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ABSTRACT

Many problems are of the following form: Given a graph find a
network satisfying some connectivity constraints while minimizing the
degree. We describe in this document such problems.
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1. INTRODUCTION

In this section we describe what is known about different variants of
the directed minimum-degree spanning tree problem and similar prob-
lems. The two main variants of minimum degree problems are those
working on directed and on undirected graphs.

So far research for the undirected case proceeded further. In the
minimum-degree spanning tree problem we are given an undirected
graph G and have to compute a spanning tree of minimum tree among
all spanning trees. The next lemma shows that minimum-degree span-
ning tree is NP-hard

Lemma 1.1. Minimum-degree spanning tree is NP-hard

Proof. We reduce Hamilton path to minimum-degree spanning tree.
Given an undirected graph G for which we have to decide whether
there is a Hamilton path, we compute a minimum-degree spanning
tree in G. It is easy to see that GG has a Hamilton path if and only if
G has a spanning tree with maximum degree 2. O

Because of the above lemma research focused on developing approx-
imation algorithms for approximating minimum-degree spanning tree.
The first approximation algorithm developed by Fiirer and Raghavachari
in [5] achieved a ratio of log(n)(where n is the number of vertices). It
works by building a tree step by step by taking the union of low-degree
graphs. In a second paper Fiirer and Raghavachari improved upon
their first algorithm and presented an additive plus 1 algorithm for the
undirected case (|6]). Since minimum-degree spanning tree is NP-hard
this is the best ratio we can hope to achieve.

We can generalize minimum-degree spanning tree by allowing some
vertices must not be covered. This corresponds to the minimum-degree
steiner tree. We are given a set of terminals 7' C V(G) and we have to
compute a spanning tree covering all terminals with minimum degree
among all such trees. The first approximation algorithm for this prob-
lem appeared in [1] , it achieved a ratio of log(|T'|) using network flows.
Later Fiirer and Raghavachari could generalize their +1 approxima-
tion algorithm for minimum-degree spanning tree to minimum-degree
steiner tree (|4]). Recently, Klein presented a method for approximat-
ing the minimum-degree problem for all connectivity constraints which
can be modelled by proper functions ([9]). Proper functions, made
popular by Goemans and Williamson in ([8]), define for each cut how
many edges cross that cut. Note that the minimum-degree spanning
and steiner tee problem can be modelled as proper functions. Their
algorithm achieves a ratio of cOpt + log,n where n is the number of
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vertices and Opt is the degree of the degree minimal tree satisfying the
connectivity constraints. Consider the following variant of minimum-
degree spanning tree: We are given an undirected graph and a degree
bound and have to find a spanning tree violating the degree bound not
too much and with as little weight as possible. The first algorithm
developed in [14] computes a tree of degree at most O(dlog(n/d) and
weight at most O(log(n)) times the weight of the lightest tree respect-
ing the degree bound d. Kénemann and Ravi (|10]) improve this by
describing an algorithm which finds a tree of degree O(d+log(n)) whose
cost is at most O(1) times the cost of an optimal tree of degree at most
d.

For the directed case much less is known. The best algorithm cur-
rently known achieves a ratio of cOpt + log(n) in pseudo-polynomial
time ([11]).

A further variant of minimum-degree spanning tree arises when each
edge covers not only one point, but a whole set of points. The goal
is to minimize the maximum degree (where the degree of a point is
the number of times it is contained in a tree edge). There are several
directions in which research proceeded:

e Restricting the points to be in a euclidean space
e Discarding all connectivity constraints

If we restrict the points to be in the 2D-euclidean space and adapt
the meaning of an edge we arrive at the model considered in [7] and
describe later. Another minimum degree problem is the one introduced
in [15]. The points are located on a line and we have to set the ranges
the points such that the resulting graph is connected. The resulting
graph contains an edge (u,v) if and only if u reaches v and u reaches
v. A point reaches a point if its range is greater than the distance to
that point. The degree (or interference as called in the paper) is the
maximum number of times a point is covered by the edges of a range
assignment. The goal is to compute a range assignment t minimizing
the interference. The approximation algorithm in [15] achieves a ratio
of /n if every node can connect with every other node.

