Therefore we
have implemented a tool named netflow_icmp_stats that generates statistics
about the number of ICMP messages within NetFlow data files. We found
that only large scale outbreaks like Blaster or Witty trigger enough additional
ICMP messages in order for being noticeable within the existing ICMP traffic.
Worm outbreaks of smaller magnitude, like the outbreak of the Zotob worm, do
not significantly affect the number of ICMP messages, making it impossible to
detect such outbreaks by using this method.
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A Worm Outbreaks in 2005

In the following we provide a survey of self–propagating Internet worm outbreaks
that occurred during 2005. The summarised worm descriptions are in chrono-
logical order. The survey has been conducted based on the information available
from CERT [1], CERT India [2], CERT Malaysia [3] and Worm Blog [5]. Note
that the outbreak dates may vary between the different information sources.

A.1 January – MySQL UDF Worm

On Wednesday, January 26th, 2005, a new worm has been reported that com-
promised MySQL database servers running on Microsoft Windows with weak or
null passwords for the root account. The worm used the User Defined Function
(UDF) capability of MySQL in order to install a variant of the Forbot / Spybot
worm. Its propagation routine scanned for other vulnerable systems on port
3306/TCP.

According to [10], on January 27th there were over 8000 hosts connected to
the IRC channel that controlled the infected systems. More systems could have
been infected but may have been prevented from connecting to the IRC server.
Symantec classified the distribution of the MySQL UDF worm as “medium”.

References: [30], [41], [9]

A.2 August – Zotob

On August 9th, 2005, Microsoft released six security patches as part of the
scheduled release cycle. One of them, patch MS05-039 [26], fixed a vulnera-
bility in the Plug and Play service of Microsoft Windows 2000. On Saturday,
August 13th, 2005, a worm has been discovered exploiting the Plug and Play
vulnerability and propagating through port 445/TCP. After a successful infec-
tion the Zotob worm, as it has been named, tried to connect to random IP
addresses within the class B network of the infected system in order to infect
other systems.

According to [39] there existed seven Zotob variants three days after its initial
outbreak. Additionally, by then eight different bots like Rbot or SDbot had
been updated for using the Plug and Play vulnerability as well.

There is no information available about the exact number of infected systems.
Symantec classified the distribution of the various Zotob variants from“medium”
to “high”.

References: [8], [17], [29], [44], [39]

A.3 November – Lupper

The Lupper worm (also called Plupii) was a Linux worm that exploited a vul-
nerability in XML–RPC for PHP — a common PHP extension module used by
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a large number of web applications like (among others) PostNuke, WordPress,
PHPGroupWare and TikiWiki. The worm scanned for vulnerable web servers
in its class B network by sending malicious HTTP requests to port 80/TCP.
On success the attacked server downloaded a copy of the worm and executed it
within the vulnerable PHP environment.

Lupper has been discovered on Tuesday, November 8th, 2005. A variant has
been found on Thursday, November 17th, 2005. Both versions had a “medium”
distribution according to Symantec.

References: [18], [43]

A.4 December – Dasher

Dasher exploited a vulnerability in Microsoft’s Distributed Transaction Coordi-
nator (MSDTC) through port 1025/TCP. According to antivirus vendors like
Symantec and F–Secure the outbreak took place on Thursday, December 15th,
2005 ([35], [14]). But our port sequence analysis suggests that the outbreak
took place during the evening of Thursday, December 8th, 2005 (UTC), which
is supported by Japan’s Information Technology Security Center [19].

During the following days several Dasher variants were detected. In addition
to the MSDTC exploit the attack vectors of the variants contained exploits
for the older WINS (42/TCP), LSASS (445/TCP) and MSSQL (1433/TCP)
vulnerabilities (the actual set of included exploits depended on the variant).

Symantec classified the distribution of the various Dasher variants from“medium”
to “high”.

References: [16], [28], [42], [40]
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B User Guide

B.1 netflow_port_sequences Tool

The syntax for the netflow_port_sequences tool is:

netflow_port_sequences <options> <input files(s)>

Table 6 shows the available options that will now be discussed briefly.

By default the number of port sequence occurrences is output by intervals of
one hour which may adapted by using the -m option10.

Two successive flows between two hosts have to occur within a given timeout
in order to be considered as belonging to the same port sequence. If the second
flow occurs after the timeout it will be regarded as a separate port sequence.
The -t option allows to set an arbitrary timeout value.

If the timeout for a given port sequence has exceeded the sequence still remains
active for a certain amount of time. This allows flows with long durations (that
started within the sequence’s timeout but took too long in order to arrive within
the timeout) to be accounted to the appropriate port sequence. By default a
flow may have a maximum duration of 30 seconds (longer flows will generate a
new sequence) which may be changed by using the -f option.

