m Institut fur
' . Technische Informatik und
Eidgendssische Technische Hochschule Ziirich Kommunikationsnetze
Swiss Federal Institute of Technology Zurich

BluelLocation II - A Localization

Infrastructure for Bluetooth
Enabled Mobile Devices

Semester Thesis (WS 05/06)
SA-2006-03

Oliver Keiser, Philipp Sommer

January 9, 2006

Advisors: Vincent Lenders, Bernhard Tellenbach
Supervisors: Dr. Martin May, Prof. Dr. Bernhard
Plattner

Abstract

This thesis describes the design and implementation of a system to localize
the position of a mobile user with a Bluetooth enabled device in an indoor
environment. Positioned nodes with a Bluetooth radio periodically scan their
environment for other devices and transfer this information to a central database
unit. We propose algorithms to estimate the users position and compare them
in terms of accuracy. Additionally, we propose a design and implement a Java
application running on mobile devices to interact with the BlueLocation system.
This application offers the possibility to obtain information about other users
within proximity and get their current position.

Diese Semesterarbeit beschreibt das Design und die Implementierung eines Sys-
tems, dass den gegenwartigen Aufenthaltsort eines mobilen Benutzers mit einem
Bluetooth-fahigen Gerat feststellen und anzeigen kann. Fix installierte Knoten
mit einem Bluetoothadapter scannen periodisch ihre Umgebung nach anderen
Bluetoothgeraten und tibermitteln diese Informationen an eine zentrale Daten-
bank. Wir entwerfen Algorithmen um den Aufenthaltsort eines Benutzers zu
bestimmen und vergleichen diese auf Genauigkeit. Zuséatzlich entwerfen und
implementieren wir eine Java-Anwendung, die auf mobilen Gerdten lauft und
mit dem BlueLocation System interagiert. Diese Anwendung erlaubt einem Be-
nutzer nach anderen Bluel.ocation Benutzern zu suchen und ihren Aufenthalts-
ort abzufragen.

Contents

1 Introduction 6
1.1 Motivation 6
1.2 Summary 6
2 Related Work 8
2.1 Atlantis: Location Based Services with Bluetooth 8
2.2 Positioning with Bluetooth 8
2.3 JSRITY . . . e 8
3 Design 9
3.1 The BlueLocation System Architecture 9
3.2 FixedNodes. 9
3.3 Central Unit 10
3.4 Phone Application 12
3.5 Localization Algorithms 19
4 Implementation 26
4.1 BlueFrameworko oL 26
4.2 Third Party Contributions 28
4.3 Phone Application o o 29
4.4 Fixed Node Application 34
4.5 Fixed Node Emulator 35
46 Central Unit 36
4.7 Protocols 40
5 Evaluation 45
5.1 Evaluation of the Bluetooth Inquiry Process 45
5.2 Measurements with Mobile Phones and the Deployed Infrastructure 46
5.3 Fixed Node Limitations 52
5.4 Mobile Device Limitations 53
6 Outlook and Conclusion 54
6.1 Further Extensions to the BlueLocation System 54
6.2 Conclusion 55
A Task Description 59
B Project Timeline 63

CONTENTS

C

Measurement Results

C.1 Detections of Fixed Nodes by other Fixed nodes
C.2 Algorithm Results for the Measurement Positions

Deliverables
D1 CD-ROM

Installation Guide

E.1 Installation of a Fixed Node . .
E.2 Installation of the Central Unit
E.3 Installation of the mobile device
E.4 Installation of the Web Interface

Used Software Tools

Used Mobile Devices

application

64
65
69

85
85

86
86
87
88
88

90

92

Chapter 1

Introduction

1.1 Motivation

Most modern mobile phones feature Bluetooth for short range communication.
If Bluetooth is enabled on a phone, it can be used to establish a connection with
another device, e.g. for downloading an MP3 file to the phone or uploading the
latest pictures to a PC. Besides, the phone can also be detected and identi-
fied by other Bluetooth enabled devices within range limits. If we build up
an infrastructure of pre-positioned devices (fixed nodes), that are periodically
scanning their proximity for other devices, we can evaluate which fixed nodes
can recognize other mobile devices, and furthermore, can deduct their location.
For a fixed node can only detect devices in a limited range (typically < 10m)
the position of mobile devices can be pinpointed to quite a small area.