If we discard the connectivity constraints the problem is equivalent
to the minimum membership problem. In this problem we are given
a collection of sets and we have to find a subset of edges £’ covering
every point with minimum maximum degree. The problem allows a
(14 €)log(n) approximation which is nearly optimal( [12]).

The remaining parts of this document are organized as follows: In
section two we introduce some facts about complexity and inapprox-
imability, in section three we present an approximation algorithm for



INTERFERENCE IN MULTI-HOP RADIO NETWORKS 4

minimum degree directed spanning tree. In section three we show that
it is hard to approximate minimum degree steiner tree better than
(1—¢)In(n). In section four we describe a +1 approximation algorithm
for minimum degree spanning tree. In the last section we describe an
algorithm for a geometric variant of minimum degree spanning tree.

2. BASICS

In this section we summarize some basics such as definition of ap-
proximation algorithms, run times and inapproximability.

Since it seems unlikely that NP=P there are lots of interesting prob-
lems which do not have efficient algorithms (where efficient means algo-
rithms with polynomial run time in the input size). Thus the concept
of approximation algorithms was developed. A p-approximation algo-
rithm for a minimization problem computes a solution which is at most
p times greater. Additionally an approximation algorithm should run
in polynomial time. Most approximation algorithms for minimization
fits into this scheme. Sometimes we consider additive approximation
algorithms. We say an approximation algorithm is a +p algorithm if
for every problem instance A < Opt + p. The runtime should be again
polynomial in the input size.

In many cases we allow slightly worse runtimes instead of polyno-
mial time runtime we often consider so-called quasi polynomial runtime
O(n'°8™)) where n denotes the size if the input. This runtime is justi-
fied by the an assumption which says the the class problems solved by
algorithms with quasi polynomial run time is not equal to NP.

An important concept is inapproximability or hardness of approxi-
mation. It is used to show what approximation ratio can be achieved
at best. In the simplest case one shows that it is NP-hard to com-
pute a p-approximation for a given problem. More modern approaches
introduced gap producing reductions.

Definition 2.1. ([2]) Let P, and P, be two minimization problems.
A gap-preserving reduction from P; to P, with parameters (¢, p) and
(c,p') is a polynomial-time algorithm f. For each instance I of P
algorithm f produces an instance I’ = f(I) of P,. The optima of [
and I, say OPT(I) and OPT(I') respectively, satisfy the following
property

OPT(I) < c = OPT(I') < ¢

OPT(I)> £ = OPT(I') > &

If P, cannot be approximated better than p then the above reduction
implies that P, cannot be approximated better than p'.
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3. DIRECTED MINIMUM DEGREE SPANNING TREE

In this section we describe an approximation algorithm for the di-
rected minimum degree spanning tree problem (DMDST).

This algorithm is described in [11]. The directed minimum spanning
tree problem is to compute a directed spanning tree with minimum
maximum in-degree with a fixed root ¢. For example consider the
following graph G:

ao/Ab

C

A directed minimum spanning in G is the following tree:

t
®

a®@<—@b

C

First some notation. Let V' be the vertex set of the input graph.
Let E be the edge set of the input graph. r denotes the root vertex.
The degree of a point v in a spanning tree 7" = (V, E’) is denoted by
degr(u) = |(k,u) : (k,u) € E'|. deg(T) = max,ecy degr(u) is the maxi-
mum degree of a point in 7. A directed spanning tree (or branching) is
atuple (T',r),T = (V, E(T)),r € V such that each point has a directed
path to r. Given a directed graph G the directed minimum spanning
tree problem is to compute a directed spanning tree (7, r) with mini-
mum deg(T"). It can be shown that in a minimum degree spanning tree
T each point, except the root ¢, has a unique outgoing edge p(u). This
means for each u € V' — {t} there is exactly one edge (u, k) € E(T).

Lemma 3.1. p(u) is unique in each spanning tree T and each vertex
u.

