
Master’s Thesis - Winter Term 2005/2006

Management of Distributed

Services in MANETs

Eduardo Silva eduasilv@tik.ee.ethz.ch

MA-2006-07

30th April 2006

Tutor: Károly Farkas farkas@tik.ee.ethz.ch

Supervisor (ETH): Bernhard Plattner platter@tik.ee.ethz.ch

Supervisor (Chalmers): Philippas Tsigas tsigas@cs.chalmers.se

Abstract

Nowadays mobile devices and wireless networks are becoming ubiquitous.

Such a trend is leading to an emergence of new distributed services, that

explore the natural interesting conditions offered by this type of networks.

A prominent example is the case of multiplayer gaming.

However, granting service management functionality in these networks is a

demanding task. The classical server-client and peer-to-peer approaches are

not well suited to support distributed services in these environments. New

approaches are appearing to cope with the demands and characteristics of

mobile networks. One proposal is the zone-based architecture, where the

network is divided into different zones and in each zone a zone server is se-

lected. These special nodes are responsible for the management of the nodes

that belong to their zone. PBS (Priority Based Selection) algorithm allows

the selection and maintenance of the group of zone servers. This algorithm

performs the selection of the zone servers based on their capacity or weight.

In this thesis an algorithm called NWC (Node’s Weight Computation) has

been proposed to perform the weighting of the network nodes for the zone

server selection. The algorithm computes the weight based on a group of

node’s properties and allows the adaptation of the computation as function

of the service characteristics. To cope with the service context adaptation

a framework has been proposed. The algorithm has been tested via simula-

tions showing a good performance in the selection of the zone servers. The

NWC algorithm has also been implemented in a real testbed.

I

Preface

At the end of this period, I feel that words are too simple to express feelings

and experiences that I lived during this thesis time.

I want to thank:

- Prof. Plattner for the opportunity to accomplish my thesis at the Comp.

Eng. and Networks Lab. (TIK/ETH-Zurich), and Károly Farkas, for his

guidance and patience during all the time of our collaboration, it has been

a very rich experience for me.

- Prof. Erik Agrell and Prof. Philippas Tsigas for the support.

- Theus Hossmann, my colleague and friend, for the good discussions, nice

time and environment we shared during all the time.

- My family, ”não haverão nunca palavras para vos agradecer, e vos dizer o

quão importantes são para mim...”.

- My friends from Portugal and all over the world.

- ”La Estrella de mi cielo”.

Zurich, 30 April 2006

Eduardo Silva

III

Contents

Abstract I

Preface III

Table of Contents IV

List of Figures IX

List of Tables X

1 Task Description 1

1.1 Introduction . 1

1.1.1 Report Organization 3

1.2 General Regulations . 4

2 Fundamentals 5

2.1 Service Management in MANETs 5

2.1.1 Service Management Architectures 7

2.1.2 The Zone-Based Architecture 9

2.2 The PBS Algorithm . 11

2.2.1 Notation and Definitions Used in PBS 12

2.2.2 Dominating Set Computation 13

2.2.3 Node’s Weight . 15

V

CONTENTS Master’s Thesis

2.3 Related Work . 15

2.3.1 Single Metric DS Selection 16

2.3.2 Multiple Metric DS Selection 17

2.3.3 Summary . 21

3 Node’s Weight Computation Algorithm 23

3.1 Algorithm Overview . 23

3.1.1 Goals . 23

3.2 Assumptions . 25

3.3 NWC Algorithm Design . 26

3.3.1 Representativness of a Node 26

3.3.2 Algorithm Structure 28

3.3.3 Service Profile . 31

3.4 The NWC Algorithm . 32

3.5 Summary . 34

4 Simulation and Evaluation 37

4.1 Simulation Goals . 37

4.1.1 Simulation Constraints 38

4.2 Real Time Multiplayer Games 39

4.2.1 Networking Properties 40

4.2.2 Requirements . 41

4.3 Game/Test Service Specifications 42

4.4 Factorial Design . 43

4.4.1 Fractional Factorial Design 44

4.5 The NWC Framework . 46

4.5.1 NWC Simulation . 49

4.5.2 Settings . 50

VI

Master’s Thesis CONTENTS

4.5.3 The Factorial Design 51

4.5.4 Metrics for Algorithm Evaluation 52

4.6 Evaluation and Best Profile Computation 54

4.6.1 Global Algorithm Performance 54

4.6.2 The Best Profile . 61

4.7 Summary . 66

5 Implementation 69

5.1 NS-2 Implementation . 69

5.1.1 The NS-2 Network Simulator 69

5.1.2 NWC Algorithm Implementation 70

5.2 Siramon Implementation . 74

6 Conclusions and Outlook 77

6.1 Conclusions . 77

6.2 Outlook . 80

A Best Profile Computations 81

A.1 Factorial Design Results . 81

A.2 The Best Profile . 81

A.2.1 Multi-Objective Optimization 82

A.2.2 Best Weight Profile Computation 84

A.2.3 School Yard Scenario 85

A.2.4 Test Scenario . 86

B Finite State Machine (FSM) 89

B.1 Introduction . 89

B.2 The States . 89

B.3 The Transitions and Actions 90

VII

CONTENTS Master’s Thesis

C NWC algorithm NS-2 Installation 93

C.1 Installation . 93

D Siramon Framework 95

D.1 Introduction . 95

D.2 The Structure . 95

E Used Abbreviations 99

Bibliography 101

VIII

List of Figures

2.1 A MANET . 6

2.2 Zone-Based Architecture - An Example Scenario 10

2.3 PBS - Flowchart . 14

3.1 NWC Algorithm - Parameters 28

3.2 NWC Value Scales . 29

4.1 Multiplayer Games . 39

4.2 Simulation Structure . 48

4.3 School Yard Scenario - DS nodes, DS changes and Anomalies 55

4.4 School Yard Scenario - Packet loss and Latency 55

4.5 Test Scenario - DS nodes, DS changes and Anomalies 56

4.6 Test Scenario - Packet loss and Latency 56

4.7 Number DS nodes - School Yard scenario 60

4.8 Number DS nodes - Test scenario 60

4.9 Objective Function - School Yard Scenario 65

4.10 Objective Function - Test Scenario 66

5.1 NWC NS-2 Implementation 71

B.1 Finite State Machine (FSM) 90

D.1 SIRAMON architecture . 96

IX

List of Tables

2.1 Pros & Cons of a Server/Client Architecture in MANETs . . 9

2.2 Pros & Cons of a Peer-to-Peer Architecture in MANETs . . . 9

2.3 Pros & Cons of a Hybrid Architecture in MANETs 9

3.1 NWC Local Parameter Default Demands 34

4.1 Networking Requirements for Real Time Multiplayer Games . 42

4.2 Processing Capacities Scale 42

4.3 Service Properties . 43

4.4 Parameters’ Weight Factors 44

4.5 Weight Factor Combinations, for Factorial Design 47

4.6 School Yard Scenario - simulation settings 51

4.7 Test Scenario - Simulation Settings 52

4.8 Factorial Design - Simulation Settings 52

4.9 Global Statistics - School Yard scenario 57

4.10 Global Statistics - Test scenario 57

4.11 Objective Function Weights 64

4.12 The Best Profile, in Both Scenarios 65

4.13 Best Profile Results - School Yard Scenario 65

4.14 Best Profile Results - Test Scenario 66

5.1 Files Used for PBS/NWC Implementation in NS-2 73

X

Master’s Thesis LIST OF TABLES

5.2 Zone Server Selection Functionality in Siramon Framework . 75

5.3 Used Files for the PBS/NWC Implementation in SIRAMON 76

A.1 Parameters’ Importance Combinations for Factorial Design . 82

A.2 Factorial Design Results - School Yard scenario 83

A.3 Factorial Design Results - Test scenario 84

A.4 Objective Function Weights 85

A.5 MOF computation, School Yard Scenario 86

A.6 MOF computation, Test Scenario 87

B.1 Transitions of the Finite State Machine (FSM) for PBS/NWC. 91

XI

LIST OF TABLES Master’s Thesis

XII

Chapter 1

Task Description

This chapter presents the thesis task description. The first section provides a

brief overview about the thesis topic, then a description of the report organiza-

tion is given. In the last section the general regulations followed to complete

the thesis are presented.

1.1 Introduction

MANETs (Mobile Ad hoc NETworks) are ”plug-n-play” networks, consist-

ing of a group of mobile devices (laptops, cell phones, PDAs, etc.), working

in a distributed and cooperative environment, without any central admin-

istration. Each element of this self-organized network may act as a host

and/or a router, forwarding packets to the other nodes.

With the emerging use of mobile wireless technologies, it is expected that

MANETs and their applications will become popular soon. Real-time appli-

cations, such as games, multimedia applications, Voice-over-IP, are natural

candidates to be used over MANETs [1]. But support these demanding ap-

plications under unreliable and dynamic conditions of a wireless network is

a difficult task.

In [2] an overview of the technical challenges that are fundamental to support

real-time applications in wireless and mobile networks is given. Service

1

Chapter 1 Task Description

support or provisioning in MANETs asks for special functionality in order to

cope with all the demands associated with this environment. The required

functions can be divided in the following categories: service description,

discovery, deployment and management.

Recently several solutions have appeared to support applications in infras-

tructureless environments, e.g. Konark [3], a middleware for service discov-

ery and delivery in MANETs; or another proposal is SIRAMON (Service

provIsioning fRAMework for self-Organized Networks) [4]. SIRAMON is a

generic, decentralized service provisioning framework for self-organized net-

works, supporting the full life-cycle of the service by providing service speci-

fication, advertisement/lookup, deployment, management and environment

monitoring mechanisms.

This thesis is integrated in the SIRAMON project, more concretely in the

framework’s Service Management functionality. In Appendix D, a brief pre-

sentation of the framework is given.

The management of distributed applications in MANETs presents some spe-

cial issues. The traditional architectures (server-client and peer-to-peer, see

section 2.1.1) do not completely cope with the dynamic conditions and lim-

ited resources of a MANET and so some alternative approaches have been

proposed recently. An example is the ‘Zone-Based Service Architecture’ [5].

In this approach, the network is divided into separate zones. In every zone,

a dedicated server node handles the client nodes belonging to the zone and

synchronizes with the other zone servers. To select these server nodes a

selection algorithm called PBS (Priority Based Selection) [6] is used. PBS

compares the priorities of the different nodes and chooses the highly pri-

oritized nodes as zone servers. Priority assignment is based on the node’s

weight, a metric which indicates the node’s capability to act as a zone server.

In this thesis, an algorithm to compute and maintain the node’s weight

is proposed. The computation is based on the node’s available resources

(CPU, memory, and remaining battery power), the node’s link connectivity

2

1.1 Introduction Chapter 1

(the quality of the links via the node can communicate with its neighbors)

and the number of neighbors that a node has at each moment.

The aim of the proposed algorithm, NWC (Nodes Weight Computation), is

to provide the weight computation functionality for the priority assignment

of the PBS algorithm. This computation aims to perform the selection

of robust and stable servers, and also provide a mechanism to adapt this

computation according to the service requirements and characteristics.

To evaluate the algorithm’s characteristics/performance simulation has been

used. The algorithm has been implemented in a simulator (the Network Sim-

ulator NS-2 [7]) and to experiment it a generic service, based on Real Time

Multiplayer Games characteristics, has been also simulated. Finally, the al-

gorithm has been implemented in the SIRAMON framework.

In the next section the report organization is presented.

1.1.1 Report Organization

• Chapter 2 - Fundamentals - The Zone-based architecture and the PBS

algorithm are presented in detail and an overview on related work is

given.

• Chapter 3 - Node’s Weight Computation Algorithm - The proposed al-

gorithm, NWC algorithm, for node’s weight computation is presented.

• Chapter 4 - Simulation and Evaluation - The NWC algorithm is tested

via simulation using a generic service to test the behavior and features

of the algorithm.

• Chapter 5 - Implementation - Presents the details about the imple-

mentation of the NWC algorithm in the simulator and in the Siramon

framework.

• Chapter 6 - Conclusions and Outlook - Conclusions of the performed

work and an outlook for future development/improvement of the pro-

posed algorithm are given.

3

Chapter 1 Task Description

• Appendix A - Best Profile Computations - Presents and describes the

best profile computation mechanism, to be used in the selection of the

most appropriate group of servers for a given service.

• Appendix B - Finite Sate Machine (FSM) - Presents the Finite State

Machine used in the PBS algorithm implementation, where the NWC

algorithm is also implemented.

• Appendix C - NWC Algorithm NS-2 Installation - Presents the nec-

essary steps for the NS-2 installation of the PBS algorithm with the

NWC algorithm extension.

• Appendix D - Siramon Framework - Brief presentation of the Siramon

framework.

• Appendix E - Used Abbreviations - List of the used abbreviations in

this report.

1.2 General Regulations

This thesis work was guided by Károly Farkas (ETH), supervised by Bern-

hard Plattner (ETH) and Philippas Tsigas (Chalmers). At the end of the

thesis, a written thesis report describing the work and the outcomes as well

as the documentation of the implemented code had to be delivered. The

master student understood and accepted the terms and regulations of ETH

in regard to the developed code which would be published as open source

under the terms of the GNU General Public License [8]. In the course of the

work two intermediate and a final presentation had to be given. An accepted

thesis report and successfully accomplished presentations were prerequisites

of getting the final grade of the master thesis work.

4

Chapter 2

Fundamentals

This chapter gives a brief presentation of the thesis context.

In the first section an introduction to the concept of service provisioning and

management in mobile ad hoc networks is given. This section also includes

an overview of the basic architectures for service management in computer

networks, including the zone-based architecture, which instead of a central server

uses a group of zone servers distributed in the network. In the second section

an algorithm for selection and maintenance of zone servers called PBS (Priority

Based Selection) is presented. This algorithm classifies the nodes with a priority,

based on the node’s weight and uses it for the selection of the zone servers. In

the last section an overview on related work is given.

2.1 Service Management in MANETs

A MANET is a self organized network composed by mobile devices, e.g.

PDAs, cellular phones, laptops, see Figure 2.1. In this network there is

no central administrative entity and every node is capable to perform as

a router forwarding traffic to the other neighbor nodes. Nodes are free to

move without ”any” constraints and organize themselves without any pre-

established agreement.

This type of networks is gaining some popularity nowadays mainly due to

the increasing number of mobile devices and also their processing and com-

munication capabilities, which opens doors for the creation of a new range of

5

Chapter 2 Fundamentals

services and applications and explores new market areas. A very promising

example is gaming. Networked games are gaining an enormous popularity

[7], and it is expected that ad hoc networked games will become soon a

major source of revenue in the entertainment area. Gaming is very attrac-

tive for MANETs, because it will allow to extend and explore the natural

characteristics and capabilities of mobile ad hoc networks. There are a great

number of scenarios where gaming may be introduced, for example, people

playing a game at an airport waiting for their flight, or people playing a

game when traveling on a highway.

Figure 2.1: A MANET

From the previous examples it is clear that the networks will have a high

level of dynamicity and mobility with different types of devices coexisting in

the same network, these conditions will increase the difficulties of deploying

and manage the service.

To develop services/applications for a MANET, it is necessary to deal with

the particular networking properties of these networks, which introduces

a high complexity to the service itself and to the service developing task.

A common approach to abstract the application layer from the network is

the creation of a middleware layer capable of dealing with the lower layers

and to provide an API (Application Programming Interface) to the higher

6

2.1 Service Management in MANETs Chapter 2

layers. This allows the application developers to concentrate on the service

development and abstract from the low level networking properties.

The middleware should cope with all the required network management and

maintenance issues that the application services may require, providing ser-

vice description, discovery, deployment and management functionality. An

example of such a middleware is SIRAMON (Service provIsioning fRAMe-

work for self-Organized Networks) [4].

SIRAMON is a framework that supports services in self-organized wireless

networks. In Appendix D an overview of the SIRAMON framework is given.

In the next section, a close look at the basic architectures for network ser-

vice management is given, presenting the characteristics of each one in the

context of mobile networks.

2.1.1 Service Management Architectures

There are three basic architectures for service management:

Server/Client Architecture (Centralized) - There is a central ad-

ministrative node that works as the network server and all the other

nodes participating in the service will be its clients. The server owns

the state/information of the service and also the rules to run it. It

receives information from the clients, processes it, updates the new

service state and (if it is necessary, for example in the case of multi-

player games) distributes the new service state to all its clients.

In MANETs: - This architecture is not well suited for MANETs,

basically due to the single central administrative point, which

creates a single point of failure. It is also limited in terms of

scalability.

