
Master’s Thesis - Winter Term 2005/2006

Mobility Prediction in MANETs

Theus Hossmann

hossmath@ee.ethz.ch
MA-2006-08

April 30, 2006

Tutor: Károly Farkas farkas@tik.ee.ethz.ch
Supervisor: Prof. B. Plattner plattner@tik.ee.ethz.ch

Abstract

As mobile devices, such as laptops, PDAs or mobile phones, are getting more

and more ubiquitous and are able to communicate with one another using

technologies like wireless LAN (WLAN), the paradigm of wireless mobile ad

hoc networks (MANETs) is gaining popularity. MANETs impose new chal-

lenges to the design of applications and network protocols because of their

self-organizing, mobile and error-prone nature. Mobility prediction is a tool

to deal with the problems emerging from the nodes’ mobility by predicting

future changes in the network topology. This is crucial for different tasks

such as routing and distributed server selection.

This thesis presents an approach to mobility prediction based on pat-

tern matching. Each node monitors the Signal to Noise Ratio (SNR) of its

links to obtain a time series of past measurements. When a prediction is

requested, the node tries to detect situations similar to the current one in

the history of its links by computing the normalized cross-correlation func-

tion of the recent past with the collected training data. The found matches

are then used as a base of the prediction. As an application of the SNR

prediction, an extension to the formerly developed Priority Based Selection

(PBS) algorithm was defined. PBS is used for distributed server selection

in mobile ad hoc networks by computing and maintaining a Dominating Set

of the network graph. The extension introduces a link stability criterion,

which requires that a Client accepts only a node as Server to which it has a

link predicted to be stable for a certain time.

In order to evaluate the developed prediction algorithm, it has been

implemented in the network simulator ns-2. Simulations have shown that

the predictions are highly accurate. Furthermore, the application to server

selection has been proved successfully, as the stability of the computed Dom-

inating Sets increased significantly using the link stability criterion.

I

II

Preface

With this Master’s Thesis I will finish my studies at the Department of In-

formation Technology and Electrical Engineering (D-ITET) [1] at the Swiss

Federal Institute of Technology (ETH) in Zürich [2]. This thesis was per-

formed at the Computer Engineering and Networks Laboratory [3] from

October 2005 until April 2006.

I had the luck to finish my studies with an interesting Master’s Project in

a fascinating area. It was an absorbing but great time and I have learnt a lot

on how science works. I want to express my sincere gratitude to everybody

who made this thesis possible, especially to

• Károly Farkas, for the great guidance and support during the whole

project;

• Prof. Dr. Bernhard Plattner, for making this project possible;

• Eduardo Silva, for the enjoyable teamwork and letting me win count-

less GPL Arcade Volleyball games [4];

• My parents, for the generous support during my whole studies;

• Marinha, for her inspiring ideas.

Zürich, 03.05.2006

Theus Hossmann

III

Master’s Thesis

IV

Contents

Abstract I

Preface III

Table of Contents IV

List of Figures IX

List of Tables XI

1 Introduction 1

1.1 Task Description . 1

1.1.1 Scope of the Thesis Project 2

1.1.2 Working Plan . 3

1.1.3 General Regulations 3

1.2 Context of the Thesis . 5

1.2.1 Mobility Prediction in MANETs 6

1.2.2 Service Management in MANETs 8

1.2.3 Organisation of the Thesis 9

2 Fundamentals 11

2.1 Time Series Prediction . 11

2.1.1 Understanding vs. Learning 14

2.1.2 Lazy Learning vs. Eager Learning 14

V

CONTENTS Master’s Thesis

2.1.3 Global Model vs. Local Model 15

2.1.4 Iterative Prediction vs. Direct Prediction 16

2.2 Mobility Prediction in MANETs 18

2.2.1 Assumptions . 18

2.2.2 General Structure of a Mobility Prediction Algorithm 20

2.3 Application of Mobility Prediction: Server Selection 23

2.4 Related Work . 26

2.4.1 Mobility Prediction with a Linear Model 26

2.4.2 Mobility Prediction with an Autoregressive Model . . 27

2.4.3 Mobility Prediction with Neural Networks 28

2.4.4 Mobility Prediction with Pattern Matching 28

2.5 Chapter Summary . 29

3 Design Concepts 31

3.1 State Observation . 31

3.1.1 Lazy Learning . 32

3.1.2 Signal to Noise Ratio 34

3.1.3 Smoothing with Kalman Filter 37

3.2 State Prediction . 43

3.2.1 Parameter Estimation with Cross-Correlation 43

3.2.2 Creating the Local Model 46

3.2.3 Fallback Model: Autoregression 48

3.3 Link Stability . 48

3.4 Chapter Summary . 50

VI

Master’s Thesis CONTENTS

4 Implementation 51

4.1 Ns-2 Network Simulator . 51

4.2 Mobility Models . 52

4.2.1 Random Waypoint . 52

4.2.2 Freeway Model . 54

4.3 SNR in Ns-2 . 54

4.3.1 Shadowing Model . 55

4.3.2 Background Noise and Interference 56

4.4 Implementation of Mobility Prediction in the PBS Algorithm 58

4.4.1 State Observation . 58

4.4.2 Prediction . 62

4.4.3 Link Stability Criterion 62

4.5 Chapter Summary . 63

5 Evaluation 65

5.1 Kalman Filter Parameters . 65

5.1.1 Simulation Setup . 66

5.1.2 Results . 67

5.2 Prediction Parameters . 68

5.2.1 Simulation Setup . 70

5.2.2 Results . 72

5.3 Prediction Accuracy . 77

5.4 Dominating Set Stability . 77

5.5 Chapter Summary . 81

6 Conclusions and Outlook 83

6.1 Conclusions . 83

6.2 Outlook . 85

VII

CONTENTS Master’s Thesis

A Ns-2 87

A.1 About Ns-2 . 87

A.2 ZSS PBS Agent . 88

A.3 Installation Guide . 90

B SIRAMON 93

B.1 About SIRAMON . 93

B.2 Testbed . 95

VIII

List of Figures

2.1 Time Series from the Santa Fe time series prediction contest . 13

2.2 Local and global linear and non-linear models 17

2.3 ‘Trajectory’ of signal quality versus time in a visionary net-

work consisting of five nodes 21

2.4 The problem of mobility prediction, split in the two major

parts of observation and prediction 21

2.5 Flow chart of the PBS algorithm 25

3.1 Measurement of Signal Strength in an office environment . . . 32

3.2 Training data and query, normalized cross-correlation 37

3.3 Kalman filter - time update and measurement update cycle . 39

4.1 Travelling pattern of a node using the RWP mobility model . 53

4.2 Typical SNR pattern of a link driven by the RWP mobility

model . 53

4.3 Typical SNR pattern of a link driven by the Freeway mobility

model . 54

4.4 SNR with deterministic distance to signal strength relation . 57

4.5 SNR with shadowing model 57

4.6 SNR with shadowing model plus AWGN plus interference . . 57

4.7 SNR measurements filtered with Kalman filter 57

5.1 Average values of the coefficient of determination of autore-

gressive model for different training data orders 68

IX

LIST OF FIGURES Master’s Thesis

5.2 Average number of predictors with different query orders and

match thresholds using the RWP mobility model 73

5.3 Average number of predictors with different query orders and

match thresholds using the Freeway mobility model 73

5.4 Mean prediction error with different query orders and match

thresholds using the RWP mobility model 75

5.5 Mean prediction error with different query orders and match

thresholds using the Freeway mobility model 76

5.6 Mean prediction error for different prediction times using the

RWP mobility model, query order 70 and match threshold 0.5 78

5.7 Mean prediction error for different prediction times using the

Freeway mobility model, query order 70 and match threshold

0.5 . 78

5.8 Exemplary number of Dominators in the DS with and without

prediction using the Freeway model 81

A.1 The PBS finite state machine, taken from [5] 88

B.1 SIRAMON structure . 94

B.2 SIRAMON testbed . 95

B.3 Clowns screenshot . 96

X

List of Tables

1.1 Working plan of the thesis project 4

1.2 Service provisioning aspects 9

3.1 Kalman filter time update and measurement update equations 40

3.2 Kalman filter time update and measurement update equa-

tions for the SNR filter . 43

4.1 Overview of the LinkMeasurements data structure 60

4.2 Configuration files for the state observation class 61

5.1 Simulation setup for determining the training data order of

the autoregressive model . 67

5.2 RWP simulation setup for determining the query order and

the match threshold . 71

5.3 Freeway simulation setup for determining the query order and

the match threshold . 72

5.4 Average number of Dominators and changes in the Dominat-

ing Set depending on the prediction order using the Random

Waypoint model . 80

5.5 Average number of Dominators and changes in the Dominat-

ing Set depending on the prediction order using the Freeway

model . 80

A.1 Transitions of the PBS finite state machine, taken from [5] . . 89

XI

1

Introduction

This chapter provides an introduction to this thesis. In Section 1.1, the

official task description of the thesis project is presented, including a working

plan which was followed during the whole project. Section 1.2 introduces

and motivates the work in more detail and explains the structure of this

report.

1.1 Task Description

Mobile ad-hoc networks (MANET) are self configuring wireless networks

which are not dependent on any centralized infrastructure, may comprise

heterogeneous devices (mobile phones, PDAs, laptops, etc.) and span over

several hops. With the increasing number of mobile devices, providing the

computing power and connectivity to run applications like multiplayer games

or collaborative work tools, MANETs are getting more and more important

as they meet the requirements of today’s users to connect and interact spon-

taneously.

Because of the lack of centralized infrastructure, service provisioning

(specification, lookup, deployment and management of services) is a major

challenge in MANETs. Distributed server selection is an important part

of service provisioning. What makes server selection in MANETs difficult

is the freedom of the nodes to join and leave the network whenever they

want to. In order to prevent the network from choosing a node as a server,

which is about to leave, predictions about the future behavior of each of the

participating nodes is crucial for electing a stable set of servers.

1

Chapter 1 Introduction

SIRAMON (Service provIsioning fRAMework for self-Organized Net-

works) [6] is a framework, currently being developed at the Computer Engi-

neering and Networks Laboratory [3] of ETH Zurich, with the goal of coping

with the challenges of service provisioning in MANETs.

In a preceding master thesis [5] a distributed, zone based server selection

algorithm, called Priority Based Selection (PBS) was implemented for SIR-

AMON. PBS elects servers based on node weights, representing how well a

node is suited to act as a server. These weights are assigned to the nodes

depending on parameters like link state and battery lifetime. However, PBS

lacks the ability to predict the future behavior of nodes, which makes the

selected server set unstable in some situations, especially when the mobiliy

of the nodes is high.

1.1.1 Scope of the Thesis Project

The aim of this thesis is to explore the benefits of using mobility prediction

for distributed server selection by adding prediction to the PBS algorithm.

This should help making the elected set of servers more stable and avoiding

costly re-elections. By means of simulation, the stability of the server set

will be compared with and without mobility prediction. In order to meet

these goals, the thesis is split into the following tasks:

1. Literature exploration: In order to gain an overview of the current

state of research in mobility prediction in MANETs, a comprehensive

literature exploration has to be performed.

2. Requirements and constraints in SIRAMON : This task will answer

the following questions: What are the requirements of SIRAMON for

a mobility prediction algorithm? Where and how can such an algo-

rithm be integrated into the framework? What parameters provides

the system for mobility prediction?

3. Evaluation criteria: Evaluation criteria and test scenarios with and

without mobility prediction will be defined along with the desired per-

formance of the algorithms with these criteria and scenarios.

4. Algorithm selection: Based on the previous tasks a mobiliy prediction

algorithm will be defined.

2

1.1 Task Description Chapter 1

5. Analytical evaluation: The chosen algorithm will be evaluated analyt-

ically regarding the defined criteria.

6. Simulation: The behavior and performance of the algorithm will be

simulated in a network simulator. Therefore the algorithm will be

implemented in ns-2 [7]. The simulated scenarios will be evaluated.

7. Implementation in SIRAMON : The algorithm will be integrated in

SIRAMON with all the necessary adaptations of the system. Tests

of the implementation with the defined test scenarios and, if possible,

in real scenarios will be evaluated to gain a good overview of the

performance of the algorithm with and without mobility prediction.

8. Thesis writing : A detailed report of the performed work will be writ-

ten.

1.1.2 Working Plan

Table 1.1 shows the working plan of this thesis. The task numbers refer to

the points defined above.

1.1.3 General Regulations

The project will be guided by Károly Farkas. At the end of the project,

a written thesis report describing the work and outcome as well as the

documentation of the implemented code have to be delivered. The master

student understands and accepts the terms and regulations of ETH in regard

to the developed code which will be published as open source under the terms

of the GNU General Public License (GPL) [8]. In the course of the work

two intermediate and a final presentation have to be given. An accepted

thesis report and successfully accomplished presentations are prerequisites

of getting the final grade of the master thesis work.

Start: Monday, 24th October 2005

End: Friday, 21st April 2006

Zurich, 29th September 2005

Theus Hossmann

3

Chapter 1 Introduction

Week Date Tasks

1 2 3 4 5 6 7 8

1 24th Oct. - 30th Oct. X

2 31st Oct. - 6th Nov. X

3 7th Nov. - 13th Nov. X

4 14th Nov. - 20th Nov. X X

5 21st Nov. - 27th Nov. X X

6 28th Nov. - 4th Dec. X

7 5th Dec. - 11th Dec. X

8 12th Dec. - 18th Dec. X

9 19th Dec. - 25th Dec. X X

10 26th Dec. - 1st Jan. X

11 2nd Jan. - 8th Jan. X

12 9th Jan. - 15th Jan. X

13 16th Jan. - 22nd Jan. X

14 23th Jan. - 29th Jan. X

15 30th Jan. - 5th Feb. X

16 6th Feb. - 12th Feb. X

17 13th Feb. - 19th Feb. X

18 20th Feb. - 26th Feb. X

19 27th Feb. - 5th Mar. X

20 6th Mar. - 12th Mar. X

21 13th Mar. - 19th Mar. X

22 20th Mar. - 26th Mar. X

23 27th Mar. - 2nd Apr. X

24 3rd Apr. - 9th Apr. X

25 10th Apr. - 16th Apr. X

26 17th Apr. - 23th Apr. X

Table 1.1: Working plan of the thesis project

4

1.2 Context of the Thesis Chapter 1

1.2 Context of the Thesis

As mobile devices such as laptops, PDAs and mobile phones are getting

more and more ubiquitous, and their capabilities to communicate with one

another increase, a new desire to be connected emerges for the user. With

the ability to connect directly via technologies like the widespread wireless

LAN 802.11 standard [9] or Bluetooth the user is able to fulfill this desire,

without having to rely on the infrastructure of network service providers

and paying for the connections. Today, devices can communicate sponta-

neously in so-called wireless mobile ad hoc networks (MANETs). While

MANETs historically were mainly propagated for situations like disaster re-

covery or military applications as providing connectivity between the troops

on a battlefield, the paradigm today is accepted as useful in a broader range

of every day applications. One promising field where MANETs are applica-

ble is mobile gaming. Imagine a group of people having some free time, for

instance spending their break at a schoolyard, or waiting for something to

happen, such as for their train to arrive at the destination. As they are in a

close range one to another, they can spontaneously form a network, possibly

spreading over several hops, and initiate a game session. In this case, a paid

connection to a service provider is not necessary to achieve connectivity.

However, the self-organizing mobile and error prone environment of MANETs

poses a number of challenges for the design of new communication proto-

cols and applications. One important aspect to deal with is the mobility of

the nodes. The most prominent example, where mobility of the nodes is a

problem, is routing. Frequent changes in the topology of a network require

a big communication overhead to establish new routes and slow down com-

munication or causes packet loss. Another field where frequent changes of

topology cause problems is related to service management in mobile wireless

ad hoc networks. In such a network there are no designated servers, thus

nodes acting as servers have to be determined distributedly. High mobility of

the nodes can result in the selection of unstable servers, leading to frequent

changes of server nodes and frequent handovers of clients from one server

to another. This also causes high traffic overhead or even service disruption

(during the time a new server is elected).

5

Chapter 1 Introduction

Mobility prediction is a tool to deal with the problems emerging from

the mobile nature of MANETs. It can help increase the stability of such

networks by predicting future changes of the network topology based on

observations from the past. This thesis describes such a mobility prediction

algorithm and shows how it can support the selection of stable servers for

services such as gaming or any other application in a MANET. In the follow-

ing sections of this introductory chapter, a more detailed overview of what

mobility prediction is and why currently used methods are not satisfactory

is given. Furthermore, the concept of service provisioning, which is a key

problem in the self-organizing MANETs, is introduced.

1.2.1 Mobility Prediction in MANETs

Knowing the future topology of a network helps the service management

algorithms determine as stable as possible servers and routing algorithms

select the most stable routes between two nodes. Different mobility pre-

diction methods for mobile ad hoc networks have been published so far

(e.g. [10], [11], [12]), however, all of these examples use specialized hardware,

e.g. Global Positioning System (GPS) [13] receivers, in order to determine

the current state of mobility of the nodes. Though it can be assumed, that

GPS (or the european pendant, Galileo) will get more and more widespread

in the future, this dependence is not desirable, as the assumption of having

such devices in each node is a limiting factor. GPS devices are still costly

today and only a few mobile devices are equipped with them. Furthermore,

they do not work well in indoor environments. Thus, assuming that the

nodes are aware of their geographical location is a limiting constraint for a

prediction algorithm which is supposed to work on a wide range of devices

and in different physical environments.