Proof. (Adapted from [16])
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Consider a vertex v. We iteratively add edges from E(T') to grow
a tree with unique p(u). Let S; be the set of vertices reached when i
edges have been added; initialize Sy = {v}. There is always an edge
in T entering S;. We add one such edges to the new tree and add its
head to S;;1. This repeats until we have reached all vertices. Since a
vertex is never reached twice p(u) is unique for each vertex. U

We say w is the ancestor of u if it can be reached by a directed path
starting at u. We say w is a descendent of u if u is the ancestor of
w. Two vertices u,v are unrelated if either of them is the ancestor of
the second vertex. Otherwise we say u and v are unrelated. For two
unrelated vertices v and v the least common ancestor w is the vertex
with minimal distance in hop-metric from u which is both the ancestor
of uw and v. Let C, be the set of vertices contained in the subtree rooted
at v.

Minimum degree problems have an objective function which is non-
local. This means we can insert edges to an existing solution or change
some subtrees without changing the value of the objective function.
This makes lower bounding of the optimum difficult for this kind of
problems. Most algorithms for minimum degree problems use the con-
cept of witness sets W and blocking sets B. The basic idea is to choose
W and B such that satisfying the connectivity constraints for a ver-
tex in W implies there is a unique edge entering a vertex in B. Then
the average degree of a vertex in B is a lower bound for the minimum
degree. Let 7™ be an directed minimum-degree spanning tree.

First we show how to lower bound the minimum degree Opt for a
given directed graph G.

Lemma 3.2. ([11]) Let G = (V, E) be a directed graph and r € V.
Suppose there are subset of vertices W C V and B C V that satisfy the
following properties:

1. Any path from a vertex v € W to r must have an incoming edge
into a verter in B,

2. For any two vertices v,w € W, any path from v to r can intersect
a path from w to r only after it passes through a verter in B. In other
words, G has no branching wherein the path from v to the least common
ancestor of v and w does not contain a verter of B.

Then the degree of a directed minimum degree spanning tree rooted
at r of G satisfies, Opt > [|W|/|B]].

Proof. Let T* be an optimal branching rooted at r for the DMDST
problem. Since it is a branching, it contains a path from any vertex to
the root. By Condition 1 of the lemma, a path from a vertex v € W to
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FIGURE 3.1. How to lower bound the optimal degree

r contains at least one edge into a vertex in B. Let f, # v be the closest
ancestor of v such that f, € B. Let P, be the path from v to f,. By
condition 2 of the lemma, the paths {P, : v € W —{r}} are all internally
disjoint. Therefore we have identified |IW| paths in 7%, and each of these
paths has an incoming edge to some vertex in B. Therefore the average
degree of a vertex in B is at least |W| /|B|, implying that there is at
O

least one vertex in 7™ whose degree is [|W|/|B|| or more.

The idea of the algorithm is to apply local improvement steps. We
start with an arbitrary tree 7" in GG. Let d be the current maximum
Then we check for each edge entering a high-degree vertex

degree.
whether an alternative path to the root is possible, i.e one without
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going through a vertex with degree d — 1 or more. If there is such a
path we connect v via this path with remaining tree.

(1) Delete (v,p) from G.

(2) Let d be the degree of p. For each vertex u € V whose in-degree
in T is greater than d — 1, delete from G edges going into u that
are not in 7.

(3) Run Breadth-first search from v, and test if the root r is reach-
able from v.

(4) If there is no path from v to r, return False after restoring all
edges of G.

(5) Otherwise, BFS finds a path P from v to r. Let w be the
first vertex on the path with the property that (w,z) € P and
w € C, and = ¢ C,.

(6) For each edge (a,b) in the subpath of P from v to z, replace
the edge from (a,p(a)) in T by (a,b).

(7) Restore all edges of G' and return True.

The improvement procedure is applied to all vertices with degree within
log,.n within the current degree of 7. When no improvement is possible
the algorithm terminates.

(1) Find a branching T of G rooted at r. Let its degree be k. Fix
some constant ¢ > 1.

(2) For each edge (v, p) € T, run Improvement(7, v, p) if the degree
of p in T is more than k& — log,(n). If the degree of T has
changed, reset k to be its new degree.

(3) Repeat the above step until Improvement (7, v, p) returns false
for every edge (v,p) € T for which it is called.

