
Computer Engineering Group
Prof. Lothar Thiele

Role and Link-State Selection

for Bluetooth Scatternets

Master thesis MA-2006-06, winter semester 05/06

By:

Mustafa Yücel

Advisors:

Prof. Lothar Thiele, Matthias Dyer, Jan Beutel

2006-06-27



ii



Abstract

Distributed, wireless sensor networks captivate by their scalability and the
tight integration into their environment. Large numbers of self-organising, au-
tonomous sensor nodes are envisioned to ease observations in wide-ranging,
hardly accessible terrains.

Low-power is a primary concern in the field of wireless sensor networks.
Bluetooth has often been labelled as an inappropriate technology in this field
due to its high power consumption. However, Luca Negri presented in a previ-
ous work a power model for Bluetooth including scatternet configuration and
low-power sniff mode.

The BTnode platform is used as a demonstration platform for research
in mobile and ad-hoc connected networks (MANETs) and distributed sensor
networks. Some hardware components provide low-power modes but until
now there are no implementations available. The BTnode will be analysed
with the main focus on the power consumption. Furthermore, some low-power
implementations are delivered, and experimentally validated on the BTnode
platform.

Most of the wireless sensor networks provide a host-based command inter-
face over the serial cable. Bluetooth offers with RFCOMM an alternative. A
satisfying solution for the BTnode platform is delivered to eliminate the de-
pendency on the wire.

iii



iv



Acknowledgements

First of all I would like to thank Prof. Dr. Lothar Thiele for giving me the oppor-
tunity to write this thesis in his research group at the Computer Engineering and
Networks Lab of the Swiss Federal Institute of Technology (ETH) Zurich.
Most of all I wish to thank Matthias Dyer for his constant support throughout the
whole project. Without his valuable input and advice this work would have never
been possible. In particular, I would like to thank him and Dr. Jan Beutel for giving
me the opportunity to prepare a demonstration of my last term thesis and take part
in the 3rd European Workshop on Wireless Sensor Networks (EWSN 2006) at ETH
Zurich.
I am also grateful to Kevin Martin, Ernesto Wandeler, and Bernhard Distl for their
help during this thesis work.
Finally, my sincere thanks go to my parents and my brother for their support and
sponsorship during my studies.

Zurich, June 2006

Mustafa Yücel

v



vi



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Fundamentals 5
2.1 The BTnode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Power save modes for ATmega128L . . . . . . . . . . . . . . . . . . . 7
2.3 Overviewing the Bluetooth stack . . . . . . . . . . . . . . . . . . . . 8
2.4 Principles in Bluetooth communication . . . . . . . . . . . . . . . . . 10
2.5 Connection and transport manager . . . . . . . . . . . . . . . . . . . 11
2.6 Power save modes for Bluetooth connections . . . . . . . . . . . . . . 12

3 Cable replacement using RFCOMM 15
3.1 Why RFCOMM? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 The implementation design for RFCOMM . . . . . . . . . . . . . . . 16
3.3 Usage of the RFCOMM device driver . . . . . . . . . . . . . . . . . . 16
3.4 Limitations by the RFCOMM device driver . . . . . . . . . . . . . . 18
3.5 Slim down the Bluetooth stack of BTnut . . . . . . . . . . . . . . . . 19
3.6 The Bluetooth API for Java: JSR 82 . . . . . . . . . . . . . . . . . . 20

3.6.1 The hunt for a JSR 82 implementation on J2SE . . . . . . . 20
3.7 Accessing the BTnodes with Bluetooth APIs . . . . . . . . . . . . . 20

4 Analysing the power consumption 23
4.1 Current consumption of microprocessor and other components . . . 23
4.2 Efficiency of voltage converters . . . . . . . . . . . . . . . . . . . . . 24
4.3 Measurement setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Applying the sleep modes 29
5.1 The measured current consumption in each mode . . . . . . . . . . . 29
5.2 Unleash the sleep modes in BTnut . . . . . . . . . . . . . . . . . . . 30
5.3 The measured voltage converter efficiency . . . . . . . . . . . . . . . 33

6 Bluetooth link power control 35
6.1 Extending the HCI layer of BTnut . . . . . . . . . . . . . . . . . . . 35
6.2 Extending the Bluetooth command terminal . . . . . . . . . . . . . . 36
6.3 Bluetooth link measurements . . . . . . . . . . . . . . . . . . . . . . 36
6.4 Implementing the Connection Power Manager . . . . . . . . . . . . . 41

vii



viii CONTENTS

7 A low-power connection manager for JAWS 43
7.1 Limitations by the Bluetooth module ZV4002 . . . . . . . . . . . . . 43
7.2 Why not using an existing connection manager? . . . . . . . . . . . 44
7.3 Implementation of a new connection manager . . . . . . . . . . . . . 46
7.4 Current measurements on JAWS nodes . . . . . . . . . . . . . . . . . 47
7.5 Stability tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

8 Conclusions 51
8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
8.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

B Bibliography 53

A Appendix 55
BTnode rev3.22 schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
BTnut application: sleep-and-work.c . . . . . . . . . . . . . . . . . . . . . 61
Connection algorithm of the LCM . . . . . . . . . . . . . . . . . . . . . . 63
Java: StabilityLog.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Task description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



List of Figures

2.1 A component scheme of the BTnode . . . . . . . . . . . . . . . . . . 6
2.2 Supply current vs. frequency . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Wake up sources in different sleep modes . . . . . . . . . . . . . . . . 7
2.4 State transition model for sleep modes . . . . . . . . . . . . . . . . . 8
2.5 The architecture model of the Bluetooth stack . . . . . . . . . . . . 9
2.6 A single Bluetooth piconet with four slaves . . . . . . . . . . . . . . 11
2.7 A Bluetooth Scatternet containing two piconets . . . . . . . . . . . . 12

3.1 Overviewing the RFCOMM device handling . . . . . . . . . . . . . . 18
3.2 Size of the Bluetooth stack layers . . . . . . . . . . . . . . . . . . . . 19

4.1 Current consumption of microprocessor and communication modules 23
4.2 Voltage domains and power consumer components . . . . . . . . . . 24
4.3 Available supply options . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4 The voltage progression with battery supply . . . . . . . . . . . . . . 25
4.5 Efficiency of the step-up converter LTC3429 . . . . . . . . . . . . . . 26
4.6 A photo from the measurement system . . . . . . . . . . . . . . . . . 27
4.7 The measurement user interface using LabVIEW . . . . . . . . . . . 27
4.8 A labelled photo from the modified BTnode . . . . . . . . . . . . . . 28

5.1 Power consumption in different sleep modes . . . . . . . . . . . . . . 30
5.2 Comparing sleep modes IDLE, ADC and EXT STANDBY . . . . . . 31
5.3 Comparing sleep modes IDLE and NONE . . . . . . . . . . . . . . . 32
5.4 Comparing sleep modes IDLE and PWR SAVE . . . . . . . . . . . . 32
5.5 Efficiency curves of different supplies . . . . . . . . . . . . . . . . . . 33

6.1 Bluetooth current consumption in standby state . . . . . . . . . . . 37
6.2 Bluetooth current consumption in standby state . . . . . . . . . . . 37
6.3 Bluetooth current consumption, connected and role change . . . . . 38
6.4 Bluetooth current consumption, change mode to sniff . . . . . . . . . 38
6.5 Bluetooth current consumption, impact of distance . . . . . . . . . . 39
6.6 Bluetooth current consumption, change mode to park . . . . . . . . 40
6.7 Average current consumption in different states/modes . . . . . . . . 40
6.8 State transition model of the Connection Power Manager . . . . . . 41
6.9 Average current consumption with fixed sniff intervals . . . . . . . . 42

7.1 Topology examples which fits to the ZV4002 restrictions . . . . . . . 44
7.2 Topology example from the Tree Connection Manager . . . . . . . . 45
7.3 Topology example from the XTC Connection Manager . . . . . . . . 45
7.4 Topology example from the Local Connection Manager (LCM) . . . 46
7.5 Comparing the BT current consumption . . . . . . . . . . . . . . . . 47

ix



x LIST OF FIGURES

7.6 Comparing the AVR current consumption . . . . . . . . . . . . . . . 48
7.7 Stability tests of a JAWS network with and without CPM . . . . . . 49
7.8 Stability tests of a JAWS network with CPM . . . . . . . . . . . . . 49
7.9 Screenshot from JAWS-GUI . . . . . . . . . . . . . . . . . . . . . . . 50



Chapter 1

Introduction

1.1 Motivation

Distributed, wireless sensor networks captivate by their scalability and the tight
integration into their environment. Large numbers of self-organising, autonomous
sensor nodes are envisioned to ease observations in wide-ranging, hardly accessible
terrains. Communication among sensors can be implemented with custom solutions
or standardised radio interfaces. If on one hand custom solutions carry the greatest
optimisation potential, the choice of widespread wireless communication standards
guarantees interoperability as well as ease of connection with existing commercial
devices.

Bluetooth is a leading standard for short-range ad-hoc connectivity in the PAN
(Personal Area Network) field. Although initially designed for simple point-to-point
cable replacement applications, Bluetooth has proved very appealing also to build
multihop ad-hoc networks called scatternets.

Low-power is a primary concern in the field of wireless sensor networks. Blue-
tooth has often been labelled as an inappropriate technology in this field due to
its high power consumption. However, Bluetooth provides low-power modes (hold,
sniff, park) which trade throughput and latency for power. The papers [5] and [6]
from Luca Negri present a power model of Bluetooth including scatternet configu-
ration and low-power sniff mode, and experimental validation on a real device, the
BTnode platform.

The BTnode is used as a demonstration platform for research in mobile and ad-
hoc connected networks (MANETs) and distributed sensor networks. Some hard-
ware components provide low-power modes like the microprocessor or the Bluetooth
module. But until now, there are no low-power implementations available. The
whole BTnode has to be analysed with the main focus on the power consumption
and the best power saving proposals will be implemented.

1



2 CHAPTER 1. INTRODUCTION

1.2 Contributions

• An analysis of the power consumption of the BTnode is presented. The power
consumers and the voltage converters are examined separately.

• An integration of the sleep modes from the microprocessor into the thread
management of BTnut.

• The Bluetooth stack of BTnut is extended by the Bluetooth low-power com-
mands. A terminal provides a human-friendly control interface for these com-
mands.

• A Connection Power Manager which automatically puts connections in a greedy
fashion into the low-power mode sniff.

• A Connection Manager which can handle the limitations by the Bluetooth
module on the BTnode.

• Several measurements about the sleep modes, the voltage converter and the
Bluetooth low-power modes.

• A RFCOMM device driver for the operating system of the BTnode platform,
BTnut, is implemented. The RFCOMM device driver provides an elegant way
to eliminate the dependency on attaching a cable to the BTnode

1.3 Overview

The thesis is organised as follows. The second chapter ”Fundamentals“ introduces
the basics of this thesis and covers the BTnode, the operating system, the micro-
processor and Bluetooth. In the third chapter ”Cable replacement using RFCOMM“
the device driver for RFCOMM will be presented. In the fourth chapter ”Applying
the sleep modes“ the power save potential of the microprocessor ATmega128L will
be evaluated. In the fifth chapter ”Bluetooth Link Power Control“ Bluetooth mea-
surements are performed and a power manager for Bluetooth connections will be
implemented. The sixth chapter ”A low-power connection manager for JAWS“ de-
scribes the limitations by the Bluetooth module on the BTnode platform and a new
connection manager will be implemented. The last chapter includes the conclusion
and perspectives for future work.

1.4 Related Work

Bluetooth provides three low-power modes to applications: hold, sniff, and park.
To take advantage of these features, applications need a power model of the de-
vice, describing power behaviour in all possible states (number of links, active, sniff,
etc.). There is indeed a lack of such a model in the literature to date. Many Blue-
tooth power-related proposals like [12] and [13] are based on oversimplified power



1.4. RELATED WORK 3

models, not considering number and role (master and slave) of links. Such models
are normally not based on experimental measurements, but rather on theoretical
assumptions. Even worse, other Bluetooth-related studies employ rather old and
inadequate power models that were derived for other wireless systems [14]. Finally,
the few power measurements for Bluetooth in the literature like [15] and [16] do not
cover Bluetooth low-power modes and scatternet configurations.

However, [5] and [6] from Luca Negri present a high-level power model of Blue-
tooth in a generic piconet or scatternet scenario, including the low-power sniff mode.
Unlike most Bluetooth power abstractions employed in the literature, the model has
been experimentally validated on a real device, the BTnode platform.



4 CHAPTER 1. INTRODUCTION



Chapter 2

Fundamentals

This chapter serves as an approach to the basics of this thesis. In the first subchap-
ter, there is a description about the hardware components of the BTnode and the
operating system running on it. The second subchapter lists the options to save
power on the microprocessor. In the third subchapter, there is an overview about
the protocol stack of Bluetooth, followed by some Bluetooth communication prin-
ciples in the fourth subchapter. The fifth subchapter declares the significance of a
connection and transport manager to render a multihop communication. At last, the
power saves modes for Bluetooth connections are introduced in the sixth subchapter.

Some knowledge is expected about the programming languages C and Java, and
about the basics of operating systems, embedded systems and communication sys-
tems. Terms like object file, thread management, flash and multihop turn up in this
thesis and the meanings should be familiar to the reader without further explana-
tions.

2.1 The BTnode

The BTnode mainly consists of an Atmel AVR microcontroller and two wireless com-
munication modules. The first one is a Bluetooth module from Zeevo, the second
one is an ultra low-power radio module from Chipcon. Figure 2.1 shows a simple
component scheme of the BTnode. The BTnode is a very compact, programmable
platform, deployed e.g. as a mobile sensor node. It is used as a demonstration
platform for research in mobile and ad-hoc connected networks (MANETs) and
distributed sensor networks. The BTnode has been jointly developed at the ETH
Zurich by the Computer Engineering and Networks Laboratory (TIK) and the Re-
search Group for Distributed Systems (DSG).