The question addressed in this thesis is, how well the future network

topology of a MANET can be predicted without using specialized position-

ing hardware. This restriction allows to operate with a broader range of

networks, consisting of heterogeneous devices like laptops, PDAs or mobile

phones, without having any constraints on the devices’ capabilities. In order

to do so, a large part of the work has to be dedicated to the observation of

the current mobility state. This is the main point which distinguishes this

work from others, as many other mobility prediction approaches assume that

the mobility state of a node is given.

6

1.2 Context of the Thesis Chapter 1

Abstracting from mobility prediction in MANETs and taking a glance

at the general problem of prediction, it is essential to note that there are

two major ingredients for any form of prediction. The first is the existence

of observable parameters which are related to the predicted quantity. If, for

example, one wants to predict the weather, the observable parameters could

be the temperature, the air pressure and the wind velocity and direction1.

The process of measuring these quantities is the state observation part. The

second major ingredient is that some knowledge about the possible behavior

of the system is required. For the weather forecast this knowledge may

come from physical laws, which give a model of the system, but also from

observations made in the past, used as training data. The part of creating

a model which is able to predict future behavior from this knowledge is the

state prediction.

Mapping these general requirements of prediction to the mobility predic-

tion problem, it can be noted that for the state observation there are several

options. As mentioned before, a popular choice is to use a GPS device in

order to observe the geographic position, speed and moving direction. How-

ever, for predicting the future topology of a wireless network, this might not

be the best choice. If a link failure should be predicted, it is more meaningful

to predict the future link quality between two nodes instead. Link quality

is a parameter directly related to whether a direct connection between the

two nodes can be established or not. For predicting the failure of a link from

information obtained by a GPS device instead, more information about the

environment of the network is required in order to be able to choose a radio

propagation model and map the distance of two nodes to a link quality.

While this might be a viable way for some special cases, for instance if a

free space model can be assumed, generally in MANETs there is no a priori

knowledge of the physical environment of the network. It might be located

in an office building, in a train, on a schoolyard or in any other imagin-

able environment. However, this lack of information can be compensated by

learning from the past behavior of the nodes, by measuring time series of

link qualities and using them as training data for the prediction. Of course,

it is crucial that this training data show some structure, as it is clear that

1Of course, predicting the weather is a far more complicated science and the literature

about it might fill whole libraries. But the readers may excuse this simplistic and unqual-

ified view of weather prediction as it is only used as an example to show some general

principles of prediction.

7

Chapter 1 Introduction

the more random the links behave, the less one is able to reliably estimate

the future. While the physical environments mentioned above may have

different degrees of randomness (for instance on the schoolyard the nodes

can move in any direction they want, while in a typical office environment,

the nodes may only move along the corridors and stop in the office rooms),

they usually all show a certain pattern and therefore are predictable.

The goal of this work is to provide an algorithm which is able to cope

with the rather hostile environment of a MANET for mobility prediction.

That means, each node should, without knowing its environment, be able to

detect patterns in the behavior of its links and therefore be able to predict

the future topology of its neighborhood.

1.2.2 Service Management in MANETs

One key problem which arises with the mobile ad hoc networking paradigm

is service provisioning. If, for instance, the users of a MANET would like to

play a multiplayer game, this can, because of the self-organizing nature of the

network, be a serious challenge. As there is no central infrastructure, even

basic functions, such as determining a game server which maintains the game

state, has to be done in a distributed manner. However, the challenge does

not stop with having a server. Because of the freedom of the nodes to move

wherever they want, the elected server may decide to move away from its

clients, or even leave the network completely. To guarantee the continuation

of the service for the other nodes, a redundant server should take over in such

a case. Thus, a set of redundant servers should be formed and maintained

as the network topology changes. To allow services in a network to run

smoothly is the aim of service provisioning. Service provisioning is a very

broad term, which covers all functionalities used for supporting a service2

during its whole life cycle. An overview of the aspects of service provisioning

is given in Table 1.2.

To provide a framework for service provisioning in MANETs a project

called SIRAMON (Service provIsioning fRAMework for self-Organized Net-

2The term service alone is very broad. It covers all kinds of applications which provide

a benefit for the user. Services can be roughly classified in information providers (e.g. a

news service), software providers (e.g. downloading an offline game), resource providers

(e.g. storage space or computational resources), action providers (e.g. printing) and

interaction providers (e.g. an online multiplayer game).

8

1.2 Context of the Thesis Chapter 1

Function Description

Service Specification Describing a service

Service Indication Advertising a service to other users

Service Deployment Requesting, downloading, installing and

configuring a service

Service Management Maintaining the service while it is running

Table 1.2: Service provisioning aspects

works) [6] was established at the Computer Engineering and Networks Lab-

oratory [3] of the Swiss Federal Institute of Technology (ETH) in Zürich [2].

A short overview of the SIRAMON framework is given in Appendix B. For

service management in SIRAMON, a distributed algorithm for server selec-

tion named Priority Based Selection (PBS) [5] has been developed. PBS

distributedly computes a set of redundant servers. In order to do this, a

Dominating Set (DS)3 of the network graph is computed in a way that the

nodes which are best suited to act as servers (in terms of available resources,

position in the network, etc.) are more likely to be part of this Dominating

Set. The nodes in the DS are then used as servers for a certain service. The

question of how mobility prediction can be used to improve the stability of

the computed DS is addressed later in this thesis.

1.2.3 Organisation of the Thesis

This thesis is organized as follows: In Chapter 2 some background informa-

tion about time series prediction in general, as well as mobility prediction

in MANETs and its application to server selection are provided. Related

work is also presented in this chapter. With this necessary background, the

chosen method of mobility prediction is described in Chapter 3. Chapter 4

describes the implementation of the mobility prediction algorithm in the

network simulator ns-2 [7]. The results of the evaluation performed with

this implementation are given in Chapter 5. Chapter 6 finally concludes

this thesis and gives an outlook on possible future work.

3A Dominating Set is a concept in graph theory. It is a subset of the nodes of a graph,

such that all the nodes are either part of the Dominating Set or are directly connected to

a member of the Dominating Set.

9

Chapter 1 Introduction

10

2

Fundamentals

This chapter provides the essential background information for this thesis.

Section 2.1 offers some general information about common prediction meth-

ods found in the literature. Section 2.2 then lays the focus on mobility pre-

diction in a wireless mobile ad hoc environment, points out the assumptions

and requirements such an environment has and shows a general structure of

the mobility prediction problem. Server selection is presented as a possible

application of mobility prediction in Section 2.3 and finally, in Section 2.4

other work related to this thesis is presented.

2.1 Time Series Prediction

As pointed out in Section 1, the aim of this thesis is to make a prediction

about the future network topology, based on measured link qualities from the

past. These measurements are available in form of a time series. Generally,

a time series is a number of data points, measured in uniform time intervals

and can be denoted by

x = {x1, x2, x3..xk}, (2.1)

where xn can be a scalar or vector value.

The field of making predictions from an available time series is called

time series prediction and is an area of research in the field of machine

learning [14]. An overview of the field of time series prediction is presented

11

Chapter 2 Fundamentals

in the introduction chapter of [15]. The basic goal of time series prediction

is to generate a model of the process under observation, which is able to

predict values that have not yet been measured.

The quest of predicting future values of a time series is a problem which is

common in many different areas of research. Be it forecasting the weather or

predicting the prices in the stock markets, the task is always to build a model

which is able to estimate future values from observations made in the past.

Figure 2.1 shows several examples of different time series encountered in

different applications which are subject to prediction4 The different physical

systems encountered in different fields which are subject to prediction, lead

to a large number of different structures showed by the time series. From

almost periodic time series to very complex or chaotic ones, everything is

possible.

Historically, the first approach for time series prediction was to find a

global model fitting the data best possible. This changed in 1927, when

George Udny Yule published his research of an autoregressive technique for

predicting the annual number of sun spots. He invented the autoregressive

prediction which provides an algorithm, that estimates the next value in a

series as a weighted sum of previous ones. This method was widely used

and perfected until in the 80ies of the last century, when new ideas were

developed for cases where autoregression did not fit well. The promising

approach of neural networks, emerging from research in artificial intelli-

gence, was studied for the detection of patterns in time series. Another

approach, state-space reconstruction from time-delay embedding, emerged

from research in the field of dynamical systems and is used to learn about

the underlying structure of a system, where the time series was created by

deterministic mathematical equations.

Even though there are many different approaches to time series predic-

tion, one may find some common issues among them, which allows a certain

classification of different prediction methods. The following sections will

4The examples are taken from the Santa Fe contest on time series prediction issued

in the 1990ies by Neil A. Gershenfeld and Andreas S. Weigend. The results of the com-

petition were assembled in the book “Time Series Prediction: Forecasting the Future

and Understanding the Past” ([15]). The data sets of the competition together with the

information about its origins and the reasons why they were chosen can be found at

http://www-psych.stanford.edu/ andreas/Time-Series/SantaFe.html.

12

2.1 Time Series Prediction Chapter 2

Figure 2.1: Time Series from the Santa Fe time series prediction contest

13

Chapter 2 Fundamentals

discuss some general features of different prediction methods and provide a

background for the work presented in this thesis.

2.1.1 Understanding vs. Learning

An important criterion for prediction is how much information on the sys-

tem is available a priori. The most comfortable situation is a deterministic

system of which the mathematical equations and the initial state are known.

In this case, solving the equations will in general lead to an accurate pre-

diction of the future behavior. Unfortunately, these assumptions are rarely

fulfilled, and so the rules driving the system and the actual state have to be

deduced from observations of the past.

[15] introduces a distinction between learning and understanding. In

some cases it is possible to understand the system, that means to get some

mathematical insight of how the system works. In other cases, it is only

possible (or desirable) to be able to learn from the past, which means the

structure in a time series can be emulated without deducing anything about

how the system works. An example for a learning system is one that compiles

a library of patterns from past measurements and, at prediction time, tries

to find the observed pattern in this library.

2.1.2 Lazy Learning vs. Eager Learning

One option is, whether the prediction method should be a lazy learner or

an eager learner. Lazy learning basically means, that the input data is not

processed until the time a prediction query5 is issued. In [16], the three basic

characteristics of lazy learning are described as:

• Lazy learning algorithms defer the processing of their inputs until they

receive requests for information. They simply store the input for future

use.

• They reply to information requests by combining their stored data.

• They discard the constructed answer and any intermediate results.

5A query in this context is a request for a prediction with a given input.

14

2.1 Time Series Prediction Chapter 2

On the other hand, eager learners compile the model for prediction while

the measurements arrive. They discard the input values after they are in-

corporated into the model.

This distinction leads to differences in terms of memory and computing

resource usage for lazy and eager learners. Lazy learning requires more mem-

ory for storing the history, while eager learning stores only the model, which

usually requires little memory. In terms of computing power, eager learn-

ing requires a certain amount of computation during the training phase for

adopting the model, whereas lazy learning requires almost no computation

at that time. At prediction time, eager learning uses very little resources, as

the application of the precomputed model is inexpensive, where lazy learn-

ers require a bigger amount of computing, as the model has to be generated

on the fly.

2.1.3 Global Model vs. Local Model

A further, very important distinction that can be made concerns the model

that is created, such as global model or local model (see [17] for a detailed

comparison). Global models describe the relationship between the input

and the output values as a single analytical function over the whole input

domain. On the other hand, local modeling does not describe the whole

physical system in one model, but creates a specific model for a given input.

This means that generally not a global model has to be created, but only a

model that describes the systems behavior for a given input. Because the

input for which the prediction has to be performed is only known at the

prediction time, local model algorithms are generally lazy learners.

This concept of global and local models requires some more clarification.

In order to explain it, a simple example is assumed, in which, from a set of

training data, the next value shall be predicted. For reasons of simplicity,

scalar input and output values are assumed. The training data is shown in

Figure 2.2 (a). Two possible global models, a linear and a non-linear one,

are shown in plots (b) and (c). Note that these models take as input the

time variable k, thus, if the query is k = 15 it gives the value of y(15) at that

specific time. Another approach is to create a model which takes as input

the last y(k) value and outputs the following value y(k+1) (autoregression).

A possible global autoregressive model is shown in plot (d) in Figure 2.2. In

15

Chapter 2 Fundamentals

this plot, the axes are different to the others. While in the first three plots,

there was a y axis for the output and a k axis for the k-th value in the time

series, now there is the y(k + 1) and the y(k) axis, respectively. Creating

a global model generally makes sense if a physical law is assumed behind

the process under observation. The benefit of creating a global model is,

that it can be stored in a very limited amount of memory. For instance,

a linear model y(k) = ak + c requires only two parameters, a and c to be

stored. Besides the described linear and non-linear models, another typical

representative of global models is a neural network.

The goal of local modeling is not to get a model which describes the

whole process, but instead to simply give a reasonable output for a given

input (the query). A possible local linear model is shown in Figure 2.2 (e).

As time independent local models, in which the next value is predicted based

on the query, there are several strategies found in literature. One prominent

approach is called the nearest neighbor. In this case, in the training data

the value which is closest to the query is taken and the value which followed

this nearest neighbor is taken as the prediction. Weighted average models,

on the other hand, take an average of the outputs of training values in the

neighborhood of the query point, inversely weighted with their distance to

the query point. From the description of these examples it is obvious, that

the computation of a local model requires a measure of distance between

two sample points. The distance d(xi, q) between the i-th measurement and

the query point q is a function with a scalar output value. A typical distance

is the Euclidean distance, defined as

dE(x, q) =

√

∑

j

(xj − qj)
2. (2.2)

2.1.4 Iterative Prediction vs. Direct Prediction

Time series prediction algorithms usually predict only the next value of the

time series. However, it is often the case that the prediction should go

further in the future (long term prediction). In this case, iterative prediction

can be applied, as described in [18]. Iterative prediction basically means,

that the result of the one-step-ahead prediction is fed back to the input of the

predictor, which then uses the predicted value as the base for the prediction

of the next step. Repeating this k times leads to a k-steps-ahead prediction.

16

2.1 Time Series Prediction Chapter 2

0 5 10 15 20
5

10

15

20

25

30

(a) Training Data
k

y

0 5 10 15 20
5

10

15

20

25

30

(b) Global Linear Model
k

y

0 5 10 15 20
5

10

15

20

25

30

(c) Global Non−Linear Model
k

y

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

(d) Global AR(1) Model
y(k)

y(
k+

1)

0 5 10 15 20
5

10

15

20

25

30

(e) Local Linear Model
k

y

Figure 2.2: Local and global linear and non-linear models

17

Chapter 2 Fundamentals

Another way to predict k time steps ahead is to make a direct prediction

instead of iterative prediction. This means, that the predictor is a function

which does not predict only one step, but instead directly predicts k steps

ahead.

2.2 Mobility Prediction in MANETs

Mobility prediction in general is the problem of estimating the trajectory of

future positions of the nodes in mobile networks. It has been a research topic

for some time in different areas, mainly in cellular networks and routing for

wireless mobile ad hoc networks. In cellular networks, estimating the future

position of the mobile nodes helps predicting handovers of mobile nodes

from one cell to the next and can be used to reserve resources and speed

up the handover process. It is obvious, that the application field of cellular

networks operate with vastly different prerequisites for mobility prediction

than ad hoc networks, as the structure of network, the hardware of which the

networks are built and the behavior of the nodes are fundamentally different.

However, it reveals that the structure of the problem of mobility prediction

is the same, whether used in wireless networks with fixed infrastructure or

in wireless mobile ad hoc networks.

2.2.1 Assumptions

The common structure of the mobility prediction problem comes from the

fact that all application scenarios share some very general assumptions:

1. The current mobility states of the nodes can be observed.

There exist a broad range of possible parameters which can be used for

state observation, ranging from the Received Signal Strength (RSS) of the

radio signal to the absolute geographic location, speed and moving direction

of a node measured by a GPS receiver. While the choice which parameter

is used is usually restricted by the structure and the capabilities of the

hardware of a network, in any case an input space of variables which are

used to observe the mobility state can be defined.

2. The behavior of the nodes show some pattern.

18

2.2 Mobility Prediction in MANETs Chapter 2

This assumption is essential, because it intuitively seems impossible to

predict the future state of the network if the nodes behave completely ran-

dom. Here also, a wide range of patterns can be observed, ranging from the

possibilities, that the network is located in an office building and the nodes

usually move along the corridors and stop in the offices, or the network is

located on a freeway and the nodes have only the possibilities to move along

the street. This pattern allows to map the past and current behavior of a

node to its future state.

To pin down these observations, the general definition of mobility pre-

diction can be written as:

Pred : Mob Statepast,current 7→ Mob Statefuture (2.3)

Additionally to the described assumptions, which are valid for mobility

prediction in any type of network, there are some others coming from the

fact of operating in wireless mobile ad hoc networks. In order to define

these, again, a short glance over the fence to mobility prediction in cellular

networks can help by pointing out the differences to the ad hoc environ-

ment. While having information about the geographic conditions of a cell in

cellular networks, in MANETs very little or no clue at all about the physi-

cal environment of the network is available. While in cellular networks one

end of a communication link (the base station) has fixed and known posi-

tion, in the ad hoc case both ends of the link are assumed to be mobile.

And finally, while mobility prediction in cellular networks is usually the af-

fair of the fixed part of the network (the network has to reserve resources

on a base station), in case of a MANET each node predicts its own future

neighborhood distributedly. These differences between cellular networks and

MANETs show that in MANETs the prerequisites for mobility prediction

are more hostile, as there is less information on which the prediction can be

based. However, there is a ray of hope that even in MANETs the nodes do

not behave completely random. This comes from the fact that their move-

ment is restricted by geographical properties of the network environment

and the intent of the users carrying around the nodes, and it will be further

clarified in Section 3.1.