(4) Return 7'

The runtime of the algorithm is derived via the potential function
method. The potential of a vertex of degree d is defined to be n.
Summing over all vertices we obtain for the total potential at most
nn* = n**! where k is the current degree. Next we observe the ef-
fect of an improvement step on the potential. The vertex to which we
apply the improvement has degree at least d > k — log.n. After the
improvement it has degree d—1 and the degree of all other vertices may
increase to d — 1. Therefore the reduction in potential is at least n? 2.
Since k > k — log,n the new potential is a fraction of n=1°%"=3 of the
old potential. After at most n'°%<"*+3 steps the potential is one which
implies termination of the algorithm. Each step can be implemented
in time O(n?).

Next they show how to find a witness a set 11" and a suitable blocking
set B.
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Lemma 3.3. ([11])Let T be a branching whose degree d or more. Let
Sy be the set of vertices whose degree is d or more. There are at least
(d—1)|Sa| + 1 unrelated vertices such that the parent of each of these
vertices s in Sy.

Proof. The proof is by induction on the cardinality of Sy. If |Sy| =
1, then the single vertex in that set has at least d children, and the
children of this vertex satisfy the lemma. If |S,;| > 1, remove a node
v € S; and all its descendants from 7" such that v has no descendents
in Sy (except itself). Now the resulting branching has |S;| — 1 nodes
of degree d or more, and by the induction hypothesis, has at least
(d—1)(]S4] — 1) + 1 unrelated nodes that are children of S,;. Since all
these nodes are unrelated to each other, at most one of these nodes
is an ancestor of v. Therefore there are (d — 1)(|S4] — 1) nodes left
that are not ancestors of v. Now we add the children of v to this set,
the set increases by at least d and the number of nodes that we get is

(d—1)(|Sqg| = 1) +d=(d—1)|Sq| +1 O

Next we show how to interrelate the branching output by the algo-
rithm with a witness and blocking set.

Lemma 3.4. ([11])Let T be the branching output by our algorithm. Let
its degree be k. Then for any k —log.n < d < k.

Opt 2 Sz
Proof. Let W be the set of vertices as in lemma 3.3 that are children
of nodes in Sy, but have no descendents in S;. We know that |W| >
(d—1)]S4| + 1. Let B be Sy_1, the set of all vertices whose degree is
at least d — 1. For each vertex v € W, the algorithm tries to find an
improvement that decreases the degree of p = p(v). Since it failed (the
condition under which the algorithm stops), any path from v to r that
doesn’t use (v, p) must go through a vertex x in S;_;. By construction,
the internal vertices of the path from v to x is entirely contained in C,,
the descendents of v in 7'. Since all vertices of I/ are unrelated to each
other, these subtrees are disjoint. Therefore, the set W and B that we
have defined satisfy the conditions given in the statement of Lemma
3.2 . Therefore

Opt > [|[W|/|BI] > d=lisds, 0
Theorem 3.5. ([11|)The degree of the branching returned by our al-
gorithm is at most cOpt + log,.n, where ¢ > 1 is the constant in step
1.
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Proof. Lemma 3.4 establishes a set of lower bounds on Opt for log.n
different values of d. At least for one of these values of d, |S4_1| < ¢|S4].
Using this value of d, we get & < cOpt + log.n . U

This concludes the proof of the approximation ratio.
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4. HARDNESS OF DIRECTED MINIMUM DEGREE STEINER TREE

The directed minimum degree steiner tree problem is a generalization
of the directed minimum degree spanning tree problem. A directed
minimum degree steiner tree (DMST) instance consists of a directed
graph G = (V, E) and a set T C V. T are the terminals. We have
to compute a tree 1" such that each terminal is contained in 7. T
should have minimum maximum in-degree. If 7' = V' then we obtain
the directed minimum degree spanning tree problem.

Currently, no non-trivial approximation algorithm for DMST is known.
The search for an approximation algorithm is motivated by the fact that
there is +1 approximation algorithm for the undirected variant. A nat-
ural way to start the investigation of DMST is to consider the directed
minimum degree steiner tree algorithm. Interestingly, this algorithm
while achieving a good ratio for the spanning tree problem totally fails
for the DMST problem. In the next subsection we sketch an example
in [11] for which the algorithm from the previous section finds a steiner

tree with degree n/2 while the minimum degree steiner tree has degree
2.

