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Abstract

The importance and necessity of end-to-end fault and performance problem detection in wide area
production networks increases with the complexity of the paths, the diversity of network components
performance, and dependency on the network. Network monitoring provides insight into the state and
performance of the network and whether it is behaving as expected and whether changes in the network
have improved or degraded its performance. This is essential for a service provider like Open Systems,
because they have to respect Service Level Agreements (SLAs) and want to optimize their systems,
improve Quality of Service (QoS) as well as plan for the future. Open Systems is a leading provider of
network security world-wide. To measure its network quality, it generates artificial traffic by active ICMP
probing. But active monitoring doesn’t consider actual customer traffic and places additional load on the
network. Thus, the goal of this Thesis is to implement a passive monitoring system which uses existing
customer traffic to determine the network performance.
This Thesis starts with a broad survey of known passive monitoring mechanisms. The analysis and clas-
sification points out the limits of passive measuring. Hence a short overview of existing active probing
systems is presented. The research shows that only one of the proposed methods is well suited for the
VPN networks. To develop new approaches of passive monitoring suitable for VPNs, the target VPN
environment is analyzed in detail.
The specification and implementation of a passive monitoring mechanism was based on these investi-
gations. The prototype monitors and collects two different network metrics from VPN hosts around the
globe: Round Trip Time (RTT) and Packet Loss. To identify network performance problems or anomalous
variations in the traffic as well as to evaluate the designed monitoring techniques, many series of plots of
the network metrics were done. The encouraging evaluation showed that passive Packet Loss detection
and RTT form a sound basis for detecting network performance problems in VPNs.



Abstract

Das Internet erfuhr mit der Globalisierung in den letzen Jahren ein starkes Wachstum. Damit wuchs
nicht nur die Vielfalt der Netzwerkkomponenten sondern auch die Komplexität der Netzwerktopologien.
Viele Unternehmen sind abhängig von der Erreichbarkeit von IT-Systemen, dem Zustand von Dien-
sten und der Qualität des Netzwerks. Das Netzwerk Monitoring bietet einen Einblick in den Zustand
und in die Leistung des Netzes und evaluiert, ob sich die Qualität verbessert oder vermindert hat. Für
Service Provider wie Open Systems ist es deshalb wesentlich, permanentes Monitoring zu betreiben
und modernste Netzwerk- und Servertechnologien einzusetzen um stets über alle Leitungs- und Sys-
temzustände genauestens informiert zu sein und somit eine hohe Qualität zu ermöglichen. Open Sys-
tems ist ein weltweit tätiger Anbieter für Netzwerk-Sicherheit und sichert Geschäftsprozesse und sensi-
tive Daten ihrer Kunden. Das Unternehmen überwacht ihre VPN Gateways mit aktivem ICMP Probing.
Diese Proben verursachen aber zusätzlichen Verkehr in den Kundenleitungen, was vermieden werden
sollte. Das Ziel dieser Masterarbeit ist es deshalb einen passiven Monitoring Mechanismus zu entwick-
eln, der Auskunft über die Netzwerkqualität gewährleistet.
Die Arbeit beginnt mit einer umfassenden Studie und Analyse über bereits existierende passive An-
sätze. Die Evaluation ergab, dass sich nur ein Ansatz für die VPN Umgebung von Open Systems wei-
terentwickeln lässt. Er basiert auf dem TCP Protokoll und berechnet so die Round Trip Time (RTT). Die
Studie machte zudem auch die Grenzen von passivem Monitoring ersichtlich, weshalb zusätzlich ein
kurzer Überblick über aktive Monitoring Techniken erfolgte. Ein weiterer Ansatz für den passiven Moni-
toring Mechanismus wurde schliesslich bei der detaillierten Analyse von der VPN Umgebung bei Open
Systems gefunden. Dank der IPSec Architektur können die Anzahl verworfener Pakete gezählt und als
Paket Verlust (Packet Loss) mitgeteilt werden.
Der Prototyp des neuen Mechanismus überwacht und misst den existierenden Kundenverkehr, der einen
VPN Gateway durchquert. Anhand dieser Datenpakete berechnet er die RTT und den Packet Loss. Der
Prototyp wurde anschliessend unter verschiedensten Gesichtspunkten evaluiert. Plots unterstrichen die
gewonnenen Ergebnisse visuell. Das erfreuliche Resultat der Evaluation war, dass der Mechanismus
die beiden Metriken zuverlässig messen kann und somit die Netzwerkqualität widerspiegelt.
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Chapter 1

Introduction

Section 1.1 explains the problem statement, Section 1.2 the task description, Section 1.3 the context
and Section 1.5 the chosen approach. Further, the environment is elaborated on in Section 1.4.

1.1 Problem Statement

1.1.1 Active Probing
Measurements of the various characteristics of a network provide insight into the state and performance
of the network. They are collected by either active or passive monitoring. Understanding the composition
and dynamics of the Internet traffic is of great importance for network management to identify and track
problems.
Furthermore, business operations require monitoring to ensure appropriate Quality of Service (QoS). A
service provider, for example, would like to identify realistic settings of Service Level Agreements (SLAs)
and monitor current level of activity to verify they are being met.
Open Systems AG is a leading provider of network security in Switzerland. It runs large international
Virtual Private Networks (VPN) for large and midsize companies, which allows different sites to securely
communicate with each other. To measure the quality and to ease the management of these large
environments, Open Systems monitors the VPN gateways by active ICMP probing.

1.1.2 Drawbacks of Monitoring by Active Probing
Open Systems does active monitoring by sending ICMP echo requests to adjacent gateways and mea-
suring the Round Trip Times (RTT). This creates unwanted extra traffic, which can slow down the VPN
connection and fill up the customer’s Internet Service Provider (ISP) link. The direct consequence of
which is that the customer has to provide some extra bandwidth and therefore has to pay more for the
VPN Service.
Another drawback of active probing is that the traffic is artificial, i.e. the volume and other parameters are
fully adjustable. Open Systems, in particular, injects only ICMP probes of small traffic volume. But ex-
perience shows that the quality characteristic of the Internet often vary depending on factors like packet
size, bandwidth used, time of day and protocols like TCP or UDP. A point of principle therefore is if this
technique obtains meaningful measurements.

1.2 Task Description

The goal of this Thesis is to build a monitoring system that passively measures the network quality by
analyzing existing customer traffic. In this way the stated drawbacks of 1.1.2 are solved. Monitoring real
traffic offers additional protocol header information and therefore enlarge the indications to asses the
network quality. Performance parameters of additional protocols allows to identify key characteristics
such as

• Packet Loss

• Maximum Packet Size
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• Layer 1 and Layer 2 Errors

• Number of retransmissions

• Latency (shortest RTT)

But passive approaches are dependent on the existence of customer traffic and limited in their ability
isolating the exact fault location. Since the passive approach may require monitoring all packets on the
network, there can be privacy or security issues about how to access and protect the data gathered.
Therefore passive monitoring should be regarded as complementary to active probing.

1.3 Context

The practical part of this Master Thesis has been conducted in a commercial environment. It is a coop-
eration of the Computer Engineering and Network Laboratory (TIK) of the ETH and Open Systems AG
based in Zurich, Switzerland.

1.3.1 TIK
The Computer Engineering and Networks Laboratory (TIK) was founded in 1989 as a part of the In-
formation Technology and Electrical Engineering Department at ETH Zürich. It focuses on research in
embedded computer systems, communications networks and distributed systems. The TIK consists of
four groups; each of them specialized in another topic. This Thesis is announced by the Communication
Systems Group (CSG) of Prof. Bernhard Plattner which performs research in communication networks,
and network security.

1.3.2 Open Systems AG
The Thesis has been conducted in collaboration with Open Systems AG. Open Systems AG is a com-
pany specialized in Network Security since 14 years. As part of its Mission Control Services, it provides
its customers a VPN environment that allows them a secure communication between different sites.
Currently Open Systems manages over 600 security systems in 70 countries.
Since 1999, Open Systems cooporates with the Computer Engineering and Network Laboratory (TIK)
of the ETH Zurich and proposes tasks for Diploma Thesis.

1.4 Implementation Environment

The task of this Thesis is to design a passive monitoring mechanism which Open Systems AG plans to
install on its VPN gateways. Figure 1.1 on page 9 shows an extract of a typical company topology.

Mission Control The Mission Control Center is located at the Open Systems AG in Zurich. It is re-
sponsible for maintaining, monitoring and updating all security systems around the clock.
Every change in a customer’s infrastructure is monitored and analyzed by security engineers. They re-
act to system outages or break-in attempts according to specifically defined customizable escalation
processes. Depending on time or type of incident the customers then are notified by different ways.

VPN Site VPN sites are customer offices which are located anywhere in the world. Each of these
offices consists of about 10 to 200 hosts which are usually all in the same subnet.
Section 3.1 gives a more detailed explanation about the specific characteristics of the VPN environment.

1.5 Approach

The Master Thesis was split into four major subtasks. They have been solved in the following sequence:

1.5.1 Survey of Existing Monitoring Mechanisms
The Thesis started with a comprehensive paper study to analyze, summarize and evaluate known Pas-
sive Monitoring Mechanisms. They are documented in Chapter 2.
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Figure 1.1: Extract of a customer’s VPN environment

1.5.2 Specification of a Passive Monitoring Mechanism
The extensive survey highlighted that most existing passive monitoring mechanisms are either too gen-
eral for the target’s environment or they are focused on only one specific traffic type. Therefore, a short
investigation of known active probing techniques has been done in Subsection 2.5. Based on the overall
analysis a prototype was specified.

1.5.3 Implementation of a Passive Monitoring Mechanism
The specification has been implemented in a prototype consisting of two algorithms. The prototype
runs on a Linux based VPN gateway computer that connects an internal LAN with an external network.
The prototype monitors traffic passing through the VPN gateway. While the first algorithm reports a
minimum and an average RTT the second one counts lost packets. The designs and implementations
are described in Chapter 3.

1.5.4 Evaluation
The two algorithms have been installed on the VPN gateways. They collected traffic information and
calculated performance metrics. These data files were then evaluated in order to validate that the
designed monitoring system is useable.

1.6 Related Work

There are a lot of ongoing projects doing network performance researches. The three most popular ones
are [35], [21] and [5]. They do research in both active and passive monitoring and their current status
can be visited on their websites.
Approaches concentrating on passive monitoring have been proposed and documented too.
[15] uses Bulk Transfer Capacity metric to measure the available bandwidth. [41], [30], [14] and [32]
measures the Round Trip Time (RTT) by observing TCP protocol information. A more accurate metric
is calculated by [29] and [4]. They measure the One-Way Delay (OWD) which considers the direction to
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measure the time gap.
There are many passive monitoring mechanisms which oberserve the network performance on the basis
of flows. NeTraMet [19] offers advanced programming languages for analyzing network flows and build-
ing statistical event records. Such as [1] it implements the Realtime Traffic Flow Measurement (RTFM)
architecture which is the proposed remote network monitoring system of IETF. Trace, documented in [12]
and [13], extends its monitoring infrastructure to a decentralized management platform by using SNMP.
Finally, NetFlow [2], first implemented in Cisco routers, is the most widely used measurement solution
today. All these mechanisms are summarized in Chapter 2.



Chapter 2

Known Passive Monitoring
Mechanisms

There exist several proposals to monitor the network quality in a passive way. These monitoring mecha-
nisms use different metrics to measure the traffic in the network. The metrics are calculated by observing
data packets of appropriate protocols of the Internet Protocol Suite.
[6] describes the Internet Protocol Suite as a set of communications protocols that implements the
protocol stack on which the Internet runs. The protocols can be fitted to a set of layers. Each layer is
responsible for a set of problems such as the transmission of data. Table 2.1 depicts the classification of
a collection of the most popular and important protocols.

Application HTTP, FTP, DNS, BGP1, RIP1, Telnet
Transport TCP, UDP , OSPF2

Network IP, IPSec, ICMP3, IGMP, OSPF2, BGP1, RIP1, ARP
Link Ethernet, MPLS, PPP, Token ring, FDDI, ATM, ISDN

Table 2.1: Protocol Classification

The Link layer is the method to pass packets from the Internet layer of one device to the Internet layer
of another and therefore not really part of the Internet protocol suite. Its protocol header fields don’t
deliver useful information for network quality measurements.

IP performs the basic task of getting packets of data from source to destination and its header
information is always monitored for Network layer analysis. It can carry data for a number of different
higher level protocols. ICMP is used to transmit diagnostic information about IP transmission and IGMP
to manage multicast data. They are layered on top of IP but perform network layer functions. All routing
protocols, such as BGP, OSPF, and RIP, might seem to belong to higher layer protocols but are actually
part of the network layer. These protocols are used for debugging and managing issues of the network
layer. Their occurrence is sporadic and therefore not practical for passive monitoring mechanisms,
which rely on constant traffic.
IPSec provides security at the network layer and is a standard to make IP communications secure by
encrypting and/or authenticating all IP packets.

The Transport layer protocols provide the functional and procedural means of data transfers. Its
most popular protocols are UDP and TCP.
UDP is a connectionless datagram protocol. It acts as best effort or unreliable protocol. TCP is a reliable,
connection-oriented transport mechanism which makes sure data arrives complete, undamaged, and in
order. TCP tries to continuously measure how loaded the network is and adapts its sending rate in order
to avoid congestion. Furthermore, TCP attempts to deliver all data correctly in the specified sequence.
TCP’s behavior leads to more comprehensive and specific header information than UDP’s. That’s why

1Run over TCP and UDP respectively, but may also be considered as part of the network layer
2Run over IP, but may also be considered as part of the network layer
3Run over IP, but may still be considered as part of the network layer
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generally only TCP traffic is used for passive network measurements.

The evaluation of the proposed monitoring mechanisms is done according to the characterization
of the environment introduced in Section 1.4. The most important criteria are:

Single data capturing point: Each monitoring device possesses only self-collected infor-
mation. They shouldn’t generate additional traffic to exchange their captured data.

Unknown topology: The VPN gateways don’t know their neighbors. They can’t rely on
steady behavior of the network. Routings of data packets can change all the time.

Unknown traffic type: The traffic of each customer network looks different and traffic be-
havior can change according to day time or season. Each customer uses other kinds
of application. Therefore there are no predictions about the number of connections,
number of connection setups, duration of connections, data packet sizes and type of
application traffic.

Protocols: Monitoring can be done at different interfaces. The set of analyzable protocols
differs from interface to interface. The analysis of the environment, described in Sec-
tion 3.1.1, shows that the following three protocols are prevalent: TCP, IP, and IPSec’s
ESP. It’s known by experience that a large amount of the traffic uses TCP as transport
layer protocol. IP is the standard inter-network protocol and therefore available for all
traffic. Because of the fact that a VPN environment is targeted, the existence of an ESP
header for tunneling is certain.

Sections 2.1 - 2.3 gives a survey about existing passive monitoring mechanisms. They are structured
according to the protocol used for data collection. While Section 2.1 discusses monitoring mechanisms
related to the transport layer, Sections 2.2 and 2.3 consider protocols of the network layer. The survey
of these passive approaches is summarized and classified in Section 2.4. This Section further highlights
their limits. Hence active probing techniques conclude in a final subsection this survey.
The interest in known monitoring mechanims capturing IPSec prototcol information is very high since
IPSec is a very important factor in the target environment. But no documents were found. Thereupon a
design for detecting packet loss was elaborated. Subsection 3.3.2 proposes this self-designed algorithm.