The hardware specifications of the BTnode are listed as follows:

Microcontroller Atmel ATmega 128L (7.3728 MHz @ 8 MIPS)

Memory 4 KB RAM, 4 KB EEPROM, 128 KB Flash-ROM, 256 KB external
SRAM

System clock 32.768 kHz real time clock and 7.3728 MHz system clock

5



6 CHAPTER 2. FUNDAMENTALS

Figure 2.1: A component scheme of the BTnode

Bluetooth Zeevo ZV4002, supports scatternets with max. 4 piconets/7 slaves,
compatible with Bluetooth Specification 1.2

Low-power radio Chipcon CC1000, operating in ISM band 433-915 MHz

External Interfaces ISP, UART, SPI, I2C, GPIO, ADC, 4 LEDs

The Bluetooth module provides a relatively high data throughput whereas the ra-
dio module consumes less power. Both radios may be operated simultaneously, or
independently powered off when not in use.

The BTnode has a couple of power supply options. 2-cell AA batteries are the
standard power supply with a common range of 1.2-3.2 V. The primary boost con-
verter for the batteries has a nominal input range of 0.5-3.3 V. Alternatively 3.6-5.0 V
can be supplied through the external connector. As a last option the BTnode can
be directly connected to a 3.3 V regulated power supply.

The BTnodes run a real-time operating system called Nut/OS1 for the AT-
mega128 microcontroller. It is freely available as open source2 on the Internet.
Nut/OS provides the following features:

• Nonpreemtive cooperative multithreading

• Events

• Thread synchronisation mechanisms

• Periodic and asynchronous one shot timers

• Dynamic heap memory allocation

• Interrupt driven streaming I/O

BTnut3 is a heavyset system software for the BTnodes, consisting of the Nut/OS,
specific drivers for the BTnode and a partial implementation of the Bluetooth stack.

1http://www.ethernut.de/en/software.html
2http://en.wikipedia.org/wiki/Open source
3http://www.btnode.ethz.ch/static docs/doxygen/btnut/index.html

http://www.ethernut.de/en/software.html
http://en.wikipedia.org/wiki/Open_source
http://www.btnode.ethz.ch/static_docs/doxygen/btnut/index.html


2.2. POWER SAVE MODES FOR ATMEGA128L 7

2.2 Power save modes for ATmega128L

The current consumption of the ATmega128L is a function of several factors such as:
operating voltage, operating frequency, loading of I/O pins, switching rate of I/O
pins, executed code, and ambient temperature. The dominating factors are oper-
ating voltage and frequency. Unfortunately the voltage cannot be changed because
some components demand 3.3 V. But the frequency remains adjustable even while
the microprocessor is running. Figure 2.2 shows almost a linear behaviour between
current consumption and frequency: ISupply ∼ f . According the figure 2.2 the sup-
ply current is located around 9.5 mA when the ATmega128L runs at 8 MHz.

Figure 2.2: Supply current vs. frequency (ATmega128L) [3]

Beside the frequency scaling the sleep modes can be enabled by the application
to shut down unused modules in the ATmega128L to save power. The ATmega128L
provides various sleep modes allowing the user to tailor the power consumption to
the requirements. In all sleep modes the CPU clock halts. When a wake up source
is triggered the CPU clock continues and the program execution is resumed. The
more clocks are halted the more power will be saved but lesser wake up sources are
available. Figure 2.3 shows a table with active clock domains and available wake up
sources in different sleep modes.

Figure 2.3: Wake up sources in different sleep modes [3]



8 CHAPTER 2. FUNDAMENTALS

Figure 2.4: State transition model for sleep modes

Figure 2.4 illustrates possible sleep mode transitions. In order to change the
sleep mode smi, the wake up source wusij has first to be triggered.

2.3 Overviewing the Bluetooth stack

The Bluetooth stack is a standardised implementation of a protocol stack. The
architecture model illustrated in figure 2.5 makes up the basis for Bluetooth com-
munication. The stack contains several layers where to each layer certain functions
and tasks are assigned. The interfaces between the layers as well as the protocols
are standardised, manufacturer-independent and publicly available.

The stack also provides with HCI an interface between controller (the Bluetooth
module) and host (the microcontroller). Most Bluetooth modules come with HCI
out of the box. This means that all layers below HCI are implemented and provided
with the appropriate firmware. All layers above HCI will usually not be implemented
in the module. To be precise, they will be implemented in the operating system and
are usually running as a background daemon.

Bluetooth Radio provides the FHSS4 (Frequency Hopping Spread Spectrum) sys-
tem which sends and receives packets in determined time slots and defined frequen-
cies.

Baseband controls the radio and works up the data for higher layers. The Base-
band layer manages the physical radio channels and connections. It is also respon-
sible for error correction and the determination of the hopping sequence.

Link Manager Protocol (LMP) is responsible for establishing and terminating
connections. LMP also manages the power saving modes on connections.

4http://en.wikipedia.org/wiki/Frequency-hopping spread spectrum

http://en.wikipedia.org/wiki/Frequency-hopping_spread_spectrum


2.3. OVERVIEWING THE BLUETOOTH STACK 9

Figure 2.5: The architecture model of the Bluetooth stack [1]

Host Controller Interface (HCI) is the command interface to the baseband con-
troller and link manager. The host (the microcontroller) communicates over HCI
with the Bluetooth module. The most important function is the discovery of Blue-
tooth devices in range. This function will be called Inquiry or Device Discovery.

Logical Link Control and Adaptation Protocol (L2CAP) provides connection-
oriented and connectionless data services by exchanging packets. Multiplexing, seg-
mentation and reassembling are such services. L2CAP allows higher protocols and
applications to send and receive L2CAP data packets with a payload right up to 64
kilobytes. L2CAP is channel-based. A channel is a logical connection within a phys-
ical baseband connection. Hence several channels may share the same baseband
connection. The channels are distinguished and classified with a Protocol Service
Multiplexer (PSM) number.

Radio Frequency Communication Protocol (RFCOMM) emulates a serial inter-
face RS-2325 between two Bluetooth devices. RFCOMM is a stream-based transport
protocol and supports applications which usually act on a serial port. RFCOMM
multiplexes up to 60 concurrent connections between two Bluetooth devices. These
connections are addressed with a RFCOMM channel number between 1 and 30. Ad-
ditionally all status and control signals of RS-232 are provided.

Service Discovery Protocol (SDP) allows client applications to request informa-
tion of the running services on the device. SDP indicates the sort and classification
of the services as well as the protocols in use. But SDP, in fact, does not provide
any mechanisms to use these services. The SDP client generally searches for services
which achieve the desired attributes. This function is called Service Discovery. But
it is also possible to perform a general search which would list all provided services.
This function is called Service Browsing.

Object Exchange Protocol (OBEX) is a common protocol for the file transfer

5http://en.wikipedia.org/wiki/RS-232

http://en.wikipedia.org/wiki/RS-232


10 CHAPTER 2. FUNDAMENTALS

between mobile devices. At first, it was used for infrared communication, nowadays
OBEX is applicable to Bluetooth as well.

The Bluetooth module on the BTnode accepts HCI commands over UART. Cur-
rently HCI, L2CAP and RFCOMM protocols are implemented in BTnut. An im-
plementation of the SDP layer is planned.

2.4 Principles in Bluetooth communication

Bluetooth is based on 79 independent channels where a Bluetooth connection em-
ploys a frequency hopping algorithm among those channels. The MAC6 (Media Ac-
cess Control) layer is based on a TDMA7 (Time Division Multiple Access) scheme
using slots of 625 µs each.

The particular feature of Bluetooth is the manner in which networks are con-
structed autonomously. Such networks are called ad-hoc networks. This sort of
network formation is decentrally organised. For that, no special device or infras-
tructure is needed.

Inquiry

The device seeks for other Bluetooth devices. The inquiring process returns all Blue-
tooth hardware addresses from devices with Inquiry Scan enabled.

Inquiry Scan

With Inquiry Scan enabled the device itself spots for inquiry attempts. When an In-
quiry is detected an inquiry response packet is sent back to the source containing its
own Bluetooth hardware address. The private state discoverable may be controlled
by enabling and disabling the Inquiry Scan.

Piconet

When at least two Bluetooth devices establish a connection, a so-called piconet is
built up. Due to the frequency hopping technique the hops have to be coordinated.
This means that parameters like sequence and phase must be prearranged. This
process is governed by the device which initiates the connection. The same device
plays an important role in the piconet and it is called master. Each piconet must
have one and exactly one master. The involved communication partners which fol-
low the instructions from the master are called slaves. Master/slave communication
is handled in a TDD8 (Time Division Multiplexing) fashion. Each slave gets time
slots assigned by the master. In these time slots the master and the associated slave
may exchange data. Altogether the master manages up to seven slaves. Figure 2.6

6http://en.wikipedia.org/wiki/Media Access Control
7http://en.wikipedia.org/wiki/TDMA
8http://en.wikipedia.org/wiki/Duplex (telecommunications)

http://en.wikipedia.org/wiki/Media_Access_Control
http://en.wikipedia.org/wiki/TDMA
http://en.wikipedia.org/wiki/Duplex_(telecommunications)


2.5. CONNECTION AND TRANSPORT MANAGER 11

shows an example of a piconet with one master and four slaves. If necessary the role
of a connection may be changed between master and slave at any time.

Figure 2.6: A single Bluetooth piconet with four slaves

Page

If a Bluetooth device with a known hardware address is in range and with Page Scan
enabled, a connection may be established. In order to reach the connected state,
the paging process synchronises the slave device with the master device.

Page Scan

Similar to the Inquiry Scan the device replies to page attempts. The private state
connectable may be controlled by enabling and disabling the Page Scan.

Scatternet

In various situations it is required for Bluetooth devices from different piconets to
communicate with each other. A Bluetooth device can participate concurrently in
several piconets. The network established by piconets is called scatternet which is
illustrated in figure 2.7. Scatternet allows some sort of intercommunication between
piconets and provides the basis for a multihop communication. The different pi-
conets act in individual frequency hopping sequences. Thus the collision probability
is marginal.

2.5 Connection and transport manager

The Bluetooth standard contains no specification for the formation and control of
multihop topologies or for the data transport across multiple hops. An additional
functional layer must provide these services, i.e. for a modular structure, one layer



12 CHAPTER 2. FUNDAMENTALS

Figure 2.7: A Bluetooth Scatternet containing two piconets

for the topology control and one layer for the data transport.

The connection manager constructs and maintains a multihop network of several
nodes. The basic principle is simple: every node periodically searches for other nodes
in its range and connects to the discovered devices based on certain conditions. A
robust algorithm should be used that automatically takes care of nodes that join or
leave the network. This algorithm should provide self-healing topologies in a com-
pletely distributed fashion.

The transport manager takes care of multihop packet forwarding. It receives in-
formation about available connections from the connection manager. The transport
manager provides a connectionless transport type. It can be specified whether all or
only a certain device receives the packet. Finally the packets will be passed to an
upper layer.

2.6 Power save modes for Bluetooth connections

Due to the primary target to integrate Bluetooth generally into mobile devices, var-
ious low-power modes are defined. They guarantee a lower current consumption
and longer operational lifetime. The Bluetooth Specification [2] defines four power
modes: Active, Hold, Sniff, and Park. These power modes are applied to single
connections. If a connection is established, it starts in the standard power mode
Active and may be changed during the connected stage.

Besides the low-power modes the Bluetooth Specification [2] describes a power
control mechanism to minimise the average current consumption. Whenever the
received signal strength is outside of a determined range, the sender can be invited
to increase or decrease his transmit power. This be will done for each connection
separately. Especially if both devices are very close superfluous current will be saved.



2.6. POWER SAVE MODES FOR BLUETOOTH CONNECTIONS 13

Active

In active mode slaves wait for transmissions from the master. While the slave is in
active mode, all packets from his master have to be received and evaluated. With
this method the slave receives own packets. If the master commits a clear to send,
the slave can start the data transmission. In active mode the shortest reaction time is
awaited. Unfortunately the current consumption is the highest due to the persistent
send/receive readiness.

Hold

In hold mode the whole communication activity within the connection will be stopped
for an adjustable time. After the hold time the slave takes again part in the previous
piconet.
The Hold Interval defines the number of slots in which the connection lingers in hold
mode.

Sniff

In sniff mode the slave will be active periodically for a short time. The master only
communicates to the slave during a prearranged active time window. When more
send data is available within the window, it is possible to enlarge the window size
one-time. The time ratio between inactive and active stage can be adjusted in a
flexible fashion. Thus, the current consumption is indirectly affected. If the active
stage is shortened, the current consumption is decreased but increases the reaction
time.
The Sniff Attempt (SA) defines the size (in the number of receive slots) of the
window. The Sniff Interval (SI) defines the period (in the number of slots) between
the windows. The Sniff Timeout (ST) defines the number of receive slots in which
the sniff partner might resume the data stream.

Park

The lowest possible current consumption is reachable in park state. The slave is still
synchronised with the master but no more graded as active. Data communication
is not feasible. The park state allows the master to increase the piconet members.
Hence a master maintains up to seven slaves and 255 parked slaves. The beacon
time window is used to reactivate a slave.
The Beacon Interval defines the period (in the number of slots) between the windows.



14 CHAPTER 2. FUNDAMENTALS



Chapter 3

Cable replacement using
RFCOMM

In my last term thesis [17] I worked on the communication between BTnode and
PDA using the standard Bluetooth API JSR 82 for Java. The task was to realise
wireless interactions like upload a flash image to the BTnode or retrieve informa-
tions about the connected BTnode. The current work in this chapter is thought as
a preliminary task. The knowledge from the last term was applied to eliminate the
dependency on attaching a cable to the BTnode.

The first subchapter explains why RFCOMM is used, followed by some imple-
mentation design thoughts in the second subchapter. On the basis of an example,
the usage of the RFCOMM device driver is described in the third subchapter. The
fourth subchapter lists some annotations and limitations by the RFCOMM device
driver. In order to reduce the size requirements when using the device driver, the
Bluetooth stack is slimmed down in the fifth subchapter. The sixth subchapter is
concerned about the Bluetooth API for Java: JSR 82. Additionally there is a mar-
ket analysis about available JSR 82 implementations in J2SE for various operating
systems. At last, the seventh subchapter lists the options to communicate with a
BTnode over RFCOMM.

3.1 Why RFCOMM?

On different computer and telecommunication devices the standardised serial in-
terface RS-232 remains indispensable. PDAs, notebooks, mobile phones and other
devices like our BTnode use the serial interface for wired communication. Bluetooth
contains the function to replace the wire. For that reason the RFCOMM layer is
embedded in the Bluetooth stack. It is also named Serial cable emulation protocol
in the Bluetooth Specification [2].