4.1. Bad example. The example graph H has k£ terminals cy, ..., k.
For each ¢; there is an edge (¢;, p) and an edge (c;, s;). s1 is connected
with p and s;,7 > 1 is connected with s; ;. The figure shows the
example for £ = 3. Solid edges denote edges in the current tree while
dashed edges are not in the tree:

Cq C, €3

We assume the current steiner tree connects every c¢; with p. The
degree is then k. The important point is that the degree of p cannot
be decreased via improvements. The optimal solution connects each ¢;
with the corresponding s;, the resulting maximum degree is 2.

4.2. log(n) hardness for directed minimum degree steiner tree.
As a start we show a simple reduction from minimum dominating set
to directed minimum degree steiner tree. The well known minimum
dominating set problem is defined as follows:

Definition 4.1. Instance:Undirected graph G = (V, E).
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Solution:A dominating set for S, i.e a subset V' C V such for every
vertex u € V either v € V' or a neighbor of u is contained in V.
Measure:Cardinality of V.

Next we show how to transform a minimum dominating set instance
G = (V, E) to a minimum degree steiner tree (H,r,T) instance. Each
vertex v in S is transformed to a terminal 7, in G. Each vertex v is
transformed to a non terminal v in G. For each non terminal v we
insert a binary tree B, of height log(n) (see Figure below , the boxes
denote the binary trees). Thus B, contains n vertices where n is the
number of vertices in G. Let B, ,, be the vertex of B, associated with
u € V. Each T; has a directed edge (T}, B, ) to all non terminals u
with s = B or B is a neighbor of s. Finally, all non terminals have a
directed edge to the root r.

Next we calculate the gap of this reduction.Let Optp be the size of
the minimum dominating set and Opt the degree of the corresponding
directed minimum steiner tree instance:

| /.r |
<

Lemma 4.2. Optp < a implies Opt < a

Proof. Given the minimum dominating set we connect all non terminals
with r which are contained in the minimum dominating set. Since the
minimum set cover is a dominating set, all vertex terminals can be
connected to a non terminal respectively with the corresponding tree.
The degree of all vertices except the root is at most 3. The root has
degree a which is equivalent to the number of nodes connected to the
root. U

Lemma 4.3. Optp > In(n)a implies Opt > In(n)a

Proof. We show how to extract a minimum dominating set of size less
than In(n)a given that the degree of the corresponding directed mini-
mum steiner tree instance is less than In(n)a. Let V’ be the collection
of non terminals connected with . We claim that C” is a dominating
set. This follows from the observation that each terminal element has
a directed path to the root otherwise it would not be a valid directed
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steiner tree. Since a terminals 7, can reach the the root only by en-
tering a tree B, with v = u or v € N(u)(the set of nighbors of u), it
follows that V' is a valid dominating set which implies Opt > In(n)a
since otherwise the minimum dominating set would have cardinality at
most In(n)a. O

Combining the two lemmas we obtain a gap of (1 — €)In(n) and
noteing that minimum dominating set has the same hardness of ap-
proximating as minimum set cover([3]) this shows a gap of (1 —¢) In(n)
and proves the following theorem

Theorem 4.4. Minimum degree steiner cannot be appprorimated better
than (1 — €)In(n) unless it holds NP € DTIM E(n'°sce(m)),
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FIGURE 5.1. An improvement

5. +1 ALGORITHM FOR MINIMUM DEGREE SPANNING TREE

The algorithm described in this section is an iterative local improve-
ment algorithm. Minimum degree spanning tree problem is in two
respects a peculiar problem. First the function to optimize has a local
behaviour, i.e the degree of a non-maximal vertex may increase with-
out changing the value of the objective function. This is in contrast
to problems seemingly similar problems like minimum spanning tree
where every change of an edge has influence on the sum of the weights.
Connected with this peculiarity arises a difficulty, namely the question
how to lower bound the optimal degree, as we see later there is a lemma
for this which does the job.

As noted earlier the algorithm is based on local improvements. This
means we start with an arbitrary spanning tree and apply an improve-
ment until some termination condition is satisfied.

An improvement is an introduction of an edge not in the current
tree:

Definition 5.1. Let (u,v) be an edge which is not in 7. Let C' be the
unique cycle generated when (u,v)is added to 7. Suppose there is a
vertex w of degree k in C' while the degrees of vertices v and v are at
most £ — 2. An improvement to 7' is the modification of T" by adding
the edge (u,v) to T and deleting one of the edges incident to w. In
such an improvement, we say that w benefits from(u, v).