1.2 Summary

1.2.1 Previous Work

BlueLocation 1

BlueLocation I [2] was a semester thesis at TIK in SS05. The outcome of that
thesis was that the general layout for the BlueLocation system was designed and
part of the fixed node and central unit were implemented. The fixed node did a
periodical scan for Bluetooth devices and reported it to the central unit, which
stored the information in a database. A SSL encryption of the link between
the fixed nodes and the central unit and some key management tools were also
implemented.

1.2.2 Conducted Work

The present semester thesis resulted in the implementation of BlueLocation as
a working system consisting of

e Mobile Devices

e Fixed Nodes

CHAPTER 1. INTRODUCTION 7

e Central Unit

The implementation has been successfully completed and the interaction be-
tween mobile devices and fixed nodes on one hand and fixed nodes and central
unit on the other hand works stable.

The application for the mobile device was started from scratch. Although some
of the application layer protocols were applied by BlueLocation I, they had to
be completely redesigned and most of the Bluetooth protocols were newly in-
troduced during this thesis.

At first, localization algorithms had to be designed and evaluated. All of them
have been implemented successfully.

During implementation of the Bluetooth protocols and the localization algo-
rithms most of the fixed node and central unit software was adapted to our
needs and largely extended.

After the first version of the complete system was working, extensive tests were
conducted. During the course of testing, the localization algorithms were further
improved and fine tuned. On the mobile side, the need for additional features
surfaced, so that the design was extended. One by one, these features were
implemented and improved during further testing.

Finally, we added a web interface to handle administrative tasks on the database.

1.2.3 Results

The successfully implemented localization algorithms made it possible to deliver
(based on the acquired data by the fixed nodes) an estimation for the position
of a mobile device back to the requesting client. The quality of this decision
depends on the position of the device and the used algorithm. The main prob-
lem is the lack of any information about the signal strength between the device
and the fixed nodes. It could be shown empirically that algorithms with addi-
tional knowledge of properties of the environment produce the best results, but
need more time for fine tuning. Additional research in this part of the thesis
should probably lead to better results and may trigger new ideas for improved
algorithms.

Chapter 2

Related Work

2.1 Atlantis: Location Based Services with Blue-
tooth

In this thesis [5] done at the Brown University a framework for Bluetooth based
localization is developed and tested. A fixed Bluetooth sensor network is used
to connect to a device. The distance from the base station is extrapolated from
the value of the Received Signal Strength Indicator (RSSI). If data from at least
3 base stations are available a triangulation algorithm is used to determine the
expected position of the device.

2.2 Positioning with Bluetooth

This paper [6] evaluates different methods for localizing a Bluetooth enabled
device. With the direct method the client asks another Bluetooth device if it
offers a Bluetooth positioning service and tries to obtain the position from there.
With the indirect method the other Bluetooth devices act passively. The unique
Bluetooth addresses of devices in the neighborhood are used as keys to lookup
the position of the device in a database. If there are more than one positions
possible then triangulation is used.

2.3 JSR 179

The Location API for J2ME [7] addresses location based services for mobile
devices. It is possible to use several different technologies, like GPS, Cell-ID
or Bluetooth, as data sources. This API is more a toolbox to manage location
information and location based services. The implementation of the algorithms
to calculate the location from the source data is not standardized and left to be
implemented by the hardware manufacturer. There are very few mobile phones
on the market that support this API.