As the RFCOMM layer is designed to replace a cable, it is good idea to base
on this protocol. Various operation systems also offers virtual serial ports for RF-
COMM. Additionally the operating system BTnut comes with a stream interface
for standard I/O. This simplifies the RFCOMM integration and reduces changes in
existing applications.

15



16 CHAPTER 3. CABLE REPLACEMENT USING RFCOMM

3.2 The implementation design for RFCOMM

The RFCOMM layer was already implemented in BTnut and provides a simple API.
But employing this API is an expensive way to extend existing software with RF-
COMM. In BTnut all I/O runs over a standard stream interface. Thus extending
the stream interface to handle and maintain RFCOMM channels is a transparent
and fast working solution.

Device drivers in BTnut use an abstraction layer with a predefined API to access
devices. Generally a device driver goes through the following sequence.

register calls some initialisation functions. _ioctl is used to configure parameters
while the device is opened. But this sequence raises one problem. To establish a
RFCOMM connection, the Bluetooth hardware address and the RFCOMM chan-
nel have to be known. Thereby _ioctl cannot be used to commit the destination
parameters. Without specifying both parameters, a RFCOMM channel cannot be
opened.

This problem will be solved by using a skeleton device driver for RFCOMM
channels. First, for each channel, the appropriate device has to be created. The
driver just accepts connections resp. listen on channels to omit the declaration of a
hardware address. The RFCOMM device driver goes through the following, slightly
modified sequence:

_ioctl is no more used but may be extended to specify some read or write timeouts.
open listens on the determined channel. close disconnects the channel and stops
listening. To have some feedback when a connection is established resp. the channel
is opened, a connection callback may be passed with create.

3.3 Usage of the RFCOMM device driver

The application btnut/app/bt-cmd from the BTnut software repository, which of-
fers a HCI command terminal over the serial interface, will be extended with the



3.3. USAGE OF THE RFCOMM DEVICE DRIVER 17

RFCOMM device driver. This subchapter includes a step-by-step guide to integrate
the RFCOMM device driver into existing applications. This application will also be
used in subchapter 3.5 to determine the additional size gap caused from including
the device driver. The extended application will be saved under btnut/app/bt-
cmd-over-rfcomm.

First the L2CAP and RFCOMM stack have to be initialised. After initialising
the stacks, the RFCOMM device is created using RFCommCreate:

NUTDEVICE * devRFComm01 = RFCommCreate(rfcomm_stack, 1, con_cb);

The RFCOMM channel is delivered as second parameter. The third parameter is
the connection callback, referring to a following function:

void con_cb(u_char channel, u_char connected)

Whenever a RFCOMM channel opens or closes, this function will be called after.
The first parameter is the channel number (in this case 1). The second parameter
presents the current state of the channel. In this application the function is used
to print out debug messages on the serial line as well as welcome messages on the
RFCOMM channel.

Next the RFCOMM device devRFComm01 is registered with NutRegisterDevice:

NutRegisterDevice(devRFComm01, 0, 0);

The last two parameters are not used in the RFCOMM device driver and should be
always zero.

Finally the RFCOMM device is opened using fopen:

FILE * rfcomm_terminal = fopen(devRFComm01->dev_name, "r+");

The second parameter specifies the access mode: "r" is for read-only, "w" for write-
only, and "r+" for read/write access. Because a RFCOMM channel cannot be
trimmed to unidirected communication, the device driver undertakes this function.
Thus e.g. no receive buffer is build up in write-only mode.

Now the file rfcomm_terminal can be used to read from the RFCOMM chan-
nel or write to the RFCOMM channel. All stream I/O functions from stdio.h1

library are ready to perform over RFCOMM. At least, to handle the whole terminal
communication over RFCOMM, this file is passed when initialising the terminal:

btn_terminal_init(rfcomm_terminal, TERM_PREFIX);

With previously presented, minimalistic changes all reads and writes by the ter-
minal application run over RFCOMM. As already mentioned this application is
saved under btnut/app/bt-cmd-over-rfcomm into the repository.

1http://www.btnode.ethz.ch/static docs/doxygen/btnut/group xgCrtStdio.html

http://www.btnode.ethz.ch/static_docs/doxygen/btnut/group__xgCrtStdio.html


18 CHAPTER 3. CABLE REPLACEMENT USING RFCOMM

3.4 Limitations by the RFCOMM device driver

The RFCOMM device driver is primary designed to replace a cable. Thus not all
possible functions are implemented. Keep in mind that the device driver should be
as small as possible because the whole Bluetooth stack is used too and this stack
already uses up much space.

Figure 3.1: Overviewing the RFCOMM device handling

only passive connections As said the device driver cannot establish connections
actively. If the device is opened, it only listens and accepts connections. How-
ever it provides still some sort of connection feedback.

one connection per channel The current implementation of the RFCOMM layer
cannot handle multiple connections on one channel. At least one connection
is feasible per channel.

no timeouts There is no timeout implementation. Thus any read access will block
until at least one byte is received.

no cooked mode By default, the cooked mode is enabled in a serial port imple-
mentation. The cooked mode will map characters \n and \r to \r\n. Most
of the terminal clients expect \r\n to display a new line correctly. So far the
RFCOMM device driver only supports the raw mode.

synchronous send All writes to the devices are directly sent over RFCOMM.
No send buffer is provided. This may lead to unwanted effects. A single
fprintf function may send several RFCOMM packets at once. E.g. the for-
mat string "uptime: %d s\n" results to three RFCOMM packets with the
payload "uptime: ", "13", and " s\n".



3.5. SLIM DOWN THE BLUETOOTH STACK OF BTNUT 19

3.5 Slim down the Bluetooth stack of BTnut

With bootloader, the flash memory on the microprocessor ATmega 128L is limited
to 120 KB. When the RFCOMM device driver is used, the Bluetooth stack takes
up a great part of the flash. Figure 3.2 exposes the maximum size requirements of
the Bluetooth stack layers determined by the object file sizes in BTnuts Bluetooth
library btnut/lib/btnode3/libbt.btnode3.a (with disabled logging).

Figure 3.2: Size of the Bluetooth stack layers (2006-05-17)

But these numbers only represents the size if all object files are linked. As practi-
cal reference the application sizes of btnut/app/bt-cmd and of the extended version
btnut/app/bt-cmd-over-rfcomm from subchapter 3.3 will be compared. The size
grows due to the including of the RFCOMM device driver from 64.2 KB to 84.1 KB.
Remember that the HCI layer was already linked in bt-cmd. Only the object files
of L2CAP and RFCOMM are additionally included. The size difference is 19.9 KB.
Due to the limitation to 120 KB such a high difference may not be tolerated. Thus
reducing the size requirements of L2CAP and RFCOMM will be the next step.

In certain situations the BTnode never creates L2CAP or RFCOMM connections
actively. It has only to accept remote initiated connections. In this case, connect
commands are never used and some responses never turn up. The two macros
BT_L2CAP_SLIMDOWN and BT_RFCOMM_SLIMDOWN are added to the source code. These
macros disables the appropriate ability to create connections. These macros can be
enabled in btnut/Makedefs. If both macros are enabled the size of the application
bt-cmd-over-rfcomm is going down to 80 KB. It is not much but this method is still
compatible with the Bluetooth Specification [2]. Other functions like defragmenting
and assembling of L2CAP packets are not used in certain cases and can be disabled
but breaks the Bluetooth Specification [2]. With such methods a minimum size of
75 KB is reachable.

To summarise the progress: L2CAP, RFCOMM and the appropriate device
driver costs 19.9 KB. If both SLIMDOWN macros are enabled the value will be re-
duced to 15.8 KB. With some other invasive modifications (CVS revision 1.45 of
btnut/btnode/bt/bt_l2cap.c and 1.14 of btnut/btnode/bt/bt_rfcomm.c) a min-
imum value of 10.8 KB is reachable.



20 CHAPTER 3. CABLE REPLACEMENT USING RFCOMM

3.6 The Bluetooth API for Java: JSR 82

JSR 822 provides a standard API for the development of Bluetooth applications
and profiles in Java and allows a consistent access to the Bluetooth functionality
and abilities. The API was primarily designed for Bluetooth mobile phones running
Java Micro Edition3 (J2ME). But JSR-82 itself does not offer any implementation.
There are preinstalled implementations on mobile phones as well as several imple-
mentations for the Java Standard Edition (J2SE) on varied operating systems. For
further information about JSR 82 the book ”Bluetooth Application Programming
with the Java APIs“ [4] is highly useful.
JSR 82 maintains Device Discovery as well as Service Discovery and provides among
others an interface for connection-oriented L2CAP, RFCOMM and OBEX.

3.6.1 The hunt for a JSR 82 implementation on J2SE

Currently, the main implementation under Linux is avetanaBluetooth from Avetana.
avetanaBluetooth4 is available for Windows, MacOS X and Linux. The Linux version
is open source (licensed under GPL) and can be downloaded from Sourceforge5. On
Linux, avetanaBluetooth accesses the BlueZ libraries. The official Bluetooth subsys-
tem for Linux BlueZ6 provides an open and stable implementation of the Bluetooth
stack.

Under Windows there are three implementations: avetanaBluetooth, BlueCove
and aveLink Bluetooth SDK for Java from Atinav. The main difference between
them is the conformity to different Bluetooth stack: avetanaBluetooth to the Wid-
comm stack, BlueCove to the Windows XP SP2 Bluetooth stack and aveLink pro-
vides an own stack. The next difference is the price resp. the licensing policy: the
Windows version of avetanaBluetooth is available to a low fee, BlueCove7 is open
source (licenced under LGPL) and aveLink8 can be purchased to a high fee. aveLink
is expensive because of the own implementation of the Bluetooth stack. It is essen-
tial to know that BlueCove does not provide a L2CAP interface.

3.7 Accessing the BTnodes with Bluetooth APIs

Several software APIs exist to access the BTnode over RFCOMM. Three options
are listed to accomplish the access: a RFCOMM-only, a native and a platform in-
dependent solution.

2http://www.jcp.org/en/jsr/detail?id=82
3http://en.wikipedia.org/wiki/J2ME
4http://www.avetana-gmbh.de/avetana-gmbh/produkte/jsr82.eng.xml
5http://sourceforge.net/projects/avetanabt
6http://www.bluez.org
7http://sourceforge.net/projects/bluecove
8http://www.avelink.com/Bluetooth/Products/JSR-82

http://www.jcp.org/en/jsr/detail?id=82
http://en.wikipedia.org/wiki/J2ME
http://www.avetana-gmbh.de/avetana-gmbh/produkte/jsr82.eng.xml
http://sourceforge.net/projects/avetanabt
http://www.bluez.org
http://sourceforge.net/projects/bluecove
http://www.avelink.com/Bluetooth/Products/JSR-82


3.7. ACCESSING THE BTNODES WITH BLUETOOTH APIS 21

The RFCOMM-only solution

Many operating systems like Windows, MacOS X and Linux provides virtual serial
ports for RFCOMM. Unfortunately they will only work if the SDP layer is imple-
mented on the communication partner side. As long as the Service Discovery is not
replied by the BTnode, the creation of a virtual port will fail.

But there is a workaround solution on Linux. A virtual serial port is created
when the appropriate entry exists in /etc/bluetooth/rfcomm.conf. By adding
following lines

rfcomm69 {
# Automatically bind the device at start-up
bind yes;
# Bluetooth address of the device
device 00:04:3F:00:00:69;
# RFCOMM channel for the connection
channel 1;
# Description of the connection
comment "BTnode running bt-cmd-over-rfcomm";

}

a new device /dev/rfcomm69 is created which can be accessed in the same manner as
the serial port. This workaround also works well with the Java package javax.comm.

The benefit of this solution is that existing software, which used the serial port
before, must not be rewritten. It is platform independent as well but works only
with RFCOMM.

The native solution

The API from the Bluetooth stack is directly used. Like all applications running
on the BTnode the running program accesses the stack directly. This solution is
platform dependent and Bluetooth stack dependent.

The platform-independ solution

The standard Bluetooth API JSR-82 for Java provides a stream interface for RF-
COMM. The following short code establishes a RFCOMM connection:

// connect to the Bluetooth hardware address 00:04:3F:00:00:69
// at RFCOMM channel 1
StreamConnection conn = (StreamConnection)

Connector.open("btspp://00043F000069:1");

In order to begin the communication the appropriate streams have first to be opened.

InputStream in = conn.openInputStream();
OutputStream out = conn.openOutputStream();
// in.read() and out.write() is ready to use



22 CHAPTER 3. CABLE REPLACEMENT USING RFCOMM

A small Java program was written to access a BTnode over RFCOMM. It serves
a simple command-line interface:

java RFCOMMTerminal <addr> <channel>

Data from the RFCOMM channel will be printed out and keyboard entries on
the command-line are sent over RFCOMM. This Java program may be used al-
ternatively to the virtual RFCOMM ports on Windows and MacOS X, as long
as the SDP layer is not implemented in BTnut. The source code is stored under
proj/yuecelm/RFCOMMTerminal into the BTnut software repository.

The benefit of this solution is the platform-independence. All devices running
J2ME/J2SE and supporting JSR-82 are capable to execute the Java program with
the same source code.



Chapter 4

Analysing the power
consumption

In order to get inside into the whole system, the BTnode will be analysed with the
main focus on the power consumption. Considering the datasheets of the hardware
components the power consumers and the voltage converters are examined sepa-
rately. In the first subchapter the power consumers and their current flow will be
characterised. The second chapter lists the available supply options. At last there
is a setup description of the measurement system which will be used in the next
chapters.

Some labels which appears in the text are taken 1:1 from the BTnode rev3.22
schematics. These schematics are attached in the appendix on page 61.

4.1 Current consumption of the microprocessor and
other components

The BTnode has three main power consumers: the microprocessor ATmega128L,
the Bluetooth module ZV4002, and the low-power radio module CC1000. Figure 4.1
shows the current consumption while the ATmega128L runs in the idle thread, the
ZV4002 lingers in the standby mode and the CC1000 listens to a certain frequency.