In the tree shown in figure 5.1 the adding of the edge (u,v) and the
deletion of the edge (w,v) is an improvement. By this operation the
degree of w decreases by one. If w has maximal degree the number of
vertices with maximal degree decreases by one.

To lower bound the optimal degree, we show that if the current tree
T has a special structure then the optimal degree is only slightly smaller
than the current maximal degree:
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FIGURE 5.2. Hlustration for proof of lemma 5.2

Lemma 5.2. ([6]) Let T be a spanning tree of degree k of a graph G.
Let Opt be the degree of a minimum degree spanning tree. Let S be
the set of vertices of degree k. Let B be arbitrary subset of vertices of
degree k — 1. Let S U B be removed from the graph, breaking the tree
T into a forest F'. Suppose G satisfies the condition that, there are no
edges between different trees in F'. Then k < Opt + 1.

Proof. As there are no edges in GG connecting the different subtrees of
F, the only way we can make a spanning tree is by connecting these
clusters through vertices in .S and B. By a simple counting argument, it
is easy to show that F' contains at least |S| k+|B| (k—1)—2(]S|+|B|—1)
subtrees. Therefore in any spanning tree of GG, the average degree of
vertices in SU B is at least k —1— (|B| —1)/(|S|+|B|)- A vertex with
maximal degree has at least average degree and hence every spanning
tree has at least one vertex of degree at least £ —1 in S U B. Therefore
Opt >k —1. O

The algorithm basically just applies improvements to vertices of max-
imal degree until no improvement is possible. This approach has a se-
vere problem if a new edge (u,v) is introduced which is incident with
a k — 1 vertex, i.e u or v have degree k — 1, then we may decease the
degree of a vertex w to k — 1 but introduce a new vertex of degree k.
So in this case there is no progress possible. The following notation is
used:

Definition 5.3. Let 7" be a spanning tree of degree k. Let p(u) denote
the degree of a vertex v € T. Let (u,v) ¢ T be an edge in G. Suppose
w is a vertex of degree k in the cycle generated by adding (u,v) to T.
If p(u) > k — 1, we say that u blocks w from (u,v).

So if we want progress in this case we have to deblock all vertices
blocking the improvement, i.e we have to decrease the degrees of those
vertices.
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FIGURE 5.3. Improvement sequence

Let S; be the set of vertices of degree i. The algorithm proceeds in
phases. In each phase we remove all vertices in Sy_1 and Si. This splits
T into trees. The removed vertices are marked as bad, while all other
vertices are marked as good. A component consisting of good vertices
is called a good component. Now we look at the edges between good
components if there are no such edges we stop. In this case lemma 5.2
applies and the current degree is at most Opt + 1. Otherwise there
is an edge (u,v) connecting two good components, we apply the im-
provement and merge all components having at least vertex in the cycle
generated by the improvement to a single good component. If a bad
vertex is contained in the cycle we mark it good. Now we distinguish
two cases: If we marked a vertex of degree k good then we apply all
improvements. If the bad vertex is of degree & — 1 we repeat. The
following summarizes the algorithm:

(1) Find a spanning tree 7" of G

(2) Mark vertices of degree k and k — 1 as bad. Remove these
vertices from 7' generating a forest. Mark all other vertices as
good. Let F' be the set of connected components in the forest.

(3) While there is an edge (u,v) connecting two different compo-
nents of F' and all vertices of degree k are marked bad do

(4) Find the bad vertices in the cycle C' generated by T" together
with (u,v) and mark them as good.

(5) Update F' by combining the components along the cycle C' and
these newly marked vertices into a single component. Note that
more than two components of /' may be combined into one in
this step.

(6) If there is a vertex of degree k marked good find a sequence
of improvements which propagate to w a d update 7' (and if
necessary k) and go back to step 2.

(7) Output the final tree T, its degree k and the witness set W
consisting of the vertices still marked bad.
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In the example above the first improvement marks v as good. Since
u is marked as good the improvement (u, v) is possible. Given a vertex
w marked of degree k marked good the following procedure finds a
sequence of improvements propagating to w:

(1) Apply the improvement (u,v) which marked w as good.