2.1 TCP specific monitoring mechanisms

The monitor mechanisms discussed in Subsections 2.1.1 - 2.1.5 rely on the characteristics of TCP to
measure the network quality. This Subsection starts with a short explanation of the TCP protocol to
ease the comprehension of the succeeding survey.

TCP is a connection-oriented and reliable transport layer communication protocol. Applications
use TCP for stream delivery through the network. TCP divides the byte stream into appropriately sized
segments and passes the resulting packets to the Internet Protocol, for delivery through an internet to
the TCP module of the entity at the other end.
The typical way a pair of end hosts initiate a connection is a so-called three-way handshake: The
client-side opens a connection by sending an initial SYN segment to the server. The server-side then
responds with a SYN/ACK. Finally, the client-side responds to the server with an ACK, completing the
three-way handshake and connection establishment phase.
Figure 2.1 shows the TCP protocol header.

Window Size TCP uses this field to provide congestion awareness. The window size is lim-
ited by the data link layer of the network the computer is attached to and is calculated
in terms of Maximum Segment Size (MMS).

Maximum Segment Size MMS is defined as the maximum number of data bytes any par-
ticular layer-2 technology allows per packet.

Maximum Transmission Unit The Maximum Transmission Unit (MTU) is obtained by at-
taching the TCP/IP headers to the layer-2 packet.
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Figure 2.1: TCP protocol header

Sliding Window Protocol TCP typically performs sliding window congestion control by
sending an amount of packets round by round. The packets of one round are sent all
together and the sender has to wait for the receiver’s acknowledgements. The amount
of packets sent by round is determined in the header field Window Size. The value of
this header field varies during the connection lifetime. To adjust this value, TCP uses an
Additive Increase, Multiplicative Decrease (AIMD) algorithm.

Additive Increase, Multiplicative Decrease The AIMD algorithm increases the congestion
window according to its current mode. In slow start mode, the congestion window is
increased by one MMS per received ack, and therefore is doubled once every Round
Trip Time (RTT). In congestion avoidance mode the increase of the congestion window
is slowed down to one MMS per RTT.

Round Trip Time RTT is defined as the time interval that starts when the TCP sender sends
a packet and ends when the sender receives the ACK of that packet.

2.1.1 Passive RTT Estimate Algorithm
The Passive RTT Estimate (PRE) [41] algorithm makes use of the behavior of long-standing TCP con-
nections. A consequence of TCP’s sliding window congestion control is that there is a gap between
two successive rounds. PRE calculates the RTT by detecting these gaps. There is no restriction on the
network topology to use PRE, i.e. the monitor device that implements the algorithm can be situated
anywhere in the network.

Algorithm Before the execution of PRE, several variables are initialized according to Table 2.2.

AI arriving time interval be-
tween two packets

Record the arriving time of the first 3 successive packets
and calculate two arriving interval T0 and T1.
AI0 = min (T0, T1)

RTT 0
E estimated RRT RTT 0

E = 32 * A0

T 0
th threshold value for AI T 0

th = 2 * (A0 + 4 * V0 ) = 4 * AI0

(simplified)
V0 Standard Deviation of AI V0 = A0 / 4

Table 2.2: Initialization

The algorithm for estimating the RTT is an iterative process. Each round i roughly consists of four steps:

1. The device monitors and timestamps the next packet of the targeted TCP flow. It then calculates
the new arrival interval AIi.



2.1 TCP specific monitoring mechanisms 14

2. It compares AIi with the threshold value T i
th to decide if AIi indicates a gap.

3. In case that AIi is an arriving time interval between two packets in the same round (PAI), it updates
the mean m and the standard deviation Vi of PAI.

4. If AIi is a gap, the end of a sending round is found and a new value for the RTT can be calculated.

Advantages

• Simple

• Monitor device can be deployed anywhere in the network

Drawbacks

• Only for long-standing TCP connections

Evaluation According to [41], practical experiments proof the effectiveness and robustness of PRE.
Its RTT estimations agreed with the RTT calculations measured by IPPM 1.
The gap detection of PRE seems to conform to the flight behavior described in proposal 2.1.2. This
behavior relies on long-term TCP connections. According to the defined target environment’s criteria
such connections are not guaranteed and therefore PRE’s algorithm isn’t applicable.

2.1.2 RTT Distribution of TCP Flows
The document [30] presents three different methods of estimating the RTT of TCP flows. It defines a
flow as a transfer of packets between two ports of a source-destination pair using a particular protocol,
and thus a flow is identified by a the 5-tuple consisting of source IP address, destination IP address,
source PORT, destination PORT and the protocol used. A TCP connection is bidirectional and consists
of two flows, one in each direction.
Different monitors, or links, observe the traffic and collect the traces. When a packet has traversed the
link, the monitor records its header, gives a timestamp and transfers the data into the PC memory.

For calculating the RTT estimations, flows are divided in five major categories:

TCP-Download Flows The link observes a SYN-ACK packet followed by data packets.

TCP-Feedback Flows The link observes a syn packet followed by a sequence of ack pack-
ets.

TCP-Unknown Flows The link never observed a leading SYN or SYN-ACK packet and
therefore the TCP flow doesn’t fit into the above types.

UDP Flows These flows are often associated with peer-to-peer searches, DNS lookups and
real-time streaming.

Other Flows The flow is using another protocol than UDP or TCP.

TCP’s behavior can be considered in two different ways.

Fluid View The Fluid View describes TCP as a window-based protocol with two modes of
operation that uses the AIMD algorithm. This observation allows calculating the rate in
congestion avoidance mode. The rate is defined as the average number of bits trans-
ferred over some time interval.

Packet View The Packet View considers the steady state of TCP and tries to recognize a
flight behavior. A flight is defined as a sequence of consecutive packets with nearly
identical inter-arrival times (IAT) followed by a larger IAT. A TCP flow showing flight
behavior would consist of a flight of packets followed by a gap, then another flight of
packets and so on. The value of an IAT is given by means of a threshold. The paper
differs between IAT, which is the size of the flight, and an IAT unit (IATU). A flight of 1
IATU means that the observed IAT was different from the preceding and following IATs.
An IATU value of 2 states that two successive IATs were identical. Other names for the
flight behavior are bursts or rounds.

The following methods pursuit different approaches dependent on the view of TCP’s characteristics.
1The IETF’s IPPM workgroup developed this framework for IP Performance Metrics. See RFC 2330 for further information.
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SYN based method This method tries to find the time between the syn-ack and the data
packet of download flows or, in case of a feedback flow, the time between the sending
of syn and ack.

Flight method The method defines the time between the leading edge of a flight and the
leading edge of the next flight as the RTT. The flight-finding algorithm consists of three
steps:

1. start with IAT = 0 and flightsize = 1
2. compare previous IAT with current IAT
3. if both IATs are within threshold the increment flightsize by one, else if flightsize >1,

start a new flight of size 0 else start a new flight of size 1

Rate change method This method proposes the RTT during the congestion avoidance
phase in an interval [t0, t1] as:

RTT =

√
MTU

d2x
dt2

Assumptions: During this interval [t0, t1], there are no packet drops and the RTT
doesn’t change.

To ensure that the flow has entered the congestion avoidance phase, the method arbi-
trarily sets a threshold of 15 packets.

Advantages

• Multiple methods to ensure that the estimated RTT is correct

• Only single point of data capturing required

Drawbacks

• Only for TCP connections

Evaluation Tests done with the implementations of these three methods have shown that no significant
differences occurred in the results. The SYN based method provides a good estimate of RTT that can
be exploited in real time analysis of Internet traffic. Further, the developer found out that flights are not
common and usually not large. In their test environment, they occur with greater frequency in two cases.
Either if the flow’s RTT is large with medium bandwidth or the RTT is medium with large bandwidth. A
third observation is that if the RTT is large then it is possible that the acks are not received during the
flow’s lifetime. In this case, the flow never makes use of TCP’s feedback control.
In consideration of the target environment there’s neither a certainty about the existence of flights nor
about the duration of TCP connections and if they enter the congestion avoidance mode. For this reason,
only the SYN-base method is followed up.

2.1.3 Wren
Wren [14] is a hybrid bandwidth monitoring tool, which passively traces existing application traffic. Ad-
ditionally it actively injects traffic when necessary to maintain a continuous flow of bandwidth measure-
ments. The survey of this system includes only the passive component.
The Wren system extends the functionality of the Web100 kernel [17] with a buffer to collect character-
istics from the incoming and outgoing packets and extend each entry with a timestamp.
The timestamp values of the packets are set according to the CPU clock cycle counter. The recording
of the packet traces takes place at both ends of the path. To start the tracing, one machine triggers the
other one by setting a flag in the headers of the outgoing packets. The other machine traces only the
packets with the header flag set. This ensures the recording of the same range of packets.

Wren uses four different bandwidth techniques to analyze the collected data: Bulk Transfer Ca-
pacity (BTC), TCP window, Packet Pair and Self-Loading Periodic Streams (SLoPS).

BTC BTC uses the congestion awareness of TCP to measure the data rate a transport
connection can obtain. For this Wren divides the observed total number of bytes sent
by the time elapsed.
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TCP window The TCP window technique measures the bandwidth by means of TCP’s vary-
ing congestion window size. Multiplying this variable with the MSS determines the send-
ing rate. Dividing this rate by the RTT calculates the achievable throughput.

Packet Pair The original idea of the packet dispersion technique is to send a train of packets
with a rate faster than the bottleneck bandwidth. Finally, the rate that packets are trav-
eling at will be equal to the bottleneck bandwidth. It is inversely related to the spacing
between the packets, so the smaller the spacing the faster the rate. Wren uses the idea
and analyzes the dispersion of the tightly spaced packet pairs when they arrive at the
receiving host. But the success of this analysis depends on the initial rate which has to
be greater than the bottleneck, but Wren has no control over the initial sending rate of
the streams.

SLoPS SLoPS is used in the measurement tool pathload. Pathload is based on the princi-
ple that the one-way delay of a periodic stream increases, if its rate is larger than the
available bandwidth. The algorithm of pathload requires cooperation of the sender and
receiver hosts. One host actively sends out several UDP packets at a fixed rate and
adjusts it in the next iteration after evaluating if it was larger or smaller than the available
bandwidth. As already mentioned before, Wren is only using passive techniques and
thus it has no control over the initial sending rate of the streams. So there’s no guaran-
tee that the algorithm converges to a bandwidth range. But a closer look at the behavior
of TCP derives that its protocol essentially does the same as pathload implements.

Advantages

• Redundancy: 4 different techniques to measure the available bandwidth and therefore 4 values to
assert the right assumption

• Packet trace happens at kernel-level, therefore the application performance doesn’t suffer and
there’s no need for application modifications

• Packets can be accurately timestamped to nanosecond precision of the kernel

Drawbacks

• Two-sided approach, monitoring takes place at both end hosts of path

• Only for TCP connections

Evaluation The experiments run in different test environments showed some important differences
between the four bandwidth measurement techniques. SLoPS, BTC and TCP window are only able to
effectively measure the available bandwidth when the TCP protocol starts the AIMD phase. While the
packet pair technique could still be applied to more bursty traffic that never opened the AIMD phase of
TCP window, it is only applicable to bursts larger than a minimum amount of about 90 KB.
The paper mentioned an uncertainty about the reliability of the packet dispersion technique because of
the fact that interrupt coalescing can cause the recorded timestamps to be increased in high bandwidth-
delay environments and therefore falsify the measured results. The tests showed, that packet pair is
useless when interrupt coalescing occurs. Paper [16] explains, that IC allows a reception of a group of
network frames to be notified to the operating system kernel via a single hardware interrupt, thus reduc-
ing the interrupt processing overhead, particularly at high packet rates. But this advantage is egalized
by the drawback that IC introduces delays that can result in significant TCP throughput degradation.
There are active approaches with these algorithms too since all of them ask for certain traffic patterns to
estimate the RTTs. Since the target environment can’t rely on certain traffic types, as stated in its criteria
list, these algorithms will not be pursued further in this document.

2.1.4 Shared Passive Network Performance Discovery
Shared Passive Network Performance Discovery (SPAND) [15] is designed to measure network
performance between well-connected domains communicating with distant hosts through a network
with unknown properties. To achieve this, SPAND passively collects application-specific information like
response time or Web page download time from a collection of hosts. The measurements are shared
within a domain by placing it in a centralized repository.
SPAND is comprised of three different components. Client Applications observe the state of the network
and summarize its measurements in Performance Reports for the distant hosts. The Packet Capture
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Host component passively observes all transfers to and from a group of clients and determines an
application’s performance. From its observation it then generates a report and sends this message to
the Performance Server. The Performance Server, in turn, stores these reports in a database.

At the time of this writing [15] there are two realizations of the SPAND architecture. The first one
measures the performance of generic bulk transfers that use TCP as their data transport by obtaining
the following three metrics.

Available bandwidth Total length of a transfer divided by the total time of the transfer, in-
cluding the initial SYN exchange but not including the FIN exchange

RTT Time when a TCP packet is sent out to when the acknowledgement for that packet is
received

Time to completion Time needed to transfer B bytes using a single TCP connection, in-
cluding connection set-up time

The second one is to measure performance for applications that use HTTP for data transfer. It uses the
Web object download time as the primary metric.

Advantages

• Measuring the network quality at application-level shows the performance that the user experi-
ences. Measuring the network quality at application-level shows the performance that the user
recognizes.

Drawbacks

• The Packet Capture Host component is not located at the end clients and makes use of several
heuristics for measuring metrics like the RTT. This can lead to inaccurate measurements.

• SPAND is only applicable for TCP connections.

• Additional data traffic is generated through sending Performance Reports to a centralized data-
base.

Evaluation SPAND is the only approach that does Performance Reports at application level. This
measurement analysis implicates other bottlenecks that don’t concern the network quality such as the
CPU utilization. On the other hand, application-based performance is what the user perceives and is
interested in.
SPAND’s packet capture hosts are not located at the end points of the path, and therefore, must use
heuristics to infer end-to-end metrics. The capturing points of the target environment are located at
the endpoints, so there would be no need for heuristics. SPAND proposes three interesting metrics
but SPAND’s implementation for their calculation can’t be addapted for two reasons. First, SPAND is
desingned to measure the performance of specific applications. Since the customer uses differend kinds
of application and they aren’t predefined, the evaluated metrics shouldn’t rely on the application type.
Second, the evaluation needs information from other hosts.

2.1.5 Internet Measurement Infrastructure

The Internet Measurement Infrastructure (IMI) [32] architecture uses the RMON[18]2-type passive
monitoring and, for path destination, active probes like traceroute. This survey only summarizes the
passive measurement technique of monitoring packets and flows. The architecture consists of several
IMI-daemons (IMId) that are distributed over the network. They collect the required information for
detecting congestion.
The monitoring is based on flows, or flow-identifier, defined as a train of packets with the same
4-tuple source IP address, source PORT address, destination IP address, destination PORT number.
At the time of this writing [18], IMI only managed to detect congestion of TCP traffic by identifying
duplicate sequence numbers in retransmitted packets. The retransmitted packet details are stored in
the retransmission log table. IMI tries to find the bottleneck along the path with a distributed analysis.