Figure 4.1: Current consumption of microprocessor and communication modules

23



24 CHAPTER 4. ANALYSING THE POWER CONSUMPTION

Remember that the current consumption of all components, like the external
SRAM and the flash memory for the ZV4002, are included in one section. Ex-
cept the power latches they are supplied from one of these power lines: VCC AVR,
VCC BT or VCC CC. The CC1000 and any sensors, which are powered from the
line VCC IO, will not be further considered in this thesis.

Figure 4.2: Voltage domains and power consumer components

Figure 4.2 shows the division of all components into one voltage domain whereas
the voltage converters are covered separately in the next subchapter. So the cur-
rent flow is clearly arranged. If e.g. the current I AVR is measured, keep in mind
that other components than the ATmega128L may affect an additional current flow.
When a LED is powered it pulls 4 mA. The external SRAM for ATmega128L and
the flash memory for ZV4002 consume each maximal 30 mA on read/write access.

4.2 Efficiency of voltage converters

The components have to be supplied by a voltage at 3.3 V. As illustrated in figure 4.3
there are three options to supply the BTnode, depending on the available voltage.
The only option that does not pass a voltage converting process is possible with a
3.3 V regulated power supply through the VCC and GND pins. Thus no power loss
occurs.

Alternatively a power source with a voltage between 3.6-5.0 V can be supplied
through the VDC IN and GND pins. The dropout regulator LT1962 from Linear
lowers the voltage to 3.3 V. Some specific data about the efficiency will be delivered
in subchapter 5.3 on page 33.



4.2. EFFICIENCY OF VOLTAGE CONVERTERS 25

Figure 4.3: Available supply options

The last option is a power supply with a voltage between 0.5-3.3 V. This volt-
age range is suitable for batteries. Figure 4.4 shows the voltage progression on a
battery-supplied BTnode with the Bluetooth module in standby mode.

0 5 10 15 20 25 30 35
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

time [h]

ba
tte

ry
 v

ol
ta

ge
 [V

]

 

 

Ansmann (rechargeable)

Energizer (non−rechargeable)

Figure 4.4: The voltage progression with battery supply

The step-up DC/DC converter LTC3429 from Linear raises the voltage to 3.3 V.
The converter LTC3429 has an efficiency curve η as showed in figure 4.5. The con-
verter follows the formula η ·Pin = Pout which has a bad behaviour by batteries with
low voltage. Some specific data about the efficiency will be delivered in subchap-
ter 5.3 on page 33. Remember that the batteries cannot be emptied out completely
because they do not deliver arbitrary high currents on low voltage. If e.g. the battery
voltage reaches 1.6 V and 60 mA are required on start-up, the converter wants to
pull around 155 mA to reach the voltage 3.3 V. Because the batteries cannot deliver
high currents the voltage converter compensates this issue by decreasing the output
voltage. If the voltage goes below 2.7 V the Brown-out detector will be triggered and



26 CHAPTER 4. ANALYSING THE POWER CONSUMPTION

the microprocessor resets. Thus the current capacity indicated on batteries should
never be used directly in lifetime calculations.

Figure 4.5: Efficiency of the step-up converter LTC3429

4.3 Measurement setup

The sleep modes on the microprocessor ATmega128L and the low-power modes on
the Bluetooth module ZV4002 will be measured. The primary objective is to de-
termine accurate data about the current consumption, the secondary is to detect a
priori potential issues. Thus these measurement positions are of interest: close-by
the power supply to calculate the overall power consumption, after the voltage con-
verter to estimate the power loss, and after each power latch to measure the main
power consumers separately. The measurement of the voltage and the current from
the power supply is uncomplicated. Considering the BTnode schematics, the current
after the voltage converter cannot be measured but the voltage VCC. Due to the
measuring points R2, R17 and R26 it is possible to measure the voltages VCC AVR,
VCC BT and VCC CC and the currents I AVR, I BT and I CC. Figure 4.6 shows
a photo from the whole measurement system. To simplify and automate the mea-
surement process a small program was written using LabVIEW. LabVIEW provides
a GPIB driver to interface the measurement instrument. The user interface as illus-
trated in figure 4.7 should be self-explanatory. Last but not least figure 4.8 presents
a detailed, labelled photo from the modified BTnode. This BTnode allows to mea-
sure also the currents I AVR, I BT and I CC.



4.3. MEASUREMENT SETUP 27

Figure 4.6: A photo from the measurement system

Figure 4.7: The measurement user interface using LabVIEW



28 CHAPTER 4. ANALYSING THE POWER CONSUMPTION

Figure 4.8: A labelled photo from the modified BTnode



Chapter 5

Applying the sleep modes

Before starting with the Bluetooth low-power modes, the power save potential of the
microprocessor ATmega128L will be evaluated. The first subchapter covers the mea-
surements about the current consumption of the ATmega128L in each sleep mode.
The second subchapter describes how the sleep modes can be integrated into BTnut.
Furthermore, the application range for some sleep modes will be listed. Gathered
from the sleep mode measurements, the last subchapter includes some data about
the efficiency of the voltage converters.

5.1 The measured current consumption in each mode

A small application btnut/app/bttest/pm-test.c was written to put the BTnode
into a sleep mode. Both communication modules are explicitly powered off and the
appropriate pins on the ATmega128L are tristated. During the start-up the actual
sleep mode is indicated by a LED code. By resetting the BTnode the next sleep
mode will be entered. The measurements are made with a couple of BTnodes from
rev3.20 and rev3.22, and with different fuse settings. The supply voltage and cur-
rent is measured. Figure 5.1 shows the measurement results with the three supply
options as described in subchapter 4.2 on page 24. Figure 5.1 highlights the power
consumption in each sleep mode with unpowered communication modules.

The data from the VCC 3.3V series is gathered to build a table with the current
and power consumption in each sleep mode. The delays are taken from the AT-
mega128L datasheet [3].

sleep mode current power delay
[mA] [mW] [# clock cycles]

NONE 13.6 44.85 0
IDLE 4.97 16.39 0
ADC 2.42 7.989 0
EXT STANDBY 1.56 5.135 6
PWR SAVE 1.40 4.635 16K (+ 65 ms)
STANDBY 0.812 2.6811 6
PWR DOWN 0.183 0.6040 16K (+ 65 ms)

29



30 CHAPTER 5. APPLYING THE SLEEP MODES

0

10

20

30

40

50

60

70

80

NONE
ID

LE ADC

EXT_S
TANDBY

PWR_S
AVE

STANDBY

PWR_D
OW

N

Po
w

er
 c

on
su

m
pt

io
n 

[m
W

]
VCC 3.3V
VDC_IN 3.6V
VDC_IN 4.3V
VDC_IN 5.0V
BAT 2.75V
BAT 2.54V

Figure 5.1: Power consumption in different sleep modes

5.2 Unleash the sleep modes in BTnut

The AVR Libc package provides a subset of the standard C library for AVR mi-
crocontrollers. Within the package, there is a library1 to handle the sleep modes.
Functions to set the sleep mode or put the microcontroller into the sleep state are
supplied. The AVR Libc package is already included in BTnut. But BTnut offers
a more elegant way to manage the sleep modes. To understand how it works, the
thread management of BTnut will be first introduced.

BTnut implements cooperative multithreading. That means that threads are
not bound to a fixed time slice. Thread changes only occur if the running thread
explicitly yields the CPU or a hardware interrupt is triggered. The scheduler works
on the principle that the thread with the highest priority always runs. The priority
ranges from 0 to 254 where the lowest value indicates the highest importance.

BTnut provides a terminal command nut threads to list all threads. At least
two threads are always printed: main and idle. In the main thread the main
function of the application is running. Additional threads may be created with
NutThreadCreate. A particular role takes the idle thread. It is assigned with the
lowest possible priority. Thus it is runs only if no other threads are runnable. The
idle thread has two main tasks. In an endless loop, it calls NutThreadYield and
NutThreadDestroy. The first function tries to give up the CPU to another thread.
The second function frees the memory of the previously killed threads. Afterwards
the idle thread may put the CPU into a sleep mode. The sleep mode can be set with
NutThreadSetSleepMode. By default the sleep mode is set to SLEEP_MODE_NONE.
Additionally the following sleep modes are supported:

• SLEEP_MODE_IDLE

1http://www.nongnu.org/avr-libc/user-manual/group avr sleep.html

http://www.nongnu.org/avr-libc/user-manual/group__avr__sleep.html


5.2. UNLEASH THE SLEEP MODES IN BTNUT 31

• SLEEP_MODE_ADC

• SLEEP_MODE_EXT_STANDBY

• SLEEP_MODE_PWR_SAVE

• SLEEP_MODE_STANDBY

• SLEEP_MODE_PWR_DOWN

In order to determine which sleep modes are feasible within the thread management,
a small application sleepandwork.c was written. The source code is attached in
the appendix on page 61. First it disables the LEDs and both communication mod-
ules. As next the sleep mode within the idle thread is setted. Then the application
enters an endless loop with a sleep and a work task. Each task will take around one
second. These both tasks results that the main and the idle threads are running
alternatively.

This application is used by the next measurements. The BTnode is directly sup-
plied over VCC with 3.3 V and the current through is recorded. One measurement
cycle is done in each sleep mode. Figure 5.2 compares the current consumption
between SLEEP_MODE_IDLE, SLEEP_MODE_ADC and SLEEP_MODE_EXT_STANDBY.

0  2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

18

20

time [s]

A
V

R
 c

ur
re

nt
 [m

A
]

 

 

IDLE

ADC

EXT_STANDBY

Figure 5.2: Comparing sleep modes IDLE, ADC and EXT STANDBY

After a start-up time of circa 2.5 seconds, both tasks are running alternatively. If
the CPU is in sleep state, it is clearly visible in the current curve.

Figure 5.3 compares the current consumption between SLEEP_MODE_IDLE and
SLEEP_MODE_NONE. If the sleep mode is set to SLEEP_MODE_NONE, the current is much
higher while residing in the sleep task. The idle thread accesses excessively the heap
resp. the SRAM. These accesses considerably increase the current demand. This un-
wanted behaviour can be avoided by putting the CPU into a sleep state.



32 CHAPTER 5. APPLYING THE SLEEP MODES

0  2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

18

20

time [s]

A
V

R
 c

ur
re

nt
 [m

A
]

 

 

IDLE

NONE

Figure 5.3: Comparing sleep modes IDLE and NONE

Figure 5.3 compares the current consumption between SLEEP_MODE_IDLE and
SLEEP_MODE_PWR_SAVE. SLEEP_MODE_PWR_SAVE has a timing problem and is not
ready to use in the thread management.

0  2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

18

20

time [s]

A
V

R
 c

ur
re

nt
 [m

A
]

 

 

IDLE

PWR_SAVE

Figure 5.4: Comparing sleep modes IDLE and PWR SAVE

The sleep modes SLEEP_MODE_STANDBY and SLEEP_MODE_PWR_DOWN are not ap-
plicable due to the lack of a suitable wake up source.

If the serial port or the Bluetooth module is used, SLEEP_MODE_IDLE is the only
option. The CPU will wakes up by any UART communication. If the serial port and
the Bluetooth module is not used, SLEEP_MODE_ADC and SLEEP_MODE_EXT_STANDBY
come into further consideration.



5.3. THE MEASURED VOLTAGE CONVERTER EFFICIENCY 33

If the flow control on UART is implemented, operative and enabled, other sleep
modes are feasible. External interrupts, like on the RTS/CTS lines, are available in
each sleep mode as a wake up source.

Because the sleep mode SLEEP_MODE_IDLE is applicable in each situation, it be-
comes to the standard in the thread management of BTnut. While the CPU is
running in the idle thread, the power consumption is reduced down to 36.5 % com-
paring to SLEEP_MODE_NONE.

5.3 The measured voltage converter efficiency

Figure 5.1 on page 30 also indicates the efficiency of the voltage converters. The
data from the VCC 3.3V series corresponds the power consumption without loss
affected by the voltage converters. Thus it is taken as reference to determine the
efficiency η = P/PV CC .

40

50

60

70

80

90

100

NONE
ID

LE ADC

EXT_S
TANDBY

PW
R_S

AVE

STANDBY

PW
R_D

OW
N

Po
w

er
 e

ffi
ci

en
cy

 [%
]

VDC_IN 3.6V
VDC_IN 4.3V
VDC_IN 5.0V
BAT 2.75V
BAT 2.54V

Figure 5.5: Efficiency curves of different supplies

As expected from a dropout regulator, the efficiency curve of VDC IN is nearly
constant. (5.1) is expected from a voltage divider but it cannot be applied to the
efficiency curves of VDC IN 3.6V and VDC IN 4.3V. Input voltages close to the
lower limit at 3.6 V seem to get a efficiency breakdown.

V DC IN1 > V DC IN2 −→ η1 < η2 (5.1)

Considering the efficiency curves in figure 4.5 on page 26, the efficiency of the step-
up converter in figure 5.5 is about 5-10 % lower than expected from the datasheet.



34 CHAPTER 5. APPLYING THE SLEEP MODES



Chapter 6

Bluetooth link power control

Bluetooth provides low-power modes (hold, sniff, park) which trade throughput and
latency for power. Because the Bluetooth stack of BTnut does not handle the low-
power modes, the HCI layer will be extended in the first subchapter. In the second
subchapter, these low-power mode commands are added to the terminal to provide
a human-friendly control interface. In the third subchapter the results of [5] and
[6] will be verified with additional measurements. Furthermore, these measurements
may detect potential issues. At last, a library application in BTnut, the Connec-
tion Power Manager, will be presented which autonomously puts already established
connections into sniff mode.

6.1 Extending the HCI layer of BTnut

The HCI commands for the low-power modes are not implemented in the Blue-
tooth stack. All the low-power commands are an essential part of the link pol-
icy commands. According to the Bluetooth Specification [2] the file in BTnut
btnut/btnode/bt/bt_hci_cmd_link_policy.c will be extended with the follow-
ing commands:

• HCI Hold Mode

• HCI Sniff Mode

• HCI Exit Sniff Mode

• HCI Park State

• HCI Exit Park State

But just implementing the HCI commands is not sufficient. Generally, after
sending a HCI command, the controller responds with a HCI event. In context to
the low-power commands the Bluetooth module returns a mode change event with
the current mode. Thus after extending the file btnut/btnode/bt/bt_hci_event.c
the Bluetooth stack handles the mode change events, and is able to track the mode
on each connection.