Having described the differences between cellular environments and MANETs,

it is now time to define some additional assumptions which are vital for mo-

bility prediction in wireless mobile ad hoc networks:

19

Chapter 2 Fundamentals

3. There is no a priori information about the geographic environment of

the network.

4. Each node in the network is mobile.

5. Each node has to predict distributedly the future state of its neigh-

borhood.

As stated in Section 1.2.1, the lack of a device to measure the geographic

coordinates of the nodes and having no information about the physical en-

vironment in which the network is located are limiting factors for the choice

of input parameters which restrict the prediction method to operating with

link qualities as a measure of the mobility state of a node. However, this

is enough to predict the future network topology in MANETs, taking the

past time series of link quality measurements as training data for regularly

observed patterns of link quality behavior between two nodes and learning

about possible future link qualities. In Figure 2.3, possible time series of

measurements in an imaginary network of five nodes from Node A to Node

E (for sake of simplicity only the observed link qualities between a few node

pairs are depicted) are shown. Thus, each node is supposed to measure the

observed link qualities to its neighbors and base the prediction on these ob-

servations from the past. Adopting the general form of Equation 2.3, the

specific problem with link quality as the measure of mobility state leads to

the following equation:

Pred : SigQpast,current 7→ SigQfuture (2.4)

2.2.2 General Structure of a Mobility Prediction Algorithm

With these prerequisites in mind, now the general building blocks of a mobil-

ity prediction algorithm can be defined. Figure 2.4 shows the basic structure

of the problem. There are two major parts, the state observation and the

prediction. In the following, the tasks of these two parts will be described.

20

2.2 Mobility Prediction in MANETs Chapter 2

Figure 2.3: ‘Trajectory’ of signal quality versus time in a visionary network

consisting of five nodes

Figure 2.4: The problem of mobility prediction, split in the two major parts

of observation and prediction

21

Chapter 2 Fundamentals

State Observation

The task of the state observation is to keep track of the mobility state of

the node. By doing this, it assures that the first assumption defined above,

the observability of the mobility state is fulfilled. Its input comes from the

defined set of parameters which form the input space. The output of the

Observer is the input of the prediction part. If the observed parameters

(the input space of the Observer) are not the same as the input required

by the Predictor, the Observer has to make a mapping of the parameters.

For instance, if a GPS device is used as the Observer, the time difference

of arrival measured from the signals of at least three satellites form the

input space (see [13] for an explanation on how GPS works). What the

predictor needs is a geographic location, thus the GPS device has to make

a transformation between these two quantities, which is the actual process

of geolocation with GPS. Another example of mapping of the input to the

output space might be, if the input is a measurement of RSS and the output

is a time series of measurements of RSS values, the Observer has to store

the past values and arrange them in a time series which it can pass to the

prediction part.

State Prediction

The prediction part can be split in two major tasks, the first of which is

the Predictor. The Predictor makes the actual prediction and is basically

the model of the system. Its inputs come from the Observer and from

the Parameter Estimator, which is the second part of the prediction. The

Parameter Estimator gets as input the training data from the Observer and

computes from this a set of parameters of the system model. As a simple

example for clarifying this, consider a linear model of a nodes movement. In

order to make a linear prediction of geographic position, the system model

needs the actual coordinates as input and the speed and acceleration as

parameters. So the Parameter Estimator gets a time series of measured

coordinates, computes the velocity and moving direction from this series

and hands them over to the model as parameters. With these parameters

and the input being the actual position, the linear model is able to predict

the future position of the node.

22

2.3 Application of Mobility Prediction: Server Selection Chapter 2

2.3 Application of Mobility Prediction: Server Se-

lection

Because of the mobility of the nodes and the lack of fixed infrastructure,

MANETs are especially challenging environments to run services. The clas-

sical client server architecture is not well suited in such networks, as (1)

there are no dedicated server nodes and (2) as the nodes are free to move

and even leave the network whenever they want, the server may simply dis-

appear and disrupt the service. A promising new architecture for MANETs

is the zone based architecture [19] which is able to cope with these challenges.

With this approach, the network is split in zones, each of which contains

a special node, the zone server being responsible for its zone. Because of

the redundancy with having several servers in the network, each of which

is responsible for a small number of nodes, this architecture is more stable

than the classical centralized server approach and therefore better suited for

wireless mobile ad hoc networks. In the following, an overview of the Pri-

ority Based Selection (PBS) [5] algorithm, which distributedly creates such

a set of zone servers, will be given. As an application of mobility prediction

in MANETs, an extension of PBS, increasing the stability of the selected

set of zone servers, is described in Section 3.3.

The basic idea behind the PBS algorithm is to calculate a Dominating

Set (DS) (recall that a DS in graph theory is defined as a subset of the nodes

of a graph, such that each node is either part of the DS or has a neighbor

which is part of the DS). This Dominating Set is then used as a set of servers,

each building a zone with its direct neighbors. Thus, each node is either a

server itself or has a direct link to a server. In order to construct the DS,

PBS defines the following four states in which the nodes of the network can

be:

DOMINATOR - The node is in the DS and will act as zone server.

DOMINATEE - The node is not in the DS but is covered by one or more

DOMINATOR nodes (it has at least one DOMINATOR neighbor).

INT CANDIDATE - The node participates in the service and does not

yet have a DOMINATOR or DOMINATEE state. It is an internal

candidate to become one of them.

23

Chapter 2 Fundamentals

EXT CANDIDATE - The node does not participate in the service but

it is possible that the algorithm chooses the node as DOMINATOR.

Thus, the node can be considered as an external candidate6.

In order to determine the states of the nodes distributedly, each node

keeps track of its neighborhood and maintains a Neighborlist. In this Neigh-

borlist, the node stores information about its direct neighbors:

ID - The unique ID of the neighbor node.

Address - The network address of the neighbor node.

Node weight - The weight of the neighbor node.

Span - The span value of the neighbor node.

State - The state of the neighbor node.

One thing that deserves special attention is the node weight. Saying

that PBS constructs a Dominating Set is only half of the truth. What it

really does is constructing a Weighted Dominating Set. This means that

each node of the graph is assigned a weight, which indicates how good the

node is able to act as server for a given service. The weight is assigned

depending on certain parameters, such as the computing power, available

memory resources, battery lifetime and the position in the network. How

this is done is further explained in [20].

The PBS algorithm performs in rounds, until each node is either in

DOMINATOR or DOMINATEE state. Each round consists of exchang-

ing the Neighborlist with its neighbors and based on this deducing its own

state. The pseudo-code of the algorithm for one specific node v is shown in

Listing 2.1. In line 6, the condition for switching to DOMINATOR mode

is given as having the highest priority. This requires further explanation.

As already mentioned, a Weighted Dominating Set should be constructed,

thus, the priority to switching to DOMINATOR state is bound on having a

high node weight. However, PBS does not stop here, but also defines what

should be done in case of several nodes having the same node weight. The

following hierarchy of priorities for being server is used:

6Even non-participating nodes can be selected as servers because a basic assumption

of the PBS algorithm is, that all the nodes in the network are cooperative and willing to

help running a service.

24

2.3 Application of Mobility Prediction: Server Selection Chapter 2

1 : s t a tu s = INT CANDIDATE or EXT CANDIDATE;

2 : whi l e v has INT CANDIDATE ne ighbors with in d i s t ance 2 do

3 : − send n e i g h b o r l i s t ;

4 : − r e c e i v e n e i g h b o r l i s t ;

5 : − change to DOMINATEE, i f ne ighbor i s DOMINATOR;

6 : − change to DOMINATOR, i f v has h i ghe s t p r i o r i t y with in

d i s t ance 2 among the nodes with INT CANDIDATE s ta tu s ;

7 : od

Listing 2.1: The PBS algorithm

Figure 2.5: Flow chart of the PBS algorithm

25

Chapter 2 Fundamentals

1. The node has a higher node weight;

2. If tie: the node has a higher span7 value;

3. If tie: the node has more neighbors with DOMINATOR state;

4. If tie: the node has a lower ID.

Figure 2.5 shows a detailed flow chart of the PBS algorithm. How predic-

tion can help to increase the stability of the Dominating Set will be further

described in Section 3.3.

2.4 Related Work

In the literature, different approaches to mobility prediction in wireless net-

works have been proposed. This section explains different methods observed

mainly in the fields of cellular networks and routing in ad hoc networks. The

purpose of this overview is not to be complete, but to explain with examples

taken from the literature the different approaches the problem of mobility

prediction offers.

2.4.1 Mobility Prediction with a Linear Model

Creating a linear (in time) mobility model of mobility of the nodes means

basically assuming that the probability that the nodes keep on moving in

the same direction and with the same speed they currently have. In mobile

ad hoc networks, determining the current speed and moving direction of the

nodes usually requires special hardware like a GPS device. Such a method

has been observed in different mobility prediction algorithms, for example

in [10]. In this approach, different schemes to improve routing protocol per-

formance by using mobility prediction are proposed. The expiration time of

a link is calculated with the assumption of having the GPS position informa-

tion of both ends of the link. With assuming a free space radio propagation

model, where the received signal strength solely depends on the distance

7The span value is the number of nodes which could switch from INT CANDIDATE to

DOMINATEE state if the given node would switch to DOMINATOR state. This priority

is used in order to get a Dominating Set with the least number of Dominators possible.

26

2.4 Related Work Chapter 2

between sender and receiver, the amount of time two mobile hosts will stay

connected can be computed with a simple formula:

Dt =
−(ab + cd) +

√

(a2 + c2)r2 − (ad − bc)2

a2 + c2
, (2.5)

where

a = vicosΘi − vjcosΘj , b = xi − xj , c = visinΘi − vjsinΘj , d = yi − yj .

2.4.2 Mobility Prediction with an Autoregressive Model

In [21], a mobility tracking8 scheme based on an autoregressive model is

described. Estimation of the position, velocity and acceleration of the mo-

bile station in a cellular network is accomplished with an extended Kalman

filter9. The Kalman filter used in this example applies an autoregressive

model of the mobility state of the mobile node.

An autoregressive model of order p defines the n-th value as a weighted

sum of the p previously measured ones and is mathematically defined as

xn = α0 +

p
∑

i=1

αixn−p + εn, (2.6)

where εn is an independent identically distributed noise term with zero

mean. Autoregression will be further discussed in Section 3.2.2.

In a cellular network, where one end of the link is at fixed position (the

base station) and the other one is mobile, such an autoregressive model leads

to good results for mobility tracking. Experiments with an autoregressive

model of the link qualities used not only for mobility tracking, but also for

iterative prediction have shown, that it is hard to tune the parameters like

the model order p.

8Mobility tracking is the task to determine a trajectory of the mobile nodes’ position

in time.
9Kalman filters are used for determining the actual values in a set of noisy measure-

ments and are further explained in Section 3.2.2.

27

Chapter 2 Fundamentals

2.4.3 Mobility Prediction with Neural Networks

A neural network (see e.g. [22]) is a network of simple processing elements

(neurons) which can exhibit complex global behavior. The idea behind

neural networks historically was to imitate the central nervous system in

its way of performing operations. Although current neural networks do not

follow this analogy in detail, they still have in common with the central

nervous system, that the tasks are performed collectively and in parallel by

the units, instead of assigning each of them a certain subtask. Just as the

human brain, also neural networks are well suited for pattern recognition,

which makes them useful for mobility prediction.

A mobility prediction algorithm for cellular networks based on a back-

propagation neural network10 has been described in [23]. In this approach,

the moving trajectory of a mobile node is determined as a sequence of base

stations the node was attached to. The neural network is trained with

sequences observed in the past in order to detect the current movement

pattern in the past behavior of the node.

2.4.4 Mobility Prediction with Pattern Matching

Another approach for prediction based on pattern matching was proposed

in [24]. The algorithm was designed for the use in cellular networks, and

adapted for smart environments11. It uses an information theoretic approach

to mobility tracking and prediction. The approach is similar to the one

presented above in terms that it uses the history of the base stations (or

closest sensors) for encoding the trajectory of user movement. However,

instead of using a neural network for pattern recognition, it uses the LZ78

10The main idea behind a back-propagation network is, that it starts out with a random

pattern encoded in it and as it is trained modifies this random pattern based on how well

the pattern performs on the training data. In other words, the neural net starts with

guessing what the output should be given a certain input and then compares its guess

with the desired output. Depending on how far off the guess is, the network adjusts its

internal state and proceeds to the next training point.
11A smart environment is one that is able to acquire and apply knowledge about humans

and their surroundings, and also adapt to improve their experience. Examples are smart

homes, smart offices, etc.

28

2.5 Chapter Summary Chapter 2

compression algorithm12 to generate a sort of dictionary of observed paths

in the past.

2.5 Chapter Summary

The chapter presented an overview of the basic concepts used in this the-

sis. The principles of time series prediction were explained in order to get

some insight in the different options one has to create a model of a link for

prediction. Furthermore, some basic assumptions which are used for mobil-

ity prediction in MANETs were given. These assumptions will be vital for

the explanations of the design concepts in the next section. As a base for

the application of mobility prediction to server selection, an overview of the

PBS algorithm has been given. Finally, related work in the field of mobility

prediction has been shown.

Based on these prerequisites, the next chapter will explain the approach

taken in this thesis and show how prediction can be integrated in the PBS

algorithm to create more stable Dominating Sets.

12The LZ78 algorithm for lossless compression was published in 1978 by Lempel and

Ziv and is based on Shannon’s entropy. Variants of it are widely used today for instance

in the Unix ‘compress’ utility and in the GIF image format.

29

Chapter 2 Fundamentals

30

3

Design Concepts

This chapter explains the design concepts of the developed mobility predic-

tion method. Mapping the following sections to the general structure of a

mobility prediction algorithm shown in Figure 2.4, Section 3.1 deals with

the part of the state observation. Section 3.2 covers the prediction part with

the estimation of the model parameters described in Section 3.2.1 and the

model itself in Section 3.2.2. After making the prediction of future link qual-

ities, one step is missing in order to use the algorithm for distributed server

selection. Section 3.3 explains the concept of the link stability criterion, and

how it is integrated in the PBS algorithm to get a more stable Dominating

Set.

3.1 State Observation

As elaborated in Section 2.2, the variable under observation is the Signal to

Noise Ratio (SNR) of the links of a node. Predicting the SNR was chosen

as this is an appropriate measure of the quality of a link, not only taking

in account the Received Signal Strength (RSS), but also to amount of noise,

which can prevent a link from being established even though the RSS is

high. This allows to predict the changes in the network topology13 directly

instead of having to conclude this information from a geographical distance

of the nodes by means of a radio propagation model.

13Topology in a sense of stating whether or not there is a connection between two nodes

of the network, not in a geographical sense.

31

Chapter 3 Design Concepts

3.1.1 Lazy Learning

Figure 3.1 shows an example of a time series, measured from a link in a

MANET in a typical office environment14, with two nodes moving around

on the floor and pausing in the offices.

0 50 100 150 200 250 300 350 400 450
0

20

40

60

80

Time [s]

S
N

R
 [d

B
]

Figure 3.1: Measurement of Signal Strength in an office environment

With this example of how a time series of measurements might look and

remembering the information about time series prediction in Section 2.1, it

is now time to clarify what of the described options is best suited for mobility

prediction in MANETs. The concepts are explained with the example of a

MANET in an office environment15.

The most important aspect is to realize, that there are two driving forces

which determine the patterns of behavior of the nodes. The first is that they

are restricted by the physical environment. In an office building the people

carrying the nodes are usually walking along the floors (for instance, going to

the printer to fetch a document, walking to the coffee corner and returning

to their office). Another physical restriction is that they will never move

with speed larger than about 2 m/s. These restrictions are reflected in the

patterns observed in the measurements. The second driving force is the

intention of the user. For example, when the user passes a door of an office

(s)he decides based on intentions, whether (s)he wants to enter the office or

continue walking down the floor.

14The measurement was performed in the SIRAMON testbed.
15An office environment might not be the most typical environment of a mobile ad hoc

network, as in such an environment usually an infrastructure network exists. Though this

scenario is well suited for the explanation of the concepts and the statements are valid for

other physical environments, (e.g. buildings, cities, freeways, trains, schoolyards, etc.) as

well.

32

3.1 State Observation Chapter 3

In Section 2.1.1, the difference between understanding the underlying

process from a time series and learning from it was explained. Understanding

would mean, that from the past measurements a model is created of where

in the office the nodes are and what the probabilities of the intention of

the users are. For example, the model should recognize a situation where

one end of a link is currently in the coffee corner (the user is drinking a

coffee) and the other is somewhere on the floor. Additionally, the model

should have learned from the past, that the user walking down the floor

enters with a certain probability a certain office or will walk to the exit

and leave the building with another probability. To achieve this seems not

realistic as there is no a priori information about the physical environment

(assumption 3 in Section 2.2.1). On the other hand, learning from the past

seems more realistic, as there clearly are some repeated patterns visible in

Figure 3.1. This means, when looking at the recent past, trying to find

a similar pattern in the training data is possible. Having found such a

pattern match in the past and assuming that the link will behave similarly,

a prediction by learning instead of understanding seems reasonable.