Chapter 3

Design

3.1 The BlueLocation System Architecture

PN
s
/ \\
{), | Bluetooth Adapter
N /
N /
_//

\
/
/
/
/

Mobile Device < » Fixed Node « » Central Unit
Bluetooth LAN/WLAN
- J2ME (CLDC) - Linux - Linux
- J2SE - J2SE
- PostgreSQL

Figure 3.1: BlueLocation system overview

3.2 Fixed Nodes

Fixed nodes form a distributed system and are positioned at different places
all over the area where the BlueLocation service is offered. They are equipped
with a Bluetooth receiver and are connected to a backbone network (Ether-
net/WLAN).

The fixed nodes are responsible for:

CHAPTER 3. DESIGN 10

Figure 3.2: D-Link DBT-120 USB Bluetooth dongle

e periodically scanning their neighborhood for other Bluetooth devices and
report them to the central unit.

e offering the BlueLocation service to the phones and forward request be-
tween the phones and the central unit.

The hardware for the fixed nodes should be as small as possible so that it could
be placed on the wall or at the ceiling of a room. Alternatively the software
should also be runnable on a standard personal computers when they are already
available at the desired location.

3.3 Central Unit

The central unit must store all information about Bluetooth devices reported
by the fixed nodes. It consists of two parts: the server software which offers
a communication channel to the fixed nodes and the database system which is
responsible for the data storage. This offers the possibility to access data not
only through the server software, but also directly from the database with other
tools. The server software has to handle requests from the phones and delivers
information about users/devices based on the stored data. To be able to locate
the current position of a user it has to use one or more localization algorithms.

3.3.1 Communication between Fixed Nodes and Central
Unit

Each fixed node reports his list of devices found during inquiry to the central

unit. For this purpose it sends data over the backbone network to the central

unit. The communication between the fixed nodes and the central unit has to
use a secured channel with authenticated communication partners.

3.3.2 Communication between Mobile Devices and Cen-
tral Unit

Because the central unit has no direct possibility to communicate with mobile
devices, all communication has to be routed over a fixed node. The central unit
must handle the following requests:

e list all users who are currently active

e check if a user is currently online

CHAPTER 3. DESIGN

find the position of a user using a localization algorithm

search the name of a user

e register a new user or change its properties

handle permissions of a user

11

CHAPTER 3. DESIGN 12

3.4 Phone Application

3.4.1 Overview

The mobile part of BlueLocation consists of a program running on a handheld
device, e.g. a mobile phone. We want to limit text input from the user to as
little as possible, instead we are using a graphical user interface (GUI), where
the user can choose actions from lists or drop-down menus. By this approach
we can reduce false input and facilitate handling by the user.

e The basic features of the mobile part consist of:

— Connecting to a fixed node

— Querying the central unit for a list of currently active users
— Locating a specific active user

Buddylist

Searching for a user (active or inactive)

— Disconnecting from a fixed node

— Log

e Optional features are:

— BlueMessage
— Options to be set by the user

— Detecting the loss of connection to a fixed node

3.4.2 Fixed Node Connection Setup

While a scan from a fixed node can find mobile phones, whether they have
BlueLocation running or not, a mobile device cannot start querying the database
before a connection to a fixed node is established. Therefore, the first thing
BlueLocation has to do after start-up is connecting to a fixed node. There are
basically two possibilities to achieve this: active and passive connection setup.
Figures 3.3 and 3.4 visualize the algorithms described in the next paragraphs.

Active Connection Setup

In the active connection mode, the mobile device will first scan its environment
for other Bluetooth devices. Then it will scan every device found for the Blue-
Location UUID, which every fixed node has published.

From the list of found fixed nodes the user can choose one, e.g. the one closest.
Optionally, BlueLocation can also automatically choose one.

Finally, a Bluetooth connection is established to the fixed node chosen before,
which has a thread waiting for connections.