Peer-to-Peer (Distributed) - In this architecture there are no central

administrative authority. Every node is responsible and participates in

the management and maintenance of the service state, by exchanging

the service state information with all the other network nodes. The

7

Chapter 2 Fundamentals

service state is processed locally, in each node, based on the informa-

tion that is exchanged between the nodes.

In MANETs: - The totally distributed design of this architecture

imposes some difficulties for its usage in MANETs, mainly due

to the required high overhead to perform the management of

the services. The high dynamicity and also resource constraints,

usually associated with these networks, makes this architecture a

not very attractive solution for MANETs. There are even other

disadvantages, for example in the gaming context this solution

is not cheating proof because every node maintains locally the

service state.

Hybrid (Centralized/Distributed) - A hybrid architecture consists of

a combination of the two previously presented architectures. There is

a group of servers that serve different groups of clients. In each group,

the Server/Client architecture is implemented between each server and

its clients. Between the servers to allow their synchronization a peer-

to-peer approach is implemented.

In MANETs: - This architecture is very attractive for distributed

service management in MANETs. It allows to combine the ad-

vantages of the two ”basic” architectures in one: central and

redundant administration points, or servers per zone, and peer-

to-peer communication to synchronize the servers. This reduces

the complexity of the system in terms of overhead, increases fault

tolerance and allows a service to be ”always” accessible to the

network clients.

In Table 2.1, 2.2 and 2.3 a brief summary/analysis of the most important

characteristics of the three different architectures in the context of MANETs

is presented.

8

2.1 Service Management in MANETs Chapter 2

Server/Client

Pros Cons

+ Secure - Single point of failure

- Latency

Table 2.1: Pros & Cons of a Server/Client Architecture in MANETs

Peer-to-Peer

Pros Cons

+ Low latency - Scalability

+ Redundancy - Security

Table 2.2: Pros & Cons of a Peer-to-Peer Architecture in MANETs

Hybrid

Pros Cons

+ Low latency - Security

+ Redundancy - Server synchronization

+ Scalability

Table 2.3: Pros & Cons of a Hybrid Architecture in MANETs

2.1.2 The Zone-Based Architecture

The zone-based game architecture [5] is a hybrid architecture. It has been

developed to be used in game service management, but its basic concept is

also applicable in other services.

This architecture has been proposed because the traditional server-client

and peer-to-peer architectures are not well suited for ad-hoc networks. There

exists some similar approaches, namely Mirror Server Architecture [9], where

there are special network nodes called mirrors that work as gateway points

for the closest nodes. The main disadvantage of this architecture is that it

does not handle fault tolerance, which is needed in a dynamic and unstable

environment such as a MANET. Several other clustering techniques exist,

but this thesis follows the zone-based architecture.

The basic idea behind the zone-based architecture is the concept of zone

server and consequently the idea of division of the network into different

9

Chapter 2 Fundamentals

zones. Some nodes are selected to perform as servers being responsible

for the management of a group of nodes/clients (see Figure 2.2). The

zone servers communicate between themselves to maintain the service state,

which allows the service to be resistant to failures. For example, if a zone

server loses connection or is shut down, its clients will continue to be served

by another zone server, or a new zone server is selected.

Zone Server

Figure 2.2: Zone-Based Architecture - An Example Scenario

When a node ”joins” the network, it will select the best zone server in its

neighborhood. The joining node establishes a connection to the server and

the server becomes responsible for the management of all the information

concerning this client. The zone server has some special characteristics that

distinguish it from the other nodes in the network.

10

2.2 The PBS Algorithm Chapter 2

The Zone Server

The zone-based architecture is based on the existence of special network

nodes, which are designated as zone servers.

A MANET can be formed by different types of devices, with different proper-

ties, e.g. cellular phones with very tight resources, PDAs that are relatively

more powerful or laptops that usually are quite powerful devices. This het-

erogeneity in type and capabilities (processing and communication) of the

network nodes are important points in the selection of zone servers.

The aspects to be considered to perform the selection of zone servers are the

following: basic capacity to run the service, energy levels, network position,

communication capabilities, and some other more complicated, like the mo-

bility characteristics of a node. Taking all these parameters into account,

some type of benchmark has to be defined to decide whether or not a node is

appropriate to act as a zone server. The basic aim of this thesis is to provide

such a benchmark to allow the selection of the most appropriate nodes as

zone servers.

To perform the selection and maintenance of the zone server nodes an algo-

rithm called PBS (Priority Based Selection) [6] has been proposed. PBS is

presented and explored in the next section.

2.2 The PBS Algorithm

The PBS algorithm treats the network as a graph and the aim of the al-

gorithm is to select and maintain a weighted Dominating Set (DS)1 of the

graph. The selected DS will consist of the group of zone servers that will be

responsible for the service management. For an introduction to the theory

of Dominating Sets see [10].

There are several algorithms for DS selection/construction, e.g.: Largest

ID [10], Local Randomized Greedy algorithm [11], Marking algorithm [12],

1A dominating set is a subset of nodes, in a graph, such that all nodes have one neighbor

in the DS or are itself in the DS.

11

Chapter 2 Fundamentals

LP-Relaxation algorithm [13], Dominator algorithm [14], Removing cycles

algorithm [15], Steiner Tree algorithms [16].

All these algorithms were mainly developed to give routing functionality

in ad hoc networks. Giving support for a zone-based architecture is faced

with different requirements, therefore a different DS computation algorithm,

called PBS (Priority Based Selection) has been proposed in [6] for the selec-

tion and maintenance of the zone servers.

The PBS algorithm performs the selection of zone servers in a MANET by

assigning priorities to the network nodes, based on the nodes’ properties

and capabilities. The most prioritized nodes are selected as zone servers.

PBS has initially been created to support real-time applications, namely

multiplayer games, but it may be used in other types of services.

The algorithm grants a continuous maintenance of the DS even in dynami-

cally changing network topologies, such as a MANET is.

In the next section, a brief presentation of the notation used in PBS and

during the next chapters is given. The general ideas and definitions of this

algorithm are also presented in the next section.

2.2.1 Notation and Definitions Used in PBS

A node in the network graph can be classified into four different states,

depending on its priority and its neighbors’ priorities:

• DOMINATOR - Node is in the DS, will act as a zone server.

• DOMINATEE - Node is not in the DS, but is covered by, at least,

one DOMINATOR neighbor node.

• INT CANDIDATE - The node is an internal candidate, it wants to

deploy the service, but still has not a defined state (DOMINATOR or

DOMINATEE).

• EXT CANDIDATE - The node is an external candidate, it doesn’t

want to deploy the service, but even though it may be elected as

DOMINATOR. This is a basic assumption in the algorithm, every

node is collaborative in the deployment and management of a service.

12

2.2 The PBS Algorithm Chapter 2

Some other definitions used in PBS:

• Span - The span(v) of a node v is the number of INT CANDIDATE

neighbors a node has, including itself.

• Fully connected node - If a node has a link to every other node in

the network it is considered fully connected.

• Neighborslist - It is the list of all neighbors of a node containing all

relevant information about a node’s neighbors. The following infor-

mation is stored in the neighborlist:

– ID - Unique ID of the neighbor node.

– Address - The network address of the neighbor node.

– Node weight - The weight of the neighbor node.

– Span - The span value of the neighbor node.

– Status - The status of the neighbor node.

– Fullconnected - Flag that indicates if a node is fully connected

and a further DOMINATOR node is required.

• Coverage - All the nodes that are directly connected to a DOMI-

NATOR node are covered by this node. Every DOMINATEE node

is covered by minimum one DOMINATOR node. The DOMINATOR

neighbor that has the highest priority, and is closer, will be elected as

the node’s DOMINATOR and thus its zone server.

2.2.2 Dominating Set Computation

Figure 2.3 represents the flowchart of the basic behavior of PBS in the

selection and maintenance of the DS.

The construction of the DS is based on the nodes’ priorities, and the pri-

orities of the neighbor nodes. As it can be observed in Figure 2.3, when a

new ”election” happens, the node sends its neighborlist to all its neighbors.

After it waits for the similar message from its neighbors and defines its state

based on the following set of priorities:

13

Chapter 2 Fundamentals

Figure 2.3: PBS - Flowchart

1. The node has a higher weight.

2. Tie breaker 1: the node has a higher span value.

3. Tie breaker 2: the node has more neighbors in DOMINATOR status.

4. Tie breaker 3: the node has a lower ID.

The node weight indicates the node’s capability to act as zone server and

the higher the weight the more powerful a node is. The span value is a mea-

surement of how many nodes (in INT CANDIDATE status) will be covered

if the node becomes a DOMINATOR, which is a good measure if a mini-

mal DS approximation is required. The second tie breaker is the number

of DOMINATOR neighbors a node has, this decision is made because it is

useful to have as less hops as possible between the DOMINATOR nodes for

consistency and synchronization mechanisms required by the applications.

As a final tie breaker, the node’s ID is used. Every node has a different

unique ID and the node with the lower ID is preferred.

14

2.3 Related Work Chapter 2

PBS allows the re-arrangement of the priority criteria, allowing to adapt

the DS computation to different situations. For example, if the aim is to

create a minimal DS, criterion 2 may be put as the first criterion for priority

assignment.

The algorithm is performed in rounds. Every round consists of three steps:

sending the own neighborlist to the neighbors, receiving the neighborlist

from the neighbor nodes and recalculating the own status. Based on this, ev-

ery node has knowledge about the surrounding (2-hop) network topology and

is therefore able to determine the nodes with the highest priorities. These

rounds are performed as long as there are neighbors in INT CANDIDATE

status including the node itself, within a 2-hop distance. Afterwards, a node

starts a round again if it detects lost or new links.

2.2.3 Node’s Weight

The first criterion for priority assignment of the PBS algorithm is the node’s

weight. The idea is to choose the nodes with the highest weights for the DS

aiming to construct the most powerful and robust DS.

The weight should represent the capacity of a node in terms of processing,

energy power and communication capabilities with the neighbors.

The proposed algorithm for node’s weight computation for DS selection is

presented in the next chapter. The next section presents related work with

DS nodes selection, such as heuristics and algorithms used in the DS nodes

selection process.

2.3 Related Work

The creation of a DS in a MANET may be a very complex task. First, the

network is usually very dynamic, which requires a constant monitoring to

maintain and adapt the DS to this dynamicity. Another issue is that the

network is usually composed by a variety of different types of devices. These

properties impose a higher difficulty on selection of the ”most appropriate”

nodes for the DS. In this section an overview on some DS selection algorithms

15

Chapter 2 Fundamentals

is given, emphasizing the used metrics, computation procedures for the DS

nodes selection and the applicability of the algorithm in the computation of

the DS for different types of services.

The most common approach for DS nodes selection in context of the MANETs

is to optimize the selection for a single objective. For example, minimize the

power consumption to increase the network/DS life; minimize the number

of DS nodes to decrease the message overhead and simplify the DS synchro-

nization mechanism. These algorithms will be referred to as single metric

DS selection algorithms, because the heuristic for weight assignment is based

on a unique metric. There are other approaches that perform a combination

of several metrics to make the DS nodes selection, these algorithms will be

referred as multiple metric DS selection.

2.3.1 Single Metric DS Selection

Highest-Degree

The highest-degree algorithm is one of the most simple and common ap-

proaches in the construction of a DS, also known as connectivity-based algo-

rithm. It was proposed in [17, 18].

Each node broadcasts its ID to its neighbors. A node x is considered a neigh-

bor of y if it lies in the transmission range of y. The node with the maximum

number of neighbors, or maximum degree, is chosen as clusterhead, and any

tie is broken by the nodes’ IDs, which are unique in the network. The neigh-

bors of a clusterhead become members of that cluster, and can no longer

participate in the election process.

Experiments demonstrate that the DS has a low rate of changes, but the

throughput is also low. Typically, each cluster is assigned with some re-

sources, which are shared by the members of a cluster (in a round-robin

basis [17]). If the number of cluster members increases, the throughput de-

creases and a gradual degradation in the system’s performance is observed.

This metric introduces an important question concerning the computation

of Minimal DS (MDS). The use of a minimum number of nodes in the

DS may introduce long delays and degrades the quality in the answers of

16

2.3 Related Work Chapter 2

the clusterheads, given that naturally the number of clients per DS node

will increase. On the other hand if a large number of nodes is elected for

the DS the throughput may be increased, but it will also lead to higher

computational expenses and to the introduction of higher latencies.

So the decision of a MDS approximation should be taken if the system needs

it, or is not sensitive to some of the drawbacks referred to above.

Lowest-ID

The lowest-ID, also known as identifier-based clustering, has been proposed

in [19].

In this algorithm each node of the network is assigned with a unique ID and

the nodes with the minimum ID are selected for the DS.

This algorithm does not have a very good adaptation mechanism, since

a node is assigned with a given ID and remains with it during the whole

network’s life cycle. The solution of re-numbering the nodes’ IDs is complex,

given that a node has to assign some random ID, or alternatively it may be

a function of the remaining battery power. But all the IDs have to be

synchronized, and so neighborlists have to be exchanged, which, in case of

renumbering, may generate a great amount of traffic overhead. On the other

hand, if the nodes keep a constant ID, battery drainage may happen in the

nodes with the lower ID, because they will always remain as clusterheads

and so will have a higher battery consumption rate.

2.3.2 Multiple Metric DS Selection

Energy and Degree Aware DS Selection

In [20] an algorithm to select DS based on the node’s degree and remaining

battery level is proposed. The basic idea of this algorithm is the construction

of the DS based on the combination of the two referred metrics to increase

the network’s life.

The justification for using such a combination of metrics is that the selection

of the DS based on the remained energy tends to select more nodes in the DS

17

Chapter 2 Fundamentals

than if the degree metric is used. It is also observed that the nodes frequently

change their dominating status, thus balancing energy consumptions and

prolonging network life. While there is a better balance with energy as the

key metric, more nodes are also selected, and therefore the overall network

energy consumption is increased. On the other hand, degree based metrics

tend to reduce the size of dominating set thus reducing energy spending in

each round. However, shifting roles between nodes is slow with degree based

metrics, which makes higher degree nodes energy critical.

So, the idea of the algorithm is to provide an ”equilibrium” combination

with the two metrics to carry out the DS selection.

Several different combinations of both metrics are proposed:

• Using a balancing parameter a: weight(u) = a · degree(u) + (1 − a) ·

energy(u), where a is a parameter (between 0 and 1) that gives rela-

tive weights to both metrics. The aim of this approach is to increase

the weight for degree up to a point where the overall consumed energy

per round by all the DS nodes is better balanced than when the nodes

with higher energy are selected for the DS. The best choice for the a

parameter may depend on several network factors. It was experimen-

tally shown that it was dependent on the network density, but not the

number of nodes in the network. The selection of the a parameter is

made under simulation and it has to be globally available for every

node to perform its weight computation.

• To avoid having any parameter in the metric selected, a parameterless

product and sum combinations are also proposed:

1. weight(u) = degree(u) · energy(u), this combination is expected

to balance the choice of nodes in the DS between those with

high degree and high remaining energy giving importance to both

equally.

2. weight(u) = energy(u)/degree(u) + energy(u), gave the best

results with respect to energy only metrics.

18

2.3 Related Work Chapter 2

The used combinations of the metrics have shown that it increases the ca-

pacity of balance the energy consumption at the nodes, which consequently

conducts to an increases of the network life.

Weight Clustering

In [21] a weighted clustering algorithm is proposed. This algorithm (Weight

Clustering Algorithm - WCA) is a distributed clustering for multi-hop packet

radio networks or ad-hoc networks.

Several parameters are taken into account to select the DS. The DS selection

is performed on-demand, there are no periodic elections, new elections just

happen if the current DS is not able to cover all the network nodes, aiming

with this to reduce the computation and communication costs.

The main idea of the algorithm is to perform the weight computation ac-

cording to the type of application/system requirements. In the following,

the main characteristics of this algorithm are presented.

Parameters for weight computation

• Ideal Degree - each clusterhead can ideally support only a given max-

imum number of nodes, to ensure an efficient medium access control

(MAC) function. If a clusterhead tries to serve more nodes than it is

capable of, the efficiency of the system may suffer some degradation.

• Battery Power - the control of battery power consumption can be

efficiently used in certain transmission range, meaning that it will take

less power for a node to communicate with other nodes if they are

within close distance.

• Mobility - in order to avoid periodic DS changes, it is important and

desirable to elect clusterheads that does not move very quickly.