Thus, the task is to detect patterns similar to the currently observed

behavior in the past. Addressing the question of lazy learning versus eager

learning, this means that for eager learning a set of observed patterns would

be compiled during the measurements. While this is a viable approach in

certain cases (as, for instance, the work described in Section 2.4.4), with

having the noisy measurements of SNR identifying patterns is hard. Exist-

ing methods to classify similar data16 require that a fixed length of a pattern

would have to be defined before classification. This would mean that the

training data would have to be split in a number of patterns of predefined

length and then grouped. With lazy learning this classification can be cir-

cumvented, which is a benefit. With the knowledge about the recent past of

the SNR curve, a lazy learner can create a local model of the link by search-

ing for similar patterns in the history and assume that the nodes repeat

their behavior with a high probability.

Looking back at Section 2.1, where the options of understanding vs.

learning, lazy learning vs. eager learning and local modeling vs. global

16‘Statistical classification’ is the field of grouping objects or, in this case, patterns

according to their similarities. Examples for classification algorithms are neural networks,

decision trees, hidden markov models, etc.

33

Chapter 3 Design Concepts

modeling were presented, the choices have now been justified to learn with

a lazy learner and create a local model. One question that remains is, what

this learner should learn from, whether the prediction for one specific link

should be performed with taking only the history of this very same link into

account, or base the prediction on the information from all the links of the

node. The first would be a good idea, if the links showed fundamentally

different behavior and therefore the information contained in the history

of one link is not useful for another link. However, in a MANET the as-

sumption that different links behave similarly is reasonable, therefore the

available information about all the links should be taken into account for

the prediction.

3.1.2 Signal to Noise Ratio

One benefit of taking the SNR as a measure of the mobility state of a node

is that it can be easily measured. For instance, in wireless LAN network

interfaces according to the 802.11 standard [9], the firmware and driver

usually provide some measurements of signal strength and background noise

observed on the channel. In the following paragraphs, a short overview of

the physics behind the SNR is given.

The SNR is generally defined as

SNR[dB] = 10log10(
Psignal

Pnoise

)[dB], (3.1)

where Psignal is the power level of the signal and Pnoise is the power level

of noise, respectively. This can also be written as

SNR[dB] = 10log10(
Psignal

P0

)[dBm] − 10log10(
Pnoise

P0

)[dBm], (3.2)

with P0 = 1 mW being the reference power.

The signal power is influenced by several parameters of the communi-

cation system. At the sender, it is depending on the transmission power of

the sending device and the antenna gain. During propagation, the signal

experiences a propagation loss, which is usually modeled with the freespace

34

3.1 State Observation Chapter 3

model 17. It is further influenced mainly by three effects, reflection, scat-

tering and diffraction. Together, all these physical effects are building the

radio propagation model. Therefore, the SNR is connected to the current

mobility state of the two nodes, sender and receiver, by a propagation model

(so assumption 1 in Section 2.2.1 is fulfilled), but there is no information

about how this propagation model looks, as it is influenced by the unknown

physical environment (assumption 3). On the other hand, the noise power

is usually modeled as receiver noise (e.g. thermal noise in the receiver mod-

eled as Additive White Gaussian Noise - AWGN), environmental noise (from

different sources in the environment, usually also modeled as AWGN) and

interference caused by other transmissions on the same channel or nearby,

overlapping channels. Thus, Pnoise can be written as

Pnoise = Pinterference + Penvironment + Preceiver. (3.3)

After this little overview of what the SNR is, it is now time to describe

the concepts behind the state observation part of the prediction algorithm.

In order to get a time series of the history of SNR, each node has to make

measurements at fixed time intervals of length T defined in the following:

Definition 3.1 The measurement interval T is the time between two

sequent measurements performed for one link of the node.

T is a design parameter of the algorithm and was chosen to be 1 second.

The reason for this choice is to have a balance between having too frequent

measurements which increases the computational costs and having too little

measurements which means loosing information about the behavior of the

node (e.g. quick changes of moving direction). Assuming that the behavior

of the users carrying the nodes generally have a length of at least several

seconds (for instance, walking down a floor would be such a pattern), the

choice of T = 1 s seems reasonable.

In order to account for breaking links, the special value of SNR = 0

is defined for having no connection between two nodes. That means, each

node, even if the connection to a neighbor breaks, keeps the history of the

17The freespace loss is proportional to the square of the distance between the transmitter

and receiver.

35

Chapter 3 Design Concepts

according link and fills it with zeros in order to have the information when

and for how long the connection broke. Having this information is impor-

tant to predict failing links and therefore is essential to estimate the future

network topology.

As the resources of mobile devices are generally scarce, the number of

measurements which are stored must be limited. The history of each link

is therefore stored in a circular buffer of N elements. This means that

after the time N × T , the buffer is full and the new measurements start

to overwrite the oldest ones. N is another design parameter, which has to

be chosen as a balance of memory use and having enough training data for

the prediction. Assuming that each measurement is stored as a float value,

typically using 4 Bytes of memory, reserving 8 kBytes of memory allows

to store 2048 measurements per link. With T = 1 s this results in storing

roughly the last 35 minutes of each link. Assuming that each node has no

more than about 10 connections, this requires approximately 80 kBytes of

memory for storing the time series. Even the most limited devices should

nowadays have this amount of free memory available, so N = 2048 seems a

reasonable choice.

This is how a node stores the history of its links in the state observation.

When the state observation gets a prediction request, it hands over two

things to the prediction algorithm: the training data and the query.

Definition 3.2 The training data t are the measured time series of all

links of the node from the past from time t = (n−NT) . . . n, where n is the

query time.

Definition 3.3 The query q is the recent part of the time series of mea-

surements, which is used for creating the model. The query order o is the

length of the query, that means the number of measurements which are used

to create the model.

In Equation 2.4 the training data is represented by SigQpast and the

query is SigQcurrent. The plot in Figure 3.2(a) visualizes the training data18,

query and query order for an example training data.

18Note that for reasons of simplicity the training data of only one link is shown.

36

3.1 State Observation Chapter 3

0 50 100 150 200 250 300 350 400 450
0

20

40

60

Time [s]

S
N

R
 [d

B
]

(a) Training data and query order o = 30

FuturePastMeasurements
Training Data
Query

0 50 100 150 200 250 300 350 400 450
−1

−0.5

0

0.5

1

Lag [s]

N
or

m
. X

C
or

r.

(b) Normalized cross−correlation function of the query and the training data

Norm. XCorr
Local Maximum

Figure 3.2: Training data and query, normalized cross-correlation

While the length of the training data is determined by the size of the

circular buffer in which they are stored, the question of the query order o

is yet another, very important design parameter. The choice of o will be

discussed in the evaluation part (Section 5.2) of this thesis.

3.1.3 Smoothing with Kalman Filter

One problem that arises with this approach is, that the measurements of the

training data are noisy. In order to get rid of this noise as far as possible, the

predictors are filtered with a Kalman filter19. This filtering of the training

data presents a little deflection of the pure lazy learning principle, as the

measurements are manipulated before the time of prediction. Thus, the

approach may be called almost lazy learning. What follows is a general

overview of how Kalman filters work and a closer description of the Kalman

filter designed especially for filtering the SNR values.

19Kalman filters were first published in 1960 by K.E. Kalman, who developed them for

space craft navigation. Since then, they turned out to be useful in various application

areas like GPS, radar, etc.

37

Chapter 3 Design Concepts

Kalman Filter

Kalman filters are generally used to determine the system state that can

be observed only indirectly or inaccurately. An introduction can be found

in [25]. In the following discussion, vectors of Rn are generally printed in

bold and matrices are written with capital letters. The general problem,

which is addressed by the Kalman filter is to determine the state x ∈ Rn of

a system given by the equation

xk = Axk−1 + Buk−1 + wk−1, (3.4)

with measurements z ∈ Rm

zk = Hxk + vk. (3.5)

A is the n × n system matrix, which is determined by the nature of

the system. B is an n × l matrix, that relates the optional control input

u ∈ Rl to the state x. The m × n matrix H relates the actual state of the

system to the measurement z. wk and vk are random variables, which are

independent, white and with normal distributions

p(w) ∼ N (0, Q), (3.6)

p(v) ∼ N (0, R). (3.7)

w represents the process noise and v represents the measurement noise.

In order to filter out the noise and get an estimate of the system state

which is more accurate than the measured state, the Kalman filter essen-

tially is estimating the system state as a linear combination of a prediction

(using the system model described above) and the measured value. In order

to get an appreciation about the Kalman filter, it is vital to understand

that, while the exact state xk is not known at any time, there are three

estimates of xk. The first is the measured value zk, which is related to xk

by Equation 3.5. However, because of the noise term in this equation the

mapping from zk to xk is not so straight forward. The second is an a priori

estimate of xk and is denoted with x̂−

k
. A priori means in this context:

38

3.1 State Observation Chapter 3

without taking the information from the measurement in account. x̂−

k
is

predicted20 by the system Equation 3.4. The third value is the a posteriori

estimate representing the linear combination of the measurement and the a

priori estimate and denoted by x̂k.

The Kalman filter works recursively with two steps: the time update, in

which the a priori value is predicted, and the measurement update, in which

the prediction is corrected with having the measured value of the state.

These two steps are illustrated in Figure 3.3. This recursive function of the

Kalman filter is a nice feature for filtering the SNR measurements, as each

step requires only little computation power, whereas filtering the whole time

series at the same time would be costly.

Figure 3.3: Kalman filter - time update and measurement update cycle

The a priori and a posteriori state estimates both contain an error (a

priori error and a posteriori error, respectively)

e−
k

= xk − x̂−

k
, (3.8)

ek = xk − x̂k (3.9)

with the a priori estimate error covariance and a posteriori estimate error

covariance

20Note that the Kalman filter has some inherent predictive power, as the whole process

of assuming a model, setting its parameters from the past measurements, applying this

model to estimate the next value, is basically the same process which is described in this

whole thesis for prediction. However, while the autoregressive model used for predicting

the next value of the time series in the filter proves well for one-step-ahead prediction,

experiments with using it in an iterative way to produce a k-step-ahead prediction have

shown that its performance is not optimal.

39

Chapter 3 Design Concepts

Time update step Measurement update step

x̂−

k
= Ax̂k−1 + Buk−1 Kk =

P−

k
HT

HP−

k
HT +R

P−

k = APk−1A
T + Q x̂k = x̂−

k
+ Kk(zk − Hx̂−

k
)

Pk = (I − KkH)P−

k

Table 3.1: Kalman filter time update and measurement update equations

P−

k = E[e−
k
e−T

k
], (3.10)

Pk = E[eke
T

k
]. (3.11)

In the measurement update step, the linear combination of the a priori

estimated state and the measured state is calculated as

x̂k = x̂−

k
+ Kk(zk − Hx̂−

k
). (3.12)

The term (zk − Hx̂−

k) is called the measurement innovation and Kk, an

n × m matrix, is called gain. The gain matrix is calculated in each time

step in order to minimize the a posteriori estimate error covariance (see

Equation 3.11):

Kk =
P−

k HT

HP−

k HT + R
. (3.13)

In the time update step, the a priori prediction of the state is computed

as

x̂−

k
= Ax̂k−1 + Buk−1. (3.14)

A summary of the time update and measurement update steps is given

in Table 3.1.

40

3.1 State Observation Chapter 3

Applying a Kalman filter to the measurements of signal quality means

that the parameters A, B, H, Q and R have to be set in a reasonable way.

One of the parameters, in this case, is trivial. The matrix H relates the

system state to the measurable quantity in the case of indirect observation

of the system. However, as the SNR is measured directly, H can be set

simply as a unitary matrix. So, what remain are the variance of the process

noise Q, the variance of the measurement noise R, the system matrix A and

the matrix B. These will be discussed in the following.

Autoregressive Link Model

As the system model, an autoregressive model (see 2.4.2) of order 1, denoted

by AR(1), was chosen. An AR(1) model describes a linear dependency of

the next value on the latest measured value:

xk+1 = αxk + c + wk (3.15)

The parameters α and c in the case of a scalar xk are both scalar values.

They are calculated using the least squares method [26], which minimizes

the mean squared error of the last o measured values xk−o−1 . . . xk−1 to the

estimated values. In case of the AR(1) model, the least squares method

minimizes the following equation:

S =
o

∑

i=1

(xk−i − x̂k−i)
2 =

o
∑

i=1

(xk−i − (αxk−i−1 + c))2, (3.16)

where x̂k denotes the estimated value at step k. S gets minimal, when

α and c are chosen according to the following equations:

α =

∑o−1

i=0
xk−ixk−i−1 − (o − 1)x̄2

∑o−1

i=0
x2

k−i−1
− (o − 1)x̄2

, (3.17)

c = (1 − α)x̄, (3.18)

where x̄ denotes the mean of the vector of the o latest training samples.

These model parameters are recomputed at every filter step, thus for

every measurement made. Hence, the autoregressive model presents a local

41

Chapter 3 Design Concepts

model of the SNR. For the integration of the AR(1) model in the Kalman

filter equations, the model has to be put in the form of Equation 3.14 for the

time update step. One possibility to do this would be to set A = (α c) and

B = (0 0). In this case, the system state xk would become a two dimensional

vector xk =

(

xk

1

)

, so that the following can be written:

x̂−

k = Ax̂k−1 + Buk−1 = (α c)

(

x̂k

1

)

+ (0 0) uk−1 = αx̂k + c (3.19)

However, the equations can be simplified with a little change. Abusing

the control input uk by setting it constantly to 1, the scalar nature of the

system state xk can be conserved by setting A = α and B = c:

x̂−

k = Ax̂k−1 + B · 1 = αx̂k + c (3.20)

As there is no external control input in the SNR model, there are no

conflicts with uk. So, for simplicity this solution was chosen for the matrices

A and B.

The Process and Measurement Noise Covariance

What remains for discussion is the noise covariances of the process and the

measurement noise. When designing a Kalman filter, usually the process

noise covariance R is determined by preliminary measurements and set of-

fline to a constant value. In wireless networks, the process noise is usually

modeled by a normally distributed random variable with typical standard

deviation from 4 - 8 dB (cf. [21]). A value of P = 49 was chosen for the

process noise covariance, which relates to assuming a standard deviation of

noise of 7 dB. This seems a reasonable choice, since without having infor-

mation about the environment of where the network is located assuming a

rather high noise value is better.

On the other hand, the measurement noise covariance can be dynamically

estimated with the following formula (cf. [21]):

Qk =

∑o
i=1

x̂i − (αx̂i−1 + c)

o
(3.21)

42

3.2 State Prediction Chapter 3

Time update step Measurement update step

x̂−

k = αx̂k−1 + c Kk =
P−

k

P−

k
+R

P−

k = α2Pk−1 + Qk x̂k = x̂−

k + Kk(xk − x̂−

k)

Pk = (1 − Kk)P
−

k

Table 3.2: Kalman filter time update and measurement update equations

for the SNR filter

Having discussed the system matrices A and B, process and measure-

ment noise covariances Q and R, the Kalman filter for the link process can

now be formulated. It shows, that using an AR(1) model, the equations

are simplified a lot, as all the values are scalar. The resulting equations are

summarized in Table 3.2.

Thus, all the building blocks of the state observation are discussed.

3.2 State Prediction

The decision of having a lazy learning algorithm, as discussed in the last

section, has influence on the prediction part of the algorithm. As visualized

in Figure 2.4, the prediction part can be split in two tasks like Parameter

Estimation and Model Creation. Parameter Estimation is explained in the

following section, while the creation of the model is discussed in 3.2.2.

3.2.1 Parameter Estimation with Cross-Correlation

The parameters which the Parameter Estimator should hand over to the

model part of the algorithm are references to points in the history, where a

similar situation has been observed. The information it gets from the state

observation for doing so are the training data and the query. Thus, the task

of the Parameter Estimator is to find in the training data patterns which are

similar to the query. In order to do this, a measure of distance is required,

a distance from the query to the past measurements.

43

Chapter 3 Design Concepts

Normalized Cross-Correlation

The use of cross-correlation for pattern recognition is motivated by the

squared Euclidean distance (see [27]). The squared Euclidean distance be-

tween the query q and the piece of training data tj,k
21 at times m. . . (m+o)

is defined as

d2
q,tj,k

(m) =
o

∑

i=1

[q(i) − tj,k(m + i)]2. (3.22)

Expanding this equation leads to

d2
q,tj,k

(m) =
o

∑

i=1

q2(i) − 2
o

∑

i=1

q(i)tj,k(m + i) +
o

∑

i=1

t2j,k(m + i). (3.23)

In this equation,
∑

q2(i) is constant. If also
∑

t2j,k(m + i) is assumed to

be approximately constant, then the cross-correlating term

c(m) =
o

∑

i=1

q(i)tj,k(m + i) (3.24)

is a measure of similarity between the query and the training data at

times m. . . (m + o). The time shift m (the time in the training data at

which the similarity is calculated) is called lag.

However, using the cross-correlation as defined in 3.24 for pattern recog-

nition arises a problem. If the expression
∑

t2j,k(i) in Equation 3.23 varies

with the lag m, pattern matching can fail. This is because, even with an

exact match between the query and the training data, the cross-correlation

can be a smaller value than the correlation between the query and a region

of high signal quality. This problem can be solved with using the normal-

ized cross-correlation. The normalized cross-correlation subtracts the mean

of the query and the mean of the piece of training data under observation

and scales the value in order to get results in the interval from [−1 . . . 1]:

γ(m) =

∑o
i=1

[q(i) − q̄][tj,k(m + i) − t̄j,k]
√

∑o
i=1

[q(i) − q̄]2
∑o

i=1
[tj,k(m + i) − t̄j,k]2

(3.25)

21Note that, as the training data t consist of the time series from all links of node j,

tj,k represents the time series of the link of node j to node k.