2See Subsection 2.1.1
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Algorithm If a daemon IMId-a detects a TCP retransmission in flow F, it executes the following steps:

1. Find the source A and the destination B of F

2. Locate other IMId, if any, between A and B

3. If there are other IMIds along the path, fetch their retransmission logs.

4. If the same retransmission is detected by the other IMId-m then ther is no bottleneck between
IMId-a and IMId-m.

5. If the retransmissions detected at IMId-a are not detected at IMId-m then the bottleneck is likely to
be between IMId-a and IMId-m.

Advantages

• Simple

• Sharing network data aggregates the available information to encounter problems (e.g. other af-
fected users)

• Traffic generated on demand, therefore fewer messages needed compared to other distributed
approaches

Drawbacks

• Only applicable for TCP-connections

• Distributed analysis requires sending of additional SNMP messages through the network

Evaluation Statistics are only discarded in case of TCP retransmissions. Case studies done on a
Metropolitan Area Network (MAN) showed that IMI detects congestion with accuracy near 100%.
Further, this distributed Framework can be used in diagnosing and localizing bottlenecks. IMI isn’t ap-
plicable for the target environment, since it is a distributed approach.

2.2 IP specific monitoring mechanisms

The mechanisms in this section focus on data information generated by the Internet Protocol (IP). It
is data-oriented and used by the end hosts for communicating data across a packet-switched (inter-)
network. Data is sent in blocks referred to as packets or datagrams. The IP protocol is unreliable, i.e. it
makes almost no guarantees about the packet. The packet may arrive damaged, it may be out of order
or duplicated, or it may be dropped entirely.
IPv4 is the most common network protocol found in today’s public Internet.
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Figure 2.2: IPv4 protocol header
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IPv6 is the proposed successor to IPv4.
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Figure 2.3: IPv6 protocol header

This section’s approaches are distributed, i.e. the data is captured at both end points. The host
timestamps the collected data, typically denoted as flow. This enables the mechanisms to measure
the One-Way Delay (OWD) but requires time synchronization.

One-Way Delay One-Way Delay (OWD) is defined as the transfer delay of a packet between
two points, in one direction. This metric is more significant as the RTT, taking into ac-
count the asymmetries in the internet.

Time synchronization can be achieved in different ways:

Inline Technique This technique is proposed as an active measurement method that does
not add probe traffic to the network. It adds information into an active connection in the
way that the sender not only observes the packet but also actively adjusts them.

Pulse Per Second Global Positioning System (GPS) sources send out Pulse Per Second
(PPS) signals. The clock synchronization is achieved by this signal.

Network Time Protocol The Network Time Protocol (NTP) is a protocol for synchronizing
the clocks of computer systems over packet-switched, variable-latency data networks.

2.2.1 Measurement mechanism for IPv6 Inter-networks
The service-oriented measurement mechanisms presented in [4] are using native features of the IPv6
protocol to provide accurate, transparent and reliable traffic flow measurements for any type of traffic.
IPv6 defined the optional functionality as a set of so-called extension headers, which are inserted be-
tween the main IPv6 header and the transport layer header. The monitoring mechanism uses the desti-
nation options extension header that carries Type-Length-Value (TLV) - encoded options which are only
processed by the packet’s destination. They implemented two different destination options TLVs: one to
measure One-Way Delay (OWD) and one for One-Way Loss.
The algorithm is an inline technique, which decouples the two processes of feeding the packets
with measurement data and gathering and analyzing this information. For each defined TLV there
exists a pair of source/destination modules that attach themselves to the IPv6 output and input
queues. The modules are implemented as dynamically Loadable Kernel Modules running on Linux
systems and provide insertion, manipulation, extraction and removal of IPv6 measurement options TLVs.



2.2 IP specific monitoring mechanisms 20

The source module selects the packets to be instrumented before they are forwarded to the net-
work interface. It then creates the destination options extension header as well as the appropriate
measurement TLV and fills the corresponding fields with local measurement data. The destination
module observes packets that arrive at the network interface. If a packet contains a destination options
extension header carrying the appropriate TLV then the module stores the measurement data. Depend-
ing on what is to be measured, it sometimes adds further local measurement indicators to the TLV fields.

Copies of the main IPv6 hearder, the destination options TLV and the transport layer header are carried
to the user-space for further data analysis.

Advantages

• Useable for any type of traffic

Drawbacks

• The overhead of 20 respectively 8 Bytes per instrumented packet can influence the network per-
formance in several ways

• Fragmentation must be avoided

• Additional packets due to larger data size

Evaluation Several tests are run over a variety of different-capacity network configurations fed with
representative types of traffic. This technique produces an overhead of 20 (time-related measurement)
respectively 8 Bytes (packet loss measurement) per instrumented packet. So this means for TCP, that
more packets are needed, and so more time, to complete the data transfer. For UDP, the overhead
was mainly the additional processing delay of adding the extension header to each measured packet.
Another important fact is that packet fragmentation due to the additional destination options extension
header has to be strictly avoided. Another implication of [4] is that the IPv6-in-IPv4 tunneling might
influence to the performance. Although this is not a distributed approach it is inapplicable for the target
environment since no header field manipulation or extension is allowed.

2.2.2 One-Way Delay passive measurement system
The One-Way Delay passive measurement system described in [29] focuses on the measurement of
the OWD between two network points. It is composed of several Measurement Points (MP) and a Data
Collector (DC).
A MP collects packets, filters a subset out of them and builds a report containing the packet’s timestamp
and an identifier, referred to as packet ID. These reports are then reported to the DC where the OWD is
evaluated. The fundamental issue is to consistently sample at the two MPs the same set of packets and
label them with the same packet ID, so that the DC is able to match the packets.
The OWD calculation depends on the timestamps, generated by the two MPs. For this, clocks of the two
MPs have to be synchronized, as already mentioned in the introduction. This is achieved by the Pulse
Per Second signal from a GPS source.
To obtain the packet ID, the system applies a hash function over an immutable part of the collected
packet’s IP header. It is possible that two different packets hash to the same packet ID. The collision
detection scheme, which is the most challenging part of the DC, is responsible for this problem. Further
tasks of the DC are the filtering of reports, which were sent by only one MP or were delayed.

Advantages

• Accurate measurement of OWD is more significant as the RTT metric.

Drawbacks

• Precise synchronization of MP is needed (here achieved by GPS).

• Additional traffic is generated by sending reports to the DC.

• Design of DC is challenging because it has to detect collision and filter out delayed or single MP’s
reports.
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Evaluation At the time of the report [29], IMI was tested according to tradeoffs for cost vs. precision
but was not tested in real network.
Measuring OWD is more accurate than RTT calculations, since it factors the direction into its evaluation.
OWD, instead of RTT, is therefore preferred but IMI is not applicable for the target environment. On
the one hand, IMI’s design is very challenging requires clock synchronization and it’s uncertain if IMI
performs well in real networks. On the other hand, IMI uses a distributed approach for exchanging
information.

2.3 Statistical monitoring mechanisms

The following abbreviations and terms are often used by the monitoring systems described in the
subsections 2.3.1 - 2.3.10.

Network Management Systems Network Management Systems (NMS) monitor real-time
traffic flows to recognize the (sub-) network’s behavior. If they detect changes in its
deduced characteristics they propose reactions to improve the situation.

Internet Engineering Task Force The Internet Engineering Task Force (IETF) is an organi-
zation which produces technical standards for the Internet, published as RFCs (Request
for Comment). Within the IETF there are many active Working Groups, each pursuing
standards activities in their area of interest.

Realtime Traffic Flow Measurement Realtime Traffic Flow Measurement(RTFM) is an
RFC defined by one of IETF’s working group. It proposes RMON, the standard, gen-
eralized asynchrounous and distributed architecture for measuring traffic flows.

Remote network Monitoring Remote network Monitoring (RMON) is a network manage-
ment standard proposed by the IETF.

Simple Network Management Protocol The Simple Network Management Protocol
(SNMP) forms part of the internet protocol suite, defined by the IETF. The SNMP proto-
col operates at the application layer and can support NMS to monitor and administrate
a set of managed objects.

Management Information Base A Management Information Base (MIB) is a type of data-
base used to describe a set of managed objects. SNMP makes use of MIBs. An SNMP
management console application can then manipulate the objects by using a specified
set of commands and queries. A MIB should contain information on these commands
and on the target objects to finally tune the network transport to the current needs.

2.3.1 Argus
The network Audit Record Generation and Utilization System (Argus) [1] is an open project that is fo-
cused on developing network activity audit strategies. The software consists of a fixed-model RTFM
designed to monitor and report the status and performance of all network transactions seen in a data
traffic stream.
Argus defines multiple bi-directional flow models. The models depend on the layer and/or protocol of the
tracked packets. For example, layer 4 TCP and UDP flows are defined as 5-tuple, source IP address,
source Port, destination IP address, destination port, and protocol. On the other hand, a layer 3 IPv4
flow is defined as 3-tuple, source IP address, destination IP address, and protocol. For each type of flow
there are a set of common identifiers and metrics that Argus tracks. Both the flow-models as well as the
recorded metrics are listed in [1].
For all flows the system record, among other things, the start and end of each flow, packet count, and
byte count as well as application byte count. With these metrics, it reports the following information for
performance analysis.
For IP network performance of a transaction it informs about:

• Connectivity and reachability

• Load

• Packet loss
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• Round trip delay

• IP packet jitter and jitter variance

Additional metrics are available for TCP-based flows:

• Window Performance

• Host Flow Control Indications

• Explicit Congestion Notification Indications

Argus can generate flow status records for the contents of captured flows. They are called Flow Activity
Record (FAR) and are generated in three different cases. Either when the transaction is started (Start
FAR), stopped (Stop FAR) or if a life of a given flow extends the defined Flow Status Timer (Status FAR).
The Status FAR is then used to report that the flow is still active.
Argus can be deployed to monitor individual end-systems or an entire enterprise’s network activity.

Evaluation Argus combines their evaluation of the network quality by real-time calculation of several
different metrics as well as statistical analysis of the network behavior. The project doesn’t give an exact
explanation how they calculate their metrics and is therefore not considered further.

2.3.2 NeTraMet
NeTraMet [19] is an open-source implementation of RTFM .The architecture defines three network enti-
ties:

• Meters gather data about packets and consolidate this to provide flow data

• Meter Readers retrieve flow data from meters using SNMP

• Managers coordinates the activities of meters and meter readers

RTFM identifies a flow by a bidirectional 5-tuple (protocol, source and destination addresses, and source
and destination port numbers) having byte and packet counters for each direction. RTFM uses rulesets
to describe the flows which a meter is required to measure. Rulesets are usually written in the Simple
Ruleset Language.
The implementation’s distribution package includes NeTraMet, an RTFM Meter, and NeTraC, a combined
RTFM Meter Readers and Manager. The manager reads a configuration file to start collecting the flow
data. This file specifies the rulesets to be run, the meters on which to run them and the time intervals
when the flow data is to be read. The flow data is then stored in flow data files and can be used to
produce daily reports.

Advantages

• Stable and reliable open source implementation

Drawbacks

• Different meters produce redundancy. This requires additional space in memory.

• SNMP packets are sent to the manager/reader for data collection which generates additional traffic

Evaluation According to [19] the RTFM architecture has proved very stable and reliable in use. Further,
several sites have performed tests for accuracy of NeTraMet compared with other measurement tools
and have reported very good agreement. Since NeTraMet is distributed it doesn’t meet the criteria for
the target environment.

2.3.3 NetFlow
NetFlow [2], implemented in Cisco routers, is the most widely used measurement solution today. Routers
running NetFlow maintain a "flow cache" containing flow records that describe the traffic forwarded by
the router. These flow records then are sent using unreliable UDP to a computer that collects, analyzes
and archives them.
For each router interfaces, flows are identified by important fields of the header: source IP address,
source PORT address, destination IP address, destination PORT address, protocol, and type of service.
For each flow, the router inserts a new flow record in its cache, which keeps additional data such as the
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number of packets and bytes and the timestamps for the first and the last packets. As soon as a flow has
ended, it is exported to a centralized computer for further analyzation. NetFlow uses four rules to decide
whether a flow has finished:

1. End is indicated by TCP flags (FIN or RST)

2. Timeout: Timestamp of the last packet with matching flow ID is a configurable amount of time away.

3. Timeout: Record was created before a configurable amount of time.

4. Flow cache is full

Cisco introduced sampled NetFlow for computers whose processor and memory cannot keep up with
the packet rate. NetFlow samples for a configurable parameter N only one of N packets.

Advantages

• System can be optimized for certain type of flows

• Provides information such as

• Who is using the network, what applications

• When is the network utilized

• Where is the traffic going on the network

• Aggregate traces of packets into a flow record to reduce the amount of traffic

Drawbacks

• Other tests run with NetFlow listed in [3] several problems

• If the number of produced records is larger than expected, the router exports these entries.
The traffic they generate can cause the network to drop packets.

• NetFlow cannot estimate the number of flows

• The sampling rate involves tradeoffs between the required amount of CPU and memory usage
and the accuracy of the analysis.

• Analysis groups traffic into intervals. NetFlow estimates how much of a flow that doesn’t fit in
an interval belongs to each interval. These heuristics introduces additional inaccuracy.

• Unusual traffic mixes causes NetFlow to crash, e.g. if small flows predominate, NetFlow ag-
gregation doesn’t help to keep the needed amount of memory small

Evaluation As listed in the drawbacks, using NetFlow brought up several problems. For some of them
improvements were proposed. NetFlow is the traffic measurement solution most widely used by Internet
Service Providers (ISPs) to determine the composition of the traffic mix. But NetFlow delivers too little
information for measuring the network quality of the target environment. Since NeTraMet is distributed it
doesn’t meet the criteria for the target environment.

2.3.4 Ntop
Ntop is an open-source web-based traffic measurement and monitoring application. It was initially de-
signed for tackling performance problems of the campus network backbone [9] and then evolved into a
more flexible and powerful intrusion detection system [10].
The ntop architecture is divided into three independent components.
The packet sniffer collects network packets, filters them and passes them to the packet analyzer. It sup-
ports different network interface types and can handle multiple of them simultaneously.
The packet analyzer processes one packet at time. The packet headers are analysed according to the
network interface being used. Host information is stored in a large dynamic hash table whose entries
contain several counters that keep track of the data sent/received by the host, sorted according to the
supported network protocols. The hash entry received, or created if not present yet, corresponds to
packet source and destination.
To improve the overall performance and decrease the amount of data, ntop performs caching in two
steps. First level caching is based on GNU gdbm and contains semi-persistent information such as IP



2.3 Statistical monitoring mechanisms 24

address resolution or remote host operation system. Second level caching stores permanently network
events like TCP sessions, performance data and other relevant information is into a database.
Traffic reports are done by the Report Engine in either text or HTML.

Advantages

• Efficient packet processing by using hash tables

• Low packet loss because captured packets are buffered twice, inside the kernel and ntop

Drawbacks

• In case of packet loss (buffers full), there occurs problems with the fragment entries

• Ntop doesn’t know that peer intends to close the TCP connection (three-way handshake) [9]

• Dynamic hash [8]

• Hash extension could fail on some systems

• Hash resize could packet loss was experienced

• Performance degradation in case of frequent memory management calls

• Fixed-sized hashes have more efficient hash indexing

nProbe NProbe [8] is open source software for handling Gigabit traffic. It extends ntop by adding Net-
Flow support. The application therefore captures packets flowing on an Ethernet segment, computes
NetFlow flows and exports them to the specified collectors. The collectors can be commercial applica-
tions such as Cisco NetFlow Collector or open source tools such as ntop.