35



36 CHAPTER 6. BLUETOOTH LINK POWER CONTROL

6.2 Extending the Bluetooth command terminal

BTnut includes libraries to offer a terminal on the serial port or — since the work de-
scribed in the third chapter — on RFCOMM. btnut/btnode/terminal/bt-cmds.c
already contains Bluetooth commands e.g. to inquiry or connect other Bluetooth de-
vices. A new file btnut/btnode/terminal/bt-extra-cmds.c is created to prevent
a blow up of the size of existing applications. The following commands are added
to the terminal library:

ebt scan <inquiry_scan> <page_scan>
ebt hold <con_handle> <interval>
ebt sniff <con_handle> [<interval> <attempt> <timeout>]
ebt park <con_handle> [<beacon_interval>]

The first command is used to enable 1 or disable 0 both scans. con_handle is an
identifier of the connection. All other parameters are adopted from the Bluetooth
Specification [2]. They specify either the number of receive slots or the number
of slots. If only con_handle is specified, the appropriate low-power mode will be
exited. Last but not least bt_extra_cmds_register_cmds() must be called in the
application to provide these commands on the terminal.

The next change is applied on the terminal command bt contable which prints
out a list of open connections. It will be a valuable feature to additional indicate
the actual mode. Thus a new function bt_hci_local_mode_discovery is imple-
mented to poll the Bluetooth stack about the mode. This function is added to
btnut/btnode/bt/bt_hci_local_cmds.c. A print out sample of the extended ter-
minal command follows:

[bt-cmd@btnode]$ bt contable
Number of open connections: 2
Handle Addr State Mode

01 00:04:3f:00:00:65 my slave sniff (2048)
04 00:04:3f:00:00:ad my slave active

6.3 Bluetooth link measurements

In order to measure the current consumption behaviour of the ZV4002, the Bluetooth
terminal application btnut/app/bt-cmd is used to perform the Bluetooth functions.
The measurements are only done with one modified BTnode as showing in figure 4.8
on page 28. The Bluetooth firmware version 6.3 from Zeevo runs on the ZV4002
where the BTnut terminal command bt version returns 2 00C9 2 0012 003D. The
voltage, which will be assumed constant during the experiments, was previously
measured at 3.3 V. The multimeter is set to operate at 250 samples/s which measures
the current I BT.

Standby state

After the Bluetooth module ZV4002 is powered, the module will reach the standby
state. Per default, the inquiry scan and the page scan are enabled. Thus the module



6.3. BLUETOOTH LINK MEASUREMENTS 37

is ready to be discovered and connected from other Bluetooth devices. When both
scans are disabled (ebt scan 0 0), another current baseline can be observed. Fig-
ure 6.1 shows the ZV4002-specific current consumption of a connection with both
scans enabled and disabled.

0   2 4 6 8 10 12
0

10

20

30

40

50

60

time [s]

B
T

 c
ur

re
nt

 [m
A

]

0 2 4 6 8 10 12
0

10

20

30

40

50

60

time [s]

B
T

 c
ur

re
nt

 [m
A

]

Figure 6.1: Bluetooth current consumption in standby state, both scans enabled (l.)
and both scans disabled (r.)

The two periodical peaks at 60 mA are the currents from the scans. But one scan
has the halved frequency. If the peaks are not counted the baseline current of 16.0
mA before is reduced to 13.1 mA with disabled scans. Additionally figure 6.2 shows
the current consumption of a connection with only one scan enabled.

0   2 4 6 8 10 12
0

10

20

30

40

50

60

time [s]

B
T

 c
ur

re
nt

 [m
A

]

0 2 4 6 8 10 12
0

10

20

30

40

50

60

time [s]

B
T

 c
ur

re
nt

 [m
A

]

Figure 6.2: Bluetooth current consumption in standby state, only inquiry scan en-
abled (l.) and only page scan enabled (r.)

According the default of the Bluetooth specifications [2] the inquiry scan has a pe-
riod of 2.56 seconds whereas the page scan has a period of 1.28 seconds. Disabling
one scan reduces the current consumption by 0.5 mA. Observed by the two different
current baselines at 16.0 mA and 13.1 mA, the ZV4002 seems to go into a sleep
state if both scans are disabled. Because it is desired to be the most time discov-
erable and/or connectable, the inquiry and page scan are left enabled in the next
measurements.



38 CHAPTER 6. BLUETOOTH LINK POWER CONTROL

Connected state

For clarification: we denote with master role connection a connection to a slave and
with slave role connection a connection to a master. Figure 6.3 compares the current
consumption of a slave role connection and a master role connection. The slave role
current baseline at 30.7 mA is much higher than the master one at 18.0 mA.

0 2 4 6 8 10 12
0

10

20

30

40

50

60

time [s]

B
T

 c
ur

re
nt

 [m
A

]

0 2 4 6 8 10 12
0

10

20

30

40

50

60

time [s]

B
T

 c
ur

re
nt

 [m
A

]

Figure 6.3: Bluetooth current consumption, slave role connection established (l.)
and role change to master role connection (r.)

Sniff mode

Figure 6.4 highlights the bursty behaviour of sniff mode, with periodical peaks
around 40 mA every Sniff Interval (SI) slots. With at least one scan enabled two
current baseline are observed. These values are lower than the active ones and they
are equal to one standby current baseline (16.0 or 13.1 mA). In sniff mode, there is
no significant difference in the current consumption curve between master and slave
role connections.

0 2 4 6 8 10 12
0

10

20

30

40

50

60

time [s]

B
T

 c
ur

re
nt

 [m
A

]

Figure 6.4: Bluetooth current consumption, change mode of a slave role connection
to the sniff mode



6.3. BLUETOOTH LINK MEASUREMENTS 39

Distance

Figure 6.5 shows the current consumption while two connected devices are moving
away. Figure 6.5 exposes that the ZV4002 provides a power control which is affected
by the link quality. Hence connections across long distances should be avoided.
Otherwise the current goes up to 45 mA on a master role connection.

0   4 8 12 16 20 24 28 32 36
0

10

20

30

40

50

60

time [s]

B
T

 c
ur

re
nt

 [m
A

]

0 4 8 12 16 20 24 28 32 36
0

10

20

30

40

50

60

time [s]

B
T

 c
ur

re
nt

 [m
A

]

Figure 6.5: Bluetooth current consumption, impact of increasing distance, slave role
connection (l.) and master role connection (r.)

Park state

Figure 6.6 shows the current consumption of a slave connection during the mode
change from active to park. The park state should present the lowest current con-
sumption. Enter the park state seems to work fine but unparking is not feasible.
After enter the park state, the ZV2004 lingers about one minute in a blocked and
undefined state. Thereafter, the connection is lost by returning an meaningless error
message ”Unknown Error“. This issue was not observed with the older Bluetooth
firmware version 6.2.

Figure 6.7 and the following table presents the current consumption in different
states or modes. Each value is the average of 2-5 measurement passes.

mode/state (default: both scans on) average current consumption
[mA]

standby 17.0
standby (page scan off) 16.5
standby (inq scan off) 16.5
standby (inq scan off, page scan off) 13.1
connected (master role) 18.0
connected (slave role) 30.7
sniff (SI 256, SA 4, ST 4, Slave) 16.1
sniff (SI 1024, SA 14, ST 14, Slave) 15.9
sniff (SI 256, SA 4, ST 4, Master) 16.2
sniff (SI 1024, SA 14, ST 14, Master) 15.5

As far as the current consumption is concerned, the specifications in the ZV4002
datasheet are unreliable. Zeevo also claims in the datasheet to provide a deep sleep



40 CHAPTER 6. BLUETOOTH LINK POWER CONTROL

0 2 4 6 8
0

10

20

30

40

50

60

70

time [s]

B
T

 c
ur

re
nt

 [m
A

]

Figure 6.6: Bluetooth current consumption, change mode of a slave role connection
to the park state

0

5

10

15

20

25

30

35

standby standby, both
scan disabled

slave role
connection

master role
connection

sniff connection,
slave role, SI
1024, SA 14

sniff connection,
master role, SI
1024, SA 14

av
er

ag
e 

cu
rr

en
t [

m
A

]

Figure 6.7: Average current consumption in different states/modes

state but a current consumption in µA scope was never observed.

If both scan are disabled, the current consumption of one sniff link is proportional
to (SA/SI). If at least one scan is enabled, there is a certain probability that the
Bluetooth module goes into the sleep state between the scans and sniff intervals. The
higher probability, the more power can be saved. Figure 6.9 on page 42 shows the
average current consumption with fixed sniff interval and varied sniff attempt values.



6.4. IMPLEMENTING THE CONNECTION POWER MANAGER 41

6.4 Implementing the Connection Power Manager

The Bluetooth stack of BTnut tracks each connection. Open connections are listed
with the terminal command bt contable. The work routine of the Connection
Power Manager (CPM) is very simple. On the basis of periodical accesses to the
connection table of the stack, the manager tries to put active links to the sniff
mode. Because the sniff mode change can be initiated on master and slave side, the
CPM puts either slave role connections or master role connections to the sniff mode.
Additionally the maximum number of sniff links can be passed as well as the sniff
parameters SI, SA and ST. Figure 6.8 shows a state model of the CPM.

Figure 6.8: State transition model of the Connection Power Manager (CPM)

According to figure 6.8 the CPM provides five external functions cpm_init,
cpm_start, cpm_pause, cpm_resume and cpm_stop and has four functional states:

initiated the CPM stack is allocated and ready

running autonomously puts active links into sniff mode

paused pauses the mode changes

stopped returns all sniff links back to the active mode

The Class of Device (CoD) may be passed with cpm_init to filter the sniff can-
didates. There are no checks about valid transitions inside the CPM. Thus it is
strongly recommended to preserve the state transitions as shown in figure 6.8.

In order to control the CPM in the same fashion as the low-power commands de-
scribed in subchapter 6.2, the following command is added to the Bluetooth terminal
library btnut/btnode/terminal/bt-extra-cmds.c:

ebt cpm <start: 1, stop: 0>



42 CHAPTER 6. BLUETOOTH LINK POWER CONTROL

sniff interval SI = 1024 slots, both scans enabled

15.0

16.0

17.0

18.0

0 5 10 15 20 25 30 35

sniff attempt SA (receive slots)

av
er

ag
e 

cu
rr

en
t [

m
A

]
w

ith
 s

ta
nd

ar
d 

de
vi

at
io

n

slave
master

sniff interval SI = 256 slots, both scans enabled

15.5

16.0

16.5

17.0

17.5

18.0

18.5

19.0

0 2 4 6 8 10 12 14

sniff attempt SA [receive slots]

av
er

ag
e 

cu
rr

en
t [

m
A

]
w

ith
 s

ta
nd

ar
d 

de
vi

at
io

n

slave
master

Figure 6.9: Average current consumption with fixed sniff intervals, SI = 1024 slots
(t.) and SI = 256 slots (b.)



Chapter 7

A low-power connection
manager for JAWS

In [7] an implementation called JAWS is described based on the BTnode platform.
JAWS provides a connection and transport manager to automatically build up a
topology and offers multihop communication within the Bluetooth scatternet. With
both managers JAWS delivers multihop services such topology display or code dis-
tributing. JAWS will be extended to maintain Bluetooth connections in low-power
mode sniff.

In the first subchapter the limitations by the Bluetooth module ZV4002 are
shown. The second subchapter examines the connection managers delivered by
JAWS. Due to the strong limitations of ZV4002, the new connection manager is
described in the third subchapter which can handle the limitations. The fourth
subchapter presents current measurements from a JAWS node. At last, the fifth
subchapter shows stability tests about the sniff connections.

7.1 Limitations by the Bluetooth module ZV4002

The Bluetooth module ZV4002 from Zeevo has strong limitations. Considering the
HCI reference guide from Zeevo, the following restrictions are present in the Blue-
tooth firmware implementation:

• The Zeevo device can only sniff in one piconet. Hence if a sniff link already
exists in another piconet the new proposed sniff will be rejected.

• If the Zeevo device has multiple sniffed links they must have the same sniff
interval.

With other words the ZV4002 supports only one slave role connection in sniff mode.
This is a significant restriction because at least one slave role connection in active
mode pulls the current of the ZV4002 to the maximum at 30.7 mA. In respect to
minimise the current consumption this situation should be, if possible, avoided.

Additionally there are more limitations of the ZV4002 which are not denoted in
any document. During the sniff mode a role change is not possible. The connection
has to exit the sniff mode, thereafter the role can be changed. After changing a

43



44 CHAPTER 7. A LOW-POWER CONNECTION MANAGER FOR JAWS

fourth master connection to the sniff mode, the ZV4002 will remain in a blocked
state.

These strong limitations, the restriction to one slave and three master role con-
nections for the sniff mode, complicates the power saving task. In order to put all
connections to the sniff mode the following topologies are targeted:

• a chain

• a circle

• a tree

• a circle with one or more appended chains or trees

If each node has only one slave role connection there is a role polarisation in one
direction. Figure 7.1 shows some examples. A node denotes a Bluetooth device,
the arrow source the master role of a connection, the arrow head the slave role of a
connection.

Figure 7.1: Topology examples which fits to the ZV4002 restrictions

7.2 Why not using an existing connection manager?

Due to the strong limitations of ZV4002 described in last subchapter, the existing
connection managers are examined to their adaptability. There are two connection
managers contributed by JAWS: the Tree Connection Manager (TCM), and the
XTC Connection Manager (XCM).

The TCM builds up a tree topology as showed in figure 7.2. The TCM has the
advantage that no loops are possible. The upperlaying transport manager does not
receive any broadcast messages twice. However, this lets appear one of the disadvan-
tages. If one link is lost the whole subtree behind the link is temporally unreachable.
The TCM seems to be a suitable candidate for the sniff task. But the tree is not
polarised, the parent node is either master or slave. The tree algorithm does not
consider the role of the parent and child nodes. Thus it is not easily adaptable to the



7.2. WHY NOT USING AN EXISTING CONNECTION MANAGER? 45

ZV4002 limitations. More information about the TCM can be found in the paper
[7] and the master thesis [8].