44

3.2 State Prediction Chapter 3

The normalized cross-correlation function indicates the normalized cross-

correlation for every lag, that means for m = 0 . . . (N − o). An example of

the normalized cross-correlation function of query and training data is shown

Figure 3.2 (b) on Page 37. Note that, while in the figure only one time series

of training data is shown. When the node has k neighbors, this results in

creating k normalized cross-correlation functions.

Finding Local Maxima

The plot in Figure 3.2 (b) shows that there are several good matches result-

ing in local maxima at lags around m = {65, 100, 140, . . .} with the global

maximum being at m = 316 with γ(316) = 0.94. This rises the question of

which of these lags should be applied for creating the model used for pre-

diction. One obvious option is to simply use the global maximum, as this

represents the closest match. However, creating the model only based on

the best match is not a good choice for two reasons:

• While the global maximum is certainly the series of measurements

which are the most similar to the query, this does not obligatory mean

that the physical situation at this lag resembles most to the current

situation, because the results may be distorted by the noise in the

measurements.

• As noted before, one driving force of what kind of patterns are observed

in the measurements is the intention of the user. Frequently the user

has in a given situation several options of how to behave. A good

prediction must account for this and create the model based on what

behavior was the most probable in the past. In order to do this, the

model must be based not only on one match, but on several.

Hence, the goal of the Parameter Estimator is to hand over a set of lags

representing good matches to the Model Creation part. Therefore, local

maxima of the correlation function have to be determined. Thus, a threshold

γmin has to be defined, such that m is a good match, if γ(m) ≥ γmin.

Definition 3.4 The match threshold γmin is a scalar value, above which

the correlation of the query with the training data is considered to be a match

and is used for the prediction.

45

Chapter 3 Design Concepts

γmin has to be chosen as a balance between being not too strict about

what a good match is, as this leads to having none or only a small number

of matches, and being not too loose, as this would mean to define situations

as matches which are not really similar to the query. Experimenting with

different γmin has shown, that a threshold of 0.5 is a good choice. This value

is further discussed in the evaluation section (Section 5.2) of this thesis. In

order to find the locale maxima of γ(m) ≥ 0.5, first all the regions of m where

the normalized cross-correlation function is above that value are determined.

Then, for each of these regions the maximum is searched and inserted in the

set of lags which are handed over to the modeling part. In Figure 3.2 (b),

the maxima found with this procedure are highlighted with red points.

3.2.2 Creating the Local Model

Getting the set of matches from the parameter estimation and the training

data from the state observation, the question is now, how the modeling part

of the prediction algorithm can create the local model of the link. The

model will be based on the parts of the training data following the lags

of the matches. This means, if a lag of m is received from the Parameter

Estimation, the part of the training data used for creating the model is the

measurements from m. . . (m + k) for a k − step− ahead prediction. So, the

first step in modeling is to create, from the set of lags, a set of predictors.

Definition 3.5 If the set of matches contains i lags {m1 . . . mi}, that i parts

of the training data {t(m1 . . .m1 + k) . . . t(mi . . . mi + k)} form the set of

predictors P. The i-th predictor is denoted by pi.

The parameter k, the length of the predictors, is called the prediction

order. As discussed below, k determines, how far in the future the prediction

will reach. It is a design parameter and can be set according to the needs of

the application for which the prediction is used. In case of server selection

with PBS, k was set to 40, as this results in maximum stability of the

Dominating Set in the simulations. This choice of the prediction order is

further discussed in Section 5.4.

The question is now, how the link model can be created from the pre-

dictors. In the set of predictors, each pi represents a past situation where

the link was in a similar state as it currently is. It can be assumed, that in

46

3.2 State Prediction Chapter 3

these predictors different patterns of SNR changes appear. The reason for

this is that, in a given situation, the nodes have typically several options of

how to behave, which will be reflected in the patterns of the predictors. In

order to predict the most probable one of these patterns, the pattern which

appeared the most often in the past should be chosen. This can be done by

looking at which predictor has the most similarities to the other predictors.

Again, the normalized cross-correlation is used for measuring the similarity

of predictor pi to pj:

γi,j =

∑k
n=1

[pi(n) − p̄i][pj(n) − p̄j]
√

∑k
n=1

[pi(n) − p̄i]2
∑k

n=1
[pj(n) − p̄j]2

(3.26)

A measure of how often a pattern appeared in the past is the average

similarity, which is for predictor pi defined as

γi =

∑N
j=1

γi,j

N
, (3.27)

where N is the total number of predictors.

As the prediction, the predictor with the maximum average similarity

among all the predictors is chosen. Note that choosing one predictor from

the set of predictors directly as the prediction represents in some way a

‘the winner takes it all’ strategy, as opposed to, for instance, the weighted

average approach, where a weighted average over all the predictors is taken

(see Section 2.1.3). The reason for choosing this approach is, that in this

case the prediction has some clear meaning. In order to understand this,

the predictors should be thought of as physical situations. An example of

such a physical situation would be that one end of the link is in the coffee

corner, while the other end of the link exits an office and walks along the

floor. The Parameter Estimator handed over a set of such situations from

the past, which are similar to the current. The model creation then chooses

one of these situations and predicts that the nodes will behave the same

way. By choosing the one which has the most similarities to the others, it

makes sure that the situation is chosen which was the most ‘common’ in

the past. Taking an average of the predictions instead would mean in an

abstract sense, that some average of the past situations would be calculated.

Such an average would no longer represent a clear physical situation. Thus,

47

Chapter 3 Design Concepts

this approach is some mixture of the nearest neighbors (because it uses only

one predictor for the prediction) and the weighted average (because not only

one, but several neighbors are taken into account) approaches.

Taking one of the predictors directly as the prediction means that the

prediction has the same length as the predictors. Thus, if the predictor

contains k measurements, a k-steps-ahead prediction is performed. Such an

approach was defined in Section 2.1.4 as direct prediction.

3.2.3 Fallback Model: Autoregression

The question is, what happens if the Parameter Estimator does not find any

match in the training data? This can happen due to two reasons:

• The training data are too short, as the order of training measure-

ments has to be at least the length of the query o (for being able to

compute the cross-correlation) plus the prediction order k (as the k

training samples after a matching part of the training data are used

as a predictor).

• The cross-correlation does not contain a value above the match thresh-

old γmin, because the pattern in the query was not observed before.

In such a case, a fallback model is created. In order to do this, the

inherent predictive power of the Kalman filter in the state observation is

exploited. For the Kalman filter, an autoregressive link model AR(1) is

created in the time update step (see Section 3.1.3). Using this model for an

iterative k-steps-ahead prediction22 has the benefit, that the model already

exists and can simply be applied. Thus, in any case, even if the current

situation was not observed before, a prediction will be available.

3.3 Link Stability

Having discussed the state observation and prediction part of the algorithm,

the nodes are now capable of predicting the future SNR values of their links.

22Recall that iterative prediction means the predicted next-step-value is used again as

input for the model. Doing this k times leads to a k-steps-ahead prediction.

48

3.3 Link Stability Chapter 3

The question now is, how this can be used in the PBS algorithm in order to

elect a stable Dominating Set. Note that the link quality prediction could

basically be used for other applications and is not limited to server selection.

For instance, one might use it in a routing protocol to establish stable routes.

However, in this thesis the prediction is used for improving the stability of

the Dominating Set.

The basic idea behind the integration in PBS is, that each client should

have a link to a server which is predicted to be stable for a certain time.

Thus, a link availability criterion is introduced. A link is said to be stable,

if it is available for the next k × T seconds, where k is the prediction order

and T is the measurement interval. As k is the number of values in the

time series of the prediction, in order to check whether a link is stable the

prediction simply has to be scanned for zeros23. If a zero appears in the

prediction, the link is unstable.

Looking at the pseudo code of the PBS algorithm in Listing 2.1, only

little adaptations have to be done in order to introduce the link availability

criterion. The only thing that changes is in line 5, where the state of the

node is decided. Instead of

5 : − change to DOMINATEE, i f ne ighbor i s DOMINATOR;

the new condition for switching to DOMINATEE state is introduced as

5 : − change to DOMINATEE, i f ne ighbor i s s t ab l e DOMINATOR;

where stable, as defined above, means that the link to the DOMINATOR

is expected to remain stable for k × T seconds.

Note that this link availability criterion for Dominator nodes holds only

during the election time. Once all the nodes have decided their state to

either DOMINATEE or DOMINATOR, a Dominatee is not required to have

a stable link to a Dominator anymore. That is, just because a Dominatee

has no more stable link to a Dominator it does not switch back its state to

CANDIDATE and triggers a new election round. Letting the criterion be

valid not only at prediction time would have the benefit, that the Dominating

Set would be updated proactively, before a change is really necessary. Once

a node predicts that it might loose its connection to the Dominator, it would

23Recall that a zero was defined as a special value for having no connection between

two nodes.

49

Chapter 3 Design Concepts

already trigger a re-election before the link really breaks. This might prevent

a service interruption during the re-election for the node to whom the link

broke. However, in this thesis the goal was to increase the Dominating Set

stability by decreasing the number of changes in the Dominating Set, and

not to improve the service availability.

3.4 Chapter Summary

In this chapter, a link quality prediction algorithm based on time series

prediction was described. The measurement of the SNR values of the links

was explained and a Kalman filter with an autoregressive link model was

introduced in order to get rid of the noise in the measurements. For the

prediction part, a method of finding similar situations in the past by pat-

tern matching with normalized cross-correlation was explained and based on

taking the most ‘common’ of these situations in the training data the link

model was created. Furthermore, for cases where no predictors are found

with the pattern matching method, a fallback solution with autoregressive

prediction was introduced. In order to use the link quality prediction for

choosing stable Dominating Sets, a link availability criterion for the PBS al-

gorithm was described, such that a node only becomes Dominatee if it has a

stable connection to a Dominator. In the following chapters, the implemen-

tation in the network simulator ns-2 of this algorithm is explained and based

on that the predictions and the Dominating Set stability are evaluated.

50

4

Implementation

This chapter describes the implementation of the mobility prediction al-

gorithm described in Chapter 3. The algorithm has been implemented in

the network simulator ns-2 in order to be able to investigate its accuracy

and impact on server selection with a large number of experiments. A brief

overview of ns-2 is given in Section 4.1. For a realistic simulation of the SNR

prediction two crucial things have to be considered. First, the nodes have

to behave in a reasonable way. As already mentioned, the more random

the movements of the nodes the less can be predicted. In order to account

for this, realistic mobility models which determine the movement have to be

chosen. The used mobility models, namely the Random Waypoint Model

and the Freeway Model are described in Section 4.2. Second, a realistic

model of the SNR is necessary in order to get meaningful results. The SNR

model of ns-2 is explained in Section 4.3. Finally, Section 4.4 describes the

integration of link quality prediction in the PBS Agent.

4.1 Ns-2 Network Simulator

Ns-2 is a free and open source network simulator widely used in research

projects. It can be downloaded from the ns-2 homepage [7] and is available

for several Unix and Windows platforms. A handy introduction can be

found in [28]. The development of ns-2 started back in 1989 and since then

the simulator has evolved into a complex and powerful tool supporting a

rich number of protocols and applications which is maintained by the VINT

(Virtual InterNetwork Testbed) [29] project. Ns-2 is implemented in two

51

Chapter 4 Implementation

programming languages: the core of the simulator is written in C++ and for

configuring and running the simulations OTcl24 is used.

In a former project, the PBS algorithm was implemented in the C++

space of the ns-2 simulator (see [5]). Thus, as the final goal of this the-

sis is to improve the stability of the Dominating Set computed with PBS,

this PBS implementation was used as a base for implementing the predic-

tion algorithm. Most of the implementation details described in Section 4.4

are therefore also written in C++ and integrated into the ns-2 PBS classes.

Further explanations on ns-2 and its PBS implementation can be found in

Appendix A.

4.2 Mobility Models

There are two possibilities to model the mobility of the nodes in a simula-

tion. The first is that node trajectories are measured in a real network, for

instance, node positions can be measured with a GPS device, and then used

as input for driving the simulations. While this method is desirable because

node movement is modelled realistically, it is often not possible because of

the lack of such data. The second possibility is to use a so-called mobility

model, which basically is a set of rules of how nodes behave. The benefit

of this method is, that without having to perform extensive measurements

in real world scenarios, large numbers of node trajectories can be used for

simulation. However, the drawback of this approach is, that the mobility

model reflects the real behavior of mobile nodes only to a certain degree. A

good overview of the most common mobility models used for simulation can

be found in [31].

For the evaluation of the mobility prediction algorithm two mobility

models have been used, which are discussed in the following.

4.2.1 Random Waypoint

The Random Waypoint Model (RWP) was used as a representative of a

mobility model where the motion of the nodes show little structure. Thus,

it is hard to predict the future SNR values. With the RWP model, the

24
OTcl is the object oriented variant of the Tcl script language. For more details see [30].

52

4.2 Mobility Models Chapter 4

Figure 4.1: Travelling pattern of a node using the RWP mobility model

Figure 4.2: Typical SNR pattern of a link driven by the RWP mobility

model

nodes start at random, uniformly distributed positions spread over the whole

area under simulation. Each node chooses a random destination within the

simulation area and a random speed, which is uniformly distributed within

the interval of [minspeed, maxspeed]. After arriving at its destination, the

node pauses for a certain amount of time and then starts all over with

selecting a new destination and speed. A typical travelling pattern for the

RWP mobility model is shown in Figure 4.1. An exemplary pattern to which

such movement leads is plotted in Figure 4.2.

53

Chapter 4 Implementation

4.2.2 Freeway Model

As a representative of models which show clear movement patterns, the

Freeway mobility model described in [32] has been used. Cars are modelled

as nodes on a straight line representing a lane on the freeway. The num-

ber of lanes and their directions can be configured, as well as the desired

minimal and maximal speed for each lane. The speed of the vehicles are

set according to the Intelligent-Driver Model (IDM) [33]. As a model of

lane change and overtaking maneuvers, the Freeway model uses the MOBIL

(Minimizing Overall Breaking Induced by Lane-Changes) [33] strategy. An

exemplary pattern in the SNR measurements is shown in Figure 4.3. It can

be clearly seen how the two nodes are moving towards, then crossing and

driving away from each other. Patterns with such a short lifetime and such

a clear structure are typical for two nodes travelling in opposite directions.

For two nodes moving in the same direction the patterns look similar but are

longer. The faster car approaches from behind, then overtakes the slower

one and the distance increases until the connection is lost.

Figure 4.3: Typical SNR pattern of a link driven by the Freeway mobility

model

4.3 SNR in Ns-2

As mentioned in Section 3.1.2, a realistic model of the SNR has to take

into account the radio propagation (path loss, and effects like reflection,

scattering and diffraction) and noise (environmental noise, receiver noise

and interference). In the following, the SNR model is explained step by

54

4.3 SNR in Ns-2 Chapter 4

step with an example of a link between two nodes. The movement of the

nodes was generated with the random waypoint mobility model. Note that

typical values of the signal power in wireless LAN 802.11 networks range

from −90 dBm to −40 dBm, while a typical noise level observed is around

−90 dBm. Thus, with Equation 3.2, typical SNR values range from 0 dB

to 50 dB.

4.3.1 Shadowing Model

A model which is commonly used as radio propagation model is shadow-

ing [34]. The shadowing model consists of two parts, the path loss model,

which defines a deterministic relation between distance and received signal

strength, and a random variable, which reflects the variation of the signal

strength at a certain distance.

The path loss is usually measured in dB with the equation

Pr(d)

Pr(d0)
= −10βlog(

d

d0

)[dB], (4.1)

where d is the distance between the nodes and d0 is a reference distance.

The parameter β is called path loss exponent and is determined by the phys-

ical environment. Some typical values of β can be found in [34], for the

simulation β = 4 was chosen, which is a typical value observed in obstructed

in building environments. The SNR measurements of an example link with

taking only the path loss into account is shown in Figure 4.4.25

The second part of the shadowing model is an added random variable

which is used to model different effects on the received signal strength when

the nodes of the link are in motion:

Pr(d)

Pr(d0)
= −10βlog(

d

d0

) + XdB[dB] (4.2)

XdB has a Gaussian distribution with zero mean and standard deviation

σdB. σdB is called shadowing deviation and is also determined by the

physical environment. Typical values range from 3 to 12 (in [34] the values

for different environments can be looked up). For the simulation, a value

25In order to show the effect of the radio propagation model, without accounting for

noise, a constant noise level of −90dBm has been assumed.

55

Chapter 4 Implementation

$ns node−config −propType Propagation /Shadowing

Propagation /Shadowing set pathlossExp 4 . 0 ;# path l o s s exponent

Propagation /Shadowing set s td db 7 . 0 ;# shadowing dev i a t i on (dB)

Propagation /Shadowing set d i s t 0 1 . 0 ;# r e f e r e n c e d i s t ance (m)

Propagation /Shadowing set s e ed 0 ;# seed for RNG

Listing 4.1: Deploying shadowing propagation model

of σdB = 7 was chosen, which is representing an office environments with

hard partition. The same link as above, this time with the added random

variable XdB is shown in Figure 4.5.

How the shadowing model is deployed and configured in ns-2’s Tcl scrips

is shown in Listing 4.1.

4.3.2 Background Noise and Interference

In order to account for environmental noise and receiver noise, another

Gaussian distributed random variable was added to the SNR values. The

mean was set to −90 dBm with a standard deviation of 4 dBm.

Ns-2 implements a very simplistic model of interference for detecting

packet collisions. Collision detection is included in the MAC (Medium Ac-

cess Control) Layer (mac/mac-802_11.cc) of the 802.11 implementation.