Evaluation A lot of performance tests were done with Ntop and its successor NProbe. They are all
summarized in the advantages or drawbacks. No analysis about the accuracy of the measurements is
reported.
All reports describe the architecture in detail, but they don’t document the algorithm for calculating the
metrics. Therefore, these two mechanisms are discarded.

2.3.5 Remote network Monitoring
As the networks and services have become larger and more complex, their management gained
importance. All the traditional standards of NMS use a centralized client/server paradigm, but the NMS
servers cannot collect and process information of a large and complicated network efficiently.
Remote network Monitoring (RMON) [18] is a network management standard to reduce the burden
of the NMS server. A NMS using web-based RMON agents systems has a hierarchical distributed
architecture.
Each RMON agent system or RMON probe catches all packets for the subnetwork attached to it,
analyses their headers and stores the necessary information. The centralized NMS server accesses
the RMOM agents systems to obtain statistics on the subnetwork.

The RMON probes consist of three components:

Configuration control module It receives from the server control functions and configures
them as well as the parameters associated to them.

Packet capture module It captures the packets by using the libcap packet capture driver
and stores them in a file.

Packet analyzer module It reads the packets stored in the file, analyzes the packet headers
and collects the necessary information.

The information to collect is defined in two different MIBs. RMON-1 MIB defines information on the
statistics of the subnetwork based on a MAC address. RMON-2 MIB extends the RMON-1 MIB by
defining that information of the subnetwork based on the network layer and application layer addresses.
To reduce the network traffic between the NMS server and a RMON agent system, RMON-2 uses
a TimeFilter as an index to the required statistic table. The agent only sends the entries which are
changed after the time value given by the filter.
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At the time of writing [18], the system implemented 8 RMON MIB groups, which defines statistics
such as total number of packets, the number of errored packets or the packet size distribution.

Advantages

• The analysis process happens at the RMON agents and reduces required processing power com-
pared to a central analysis at the NMS server

• TimeFilter reduces the additional traffic, only the updated data is sent to the server

Drawbacks

• Additional traffic is generated by sending the analyzed data to the NMS server

Evaluation RMON outlines some interesting metrics to evaluate. According to this paper it further re-
duces the processing and traffic burden of a NMS server. But RMON isn’t applicable in consideration with
the target environment because it is a distributed mechanism that sends analysis data to a centralized
point.

2.3.6 Trace
The Trace Management Platform presented in [12] and [13] is an extension of the SNMP Infrastructure
based on the IETF Script MIB to support integrated, distributed and flexible management of high-layer
protocols, services and networked applications.

The architecture consists of several components structured in a three-tier model.

The management stations or managers selects the protocol traces of its interest by specify-
ing them using the Protocol Trace Specification Language (PTSL) and define management
tasks. Additionally, they determine the mid-level manager (MLMs) and delegate these tasks
through SNMP to them.

The MLSs interact, in turn, with monitoring and action agents to execute these tasks
and report major events back to the managers.

The monitoring agents count the occurrence of the specified traces between a pair of
peers. Every time a trace is observed, the data is stored on a mySQL database. The MLMs
are then able to evaluate the captured traces and react to certain traffic patterns. When a
MLM detects a problem it can run a corresponding script written in Java, Perl or Tcl.
The action agents are responsible for the execution of reactive management procedures,
which were created to handle the perceived problems. Therefore the MLMs communicate
with the action agents via the Script MIB.

The Trace platform is used in [11] to monitor the response time of transaction-based Internet applica-
tions. The implementation extends the monitoring agent so that it stores response-related information.
It specifies with PTSL the protocol transactions whose response times are to be measured. To configure
performance measures and retrieve results, the manager interact with the agent via SNMP trough a
subset of Application Performance Measurement MIB proposed in [31].
Examples of statistics offered by the MIBs are the maximum, minimum and mean response times or the
number of successfully completed traces.
Further, the MIB supports different types of aggregation. For example, reports can be generated for each
trace observed or only for each combination of trace and client.

Advantages

• PTSL allows to select the granularity at which protocols are monitored

• Trace is not limited to monitoring but enables management of high-layer network protocols

• Network-management: can react to poor network performance

Drawbacks

• Additional traffic generated by the sent SNMP messages

• Distributed approach is more complex and requires more control
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• Computational costs for computing performance-related statistics done in [11]

Evaluation The documents found about Trace neglect some results about the accuracy of the captured
metrics. It informs only about their performance experiences. They are listed in the advantages and
drawbacks, respectively.
The focus of the papers lies more on PSTL and less on an algorithm for metric calculations and therefore
no further investigation in analysis of Trace is done.

2.3.7 OCXmon
The National Laboratory for Applied Network Research (NLANR) is developing a network analysis in-
frastructure (NAI) to support network research and engineering through the collection and publication of
raw data, visualization and analysis of network measurements. The NAI [34] includes a passive monitor-
ing project, an active monitoring project and the collection of network management and control data, i.e.
Border Gateway Protocol data and SNMP data. In this survey, only the passive monitoring mechanism
using OCXmon is described.
OCXmon monitors have two measurement cards installed so that they can capture, in an asynchronous
transfer mode (ATM), the traffic in both directions of a full-duplex connection.
When an IP packet is sent over an ATM connection, it is broken into 48-bytes pieces called cells. The
first cell includes the IP and TCP or UDP header and, if any, very little user data, if there are no optional
headers in use. The last cell is marked to indicate the packet is complete. Traces of just the first cell from
each packet are captured from each monitor several times per day and stored according to the OCXmon
trace file format.
After the measurement period some analysis programs are run on these files and both the results of
the programs as well as the captured files are transferred to the central NAI machines which publish the
data on the Web.
The analysis of the files includes bidirectional transaction analysis and flow analysis. For further analysis
the incorporate evaluation tools of other project such as CAIDA3’s CoralReef software or the Cichlid tool
developed at NLANR.

Advantages

• Visualization of a wide range of network data

• Timestamps are instantly added by the measurement card

Drawbacks

• Only statistical analysis of network behavior done

• Publishes information on the Web, therefore the identity of the users has to be protected

• Additional traffic through sending data files to a central NAI machine

Evaluation The paper focuses on data capturing and doesn’t give any information about testing or
experience.
As mentioned in the drawbacks only statistical analysis of network behavior is done. This is too coarse-
grained for precise network quality reports. That’s why this mechanism isn’t followed up.

2.3.8 High Performance IP Monitoring Agent for CERNET
The monitoring agent presented in [40] is characterized by a high-performance data collector and a
methodology of real-time data analysis and correlation. Customized agents are monitoring particular
links of the China Education and Research Network (CERNET) to provide input for network intrusion
detection systems, network management systems and accounting and billing systems.
The monitoring agent collects, and aggregates packets to produce either flow records or packet records.
The record’s timestamp is taken from a globally synchronized clock provided by the network time pro-
tocol4. The real-time data analysis is performed by user-level multithreading applications. The packet
meter, or filter, can filter packets in real time according to dynamically configured rules, using a routing
lookup algorithm. Further, it produces statistics such as

3Cooperative Association for Internet Data Analysis. CAIDA provides tools and analyses promoting the engineering and main-
tenance of a robust, scalable global Internet infrastructure, http://www.caida.org/home/

4See 2.2
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• Packet size distribution

• Packet source/destination port distribution

• Packet protocol distribution

• Packets per second

• Average packet size

The output of the packet meter is sent to the packet classifier. This module classifies the packets into
flows by using the Recursive Flow Classification algorithm. Then additional flow-based analysis can be
done:

• Top N statistic concerning traffic volume, address uniformity, port settings, number of packets or
flows

• Traffic matrices

• Link utilization

• Traffic breakdowns by protocol, network services, etc.

• Routing loops and errors

The records are stored in a data repository to do further analysis. For this, they correlate, associate and
refine the measurement data.

Advantages

• No data exchanges between several points needed

• Filter mechanism reduces the needed data storage space

Drawbacks

• Real-time analysis of only one point or link

• Need of clock synchronization for further off-line analysis and correlation of measured data of
several links

Evaluation Performance tests showed that the passive monitoring agent is capable of supporting
Gigabit Ethernet data rate. According to [40], the monitoring results are useful in many diverse systems
such as IDS, NMS and ABS. The paper only lists the metrics for measuring network quality but it totally
neglects some algorithms for their calculations. Therefore, it’s not further examined.

The focus of the following proposals lies only on the analysis of monitored data.

2.3.9 Measurements Analysis of backbone paths
The focus of paper [23] lies on the analysis of active and passive measurement data collected over
several months on three hierarchically different network backbone paths. This survey only summarizes
the analysis methods applied to the data collected by different passive measurement tools.

The paper [23] defines following measured characterisics:

Availability is calculated by measuring the uptime or downtime of a network device or ser-
vice. Additionally, the syslog data is analyzed to ensure that none of the observed net-
work events are caused by unexpected router hardware or software failures.

Utilization is a SNMP metric that compares the amount of inbound and outbound traffic
versus the bandwidth provisioned on a link in a network path.

Discards is a SNMP metric that indicates the number of packet discarded for a particular
network interface. Errors are a SNMP metric that indicates the number of interface er-
rors (e.g. Frame Check Sequence errors). Large values of errors and discards are an
indication of excessive network congestion.

The NetFlow data is used to determine the kinds of traffic and their distribution.

Advantages

• Different types of collected data allow different evaluations
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Drawbacks

• Not real-time, only useful to show tendencies or traffic behavior of the observed traffic

Evaluation The paper outlined the measured data captured with the monitoring agent but there isn’t
any information about the accuracy of the data analysis.
The document proposes good metrics for measuring network quality but their analysis doesn’t take place
in real-time. Therefore, it’s not further examined.

2.3.10 Analysis of End-to-End Internet Faults
Microsoft Research [36] describes an analysis framework to characterize end-to-end Internet failures.
Therefore, they define that a web transaction consists of a client resolving a web server name to the
corresponding IP address, establishing a TCP connection to the server, and downloading the object of
interest using the HTTP protocol.
Figure 2.4 divides transaction failures into three categories, depending when the failure occurs.

Transaction

Transport

FailureSuccess

DNS Content

No ResponseNo Connection Partial Response

Client Abort Server Abort

Figure 2.4: Transaction Failure Categories

DNS website name cannot be resolved

Transport failure at the TCP connection level

Content TCP connection is successful but the server doesn’t supply the desired content
and returns an error indication instead.
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This survey focuses on the Transport failures which can in turn be categorized in three parts.

No Connection The client is unable to connect the server, therefore no SYN handshake.

No Response The client is able to establish a connection and sends its request but it doesn’t
receive any response.

Partial Response The client receives only part of the server’s response before the connec-
tion is prematurely terminated.

Further analysis can then be done by correlation of the local failure observations. Hence, failure episodes
have to be identified. Failure episodes correspond to periods with abnormally high failure rate and are
categorized from the viewpoint of end users:

Client-side A client is experiencing an abnormally high aggregate failure rate in its commu-
nication across many servers. This suggests a root cause at or close to the client.

Server-side A server is experiencing an abnormally high aggregate failure rate in its com-
munication across many clients. This suggests a root cause at or close to the server.

Client-Server-specific A specific client-server pair is experiencing an abnormally high fail-
ure rate, but neither client nor server is experiencing an abnormally high failure rate in
aggregate.

Other

At first, DNS related information is recorded by the two tools dif and wget. The data measured includes
DNS lookup time, the download time, and the failure code, if any.
The analysis of TCP-level information, recorded by tcpdump or windump, consists of two parts: First, the
cause of connection failures is categorized by no connection, no response and partial response. Second,
packet retransmissions are counted. This is done by counting the total number of packets sent by the
server and the number of retransmitted packets. The packet counts are aggregated across multiple
connections to compute the loss rate. Attention should be paid to differ between packet retransmissions
and packet reordering. The distinction is done by comparing the length of time by which a packet is out
of order with the connection’s RTT.

Advantages

• Simple

• Classification of traffic failures by the view of end-user

• Part of the analysis is applicable by all TCP connections, i.e. not restricted to web transactions

Drawbacks

• Analysis requires data from both end points

• Only for TCP connections

Evaluation The mechanism gathered failure data over a period month. The evaluations indicate a
promising approach to diagnose Internet faults. But the feasibility of this system hinges on several client-
based issues. Since no predictions about the client behavior can be done and the fact that this system
needs shared information for the classification, it doesn’t fulfill the criteria of the target environment.
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2.4 Classification and Comparison

Summary The following two tables give an overview of the discussed monitoring mechanisms and is
based on the Sections 2.1 - 2.3. Table 2.3 summarizes the protocol specific measurement mechanisms.

Mechanism Protocol Distributed Capturing
Point

Proposed Algo-
rithm(s)

Calculated Met-
ric(s)

PRE (2004) TCP gap detection Real-Time: RTT

Wren (2004) TCP end host, ker-
nel level

(1) BTC
(2) TCP window
(3) Packet Pair
(4) SLoPS

Real-Time: RTT

Estimate RTT
(2002)

TCP end point, ker-
nel level (DAG
cards)

(1) SYN-based
(2) Flight
(3) Rate Change

Real-Time: RTT

SPAND
(2000)

TCP x
centralized
per-domain
repository

not at the end
points,
application
level

Real-Time:
available band-
width
RTT
time to comple-
tion

IMI (1999) TCP x
local data
storage

not at the end
points,
kernel level

Duplicate se-
quence Numbers

Real-Time: Re-
transmissions

mechanism
for IPv6
(2004)

IP (x)
in-line tech-
nique

end points (2),
kernel level

Real-Time: one-
way delay
one-way loss
goodput/throughput

OWD mea-
surement
(2004)

IP x
centralized
data collec-
tor

end points (2),
kernel level

(1) OWD
(2) probability of
analysis failures

Real-Time: OWD

Table 2.3: Summary of protocol specific approaches

Table 2.4 on the next page does the same for the flow-based mechanisms.
The two tables point out that protocol specific systems are well suited for calculating real time metrics
such as the number of retransmissions during a connection. Further, all the time-related metrics of
the protocol headers need to be timestamped. Table 2.3 points out that calculating the OWD needs a
distributed approach, while RTT estimation only requires monitoring at a single point.
Flow-based methods are used for statistical analysis. This analysis can either be real-time or the
measured data can be evaluated later. Further, it can be based on all packets or only on a selection.
Unfortunately, the implementation details of the systems listed in table 2.4 aren’t very accurate. They
only specify different distribution metrics, and sometimes partly the flow selections, but they don’t
describe their analysis algorithms to calculate their results.

Conclusion The investigation of existing passive monitoring mechanisms offers a wide range of pos-
sibilities for analyzing the network performance. Table 2.5 concludes this survey by summarizing the
most important advantages and drawbacks of the methods discussed in Subsections 2.1.1 - 2.3.10, as
interpreted from the papers studied.
The descriptions of some approaches don’t contain the required details and have many open ques-
tions about implementation details as well as performance issues behind. Nevertheless, the detailed
evaluation according to the target environment5 as well as the results stated by the paper’s authors
are presented after each individual mechanism. They bring up that some ideas of monitoring mecha-
nisms related to the transport layer are reusable for the design of the target environment’s monitoring
mechanism. Further, they identify the limits of the passive approach.