Figure 7.2: Topology example from the Tree Connection Manager

The XCM builds up a mesh topology. Even in dense environments the XTC algo-
rithm promises to establish a sparse network graph as showed in figure 7.3, avoiding
long distance communication links. This seems to be a good tradeoff between con-
nectivity and spareness which makes this algorithm very attractive. Unfortunately
the XTC algorithm provides no option to either set the maximum grade of a node
or limit the number of each role connections. The XTC algorithm does not consider
the role of the neighbour nodes. Thus, the XCM is also no candidate for the ZV4002.
More information about the XCM can be found in the master thesis [9] from Kevin
Martin.

Figure 7.3: Topology example from the XTC Connection Manager

Due to the used algorithms both connection managers require some data ex-
change with the neighbours. It is unavoidable that many connections are opened,
and closed right after. Both algorithms are also not considering the valuable Blue-



46 CHAPTER 7. A LOW-POWER CONNECTION MANAGER FOR JAWS

tooth properties discoverable and connectable. By enabling or disabling the inquiry
scan or the page scan, the properties discoverable and connectable may be changed
at any time. They might be powerful resources to optimise the construction of an
ad-hoc network.

7.3 Implementation of a new connection manager

A new connection manager has to be implemented which handles the limitations de-
scribed in subchapter 7.1. The best solution will be if the number of slave and master
role connections can be limited in a flexible fashion. In this thesis, a connection-slot
based solution is implemented which allows the user to set the appropriate number
of slave and master role connections.

If no role changes occur, a slave role connection can be viewed as an incoming
connection, a master role connection as an outgoing connection. These connections
fit in a sight of connection slots which have to be filled for each node. The Local
Connection Manager (LCM) adapts the principle of connection-slots. The work
routine of the LCM is simple. One task establishes the connections to other JAWS
nodes until all outgoing slots are filled. The other task is responsible for incoming
connections. The reject policy for incoming connections is realised over two mecha-
nisms: disable the scans or reject the connection within the paging stage. E.g. if all
slots for incoming connections are filled, the inquiry scan will be disabled and the
JAWS node will no more discoverable by the neighbours. A topology example of the
LCM with the limitations of the ZV4002 is illustrated in figure 7.4. Figure 7.9 on
page 50 shows a topology example of the LCM using the GUI interface of JAWS.

Figure 7.4: Topology example from the Local Connection Manager (LCM)

The simple algorithm as showed in the appendix on page 63 is used to establish
connections to other JAWS nodes. In contrast to the other two connection man-
agers, this algorithm requires no communication with its neighbours. The inquiry
and page process is sufficient to construct a topology. A blacklist is maintained to
temporally prevent the establish of connections to the listed devices. A device is
blacklisted if e.g. the device is paged too much without success. In order to reduce
the power consumption, the CPM described in subchapter 6.4 on page 41 is included
in the LCM and the LCM provides terminal commands to start or stop the CPM.



7.4. CURRENT MEASUREMENTS ON JAWS NODES 47

The LCM is also capable to permit Bluetooth devices which are not operating
as JAWS nodes the access to the JAWS network. Thus devices like PDAs or mobile
phones can benefit from the multihop network. The LCM can also limit the connec-
tions to these devices. This feature is not explicitly provided by the other connection
managers TCM and XCM. The LCM will try a role change from a slave to a master
connection. Hence the high power consumption of a slave role connection is shifted
to the communication partner.

The LCM is primary designed to test the stability and behaviour at the specified
limit number of connections. In opposition to the TCM and the XCM, the LCM
cannot guarantee a safe and parallel topology construction. Especially, if the limit
is set to one slave role connection, the LCM cannot avoid the construction of two
or more circles. Additionally, the current implementation of LCM does not track or
indicate the link quality (RSSI) of a connection.

7.4 Current measurements on JAWS nodes

The current I BT is measured to determine the power consumption benefit of sniff
connections. The LCM is limited to one master role connection and two slave role
connections. Figure 7.5 shows the current consumption with and without CPM. In
the first case, all three connections are in sniff mode. In the second case, all three
connection are in active mode.

0 1 2 3 4
0

10

20

30

40

50

60

time [s]

B
T

 c
ur

re
nt

 [m
A

]

 

 

CM_LOCAL with CPM

CM_LOCAL without CPM

Figure 7.5: Comparing the BT current consumption on a JAWS node with and
without the Connection Power Manager (CPM)

The average current without CPM is located at 30.3 mA whereas the average cur-
rent with CPM is located at 17.2 mA. There is a power save potential around 57 %.



48 CHAPTER 7. A LOW-POWER CONNECTION MANAGER FOR JAWS

The current curve without CPM is characteristical if the Bluetooth device maintains
at least one slave role connection. A similiar curve was observed in figure 6.3 on
page 38 with the slave role connection.

Next, the current I AVR is measured to determine the power save potential on
the microprocessor with JAWS and the sleep mode IDLE. Figure 7.6 shows the cur-
rent consumption of JAWS and compares the behaviour between sleep mode NONE
and IDLE.

0   2 4 6 8 10 12
0

2

4

6

8

10

12

14

16

18

20

time [s]

A
V

R
 c

ur
re

nt
 [m

A
]

 

 

JAWS (SLEEP_MODE_NONE)

mhop (SLEEP_MODE_IDLE)

JAWS (SLEEP_MODE_IDLE)

Figure 7.6: Comparing the AVR current consumption between JAWS and mhop
application

Unfortunately, JAWS does not present the expected results. JAWS will not enter
the idle thread. As reference, the application btnut/app/mhop is also included in
the measurement as shown in figure 7.6. btnut/app/mhop provides a subset of the
functionality of JAWS and only offers a connection and transport manager with
a multihop blink command. The behaviour from JAWS is no more observed in
btnut/app/mhop.

7.5 Stability tests

The small Java program StabilityLog.java is used to determine the stability of
the Bluetooth network in sniff mode. The source code of StabilityLog.java is
attached in the appendix on page A. The terminal command coninfo returns the
connection table from each node in the network. Nine JAWS nodes are positioned
for the measurements. Figure 7.7 shows one measurement without CPM and three
measurements with CPM. The CPM will try to put all connections to the sniff mode.



7.5. STABILITY TESTS 49

0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

9

10

time [h]

re
ac

ha
bl

e 
no

de
s

 

 

CM_LOCAL with CPM

CM_LOCAL with CPM

CM_LOCAL with CPM

CM_LOCAL without CPM

Figure 7.7: Stability tests of a JAWS network with and without CPM

The JAWS nodes with CPM enabled are no more reachable after a few hours. Fur-
ther investigations arises that the ZV4002 no longer responds to the Bluetooth stack.

If these measurements are examined more precisely, an interesting fact can be
observed. Figure 7.8 shows a detailed view, and additionally the number of sniff
connections.

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

10

time [min]

 

 

CM_LOCAL with CPM (sniff links)

CM_LOCAL with CPM (total reachable nodes)

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

10

time [min]

 

 

CM_LOCAL with CPM (sniff links)

CM_LOCAL with CPM (total reachable nodes)

Figure 7.8: Stability tests of a JAWS network with CPM

An unstable behaviour is observed. The ZV4002 cannot steady hold the sniff con-
nections. The left graph is generated with coninfo requests each 30 seconds. The
right graph is generated with coninfo requests each 60 seconds.



50 CHAPTER 7. A LOW-POWER CONNECTION MANAGER FOR JAWS

Figure 7.9: Screenshot from the JAWS-GUI with nodes using the Local Connection
Manager (LCM)



Chapter 8

Conclusions

8.1 Conclusions

As first, the RFCOMM device driver is delivered which trades wireless connectivity
with flash memory space. Depending which Bluetooth stack layers are used, the ad-
ditional space requirement is located between 4 and 20 KB. Because the RFCOMM
functionality is embedded in the standard I/O stream interface, the usage of RF-
COMM is as simple as interfacing the serial port.

Different strategies are presented to reduce the power consumption. Depending
on the selected sleep modes, there is a power save potential between 50 and 98 % on
the side of the microprocessor. In which time ratio the program will spend in the
idle thread, and how much the external SRAM is accessed, are essential questions
to evaluate more accurate data. The different sleep modes trades flexibility and
reactivity for power.

The Bluetooth module provides low-power modes for connections which trade
reactivity for power. Especially the sniff mode are examined. But the Bluetooth
module on the BTnode has strong restrictions and limits the connections in sniff
mode to one slave role connection and three master role connections. Due to these
restrictions only a subset of topologies are targeted to put all connections to the sniff
mode. If all three connections are in sniff mode, there will be a power consumption
reduction about 43 % on the side of Bluetooth. But sniff connections in scatternets
have a negative impact to the stability of the Bluetooth module. The Bluetooth
module crashes in a while and renders the Bluetooth stack unusable. So far, sniff
connections should be avoided in scatternets.

8.2 Outlook

The Bluetooth module on the BTnode is the greatest power consumer. If low-power
becomes more importance on the BTnodes, it will be unavoidable to look at another
Bluetooth module. Besides the gains in the stability, Bluetooth modules of the
newest generation support a new feature from the Bluetooth specification 2.0. This
feature is called Enhanced Data Rate (EDR) which triples the data rate. The higher

51



52 CHAPTER 8. CONCLUSIONS

data rate shortens the transmission time. Hence the overall power consumption will
be reduced.

As long as the old Bluetooth module is used, the Bluetooth stack should be ex-
tended to be prepared to a crash on the part of the Bluetooth module. So far the
crash causes a blocked Bluetooth stack. All threads which accesses the Bluetooth
stack are affected in the same fashion. A timeout implementation for each HCI
command can be used to notice about the crash, and appropriate countermeasures
can be taken.

In this thesis, the low-power custom radio CC1000 is disregarded completely.
But the CC1000 has a great potential to reduce the power consumption. In order to
put the whole BTnode in a very low-power mode, the Bluetooth module is powered
down, the microcontroller is put into a deep sleep mode and the CC1000 is used as
a wake-up radio. This approach reduces the power consumption considerably if the
BTnode is not used of an indeterminate duration.



Bibliography

[1] Bluetooth Protocol Architecture Version 1.0 Document No. 1.C.120/1.0,
Bluetooth Special Interest Group (SIG).

[2] Bluetooth Core Specification v1.2, Bluetooth Special Interest Group (SIG),
http://bluetooth.org/spec.

[3] Atmel ATmega128L Processor Manual 2467N-AVR-03/06, Atmel Cooperation,
http://www.atmel.com/dyn/resources/prod documents/doc2467.pdf.

[4] B. Kumar, P. Kline, T. Thompson, ”Bluetooth Application Programming
with the Java APIs“, 2003, Morgan Kaufmann, ISBN 1-55860-934-2.

[5] L. Negri, L. Thiele, ”Power Management for Bluetooth Sensor Networks“,
Proc. 3rd European Workshop on Wireless Sensor Networks (EWSN 2006),
Springer Verlag, Berlin, No. 3868, pages 196-211, February 2006.

[6] L. Negri, L. Thiele, ”The Power Consumption of Bluetooth Scatternets“,
Proc. IEEE Consumer Communications and Networking Conference (CCNC
2006), pages 519-523, January 2006.

[7] J. Beutel, M. Dyer, L. Meier, L. Thiele, ”Scalable Topology Control for
Deployment-Support Networks“, Fourth International Symposium on
Information Processing in Sensor Networks (IPSN 2005), ACM, pages
359-363, April 2005.

[8] D. Hobi, L. Winterhalter, ”Large-scale Bluetooth Sensor-Network
Demonstrator“, Master Thesis, ETH Zurich, Summer term 2005,
http://www.tik.ee.ethz.ch/∼beutel/projects/sada/2005ss hobiwinterhalter.pdf.

[9] Kevin Martin, ”Adaptive XTC on BTnodes“, Master Thesis, ETH Zurich,
Winter term 2005,
http://www.tik.ee.ethz.ch/∼beutel/projects/sada/2004ws martin xtc report.pdf.

[10] K. Römer, F. Mattern, ”The Design Space of Wireless Sensor Networks“,
IEEE Wireless Communications, Vol. 11, No. 6, S. 54-61, December 2004.

[11] J. Beutel, M. Dyer, L. Meier, M. Ringwald, L. Thiele,
”Next-Generation Deployment Support for Sensor Networks“, TIK Report No.
207, ETH Zurich, November 2004.

[12] I. Chakraborty, A. Kashyap, A. Rastogi, H. Saran, R. Shorey, A.
Kumar, ”Policies for increasing throughput and decreasing power
consumption in bluetooth mac“, Proc. IEEE intl. conf. on Pers. Wirel.
Comm., pages 90-94, December 2000.

53

http://bluetooth.org/spec
http://www.atmel.com/dyn/resources/prod_documents/doc2467.pdf
http://www.tik.ee.ethz.ch/~beutel/projects/sada/2005ss_hobiwinterhalter.pdf
http://www.tik.ee.ethz.ch/~beutel/projects/sada/2004ws_martin_xtc_report.pdf


54 BIBLIOGRAPHY

[13] H. Zhu, G. Cao, G. Kesidis, C. Das, ”An adaptive powerconserving
service discipline for bluetooth“, IEEE intl. conf. on Comm., volume 1, pages
303-307, 2002.

[14] R. L. Ashok, R. Duggirala, D. P. Agrawal, ”Energy efficient bridge
management policies for inter-piconet communication in bluetooth
scatternets“, Proc. Vehicular Tech. Conf., 2003.

[15] M. Leopold, M. B. Dydensborg, P. Bonnet, ”Bluetooth and sensor
networks: a reality check“, SenSys ’03: Proceedings of the 1st international
conference on Embedded networked sensor systems, pages 103-113, New York,
NY, USA, 2003.

[16] K. Y. Lee, J. W. Choi, ”Remote-controlled home automation system via
bluetooth home network“, SICE 2003 Annual Conference, volume 3, pages
2824-2829, August 2003.