When a packet arrives, the receiving function simply checks, whether an-

other packet is currently being received. If this is the case, the signal powers

of the two packets are compared. If the power of the incoming packet is

smaller than the power of the packet currently being received by at least

the constant CPThresh (10 dB by default), a collision is detected and the

packet is dropped.

This model has several drawbacks:

• Only two packets are considered. If more packets are being received

simultaneously, the interference is not additive.

• The duration of the interference generated by a packet is not consid-

ered.

56

4.3 SNR in Ns-2 Chapter 4

Figure 4.4: SNR with deterministic distance to signal strength relation

Figure 4.5: SNR with shadowing model

Figure 4.6: SNR with shadowing model plus AWGN plus interference

Figure 4.7: SNR measurements filtered with Kalman filter

57

Chapter 4 Implementation

• Only packets with signal power higher than the receive threshold con-

stant RxThresh_26 are taken into account.

• The interference is implemented in the MAC layer instead of the phys-

ical layer, to where it belongs.

However, in lack of a better interference model this model was used for

the simulations. If during the reception of a packet another packet arrives,

the signal power of the latter is added to the noise power as a value for

interference.

The SNR is calculated in the MAC layer in ns-2. The MAC layer’s recv

function, which processes incoming packets, gets the received signal strength

information from the propagation model in the variable p->txinfo_.RxPr.

In order to hand over the SNR value to the state observation of the mo-

bility prediction algorithm, the packet header (file common/packet.h) was

extended with a property snr_. The code of SNR calculation is listed in

Listing 4.2.

4.4 Implementation of Mobility Prediction in the

PBS Algorithm

The PBS algorithm is implemented in the ZSSpbsAgent class of ns-2 in C++

(cf. [5]). An overview of this implementation is given in Appendix A.2. For

the extension with mobility prediction two classes were defined: MobilityStateObservation

for the state observation part and MobilityPrediction for the prediction

part. The ZSSpbsAgent was extended such that each object creates instances

of both of these classes.

4.4.1 State Observation

In order to keep track of the links of a node, a structure called LinkMeasurements

was defined. Each state observation object contains an array of such LinkMeasurements,

one for each link it currently has or had in the past (recall that the broken

links of a node contain valuable training data which should be stored). The

26The receive threshold is a constant signal strength value defined in ns-2, above which

the packet is received correctly. It is typically set to −95 dBm.

58

4.4 Implementation of Mobility Prediction in the PBS AlgorithmChapter 4

// mac/mac−802 11 . cc

// Mac802 11 : : recv (Packet ∗p , Handler ∗h)

[. .]

// c a l c u l a t e snr and wr i t e i t in the packet header

double snr ;

// i n i t i a l i z i n g ns−2 random number generator

RNG no i s e ;

no i s e . r e s e t nex t subs t r eam () ;

// c a l c u l a t e snr

i f (r x s t a t e = = MAC IDLE) {

// channel i d l e , no i n t e r f e r e n c e

snr = 10∗ l og10 (p−>t x i n f o . RxPr) − no i s e . normal (−90 ,4) ;

} else {

// channel occupied , i n t e r f e r e n c e

snr = 10∗ l og10 (p−>t x i n f o . RxPr)

− 10∗ l og10 (pktRx −>t x i n f o . RxPr)

− no i s e . normal (−90 ,4) ;

}

// wr i t e to packet header

hdr−>sn r = snr ;

Listing 4.2: Calculating the SNR in ns-2

59

Chapter 4 Implementation

nodeId The node ID of the peer of this link

lastMeasurement Stores the last measured SNR value of the actual

measurement interval before it is saved in the time

series

measurements[] Saves the time series of the filtered values, used as

a circular buffer of size SNR_BUFFER_SIZE

kalmanParPkApriori

kalmanParPk

kalmanParKk

kalmanParA

kalmanParC

kalmanParQ

The actual Kalman filter parameters (A, C, P−

k ,

Pk, Kk, Q) of the time series as they were de-

scribed in Section 3.1.3

prediction Stores the last prediction in a vector made for this

link

lastPredictionTime The time when the last prediction of this link was

made. It is used for checking whether the predic-

tion in the prediction field is still actual

Table 4.1: Overview of the LinkMeasurements data structure

most important fields of the LinkMeasurements structure are summarized

in Table 4.1.

The MobilityStateObservation class has two important interfaces.

The first is used by the recv function (the recv function handles all the in-

coming packets) of the ZSSpbsAgent. The recv function calls the insertMeasurement

function of the state observation in order to store the measured SNR value

for each received packet in the lastMeasurement variable of the according

LinkMeasurements. Because measurements should only be performed once

every T seconds (recall that T is the measurement interval defined in Sec-

tion 3.1.2), a timer was added to the ZSSpbsAgent. The makeMeasurement

function, which is called every T seconds, checks if a new value has arrived

during the last measurement interval and if so, applies the Kalman filter to

this value and stores the filtered value in the time series of the according

link. If no new value was saved by the insertMeasurement function, it is

assumed that the connection is broken and a 0 is inserted in the time series.

Note that each node should frequently receive so-called Hello Messages for

all of its active links. The Hello Messages are used by PBS in order to keep

60

4.4 Implementation of Mobility Prediction in the PBS AlgorithmChapter 4

Filename Description

config_trainingorder.inc The number of training samples for the

autoregressive model of the Kalman filter

config_queryorder.inc The query order

config_stabletime.inc The time for which a link has to be avail-

able in order to be considered as stable

Table 4.2: Configuration files for the state observation class

the list of direct neighbors accurate and are sent by default every 0.1 Sec-

onds. Thus, in order to make sure that a measurement for each link can be

made during a measurement interval, T should not be set to values smaller

than 0.1.

The second important interface of the MobilityStateObservation class

is used by the ZSSpbsAgent to request a prediction for a certain link. In or-

der to check, whether a link to a given neighbor is stable, the isLinkStable

function is called, which returns a boolean value. The isLinkStable func-

tion first checks, whether the prediction in the prediction field of the ac-

cording LinkMeasurements structure is still actual. The life time of a pre-

diction was set to be 2 seconds. This value should make sure that during

one election each link has to be predicted only once, as an election usually

should take less than 2 seconds time. When the prediction has expired, a

new one is triggered. Then the isLinkStable function scans the prediction

for zeros in order to decide whether the link is stable or not.

Additionally to these two interfaces for the communication with the

ZSSpbsAgent, the MobilityStateObservation provides some functions for

the MobilityPrediction class. These are mainly used to hand over the

training data and query to the prediction part.

In order to set the parameters of the state observation, three config files

are used. They are listed in Table 4.2 and can be found in the zoneserver/tcl/wireless/

directory. Each of the files simply contains a value of the parameter.

61

Chapter 4 Implementation

4.4.2 Prediction

The MobilityPrediction class has one important public function called

predict, which is used by the MobilityStateObservation in order to get

a prediction of a certain link. The predict function first fetches the query

and training data and tries to find predictors by calculating the normalized

cross-correlation function. If this is successful, the most ‘common’ predic-

tor is chosen according to the strategy explained in Section 3.2.2. If no

predictor was found, it gets the autoregressive model parameters from the

according LinkMeasurements structure and performs an iterative prediction

with them. Finally, the predict function stores the predicted values in the

prediction field of the LinkMeasurements.

The MobilityPrediction has only one parameter which can be config-

ured via a config file. The match threshold is read from the file config_threshold.inc

in the zoneserver/tcl/wireless/ directory.

4.4.3 Link Stability Criterion

In order to implement the link stability criterion in PBS, several changes in

the ZSSpbsAgent code and in the Neighborlist class had to be made. The

Neighborlist class was extended with two new functions. getAllStableNeighbors

and getStable1HopNeighbors are the pendants to the default Neighborlist

functions getAllNeighbors and get1HopNeighbors which return only the

neighbors for which the stability criterion holds. Additionally, a configura-

tion parameter was introduced to the Neighborlist class, which controls

whether prediction should be used or not. Therefore, the file config_prediction.inc

is read which can contain a zero for disabling prediction or a one for enabling

it.

The ZSSpbsAgent class was changed in two places. First, the function

that sends the neighborlist was changed to include only those neighbors for

which the stability criterion holds. In order to do this, the sendNeighborlist

uses the getStable1HopNeighbors function. The second change concerns

the determineStatus function, which was changed in several places to use

the getAllStableNeighbors and getStable1HopNeighbors functions in

order to determine the state of the node as described in Section 3.3.

62

4.5 Chapter Summary Chapter 4

4.5 Chapter Summary

This chapter provided an overview of the ns-2 implementation of the pre-

diction algorithm. The concept of mobility models was discussed and two

representatives, the RWP model and the Freeway model were explained.

Furthermore, a detailed explanation of the SNR in ns-2 was given. The

implementation of the state observation part and the prediction part of the

algorithm was shown together with the changes in the adaptations required

in the PBS implementation. The following chapter will now present the

evaluation of the algorithm based on this implementation.

63

Chapter 4 Implementation

64

5

Evaluation

In this chapter, the mobility prediction algorithm is evaluated by simula-

tion in ns-2. It starts with determining the optimal choice of some design

parameters which have been described in the previous sections. Section 5.1

shows how the number of training samples for the autoregressive model in

the Kalman filter was set. In Section 5.2, the question of the query order

and match threshold are addressed, both have influence on the number of

predictors and on the accuracy of the predicted SNR values.

After having set the parameters, the accuracy of the prediction is evalu-

ated in Section 5.3 using the Random Waypoint and the Freeway mobility

models. Finally, in Section 5.4 the influence of the link stability criterion on

the server selection algorithm is analyzed by comparing the Dominating Set

stability with and without prediction.

5.1 Kalman Filter Parameters

In Section 3.1.3, the autoregressive link model for the Kalman filter was

described. In order to create the model of the link at each filtering step, that

is at each time a new measurement is made, the past measurements of the

link have to be used as training data for setting the model parameters α and

c. The question of how far in the past values should be used as training data

(the training data order) was left unanswered in Section 3.1.3. Intuitively,

it seems clear that using only a small number of training measurements for

creating the model should give better results than choosing a large training

65

Chapter 5 Evaluation

data order, as this creates a more accurate model of the actual state of

the link (local model). Recall that, as the Kalman filter needs only 1-step-

ahead predictions, this situation differs a lot from the problem of predicting

network topology changes, which requires a long term prediction. Thus, for

the Kalman filter a model taking into account only the recent past of the

link should be created, opposed to the model for the SNR prediction, where

having more training data is better.

In order to determine the optimal choice of training data order, sim-

ulations have been run with different model orders and the quality of the

models was compared. As a measure of quality of autoregressive models the

coefficient of determination R2 is widely used (cf. [21]). It is defined as

R2 = 1 −

∑

i êi
2

∑

i x
2
i

= 1 −

∑

i (x̂i − xi)
2

∑

i x
2
i

, (5.1)

where the estimated (by the model) value at time i is denoted by x̂i and

the measured value by xi. The values of R2 lie in the interval [0, 1], 0 means

a bad fit and 1 means a perfect fit of the model. The procedure to compute

the R2 value is the following:

1. Take the last o measurements and create the autoregressive model by

calculating the model parameters α and c, according to Equations 3.17

and 3.18.

2. For each of the o measurements, calculate the value that would have

been estimated with the above calculated model based on the previous

measurement according to the following equation: x̂k = αxk−1 + c.

Compute the squared error of this estimated value: êi
2 = (x̂i − xi)

2.

3. With having all the êi
2 values, compute R2 with Equation 5.1.

5.1.1 Simulation Setup

For the evaluation of the coefficient of determination, the Random Waypoint

Mobility Model (see Section 4.2.1) was used on a small scenario with 10

nodes. The simulation setup is summarized in Table 5.1. The simulated

area of 1000 × 1000 m2 was chosen in order to have a not fully connected

network. The relatively short simulation time of 300 seconds is enough, as

66

5.1 Kalman Filter Parameters Chapter 5

Mobility Model Random Waypoint

Max. speed 5 m/s

Pause time 5 s

Simulated area 1000x1000 m2

Number of nodes 10

Simulation time 300 s

Table 5.1: Simulation setup for determining the training data order of the

autoregressive model

for each link in the network each second a model is created, which gives

enough data to make some statistical evaluation. Assuming that each node

has an average of 5 links to other nodes27, each node computes 5×300 = 1500

models during the simulation time. With 10 nodes in the network this gives

a set of 15000 computed R2 values. For each model order in the range from

3 to 1328, the simulation ran 10 times with different random seeds of the

mobility model.

5.1.2 Results

The resulting average R2 values depending on the training data order are

plotted in Figure 5.1. In the plot, the intuitively assumed decrease of the

coefficient of determination is approved. The best fit of the model with the

training data with R2 = 0.91 is achieved at training data order 3, then it

goes steadily down to a value of R2 = 0.59 at model order 13.

These results suggest to chose a model order of 3. However, it was

observed that this small amount of training data occasionally leads to un-

stable predictions. If the 3 training values are in an unfavorable constellation

because of the noise, the model fit might be good, but the 1-step-ahead pre-

diction is an unrealistic value. Thus, in order to get more stable predictions,

a training data order higher than 3 had to be chosen. A choice of training

data order of 7 is a reasonable value, as the coefficient of determination is

27The number of 5 links was only guessed and not verified, as it is only used to make a

rough estimation of how many models are created.
28Note that model order 1 and 2 were omitted because with one single value no model

can be created and having only two training values leads in any case to a R2 value of 1,

as the model would simply be a straight line through the two points without any error.

67

Chapter 5 Evaluation

2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Model Order

M
ea

n
C

oe
ffi

ci
en

t o
f D

et
er

m
in

at
io

n

Figure 5.1: Average values of the coefficient of determination of autoregres-

sive model for different training data orders

with R2 = 0.65 still high enough and the probability of unstable predictions

is already much smaller.

With this, the discussion of the Kalman filter and the whole state obser-

vation part is complete. The next step is to go to the prediction part and

determine its remaining parameters.

5.2 Prediction Parameters

For the prediction part, the parameters which remain to be discussed are

the query order and the match threshold. They both have a direct influence

on the accuracy of the prediction and should be set in a way that gives as

accurate as possible predictions. Another question still open is the order of

prediction k. While having already mentioned that a long term prediction is

required, it was not yet discussed how far in the future this prediction should

go. However, this discussion is depending on the application of the mobility

prediction algorithm and is therefore postponed to Section 5.4, where the

link stability criterion is evaluated. In the following, the influence of the

query order and of the match threshold on the prediction accuracy are first

discussed separately. Then, the simulation setup and results are given.

68

5.2 Prediction Parameters Chapter 5

Query Order

The question of the query order (see Definition 3.3) is related to how long a

pattern in the movement of the nodes is assumed to be. However, as there

are no clearly splittable patterns with a unique length in the training data,

the optimal query order cannot be set analytically but has to be chosen by

means of simulation instead. Furthermore, different physical environments

of the network may lead to different lengths of the observed patterns, thus

the query order should be set as some compromise between environments

that show short patterns and others which show longer patterns.

Anticipating the results of the simulation, two main effects of the query

order on the prediction accuracy can be assumed:

• A short query leads to a large number of predictors. This is a benefit,

as the decision of which predictor should be used as prediction (see

Section 3.2.2) can be based on many predictors. However, if the query

order is too small, the predictors are bad representations of the current

node behavior. This may lead to a reduced accuracy of the prediction.

• A large query order leads to a small number of higher quality pre-

dictors, with the risk that the number of predictors gets too small or

even none is found at all. This should be avoided, as in this case the

fallback solution (see Section 3.2.3) has to be applied.

Thus, by means of simulation a balance between these two controversial

effects should be found.

Match Threshold

The second parameter which requires some discussion is the match thresh-

old (see Definition 3.4). The match threshold is the value above which the

correlation of the query and the training data at a certain lag m is con-

sidered to be a match. Intuitively, the match threshold, just as the query

order, influences the number of matches found and therefore the number of

predictors and the accuracy of the prediction. The influence of the match

threshold on the number of predictors and the prediction accuracy is quite

similar to the influence of the query order:

69

Chapter 5 Evaluation

• A small match threshold leads to a big number of predictors, as the

match must not be perfect. However, a too small threshold can be

harmful, as patterns are considered as matches, which are not really

similar to the query.

• On the other hand, choosing a high match threshold leads to a small

number of predictors, as only few situations are considered similar

enough to take into account at the choice of the prediction. This

again is risky, as the number of predictors may be too small or no

predictor may be found at all.

Thus, for this parameter also a balance between the two effects has to

be found.

As the final goal is to optimize the accuracy of the prediction which is

influenced by both, the query order the and match threshold, the goal of the

simulation was to find an optimal combination of them. In order to account

for this, the simulation was conducted with possible combinations of query

order and match threshold.

5.2.1 Simulation Setup

In order to account for different physical environments in which a MANET

can possibly be deployed, two mobility models, the RWP and the Freeway

model, with vastly different behaviors of the nodes were chosen for the simu-

lation. The RWP model was chosen to have a simulation where the patterns

are not so clear and the behavior of the nodes is highly random. In the Free-

way model, on the other hand, the observed patterns are quite limited as

the nodes have basically only the freedom to move in either of the directions

with varying speeds.