5See Introduction 1.4
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Mechanism Distributed Capturing Point Analysis Type

Argus (2005) x end users,
kernel level

Real-Time:
Round Trip Delay
Packet Loss
Statistical: Connectivity

NeTraMet
(2001) (RTFM)

(x) single or multiple
end users,
kernel level

Statistical Real-Time analy-
sis:
Statistical event records
about flow duration, applica-
tion type, etc.

NetFlow (2004) x
(centralized DB
Server)

Cisco meters at
routers,
kernel level

Statistical: e.g number of
bytes, flag fields, time of the
flow

Ntop (1999) x
(SQL DB, ap-
plication client
communicates
via UDP)

end users, kernel
level

Statistical: e.g. protocol dis-
tributions, network service
usage, network utilization,
IP/non-IP distribution, open
sockets, etc.

RMON (2001) x
centralized
NMS, collect al-
ready analyzed
data

one agent per sub-
network,
kernel level

Statistical Real-Time analy-
sis: e.g. packet size distrib-
ution, total number of pack-
ets, errored packets

Trace
(2002 - 2004)

x one or more man-
agers,
kernel level

Real Time: response time
Statistical Real-Time analy-
sis and management: react
to specified traffic patterns
e.g. number of traces in an
interval, minimum response
time, mean response time,
etc.

OCXmon
(2000)
(NLANR)

x
centralized data
storage

multiple monitors,
kernel level

Statistical analysis of some
time intervals

Cernet (2003) x
no message-
exchange

multiple monitors,
kernel level

Statistical analysis: e.g.
packet size distribution,
packets per second, aver-
age packet size

Table 2.4: Summary of the statistical approaches

Outlook The conclusion raises the question whether or when passive monitoring is better than active
probing. Therefore, Subsection 2.5.1 of the next Section 2.5 compares passive monitoring versus ac-
tive probing in more detail. Subsection 2.5.2 follows with an overview about existing active monitoring
techniques.

2.5 Active Monitoring Mechanisms

With regard to the Conclusion and Outlook of Subsection 2.4, more investigation in the analysis of active
probing techniques is necessary.

2.5.1 Passive Monitoring vs. Active Probing
As already mentioned in the Introduction 1.1, network measurement techniques can be classified into
two categories: passive measurement and active probing. While the passive approach monitors the
existing traffic that passes a certain point, active probing injects test traffic and measures the service
obtained from the network. Both of them have their values as well as drawbacks; hence they should be
regarded as complementary.
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Mechanism Distributed
Compo-
nents

Generates Network Traffic Protocol
Specific

through data
collection

through con-
figuration

PRE (2004) - - - +

Wren (2004) - n.a. + +

Estimate RTT (2002) - - - +

SPAND (2000) + + - +

IMI (1999) + + - +

mechanism for IPv6 (2004) + - - +

OWD measurement (2004) + + n.a. +

Argus (2005) + + + -

NeTraMet (2001) + + - -
(RTFM) - - - -

NetFlow (2004) + + - -

Ntop (1999) + + - -

RMON (2001) + + + -

Trace (2002 -2004) + - + -

OCXmon (2000) (NLANR) + - - -

Cernet (2003) (+) - - -

Table 2.5: Drawbacks and advantages of the summarized monitoring mechanisms

Passive Monitoring

Advantages

• Doesn’t increase the traffic on the network

• Measures real traffic

Drawbacks

• Limited to paths that have recently carried user traffic

• Limited ability to isolate exact fault location

• Unknown conditions of observed traffic

• Unknown volume of gathered data

• Privacy and security issues

Active Probing

Advantages

• Explore entire network

• Can be generated under well-defined and controlled conditions

Drawbacks

• Measures artificial traffic (evaluated metrics may be incorrect)

• Creates extra traffic, intrusive
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2.5.2 Active Monitoring Mechanisms
Several groups have designed active monitoring mechanisms to measure the network performance.
They focus on techniques for estimating the bandwidth. In the context of data networks, the term band-
width quantifies the data rate that a link or a path can transfer. But this term is too imprecise. This Section
therefore starts with an introduction of three bandwidth metrics before it continues with an overview about
the existing concepts. The definition of these metrics is taken from [28].

Capacity The capacity is the maximum possible bandwidth that a link or a path can deliver.

Available Bandwidth The available bandwidth (ABW) is the maximum unused or spare capacity at a
link or a path during a certain period of time.

Bulk Transfer Capacity The Bulk Transfer Capacity (BTC)1 is the maximum throughput obtainable by
a single TCP connection.

Different applications place different requirements on the network. Real time applications may require
little bandwidth but are very sensitive to delay, while, at the other extreme, bulk transfers are very in-
sensitive to delay but require as much bandwidth as possible. Taking this into account, the existing
mechanisms can be grouped into two main categories: bulk transfer or packet dispersion with probing
packets.

Bulk Transfer Capacity This very simply method consists of simply sending data from A to B at the
highest possible rate. This method has the advantage of correctly measuring the network through-
put but it is very intrusive, since it actually saturates at least one of the links on the path between
A and B. In most cases, BTC is an upper bound on the available bandwidth and a lower bound on
the path’s capacity.

Probing Packets Techniques using probing packets for evaluating network performance can be further
subdivided in four major techniques: Variable Packet Size (VPS), Packet Pair1 / Train Dispersion
(PPTD), Self-Loading Periodic Streams (SLoPS)1 and Trains of Packet Pairs (TOPP). The former
two techniques estimate the capacity, the latter two measure the available bandwidth.

VPS VPS probing needs only one monitor site to measure the capacity of each hop along
a path. To measure the RTT from the source to a particular router it uses the Time-To-
Live (TTL) field of the IP header. If it expires at the particular hop, the router discards
the packet and returns an ICMP "Time-exceeded" error message back to the source.

PPTD PPTD probing techniques require double-ended measurements. Packet Pair (PP)
probing measures the end-to-end capacity by sending multiple packet pairs from the
source to the destination. Each packet pair consists of two packets of the same size
sent back-to-back. By measuring the changes in the packet spacing at the receiver,
the sender can estimate the bandwidth properties of the network path. To filter out er-
roneous bandwidth measurements the tools propose union and intersection statistical
filtering as well as sending many packet pairs with variable size. Packet Train Dispersion
(TD) probing extends PP probing by using multiple back-to-back packets.

SLoPS SLoPS attempts to bring the stream rate close to the available bandwidth with an
iterative algorithm similar to binary search. To measure the end-to-end available band-
width the source sends a number (about 100) of equal-sized packets to the sink at a
certain rate. The receiver notifies it about the OWD trend of each stream. Thereupon
the sender adjust the rate of the next packet train.

TOPP TOPP uses a similar approach as SLoPS to estimate the available bandwidth. The
main difference between the two methods lies in the statistical processing of the mea-
surements. While SLoPS uses a binary search for the rate, TOPP increases it linearly.
Further, TOPP can also estimate the capacity of the tightest link on the path.

More recently, new techniques modify the self-loading methodology of SLoPS or TOPP.
These techniques can be distinguished in two main double-ended approaches:

1See also Section 2.1.3: Approach to use these techniques in a passive way.
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Probe Gap Model The Probe Gap Model (PGM) evaluates the time gap between the ar-
rivals of two successive probes at the receiver. PGM use a train of probe packet to
generate a single measurement.

Probe Rate Model The Probe Rate Model (PRM) is based on the concept of self-induced
congestion. If the source sends packet streams at a lower rate than the available band-
width, the arrival rate at the receiver will match the sending rate of the source. In con-
trast, if the probe traffic is sent at a rate higher than the available bandwidth, the arrival
rate at the receiver will be less than the sending rate. Thus, the techniques are searching
the turning point of the rate.

Table 2.6 lists existing active probing tools, each of them implementing one of the explained techniques.

Tool Metric Technique End-to-End Monitoring interval

Pathchar Capacity VPS No (per hop) Single-ended
Clink Capacity VPS No (per hop) Single-ended
Pchar Capacity VPS No (per hop) Single-ended
Bprobe Capacity PP Yes Single-ended
Nettimer Capacity VPS, PP Yes Both
Pathrate Capacity PPTD Yes Double-ended
Sprobe Capacity PPTD Yes Single-ended
Cprobe ABW TD Yes Single-ended
Pathload ABW SLoPS Yes Double-ended
IGI ABW PGM2 Yes Double-ended
Spruce ABW PGM2 Yes Double-ended
Pathchirp ABW PRM3 Yes Double-ended
Treno BTC Emulated TCP throughput Yes Single-ended
Cap BTC Standardized TCP throughput Yes Double-ended
Iperf Achievable TCP throughput Parallel TCP connections Yes Double-ended
Netperf Achievable TCP throughput Parallel TCP connections Yes Double-ended

Table 2.6: Active Proping Tools

Additionally, there are several projects ongoing that develop infrastructures of Active Internet End-to-End
Performance Measurements (AIEPM). For further information, see [7], which compares the 5 major
public AIEPMs.

2.6 Conclusion

The goal of this Thesis is to design and implement a passive monitoring mechanism to evaluate the cur-
rent network quality. All highlighted ideas of the survey are TCP specific. Since the target environment’s
traffic type is unpredictable, these ideas indicate a first metric to evaluate the network performance but
they don’t cover the whole range of the customer’s traffic. To expand the range of possible metrics, more
detailed studies in the targeted VPN environment were pursued and described in Section 3.1. In con-
junction, proposals of active probing algorithms can be developed if the passive monitoring mechanism
achieves its limits. This happens when the detailed analysis of a detected network problem is best done
using active probing. Subsections 3.5.1 and 3.5.2 design alerting mechanisms that use active probing
for further analysis purposes.

2PGM is based on the concept of SLoPS.
3PRM is based on the concept of SLoPS.



Chapter 3

Design and Implementation

A large number of different passive monitoring mechanisms has been observed in the Sections 2.1 -
2.3. Chapter 2 helped to gain a basic knowledge about network monitoring but no existing technique is
directly applicable to the target environment. The RTT metric of the TCP-specific approaches1 is used
to measure the TCP traffic performance in the customer network. But since the type of the network traf-
fic is unknown the design of the Thesis’s monitoring mechanism can’t depend only on this one metric.
However the existence of an IPSec protocol is definitely guaranteed. The design of Open System’s en-
vironment was analyzed and is documented in Section 3.1. It assures the existence of the ESP protocol
header. With this information an algorithm to count Packet Loss was developed.
This Chapter describes the existing target environment in more detail in Section 3.1. Before the de-
signs of the two algorithms are introduced in Section 3.3 the demanded requirements are specified in
Section 3.2. Thereupon Section 3.4 describes their implementation. The passive monitoring mechanism
was then extended by the design of an alerting system which concludes this Chapter.

3.1 Network Environment and Metrics

This Section starts with an overview about the general concepts of IPSec. With the gained basics Sub-
sections 3.1.1 and 3.1.2 describe the target environment in more detail. This helps to deduce adequate
metrics which are summarized in Subsection 3.1.4.
A Virtual Private Network (VPN) is a network which can safely be used within a company or by several
different companies or organizations as if it were private, even though some of its communication uses
insecure connections. All traffic on VPN connections provides the necessary confidentiality, sender au-
thentication and message integrity by using cryptographic tunneling protocols.
Internet Protocol SECurity, IPSec, provides network-level security for IP. It is not the only technique avail-
able for building VPNs, but it is the only method defined by RFCs and supported by many vendors.
IPSec uses two core protocols to provide traffic security by adding a header containing security informa-
tion to a datagram:

IP Authentication Header (AH) provides data integrity, data origin authentication and anti-
replay service (optional)

Encapsulation Security Payload (ESP) may provide confidentiality (by encryption), and
limited traffic flow confidentiality, connectionless integrity, data origin authentication and
an anti-replay service.

These protocols may be applied alone or in combination with each other. Both, AH and ESP, support two
modes of use: transport and tunnel mode. These two modes describe how AH or ESP processes the IP
datagram, e.g. what specific parts of the IP datagram are protected, or how the headers are arranged.
They are defined as two types of Security Associations (SA). SAs are the fundamental concept of IPSec
to control the granularity at which a security service is offered. The Internet Society defines a SA as
follows:

"A Security Association is a simplex "connection" that affords security services to the traffic carried by
it. [...] To secure typical, bi-directional communication between two hosts, or between two security gate-

1See Section 2.1
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ways, two Security Associations (one in each direction) are required. A security association is uniquely
identified by a triple consisting of a Security Parameter Index (SPI), an IP Destination Address, and a
security protocol (AH or ESP) identifier." (RFC 2401 ([26]))
A transport mode Security Association is a security association between two hosts and provides primar-
ily protection for upper-layer protocols. The security protocol header appears immediately after the IP
header (and any options) and before any higher layer protocols like TCP or UDP. A tunnel mode Security
Association is applied to an IP tunnel and provides protection to the entire IP packet. To achieve this,
there is an outer IP header that specifies the IP tunnel processing destination and an inner IP header
with the ultimate destination address for the packet. The entire original, or inner, IP packet is treated as
the payload and travels through a tunnel.
Tunnel mode is a common choice for VPN implementations, which are based on tunneling of IP data-
grams through an unsecured network such as the Internet. Additionally, VPN requires privacy. This
means that datagrams are protected against intermediate devices changing them and against examin-
ing their contents as well. The presence of the AH header allows to verify the integrity of a message, but
it doesn’t encrypt it. Thus, AH provides authentication but not privacy. That’s what ESP is for.
The ESP format has several fields that are the same as those used in AH but it packages its fields in a
very different way. Instead of having just a header, ESP divides its fields into three components:

ESP Header This contains two fields, the SPI and Sequence Number, and comes before
the encrypted data. Its placement depends on whether ESP is used in transport mode
or tunnel mode, as explained in the topic on IPSec modes.

ESP Trailer This section is placed after the encrypted data. It contains padding that is used
to align the encrypted data, through a Padding and Pad Length field. Further, it also the
Next Header field for ESP.

ESP Authentication Data This field contains an Integrity Check Value (ICV), computed in
a manner similar to how the AH protocol works, for when ESP’s optional authentication
feature is used.