The -i option defines the minimum number of ports that a port sequence has
to consist of in order to be output by netflow_port_sequences. By default
the value is one. For defining the maximum number of ports use the -a option.

By default the tool does only output a sequence if it occurred at least 500 times.
This default value may be changed by the -s option.

The tool’s output is written to stdout.

Option Description
-m <seconds> Set interval length. (3600s, i.e. 1 hour)
-t <seconds> Set timeout value. (5s)
-f <seconds> Set maximum flow duration. (30s)
-i <integer> Discard sequences containing less ports. (1)
-a <integer> Discard sequences containing more ports. (10)
-s <integer> Discard sequences that occurred less than the given

value per interval. (500)
-h Print help message.

Table 6: Options accepted by the netflow_port_sequences tool. The default
values are given in parentheses.

10m stands for modulo.
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B.2 netflow_triples Tool

The syntax for the netflow_triples tool is:

netflow_triples <options> <input files(s)>

Table 7 shows the available options that will now be discussed briefly.

By default the tool processes all TCP and UDP flows read from the NetFlow
data files and outputs all found propagation triples with constant destination
ports. In order to speed up the processing the user may specify a transport
protocol and / or destination port as argument such that the tool will restrict
the search for propagation triples matching the given traffic pattern.

To restrict the analysis to a single protocol the -p option may be used followed
by either TCP or UDP. The -d option specifies a fixed destination port if desired.

As mentioned in Section 3.2 the second flow of a propagation triple has to occur
within a given time after the first flow. By default the netflow_triples tool
uses a timeout of ten minutes. The -t option allows the user to set a specific
timeout value.

The tool’s output is written to stdout.

Option Description
-t <seconds> Set timeout value. (600s, i.e. 10 minutes)
-p <protocol> Process only flows matching the given protocol.

<protocol> is either TCP or UDP. (Both)
-d <port> Process only flows matching the given destination

port. (All ports)
-h Print help message.

Table 7: Options accepted by the netflow_triples tool. The default values
are given in parentheses.
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B.3 netflow_icmp_stats Tool

The syntax for the netflow_icmp_stats tool is:

netflow_icmp_stats <options> <input files(s)>

By default the statistics about the ICMP messages are output by intervals of
one hour. This may adapted by using the -m option11.

The tool’s output is written to stdout.

Option Description
-m <seconds> Set interval length. (3600s, i.e. 1 hour)
-h Print help message.

Table 8: Options accepted by the netflow_icmp_stats tool. The default values
are given in parentheses.

11m stands for modulo.
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C Task Description

The following is a copy of the task description of this diploma thesis.

The Problem

Internet attacks such as massive worm spreading events have increased in fre-
quency and impact over the last few years. However, still most worm outbreaks
occur unnoticed by network operators. By the time they get detected a large
number of hosts may already be infected causing lots of damage.

The Setting

The context of the DDoSVaX project collects and keeps a long–term archive of
flow–level Internet backbone traffic data.

The Task

By using current Internet flow–level traffic data and by replaying traffic data of
earlier minor and major worm outbreaks from our NetFlow archive, the student
will develop algorithms and implement them. The outbreak detection algo-
rithms will be validated against known outbreaks in our recorded data.
One approach will be based on characteristic port sequences generated by worms
while trying to exploit several vulnerabilities on the target hosts. Another ap-
proach will be based on ICMP messages triggered by propagating worms. A
third approach will be the identification of propagation–indicating triples, e.g.
host A contacts host B with a specific traffic pattern and later host B contacts
host C with the same pattern. The presence of such triples may indicate the
propagation of a worm.

This task is split into the following subtasks:

Understand the NetFlow data

Develop algorithms for worm outbreak detection

Algorithms will be developed aiming at a (near) real–time detection of worm
outbreaks by successively analyzing NetFlow data. For potential detection of
slow worms, near real–time can be in the range of hours or days.

Implement and test the algorithm

A design of the implementation of the detection algorithms will be developed.
Then the programs will be written for an offline analysis of NetFlow data. In
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the testing phase, the function of the programs will be verified by processing
archived NetFlow data of known worm outbreaks of the past.

Deliverables

During the work on this thesis the following deliverables are expected:

• Description of the algorithms to be implemented: Before the algorithms
are implemented, they have to be presented along with performance esti-
mations and proposals of the software design.

• Offline analysis tool that allows testing and evaluation of the designed
algorithms on stored flow data.

• Evaluation report on algorithm effectiveness and observed characteristics
when tested on stored data.

• Documentation: A written report will conclude this thesis.

Dates

This diploma thesis starts on November 7th, 2005 and will be finished on March
6th, 2006.

Supervisors

Arno Wagner, wagner@tik.ee.ethz.ch, +41 44 632 70 04, ETZ G95
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