[17] Mustafa Yücel, ”Inspektion von Sensornetzen per PDA“, Term Thesis, ETH
Zurich, Summer term 2005,
http://people.ee.ethz.ch/∼yuecelm/reports/sa pdasensornetz.pdf.

http://people.ee.ethz.ch/~yuecelm/reports/sa_pdasensornetz.pdf


Appendix A

BTnode rev3.22 schematic

BTnut application: sleep-and-work.c

Connection algorithm of the LCM

Java: StabilityLog.java

Task description

55



56 APPENDIX A. APPENDIX



MAX 20MA

MAX 30MA

RESET

APPROVED JB

Mon Jan 10 19:55:51 2005

24

31
S2

R
27

C
22

X1

C
3

R1

C
5

C
4

R2

C1 C2

B3 G
2

G1
F1
C1
B1
G6
F6
C6
B6

A3 G
3

F4
G4
G5
H6
H5
H4
H3
H2
H1
A6
B5
A5
C4
B4
A4
B2
A2
A1

U3

R3

X2

20

1

12
13
14
15
16
17
18
19

11

10

9
8
7
6
5
4
3
2

U2

2324 33
5221

181920 34

54
55
56
57
58
59
60
61

1

9
8
7
6
5
4
3
2

32
31
30
29
28
27
26
25

42
41
40
39
38
37
36
35

17
16
15
14
13
12
11
10

44
45
46
47
48
49
50
51

532264 62

43

63

U1

JAN BEUTEL
3.22

BTNODE CORE

BTNODE REV3

1TIK 4

FC-135-32.768KHZ

10
0N

SCL

TDO
TDI

BAT_SENSE

PE6
UART1_CTS

VCC_AVR

VCC_AVR

VCC_AVR

VCC VCC_AVR

VCC_AVR

47
00

N

10
0K

100K

0

0

PA<0..7>

UART1_RXD

PC<0..7>

2

2

UART0_TXD

7
6
5
4
3

1
0

5

5
4

0

2

4
3

5

7
6

6
7

0
1

3
2

7
6

4
3

0
1
2

7
6
5
4
3

1
0

1

SS
SCK
MOSI
MISO
PB4
LATCH_SELECT

SDA

UART1_TXD
UART1_RTS
PALE
PCLK
PDATA

PF0
PF1

TMS

UART0_RXD

UART0_RTS
PE3
UART0_CTS

CHP_OUT

TCK

RSSI

10
0N

10
0N

10
0N

10
0N

R
E

S
E

T

CSTCR_G-7.3728

5

ZEICHNUNGSNUMMER :

A4

EIDGENOESSISCHE

8 7 6 4 3 2 1

A

B

C

D

E

12345678

E

D

C

B

A

ZUERICH
TECHNISCHE HOCHSCHULE

ZEICHNUNGS TITEL :

PROJEKT :

SEITE VONLABORATORY :

DESIGN BY :

OUT1

IN1

OUT2

IN2
K

KK K

K K
AMIC_LP62S2048

C
E1

*

C
E2

W
E*

G
N

D
<1

-0
>

VC
C

<1
-0

>

A<0>

A<1>

A<2>

A<3>

A<4>

A<5>

A<6>

A<7>

A<8>

A<9>

A<10>

A<11>

A<12>

A<13>

A<14>

A<15>

A<16>

A<17>

O
E*

IO<0>

IO<1>

IO<2>

IO<3>

IO<4>

IO<5>

IO<6>

IO<7>

TI_SN74LVC573A

LE

G
N

D

VC
C

D<7>

D<6>

D<5>

D<4>

D<3>

D<1>

D<2>

D<0> O
E*

O<0>

O<1>

O<2>

O<3>

O<4>

O<5>

O<6>

O<7>

ATMEGA128L

AR
EF

AV
C

C

G
N

D
2

G
N

D
1

VC
C

2

VC
C

1

AG
N

D

PE<0>

PE<1>

PE<2>

PE<4>

PE<3>

PE<5>

PE<6>

PE<7>

PE
N

*

AL
E

R
D

*

W
R

*

TO
SC

2

TO
SC

1

XT
AL

2

XT
AL

1

R
E

S
E

T
*

PA<0>

PA<1>

PA<2>

PA<4>

PA<3>

PA<5>

PA<7>

PA<6>

PB<0>

PB<1>

PB<3>

PB<2>

PB<4>

PB<5>

PB<6>

PB<7>

PC<0>

PC<2>

PC<1>

PC<3>

PC<4>

PC<5>

PC<7>

PC<6>PF<7>

PF<6>

PF<5>

PF<4>

PF<3>

PF<2>

PF<1>

PF<0>

PD<7>

PD<6>

PD<5>

PD<4>

PD<3>

PD<2>

PD<1>

PD<0>



M
O

LE
X

15
P

IN

POWER ON

H
IR

O
S

E
D

F1
7

40
P

IN
EXTERNAL DC POWER SUPPLY2X AA CELL POWER SUPPLY

APPROVED JB

Mon Jan 10 19:55:52 2005

R
30

R
31

C
10

4

5
3

2

U8

17
16
15
14
13
12
11
10

9
8
7
6
5
4
3
2
1

J2

42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10

9
8
7
6
5
4
3
2
1

J1

C9

C8

5
2
18

4

3

U6

C
11

R
11

R12

4

1

6

5

3
2

U7

P
N

J3

R
4

R5

R6

C7

C6

L1

56

1

4

2

3

U4

R
10

R
9

R
8

R7

D3 D4 D5D2

20

1

12
13
14
15
16
17
18
19

11

10

9
8
7
6
5
4
3
2

U5

3
2

1

S1
VCC_IO

TDO
TDI

PALE
PCLK
PDATA
RSSI
TCK
TMS

10N

VCC

VCC_AVR

VCC VDC_IN VCC
VDC_IN

VCC_IO

VDC_IN

VCC

36
0

36
0

36
0

10100K

10
K

10
K

10
K

10
K

0
1
2
3
4
5
6
7

BTNODE POWER I/O

2 4

JAN BEUTEL

TIK

BTNODE REV3

PE3
PE6

PB4
SCL
SDA
PF1
PF0

UART0_RXD
UART0_TXD
UART0_RTS
UART0_CTS

3.22

MISO

SCK
SS
CHP_OUT

MOSI

RESET

UART1_RXD
UART1_TXD
UART1_RTS
UART1_CTS

BAT_SENSE

ON_VCC_IO
ON_VCC_CC
ON_VCC_BT
RESET_BT

LATCH_SELECT

P
C

<0..7>
10

0N

10
U

4.
7U

10
U

4.
7U

4.7UH

C
19

0_
G

R
E

E
N

C
19

0_
Y

E
LL

O
W

C
19

0_
R

E
D

C
19

0_
B

LU
E

160K

270K

T

NC7Sz04
A

G
N

D

VCC

Y

1

13

5
4
3
2

6

9
8
7

10
11

17

14
15
16

12

1

10
9
8
7
6
5
4
3
2

11

14
15
16

12
13

20
21

19

17
18

23
22

24

26
25

27
28
29

31
30

32

34
33

36
35

37

40
39
38

41
42

K

T

LT1962

SENSE

G
ND BYP

OUT

SHDN*

IN

KSI1040X

D20

D21

R1C1

ON/OFF

S2

R2

T

T

LTC3429

G
N

D

FB

VOUT

SHDN*

VIN

SW

TI_SN74LVC573A

LE

G
N

D

VC
C

D<7>

D<6>

D<5>

D<4>

D<3>

D<1>

D<2>

D<0> O
E*

O<0>

O<1>

O<2>

O<3>

O<4>

O<5>

O<6>

O<7>

5

ZEICHNUNGSNUMMER :

A4

EIDGENOESSISCHE

8 7 6 4 3 2 1

A

B

C

D

E

12345678

E

D

C

B

A

ZUERICH
TECHNISCHE HOCHSCHULE

ZEICHNUNGS TITEL :

PROJEKT :

SEITE VONLABORATORY :

DESIGN BY :



APPROVED JB

MAX 80MA

TESTPIN 12MHZ

M
A

X
10

M
M

TR
A

C
E

TESTPIN 32KHZ

Mon Jan 10 19:55:52 2005

J6

J7

C
46

C
45

C
44

R
29

R
28

X4

1

3 42

J5

4

1

6

5

3
2

U9

R
13

R15

R16

C
12 R17

C
18

C
21

R19

C
20

C
23

R20

C
24

C
17

C
19

K9K8

C5

A9K3 K5A3K6K2

A8
A7

E9
D9

F9
D8

C1B1
J4

K4

A6
A5

F10

B5

C8

G10
H8
H9

H10
B7
B8
D6
E8

C3
D3
B4

D10
E10

G9

D7
E7

C6
C7

B6

J9
J7

J5

J8
J6

B10

U10

A4

H6H1
G

4

G1

G2
F2
E5
H5
E4
H4
H3
E3

G6
F5
G5
F4
G3
F3

H2
E2

F1

A5
B5
A2
C2
D2
B1
A1
C1

C3
B2
E6
D6
C6
A6
B6
D5
C5

D1
E1

U11

C15

C16

C13

C14

X3

R
18

10

13

0

4

512KX162.4GHZ

1POL

VALUE

15P

47
00

N

22P

FC-135-32.768KHZ

JXS-63-12

3.
9P

47
00

N

4.
7P

15P

0

12
1K

1%

10
0K

10K

100K

10
K

10

10

22P

10
0N

10
0N

10
0N

10
0N

10
0N

10
0N

10
0N

10
K

?

VCC_BT

VCC_BT

VCC_BT

VCC_BT

VCC VCC_BTVCC_BT

VCC_VCO

VCC_RFVCC_BT

VCC_VCO

RESET_BT

11

15

A[19..0]
D[15..0]

UART1_RXD
UART1_TXD
UART1_RTS

3.22BT NODE REV 3

3TIK

JAN BEUTEL

4

3

18
17
16

14

12

9
8
7
6
5
4

2
1

15
14

12
11

13

10

7
6

8

5

3
2
1

BTNODE BLUETOOTH

0

9

VCC_BT

VCC_BT

VCC_RF

UART1_CTS

VCC_BT

ON_VCC_BT

K

K

K
K

K K

ZEEVO_ZV4002

X
TA

L_IN

X
TA

L_O
U

T

S
LP

X
TA

L_O
U

T

GPIO3/SPI_CLK

RESET

S
LP

X
TA

L_IN

GPIO0/SPI_DO

GPIO1/SPI_DI

GPIO2/SPI_CS

GPIO4/DUART_RXD

GPIO5/DUART_TXD

GPIO6

GPIO15/A20

UART_RXD

UART_CTS

UART_TXD

UART_RTS

USB_DM

USB_DP

ANT

REF

PA_CTRL

V
D

D
_V

C
O

V
D

D
_U

S
B

V
S

S
_U

S
B

V
D

D
_R

F

V
D

D
_A

N
G

V
S

S
_A

N
G

CS_FLASH

OE

WE

RAM0

RAM1

A[19..0]

D[15..0]

GPIO7/PCM_SYNC/INT1

GPIO8/PCM_IN/CS1

GPIO9/PCM_CLK/INT2

GPIO10/PCM_OUT/CS2

GPIO11/RX_EN

GPIO12/TX_EN

GPIO13/A22

GPIO14/A21

ATDO

ATRST

ATMS

ATCK

ATDI

CS_RAM

CS_O

INT_0

V
D

D
[1

..0
]

V
S

S
[1

..0
]

V
S

S
_R

F[
6.

.0
]

SST39VF800A

A18

CE*

OE*

WE*

V
D

D

VS
S1

V
S

S
0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

A17

A16

A15

A14

A13

A12

A11

A10

A9

A8

A7

A6

A5

A4

A3

A2

A1

A0

KKK

G
R

O
U

N
D

2
G

R
O

U
N

D
1

G
R

O
U

N
D

3

IN

SI1040X

D20

D21

R1C1

ON/OFF

S2

R2

K

K

K

K

K

K

5

ZEICHNUNGSNUMMER :

A4

EIDGENOESSISCHE

8 7 6 4 3 2 1

A

B

C

D

E

12345678

E

D

C

B

A

ZUERICH
TECHNISCHE HOCHSCHULE

ZEICHNUNGS TITEL :

PROJEKT :

SEITE VONLABORATORY :

DESIGN BY :



50OHM

H
U

B
E

R
S

U
H

N
E

R
M

M
C

X

S
TA

N
D

A
R

D
IN

T.
A

N
TE

N
N

A
O

P
TI

O
N

A
L

R
F

C
O

N
N

E
C

TO
R

MAX 30MA

APPROVED JB
Mon Jan 10 19:55:53 2005

2
3

4
1
J4

R32

X5

C
25

C
43

L6

4

1

6

5

3
2

U13

R25

C
41

R24

17 1828

4

3

13

26
25
27

11 10

21

23
24

12

U12

C
33

C
32

C
31

C
30

C
28

R
21

C
29

R26

C
27

C
26

C
34

C
35

C39

C
36

C
40

C38

C
37R22

R
23

L3

L4

L2
VCC_CC

VCC_CC

VCC_CC

VCC 0

JAN BEUTEL

TIK

BTNODE REV3

44

BTNODE LP RADIO

3.22

ON_VCC_CC

CHP_OUT

PALE
PCLK
PDATA

SCK
MOSI

RSSI

P
C

B
_A

N
T

10K

10K

82
K

0

27
K

MISO

10
0N

4.7NH

2.2NH

2.
2N

H

120NH

10
P

10
P

10P

4.7P

10
P

4.
7P

CC1000

15
P

JXS-53-14.7456

15
P

10
0P

47
00

N

33
N

1N 1N 22
0P

22
0P

1N

100K

33
N

K

K

K

K

SI1040X

D20

D21

R1C1

ON/OFF

S2

R2

K

DCLK

AV
D

D
<3

-0
>

L<
2>

DIO

CHP_OUT

PALE

PCLK

PDATA

R
SS

I

X
_O

S
C

_Q
<1

>

RF_OUT

RF_IN

R_BIAS

D
G

N
D

<1
-0

>

D
VD

D

AG
N

D
<6

-0
>

X
_O

S
C

_Q
<2

>

L<
1>

KKKKK

K

KK

KK

K

K

K

5

ZEICHNUNGSNUMMER :

A4

EIDGENOESSISCHE

8 7 6 4 3 2 1

A

B

C

D

E

12345678

E

D

C

B

A

ZUERICH
TECHNISCHE HOCHSCHULE

ZEICHNUNGS TITEL :

PROJEKT :

SEITE VONLABORATORY :

DESIGN BY :



//
// sleep-and-work application
// (to test the sleep modes)
//

#include <hardware/btn-hardware.h>
#include <led/btn-led.h>
#include <sys/thread.h>
#include <sys/timer.h>