• Distance - a clusterhead is able to communicate better with its neigh-

bors if they are in close distances. If nodes are moving away, the nodes

communication may become difficult, due to the signal attenuation.

19

Chapter 2 Fundamentals

Clusterhead election

The procedure of clusterhead election consists of eight steps that should be

accomplished by all the nodes. In the following, the procedure of clusterhead

election of node v is presented:

Step 1 - Find the number of neighbors that are in the node’s transmission

range: dv.

Step 2 - Compute the degree difference ∆v = |dv − δ|, where δ is the

maximum number of nodes that a node can have.

Step 3 - Compute the sum of the distances to the neighbors, Dv.

Step 4 - Compute the running average of the speed for every node till

the current time, this gives a measure of mobility denoted as Mv.

(In the algorithm it is admitted that there are some mechanism of

measurement of position in the network, which are not easily feasible

in a MANET).

Step 5 - Compute the cumulative time, Pv, that the node has been clus-

terhead, measuring the time a node has been consuming more battery

than the ordinary network nodes.

Step 6 - Calculate the combined weight, Wv, of the node v:

Wv = w1 · ∆v + w2 · Dv + w3 · Mv + w4 · Pv (2.1)

Where wi, i = 1...4, are weight factors, dependent on the type of service

that is being deployed in the network.

Step 7 - Every node chooses the neighbor with the smallest weight as its

clusterhead. Neighbor nodes that have chosen a clusterhead are not

allowed to still participate in the election procedure.

Step 8 - Steps 2-7 are repeated until not all the network nodes are assigned

with a clusterhead.

20

2.3 Related Work Chapter 2

2.3.3 Summary

From the performed study it could be observed that in general the use

of a single metric for the selection of the DS nodes may generate some

constraints, mainly if it is aimed to perform the selection of DS with different

purposes, or for different types of services.

When multiple metrics are used in the DS selection, an increase is observed

on the accuracy and adaptability of the selection of the DS, according to

the system needs.

The WCA algorithm is, from the literature exploration made in this thesis,

the algorithm that uses the most representative group of metrics for node’s

weight computation, allowing the adaptation of the weight computation to

the service/system requirements/characteristics.

The algorithm proposed in this thesis has some similarities to WCA algo-

rithm, given that the idea is to create a procedure for node’s weight com-

putation that can be used in the selection of DS in different systems and

services.

21

Chapter 3

Node’s Weight Computation

Algorithm

In this chapter the algorithm for node’s weight computation (NWC - Node’s

Weight Computation), developed during this thesis work is presented.

In the first section, the objectives of the designed algorithm are stated. Then,

the assumptions followed to derive the algorithm are described in Section 3.2.

The NWC algorithm design issues are explained in Section 3.3, and finally in

Section 3.4 the algorithm is presented.

3.1 Algorithm Overview

3.1.1 Goals

The main goal of the algorithm is to provide a systematic procedure for

node’s weight computation to create a robust and powerful Dominating Set

(DS) for different types of services in a MANET.

The majority of the existing algorithms for DS selection in MANETs use a

simplified heuristic to classify/weight the network’s nodes. Generally just

one or very few node’s properties are taken into account in the DS compu-

tation, aiming to find the best combination of nodes to achieve a specific

objective, e.g.: Minimum Dominating Set (MDS) approximation, minimize

the energy consumption.

23

Chapter 3 Node’s Weight Computation Algorithm

When it is intended to perform the selection of a DS with different objec-

tives, other properties should be taken into account, as well. For example,

to select the most appropriate group of zone servers to serve a multiplayer

game where, usually, good links and powerful nodes are required, other

properties should be taken into account in the DS nodes selection, other-

wise the selected nodes may not be able to serve the DS clients with good

performance.

In the literature research, some algorithms can be found using a multiple

metric heuristic to perform the DS selection (see section 2.3.2) but even

these approaches are far too simple.

Different services have different requirements. To allow the NWC algorithm

being used in construction of the DS for different types of services, a rep-

resentative number of node’s properties are used to accomplish the node’s

weight computation. Each type of service will select the most important

properties for its DS selection. These are the basic propositions that con-

ducted the development of the NWC algorithm.

The two main groups of parameters used in the algorithm computation are:

• Node’s processing/energy capabilities

• Node’s communication capabilities

The Node’s processing/energy capabilities represent the local capabilities of

a node in terms of processing power (CPU and memory) and battery power.

The Node’s communication capabilities represent the number of links a node

has (node’s degree) and the link quality of each link to the node’s neighbors.

The use of these two groups of parameters allows to measure the most im-

portant characteristics for a node’s representation in the context of the zone

server selection.

The selection of the ”powerful” nodes into the DS is not simply a function

of the referred parameters, it is also dependent on other factors, such as

the type of service being deployed and the type of network. To address this

context variation the referred parameters are affected by an importance, a

weight factor, which reflects the importance of each single parameter in the

context of a given election.

24

3.2 Assumptions Chapter 3

3.2 Assumptions

To design the NWC algorithm some assumptions were taken, basically re-

lated to the type of environment (MANETs), related to the framework where

it will be implemented (Siramon [4]) and inherently related to the PBS algo-

rithm where the NWC algorithm is used for the node’s weight computation.

The assumptions are divided in three basic groups: node, network and ser-

vice context assumptions. The first two groups are concerning to the type

of network, where the algorithm is used and also the type of devices in the

network. The third group presents some assumptions related to the services

that are deployed in the network, and requirements for the adaptation of

the weight computation function to the service requirements.

Node:

Heterogeneity - The network is formed by different types of devices

(laptops, PDAs, mobile phones, etc). It is assumed that all the

devices can run the Siramon framework to grant all the required

service provisioning functionality.

Local parameter values - It is assumed that every node is able to

extract/collect all the necessary information of each of the local

parameters (CPU, memory and battery) to perform the necessary

computations to run the NWC algorithm.

Link quality information - It is assumed that the nodes can extract

from their network interface devices the link quality information,

measuring the SNR, of the links to each of their neighbors. This

is necessary for the link quality parameter computation.

Neighbor knowledge - Every node keeps information about the

neighbors, that are in its transmission range, in a neighborslist

where all the relevant information about the neighbors is stored.

Network:

No central administration - The network has no unique central

administrative entity, the management of the services is done in

25

Chapter 3 Node’s Weight Computation Algorithm

a distributed manner by the zone servers. All the network and

service management issues (service description, discovery, deploy-

ment and management (where the NWC algorithm is included)),

is handled by the Siramon framework.

Mobility - The network elements are mobile devices and so they can

move ”randomly” without any constraints, entering and leaving

the network without warning the other network elements. In

the master thesis [22], a mobility prediction extension has been

developed for PBS. It provides an estimation of link stability, thus

links that are showing unstable behavior should not be considered

in the DS selection.

Service Context:

Service Profile - A property of the algorithm is the adaptation of

the weight computation to different types of services. This is

achieved by assigning different importance levels to the different

parameters, which is called service profile. We assume that the

service description document, required for the service deployment

in Siramon (see Appendix D) has an entry with the service profile,

which is used for the weight computation.

3.3 NWC Algorithm Design

The design of the NWC algorithm follows a very simple approach:

Take a representative group of parameters into account and use them to

compute the node’s weight function of the service and network scenario.

3.3.1 Representativness of a Node

As discussed in section 3.1, the representation of a node’s capabilities is

achieved by using a group of parameters that reflect the characteristics a

zone server needs to have for a given type of service. These characteristics

26

3.3 NWC Algorithm Design Chapter 3

are: the node’s processing/power capabilities and the node’s communication

capabilities.

These characteristics are represented by a group of five parameters:

Processing Power:

CPU - Represents the available CPU capacity of a node, that should

be enough to act as a zone server. This parameter is used because,

for some services, it is aimed to have powerful nodes in the DS,

and so nodes with enough resources should be preferred to act as

zone servers.

Memory - The memory parameter, represents the memory capacity

of a node. If it is important to have fast zone servers for a given

service this parameter may play an important role, e.g., in real

time services.

Energy:

Battery power - Represents the energy level of the node. This value

will allow to look for the nodes that have a long life time, if such

a requirement is important for the DS selection.

Connectivity:

Degree - The degree represents the number of neighbors a node has.

This parameter may allow to look for the best MDS approxima-

tion, if it is important in the DS selection for a given service.

Link quality - The link quality parameter represents the quality of

a connection between a node and its neighbors. This parame-

ter allows to look for the nodes that have the best links to the

neighbors, an important requirement for some types of services.

The presented parameters summarize the basic characteristics of the network

nodes and their connections with the neighbors. Different services can have

different demands for each of the presented parameters, but having such

groups of parameters will allow the algorithm to be used in the deployment

of different types of services in different contexts.

27

Chapter 3 Node’s Weight Computation Algorithm

3.3.2 Algorithm Structure

LOCAL PARAMETERS

CPU

Memory

Battery

NETWORK PARAMETERS

Link Quality

Node Degree

SERVICE/NETWORK context

Figure 3.1: NWC Algorithm - Parameters

The algorithm has five basic parameters (see figure 3.1): CPU, memory,

battery, node degree and link quality. The other factor that influences the

weight computation is the system’s (Service/Network) context.

The formula for weight computation follows a linear combination of the

referred parameters. Each parameter contributes with a given partial weight

to the total node’s weight according to the importance of the parameter in

the DS selection.

The formula for node’s weight computation is the following:

weight =
cpu + mem + bat + deg + link

number parameters
(3.1)

Where:

cpu = importance(cpu) × repr(cpu) (3.2)

mem = importance(mem) × repr(mem) (3.3)

bat = importance(bat) × repr(bat) (3.4)

deg = importance(deg) × repr(deg) (3.5)

link = importance(link) × repr(link) (3.6)

The first element (importance(parameter)) of the parameter’s value com-

putation represents the importance that is assigned to the parameter. This

28

3.3 NWC Algorithm Design Chapter 3

is dependent on the service/network context where the algorithm is applied

(from now this value is referred to as parameter’s importance). The second

element (repr(parameter)) of the multiplication consists of the computed

representation/value of the given parameter of the system based on mea-

surements.

Parameters computation

In this section, the formulas to compute the parameter values are presented.

A unitary scale for parameter value normalization and for the importance

values has been used. The node’s weight is also mapped in a unitary scale,

see Formula 3.13.

Maximum value for parameters
representation

Minimum, no resources/link

High Importance

No Importance

(a) - Parameters’ values scale (b) -Parameters’ importance scale values

11

0

0,5

0

Normal Importance

Best weight

Worst weight

(c) - Node’s weight scale values

1

0

Figure 3.2: NWC Value Scales

As can be seen in Figure 3.2, for parameter values a continuous unitary scale

is used and for the importance values a discrete scale of values is used, to

differentiate the level of importance of the parameter in the context of the

service.

The formulas to compute the parameter values are the following:

repr(cpu) =
capacity(cpu) − load(cpu)

capacity(cpu)
(3.7)

repr(mem) =
capacity(mem) − load(mem)

capacity(mem)
(3.8)

repr(bat) =
sys(bat)

capacity(bat)
(3.9)

repr(deg) = 1 −
1

node(deg)
(3.10)

29

Chapter 3 Node’s Weight Computation Algorithm

repr(link) =
sys(link)

max(link)
(3.11)

CPU and memory parameter representations are inversely proportional

to their load on the node. This approach allows to select the nodes that

are not so loaded for the DS, which will naturally select the most powerful

nodes, given that they are usually not so loaded.

If the CPU/memory load is very high, and they are assigned with some

importance, an anomaly can be generated and a new election started to

reflect the incapability of the nodes to act as zone server. This question is

discussed further in Section 3.4 where the algorithm computation and main-

tenance procedures are defined.

The battery parameter is directly proportional to the battery level on the

node. With this approach there is no differentiation between different types

of device batteries (e.g.: PDA, and laptop), because usually the ”less power-

ful” devices have longer battery life. However if the value for this parameter

was computed directly based on the node’s battery remaining time, this

would favor the selection of weak nodes into the DS, which may be undesir-

able even if the aim is to increase the network’s life.

If the energy level of the battery is too low, an anomaly may also be gener-

ated removing the node from the DS and generating a new election.

The degree parameter representation is directly proportional to the num-

ber of neighbors that a node has. This means that the higher the number

of neighbors a node has, the higher the probability is to cover more clients,

thus the number of DS nodes can be decreased. In other algorithms [21],

a maximum number of clients is defined, but in this thesis such a limit is

applied.

The link quality parameter is directly proportional to the measured link

quality at every link to each neighbor obtained from the node’s network in-

terface device. An average of the observed link quality at each link is made

30

3.3 NWC Algorithm Design Chapter 3

and used to measure the node’s link quality to its neighborhood.

After computing the parameter values for each node it is necessary to have

the service profile (combination of parameters’ importance values) to com-

pute the node’s weight. In the next section this profile is discussed.

3.3.3 Service Profile

The representation of the node’s context and service requirements are re-

flected in the weight computation by the parameters’ importance value.

The aim of this importance value is to allow an adaptive selection of zone

servers, which is function of the type of service and the network where it is

being deployed and the objectives defined for the DS.

Given the list of parameters presented in Section 3.3.1, the problem to solve

is: how should the parameters’ importance value be defined?

The answer to this question is not simple. The definition of a dynamic func-

tionality, responsible for this computation, would be theoretically the most

appropriate approach. With such a functionality a given service would ad-

just the parameters’ importance value as function of the service requirements

and context where the service is being deployed. This would be ”optimal”,

given that even knowing the type of service characteristics, some factors,

like the scenario conditions and the number of nodes in the network, will

affect the context of the service, meaning that the same service may have

different requirements in different contexts.

But on the other side, such a dynamic approach would increase the com-

plexity of the system given that higher complexity would be required in

the system to grant a total synchronization of the importance values in all

nodes.

A MANET is naturally a distributed and decentralized system and perform-

ing a dynamic profile adaptation would require a distributed computation,

which would increase the message overhead and the complexity of the sys-

tem. The increase of complexity may compromise this approach, due to the

limitations/conditions of a MANET. In this thesis another approach is used

to address this problem.

31

Chapter 3 Node’s Weight Computation Algorithm

The approach taken consists of the definition of static service profiles, thus

each service will assign the most appropriate parameters’ importance value

for the service. This profile is used by all the nodes for the node’s weight

computation. Such approach allows a ”correct” election process without

increasing the system’s complexity.

With a static approach it is not possible to completely predict the ”context”

where a given service will be deployed. This means that even knowing the

basic characteristics of the service an optimal profile is not granted for the

zone server selection.

To define the parameters’ importance values, a framework has been created.

It is based on simulation, and is presented in the next chapter.

The definition of the service profile can also be set directly according to the

defined objective for the service DS. For example: if the aim is to get the

best MDS approximation, the degree parameter’s importance should be set

to ”1” (high importance) and all the other parameters’ importance to ”0”

(no importance).

3.4 The NWC Algorithm

In this section, the steps of the NWC algorithm are presented.

When an election happens, the following steps are taken for the node x

weight computation:

Step 1 - Get the list of neighbors (neighborslist), that are in the node’s

transmission range.

Step 2 - Compute the node’s degree parameter value, degree(x), which

consists of the number of nodes x has in its neighborslist.

Step 3 - Get the link quality statistics to every neighbor node and compute

the node’s link quality parameter value, link(x):

link(x) =

∑N
i=1 link(i)

N
(3.12)

32

3.4 The NWC Algorithm Chapter 3

where N represents the number of neighbors (or degree).

Step 4 - Get the CPU and memory load, battery energy level, and based

on the equations 3.7, 3.8 and 3.9, compute the local parameter values:

cpu(x), mem(x) and bat(x).

Step 5 - Get the parameters’ importance for the service, i(parameter).

Step 6 - Compute the node’s weight:

weight(x) =
i(cpu)cpu(x) + i(mem)mem(x) + i(bat)bat(x) + i(link)link(x) + i(deg)deg(x)

num param
(3.13)

The num param represents the number of parameters that are not

assigned with not important importance value.

NOTE: The computed node weight is a value that lies in the contin-

uous scale of values between 0 and 1. A 0 weighted node means that

the node does not have enough resources, and/or good links to the

neighbors. On the other hand if a weight of 1 is obtained, the node

is well suited to act as a zone server, given that it has enough free

resources, and/or good links to the neighbors.

After the election, the node sends its weight and other information to and

waits for the same information from all its neighbors. When these infor-

mation are received, the node checks the neighbors’ weights and decides its

status (see section 2.2). At this point the election is finished. The steps

taken to perform the election process are called ”election rounds”.