Random Waypoint Scenario

The simulation parameters for the Random Waypoint scenario are summa-

rized in Table 5.2. The parameters are basically the same as in the simula-

tion described in Section 5.1, except for the simulation time. The first 600

seconds of the overall 630 seconds simulation time, were used for collecting

training data. At time 600, all the nodes predicted the future SNR values for

70

5.2 Prediction Parameters Chapter 5

Mobility Model Random Waypoint

Max. speed 5 m/s

Pause time 5 s

Simulated area 1000x1000 m2

Number of nodes 10

Simulation time 630 s

Table 5.2: RWP simulation setup for determining the query order and the

match threshold

each of their links. In order to get an overview of how much data the local

link model was based on, the number of predictors for each of the predictions

was saved. The prediction order k was set to 30 seconds, thus a 30-steps-

ahead prediction was performed. The following 30 seconds, the accuracy of

this prediction was measured by comparing at each measurement interval

the predicted value with the measured one29. In order to get an estimation

of the accuracy of the prediction, the average absolute prediction error of

each of the links in the network for each of the predicted time steps was

computed. 10 simulation runs with this scenario have been performed with

different random seeds in order to get a broad data base for the evaluation.

The results and interpretation of this simulation will be presented in the

next section, after the discussion of the Freeway scenario.

Freeway Scenario

The simulation setup of the Freeway scenario is shown in Table 5.3. This

scenario is supposed to model a typical Swiss highway with 2 lanes in either

direction. The speeds are set according to typical behavior on such a highway

with a speed limit of 120 km/h. The node density is, with 25 nodes in 5 km,

rather small. It was chosen at such a low level in order to account for the

fact that it is not realistic to assume each car on a freeway equipped with

ad hoc networking capabilities. Thus, only a certain percentage of the cars

participate in the network. The simulation time is, with 330 seconds, shorter

than in the RWP scenario. The reason for this is that the variety of typical

patterns observed in such a physical environment is by far smaller than in

29Note that for the calculation of the prediction error, not the noisy measurement was

taken, but the Kalman filtered value instead.

71

Chapter 5 Evaluation

Mobility Model Freeway

Lanes 4 (2+2)

Speed Fast lane: 110 km/h . . . 130 km/h

Slow lane: 80 km/h . . . 110 km/h

Simulated freeway length 5000 m

Number of nodes 25

Simulation time 330 s

Table 5.3: Freeway simulation setup for determining the query order and

the match threshold

a Random Waypoint environment and the patterns are usually shorter. Of

these 330 seconds, again 30 seconds are used to verify the accuracy of the

prediction made after 300 seconds. The first 300 seconds are used to collect

training data. With this scenario also 10 simulation runs with different

random seeds have been performed.

5.2.2 Results

As mentioned above, the simulation of the above described scenarios have

been run with different combinations of query order and match threshold in

order to get some insight of how these two parameters affect the prediction

accuracy. The match threshold has been varied in the interval [0.5, 0.9]

with steps of 0.05, which gives 9 different values. The query order has been

chosen in the interval of [20, 100] in steps of 20, thus 5 different values were

simulated. All possible combinations of these values give a total number of

9× 5 = 45 configurations, each being simulated 10 times. That gives a total

number of 450 simulations per scenario.

Figures 5.2 and 5.3 show the average number of predictors per prediction

depending on the query order and the match threshold. The figures confirm

what has already been assumed, that small query order and small match

threshold lead to high numbers of predictors. The absolute numbers shown

in these figures are not really interesting, as they depend highly on the length

of training data, the number of links the nodes have and other parameters.

However, what can be taken from these figures is some upper bounds of the

query order and match threshold. In case of a match threshold in the range

of 0.8 . . . 0.9, the number of predictors is, especially in the RWP scenario,

72

5.2 Prediction Parameters Chapter 5

approaching zero. Thus, in order to avoid this the match threshold should

be set to a smaller value. The same statement can be made for the query

order for values around 80 . . . 100, where the number of predictors get very

small.

0.5

0.6

0.7

0.8

0.9

20
40

60
80

100

0

50

100

150

Match Threshold

Query Order

M
ea

n

of
 P

re
di

ct
or

s

Figure 5.2: Average number of predictors with different query orders and

match thresholds using the RWP mobility model

0.5

0.6

0.7

0.8

0.9

20

40

60

80

100

0

50

100

150

Match ThresholdQuery Order

M
ea

n

of
 P

re
di

ct
or

s

Figure 5.3: Average number of predictors with different query orders and

match thresholds using the Freeway mobility model

The more important information comes from the average absolute pre-

diction errors, shown in Figure 5.4 for the RWP scenario and in Figure 5.5

73

Chapter 5 Evaluation

for the Freeway model. The prediction error in dB, depending on the query

order and the match threshold was plotted for different prediction orders,

like 1, 5, 10, 20 and 30 steps-ahead predictions, respectively. First looking

at the RWP model, the 1-step-ahead prediction error does not really depend

on the two parameters and is about constant at 2 dB. For longer term pre-

dictions, starting at around 10 steps, the error starts to significantly increase

for higher match thresholds. The reason for this is one of the above men-

tioned effects, namely that for high thresholds no predictors can be found

and the fallback model is used. These results suggest to choose a small

match threshold of about 0.5.

Looking at the prediction errors for the Freeway model plotted in Fig-

ure 5.5 shows a different situation. First, it is obvious that all in all the

errors for this model are smaller than in the RWP case. This was already

assumed before, because of the clearer structure of the patterns using the

Freeway model. For short term predictions, an average error of about 1 dB

can be observed, which is again more or less independent of the query order

and match threshold. For longer term predictions, an important difference

to the RWP case can be seen. Where, using the RWP model, the error de-

pended mainly on the match threshold and not so much on the query order,

using the Freeway model the opposite is the case. The error is more or less

independent of the match threshold but increases significantly with a smaller

query order. The reason for independence of the match threshold again lies

in the clear patterns observed with this model. If a situation in the past

is really similar to the current situation, the patterns will match even with

a high match threshold. Thus, the matches with small match thresholds

are the same as those with high match thresholds. This can be verified in

Figure 5.3, where the number of predictors is not as strongly dependent on

the match threshold as in the RWP case in Figure 5.2. The other effect, the

errors increase with too short query orders, is a sign that a query order of

below 60 is too small for the Freeway case. This is an indication that with

this model usual patterns are about 60 seconds long30.

As a compromise of the observed effects using the RWP and the Freeway

model, a query order of 70 and a match threshold of 0.5 were chosen for the

30Recall that in Figure 4.3, a typical pattern lasting only 20 seconds was shown. How-

ever, this was a pattern of nodes moving in opposite directions. When the nodes move in

the same direction, the patterns are longer.

74

5.2 Prediction Parameters Chapter 5

Figure 5.4: Mean prediction error with different query orders and match

thresholds using the RWP mobility model

75

Chapter 5 Evaluation

Figure 5.5: Mean prediction error with different query orders and match

thresholds using the Freeway mobility model

76

5.3 Prediction Accuracy Chapter 5

further evaluation of the prediction algorithm. These are values which lead

in both scenarios to good results. Note that if there is some knowledge about

the physical environment of the network and the mobility structures of the

nodes available, these two parameters may be tuned accordingly in order to

get the best possible results.

Having set the remaining parameters, the algorithm is now ready for a

more detailed evaluation of its accuracy, which is presented in the following

section.

5.3 Prediction Accuracy

Figures 5.6 and 5.7 show in more detail the dependence of the average abso-

lute prediction error on the prediction order for the RWP and the Freeway

model with query order 70 and match threshold 0.5. For the RWP case, the

results are straight forward. For a one-step-ahead prediction, the error lies

at 2 dB, it then steadily increases with the prediction order up to a value of

around 5 dB for a 30-steps-ahead prediction. In case of the Freeway model,

the results are a bit more surprising at first sight. The error first increases

up to a maximal value of around 3 dB for a 12-steps-ahead prediction. Then

the error starts to decrease again, until it reaches a value of about 2 dB for

a 30-steps-ahead prediction. This decrease of error stems from the rather

short lifetime of the links, especially between nodes driving in opposite di-

rections (cf. Figure 4.3). As more and more links break, the predictions

in average get more accurate because the absence of a link can usually be

predicted without any error. Predicting the exact SNR value of an existing

link will always contain some error, while predicting that there is no link

anymore is perfectly accurate if the link really breaks.

5.4 Dominating Set Stability

One question that remains is the influence of the link stability criterion

on the Dominating Set stability in the PBS algorithm. In order to clarify

this, another round of simulations was run with the parameters set to the

values discussed above. The simulation was again performed using both,

the RWP and the Freeway scenarios, with simulation parameters similar to

77

Chapter 5 Evaluation

0 5 10 15 20 25 30
0

1

2

3

4

5

6
Prediction Error

Prediction Step [s]

M
ea

n
A

bs
ol

ut
e

E
rr

or
 [d

B
]

Figure 5.6: Mean prediction error for different prediction times using the

RWP mobility model, query order 70 and match threshold 0.5

0 5 10 15 20 25 30
0

1

2

3

4

5

6
Prediction Error

Prediction Step [s]

M
ea

n
A

bs
ol

ut
e

E
rr

or
 [d

B
]

Figure 5.7: Mean prediction error for different prediction times using the

Freeway mobility model, query order 70 and match threshold 0.5

those given in Tables 5.2 and 5.3. The only difference in the simulation

setup was concerning the simulation time. Instead of the 630 seconds in

the RWP scenario, the simulation this time ran for 600 seconds, with 300

seconds training time. That means, after 300 seconds the Dominating Set

was constructed and then maintained for the next 300 seconds. In case of

the Freeway scenario, instead of 330 seconds 200 seconds training and 100

seconds for the construction and maintenance of the DS was used.

The results of these simulations are given in Table 5.4 for the RWP

case and in Table 5.5 for the Freeway model. The tables show the average

number of Dominators and the average number of Dominating Set changes31,

depending on the link stability criterion. For instance, a link stability of

k = 30 implies that a link is assumed to be stable, if it is still available in

30 seconds (cf. Section 3.3). The first row of the tables shows the numbers

for the DS without using prediction (k = 0). In the following rows, the

stability criterion got more and more strict (k = 10 . . . 60). Additionally to

the number of Dominators and DS changes, the standard deviation and the

31A Dominating Set change occurs when a node in CANDIDATE or DOMINATEE

state switches to DOMINATOR state or vice versa.

78

5.4 Dominating Set Stability Chapter 5

percentage values are given with the values without prediction set to 100 %.

The results for the RWP model show that the number of Dominators

increases with using the link stability criterion by more than 30 % from a

value of 3.45 up to around 4.5. This increased number of Dominators is

the expense which is paid for the increased DS stability, as Candidates do

not just accept any Dominator in their neighborhood but require one with a

stable link instead. In terms of DS changes, the average number of changes

could be reduced with the stability criterion from a value of 20.4 down to

16.6. This is a reduction by 19 % in the optimal case of requiring 40 seconds

(or 30 seconds which gives the same reduction) of stability in the links.

In general, one can argue that decreasing the number of DS changes is

usually worth the price of having a few more Dominators, because changes

in the Dominating Set are expensive. A change in the DS generally means

a service disruption for at least the nodes that lose the connection to their

Dominators and triggers a re-election. Additionally, a re-election presents a

large communication overhead, which should be avoided whenever possible.

However, while this argument is true for most usual types of services, in

case of a service which requires a big synchronization overhead between the

Dominators it might be desirable to have fewer Dominators and more DS

changes instead. In such a case, the link stability criterion should not be

used.

In the Freeway scenario, the results in Table 5.5 look similar but better.

In general, the number of Dominators and the number of DS changes are

higher than with the RWP model, because the mobility of the nodes is

higher. A nice difference to the RWP scenario is, that the costs of a more

stable DS are much smaller and the increase of stability is higher. In the

optimal case of k = 40, the number of DS changes could be reduced by 26 %

from 72.6 changes to 53.3 changes, while the number of Dominators is only

increased by 11 % from an average of 11.8 to 13.04. Figure 5.8 shows the

variation over time of the number of Dominators in an exemplary case with

and without using prediction. It shows that a lot of the fluctuations in the

number of Dominators can be avoided.

In both scenarios, an optimum of 40 seconds link stability was found,

thus the remaining parameter, the prediction order k can be set to this value.

79

Chapter 5 Evaluation

k Avg. # of Dominators σ % Avg. # of DS changes σ %

0 3.45 0.25 100 20.4 6.50 100

10 4.62 0.52 134 20.0 6.29 98

20 4.64 0.46 134 19.0 4.06 93

30 4.63 1.13 134 16.6 4.59 81

40 4.68 0.45 135 16.6 3.62 81

50 4.54 0.68 132 18.2 3.54 89

60 4.49 0.89 130 17.4 5.81 85

Table 5.4: Average number of Dominators and changes in the Dominating

Set depending on the prediction order using the Random Waypoint model

k Avg. # of Dominators σ % Avg. # of DS changes σ %

0 11.80 0.43 100 72.6 9.60 100

10 12.51 0.56 106 63.4 5.68 87

20 12.78 0.35 108 58.4 12.17 80

30 12.58 0.33 107 54.2 7.98 75

40 13.04 0.68 111 53.4 10.05 74

50 12.82 0.65 109 55.0 8.90 76

60 12.94 0.50 110 56.6 8.04 78

Table 5.5: Average number of Dominators and changes in the Dominating

Set depending on the prediction order using the Freeway model

80

5.5 Chapter Summary Chapter 5

200 210 220 230 240 250 260 270 280 290 300
0

5

10

15

(a) # of Dominators without Prediction
time [s]

of

 D
om

in
at

or
s

200 210 220 230 240 250 260 270 280 290 300
0

5

10

15

(b) # of Dominators with Prediction
time [s]

of

 D
om

in
at

or
s

Figure 5.8: Exemplary number of Dominators in the DS with and without

prediction using the Freeway model

5.5 Chapter Summary

In this chapter, the prediction algorithm was evaluated. The parameters,

such as the training data order of the autoregressive model, the query order

and the match threshold and their influence on the prediction accuracy were

analyzed. This helped to set these parameters in an optimal way. Further-

more, having the parameter values set, the average prediction errors were

evaluated using the RWP mobility model and the Freeway model. Finally,

the evaluation of the influence of the link stability criterion on the number

81

Chapter 5 Evaluation

of DS changes was shown with the result that the stability of the computed

Dominating Set improved significantly.

82

6

Conclusions and Outlook

This chapter concludes this thesis by giving a short overview of the work and

the achieved results and presents some ideas for future work and following

projects.

6.1 Conclusions

In this thesis, a prediction algorithm based on pattern matching was devel-

oped. To the best knowledge of the author, such an approach to mobility

prediction is new in the area of MANETs, as most of the existing methods

use linear models and are based on having localization information from

dedicated hardware, such as GPS devices. In order to observe the mobility

state of a node and avoiding the use of dedicated hardware, the Signal to

Noise Ratio of the links is monitored and filtered with a Kalman filter. The

pattern matching approach was justified with the assumptions that (1) the

movements of the nodes are restricted by the physical environment of the

network and the intentions of the users and (2) the behavior of the nodes

is repetitive. In order to recognize situations similar to the current in the

past, the normalized cross-correlation function of the current pattern with

the history of the links was used to obtain a set of predictors. As it is de-

sirable to use the most probable one of these predictors as a base of the

prediction, a method of choosing the most common predictor among the

set of predictors by correlating them with each other was chosen. For cases

where no match can be found in the past, a fallback solution based on an

autoregressive model was defined.

83

Chapter 6 Conclusions and Outlook

In order to verify the algorithm, it was implemented in the network

simulator ns-2. With this implementation it was possible to find optimal

choices of some design parameter of the algorithm, such as the query order

and the match threshold. It was shown that the obtained predictions in

case of the used two mobility models, the Random Waypoint model and the

Freeway model, are reasonable. However, the accuracy of the predictions

depends on how much structure the mobility of the nodes shows. For the

RWP model as a representative of having little structure in the mobility,

the accuracy ranges from 2 dB of absolute average prediction error for a

1-second-ahead prediction to 5 dB for a 30-seconds-ahead prediction. In

case of the Freeway model, which shows clear patterns, a maximal average

error of around 3 dB was found, independent on how far in the future the

prediction reaches.

Furthermore, as an application of the prediction algorithm, a link sta-

bility criterion was introduced and implemented in the PBS algorithm for

distributedly computing and maintaining a Dominating Set of zone servers.

With the chosen approach clients (Dominatees) accept only neighbors as

servers (Dominators) when having a link to them which is predicted to be

stable for a certain time in the future. With simulations it could be shown

that this extension leads up to a reduction of Dominating Set changes by

19 % in case of the RWP model and 26 % in case of the Freeway model.

Thus, the prediction has proved to be useful for the application of distributed

server selection. However, it is not limited to server selection and could also

be used for instance in the routing layer.

As mentioned in the first chapters of this thesis, mobile ad hoc networks

are a challenging environment for mobility prediction if the assumption of be-

ing able to localize the nodes by means of localization hardware is dropped.

As there are no fixed points in the network with known position, the only

thing that remains is focus on relative distances between the nodes. By us-

ing the SNR as a measure of distance, not in geographical space but instead

in ‘signal space’, the discussed algorithm is able to cope with this challenge

and predict changes in the network topology. With the approach of pattern

matching this is done not in a simple linear way, instead the nodes learn

from the past behavior of their links and therefore adopt the predictions

to the specific properties of a given network. This is especially a benefit

in networks showing a clear structure in mobility as the simulations with

84

6.2 Outlook Chapter 6

the Freeway mobility model have shown. Of course, an approach based on

learning requires some fine tuning of the parameters. In this thesis the pa-

rameters’ values were carefully set in order to provide good results in a wide

range of possible mobility patterns. However, if the physical environment of

a network is given, the parameters could still be adjusted accordingly.