Figure 3.1 shows how an ESP packet is processed in tunnel mode.
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Figure 3.1: ESP in tunnel mode

3.1.1 Open Systems VPN Environment
Open Systems uses the IPSec implementation Linux FreeS/WAN. Three protocols are used:

AH (Authentication Header) provides a packet-level authentication service

ESP (Encapsulating Security Payload) provides encryption plus authentication

IKE (Internet Key Exchange) negotiates connection parameters, including keys, for the
other two

The implementation has three main parts:

KLIPS (Kernel IPSec) implements AH, ESP, and packet handling within the kernel

Pluto (an IKE daemon) implements IKE, negotiating connections with other systems

various scripts provide an administrator’s interface to the machinery
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FreeS/WAN provides both IPSec modes. In Tunnel mode, the gateways provide tunnels. For this KLIPS
hooks into the routing code in the LINUX kernel and reroutes the traffic according to the IPSEC extended
static routing tables. To bypass this double routing, the VPN gateways of Open Systems use another
approach. It connects the gateway in transport mode which is defined as a host-to-host connection.
This mode doesn’t make use of the IPSEC routing tables and therefore enables dynamic routing in the
LINUX kernel just in one step. This advantage of the transport mode is canceled by the drawback that
the original IP header isn’t encrypted, as shown in Figure 3.2.
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Figure 3.2: ESP in transport mode

This problem is solved by the Generic Routing Encapsulation (GRE) protocol. GRE is one of several
existing proposals for the encapsulation of one protocol over another one, or in this case, for transporting
IP over IP. This is done in two steps. First, a GRE header is added to the payload, i.e. the original IP
header and its data. The resulting GRE packet is then encapsulated in an outer protocol, or delivery
protocol. This combination of GRE with IPSec’s transport mode enables a transport mode with low
additional data overhead. Figure 3.3 depicts the new tunnel mode.
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Figure 3.3: GRE and transport mode

3.1.2 Data Packet Capturing and Data Formats
The data packets can be captured at different interfaces showing them at various processing stages.
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Figure 3.4: VPN Environment Setup
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Eth1 represents the interface between the VPN gateway and the customer sites, i.e. the incoming and
outgoing packets at this point are the original ones generated from the end-user machines and therefore
not processed yet. Packets observed at the interface tun_dstVPN have the similar format as the one at
eth1.
Then the GRE protocol header is attached to the original one and the resulting GRE packet is encapsu-
lated in a new IP header. This packet format, show in Figure 3.5, is visible at the interface ipsec0.
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Figure 3.5: GRE packet at ipsec 0

The final processing stage, performed by the IPSec implementation, splits the new IP header and the
GRE packet and adds the ESP components according to Figure 3.2. The resulting packet format, shown
in Figure 3.3 can be captured at eth0.
The two relevant interfaces, ipsec0 and eth0, which collect all the available header information, i.e. old
IP, GRE, ESP, new IP, and transport layer header are shown in Figure 3.6.
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Figure 3.6: Algorithms Relevant Interfaces

The Figure points out that the new IP header is visible at both interfaces. Its payload, including the old IP
header, is still visible at interface ipsec0, but encrypted at eth0 and therefore lost for analysis purposes.
In exchange the unencrypted ESP header data compensates the information lack.
Nevertheless, data information of both interfaces can be combined by means of the new IP header. But
this approach works only for incoming packets by the IP identification matching. Since the ID field of the
IP header is set after the encryption process, this header field value is zero at ipsec0 for all outgoing
traffic.
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3.1.3 Fragmentation
IPSec’s encryption process takes place after interface ipsec0 and before eth0. The new IP header packet
length value changes since this procedure enlarges the initial packet size. This is because of IPSec’s
protocol fields, authentication data and the padding which are all considered as the new IP’s payload.
The fragmentation process happens after encryption. Thus, if the payload at ipsec0, i.e. before encryp-
tion, is greater than 1458 Bytes it will be fragmented because of the Ethernet’s Maximal Transfer Unit
(MTU).
Figures 3.7 and 3.8 visualize this observation. The MTU is limited to 1500 Bytes. The size for the new IP
header, the ESP Header and the Authentication Data doesn’t vary. If you subtract this reserved space
from the MTU, there are 1444 Bytes left.

12:15:27.026925 

IP (tos 0x0, ttl 255, id 62786, offset 0, flags [DF], length: 108) pasv2 > pasv1:

[] IP (tos 0x0, ttl  63, id 7453, offset 0, flags [none], length: 84) 192.168.65.10 > 192.168.5.1:

icmp 64: echo reply seq 14

0 2 4 6 8 10 12 14

4500 006c f542 4000 ff2f 1144 d59c e4d1 IP 20 Bytes

d59c e4d0 0000 0800 4500 0054 1d1d 0000 GRE 4 Bytes

3f01 9730 c0a8 410a c0a8 0501 0000 2f4b IP 20 Bytes

fe5f 000e 4fc4 9643 013c 0000 0809 0a0b ICMP 64 Bytes

0c0d 0e0f 1011 1213 1415 1617 1819 1a1b

1c1d 1e1f 2021 2223 2425 2627 2829 2a2b

2c2d 2e2f 3031 3233 3435 3637

Total 108 Bytes
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Figure 3.7: Data Packet at ipsec0 (GRE tunnel)

12:15:27.026925  

IP (tos 0x0, ttl 255, id 62786, offset 0, flags [DF], length: 152) pasv2 > pasv1: 

ESP(spi=0x4a3e6529,seq=0x158f)

0 2 4 6 8 10 12 14

4500 006c f542 4000 ff2f 1144 d59c e4d1 IP 20 Bytes

d59c e4d0 4a3e 6529 0000 158f 616d 3b23 ESP 8 Bytes

17e8 019a 873a f0b3 65c7 19b4 6f00 ff48 IV 16 Bytes

c082 e841 23db b773 73f0 a67f 9099 f4df
1260 e7b0 4eaf 7219 48f4 f2cf 7cf2 5ed7 108 - 20

ac52 407b 6f5d 3471 2fc0 44fa a400 1df6 =

8235 63fd 10f5 7cc6 7cb4 8096 04c1 e4be 78 Bytes

8d5d d1a2 5a3c f5a7 3d64 8b73 0b82 89da
987c e587 a585 e58f fa7d 4243 vff4 89c8 Padding Flags y + 2 Bytes

e82f f5a4 8d83 6e39 Auth. Data 12 Bytes

Total 152 Bytes

Payload

Encrypted

Figure 3.8: Data Packet at eth0 (IPSec tunnel)

The payload of the outer IP header2 consists of the GRE header, the old IP header and it its payload
with a variable size. The IPSec implementation uses AES-128 to produce the cipher text which requires

2See 3.5
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that the input size is a multiple of 128 bits, or 16 Bytes. But before the AES-128 encryption the ESP
Trailer is appended to the payload, which needs at least 2 Bytes for the Flags. To avoid fragmentation,
the input size is limited to 1440 Bytes, or a payload of 1438 Bytes.
Figures 3.9 and 3.10 depict the tcpdump of a fragmentation for an incoming packet.

Source IP VPN ID offset lenght flags ID lenght flags Source IP

62.2.183.226 45753 0 72 DF 26334 52 DF 192.168.62.62:1414

62.2.183.226 45757 0 1524 none 26338 1500 DF 192.168.62.62:1414

New IP Old IP

Figure 3.9: Incoming Packet Information at ipsec0 (GRE tunnel)

Source IP VPN ID offset lenght flags spi seq

62.2.183.226 45753 0 72 DF 0x20edca18 0x1d53e4

62.2.183.226 45757 0 1500 + 0x20edca18 0x1d53e8

62.2.183.226 45757 1480 96 none sipp-esp

New IP ESP

Figure 3.10: Incoming Packet Information at eth0 (IPSec tunnel)

3.1.4 Metrics
The study of the network environment of Open Systems points out several possible metrics to evaluate
the network quality in a totally passive way:

Round Trip Time The RTT is defined as the interval from the time when the VPN records an outgoing
packet destined to an end to client to the moment it receives the according acknowledgement.
Therefore, only approaches of Round Trip Time measurements are possible.

Retransmissions Retransmission is the number of attempts until a successful delivery of packet. This
can be determined on the basis of the packet’s sequence number of a certain connection.

The first two can be evaluated on the basis of the TCP protocol header and therefore not all customer
traffic is considered. Since most of this traffic uses TCP the importance of this drawback is decreased.
The next two metrics can be deduced from the IP and the ESP header information and therefore evalu-
ated for all customer traffic.

Packet Loss Packet Loss is defined as the number of packets launched by the source VPN gateway
but never received by the destination VPN gateway.

Fragment Loss If the packet size exceeds the MTU of a connection between two neighbored VPN
gateways, it becomes fragmented. Fragment Loss occurs if only fragments and not the whole
launched packet gets lost between source and destination.

Packet Loss is more accurate and reliable than Retransmissions. Retransmission can occur in spite of
good network quality. Observing retransmissions could therefore lead to false positives.
Fragment Loss is very similar to Packet Loss. In some cases, it provides a little bit more information
than Packet Loss. By means of Fragment Loss it is possible to deduce if the perceived problem already
comes from the network or if it arises when it arrives at the VPN destination gateway. In the latter case
the network quality is good in spite of announced packet loss.

Under certain circumstances these metrics provide too little information. One such case occurs if
there is very low customer traffic between two VPN connections. Another occasion is when the
monitoring mechanisms perceive bad network quality. This requires an active approach to receive
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more accurate information. The former can be solved by actively sending a self-generated TCP packet
to continue the RTT measurements. In the latter more information is needed. Two more metrics are
possible:

One-Way Delay One-Way delay is defined as the time interval started at the moment when the packet
is launched at the source and ended when it is received at the destination point. Therefore, it’s
possible to determine the direction for which the problem occurs.
To measure One-Way Delay several approaches are possible. One idea is to give a timestamp
to already existing customer traffic. Another possibility is to actively generate a new packet which
includes a timestamp.

Packet Size Variation Network quality may vary depending on the type of packets sent. Sending pack-
ets with variable sizes can help to deduce if either the quality is bad all the time, no matter how big
the packet is, or the threshold size when network quality decreases.

3.2 Requirements

Section 3.1 presents the network environment where the monitoring mechanism will be employed.
Subsection 3.1.4 summarizes the possible metrics which can be evaluated in this environment. This
Section highlights the requirements which the algorithms should fulfill.

No False Positives The algorithm shouldn’t generate false positives. False positives would only cost
money and time.

Economical Use of System Resources The resource consumption and performance of the monitor-
ing tool shouldn’t handicap the gateway in offering its normal service at any time. This means that
the algorithm must not influence other programs installed on the gateways.

No Influence to Customer Traffic Customer traffic shouldn’t be influenced in any way. Neither a slow
down of the traffic speed nor packet drops is allowed.

Scalability The customer network topologies vary very much in size. It could consist of up to 5000
hosts. This leads to big variation in the throughput of different VPN gateways.

Low Maintenance The installation on the VPN gateways shouldn’t be time consuming. Further, it
should run without much configuration and maintenance.
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3.3 Algorithmic Design Aspects

This Subsection introduces the design of the two developed algorithms. They are based on the metrics
described in Subsection 3.1.4 and fulfill the requirements defined in Subsection 3.2.

3.3.1 RTT Calculation
Algorithm This algorithm filters out all traffic that uses TCP as transport protocol at the virtual interface
on which GRE encapsulated but unencrypted traffic is visible. It uses two characteristics of TCP to
measure the RTT. The first is the reliability achieved by performing the Sliding Window Protocol. The
second is the fact that each packet can be assigned to an unique connection. For each connection it
categorizes its packets in incoming and outgoing traffic.

Outgoing packets For each outgoing packet, the algorithm records a timestamp, its TCP
header flags and its expected acknowledgement number of incoming response in the
future.

Incoming packets For each incoming packet, the algorithm checks if there is an entry with a
matching acknowledgement number. If so, it updates the mean RTT for this connection
and deletes the records. Since TCP allows multiple acknowledgements, the algorithm
deletes all recorded entries with lower expected acknowledgement numbers as well.
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Figure 3.11: TCP RTT Calculation algorithm

Metrics To relieve the network load, TCP’s Sliding Window Protocol introduced delayed ACKs which
allow a TCP receiver to refrain from sending an ACK for each incoming segment. According to RFC
3465 ([27]) "a receiver should send an ACK for every second full-sized segment that arrives" or when
a timeout occurs. The timeout time is not exactly defined. While [20] recommends 200 ms, RFC 1122
([24]) defines 500 ms. Since only during connection setup, hence when the SYN flag is set, the absence
of delayed ACKs is guaranteed, the algorithm differs between three different RTT values:

Overall RTT: The overall RTT is the mean value of all calculated RTTs, neglecting the flags
of the outgoing packet.

SYN RTT: The SYN RTT is the mean value of all RTTs for which the SYN flag was set in the
outgoing packet.

noSYN RTT: The noSYN RTT is the mean value of all RTTs which are not calculated during
a connection setup.

Further, the algorithm saves the minimum RTT and the maximum RTT as well as their related TLL fields.
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3.3.2 Packet Loss
The design of this algorithm arised during the evaluation of the target’s VPN environment.
Packet Loss detection takes place at the external internet-directed interface. Since IP is connectionless,
unreliable and guarantees neither that packets are delivered in order nor those packets are delivered at
all, Packet Loss uses additional information offered by the IPSec protocol.

IPSec IPSec’s Anti-Replay Service protects end users against so called man-in-the-middle attacks
during which an intruder captures the message to subsequently replay it. This is achieved by the Se-
quence Number field and the Security Parameter Index (SPI) field of the ESP header and the IPSec
authentication’s requirement of the implementation of a receiver window of size W. The right edge of
the receiver window represents the highest Sequence Number N of all packets received yet at the des-
tination. Arriving packets with Sequence Numbers in the range between MIN (N-W+1) and MAX (N) are
marked as valid. A packet with a higher Sequence Number, S, than N causes the receiver window to
move right until H is at the window’s right edge. Packets with lower Sequence Numbers than N-W+1, the
value at the window’s left edge, are invalid and therefore discarded.

N

Fixed Window Size W

Valid: received packets Invalid: not received yet
N+1

N - W

N S

Fixed Window Size W

Marked: received packets Unmarked: not received yet

Discarded

MAX = S

MAX = NMIN = N – W +1

Figure 3.12: IPSec’s Anti-Replay Service

Algorithm Packet Loss assigns each incoming packet to a connection, which is uniquely identified by
the triple Source VPN, Destination VPN, SPI. For each open connection, it further tracks the receiver
window with width W, MIN = N - W + 1 as the left and MAX = N as the right edge value.
For each incoming packet, Packet Loss roughly processes the following steps:

1. Check if it is a packet or a fragment. If it’s a fragment, go to step (2) else go to step (3).

2. Store the necessary fragment information and check if all fragments are arrived to reassemble
them to the original packet. If so, go to step (3).

3. Check the Sequence Number S of the arrived packet.

(a) If (S < MIN) then the packet is invalid: increase the number of lost packets.

(b) If (S > MAX) then count all invalid marked fields in [N-W+1 ... S-W] of the receiver window
and add them to the number of lost packets. Move the receiver window S-N steps to the right.

(c) Otherwise (N-W+1 < S < N) mark the packet as valid in the receiver window.
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Figure 3.13: ESP Packet Loss algorithm for unfragmented packets

Metrics For each connection, the algorithm counts the number of lost packets and the number of
expected packets. They are used to calculate the packet loss ratio. Further, it records the number of
fragments and the number of successfully defragmented packets. By comparing them it is possible to
roughly classify a perceived packet loss problem in three categories:

Loss of Large Packets: The difference between the number of successful defragmented
packets and the number of observed fragments is equal to the number of lost packets.
Hence, only packets with size larger than the MTU are lost.

Loss of Small Packets: The number of successful defragmented packets is equal to the
number of observed fragments, hence packets of size smaller than the MTU are lost.

Loss of Both: The number of successfully defragmented packets is smaller than the num-
ber of observed fragments. Since additional packets are lost is detected, no conclusion
about the packet size is possible.
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3.4 Implementation

The following Subsections explain the two algorithms in detail. Both algorithms have to be installed on
the VPN gateways and are started with the scripts run_rtt and run_packet_loss. These two scripts call
the specific algorithms and pass the required parameters. The two algorithms use Perl’s Net::Pcap to
monitor the customer traffic passing the gateway. This module uses the standard libpcap code that is
part of tcpdump and other packet sniffers. The program codes open up a capturing device, set up defined
filters and whenever a packet is received, call the process_pkt routine. This routine uses NetPacket for
decoding and encoding of network protocols. NetPacket provides a base class for a cluster of modules,
each of them implementing one specific protocol.