When an election round is finished the node enters a state where it will

remain until a new election is started locally or by some neighbor.

When the node is in this state and its status is DOMINATOR, its resources

are monitored to grant that they are in the limits of ”good performance”.

Such monitor runs periodically and checks the three local parameters (CPU,

memory and battery). If the values are not in the range of admittable values,

an anomaly is generated.

33

Chapter 3 Node’s Weight Computation Algorithm

The default values used as basic demands for the local parameters are given

in Table 3.1. If the values are not accomplished, the node will start a new

election round.

The definition of maximum/minimum values for the parameters will grant

that the DS nodes are always in good condition to perform their tasks. But,

if for a given type of service a local parameter is assigned with not important

importance level the parameter is not checked/monitored.

NWC Local Parameters Basic Demands

Parameter Demand

CPU load below 90%

memory load below 90%

battery energy level above 10%

Table 3.1: NWC Local Parameter Default Demands

3.5 Summary

In this chapter an algorithm for node’s weight computation called NWC

has been proposed. The basic idea of the algorithm is to provide a node’s

weighting procedure, adaptable to the type of service that is being deployed

in the network, giving a general and adaptable procedure to be used in the

selection of DS nodes for different types of services.

To provide such a general procedure, a representative group of parameters

is taken into account to measure the node’s capabilities. The parameters

are divided in two groups:

• Processing/Power parameters - representing the local capabilities of

the node: CPU, memory and battery.

• Communication parameters - representing the number and quality of

the node’s connections to its neighbors: degree and link quality.

A linear combination of these five parameters is used to compute the node’s

weight. To adapt the weight computation to the type of service that is being

34

3.5 Summary Chapter 3

deployed, differentiating the importance of each parameter in the weight

computation, each parameter is assigned with an importance value related

to three preset levels.

To compute the most appropriate profile of importance values for a given

service a framework has been constructed. It allows the simulation of a type

of service, and the study of the most relevant parameters in some given sce-

nario. The framework is presented and used in the next chapter.

The service profile may also be defined directly by the system/service de-

signer according to the requirements of the service and the objectives for

the DS computation.

The working of the algorithm can be divided into six basic steps (see section

3.4) that allows the computation of the node’s weight. This value is assigned

to the node and transmitted to the neighbor nodes, using the PBS algorithm.

According to the assigned weight and the neighbors’ weights a node will set

its status and the DS will be constructed.

35

Chapter 4

Simulation and Evaluation

In this chapter the algorithm proposed in this thesis is evaluated using a simu-

lation technique.

In the first section the goals of the simulation are stated and the used framework

for the study of the best profile for a given type of service is presented. To eval-

uate the algorithm under simulation a test service is used, which is presented

in section 4.2. A Factorial Design technique is used to conduct and evaluate

the results of the simulation, this is presented in section 4.4. In section 4.5, the

simulation settings are shown and in the last section a study and evaluation of

the simulation results are made.

4.1 Simulation Goals

The basic idea of the simulation is to perform a study of the proposed al-

gorithm performance, proving that the NWC algorithm allows the selection

of a robust and stable DS.

The proposed algorithm is adaptable to the type of service and context where

it is being deployed, by performing an adaptation of the parameters’ impor-

tance according to the service needs. This flexibility allows the algorithm to

be used in different systems for the deployment of different services.

Theoretically, a dynamic adjustment of the parameter importance values

(profile), according to the context of the service/system, would conduct to

37

Chapter 4 Simulation and Evaluation

more optimized DS selection. This happens because even for the same type

of service the system’s context and requirements may vary. The drawback of

such a dynamic profile adjustment would be the increase of the traffic over-

head and more complex mechanisms to cope with the nodes synchronization,

given that every node needs to have the same parameter importance profile

for weight computation.

The NWC algorithm is based on a static assignment of parameter impor-

tance values, according to the service requirements and context of system.

This approach is also followed in some other similar algorithms (see [21])

where different parameters are weighted according to the system’s proper-

ties.

To study the best profile for a service an experimental design called Factorial

Design and a Multi-Objective Optimization function of the objectives defined

for the DS selection are used. This process is defined in the NWC framework.

To test and evaluate the proposed algorithm, a real time multiplayer game

service test has been used.

The simulations are performed in the Network Simulator NS-2 [7].

4.1.1 Simulation Constraints

There are three basic techniques to evaluate an algorithm performance: ana-

lytical modeling, simulation and implementation and measurement in a real

system, [23]. To evaluate the NWC algorithm a simulation technique has

been used.

Simulation has several advantages when compared with real test scenario

measurements’ techniques. For example, the number of service participants;

the same scenario and traffic conditions, which in this case is important to

compare the different importance values combinations in the same simula-

tion conditions. Such conditions are difficult to achieve in a real testbed.

The problem when a simulation evaluation technique is used resides in the

difficulty of truly representing a service/system. In the present case, for

example, the service’s characteristics (processing requirements, traffic and

38

4.2 Real Time Multiplayer Games Chapter 4

users behavior) are difficult to model in a simulator. Some abstraction of

the real system is required to allow its representation in simulation.

In the next section, the type of service used as test service in the simulation

is explored and in section 4.3 its specifications are defined.

4.2 Real Time Multiplayer Games

Multiplayer Games

Turn Based Real Time

 FPS RTS Sports

Figure 4.1: Multiplayer Games

Multiplayer games are classified in two categories, turn based and real time

games.

Real time games are more demanding than turn based games because play-

ers often have a lot more information to transmit between each other or to

the server than in a turn based game. For example, in a multiplayer game

of chess the only data that needs to be transmitted may just be the current

player’s turn and the square the current player has moved to. Since this

information does not need to be periodically updated, it is transmitted only

after each player’s turn. On the other side, real time games require higher

amount of traffic to keep the game states synchronized and low delays to de-

liver all the messages. For example, in a car racing game the position of each

39

Chapter 4 Simulation and Evaluation

car would have to be updated frequently in order to give the cars a smooth

motion. The main problem with real time games that makes them diffi-

cult to implement, when compared with turn based games, is that the data

need to be transmitted repeatedly at very short intervals and strict demands

have to be granted to avoid interference in the users’ perception of the game.

Multiplayer games are becoming popular in MANETs [1]. As has been

referred before, PBS algorithm is a general algorithm to support the creation

and maintenance of DS for different types of services in MANETs but was

specially designed to support real time services. To test the NWC algorithm

and see how it works in conjunction with PBS a real time multiplayer game

is used as test service in the simulations.

In figure 4.1 the three basic types of real time multiplayer games are pre-

sented:

• First Person Shooter (FPS)

• Real Time Strategy (RTS)

• Sports

In this study focus on the two first type of services (FPS and RTS) is given,

mainly because there are already several studies and models about their

characteristics.

During the simulation it is assumed that all the devices participating in

a game session are capable of deploying the service, thus every node has

enough processing power resources (CPU and memory) to run the service.

Two types of service’s properties are studied, networking and processing

characteristics. In the next section the networking/traffic characteristics

are studied, the processing characteristics will be explained in section 4.3,

where the test service properties are defined.

4.2.1 Networking Properties

In the analysis of the networking properties of a real time multiplayer game,

the following characteristics are the most important:

40

4.2 Real Time Multiplayer Games Chapter 4

• Latency - also referred as end-to-end delay, is the time taken for a

packet to travel from its source to its final destination, between client

and zone server and vice versa.

• Jitter - variation of the latency in a given link.

• Packet Loss - number of packets that are lost during a transmission

between two network points, between client and zone server and vice

versa.

The admissible latency for most of the real time multiplayer games is in the

range of 100-150 ms. Usually FPS games are more sensitive to this factor

than the RTS games, due to the fact that the player has direct control over

his playing unit. Therefore any type of delays is a direct interference on his

perception. On the other hand RTS games do not have such strict delay

demands, because the player controls its units in an indirect way, by giving

orders, which implies a higher insensitivity level of the player to higher delay

values [24].

The variation of the latency, or jitter, affects the players’ perception of the

game. This variable is dependent on the type of game but also on the player,

because playing reaction is different for each user. It is a fact that high level

of jitter always degrades the game experience of the player so it should be

kept as low as possible.

The packet loss in real time multiplayer games may be quite important and

low levels should always be achieved to assure playability to the players. In

[25], it has been proved that a level of 3% to 5% of packet loss is admissible

in a FPS game.

4.2.2 Requirements

The general requirements in terms of latency and packet loss for real-time

multiplayer games are summarized in table 4.1. From the performed study,

the effect of jitter in the users’ perception of the games is still not well

defined.

41

Chapter 4 Simulation and Evaluation

latency packet loss

FPS 50-150 ms 3-5%

RTS 300-500 ms 3-5%

Table 4.1: Networking Requirements for Real Time Multiplayer Games

4.3 Game/Test Service Specifications

To perform the evaluation of the proposed algorithm a pseudo service has

been created.

Performing service’s behavior and requirements in a simulation is not an

easy task so some simplifications have been made. The main characteristics

of the service are:

Processing load generation - The service is characterized by a given

processing activity. This is associated with the game playing activity

but also in case of the zone servers with the serving tasks (processing

clients’ requests, performing state synchronization, distribute game

state). So the notion of CPU and memory and the load generation as

function of the service characteristics must both exist. For the per-

formed simulations the following scale of values for CPU and memory

capacity, for the network’s nodes, has been considered:

CPU 500 - 1000 (MHz)

memory 250 - 500 (Mb)

Table 4.2: Processing Capacities Scale

It is admitted, based on the generated CPU and memory load, that

some nodes may not be able in some moments to run as zone servers

due to constraints on their processing resources.

Energy consumption - A simple mechanism of energy consumption is

also considered in the simulator implementation. It is taken into ac-

count the required energy to send/receive packets.

42

4.4 Factorial Design Chapter 4

Traffic generation - A given service is characterized for some traffic pat-

tern. In our case, considering the zone-based architecture, the gener-

ated traffic is between the clients and zone servers, and vice versa. To

model the traffic patterns between clients and servers a constant bit

rate (CBR) source is used.

The service’s properties are summarized in table 4.3.

Service Properties

CPU 500 MHz

memory 250 Mb

battery f(traffic)

traffic (server → client) 10KBit/s (CBR)

traffic (client → server) 10KBit/s (CBR)

Table 4.3: Service Properties

Given the type of service, a real time service, the defined objectives for the

DS are to assure a stable and powerful DS capable of serving all the network

clients in good conditions. So in the definitions of the objectives for the best

profile computation these objectives will have high priority.

4.4 Factorial Design

Factorial design is an experimental design technique specially useful to mea-

sure the effects of a group of factors in the output of an experiment. The

more common and complete analysis is called Full Factorial Design, where

a complete combination of all the factors that may influence the output

is made and based on the results of the experiment it is possible to con-

clude about the importance/contribution of the factors in the output of the

system. More details about this evaluation technique can be found in [23].

In the NWC algorithm, five factors may influence the output of the system,

and three levels of variation have been chosen for it. Details about the

factors and their levels are discussed in 3.3. Table 4.4 presents the possible

43

Chapter 4 Simulation and Evaluation

Weight Factors

cpu memory battery link quality degree

0 ; 0.5 ; 1 0 ; 0.5 ; 1 0 ; 0.5 ; 1 0 ; 0.5 ; 1 0 ; 0.5 ; 1

Table 4.4: Parameters’ Weight Factors

values for each factor, or parameter importance, (0 - not important; 0.5 -

normal importance; 1 - high importance).

If a full factorial design is used 35 = 243 different simulation runs would be

required, not counting with the required simulation replication that is neces-

sary to increase the confidence of the measurements in the simulation. Such

an approach is not very practical nor feasible, due to the long simulation

time. Therefore some simplifications are made to perform the experimental

design.

Simplifications are based on the system’s properties and allow to reduce the

experimental design to a Fractional Factorial Design [23]. This simplification

is very often used when the system complexity is too high to be evaluated

with a full factorial design. In the next section this process is presented and

explained.

4.4.1 Fractional Factorial Design

The basic idea of the fractional factorial design is the same as the full fac-

torial design but, in this case, there is a simplification on the number of

factors and/or the number of factor levels in the experiment.

In this concrete case, a test service representing a real-time multiplayer

game is simulated in a MANET to study the most important factors in the

selection of the DS and, based on this, evaluate the NWC influence on this

selection. The aimed DS for the service, as referred in section 4.3, should be

a stable and powerful DS, capable of serving all the network clients in good

conditions, which means that DS should not experiment too many changes

and should be made by powerful devices (processing power and good links

to the neighbors).

44

4.4 Factorial Design Chapter 4

Based on the previous assumption, the following simplifications are per-

formed to the full factorial design:

CPU - As it has been defined, the service aims at representing a real time

multiplayer game. By analyzing the service properties (table 4.3), it

can be concluded that it will require 500 MHz cpu processing power,

which in the simulation is equivalent, in terms of cpu power, to the

weakest node in the network (see table 4.2).

Based on this assumptions, it is clear that when selecting nodes for

the DS the processing capacity should be taken into account, otherwise

weak nodes may be selected for the DS; this may be a cause of problems

(which in the algorithm are called anomalies), because if a node gets

overloaded it will not serve properly its clients and this will not cope

with the real-time demands of the service.

Hence, to avoid such problems in the node’s weight computation, the

nodes’ processing power should be taken into account when perform-

ing the weight computation for the DS selection. To achieve this, two

weight factor values are used for the factorial design, Normal Impor-

tance and High Importance.

memory - The same arguments used for the cpu parameter are valid here.

So, this parameter is also assigned with two levels of importance, Nor-

mal Importance and High Importance.

battery - This is a very important factor for several types of services,

mainly when it is aimed at keeping a service running for large amount

of time without generating oscillations in the DS nodes. The nodes

with high levels of battery energy should be preferred for the DS. In

the case of a real-time multiplayer game this factor should not play a

very important role. This type of services is high demanding in other

aspects, requiring well located and powerful nodes to be selected for

the DS to cope with such conditions.

To achieve such selection this parameter will be neglected when per-

forming the selection of a DS to serve this service, meaning that No

Importance level is always assigned.

45

Chapter 4 Simulation and Evaluation

link quality - As referred in section 4.2, real-time multiplayer games re-

quire good links between the servers and their clients due to the sensi-

tivity that they have to packet loss, latency and jitter. Such conditions

impose the selection of nodes with good link quality to their neighbors.

To achieve such selection the link quality parameter will be assigned

with normal importance and high importance levels when performing

the factorial design. This will help the selection of nodes with good

link quality to their neighbors.

degree - The selection of a small DS has some advantages, mainly because

this will decrease the necessary traffic overhead and also the delay

required for synchronization of the DS nodes. But such MDS (Mini-

mal Dominating Set) approximation can also cause some problems if

nodes with bad connections, or without enough processing power, are

selected for the DS.

It is clear that this parameter should be important in the DS nodes

selection, so in the factorial design it will be assigned with normal

importance and high importance levels to study which one will conduct

to the best results.

Table 4.5 summarizes the weight factor combinations, or profiles, that are

taken into account for the factorial design experience to select the best

combination, or best profile, for the used test service. It also shows an

evaluation of the algorithm performance.

4.5 The NWC Framework

In Figure 4.2, the NWC framework for computation of the best profile of

parameter importance values, for a given service, is presented.

There are three basic variables that influence the simulation and more con-

cretely the selected DS:

• The service specifications, which defines the characteristics of the sim-

ulated service (nodes’ processing power load and traffic generation

service patterns).

46

4.5 The NWC Framework Chapter 4

Weight Factors Combinations

Combination cpu memory battery link quality degree

1 0.5 0.5 0 0.5 0.5

2 0.5 0.5 0 0.5 1

3 0.5 0.5 0 1 0.5

4 0.5 0.5 0 1 1

5 0.5 1 0 0.5 0.5

6 0.5 1 0 0.5 1

7 0.5 1 0 1 0.5

8 0.5 1 0 1 1

9 1 0.5 0 0.5 0.5

10 1 0.5 0 0.5 1

11 1 0.5 0 1 0.5

12 1 0.5 0 1 1

13 1 1 0 0.5 0.5

14 1 1 0 0.5 1

15 1 1 0 1 0.5

16 1 1 0 1 1

Table 4.5: Weight Factor Combinations, for Factorial Design

• The Parameters’ profile combinations, the different combinations of

parameter importance values used to perform the node’s weight com-

putation (table 4.5).

• The scenario characteristics, nodes (number of nodes, movement and

velocity and associated processing power and battery) and the scenario

topology (dimension of the scenario).