One thing to note is that the described algorithm focuses on predicting

the failure of existing links. While this is enough for the presented applica-

tion, the link stability criterion, it might be useful for other applications to

predict the whole future topology of the network. Thus, while in this thesis

the approach was to use mobility prediction in terms of predicting what in-

fluence the mobility of a node has on the future state of its links, predicting

the future topology of a network would mean to use mobility prediction in

terms of predicting the future position of a node in a network. In order to do

so the existing approach could be extended by an algorithm that concludes

from the distances between nodes32 on the network topology.

One drawback of the presented approach is that it is costly. Though

a detailed complexity analysis of the algorithm was not performed in this

thesis, one may imagine that computing the normalized cross-correlation of

the queries and the training data as well as correlating the predictors with

one another presents a big computation overhead for the nodes. Especially

for devices with very limited resources such as mobile phones this might

be to much and a simpler or more optimized solution might be preferable.

Analyzing the complexity and optimizing the algorithm are left as future

work.

6.2 Outlook

There are several interesting possibilities of following projects and further

research based on the presented work. For example:

Computational complexity: As mentioned above, it is a known issue

of the presented algorithm that the pattern matching method used is

computationally expensive. Computing the normalized cross-correlation

32Here again, distance is not used in geographical sense but rather as ‘signal space’

measure.

85

Chapter 6 Conclusions and Outlook

functions and the correlations for selecting the most common predic-

tor is costly and a more efficient method might be found. One viable

approach might be to use the fast normalized cross-correlation in the

frequency domain as it is described in [27].

Small Dominating Set vs. small number of changes: As mentioned in

Section 5.4, with the current approach of the link stability criterion,

the reduction of Dominating Set changes comes with the cost of having

an increased number of Dominators. While this should not be prob-

lematic for most types of services, in some cases the increased traffic

for synchronization might be undesirable. A study of the overhead of

a Dominating Set change and the overhead of synchronization traffic

generated by the increased number of Dominators should be done.

Future network topology: As noted before, the presented algorithm fo-

cuses on predicting changes in the network topology in terms of failing

links. However, for some applications it might be desirable to predict

the whole network topology. In order to achieve this, the current ap-

proach should be extended by an algorithm which is able to deduce

from the future SNR values on the network topology. This might en-

able the algorithm to not only predict the failure of existing links but

also predict upcoming links. One possible approach to do so is to use

Multidimensional Scaling (MDS) as it is described in [35] for sensor

networks.

Testbed implementation: In order to gain some experience with real

world scenarios, the prediction algorithm should be implemented in

the SIRAMON testbed. However, such an implementation does not

make sense with the current testbed, as it is too small33 to see the

impact of prediction on the server selection. Thus, a larger testbed

is required and measurements in real world scenarios should be per-

formed.

33The testbed consists currently of 3 laptops and 2 PDAs, thus having only 5 nodes (see

Appendix B.2).

86

Appendix A

Ns-2

This Appendix gives a short overview of the network simulator ns-2. Fur-

thermore, it provides some basic information about the ns-2 implementation

of the PBS algorithm and gives some instructions on how to install ns-2 with

the PBS agent and the prediction algorithm.

A.1 About Ns-2

Ns-2 is a free and open source network simulator, available for download at

the ns-2 homepage [7]. A good introductory tutorial can be found at [28].

For the implementation of the prediction algorithm as it was described in

Section 4, the ns-allinone package release 2.29 was used.

The simulator core is written in C++. An object oriented variant of the

script language Tcl, called OTcl (see [30] for more details) is used for the

configuration of the simulator. The combination of these two languages

offers a compromise between performance and ease of use of the simulator.

A simulation usually creates trace files in order to analyze the results. For

viewing these traces, an animation tool called Network Animator (NAM)

can be used.

The PBS algorithm was implemented in ns-2 as an agent (ZSSpbsAgent)

that can be attached to the nodes of the network in the simulation config-

uration scripts. This agent will be described in the following section. For a

more detailed explanation, see [5].

87

Appendix A Ns-2

Figure A.1: The PBS finite state machine, taken from [5]

A.2 ZSS PBS Agent

The ZSSpbsAgent agent is basically an implementation of the algorithm

shown in Listing 2.1 on Page 25. The ZSSpbsAgent is implemented as a

Finite State Machine (FSM) consisting of the four states “idle”, “msgsent”,

“roundfinished” and “finished”. The “idle” state is the initial state of the

FSM. Once a node joins a service it sends its neighborlist and waits in the

“msgsent” state to get the neighborlists from its direct neighbors. When

all the neighborlists have been received or a timeout occurred, the state

changes to “roundfinished” and the node determines its own state. If there

are no more CANDIDATE neighbors, the nodes switches to “finished” state,

otherwise a new round is started by changing again to “msgsent” state. The

FSM is shown in Figure A.1 and a detailed description of the transitions

can be found in Table A.1.

88

A.2 ZSS PBS Agent Appendix A

From State To State Event Action

idle msgsent join The node joins the Service and

starts sending out neighborlists.

idle msgsent receivedmsg The node is still waiting in the idle

state, but received a neighborlist. It

starts now sending out neighborlists

as well.

msgsent msgsent timerRESEND The resend timer expired and not all

neighbors sent a neighborlist back.

Therefore, the already sent neigh-

borlist will be resent.

msgsent roundfinished receivedmsg All required neighborlists have ar-

rived. The node determines its own

state.

msgsent roundfinished timerTIMEOUT Not all required neighborlists ar-

rived, but the timeout timer expired

and the node determines its own

state.

roundfinished msgsent resend There are still INT CANDIDATE

neighbors and a new round of the

PBS algorithm needs to be started.

roundfinished finished finished All nodes determined their status.

There are no INT CANDIDATE

neighbors left.

finished finished receivedmsg Handles incoming neighborlist even

the node is already in the finished

state. If required it sends a neigh-

borlist back.

finished finished resend Changes in the network and/or

some INT CANDIDATE neighbors

have been detected. A new round

of the PBS algorithm needs to be

started.

Table A.1: Transitions of the PBS finite state machine, taken from [5]

89

Appendix A Ns-2

A.3 Installation Guide

In order to install ns-2 with the above described PBS implementation in-

cluding the link stability criterion, use the following procedure:

1. Download the ns-allinone package from the official ns-2 homepage and

install it according the instructions.

2. Copy the zoneserver directory found on the enclosed CD-ROM in the

implementation directory into the ns-2 main directory (e.g., ns-allinone-2.29/ns-2.29).

3. In order to extend the mac layer with the SNR monitoring as described

in Section 4.3, copy the file packet.h from the implementation/common/

directory of the CD-ROM to the ns-2 main directory and the file

mac-802_11.cc from the implementation/mac/ directory to the mac/

directory.

4. Some changes in the ns source files are required to add the new agent,

especially because it uses a new packet format:

• The file tcl/lib/ns-default.tcl has to be edited, too. This is

the file where all default value for the Tcl objects are defined. In-

sert the line Agent/ZSS set weight_ 0 to set the default weight

for Agent/ZSS.

• The new packet has also to be added in the file tcl/lib/ns-packet.tcl

in the foreach prot{} loop with the entry “ZSS”.

• The last change is a change that has to be applied to the Makefile.

All sourcefiles have to be added after the OBJ_CC= list:

zoneserver/zss.o

zoneserver/zss_pbs.o

zoneserver/debugger.o

zoneserver/timer_pbs.o

zoneserver/timer_monitor.o

zoneserver/monitor.o

zoneserver/neighborlist.o

zoneserver/utils/fsm.o

zoneserver/utils/state.o

zoneserver/mobility_state_observation.o

90

A.3 Installation Guide Appendix A

zoneserver/mobility_prediction.o

5. Recompile ns-2 by using make clean; make depend; make.

6. After recompilation the tcl scripts can be used to run simulations with

the command ns example.tcl. The prediction can be configured as

explained in Section 4.4.

91

Appendix A Ns-2

92

Appendix B

SIRAMON

B.1 About SIRAMON

SIRAMON (Service provIsioning fRAMwork for self-Organized Networks) [6]

is a service provisioning framework with a decentralized and modular design.

SIRAMON integrates the functions required to deal with the full lifecycle

of services, such as service specification, look-up, deployment and manage-

ment. It is designed as a Middleware, thus residing between the applications

and the operating system and providing the service provisioning functions to

the applications via an API (Application Programming Interface). The ba-

sic structure of SIRAMON is depicted in Figure B.1. This figure also shows

the different modules of which SIRAMON consists. Each module represents

a different aspect of service provisioning:

Service Specification: The Service Specification module defines a univer-

sal service description language to describe the heterogeneous services

and assist applications in the useage of this language. For the service

description XML Information Sets [36] are used. Such an XML in-

foset defines an abstract data set in a tree structure and is normally

described using a well-formed XML document [37].

Service Indication: The Service Indication module of the framework en-

ables to advertise and discover services. Due to the mobile environ-

ment, the service indication is completely distributed and no central

service directory can be used.

93

Appendix B SIRAMON

Figure B.1: SIRAMON structure

Service Deployment: The Service Deployment module is responsible for

deploying a service. This requires the following actions:

• Requesting and downloading software according to the specifica-

tion

• Discovering and gathering of resources

• Mapping of the specification to resources

• Configuring and installing the downloaded software

• Activating the service in a synchronized manner along with the

other service participants

• Transferring the control to the Service Management module

Service Management: The Service Management module is responsible

for the maintenance of running services. Maintenance includes the

control of the service execution, the dynamic service adaptation to

resource and environment variations, as well as user triggered service

adjustment and the support of communication between both local and

remote services. The PBS algorithm is part of this module and handles

the distributed server selection.

Environment Observer: The Environment Observer module monitors the

network, node and user context and makes this information available

to the framework and its services. An application can query the En-

vironment Observer about certain resource characteristics. It is also

94

B.2 Testbed Appendix B

possible to register watch statements, by which the application gets

information when a resource characteristics falls below or rises above

a certain threshold.

B.2 Testbed

In order to gain experience with SIRAMON not only by simulation but also

in real world environments a testbed was installed. The mobile part of the

testbed consists of four devices, three laptops and two PDAs34. Furthermore,

in order to have more than five nodes for experimenting with, there are two

desktop PCs which are also part of the network but are not mobile. All

of the devices are running Linux as operating system and have SIRAMON

installed. For the testbed, a SIRAMON implementation based on Java

is used. The communication is done via wireless LAN 802.11b [9] (even

between the desktop PCs), though the PDAs are also Bluetooth enabled. A

snapshot of the testbed is shown in Figure B.2.

Figure B.2: SIRAMON testbed

The testbed is currently mainly used for demonstration purposes. In

34As PDAs Compaq iPAQ H3870 are used.

95

Appendix B SIRAMON

order to be able to demonstrate not only the dry working of SIRAMON and

its server selection using PBS, an ad hoc multiplayer game called Clowns was

developed using the Service Management functions of SIRAMON. Clowns

is a jump-and-run game (a screenshot of Clowns is shown in Figure B.3).

Figure B.3: Clowns screenshot

For more information about the current state of the SIRAMON project,

please visit the project website [38].

96

Bibliography

[1] Department of Information Technology and Electrical Engineering.

http://www.ee.ethz.ch/.

[2] Swiss Federal Institute of Technology Zurich. http://www.ethz.ch/.

[3] ETH Zurich. Computer Engineering and Networks Laboratory.

http://www.tik.ee.ethz.ch.

[4] GAV - Gpl Arcade Volleyball. http://sourceforge.net/projects/gav/.

[5] F. Maurer. Service management procedures supporting distributed ser-

vices in mobile ad hoc networks. Master’s thesis, ETH Zurich, Com-

puter Engineering and Networks Laboratory, August 2005. MA-2005-

14.

[6] K. Farkas, L. Ruf, M. May, and B. Plattner. Real-Time Service Provi-

sioning in Spontaneous Mobile Networks. In Proceedings of the Students

Workshop of The 24th Annual Conference on Computer Communica-

tions and Networking, (IEEE INFOCOM 2005), Miami, Florida, USA,

March 2005.

[7] Information Sciences Institute ISI. The Network Simulator ns-2, Febru-

ary 2005. http://www.isi.edu/nsnam/ns/.

[8] The GNU General Public License.

http://www.gnu.org/licenses/licenses.html.

[9] IEEE-SA Standards Boards. Part11: Wireless LAN Medium Access

Control (MAC) and Physical Layer (PHY) Specifications, June 2003.

http://standards.ieee.org/getieee802/802.11.html.

97

Appendix BIBLIOGRAPHY

[10] W. Su, S. Lee, and M. Gerla. Mobility prediction and routing in ad

hoc wireless networks. International Journal of Network Management,

2000.

[11] H. S. Hassanein, H. Du, and C-H Yeh. Robust route establishment in

high mobility manets. In International Computer Engineering Confer-

ence ICENCO. Cairo, Egypt, December 2004.

[12] Guojun Wang, Lifan Zhang, and Jiannong Cao. A virtual circle-based

clustering algorithm with mobility prediction in large-scale MANETs.

In Networking and Mobile Computing, Third International Conference,

ICCNMC 2005, Zhangjiajie, China, Proceedings, August 2005.

[13] J.B. Tsui. Fundamentals of Global Positioning System Receivers: A

Software Approach. New York: John Wiley and Sons, 2000.

[14] Wikipedia. Machine learning. http://en.wikipedia.org/wiki/Machine learning.

[15] Andreas S. Weigend and Neil A. Gershenfeld. Time series prediction:

Forecasting the future and understanding the past. International Jour-

nal of Forecasting, 10(1):161–163, 1994.

[16] David W. Aha. Editorial. Artificial Intelligence Review, 11(1-5):7–10,

1997.

[17] G. Bontempi. Local Learning Techniques for Modeling, Prediction and

Control. PhD thesis, 1999.

[18] Gianluca Bontempi, Mauro Birattari, and Hugues Bersini. Local learn-

ing for iterated time series prediction. In Proc. 16th International Conf.

on Machine Learning, pages 32–38. Morgan Kaufmann, San Francisco,

CA, 1999.

[19] S.M. Riera, O. Wellnitz, and L. Wolf. A Zone-based Gaming Architec-

ture for Ad-Hoc Networks. In Proceedings of the Workshop on Network

and System Support for Games (NetGames2003), Redwood City, USA,

May 2003.

[20] E. Silva. Management of distributed services in manets. Master’s thesis,

ETH Zurich, Computer Engineering and Networks Laboratory, April

2006. MA-2006-07.

98

BIBLIOGRAPHY Appendix

[21] Z. Zaidi and B. Mark. Mobility estimation based on an autoregres-

sive model. Submitted to IEEE Transactions on Vehicular Technology,

Jan. 2004. (Pre-print) Available at URL: http://mason.gmu.edu/zzaidi.

2004.

[22] Wikipedia. Artificial neural network.

http://en.wikipedia.org/wiki/Artificial neural network.

[23] Joe Capka and Raouf Boutaba. Mobility prediction in wireless networks

using neural networks. In Management of Multimedia Networks and

Services: 7th IFIP/IEEE International Conference, MMNS 2004, San

Diego, CA, USA, Proceedings, October 2004.

[24] Amiya Bhattacharya and Sajal K. Das. Lezi-update: An information-

theoretic approach to track mobile users in PCS networks. In Mobile

Computing and Networking, pages 1–12, 1999.

[25] Greg Welch and Gary Bishop. An introduction to the Kalman filter.

Technical report, 1995.

[26] R. Jain. The Art of Computer Systems Performance Analysis. New

York: John Wiley and Sons, 1991.

[27] J. Lewis. Fast normalized cross-correlation. in vision interface., 1995.

[28] Marc Greis. Tutorial for the Network Simulator ns.

http://www.isi.edu/nsnam/ns/tutorial/index.html.

[29] Information Sciences Institute ISI. Virtual Inter-

Network Testbed (VINT) project, October 1997.

http://www.isi.edu/nsnam/vint/index.html.

[30] Eitan Altman and Tania Jiménez. Ns simulator for beginners, 2003.

http://www-sop.inria.fr/maestro/personnel/Eitan.Altman/COURS-

NS/n3.pdf.

[31] T. Camp, J. Boleng, and V. Davies. A survey of mobility models for ad

hoc network research. Wireless Communications and Mobile Comput-

ing (WCMC) - Special issue on Mobile Ad Hoc Networking: Research,

Trends and Applications, 2(5):483–502, 2002.

99

Appendix BIBLIOGRAPHY

[32] Marc Bechler Sven Jaap and Lars Wolf. Evaluation of routing proto-

cols for vehicular ad hoc networks in typical road traffic scenarios. In

Proceedings of the 11th Open European Summer School EUNICE 2005,

Colmenarejo, Spain, July 2005.

[33] Dirk Helbing Martin Treiber. Realistische mikrosimulation von

strassenverkehr mit einem einfachen modell. In 16. Symposium “Simu-

lationstechnik” ASIM 2002, Tagungsband, Rostock, 2002.

[34] K. Fall. Ns notes and documentation. The VINT Project, February

2000.

[35] Y. Shang and W. Ruml. Improved mds-based localization. In Proceed-

ings IEEE INFOCOM 2004, The 23rd Annual Joint Conference of the

IEEE Computer and Communications Societies, Hong Kong, China,

March 2004.

[36] World Wide Web Consortium (W3C). Xml information set.

http://www.w3.org/TR/xml-infoset/.

[37] World Wide Web Consortium (W3C). Extensible markup language

(xml). http://www.w3.org/XML/.

[38] Siramon: Service provisioning framework for self-organizing networks.

http://www.siramon.org.

100