(2) If u or v are of degree k — 1 apply the improvements which
marked them good.

(3) Repeat Step 2 until we insert an improvement which is not
incident to a vertex of degree k£ — 1.

The above algorithm can be viewed as some kind of lazy evaluation
since we mark many vertices as good whose corresponding improvement,
we never apply.

Next we analyse the algorithm. First we show that whenever we
mark a bad vertex of degree k — 1 as good the above procedure indeed
finds a sequence of improvements propagating to it. We say a vertex
is marked good at iteration ¢ if its is marked good in this iteration. A
vertex whose degree in 7" is less than k£ — 1 is initially good. Let F; be
the subgraph of 7' containing all vertices marked good at iteration .
Note that F; C F;,; since a good vertex is never marked bad.

Lemma 5.4. ([6]) Suppose that a vertex w is marked good in iteration
i, when edge (u,v) is added. in step 4. Then w can be made nonblocking
by applying improvements to the components of F; containing u and v.

Proof. The proof proceeds by induction on ¢. If w was marked good at
iteration 0, it has degree less than £—1 in 7', and is therefore nonblock-
ing by definition. Otherwise w belongs to the cycle C' found in step 4
at the ¢ iteration. The cycle C is the simple cycle in T'U{(u, v)} where
(u,v) is an edge between two good components X, and X, of F;_;.
Since u was marked good at an iteration j < ¢ — 1, by the induction
hypothesis u can be made nonblocking by applying improvements to
the component of F); containing u, a component itself contained in X,.
Similarly, v can be made nonblocking by applying the improvements
to X,. Since X, and X, are disjoint, there is no interference between
them. A final improvement involving the edge (u,v) suffices to reduce
the degree of w, rendering it nonblocking. U

The next lemma relates k£ with optimal degree after termination.
Lemma 5.5. When the algorithm stops, k < Opt + 1.

Proof. Let S be Si and B be the set of vertices of degree k — 1 still
marked bad. Note that the algorithm only stops when there are no
edges between good components. Hence the tree T along with these
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sets S and B satisfies the conditions of Lemma 5.2 and we get the
desired results. O

Theorem 5.6. (|6]) The above algorithm is a +1 approzimation algo-
rithm for the minimum degree spanning tree problem.

Proof. The sum of degrees of the vertices of a tree is exactly 2n — 2.
Hence the number of vertices of degree k in a tree on n vertices is
O(n/k). Since the size of S decreases by one in each phase. There
are O(n/k) when the maximal degree is k. Summing up the harmonic
series corresponding to different values of k, we conclude that there are
O(nlog(n)) phases. In each phase we try to find improvements which
propagate to a vertex of Sy. Lemma 5.4 makes sure than whenever
a vertex of degree k is marked as good, its degree can be decreased
by one. Lemma 5.5 shows that after termination the degree is at most
Opt+1. Each phase of the algorithm can be implemented in polynomial
time. U

6. MINIMUM INTEREFERENCE SINK TREE

In this section we describe an algorithm for minimum interference
sink tree in |7]. First we introduce some notation for minimum inter-
ference sink tree. 2D-max-interference operates on a set of points ' in
the 2D euclidean space. Therefore there is a distance function d(u,v)
defined for each pair of points v and v. Each u € V has a directed
edge (u,v) if and only if d(u,v) < 1. The edge set consists of all such
directed edges. The output of 2D-max-interference is a special tree:

Definition 6.1. Given a set of nodes V and a sink s, a sink tree is a
tree spanning V' with all arcs pointing towards s.

Given a set of edges the interference of a point is the number of times
the point is covered by the edges:

Definition 6.2. The interference value of a single point v is defined as
I(v)=|u|u+#vAve€ D(u,r,)| where D(u,r,) stands for the trans-
mission circle with point « in its center and radius r,.

The interference of an edge set is the maximum interference over all
points:

Definition 6.3. The interference of a graph G(V, F) is defined as
I(G) = mazyevI(v).

2D-maximum-interference is defined as follows:
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FIGURE 6.1. Number of non-intersecting circles covering
a point

Definition 6.4. The minimum interference sink tree problem is defined
as the problem of finding a sink tree for a given point set with minimal
interference.