In the simulation, the PBS algorithm is used to make the selection and

maintenance of the DS. PBS is provided with node’s weight computation

and service monitoring functionality.

The implementation of the NWC algorithm was made as an extension of

the PBS algorithm, so the NS-2 implementation of PBS developed in [6]

was used as the basic algorithm for selection and maintenance of the DS,

47

Chapter 4 Simulation and Evaluation

Service
Specification

Parameters’
Profile

Combinations

Scenario
Properties

PBS Algorithm + NWC Algorithm + Service

SIMULATION

Metrics

Number of DOMINATOR nodes
Number of DS changes
Number of Anomalies
PKT Loss
Latency

Best Profile (Multi-Objective Optimization)

Figure 4.2: Simulation Structure

with the NWC algorithm to weight the nodes. The same happened with the

service monitoring functionality. In chapter 5 the details about the NS-2

implementation are presented. In the next section the most important im-

plemented NWC functionality, in the simulator, are briefly introduced.

To evaluate the simulation, a group of five metrics has been used: Number

of DS nodes, Number of DS changes, Number of Anomalies, Average packet

loss and Average latency. This metrics are explained in section 4.5.4.

The last step of the simulation experiment consists of the analysis of the

observed metrics for the different scenarios, with the different profile com-

binations. The aim is at finding the most appropriate group of parameter

importance values, or best profile, based on the objectives defined for the DS

selection, for the test service. To perform this evaluation a multi-objective

evaluation technique has been used.

48

4.5 The NWC Framework Chapter 4

To perform the simulation the Network Simulator, NS-2 [7], with the wireless

extensions developed at CMU [26] has been used.

4.5.1 NWC Simulation

To evaluate the performance of NWC algorithm in the DS nodes’ selection

and study how it performs in conjunction with the PBS algorithm the fol-

lowing extensions have been made to the base implementation of the PBS

algorithm, in NS-2:

Node - The node is provided with three new extensions: CPU, memory

and battery. These three values are used to generate, according to the

definition of node’s processing/energy capacity, service processing load

and traffic, the parameters’ representation values for the node’s weight

computation. So at the moment of the node’s creation, all these values

are attached to its properties.

Link quality measurement - Periodically each node performs measure-

ments of the link quality, measuring the SNR, with its neighbors.

Service requirements - Defines the generated CPU/memory load and

battery consumption during the simulation. The traffic generation

properties are also defined, more concretely the traffic rate between

the Zone Servers and its clients and vice versa.

Node’s weight computation - Implements the NWC algorithm which

allows to compute the node’s weight each time a node is participating

in an election.

Service Monitoring - During the simulation run, DS nodes are peri-

odically checked to see if their local parameters are not out of the

admissible limit values, cpu and memory overloaded or battery energy

level very low.

A full description of the NS-2 implementation is given in section 5.1.

49

Chapter 4 Simulation and Evaluation

4.5.2 Settings

To perform the simulation, each mobile device shares a 2Mbps radio channel

with its neighbors, using the IEEE 802.11 MAC protocol with a two-ray

ground [27] propagation model.

The mobility model used was the Random Way Point (RWP) model. This

mobility model is often used to model movement of nodes in mobile net-

works and its performance are quite reasonable when comparing with other

mobility models [28].

The basic dynamics of this model is: a node selects randomly a target loca-

tion in the simulation scenario and moves to that point using an uniformly

distributed speed. When it reaches the destination, it remains stopped for

some instants (also a random value) and again moves to another point in

the scenario. For the proposed scenarios, this model is reasonable but if a

more particular simulation is aimed at, for example modeling the mobility

of nodes inside a building, other mobility model should be selected. Some

mobility models for MANETs are proposed in [29].

Two different scenarios have been used during the simulations to allow the

evaluation of the algorithm in different conditions. The first is called School

Yard Scenario and aims at describing a ”real” gaming situation; a second

scenario called Test Scenario is used to test the algorithm in a very demand-

ing situation.

School Yard Scenario

This scenario consists of a group of people that stand in a school yard

500x500 m2, in line of sight, playing a game with each other. In such

conditions it is assumed that nodes have a transmission range of 250 meters,

a typical value for a WLAN in an open air area, free of obstacles. The

movements of the nodes are modeled by the Random Way Point (RWP)

mobility model, meaning that the nodes are moving freely in the yard. The

velocity of their moves is uniformly distributed between 0 and 3 m/s, given

that the idea is to model a real game session and so the players should not

50

4.5 The NWC Framework Chapter 4

move, or in case of movement it should be very few and smooth, but it is

supposed that they can move during the game.

Table 4.6 summarizes the simulation settings for the school yard scenario.

School Yard Scenario

Number of nodes 25 nodes

Simulation time 600 seconds

Mobility model Random Way Point (RWP)

Dimensions 500x500 m2

Speed 0-3 m/s

Pause time 180 seconds

Traffic CBR traffic (see section 4.3)

Table 4.6: School Yard Scenario - simulation settings

Test Scenario

The test scenario is used as a limit/straining test for the performance of the

algorithm, testing how the selection of nodes (based on their weights) influ-

ences the DS selection and stability under very demanding conditions. This

scenario is characterized for its large dimensions, high number of nodes and

also the speed of the nodes’ movements. The movements are also modeled

by the RWP model and the speeds are uniformly distributed between 0-10

m/s. Such conditions will obviously impose higher number of changes in the

DS and also increase the number of required nodes in the DS.

Table 4.7 summarizes the simulation settings for the test scenario.

4.5.3 The Factorial Design

As has already been referred, the method used to test the algorithm has

been an experimental design technique called factorial design. The design

for the used test service has been made in section 4.4.1. The experimental

design has been performed in both simulation scenarios to test the validity

of the algorithm, and compare the results.

51

Chapter 4 Simulation and Evaluation

Test Scenario

Number of nodes 35 nodes

Simulation time 600 seconds

Mobility model Random Way Point (RWP)

Dimensions 800x800 m2

Speed 0-10 m/s

Pause time 100 seconds

Traffic CBR traffic (see section 4.3)

Table 4.7: Test Scenario - Simulation Settings

To accomplish valid and reliable results, each combination of parameter

importance values has been tested during 10 game sessions per scenario,

with different seeds (different scenarios, movements and users’ behavior).

Table 4.8 gives a brief summary of the simulation procedure.

Factorial Design

Scenarios School Yard and Test scenario

Simulations per scenario 10

Number of parameters’ profile combinations 16

Total number of simulation per scenario 160

Total number of simulation 320

Table 4.8: Factorial Design - Simulation Settings

4.5.4 Metrics for Algorithm Evaluation

Given the broad group of parameters the algorithm has and their different

nature and aiming at studying the influence of them in the DS selection, the

following group of metrics is used:

Number of DS nodes - The number of nodes in the DS, or the number

of DOMINATOR nodes or Zone Servers, represents the number of the

required nodes to cover all the client nodes in the network. PBS as-

sumes that every node/client has to have at least one neighbor in the

52

4.5 The NWC Framework Chapter 4

DOMINATOR state.

This value is aimed at being as small as possible. In the limit this

should be the MDS but, in our approach, we look for the best approx-

imation preferring first to have a stable and robust DS.

Number of DS changes - This metric gives a measure of stability of the

selected DS by measuring how often the DS changes (new nodes are

selected for the DS) during the service run.

In the simulation, it was admitted that a DS node will remain in the DS

even if all its clients are covered by other DOMINATOR nodes. This

problem was already studied in [9]. It was observed that if a node is

removed from the DS because it is redundant, oscillation problems may

be observed in the DS. Removing redundant nodes may ”free” some

nodes from the DS, but in general other nodes have to be selected after

some small amount of time, which can cause extra operations to be

done, new elections and service state transferring/synchronization for

the new DOMINATOR nodes. This may not be a good trade because

the price of reducing the DS can cause instabilities and an increasing

the message overhead.

Number of observed anomalies - As has been introduced in section

3.1.1, one of the aims of the proposed algorithm is at allowing the

selection of a powerful DS. If it is required to deploy a given service, the

DS nodes should have sufficient resources (processing, energy) to serve,

in ”good” conditions, their network clients. This metric measures the

number of times that DOMINATOR nodes are not able to support

properly the service that is being deployed and/or the clients that

they are serving. In concrete it counts the number of times CPU

and/or Memory load is above a threshold value (the value considered

is 90%) for some period of time, or the energy level is below a threshold

value (the value considered is 10%). If such conditions are observed,

an anomaly is generated and a new election takes place.

Packet Loss - This metric gives a measure of the number of packets that

are lost in the communication between clients and zone server nodes.

53

Chapter 4 Simulation and Evaluation

Latency - Measure the average time that a packet requires to be trans-

mitted between a DOMINATEE and a DOMINATOR, or vice versa.

Latency and the packet loss allow extracting conclusions about the

quality of the links between DOMINATOR nodes and their DOMINA-

TEE nodes. These two values will be mainly affected by the network

congestion, which is mainly caused by the density of the nodes’ trans-

mitting information and the quality of the links between the nodes.

4.6 Evaluation and Best Profile Computation

In the next points the results of the designed experimental design are going

to be presented. First a global picture of the results is depicted, performing

an analysis of the metrics, taking all the used simulated combinations into

account (the used importance values combinations are presented in section

4.4.1). In a second point, the combination of importance values that conduct

to the best results, referred as the best profile for the used test service, is

computed and studied.

4.6.1 Global Algorithm Performance

Results

Figure 4.3 represents the observed Number of DS nodes, Number of DS

changes and Number of anomalies in the 16 performed simulations. Figure

4.4 represent the Average packet loss (in percentage) and Average latency (in

milliseconds) observed in all the factorial design for the school yard scenario.

The equivalent results for the test scenario are presented in Figure 4.6 and

Figure 4.6, respectively.

Table 4.9 and table 4.10 give a brief summary of the statistics observed in

both scenarios’ simulations.

Analysis

In this section a global analysis of each metric is done, explaining the evo-

lution of it in the performed simulations and analyzing the most important

54

4.6 Evaluation and Best Profile Computation Chapter 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

1

2

3

4

5

6

iteration

Number of DS nodes
Number of DS changes
Anomalies

Figure 4.3: School Yard Scenario - DS nodes, DS changes and Anomalies

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

1

2

3

4

5

6

7

8

9

iteration

Average Packet Loss (%)
Average Latency (ms)

Figure 4.4: School Yard Scenario - Packet loss and Latency

factors in the output of each observed metric.

Number of DS nodes

55

Chapter 4 Simulation and Evaluation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

1

2

3

4

5

6

7

8

9

10

11

iteration

Number of DS nodes
Number of DS changes
Anomalies

Figure 4.5: Test Scenario - DS nodes, DS changes and Anomalies

0 2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

8

iteration

Average Packet Loss (%)
Average Latency (ms)

Figure 4.6: Test Scenario - Packet loss and Latency

The high ”priorized” nodes are selected for the DS but the number of

DS nodes is dependent on how the different parameters are weighted.

If the degree is assigned with a high importance value the natural

56

4.6 Evaluation and Best Profile Computation Chapter 4

School Yard Scenario

DS nodes DS Changes Anomalies PKT loss Latency

min 3 0 0 0.012 5.23

max 6 9 4 1.54 7.23

avg 3.90 1.99 0.76 0.30 6.84

σ 0.58 1.99 0.21 0.05 0.5

Table 4.9: Global Statistics - School Yard scenario

Test Scenario

DS nodes DS Changes Anomalies PKT loss Latency

min 4 0 0 0.56 5.12

max 17 18 5 2.65 7.12

avg 8.29 5.18 1.21 1.19 6.51

σ 1.48 4.57 0.26 0.14 0.6

Table 4.10: Global Statistics - Test scenario

conclusion would be that the number of DS nodes would decrease but,

since the algorithm is not just dependent on this parameter, different

results were also observed as was expected.

In the school yard scenario it is always observed a quite small DS,

Figure 4.3, which is basically explained by the scenario properties: the

network has 25 nodes and the scenario has 500x500 m2, which allows a

complete coverage of all nodes by a DS of 3 to 6 nodes - in average 3.9

DS nodes are required. The best performance was observed when the

parameters’ importance combination 6 was used. In this combination

the node’s degree is assigned with a high importance value.

In the test scenario different results were observed, figure 4.5. The

main difference, compared with the other scenario, is the increasing

number of required DOMINATOR nodes. This scenario is larger than

the school yard scenario and has a bigger number of nodes. Another

factor that influences the number of servers is the higher speed of the

nodes (this is also observed in the number of DS changes). These re-

sults were even enforced by the fact that redundant servers remain in

57

Chapter 4 Simulation and Evaluation

the network. In average a reasonable value of DOMINATOR nodes

(8.29 nodes) was achieved even in such conditions. The best case was

observed when the parameters’ importance combination 10 was used,

where the node’s degree is also assigned with a high importance value.

Number of DS changes

It can be deduced that the number of DS changes varies a lot when the

two scenarios are compared. The increasing number of DS nodes could

naturally make a selection of not so powerful nodes for the DS, but,

based on the observed number of anomalies in each scenario, this is not

the most important cause for the considerable differences in the DS

changes in both scenarios. In both scenarios was observed that, when

the more powerful nodes were selected for the DS, a more stable DS was

achieved. This may be observed in the decreasing number of changes

in the combinations above 13, when processing power parameters are

assigned with high importance value.

The school yard scenario shows a very stable DS, figure 4.3. In

some cases very few or no changes occurred during the whole game

session. In average a value of about 2 changes has been observed. The

best case (mean of 1.43 changes) was observed with the parameters’

importance combination 13, where cpu and memory are assigned with

high importance and link quality and degree are assigned with normal

importance.

In the test scenario, 4.3, the best case was observed when, as in the

school yard scenario, the parameters’ importance combination 13 was

used. This enforces the idea that selecting powerful nodes for the DS,

may be very important in the selection of a stable DS, but it does not

mean that it increases the performance in other points, as the number

of DS nodes, or link quality.

Number of observed Anomalies

In average the number of anomalies does not vary too much between

58

4.6 Evaluation and Best Profile Computation Chapter 4

the two scenarios. In both an average of about 1 anomaly is observed.

The observed variations are mainly explained by the increasing num-

ber of nodes in the network for the test scenario which increases the

probability of selection of not so powerful nodes for the DS. However

this result is very dependent on the type of devices that are in the net-

work, their capacity and also the service’s generated processing load.

It is clear that when the processing power parameters are assigned

with high importance value, a reduction on the observed number of

anomalies occurred. This result was expected, given that the number

of anomalies is only influenced by this parameters and hence when

their importance is increased a reduction on the number of anomalies

should always be expected.

The school yard scenario shows an average of 0.76 anomalies, figure

4.3. This value reflects that in general nodes with sufficient power

resources are selected for the DS. Such result is mainly explained by

the fact that normal importance or high importance is assigned to the

processing power parameters and this allows to enforce the selection

of the more powerful nodes for the DS. The best results were obtained

when the weight factor combination 13 was used, similarly to the case

of the observed minimal DS changes.

In the test scenario an average of 1.21 anomalies were observed, fig-

ure 4.5. As it was theoretically expected, the increasing of network

number of nodes provoked also an increase on the observed number of

anomalies. Best results were observed when the weight factor combi-

nation 13 was used. This result is coherent with the one obtained in

the schoolyard scenario.

In figure 4.7 and figure 4.8 two examples of the DS number of nodes

variation are given for both scenarios, when profile 5 was used.

Packet Loss

In both simulations a very low packet loss rate was observed. This

59

Chapter 4 Simulation and Evaluation

0 100 200 300 400 500 600
0

0.5

1

1.5

2

2.5

3

3.5

4

time (sec)

D
S

 n
um

be
r

of
 n

od
es

DS number of nodes
Anomalies

Figure 4.7: Number DS nodes - School Yard scenario

0 100 200 300 400 500 600
0

1

2

3

4

5

6

7

8

9

10

time (sec)

D
S

 n
um

be
r

of
 n

od
es

DS number of nodes
Anomalies

Figure 4.8: Number DS nodes - Test scenario

rate is mainly dependent on the network congestion and the quality of

the links between the network nodes. The results are very close in all

the simulations.

The school yard scenario has a very low average packet loss rate,

60

4.6 Evaluation and Best Profile Computation Chapter 4

0.30%. The best situation was observed in the case of the parameters’

importance combination 5. This combination assigns high importance

value to the link quality and degree parameters. Theoretically the

best results would occur when just link quality would be assigned

with high importance weight factor, but the fact is that there is a very

small difference in the results for all the combinations. Such result

emphasizes the idea that it is sufficient, in this case, to assign a normal

importance value to the link quality parameter to achieve good results.