NetPacket::*

modules

Net::Pcap

packet_loss_frag.pl

rtt_syn_per_con.pl
NetPacket::*

modules

libpcap

lo
g

lo
g

run_packet_loss

run_rtt

loop(pkt, &\process_pkt);

loop(pkt, &\process_pkt);

VPN gateway

Figure 3.14: Modules and Libraries

3.4.1 RTT Calculation
The script run_rtt calls rtt_syn_per_con.pl and passes following parameters:

foldername The directory for the log files storage.

filename The name of the log files.

timeout_interval The time step in seconds between two log file entries.

interface The interface to observe.

SYN_threshold The threshold value to achive that only the SYN RTT is calculated.

The algorithm observes ipsec0 interface to measure the RTT per VPN connection. But this RTT is not
the same as Open System’s active probing RTT. The passively calculated RTT is the time gap for the
path VPN src -> VPN dst -> client -> VPN dst -> VPN src. This means that this RTT value is higher by
the time interval VPN dst -> client -> VPN dst. After the defined time step timeout_interval the algorithm
determines which value is assigned to the RTT. If the number of observed connection setups achieve
SYS_threshold then the the mean value of all observed SYN RTTs per connection is logged to the file
"foldername/filename". Otherwise, it takes the value of all calculated RTTs. The format of the a log file
entry looks like the following:

entry nr VPN connection mean RTT min RTT max RTT total pktstimestamp min TTLmax TTLstandard deviation standard error Mode [ALL = 0; SYN = 1]
0 194.158.252.154:212.98.54.20 88097.5789473684 16962 221868 19 1143106422 127 127 1636.89599236959 397.005592628828 0
1 194.158.252.154:212.98.54.20 44948.0555555556 16971 111741 18 1143106705 127 127 2293.96787101223 556.368931409217 0
...
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NetPacket Modules The script rtt_syn_per_con.pl uses the information of three different protocol
headers:

• Outer IP Header

• Inner IP Header

• TCP Header

To get the desired protocol information it uses the IP and TCP modules of NetPacket. Since the GRE
protocol header is placed in between the Outer and Inner IP headers but no GRE module exists the
algorithm decodes this information by itself.

Data Structure and Garbage Collection The algorithm makes use of three hash tables which can be
accessed by a combination of TCP and IP protocol header information. They are listed in table 3.1.
The first table is a hash of hashes and it is used to match the outgoing packet with it’s reply. Its outer hash
uses the IP’s client source and destination addresses as well as TCP’s source and destination PORT
numbers to create its key dst. The key of the inner hash, seq_entry, is the expected acknowledgment
number of the reply packet.
The garbage collection for this hash is started every time when a match occurs.
The structure of the other two tables is similar. They store the following metrics per VPN connection, one
for all RTTs and one for SYN RTTs:

• mean RTT

• maximum RTT

• minimum RTT

• number of observed RTTs

• maximum TTL

• minimum TTL

• standard deviation

• standard error

• timestamp

The entries of these two hashes are deleted every time interval when the metrics are written to the log
file.

rtt {dst} {seq_entry} = [timestamp (sec), timestamp (ms), ACK nr, TCP
flags]

rtt_all {vpn_con} = [mean RTT, min RTT, max RTT, total pkts,
time_interval, min TTL, max TTL, standard devia-
tion, standard error]

rtt_syn {vpn_con} = [mean RTT, min RTT, max RTT, total pkts,
time_interval, min TTL, max TTL, standard devia-
tion, standard error]

Table 3.1: Data Structure of rtt_syn_per_con.pl

Memory Usage The algorithm stores the outgoing packet’s expected acknowledgement number and
flags and timestamps this information. Thus, this requires a memory allocation of 16 bytes for each
packet entering the VPN tunnel.
Additional 72 bytes are needed per VPN connection to save the calculated metrics.
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3.4.2 Packet Loss
The script run_packet_loss calls packet_loss_frag.pl and passes following parameters:

foldername The directory for the log files storage.

filename The name of the log files.

timeout_interval The time step in seconds between two log file entries.

interface The interface to observe.

VPN_gateway The IP address of the VPN gateway

window_size The size of IPSec’s receiver window. The usual size is 64.

The algorithm sets up a filter before it starts Net::Pcap to sniff packets passing the eth0 interface. Due to
this filter only packets are with he destination IP address VPN_gateway are considered. For each VPN
connection it initialized a receiver window of size window_size and applies the rules described in 3.3.2.
After each timeout_interval it writes the observed metrics in the log file "foldername/filename" which has
the following format:

entry nr srcIP:dstIP:SPI nr of lost_pkts nr of delayed_pkts nr of pkts nr of fragments nr of suc_fragments nr of late_frag data_size timestamp
1 213.173.179.58:212.203.89.115 0 0 3089 170 170 0 818432 1140594914
2 213.173.179.58:212.203.89.115 0 0 2838 32 32 0 441648 1140594974
...
50 213.173.179.58:212.203.89.115 13 0 1211 13 13 0 197812 1140597854
...

NetPacket Packets passing the eth0 interface are already encrypted. Hence only the outer IP and the
newly attached ESP protocol headers are readable. To access the IP header information NetPacket’s
IP module is used. There’s no module to obtain the values of the ESP protocol fields and therefore
extracted by the algorithm itself.

Data Structure and Garbage Collection The algorithm uses three hash tables to detect and store
packet loss. The gateway implements for each VPN connection a receiver window. They are stored in
the first hash and can be accessed through the triple Source IP, Destination IP, SPI. The second hash
stores the calculated metrics per VPN connection. Its key is defined as the concatenation of Source
IP and Destination IP addresses. Since the number of neighbored VPN gateways and therefore the
number of VPN connections is constant, no garbage collection is needed for the first two hashes. To
handle fragmented packets more information is needed. These particulars are hold in the third hash
and accessible through the IP header fields "Source IP:Destination IP:Identification". Garbage collection
takes place in two steps. The common way is to delete the entries when the packet is successfully
defragmented. But this kind of memory deallocation doesn’t work in case of fragment loss. Therefore,
an additional garbage collector periodically removes such old entries.

seq_windows {src:dst:spi} = [Min, ..., Min + WindowSize = Max]
seq_statistics {src:dst} = [nr of pkts, nr of fragments, nr of lost_pkts, nr of

delayed_pkts, nr of suc_fragments, nr of late_frag,
data_size]

frag_properties {src:dst:id} = [src:dst:spi, ESP sequence_nr]

Table 3.2: Data Structure of packet_loss_frag.pl

The hash seq_statistics stores all the metrics that are written to the log file after the user-defined time-
out_interval:

Packet Count Number of expected packets

Packet Loss Number of lost packets

Fragment Count Number of observed fragments

Successful Fragments Number of successfully defragmented packets

The hash further stores information about the number of delayed packets. These are packets which
arrived too late at the destination gateway and therefore are discarded.
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Memory Usage The algorithm stores the values either per Security Association3 (SA), per connection
or per fragmented packet:

SA: The VPN gateway has to implement a receiver window per SA. The window consists
of 64 sequence numbers which results in 256 Bytes during the existence of the SA.
Further, the algorithm provides a garbage collector for old SAs that needs additional 12
bytes per SA.

Connection: The metrics are stored per connection and require 28 bytes of space.

Fragment: Fragment handling requires additional information. Therefore, additional 16 bytes
are temporarily allocated per fragmented packet until it is ready for defragmentation.

3.5 Approach to Alerting

Section 3.3 introduces the concepts of the two algorithms which are explained in Section 3.4 in more
detail. After their implementation first evaluations of their reported metrics are done and documented
in Chapter 4. This Section presents the approaches for an alerting system which were based on the
observed results.

3.5.1 RTT Calculation Alerting
Case Study The Case Study of Table 3.3 on page 49 helps to predict the network performance and
provides a basis for an alerting system.
The column attribute Possible Events in Table 3.3 lists the whole range of sources for metrics changes.
Changes of either minimum RTT (MIN) or average RTT (AVG) falls in one of three categories:

Traffic Pattern The traffic pattern is influenced by the number of connections, number of
connection setups, duration of connections, data packet sizes and type of application
traffic. These parameters always vary and can cause changes in the measured metrics.

Routing Path The routing in a tunnel between two VPN gateways can change. There may
be some routers added or dropped to a path which results in changes of the measured
RTT. Rerouting can happen because of congestion in a link between two routers and
can lead to longer paths and therefore longer RTTs. Although the new route has no
congestion Routing Path Changes can influence the network quality.

Network Performance Congestion happens if a router is overloaded and a Routing Path
Change is not possible. This leads to packet drops and TCP retransmissions. Conges-
tion influences the network quality.

False Positives This classification outlines that only the routing path and network performance affects
the network quality and therefore highlights the importance to identify the exact category. Thus, if the
diagnosis is attention or warning further investigations are needed. Otherwise, the case of Traffic Pattern
Change would alert a false positive. The idea of the analysis is to check the existence of OneHop RTTs:
Their existence asserts the exclusion of this category. But this analysis requires active probing4. A simple
active approach to distinguish between OneHop RTT and MultiHop RTT is to send a ping to the neighbor
VPN gateway and measure the time delay to its reply. If this interval is equal to the Min RTT we can
conclude network performance degradation with high probability.
Another proposal is an Inline Technique. Its idea is to modify the IP’s TTL field: The sender sets TTL to
255 when the packet enters the VPN environment. The receiver then only considers RTT of packets with
TTL value 254. Choosing this approach leads to the complete exclusion of the traffic pattern category.
Then, no active probing is required.

3See the definition in 3.1
4See 2.5.2 for existing active probing techniques.
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MIN AVG Possible Event(s) Diagnosis

1 ↔ ↓ Traffic Pattern: less MultiHop
RTTs
"Good" Routing Path Change
after 1st hop
Network Performance: No
Congestion any more

2 ↔ ↔ no event (=> packet loss?)

3 ↓ ↓ Traffic Pattern: no OneHop
RTT before
"Good" Routing Path Change
in 1st hop
Network Performance: No
Congestion any more

4 ↓ ↔ Traffic Pattern: no OneHop
RTT before
"Good" Routing Path Change
in 1st hop
Network Performance: No
Congestion any more

IG
N

O
R

E

5 ↔ ↑ Traffic Pattern: more MultiHop
RTTs
"Bad" Routing Path Change af-
ter 1st hop
Network Performance: Con-
gestion

6 ↓ ↑ Traffic Pattern:more MultiHop
RTTs
"Good" Routing Path Change
after 1st hop
Network Performance: Con-
gestion

7 ↑ ↔ Traffic Pattern: no OneHop
RTTs attention
"Bad" Routing Path Change in
1st hop
Network Performance: Con-
gestion in 1st hop

8 ↑ ↑ Traffic Pattern: no OneHop
RTTs anymore
"Bad" Routing Path Change in
1st hop
Network Performance: Con-
gestion in 1st hop

AT
TE

N
TI

O
N

9 ↑ ↓ Traffic Pattern: only OneHop
traffic and
Network Performance: Con-
gestion in 1st hop
Network Performance: Conges-
tion after 1st hop

W
A

R
N

IN
G

Table 3.3: RTT Case Study
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3.5.2 Packet Loss Alerting
The Packet Loss algorithm measures the metrics. Its output provides the basis for an alerting system.
Figure 3.15 on page 51 shows its state machine.

Algorithm The algorithm is an iterative process. It consists of the following steps:

1. Check Packet Count:
If PC == 0 then send a ping and go to step 2
else go to step 3

2. Check Packet Count:
If PC == 0 then announce total packet loss and go to step 1
else go to step 3

3. Check Packet Loss:
If PL == 0 then announce connection ok and go to step 1
else go to step 4

4. Check Fragment Count:
If FC == 0 then send a ping and go to step 5
else go to step 6

5. Check Fragment Count:
If FC == 0 then announce packet loss with fragment loss and go to step 7
else go to step 6

6. Compare Fragment Count with Succeeded Fragments:
If FC == SC then announce packet loss but no fragment loss and go to step 7
else packet loss with fragment loss and go to step 7

7. Calculate the ratio and compare to the threshold c:
ratio = PL / PC
If ratio > c then announce poor connection and go to step 1
else announce connection ok and go to step 1

Explanation The states, and actions respectively, last one interval. Hence, a round of this algorithm
lasts two to seven intervals. Some steps, or actions, require further explanation:

Step 1: As long as no packets arrive, the VPN gateway can’t predict the link quality. Thus,
if no traffic is observed, it pings its neighbor. With this action it assures that PC should
not be zero at the next time interval.

Step 2: If the VPN gateway received a reply from its neighbor then packet count is greater
than zero. Therefore the device can be sure that traffic with small packets is possible.
Since there’s the possibility of lost packet with bigger size, it still has to check the packet
loss variable.

Step 4: The absence of fragments doesn’t imply the absence of large data packet trans-
fers. Therefore the gateway has to test if large packets can pass the tunnel. Pinging
its neighbor with a large fragmented packet should result in a fragmented reply packet.
Therefore the fragment count variable shouldn’t be equal to zero at the next interval.

Differencing between packet loss with fragment loss and packet loss without fragment loss gives a first
indication of the lost packet’s data size. In case of poor connection, further analysis concerning this issue
can be done manually by a security engineer at the mission control.

3.6 Conclusion

This Chapter introduced the target environment in detail and deduced its available metrics. After it listed
the requirements which this Thesis’s monitoring mechanism has to fulfill it describes the design and
implementation of the developed approach. The designs of corresponding warning systems concludes
Chapter 3.
The following Chapter reports the results of the tests run with the implemented mechanism.
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Figure 3.15: State Machine of Packet Loss Warn System



Chapter 4

Evaluation

Sections 3.3 and 3.4 presented the design and implementation of the two developed algorithms. This
Chapter summarizes the evaluation of the reported metrics in Section 4.1. For this evaluation the im-
plemented prototype was tested under different aspects and and many plots were done to visualize the
results. Based on these evaluations the RTT Calculation algorithm was optimized. The improvements
are documented in Section 4.2. The final Section addresses the comparison of Open System’s active
ICMP Probing with the passive RTT Calculation algorithm.

4.1 Evaluation

To test the monitoring algorithm, realtime traffic was recorded on different customer networks and at
different time periods. Afterwards this traffic was rerun with tcpreplay on a test bench. This solution
guaranteed on the one hand that the monitoring mechanism didn’t slow down the VPN gateway’s per-
formance which would have influenced the network performance. On the other hand the replay of this
traffic didn’t falsify the gained results. However, the logged timestamps correspond to the network time
taken at the replay time. That’s why the scales of the Figures’ timeline are minutes.