Before we describe an algorithm, we compare minimum interference
sink tree problem with directed minimum degree spanning tree. The
main difference is that an edge in MIST may cover multiple points. In
MDST every edge contributes to the in-degree of at least one point.

The inherent geometry of the problem makes it possible to achieve
good approximation ratios. The following lemma based on a geometric
observation is used in the proof of the approximation ratio:

Lemma 6.5. (|13]|)Let C be a circle of radius v and let S be a set of
circles of radius r such that every circle in S intersects C' and no two
circles in S intersect each other. Then, |S| < 5.

Proof. Suppose |S| > 6. Let s;,1 < i < 6, denote the centers of any
six circles in S. Let ¢ denote the center of C'. Denote the ray cs; by
ri(1 <1 < 6). Since there are six ray emanating from ¢, there must at
least one pair of rays r; and 7 such that the angle between them is at
most 60 degrees. Now, it can be verified that the distance between s;
and sj is at most 2r, which implies that circles centered at s; and s,
intersect, contradicting our assumption. Thus |S| < 5. O
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Next we present the algorithm called nearest component connector.
As the name says it is an iterative algorithm connecting in every step
the nearest components. Initially, every point forms a component.
Each component is a MIST, i.e every component has a special node
to which every other point in the same component has a directed path
to. This point is called local sink. In every round every local sink
connects to the nearest point not in the same component. Because
of bounded transmission range of a local sink it may happen that we
choose a new local sink in the component and connect the old local
sink to the new one. The listing belows show the complete algorithm:

(1) G:=(V,E:=0)

(2) lsinks =V

(3) while |lsinks| > 1 do

(4) for all s € lsinks do

(5) E' =10

(6) C':=component containing s

(7) if s cannot reach any node outside C' then

(8) s" :=nearest node to s(hop metric) capable of reaching a node
outside C'
movesink(G, s, s")

)

)

) end if
) E' := E U{e}, where e is the arc from s to its nearest neigh-
bor(Euclidean distance) outside C'

end for

if G’ := (V, E U E') contains cycle then

remove one of the arcs in each cycle from E’

end if

end while
s :=only remaining sink in [sinks
if s # s, then
movesink(G, s, sy)
3) end if

The algorithm to shift the local sink within a component goes as follows:

(1) sp :=shortest path from s; to s, according to the hop metric

(2) remove all arcs originating at nodes on sp (including s9) from
E

(3) add arcs on sp to F
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Next we prove that the interference of the MIST constructed is at
most 12log(n). We show that there are at most log(n) rounds and the
interference for every point in each round is at most 12.

Lemma 6.6. (Adapted from|7|) The number of rounds is at most log(n)

Proof. We observe that in every round every local sinks establishes
an arc to a point outside its component . This arc is deleted if and
only if the local sink of the target component establishes an arc to the
source component. In this case we have a cycle and one arc is removed.
This implies that at least half of the local sinks established survive
the deletion process and every such arc reduces the number of local
sinks(and components) by half. It follows that after at most log(n)
steps only one component remains which is our termination condition.

O

The proof of constant increase of interference per node is heavily
based on the geometric lemma presented earlier.

Lemma 6.7. (Adapted from|7|) In each round the interference of every
node s increased by at most twelve

Proof. We note that in every round there are two possible sources of
interference increase:

1 The shifting of a local sink within a component

2 The merging of components

By the first operation only points in the same component are affected
otherwise the move of the local sink would not be done and each point
in that component is covered at most 6 times by arcs in the shortest
path otherwise we could introduce a shortcut. For the second operation
the key point is that only arcs to nearest neighbors of the local sinks
are established. It follows that the set of such arcs covering a point
u have no pairwise intersection. Otherwise a local sink could connect
to the local sink nearer than u, the lemma 6.5 guarantees that then at
most 6 arcs cover any given point. U

It remains to prove that nearest component connector algorithm runs
in polynomial time. To see this note that each round can be imple-
mented in polynomial time since there is a only a logarithmic number
of rounds: Finding the nearest neighbor of a local sinks can be done
by sorting the points according to their distance to that local sink.
Moving the sinks can be done in polynomial time by shortest path
computations.
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