In the test scenario similar results to the school yard scenario were

obtained. The best case was also obtained with the same parameters’

importance combination, 5, was used. In this case an higher packet

loss rate was observed, which makes sense because the network is more

congested due to the higher number of nodes in the network.

Latency

Small values for latency were obtained (for both simulation about 6

ms) which means that this issue is not very relevant in the selection

of the DS nodes, given that in all the different combinations the DS

nodes position is near to their clients.

The best results were obtained, in both scenarios, for the combination

13. This combination has high importance value assigned for cpu and

memory parameters and normal importance value for the link quality

and degree weight factors. This result seems at the first glance not

coherent, but as also observed for packet loss it may be explained by

the fact that, for this service, it is enough to have a normal importance

assigned to this weight factors to allow the selection of appropriate

nodes, with good link quality and thus low packet loss and latency.

4.6.2 The Best Profile

After performing a global analysis of all used combinations, in this section

the selection of the best parameters’ importance values combination, or the

best profile, is made.

61

Chapter 4 Simulation and Evaluation

The criterion to define the best profile, for a given service and system, is

not a straight operation given that the system has several requirements and

objectives to accomplish. Thus an optimization of several ”objectives” is

required to select the most appropriate profile for the system.

In the DS selection there are objectives that cannot, in general, be satisfied

at the same time. As an example get the best MDS approximation and the

most stable DS. These two metrics are, in general, not possible to achieve

at the same time.

The simulated service, a real time multiplayer game, has some demands in

terms of processing power and link quality, see section 4.2. In the decision of

the best profile the most stable DS is preferred to the MDS approximation.

This is also a coherent decision with some previous assumptions (remark

that redundant servers are not removed from the DS). As already has been

argued, to serve some types of services, including real-time applications, in

general a stable DS will allow to achieve a more suitable DS than the MDS

approximation.

In the next section the best profile is derived. A Multi-objective Optimiza-

tion technique is used to compute it since the best profile is dependent on

several objectives.

The best profile

The main aim of the NWC algorithm is at computing the most robust and

stable DS given the service requirements/characteristics. In the used test

service, the objective function may be defined as: get a stable and powerful

DS with good links between DOMINATOR nodes and their DOMINATEE

ones, with the best MDS approximation.

The optimization of multi-objective functions is not a trivial problem given

that several objectives are aimed at for a system and some objectives may

not be possible to accomplish at the same time. To perform the computation

of the objective function, usually, the problem is reformulated, approaching

it to a single-objective problem. Such approximation is achieved by forming

a weighted combination of the different objectives or else replacing some of

62

4.6 Evaluation and Best Profile Computation Chapter 4

the objectives by constraints.

In the approach followed, an experimental design, based on simulation, has

been done, using several metrics to evaluate the algorithm performance.

Based on these metrics and from the study developed in the previous section,

it can be deduced that for the studied system the most relevant variables

are the Number of DS nodes, Number of DS changes and the Number of

Anomalies. This is explained by the fact that Packet loss and Latency have

shown a constant behavior for all the used parameters importance combina-

tions. This result means that these two metrics will not influence the search

of the best profile given that in all the profiles very close, almost constant,

results were obtained.

In the search of the best profile a minimization technique is used and the

objective function is defined as follows:

Obj.Func. = w(Nodes) · f(Nodes) + w(Changes) · f(Changes) + w(Anomalies) · f(Anomalies)

(4.1)

As it can be seen in equation 4.1, the objective function depends on the ob-

served number of DS nodes, the number of DS changes and the number of

observed anomalies. Each of these variables has an associated weight, which

defines the importance of each of them in the global Objective Function.

The definition of these weights depends on the importance of each of the

factor/objective in the context of the system/service. It was referred before

that the aim in the definition of the best profile is to look at the combinations

that revealed the more stable DS selection. This objective is mainly influ-

enced by the number of DS changes and the number of observed anomalies.

Therefore, these two objective function variables are assigned with higher

weights when compared with the remaining variable, the number of DOM-

INATOR nodes.

Definition of the weights for the objective function computation:

63

Chapter 4 Simulation and Evaluation

Number of DS changes - Higher weight, because this metric measures

the DS stability and given that the main objective is to select the profile

that gives the most stable DS, this is assigned with the highest weight.

Number of Anomalies - It measures the number of times that DS nodes

have to be removed from the DS. This is also a measure of DS stability

given that is aimed at having the smallest number of anomalies to grant

a stable and powerful DS. Based on this, this metric is assigned with the

second highest weight.

Number of DS nodes - The number of DS nodes measures the number of

required nodes to form the DS and assure a full coverage of all nodes in the

DS. The MDS approximation allows increasing the system’s performance

but, on the other side, having a small number of DS nodes does not assure

the stability of the DS. In the objective function computation this metric is

assigned with the lower weight, given that it important and is an objective

for the system to minimize this metric. However stability is preferred for

the analyzed system.

Objective Function Weight Factors

Metric Weight

Number of DS changes 5/10

Number of Anomalies 3/10

Number of DS nodes 2/10

Table 4.11: Objective Function Weights

In appendix A, the detailed computation of the best profile is done, using the

referred multi-objective computation approach. Figures 4.9 and 4.10 repre-

sent the results of the objective function computation, for each parameters’

importance value combination.

From the performed computations it may be deduced that the profile 13 is

the one that best fulfills the defined objective function for both scenarios.

Table 4.12 presents the profile that gives the best results for the analyzed

system and Tables 4.13 and 4.14 summarize the observed metrics in the

school yard and test scenario, respectively.

64

4.6 Evaluation and Best Profile Computation Chapter 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.2

0.4

0.6

0.8

1

combination

O
bj

ec
tiv

e
F

un
ct

io
n

Figure 4.9: Objective Function - School Yard Scenario

The Best Profile

cpu memory battery link quality degree

1 1 0 0.5 0.5

Table 4.12: The Best Profile, in Both Scenarios

School Yard Scenario

Combination DS nodes DS Changes Anomalies PKT loss Latency

13 3.87 1.43 0.43 0.35 6.75

Table 4.13: Best Profile Results - School Yard Scenario

As it can be observed, this is the profile that gives the best performance

in both scenarios, according to the desired objectives for the system. The

minimum number of DS changes, the minimum number of anomalies and the

minimum values for latency are observed when this profile is used, in both

65

Chapter 4 Simulation and Evaluation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.2

0.4

0.6

0.8

1

Combination

O
bj

ec
tiv

e
F

un
ct

io
n

Figure 4.10: Objective Function - Test Scenario

Test Scenario

Combination DS nodes DS Changes Anomalies PKT loss Latency

13 8,2346 4,4286 0,8571 1,0735 6,4214

Table 4.14: Best Profile Results - Test Scenario

scenarios. The observed number of DS nodes is also close to the minimum

observed in both scenario simulations.

4.7 Summary

In this chapter the proposed algorithm has been tested in the selection of

the DS for a test service in two different scenarios. The definition of the

best profile, for this service, has also been made using the NWC framework.

Simulation is a very useful tool to evaluate algorithms, mainly when the

66

4.7 Summary Chapter 4

complexity of real implementation is an issue. However transposing the real

conditions of a system to a simulator always requires some grade of abstrac-

tion.

The test service used during the simulation is constructed based on the

properties of real time multiplayer games, section 4.2. The service proper-

ties are presented in section 4.3. Given the properties of the service, the

main objectives were to select a stable and robust DS with possible good

approximation to the MDS.

The service has been tested under two different scenarios, with different

properties. This was used to compare and evaluate the performance of the

selection under different conditions, for the same type of service.

The algorithm allows an adaptation to the type of service/system according

to its requirements by the adjustment of the parameters’ importance values.

In the simulation the best profile for the simulated service was made using

the NWC framework.

In section 4.6.1 the obtained results are shown for both scenarios.

The best profile was computed using a multi-objective optimization tech-

nique, given that more that one objective was aimed at for the DS selection.

It was observed, for both scenarios, that the best profile for the simulated

service will consist of powerful nodes (in terms of processing power). Such

results are explained by the service’s characteristics. The service processing

load was quite high compared to the devices’ processing power characteris-

tics, which may generate some problems if devices with low processing power

capabilities are selected for the DS.

The same best profile was observed for both scenarios. This confirms that

defining a constant profile for a given DS selection and type of service may

be a good approximation. However based on the performed experiments

it may not be affirmed that this is a universal conclusion. But based on

the observed results it may be concluded that, even varying the scenario

conditions, the service has pattern characteristics associated to it, which

influences the DS selection and changes in the same way. This enforces the

fact that using a static assignment of parameter importance values for a

given service may be a good approach.

67

Chapter 5

Implementation

This chapter gives an overview of the implementation of the NWC algorithm in

NS-2 [7] and in the Siramon framework [4]. In both implementations the NWC

algorithm is implemented as an extension of the basic PBS algorithm developed

in [6]. The code of both implementations can be found in the Siramon project

webpage 1.

5.1 NS-2 Implementation

The implementation of the NWC algorithm in NS-2 has two main objectives:

• Implement the NWC algorithm (to compute the node’s weight) for the

DS selection.

• Create a framework (NWC framework) that allows the study of the

best profile of parameters’ importance for a service, based on the de-

fined objectives for the DS selection.

5.1.1 The NS-2 Network Simulator

The network simulator NS-2 [7] is a discrete event simulator targeted at

networking research. It provides support for simulation of TCP, routing

and multicast protocols over wired and wireless networks.

1www.siramon.org

69

Chapter 5 Implementation

NS-2 is written in C++ and OTcl. In the C++ space protocols and all func-

tionality that is not changed often are implemented. In the OTcl space the

scripting functionality to control the simulations and perform the required

interface with the C++ space is placed.

The reason to use two different spaces, with two different languages, is ex-

plained by the complexity of each space. C++ is better suited for write

complex operations. For example, implementation of protocols and data

control. On the other hand OTcl allows a fast and simple construction of

simulation scripts, which allows an easy creation/change of the necessary

scripts to perform the simulations.

In [7] a collection of material about NS-2 can be found.

5.1.2 NWC Algorithm Implementation

The NWC algorithm has been implemented as an extension of the PBS

algorithm [6] in NS-2 and also in the Siramon framework.

PBS Algorithm Implementation

In NS-2, the main functionality of PBS has been implemented as an agent

(ZSSpbsAgent). This was implemented as part of the core (C++ space)

of the NS-2 simulator to allow the different network nodes to attach this

functionality in the configuration scripts (OTcl space). Basic zone server

selection functionality is implemented in another agent (ZSSAgent) to al-

low the extension to implement different zone server selection algorithms.

The basic communication between agents is made by a dedicated protocol

(PT ZSS) and packet format that consists of a content and content length

field, and can be used by any zone server selection implementation. The

algorithm implementation follows a Finite State Machine (FSM) which de-

fines states and transitions between states, controlled by incoming events.

The use of the FSM allows an easy control of the algorithm flow. The FSM

used for the PBS algorithm is in Appendix B, it also already contains the

developed NWC algorithm.

70

5.1 NS-2 Implementation Chapter 5

NWC Algorithm Implementation

The aim of the NWC algorithm NS-2 implementation is to provide the PBS

algorithm with the nodes weighting functionality but also allow the study

of the best profile of parameters’ importance for a given service.

Figure 5.1 shows the NWC functionality implemented in NS-2, as an exten-

sion of the PBS algorithm.

Service Requirements

OTcl Space

Service Specifications

- cpu_specification
- mem_specification
- bat_specification
- traffic_specification

Service Requirements Nodes

- cpu_capacity
- mem_capacity
- bat_capacity

Service Requirements Parameters’ Importance

- cpu_importance
- mem_importance
- bat_importance
- link_importance
- deg_importance

C++ Space

Service Requirements
PBS

NWC

Service Requirements Service Monitor

- parameters_monitor
- traffic_generation

Service Requirements Local Parameters

- cpu_load
- mem_load
- bat_consumption

Figure 5.1: NWC NS-2 Implementation

As it can be observed in Figure 5.1, the implementation is divided by the

two NS-2 spaces, OTcl and C++ spaces.

In the OTcl space all the necessary variables for the simulation are assigned

and then passed to the C++ space where the NWC algorithm is implemented

as an extension of the PBS algorithm. The three basic groups of variables

that are passed to the C++ space are:

• Service Specifications - It is used to characterize the type of service

71

Chapter 5 Implementation

that is simulated. Variables representing CPU/memory load genera-

tion, battery consumption and also traffic (rate) between zone servers

and its clients are defined and passed to the PBS agent, in the C++

space, to be used in the service simulation.

• Nodes - Nodes’ local parameters capacity (CPU, memory and bat-

tery) which are used to simulate the CPU/memory load generation

and battery consumption, are assigned to every node of the network

that participates in the service deployment. This will allow the com-

putation of the parameters’ values for the node’s weight computation.

• Parameters’ Importance - Represent the importance values as-

signed to the different parameters of the NWC algorithm. When com-

puting the best profile these values are changed and the results of the

simulation are analyzed to select the most appropriate combination,

according to the simulated service and the objectives defined for the

selected DS.

In the C++ space some extensions to the PBS algorithm have also been

made. The basic NWC algorithm implementation has been included in the

PBS Agent. This node’s weight computation functionality is called by the

PBS algorithm each time an election takes place, as it presented in the FSM

in Appendix B.

In the C++ space the following functionality has been added:

• Service Monitor - This functionality is responsible for monitoring

and checking the local parameters values. It also controls the traffic

generation between zone servers and clients, which is performed ac-

cording the service specifications. This functionality is called at each

election time to update the parameters values for the node’s weight

computation. Periodically statistics about the parameters are taken

and the local parameters (CPU, memory and battery) values are check,

if they are not in the range of admissible values an anomaly is gener-

ated, this question is discussed in more detail in section 3.4.

72

5.1 NS-2 Implementation Chapter 5

• Local Parameters - This functionality is responsible for the gener-

ation of the local parameters values according to the node’s capacity

and the service characteristics.

In table 5.1 a summary of the file structure of the PBS algorithm with

the NWC algorithm extension is given. More details can be found in the

programming documentation in Siramon project webpage 2. In Appendix

C the steps for installation of the PBS/NWC algorithm are given.

PBS/NWC implementation in NS-2

File Description

zss{.h .cc} The main class for any ZSS implementation.

zss pbs{.h .cc} Implements the PBS/NWC algorithm sup-

port.

timer pbs{.h .cc} Timer functionality used by the PBS/NWC

algorithm.

neighborlist{.h .cc} Stores and handles the relevant information

about the neighbors.

node information.h Contains the structure of a node entry in

the Neighborlist and the structure of the sent

packets by the PBS algorithm.

monitor{.h .cc} Monitors the 1-hop neighborhood.

service monitor{.h .cc} Implements the service monitor functionality.

timer monitor{.h .cc} Timer functionality used by the monitor, and

the service monitor.

local parameters{.h .cc} Local parameter values generation.

debugger{.h .cc} Debugger used to write outputs.

utils/fsm{.h .cc} Implementation of a Finite State Machine

(FSM).

utils/state{.h .cc} State of the FSM.

Table 5.1: Files Used for PBS/NWC Implementation in NS-2

2www.siramon.org

73

Chapter 5 Implementation

5.2 Siramon Implementation

The implementation of the PBS algorithm in the Siramon framework fol-

lows the same approach of the NS-2 implementation, it is an extension of

the PBS algorithm, and this implementation is presented in this section.

Siramon is implemented in Java and has five basic modules:

• Service Specification

• Service Indication

• Service Deployment

• Service Management

• Environment Observer

A more detailed description of the Siramon framework is given in Appendix

D.

The NWC algorithm is implemented in three of the basic Siramon’s frame-

work modules: Service Specification, Service Management and Environment

Observed:

• Service Specification - This module is responsible for the service

description document definition and manipulation. This document is

written using the XML language [30]. To support the NWC functional-

ity the document has been extended with the profile of parameters’ im-

portance values (represented by the fields cpu i, mem i, bat i, link i and

deg i). This information is added under the DEMANDS element (path

SERVICE/IMPLEMENTATION/CODE/ENVIRONMENT/DEMANDS)

of the document. These fields are optional and will just be checked

if the service requires the zone server selection functionality. An ex-

tension on the specification module has also been made to allow the

extraction of the service profile.