// incrementing variables for ∼ 1 sec
void work(void)
{

u long i;
for (i=0;i<30000000; ) { i++; }

}

int main(void)
{

btn hardware init();

// turn off LEDs
btn led init(0);

// turn off both communication modules
btn hardware bt power(0);
btn hardware cc1000 power(0);

// set the sleep mode for the idle thread
// SLEEP MODE {NONE|IDLE|ADC|EXT STANDBY|PWR SAVE|STANDBY|PWR DOWN}
NutThreadSetSleepMode(SLEEP MODE IDLE);

while (1)
{

// runs the idle thread for 1 sec
NutSleep(1000);
// do something for 1 sec
work();

}

return -1;
}





//
// Connection algorithm in pseudo code
// of the Local Connection Manager (LCM)
// (establishes connections to other JAWS nodes)
//

for (;;)
{
start async inquiry();

cleanup page blacklist();
cleanup page list();
bubblesort page list();

result = wait response start async inquiry();

foreach result i
{

if (check mac prefix(result i)) else continue;
if (check cod(result i)) else continue;
if (check page blacklist(result i)) else continue;
if (check contable(result i)) else continue;

update pagelist(result i);
}

bubblesort page list();

sleeptime += sleeptime step;

foreach page list entry i
{

if (check connection limits()) else break;

sleep(random(sleeptime min));

if (check contable(page list entry i)) else continue;

create async connection(page list entry i);
success = wait result create async connection();
if (success)
delete from pagelist(page list entry i)

}

if (no connections())
sleeptime = sleeptime min;

sleep(sleeptime);
}





//
// StabilityLog.java
//
// test the *stability* of JAWS nodes
// using terminal command ’coninfo’
//

import java.io.InputStream;
import java.io.OutputStream;

import gnu.io.CommPortIdentifier;
import gnu.io.SerialPort;

public class StabilityLog
{

public static void main(String[] args)
{
CommPortIdentifier portId = null;
SerialPort port = null;
InputStream is;
OutputStream os;
String[] lines = null;
byte[] bytes = new byte[50000];
long start;
int i, j, n, devices, sniff conns, active conns;

try
{
portId = CommPortIdentifier.getPortIdentifier("COM3");

port = (SerialPort) portId.open("JAWS", 5000);
port.setSerialPortParams(57600, SerialPort.DATABITS 8,

SerialPort.STOPBITS 1, SerialPort.PARITY NONE);
port.setFlowControlMode(SerialPort.FLOWCONTROL NONE);

// reserves enough receive buffer
port.setInputBufferSize(50000);

is = port.getInputStream();
os = port.getOutputStream();

start = System.currentTimeMillis();

System.out.println("STABILITY = [");

for (i=0;i<100;i++)
{
devices = 0;
sniff conns = 0;
active conns = 0;

// blink broadcast
os.write("rpcs 0 blink\n".getBytes()); // blink broadcast



Thread.sleep(1000);

// broadcasting coninfo
os.write("coninfo\n".getBytes());

Thread.sleep(30000);

if (is.available() > 0)
{
n = is.read(bytes);
lines = new String(bytes).substring(0,n).split("\n");

for (j=0;j<lines.length; j++)
{

if (lines[j].startsWith(":T "))
{
devices++;

}
else if (lines[j].startsWith(":TE "))
{

if (lines[j].charAt(10) > ’4’)
{
sniff conns++;

}
else
{
active conns++;

}
}

}
}

System.out.println((System.currentTimeMillis() - start) +" "+
devices +" "+ sniff conns +" "+ active conns);

}

System.out.println("]");

port.close();
}
catch (Exception e)
{

if (port != null)
{
port.close();

}

System.err.println(e.getMessage());
System.exit(-1);

}
}

}







Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Institut für Technische Informatik
und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Wintersemester 2005/06

MASTERTHESIS MA-2006.06
of

Mustafa Yücel

Tutor: Matthias Dyer (dyer@tik.ee.ethz.ch)
Co-Tutor: Jan Beutel (beutel@tik.ee.ethz.ch)
Professor: L. Thiele

Ausgabe: 12. December, 2005
Abgabe: 12. June, 2006

Role and Link-State Selection for Bluetooth Scatternets

Introduction

Abbildung 1: BTnode rev.3 Abbildung 2: Example of a XTC Scatternet

A sensor network is a collection of small, low-resource devices that are distributed in the physical environment.
Due to cost and �exibility issues, it is often assumed to be a wireless sensor network (WSN) consisting of a
large number of sensor nodes. Each of these nodes collects sensor data, and the network collaboratively provides
high-level sensing results.
The BTnode rev.3 [1] (see Fig.1) is a plattform for the development of sensor�network applications and protocols.
It has two radio interfaces: a Bluetooth radio provides relatively high bandwith, while the second radio is for
low-rate and low-power operation. Recently, a new system software [2] for the BTnode rev.3 has been released,
that is based on the Ethernut embedded OS [3].
Deployment-support networks (DSNs) have been proposed [4] as a non-permanent, wireless cable replacement
for the development, testing and debugging of sensor network applications. This approach allows to deploy and
test large numbers of devices in a realistic physical scenario. The DSN is transparent, highly scalable, and can be
quickly deployed. It does not disturb the target WSN any more than the traditional, cable-based approach. For
the engineer, everything actually looks as if the usual cables were in place; he can thus use the same tools. The

1



Target Sensor Network

Host PC 
Connection

Deployment-Support 
Network

Abbildung 3: Deployment Support Network

DSN nodes are attached to WSN target devices via a programming and debugging cable and form an autonomous
network (see Fig. 3). The WSN nodes can then be accessed through serial-port tunnels operated over the DSN.
With this tool, the limit for largescale prototyping is pushed from simulation and virtualization to coordinated
real-world deployment.

Problem task (german)
In früheren Arbeiten [5, 6, 9] wurde ein DSN Demonstrator entwickelt, mit den folgenden Eigenschaften:

1. Topology Control: Nach dem Einschalten beginnen die BTnodes sich miteinander zu verbinden. Ein Al-
gorithmus entscheidet, welche Verbindungen ausgewählt werden und wie die Netzwerktopology am Ende
aussieht. Zur Zeit kann zwischen einem baum-basierten und einem mesh-basierten (XTC) Algorithmus
gewählt werden.

2. Target Monitoring: An jedem DSN-BTnode kann ein Target Node angeschlossen werden über die serielle
Schnittstelle.

3. Event Logging: Events vom Target oder vom DSN-Knoten selber können lokal mit Zeitstempel geloggt
und ans GUI gesendet werden.

4. Remote Programming: Vom GUI aus kann ein neues Software-Image auf die BTnodes geladen werden.
Sowohl für die DSN-, als auch für die Target-Knoten.

5. GUI: Der GUI-Server ist über ein serielles Kabel mit einem BTnode verbunden. Der GUI-Client verbindet
sich mit dem Server und ist das Benutzerinterface zum DSN.

Das Ziel dieser Arbeit ist, den Prototypen in folgenden 2 Bereichen zu erweitern:

1. L2CAP Connection: Zur Zeit muss der BTnode über ein serielles Kabel mit dem PC/PDA verbunden
werden um die DSN Services zu nutzen. In der Arbeit [8] wurde erfolgreich gezeigt, dass der PC/PDA auch
über Bluetooth (L2CAP) mit den BTnodes kommunizieren kann. Diese Funktionalität soll nun für das DSN
verfügbar gemacht werden.

2. Low Power Modes: Da bis jetzt noch keine energiesparende Funktionen von Bluetooth genutzt werden,
ist die Lebenszeit eines batteriebetriebenen Nodes sehr beschränkt. In dieser Arbeit soll in einem ersten
Schritt die energiesparenden Modes (v.a. der Sni�-Mode) ausprobiert werden um sie dann in einem zweiten
Schritt in den bestehenden Demonstrator zu integrieren. Die gewonnene Energiee�zienz soll gemessen und
verglichen werden.

Für das Testen und Messen der erzielten Ergebnisse soll direkt das DSN verwendet werden. D.h. eine Case-Study
für das DSN soll ein weiteres Ergebniss dieser Arbeit sein.

2



Teilaufgaben
1. Erstellen Sie einen Projektplan und legen Sie Meilensteine sowohl zeitlich wie auch thematisch fest. Erar-

beiten Sie in Absprache mit dem Betreuer ein P�ichtenheft.

2. Machen Sie sich mit den relevanten Arbeiten im Bereich Sensornetze vertraut. Führen Sie eine Literaturre-
cherche durch. Suchen Sie auch nach relevanten neueren Publikationen.

3. Arbeiten Sie sich in die Softwareentwicklungsumgebung der BTnodes ein. Machen Sie sich mit den erforder-
lichen Tools vertraut und benutzen Sie die entsprechenden Hilfsmittel (online Dokumentation, Mailinglisten,
Application Notes).

4. Machen Sie sich mit der JAWS Applikation vertraut. Schauen Sie sich insbesondere die Implementierung
des L2CAP-Layers an. Arbeiten Sie sich in die Grundlagen von Bluetooth ein. Wesentlich für diese Arbeit
ist vor allem das HCI Interface und alles was L2CAP und sni�-mode betri�t.

5. Erweitern Sie die JAWS DSN Applikation, so dass von einem GUI PC aus eine L2CAP Verbindung auf-
gemacht werden kann. Die Bluetooth-Verbindung soll die herkömmliche serielle Verbindung zum Terminal
ersetzen. Erweitern Sie auch die GUI Applikation (Server), so dass die neue Bluetooth Verbindungsart
genutzt werden kann.

6. Erarbeiten Sie ein Konzept, welches beschreibt, wie die low-power modes auf dem DSN genutzt werden
können. Lesen sie dazu auch [7]

7. Implementieren und testen sie die low-power modes im DSN.

8. De�nieren und messen sie relevante Charakterisiken Ihrer Implementierung.

9. Dokumentieren Sie Ihre Arbeit sorgfältig mit einem Vortrag, einer kleinen Demonstration, sowie mit einem
Schlussbericht.

Durchführung der Masterarbeit

Allgemeines
• Der Verlauf des Projektes Masterarbeit soll laufend anhand des Projektplanes und der Meilensteine evaluiert

werden. Unvorhergesehene Probleme beim eingeschlagenen Lösungsweg können Änderungen am Projektplan
erforderlich machen. Diese sollen dokumentiert werden.

• Sie verfügen über PC's mit Linux/Windows für Softwareentwicklung und Test. Für die Einhaltung der gel-
tenden Sicherheitsrichtlinien der ETH Zürich sind Sie selbst verantwortlich. Falls damit Probleme auftauchen
wenden Sie sich an Ihren Betreuer.

• Stellen Sie Ihr Projekt zu Beginn der Masterarbeit in einem Kurzvortrag vor und präsentieren Sie die
erarbeiteten Resultate am Schluss im Rahmen des Institutskolloquiums Ende Semester.

• Besprechen Sie Ihr Vorgehen regelmässig mit Ihren Betreuern. Verfassen Sie dazu auch einen kurzen wö-
chentlichen Statusbericht (EMail).

Abgabe
• Geben Sie zwei unterschriebene Exemplare des Berichtes spätestens am 12. June 2006 dem betreuenden

Assistenten oder seinen Stellvertreter ab. Diese Aufgabenstellung soll vorne im Bericht eingefügt werden.

3



Literatur
[1] Btnodes, a distributed environment for prototyping ad hoc networks. http://www.btnode.ethz.ch.

[2] Btnut system software reference. http://www.btnode.ethz.ch/support/btnut_api/index.html.

[3] Ethernut. http://www.ethernut.de/.

[4] J. Beutel, M. Dyer, L. Meier, and L. Thiele. Scalable topology control for deployment-support networks. In
Proc. 4th Int'l Conf. Information Processing in Sensor Networks (IPSN '05), pages 359�363. IEEE, Piscataway,
NJ, April 2005.

[5] Daniel Hobi and Lukas Winterhalter. Large-scale bluetooth sensor-network demonstrator. Master's thesis,
ETH Zurich, Switzerland, 2005. MA-2005-13.

[6] Kevin Martin. Adaptive XTC on BTnodes. Master's thesis, ETH Zurich, Switzerland, 2005. MA-2005-05.

[7] L. Negri, J. Beutel, and M. Dyer. The power consumption of bluetooth scatternets. In IEEE Consumer
Communications and Networking Conference, page to appear. IEEE, Piscataway, NJ, 2006.

[8] Mustafa Yuecel. Inspektion von Sensornetzen per PDA. Master's thesis, ETH Zurich, Switzerland, 2005.

[9] Sven Zimmermann. Online sensor-network monitoring. Master's thesis, ETH Zurich, Switzerland ETH Zurich,
Switzerland, 2005. SA-2005-26.

4


	Title
	Abstract
	Acknowledgements
	Contents
	List of Figures
	Introduction
	Motivation
	Contributions
	Overview
	Related Work

	Fundamentals
	The BTnode
	Power save modes for ATmega128L
	Overviewing the Bluetooth stack
	Principles in Bluetooth communication
	Connection and transport manager
	Power save modes for Bluetooth connections

	Cable replacement using RFCOMM
	Why RFCOMM?
	The implementation design for RFCOMM
	Usage of the RFCOMM device driver
	Limitations by the RFCOMM device driver
	Slim down the Bluetooth stack of BTnut
	The Bluetooth API for Java: JSR 82
	The hunt for a JSR 82 implementation on J2SE

	Accessing the BTnodes with Bluetooth APIs

	Analysing the power consumption
	Current consumption of microprocessor and other components
	Efficiency of voltage converters
	Measurement setup

	Applying the sleep modes
	The measured current consumption in each mode
	Unleash the sleep modes in BTnut
	The measured voltage converter efficiency

	Bluetooth link power control
	Extending the HCI layer of BTnut
	Extending the Bluetooth command terminal
	Bluetooth link measurements
	Implementing the Connection Power Manager

	A low-power connection manager for JAWS
	Limitations by the Bluetooth module ZV4002
	Why not using an existing connection manager?
	Implementation of a new connection manager
	Current measurements on JAWS nodes
	Stability tests

	Conclusions
	Conclusions
	Outlook

	Bibliography
	Appendix
	BTnode rev3.22 schematic
	BTnut application: sleep-and-work.c
	Connection algorithm of the LCM
	Java: StabilityLog.java
	Task description