4.1.1 RTT Calculation
First evaluations of realtime traffic showed high discrepancies between the RTT of two neighbored VPN
gateways A and B. Figures 4.1 and 4.2 show three different types of RTT measurements. While the
Overall RTT uses all kind of traffic to calculate the metric, SYN RTT takes only packets into account
which have the TCP SYN flag set. noSYN RTT is the opposite of SYN RTT.
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Figure 4.1: RTT observation at VPN gateway A
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Figure 4.2: RTT observation at VPN gateway B

Thereupon a histogram for graphical summary of the RTT distribution was done at each VPN gateway:
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Figure 4.3: Histogram at VPN gateway A

Compared to Figure 4.4, the RTT distribution of Figure 4.3 has two peaks indicating that the RTT cal-
culations depend on the network topology. While the gateway B measures RTTs of traffic between two
direct neighbored sites the VPN A additionally observes RTTs of traffic passing multiple gateways.
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Figure 4.4: Histogram at VPN gateway B

The analysis of the known network topology confirms the network topology assumption showed in Fig-
ure 4.5.
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Figure 4.5: Network Topology Assumption

The main point of interest is the quality of the observed RTTs. Thus, subsequent to the network topology
deductions, the three metrics of Figures 4.1 and 4.2 were compared. They show what was stated in
Subsection 3.3.1: The RTTs of connection setups need less time than the other ones. Therefore SYN
RTTs give more valuable estimations under consideration of two issues. First, by measuring SYN RTTs
only small packets are considered. And second, SYN RTTs deliver more accurate estimations as long
as the number of observed SYN RTTs is large enough. But Figures 4.6 and 4.7 show that a guaranteed
amount of observed SYN RTTs is not available all the time.
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Figure 4.6: Counted RTT observations at VPN gateway A
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Figure 4.7: Counted RTT observations at VPN gateway B

These observations were used for further optimization1.

1See Subsection 4.2.1
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4.1.2 Packet Loss
First runs of Packet Loss analyzing network traffic showed that the customer’s subjective perception
agreed with the implementation’s evaluation. During a voice over IP connection the customer complained
about bad quality as soon as the number of lost packets exceeded the value of 60 packets.
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Figure 4.8: Packet Loss

Thereupon more traffic of VPN gateways was recorded and analyzed with the monitoring mechanism
and their logs validate the observation of the first runs: the analysis of the reported metrics agreed
with the customer’s feedback at all times. Figure 4.9 shows a small extract of a customer network. The
customer complained about bad link quality from VPN gateway C to VPN gateway B. The analyzed data
of Packet Loss detected three bottleneck links out of the six connections.

VPN A

VPN CVPN B

Figure 4.9: Extracted Setup of a Customer Network

The packet loss ratios of the connections are graphically visualized in figure 4.10 - 4.12.
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Figure 4.10: Packet Loss Ratios between the VPN gateways A and B
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Figure 4.11: Packet Loss Ratios between the VPN gateways A and C
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Figure 4.12: Packet Loss Ratios between the VPN gateways B and C

The positive results of the evaluations causes the decision to install the mechanism on several VPN
gateways for further runs. They confirmed the results of the previous tests.

The evaluation done so far asserted that the algorithms are applicable in the target environment.
Since Open Systems calculates the RTT metric too the RTT Calculation algorithm can be furhter tested
against its accuracy. Thus a comparison of Open System’s active ICMP Probing with the passive RTT
Calculation algorithm completes the overall evaluations in Section 4.3.

4.2 Optimization

4.2.1 RTT Calculation
The focus for the optimization was set to the choice of the most accurate RTT metric and its deducible
reports about the network behavior. To predict the link quality between two gateways, the average RTT
is compared to the minimum RTT.
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Figure 4.13: Comparison of the SYN RTT and MIN RTT at VPN gateway C
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Figure 4.13 depicts the comparison of the SYN RTT to the MIN RTT. Figure 4.14 shows the relation
between the Overall RTT and the MIN RTT. Both were simultaneously monitored at a VPN gateway of
Open Systems.
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Figure 4.14: Comparison of the Overall RTT and MIN RTT at VPN gateway C

Both Figures lead to the same conclusion. While the MIN RTT shows a constant value, the average as
well as the SYN RTT balances in a band of fixed width. The topology evaluation of Subsection 4.1.1
helps to explain this phenomenon and two definitions are introduced.

OneHop RTT: The measured RTT consists of two packets exchanged between neighboring
VPN gateways.

MultiHop RTT: The packets used for measuring the RTT covers a distance with multiple
VPN gateways in between.

Figures 4.15 and 4.16 visualize the definitions.
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Figure 4.15: OneHop RTT

Since the MIN RTT is usually a OneHop RTT, its value is constant. But the average RTT, or SYN RTT
respectively, depends on the traffic pattern during a measure interval: The ratio between the number of
OneHop RTTs and MultiHop RTTs varies according to the customer traffic.
Comparing Figure 4.14 with Figure 4.13 brings up another observation: The oscillation band of the
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Figure 4.16: MultiHop RTT

Overall RTT is smaller than the SYN RTT’s one what’s the result of statistical uncertainties. [22] calls
uncertainties statistical "if they arise not from a lack of precision in the measuring instruments but from
overall statistical fluctuations in the collections of finite numbers of counts over finite intervals of time".
Figure 4.17 which compares the number of observed SYN RTTs to the number of counted Overall RTTs
outlines these uncertainties.
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Figure 4.17: Number of observed SYN RTTs and Overall RTTs at VPN gateway C

The more RTT calculations per interval are measured the less weighted is a singular outlined calculation
and hence the smoother are these oscillations. This, in turn, is desirable for the estimation quality of the
algorithm and agrees with the latter observations of the previous Subsection.

Algorithm Improvement Since the RTT calculation algorithm of Subsection 3.3.1 is used for the analy-
sis of the network behavior, it is optimized according to the results of the evaluation. It is restructured
into two modes: OBSERVE_SYN and OBSERVE_ALL.

In the OBSERVE_SYN mode, only SYN RTTs are monitored, as long as its observed amount
larger than a threshold value. The threshold value is a parameter set at configuration time. If
the number of observed SYN RTTs falls below this value, it switches in the OBSERVE_ALL
mode. Then, all RTTs are observed until there is a constant appearance of SYN RTTs again.

The algorithm now announces exactly two metrics: MIN RTT and AVG RTT. But their quality depends
on the number and type of measures taken during an interval. Thus, the metrics should be assigned to
a worthiness value and be kept in mind for any further network predictions.
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4.3 RTT Comparison: active ICMP Probing vs. passive RTT Calcu-
lation

The RTT Calculation algorithm measures nearly the same metric as Open Systems. While the active
ICMP probing only measures the RTT of the VPN tunnel between two neighbored gateways the RTT
metric logged by the passive approach adds to the tunnel RTT the delays of the remote customer site.
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Figure 4.18: Measured RTTs

To test the accuracy and reliability of the passive metric in a direct comparison with the active one the
algorithm was rewritten after the optimization. The modified algorithm still measures exactly the same
RTT metric as the original one. It was extended by the additional metric Remote Site RTT. This metric
corresponds to the additional part of the measured delay in the passive approach.
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Figure 4.19: Remote Site and Passive Algorithm AVG RTTs

Figure 4.21 shows the direct comparison of the two algorithms. The Tunnel RTTs are the MIN and AVG
RTTs of the passive algorithm after the subtraction of the Remote Site RTTs.
The active probing RTT is the mean of ten ICMP pings periodically done during five minutes. The plotted
extracts of the evaluations highlight that such small packets can be delayed even though there are not
many late arrivals in the customer traffic.
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Figure 4.21: Remote Site, Passive and Active RTTs

4.4 Conclusion

The evaluations done show that the passive approach delivers a good approximation to the active one.
But the original algorithm doesn’t include the Remote Site RTT. Therefore it is also possible that it an-
nounces a high RTT value although there are no network problems inside the VPN environment.
This Chapter evaluated the two implemented algorithms under different perspectives. First analysis of
the RTT Calculation algorithm pointed out some unexpected network behaviors. Thereupon the algo-
rithm was optimized. This optimization is described in Section 4.2.1. All test done with the Packet Loss
algorithm were very encouraging. The announced metrics always agreed with the reported network per-
formance perception of Open Systems’ customers.
The evaluation is completed by a comparison of the passive RTT Calculation algorithm with the active
ICMP probing done by Open Systems. The positive results are documented in Section 4.3.



Chapter 5

Summary

5.1 Conclusion

The task to implement a passive monitoring mechanism is fulfilled. I designed two algorithms that cal-
culate performance metrics. The tests in the Open System VPN environment have shown promising
results. Open Systems plans to employ them for their network performance monitoring.
My prototype is implemented in Perl due to safety reasons. Perl’s automatic memory management limits
the risk of memory failures and is therefore preferred to C. The monitoring mechanism runs very stably
and the reported metrics agree with the current network situation. The memory allocation of both RTT
Calculation and Packet Loss is low and both memory and processing usage achieve the resource con-
straints.
Even though the passive monitoring system satisfies its requirements there are several issues which
could be improved:

• The CPU utilization is dependent on the amount of traffic passing the VPN gateway. Since both
algorithms need to capture all packets, the introduction of the prototype on VPN gateways with
heavy traffic should be handled with care. Tests done showed that the utilization grows up to 10%
on a 2.4 GHz intel processor at a traffic rate of 2 Mbit/sec. This is not acceptable since Open
Systems runs up to five services on a gateway and these services shouldn’t be handicapped in
any case. Another point is that Open Systems plans to enlarge its service portfolio. This means
that more services are installed on a VPN gateway require more processing resources.

• RTT Calculation as well as Packet Loss don’t implement an alerting system. The current versions
passively monitor the crossing traffic, calculate the metrics and log them. But the values of these
metrics can differ between particular VPN gateways. Therefore, experience values must be indi-
vidually evaluated at each gateway. The security engineer has then to decide if the performance
metrics are higher than the threshold value and therefore network problems should be alarmed.
An approach of such an alerting system is documented in Subsection 3.5.1.

Finally, I want to point out that the prototype is not the only and eternal solution. It is one solution among
a large amount of existing passive monitoring mechanisms. There are many research groups that have
been working on several monitoring projects for decades and they will carry on also in the future. Further,
most of them combine passive with active approaches to achieve more and better results. Since the
internet expansion won’t stop in the near future, the complexity of the paths and the diversity of the
performance will still increase. Further, new protocols and traffic types will appear. Therefore, there will
be many future projects trying to optimize existing solutions.

5.2 Outlook

This section provides an outlook to describe further research topics and points out where improvements
on the prototype can be done.

• The most preferred improvement is to speed up the existing prototype. The mechanism is cur-
rently implemented in Perl. Rewriting the algorithms in C would decrease the CPU utilization and
therefore relieve the VPN gateways.
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• Another open issue is that the prototype doesn’t contain a warning or management system. How-
ever, the Subsections 3.5.1 and 3.5.2 describe a specification of such a system for the algorithms.
The models incorporate active probing if required. The implementation of these specifications
could be done in the future.

• The RTT Calculation algorithm includes measurements of both OneHop and MultiHop RTTs. Two
approaches to measure OneHop only were proposed in 4.2.1. Particularly the suggested Inline
Technique is worth to follow up. This technique doesn’t generate additional traffic and hence
doesn’t fill up the customer’s connection link.

• The RTT algorithm could be extended by the number of retransmissions. Since the rise of this met-
ric doesn’t imply bad network performance it should be regarded as complementary information to
the RTT metric.

• The last paragraph of Subsection 3.1.2 addresses to the possibility to monitor the incoming pack-
ets at different interfaces and combine the different protocol information. It is worth noting, that
the outer IP’s identification field offers the possibility to relate the metrics collected on different
interfaces.

There are more promising improvements which are beyond the scope of this Master Thesis though. The
following points could be integrated in future projects.

• The first approach is once again an Inline Technique. As explained in 3.1.1, Open Systems uses
the GRE protocol1 for its packet processing. This protocol is extensible with optional header fields.
One of them is the key field, which can be set by the encapsulator and interpreted by the receiver.
The idea is that the sender assigns this field with a timestamp. Since the VPN gateways are
synchronized via NTP, the receiver can calculate the OWD. The existing passive mechanism IMI
uses OWD too. As already mentioned in its evaluation in Section 2.1.5, OWD is more significant
than the RTT since it incorporates the direction of the time delay.

• Active Probing techniques can help in case of network performance problems. For example, packet
size evaluation can be done by sending ICMP ECHO packets of different sizes through the troubled
tunnel. With this technique it may be possible to filter out the packet size ranges which are disabled.

• To do customer traffic analysis as a supplementary helps in advanced network and service man-
agement. First, statistics about service and protocol types can highlight trends which support Open
Systems in planning their future like Service Level Agreement (SLA) negotiation and policing. Sec-
ond, the amount of traffic, the number of connection setups and the duration of a connection in
relation to the time can help to improve the Quality of Service and to respect the SLAs.

• Statistical analysis provides information for ISP Topology analysis. It can filter out connections
which show performance problems over and over again. In case any bottleneck ISPs are identified,
the network can be optimized by setting up redundant VPN connections to this ISP.

Two additional propositions concern the area of Routing Topology analysis:

• The distribution of the calculated metrics among the VPN gateways would allow to locate network
problems. For example, if the application traffic between two customer sites traverses multiple VPN
gateways and a site complains about a bad network quality, the shared information would outline
where the bottleneck link is located on the path.

• If the TTL field is manipulated according to the Inline Technique proposed in Subsection 4.2.1 it is
possible to realize routing path length changes. For each hop between source and destination the
TTL field decreases by one. To detect routing patch changes the destination VPN gateway stores
for each MultiHop connection the TTL field it and compare this value with the TLL field of a new
incoming packet for this connection. If the new TTL field value is lower than the stored one the
length of the path increased. Otherwise, if it is higher a "good" routing path change took place.

1See RFC 1701 ([25])
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CD-ROM Contents

This appendix describes the content on the compact disc which comes with this thesis.

• Report: A pdf- and a ps-version of the documentation. Additionally, all raw latex files and pictures
of the report.

• Final Presentation: The slides of my final presentation at Open Systems AG and the ETH Zürich.

• Task Description: The formulation of my task as pdf- and ps-file.

• Passive Monitoring Mechanism: The monitoring algorithms as well as the scripts to configure
and start them.

• GNUPlot Scripts: Perl scripts to visualized the metrics of the log files.
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Scripts Configuration

The passive measurement mechanism consists of two algorithms: rtt_syn_per_con.pl for RTT Calcu-
lation and packet_loss_frag.pl for Packet Loss. The scripts run_rtt and run_packet_loss manage the
configuration details.

RTT Calculation

For the configuration the parameters are passed in the following order:

1. foldername

2. filename

3. timeout_interval

4. interface

5. SYN_threshold

run_rtt starts rtt_syn_per_con.pl and writes two output files:

foldername/ALLfilename A short statistic about all VPN connections together.

foldername/filename Logged metrics per timeout_interval and per VPN connection.

Packet Loss

For the configuration the parameters are passed in the following order:

1. foldername

2. filename

3. timeout_interval

4. window_size

5. VPN_gateway

6. interface

run_packet_loss starts packet_loss_frag.pl and writes two output files:

foldername/ALLfilename A short statistic about all VPN connections together.

foldername/filename Logged metrics per timeout_interval and per VPN connection.

The mechanism has been tested on hosts running Open Systems Linux build OSIX 1.10.5 based on
Linux kernel version 2.4.31 with libpcap 0.8.3. The algorithms are implemented with Perl version 5.8.3
and use the modules Net-Pcap 0.10 and NetPacket 0.04.
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Schedule

This schedule has been planned at the beginning of this Thesis.
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Figure D.1: Schedule
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