74

5.2 Siramon Implementation Chapter 5

• Service Management - This module is responsible for the mainte-

nance, reconfiguration and termination of the services that use the

framework. Since the PBS algorithm is responsible for the selection

and maintenance of the zone servers, for a given service, it has been

implemented in this module. The NWC algorithm has also been imple-

mented in this module as an extension of the basic PBS algorithm. To

compute the node’s weight the necessary values of the parameters and

the parameters’ importance values are obtained using the specification

module and the Environment Observer module.

• Service Observer - The Environment Observer module has the func-

tionality of monitoring the device resources and the service context on

the network. To compute the node’s weight the NWC algorithm has

to monitor the CPU and memory load, the battery energy level and

the link quality of the connections to its neighbors. This functionality

has been included in this module. Four external monitors have been

created to monitor the four parameters, because Java does not have

native functionality to support the extraction of the required informa-

tion for the node’s weight computation.

Tables 5.2 and 5.3 give a resume of the file structure of the PBS algorithm

with the NWC algorithm extension in the Siramon framework. In Appendix

C some details about the implementation and the used external monitors

are given.

Package Description

Siramon.Management.zss Contains the main classes needed by

the ZSS functionality.

Siramon.Management.zss.utils Contains some utils for the ZSS

functionality like a basic debugger

and the Finite State Machine (FSM)

Table 5.2: Zone Server Selection Functionality in Siramon Framework

75

Chapter 5 Implementation

File Description

ZSS.java The main class for any ZSS implementation.

ZSS PBS.java Implements the PBS/NWC algorithm.

ZSS PBSfsm.java Implements the FSM used by the PBS/NWC

algorithm.

ZSS PBSpacket.java Used packet format to be sent in the content

part of the SIRAMON packet.

TimerPBS.java Timer functionality used by the PBS/NWC

algorithm.

Neighborlist.java Stores and handles the relevant information

about the neighbors.

NodeInformation Used by the Neighborlist to store the infor-

mation about a neighbor.

utils/Debugger.java Debugger used to write outputs.

utils/FSM.java Basic implementation of a Finite State Ma-

chine (FSM).

utils/State.java State of the FSM.

Table 5.3: Used Files for the PBS/NWC Implementation in SIRAMON

76

Chapter 6

Conclusions and Outlook

In this chapter conclusions about the achievements of this Master’s Thesis are

depicted and directions for further developments of the work are given.

6.1 Conclusions

New ways of communication are gaining popularity nowadays. MANETs are

one of these new trends, so new services and business areas are emerging for

these networks. To support such networks new protocols and functionality

are required to cope with the demanding and especially dynamic conditions

associated to it.

The support of distributed services deployment in MANETs has different

demands when compared to wired networks. The classical ”server-client”

and ”peer-to-peer” architectures are not well suited for the deployment of

distributed services in a MANET. New service management architectures

are being proposed for MANETs. An example of such architecture is the

Zone-based architecture [5]. It is a hybrid architecture that combines the

”good” features, in the MANETs context, of the two classical architectures.

This architecture is based on the notion of zone servers, which are special

network nodes that work as servers of a given network zone managing the

nodes that belong to its zone.

77

Chapter 6 Conclusions and Outlook

Previously an algorithm called PBS (Priority Based Selection) [6] has been

proposed for zone server selection and maintenance. PBS treats the network

as a graph and selects the DS based on node’s priorities. The first criterion

for the node’s priority assignment is the node’s weight, which measures the

capacity of a given node to perform as zone server for a given service.

Several algorithms exist to perform the selection of the DS nodes. The most

common approach for such selection is based on a small group of nodes’

characteristics aiming to optimize the DS selection for a unique objective.

In this thesis a different algorithm is proposed. The NWC (Node’s Weight

Computation) algorithm performs the selection of the most appropriate DS

as function of the service/system requirements. The algorithm, in conjunc-

tion with the PBS algorithm, allows the selection of DS nodes for non-specific

types of services, meaning that different objectives may be defined for the

DS selection. The algorithm is used in the Siramon framework [4] providing

the weighting functionality to the PBS algorithm to select the DS.

A group of parameters is taken into account to quantify the weight of the

network nodes, in total five parameters are used. The parameters are divided

into two classes, node’s processing/power parameters and node’s communi-

cation parameters. The first group contains the parameters which measure

the processing power capabilities of the nodes (CPU and memory) and the

energy capabilities of the nodes (battery). Concerning to communication

parameters the node’s degree and the link quality parameters are used, to

measure the communication capabilities of a node with its neighbors.

To use the algorithm in the deployment of different services, the notion of pa-

rameter importance level has been introduced. These importance values are

assigned to the parameters as function of the service/system requirements.

For example, if the service requires good connections and fast processing

nodes, the processing parameters (CPU and memory) and the link quality

parameter are assigned with a high importance value.

To allow the differentiation of the parameters’ importance a scale of three

values is used (no importance, normal importance and high importance), see

section 3.3.1 for more details.

78

6.1 Conclusions Chapter 6

The definition of the parameter importance values for a service, or service

profile, is made in a static way. This means that it is not adaptable to

the current service context. To study the most appropriate combination of

importance values for a given service a framework has been created, the

NWC framework.

The NWC framework allows, by performing a factorial design based on

the service properties, to study the contribution of each parameter in the

selection of the DS. To find the most appropriate profile a multi-objective

optimization technique is used. Such technique is used because a multiple

objectives are usually defined for the DS, such minimum number of DS

changes and minimum number of DS nodes.

The definition of the service profile may also be defined directly by the

service/system designer, according to the goals defined for the DS.

The NWC algorithm has been tested using simulation. A test service was

used modeling a real service (real time multiplayer game) characteristics.

It was simulated in two different scenarios. The NWC framework has been

used to evaluate and search for the best profile for the service. Good results

were obtained and it was clear that in all the simulated scenarios one profile

was the more appropriated, given the defined objectives for the DS.

Such conclusions confirmed that the proposed static assignment will be, in

general, consistent in the selection of the DS nodes for a given service, in

different conditions. This is mainly explained by the fact that a service is

characterized for a set of properties and characteristics that generate, even

in different contexts, a pattern behavior and this is reflected in the require-

ments for the DS selection.

The NWC algorithm has been implemented in the Siramon framework [4].

Given the constraints of the testbed, it could not be observed and studied

the importance of the use of the NWC algorithm in the selection of the DS

nodes. However it was observed that the more powerful nodes were selected

for the DS when the algorithm was used.

79

Chapter 6 Conclusions and Outlook

6.2 Outlook

From the performed work, some future lines of investigation and develop-

ment of the proposed algorithm are here depicted:

Different scenarios - During the performed evaluation of the algorithm

two different scenarios have been used. A random way point mobility

model was used in these simulation. To study the NWC algorithm

in more realistic conditions other scenarios should be also tested. An

example that is nowadays having some interest is the vehicular ad

hoc networks. Some simulation scenarios are being proposed for this

cases, for example an highway scenario where the movement of cars is

simulated in a high way. Such tests will allow to conclude about the

performance of the algorithm in more realistic scenarios.

Node’s weight computation formula - The NWC algorithm formula for

node’s weight computation follows a linear combination of the param-

eters values assigned with a given importance value. Every parameter

value is normalized into an unitary scale and the weight for a node is

then computed. Given the characteristics of the parameters and also

the importance that they have in the DS selection for a given service,

different combinations may conduct to a more appropriate selection of

the DS nodes. Some more research in the weight computation formula

should be done, studying different combinations of the parameters and

their importance values.

Testbed - The test and evaluation of an algorithm is usually performed

under simulation due to the complexity of construct a real test envi-

ronment. But it is impossible to transpose all service/scenario/system

properties for a simulation. It is suggested to test the NWC algo-

rithm in a real scenario, testbed. A representative testbed containing

a large number of different types of devices and reproducing real ser-

vice deployment situation will allow to perform measurements and

depict conclusions about the algorithm performance. This will allow

to study and develop the algorithm further.

80

Appendix A

Best Profile Computations

In this chapter the computation for the best profile using a multi-objective

optimization technique is performed.

A.1 Factorial Design Results

In this section the results of the performed factorial design are presented.

In Table A.1 the importance values, or profile, combinations to perform the

experimental design are presented. After, Tables A.2 and A.3 present the

results of the factorial design for the school yard scenario and test scenario,

respectively.

A.2 The Best Profile

There are five metrics that measure the performance of the system and the

objective is to minimize all these metrics, for the best profile computation.

Such a goal is not possible because some of the objectives cannot be optimize

at the same time.

To accomplish the optimization a multi-objective optimization technique is

going to be used. This is used in the computation of the best profile for the

service in both scenarios.

81

Appendix A Best Profile Computations

Importance Values Combinations

Combination CPU memory battery link quality degree

1 0.5 0.5 0 0.5 0.5

2 0.5 0.5 0 0.5 1

3 0.5 0.5 0 1 0.5

4 0.5 0.5 0 1 1

5 0.5 1 0 0.5 0.5

6 0.5 1 0 0.5 1

7 0.5 1 0 1 0.5

8 0.5 1 0 1 1

9 1 0.5 0 0.5 0.5

10 1 0.5 0 0.5 1

11 1 0.5 0 1 0.5

12 1 0.5 0 1 1

13 1 1 0 0.5 0.5

14 1 1 0 0.5 1

15 1 1 0 1 0.5

16 1 1 0 1 1

Table A.1: Parameters’ Importance Combinations for Factorial Design

A.2.1 Multi-Objective Optimization

A multi-objective problem consists of the search of the values for the design

variables which optimizes a set of objective functions. The set of variables

that produces the optimal outcome is designated as the optimal combination.

It yields a set of possible answers from which the designer may choose the

desired values of the design variables.

The usual approach in the search of the global optimization consists of

weighting the several objective functions, or decreasing the number of used

objective functions by setting constraints. In the following point a weighting

objectives method is presented.

82

A.2 The Best Profile Appendix A

School Yard Scenario

Combination DS nodes DS Changes Anomalies PKT loss Latency

1 3.98 2.14 0.71 0.30 6.94

2 3.82 2.57 0.86 0.25 6.82

3 3.98 1.71 0.71 0.34 6.91

4 3.88 1.86 0.71 0.23 6.77

5 3.80 2.29 0.86 0.28 6.82

6 3.71 2.43 1.00 0.25 6.84

7 4.05 2.86 1.29 0.27 6.86

8 3.77 2.43 0.86 0.29 6.88

9 4.19 2.43 0.86 0.25 6.88

10 3.98 1.57 0.57 0.30 6.77

11 3.95 1.57 0.71 0.36 6.85

12 4.01 2.00 0.86 0.30 6.89

13 3.87 1.43 0.43 0.35 6.75

14 3.77 1.43 0.57 0.36 6.85

15 3.96 1.71 0.57 0.36 6.84

16 3.77 1.43 0.57 0.36 6.83

Table A.2: Factorial Design Results - School Yard scenario

Weighting Objectives Method

This method takes each objective function and multiplies it by a ”weighting

coefficient”, which is represented by wi. The modified functions are then

added together to obtain a single cost function. The objective functions, fi,

must be optimized before the multi-objective optimization.

f(x) =
k∑

i=1

wifi(x) (A.1)

where: 0 ≤ wi ≤ 1 and
∑k

i=1 wi = 1

In this method the weighting coefficients are assumed beforehand. The

designer is expected to pick the values of the variables from this set of

solutions.

83

Appendix A Best Profile Computations

Test Scenario

Combination DS nodes DS Changes Anomalies PKT loss Latency

1 8.0079 5.7143 1.4286 1.3603 6.4327

2 8.4862 6.0 1.4286 1.0546 6.5939

3 8.1992 5.1429 0.8571 1.122 6.6504

4 8.4653 5.1429 1.1429 0.9305 6.5207

5 8.4902 5.7143 1.2857 1.176 6.5328

6 8.6763 5.1429 1.2857 1.2371 6.4607

7 8.4076 5.0 1.2857 1.3829 6.5003

8 8.3879 4.4286 1.0 1.0782 6.5117

9 8.2385 5.1429 1.2857 1.1768 6.5258

10 7.8952 5.8571 1.7143 1.0728 6.4482

11 8.0917 4.7143 1.1429 1.4099 6.5436

12 8.1953 5.8571 1.5714 1.3021 6.4536

13 8.2346 4.4286 0.8571 1.0735 6.4214

14 8.1009 4.5714 1.1429 1.0894 6.5254

15 8.3709 5.1429 1.0 1.2234 6.5112

16 8.4535 4.8571 0.8571 1.3612 6.5603

Table A.3: Factorial Design Results - Test scenario

A.2.2 Best Weight Profile Computation

In the designed experiment fi(x) represent the measured (mean) values of

the metrics used for the system evaluation:

• Number of DS Nodes

• Number of DS Changes

• Number of Anomalies

• Packet Loss

• Latency

From the performed study in 4.6.1, it has been concluded that packet loss

and latency metrics are not relevant in the evaluation of the system’s per-

84

A.2 The Best Profile Appendix A

formance. This happens because they show a constant behavior for all used

combinations of weight factors.

Hence, the multi-objective function will have three basic objectives:

• Minimize the Number of DS nodes

• Minimize the Number of DS changes

• Minimize the Number of Anomalies

As it has been presented, the global objective for the evaluated system is first

to guarantee a stable and robust DS selection and second to the best MDS

approximation. Based on such assumptions, the combinations of weights

presented in Table A.4 were used to find the best profile.

Objective Function Weight Factors

Metric Weight

Number of DS changes 5/10

Number of Anomalies 3/10

Number of DOMINATOR nodes 2/10

Table A.4: Objective Function Weights

In both scenarios, for each combination the defined multi-objective function

(MOF) can be then described as:

MOF = 2/10·Num Nodes+5/10·Num Changes+3/10·Num Anomalies

(A.2)

In the next sections the results of the MOF computation for all the param-

eters’ importance values combinations on the school yard scenario and test

scenario are presented. Before the computation of the MOF a normalization

of all the metrics into a unitary scale has been made.

A.2.3 School Yard Scenario

Table A.5 represents the MOF computations. It can be observed that the

best profile, minimal value of the MOF, occurs when the combination 13

85

Appendix A Best Profile Computations

is used. This combination has high importance assigned to CPU and mem-

ory parameters and normal importance assigned to link quality and degree

parameters.

School Yard MOF Computation

Combination Num Nodes Num Changes Num Anomalies MOF

1 0.56 0.50 0.33 0.52

2 0.23 0.80 0.50 0.60

3 0.57 0.20 0.33 0.31

4 0.35 0.30 0.33 0.32

5 0.19 0.60 0.50 0.49

6 0.00 0.70 0.67 0.55

7 0.70 1.00 1.00 0.94

8 0.11 0.70 0.50 0.52

9 1.00 0.70 0.50 0.70

10 0.55 0.10 0.17 0.21

11 0.49 0.10 0.33 0.25

12 0.61 0.40 0.50 0.47

13 0.32 0.00 0.00 0.06

14 0.13 0.00 0.17 0.08

15 0.52 0.20 0.17 0.25

16 0.13 0.00 0.17 0.08

Table A.5: MOF computation, School Yard Scenario

A.2.4 Test Scenario

Table A.6 represents the MOF computations for the test scenario experi-

mental design. It can be observed that the best profile is obtained, as in the

case of the school yard scenario, when combination 13 is used. This combi-

nation has high importance weight factor associated to CPU and memory,

and normal importance associated to link quality and degree parameters.

86

A.2 The Best Profile Appendix A

Test Scenario MOF Computation

Combination Num Nodes Num Changes Num Anomalies MOF

1 0.14 0.90 0.67 0.68

2 0.76 1.10 0.67 0.90

3 0.39 0.50 0.00 0.33

4 0.73 0.50 0.33 0.50

5 0.76 0.90 0.50 0.75

6 1.00 0.50 0.50 0.60

7 0.66 0.40 0.50 0.48

8 0.63 0.00 0.17 0.18

9 0.44 0.50 0.50 0.49

10 0.00 1.00 1.00 0.80

11 0.25 0.20 0.33 0.25

12 0.38 1.00 0.83 0.83

13 0.43 0.00 0.00 0.09

14 0.26 0.10 0.33 0.20

15 0.61 0.50 0.17 0.42

16 0.71 0.30 0.00 0.29

Table A.6: MOF computation, Test Scenario

87

Appendix B

Finite State Machine (FSM)

This chapter presents the Finite State Machine (FSM) used in the PBS al-

gorithm NS-2 and Siramon implementations. As the NWC algorithm is imple-

mented as an extension to the PBS algorithm, here an updated version of the

FSM is provided.

B.1 Introduction

A FSM is a model of behavior composed of states, transitions and actions.

Between different states of the machine some transitions are defined that

perform the defined actions based on incoming events. The specification of

the used FSM in the PBS/NWC algorithm implementation is shown in Fig.

B.1.

B.2 The States

The FSM consists of four states: ”idle”, ”msgsent”, ”roundfinished” and

”finished” state. The ”idle” state is the initial state of the FSM. PBS algo-

rithm performs in rounds. When the node goes off the initial state (”idle”)

and joins the service deployment, computes its weight and sends its neigh-

borslist, with the computed weight, to its neighbors. In every round it sends

89

Appendix B Finite State Machine (FSM)

Figure B.1: Finite State Machine (FSM)

the neighborlist to its neighbors and waits in the ”msgsent” state for the

neighborlists from the neighbors. If all required neighborlists have arrived,

or the timeout timer has expired, it goes to the ”roundfinished” state. In this

state it determines its own status based on the its weight and the informa-

tion available from the neighborhood. If there are still INT CANDIDATE

neighbors, the neighborlist is resent. At this point the FSM is again waiting

in the ”msgsent” state. If all INT CANDIDATE neighbors have switched

to DOMINATEE or DOMINATOR status, the FSM goes to the ”finished”

state. It is waiting in the ”finished” state unless there are some changes

in the network topology detected (some new INT CANDIDATE neighbors

arrive) or if some anomaly in the local parameters is observed. If this is the

case, a new round of the PBS algorithm will be started and the FSM returns

to the ”msgsent” state. In this transition the node computes its weight to

start a new election.

B.3 The Transitions and Actions

In Table B.1 shows all transitions/events and respective actions.

90

B.3 The Transitions and Actions Appendix B

From State To State Event Action

idle msgsent join Node joins the service, computes

node’s weight and starts sending out

neighborlists.

idle msgsent receivedmsg Node in idle state, but received a

neighborlist. Computes its weight and

starts sending out neighborlists.

msgsent msgsent timerRESEND Resend timer expired and not all

neighbors sent a neighborlist back. So,

the already sent neighborlist will be re-

sent.

msgsent roundfinished receivedmsg All required neighborlists have arrived.

Node determines its own status, based

on its weight and its neighbors weights.

msgsent roundfinished timerTIMEOUT Not all required neighborlists arrived,

but the timeout timer expired, so the

node determines its own status.

roundfinished msgsent resend There are still INT CANDIDATE

neighbors, a new round of PBS needs

to be started.

roundfinished finished finished All nodes determined their status, no

INT CANDIDATE neighbors left.

finished finished receivedmsg Handles incoming neighborlist. If re-

quired it sends a neighborlist back.

finished msgsent resend Anomaly in the local parameters,

changes in the network and/or some

INT CANDIDATE neighbors have

been detected. Computes node’s

weight and starts a new round of the

PBS/NWC.

Table B.1: Transitions of the Finite State Machine (FSM) for PBS/NWC.

91

Appendix C

NWC algorithm NS-2

Installation

In this chapter a tutorial for installation of the implemented functionality in

NS-2 is given.

C.1 Installation

The following steps have to be taken, to install NS-2 and the PBS/NWC

functionality:

1. Download the Ns-Allinone package from the official NS-2 homepage

and install it according to the instructions.

2. Copy the zoneserver directory containing the implementation into the

ns-2 main directory (e.g., ns-allinone-2.29/ns-2.29).

3. Some changes in some of the ns source files are required to add the

new agent, especially because a new packet format is used:

• Add to the file ’common/packet.h’ the new packet protocol ID

’PT ZSS’ to the second last line of the ’enum packet t {}’. In

the same file you have to add the line ’name [PT ZSS]=”zss”;’

to the ’p info()’ function and the line ’double snr ;’ to the ’struct

hdr cmn’, to support the SNR monitoring functionality.

93

Appendix C NWC algorithm NS-2 Installation

• The file ’tcl/lib/ns-default.tcl’ has to be edited, too. This is the

file where all default values for the Tcl objects are defined. Insert

the line ’Agent/ZSS set weight 0’ to set the default weight for

Agent/ZSS.

• The new packet has also to be added in the file ’tcl/lib/ns-

packet.tcl’ in the ’foreach prot’ loop with the entry ’ZSS’.

• Add the following code to the ’mac/mac-802 11.cc’ file, in the

’recv(Packet *p, Handler *h)’ function:

double snr;

if(rx_state_ == MAC_IDLE) {

snr = 10*log10(p->txinfo_.RxPr) -10;

} else {

snr = 10*log10(p->txinfo_.RxPr/pktRx_->txinfo_.RxPr) - 10;

}

hdr->snr_ = snr;

• The last change is a change that has to be applied to the ’Make-

file’. All sourcefiles has to be added after the ’OBJ CC=’ list:

zoneserver/zss.o zoneserver/zss pbs.o zoneserver/debugger.o

zoneserver/timer pbs.o zoneserver/timer monitor.o

zoneserver/monitor.o zoneserver/neighborlist.o

zoneserver/utils/fsm.o zoneserver/utils/state.o

zoneserver/link process.o zoneserver/local parameters.o

zoneserver/service monitor.o.

4. Recompile ns by using make clean; make depend; make.

5. After recompilation the Tcl scripts can be used to run simulations with

the command ns example.tcl.

94

Appendix D

Siramon Framework

In this chapter a brief description of the Siramon framework is given.

D.1 Introduction

SIRAMON [4] (Service provIsioning fRAMework for self-Organized Net-

works) is a generic, decentralized and modular service provisioning frame-

work for self organized networks. It integrates all the required service provi-

sioning functionality to support the whole life-cycle of a service, integrating

service specification, advertisement/lookup, deployment, management and

environment monitoring mechanisms.

SIRAMON structure consists of five different modules. Each module has

different functionality, but they cooperate with each other to give a complete

service provisioning framework to the application layer services.

Figure D.1 represents the SIRAMON structure.

D.2 The Structure

Next, a brief description of each of the modules is given:

Service Specification - Defines a universal service description language

to describe the services that will be supported by the framework. XML

95

Appendix D Siramon Framework

Figure D.1: SIRAMON architecture

Information Set [30] is used for the service description. The services

are defined in a tree structure based on the type of service. The

description is included in a XML document that is handled by the

framework to allow the support of it.

Service Indication - It is responsible for advertisement and service lookup

procedures on the network. Due the lack of a central infrastructure

this procedures are completely distributed.

Service Deployment - This functionality includes all the necessary steps

for the deployment of a service. It may have several operations asso-

ciated:

• Requesting/Downloading software.

• Discovering/Gathering resources.

• Mapping the service specifications to the resources.

• Configuring the resources and installing/configuring the service

software.

96

D.2 The Structure Appendix D

• Activating the service, synchronized with the other service par-

ticipants.

• Handling the control on the management module.

Service Management - Service Management contains all the functional-

ity of service maintenance, reconfiguration and termination functions

of the running services.

• The service maintenance keeps track on the service context,

adapting dynamically the service to its context (resource vari-

ations, new nodes) in order to optimize user’s perceived service

quality hiding all the scenario conditions changes to the node.

• The service reconfiguration is responsible for the reconfiguration

of the service, globally or locally. Local reconfiguration is trans-

parent to the other users. It happens when the context of the

device changes or the service user intends to modify the running

service session. When global reconfiguration happens, all the

service users will perceive the change and a global reconfigura-

tion/synchronization occurs.

• The service termination can be seen as a special case of ser-

vice reconfiguration, when a device stops running its service in-

stance. This occurrence is informed to all other participants, the

resources have to be released and the participant nodes will then

reconfigure their service instances to the new service scenario.

Environment Observer - This module is responsible for monitoring the

device resources and the service context on the network. It collects in-

formation about the context of the service locally/globally and trans-

forms it into an appropriate form to be used as input for the deploy-

ment and management modules.

Siramon is a platform-independent framework, which is an imperative re-

quirement due the heterogeneity associated to MANETs. To achieve this

independence it is written in Java.

97

Appendix D Siramon Framework

For more details about the Siramon framework [4] should be consulted.

98

Appendix E

Used Abbreviations

ad hoc for this (latin); for a particular case without any form of centralized

administration.

DS Dominating Set ; A dominating set of a graph, is a subset of nodes such

that all nodes are neighbor of a node in the DS or are itself in the DS.

FSM Finite State Machine; A FSM is a model of behavior composed of

states, transitions and actions.

MAC Medium Access Control ; Handles access to a shared medium.

MANET Mobile Ad hoc Network ; Temporary network in which devices

want to communicate with each other, with a continuously changing

network topology and without any form of centralized administration.

MANET is also the name of an IETF working group, that is working

in the field of ad hoc networks.

MDS Minimum Dominating Set ; A Dominating Set (DS) is called a MDS

if the number of nodes in the DS is minimal.

NS-2 Network Simulator 2 ; NS-2 is a discrete event driven simulator to

support networking research.

OTcl MIT Object Tcl ; An extension to Tcl/Tk for object-oriented pro-

gramming.

99

Appendix E Used Abbreviations

P2P Peer-to-peer ; Network that does not have fixed clients and servers,

but a number of peer nodes that function as both clients and servers

to the other nodes on the network. Any node is able to initiate or

complete any supported transaction.

PBS Priority Based Selection; An algorithm that selects the Zone Servers

supporting a zone-based architecture based on comparing priorities of

the nodes.

SIRAMON Service Provisioning Framework for Mobile Ad-hoc Networks;

A proposal of a generic, decentralized service provisioning framework

for mobile ad hoc networks [2].

WLAN Wireless Local Area Network ; In a WLAN the device (e.g. a lap-

top, PDA, etc.) communicates via a wireless connection with a WLAN

Access Point which is connected (just like a normal computer) via a

cable to the Internet or the local network. As the devices are not

wired up the users are mobile. This is the advantage of a WLAN. The

indoor range depends on structural factors and is considerably lower

than outdoors, where WLAN connections are possible over more than

200 metres.

XML Extensible Markup Language; Simple, very flexible text format for

electronic publishing and data exchanging, standardised by the World

Wide Web Consortium (W3C).

ZSS Zone Server Selection; The selection procedure for choosing the Zone

Servers supporting a zone-based architecture.

100

Bibliography

[1] Mobile Entertainement Industry and Culture (mGain). Mobile Enter-

tainment in Europe: Current state of Art.

[2] K. Farkas, O. Wellnitz, M. Dick, X. Gu, M. Busse, W. Effelsberg,

Y.Rebahi, D. Sisalem, D. Grigoras, K. Stefanidis and D. N. Serpanos.

Real-time Service Provisioning for Mobile and Wireless Networks. Else-

vier Computer Communications journal., 29(5):540–550, March 2005.

[3] S. Helal, N. Desai, V. Verma, and C. Lee. Konark - a service discovery

and delivery protocol for ad-hoc networks, 2003.

[4] K. Farkas. SIRAMON - Service provIsioning fRAMework for self-

Organized Networks. ETH Zurich, January 2005.

http://www.csg.ethz.ch/research/projects/siramon/.

[5] S.M. Riera, O. Wellnitz, and L. Wolf. A Zone-based Gaming Architec-

ture for Ad-Hoc Networks. In Proceedings of the Workshop on Network

and System Support for Games (NetGames2003), Redwood City, USA,

May 2003.

[6] F. Maurer. Service Management Procedures Supporting Distributed

Services in Mobile Ad Hoc Networks, 31st August 2005. MA-2005-14.

[7] Information Sciences Institute ISI. The Network Simulator ns-2.

http://www.isi.edu/nsnam/ns/.

[8] GNU.org. The GNU General Public License.

http://www.gnu.org/licenses/licenses.html#TOCGPL.

101

Appendix BIBLIOGRAPHY

[9] E. Cronin, B. Filstrup, and A. Kurc. A distributed multiplayer game

server system, 2001.

[10] R. Wattenhofer. Chapter 8 - Dominating Sets. Course material mobile

computing, Distributed Computing Group, ETH Zurich, 2004.

[11] L. Jia, R. Rajaraman, and T. Suel. An efficient distributed algorithm for

constructing small dominating sets. Distributed Computing, 15(4):193–

205, December 2002.

[12] J. Wu and H. Li. Handbook of wireless networks and mobile computing,

chapter A Dominating-Set-Based Routing Scheme in Ad Hoc Wireless

Networks, pages 425–450. 2003. ISBN:0-471-41902-8.

[13] F. Kuhn and R. Wattenhofer. Constant-Time Distributed Dominating

Set Approximation. In Proceedings of the 22nd ACM Symposium on

Principles of Distributed Computing (PODC’03), pages 25–32, Boston,

Massachusetts, USA, July 2003.

[14] K. M. Alzoubi, P-J. Wan, and O. Frieder. Message-optimal Connected

Dominating Sets in Mobile Ad Hoc Networks. In Proceedings of the

3rd ACM International Symposium on Mobile Ad Hoc Networking &

Computing 2002, pages 157–164, Lausanne, Switzerland, June 2002.

[15] D. Dubhashi, A. Mei, A. Panconesi, J. Radhakrishnan, and A. Srini-

vasan. Fast Distributed Algorithms for (Weakly) Connected Dominat-

ing Sets and Linear-Size Skeletons. In Proceedings of the 14th Annual

ACM-SIAM Symposium on Discrete Algorithms 2003, pages 717–724,

Baltimore, Maryland, USA, January 2003.

[16] P. Klein and R. Ravi. A nearly best-possible approximation algorithm

for node-weighted steiner trees. Journal of Algorithms, 19:104–115,

1995.

[17] M. Gerla and J. Tsai. Multicluster, mobile, multimedia radio network.

Journal of Wireless Networks, 1(3):255–265, 1995.

[18] A.K. Pareh. Selecting routers in ad-hoc wireless networks.

102

BIBLIOGRAPHY Appendix

[19] D.J Baker and A. Ephremides. A Distributed algorithm for Organizing

Mobile Radio Telecommunication Networks. In Proceedings of the 2nd

International Conference in Distributed Computer Systems, 1981.

[20] Ivan Stojmenovic Jie Wu Jamil A. Shaikh, Julio Solano. New Metrics

for Dominating Set Based Energy Efficient Activity Scheduling in Ad

Hoc Networks. In 28th Annual IEEE International Conference on Local

Computer Networks (LCN’03), 2003.

[21] M. Chatterjee, S. Das, and D. Turgut. WCA: A weighted clustering

algorithm for mobile ad hoc networks. In Journal of Cluster Computing

(Special Issue on Mobile Ad hoc Networks), vol. 5, pp. 193–204., 2002.

[22] T. Hossmann. Mobility Prediction in Mobile Ad Hoc Networks, 30th

April 2006. MA-2006-08.

[23] Raj Jain. The Art of Computer Systems Performance Analysis. John

Wiley Sons, Inc., 1991.

[24] Nathan Sheldon, Eric Girard, Seth Borg, Mark Claypool, and Em-

manuel Agu. The Effect of Latency on User Performance in Warcraft

III. In NETGAMES ’03: Proceedings Workshop on Network and Sys-

tem Support for Games, May 2003.

[25] Tom Beigbeder, Rory Coughlan, Corey Lusher, John Plunkett, Em-

manuel Agu, and Mark Claypool. The Effects of Loss and Latency on

User Performance in Unreal Tournament 2003. In Proceedings Work-

shop on Network and System Support for Games, pages 144–151, Au-

gust 2004.

[26] Broch, J. and Maltz, D. A. and Johnson, D. B. and Hu, Y-C. and

Jetcheva, J. A Performance Comparison of Multi-Hop Wireless Ad

Hoc Network Routing Protocols. In Proceedings of ACM/IEEE Inter-

national Conference on Mobile Computing and Networking (MobiCom),

pages 85–97, October 1998.

[27] T. S. Rappaport. Wireless Communications, Principles and Practice.

Prentice Hall International, 1996.

103

Appendix BIBLIOGRAPHY

[28] T. Camp, J. Boleng, and V. Davies. A Survey of Mobility Models for Ad

Hoc Network Research. Wireless Communications & Mobile Comput-

ing (WCMC): Special issue on Mobile Ad Hoc Networking: Research,

Trends and Applications, 2(5):483–502, 2002.

[29] Q. Zheng, X. Hong, and S. Ray. Recent Advances in Mobility Modeling

for Mobile Ad Hoc Network Research. In ACM-SE 42: Proceedings of

the 42nd annual Southeast regional conference, pages 70–75, New York,

NY, USA, 2004. ACM Press.

[30] World Wide Web Consortium (W3C). XML Information Set.

104