CHAPTER 3. DESIGN 13

Phone FixNode

SCAN BlueL ocation UUID

established
D S

“

receive

L e

|
|
pausiignd @iNN uoiesoen|g

V=R
Pes.y) U0 1138UL0D

YN

Figure 3.3: Active connection setup

Passive Connection Setup

While in passive mode, our mobile device will not scan for other devices itself,
but publish the BlueLocation Connection Request UUID and then listen for a
fixed node to connect. Since listening for incoming connections is a blocking
task, it has to be run as a thread.

The basic task of the fixed node is to scan its environment for devices running
BlueLocation. Now another thread has to be added, which will do a service
scan for the Connection Request UUID and all devices found in the basic task.
To enhance response time this should be done in a much shorter interval than
the device scan. Since a service scan only takes a fraction of the time needed
for a device scan, timing should not be a problem.

Thus, once a fixed node has found a mobile device requesting a connection, it
will start the connection and the listening thread will accept it.

In both cases, we now have a connection from the mobile device to the fixed
node, a two way byte pipe, and are ready to exchange messages.

Comparison of the two modes

The advantage of the active mode is its autonomy. A mobile device can start a
connection setup at any time and doesn’t have to wait for the next scan by a
fixed node.

CHAPTER 3. DESIGN 14

PASSIVE
Phone FixNode
o | M 3
c Q
A - :
(@]]
8
= B e —
S C Z
2| |c =
Sl |8
° g 2
& = connect
HNE

established
“
receive

o redve

“
receive

e

Pes.y) uoIsuLod

Figure 3.4: Passive connection setup

A problem can arise, when more than one mobile device within Bluetooth radio
range starts to scan for fixed nodes at approximately the same time. Since they
are sending radio signals on the same frequencies, interferences might occur,
and therefore no device could be found. A related problem is the collision of a
mobile device’s scan with a scan from the fixed node which should be found by
the mobile device. Since the mobile device’s scan is only started once at start-
up and again if it moves out of the fixed node’s range, such collisions shouldn’t
occur too often. But even if they occur, it is likely that the user will initiate
another scan a little bit later, which then has a good chance to be successful.

CHAPTER 3. DESIGN 15

3.4.3 List of Active Users

active user list request

A\

list of active users ‘

A

Fixed Node

Figure 3.5: Requesting a list of active users

If we want to find out the location of another mobile device, we need to know its
Bluetooth address (BTID) to uniquely identify the device. Since a BTID has the
same format as a MAC address (6 byte, presented as hexadecimal numbers), it
is not easily memorizable by the users. We wanted to spare BlueLocation users
from asking other users for their BTID and so decided, that the mobile device
should first get a list of currently active users from the central unit, then one
can be selected to receive detailed information about its location.

Once a connection is established to a fixed node, the method for querying the
central unit for the list becomes available. The request is sent as a string via
the connection to the fixed node, which forwards it via Ethernet to the central
unit. The central unit then generates a list of recently discovered BlueLocation
devices and returns it to the fixed node, which then forwards it to the mobile
device. From the mobile devices point of view, the communication works as
depicted in Fig. 3.5. What is happening beyond the fixed node is not important
at this scope.

This design works as long as the number of users stays small. On a large system
with more than 10-20 active users, scrolling through the long list is inefficient.
The design has to be changed in a way, that the first letters of name can be
specified and the central unit returns a list of all users, whose name starts with
these letters.

3.4.4 Localizing

location request

A\

location information ‘

Fixed Node

Figure 3.6: Requesting location information

After we have received a current list, the user can select one of the entries and
request information about this user. A Location Request is then sent to the
fixed node and forwarded to the central unit, from which an answer will be
received, as shown in Fig. 3.6. The information received is the name of the user,
its current location and the time in minutes since he has last been seen. (fixed
nodes don’t scan continuously)

Now the user of the mobile device has the option to add located users to his
Buddylist.

CHAPTER 3. DESIGN 16

3.4.5 Buddylist

online request

online list response ‘

A

Fixed Node

Figure 3.7: Checking which buddies are online

The goal of the Buddylist is to have information about your friends saved per-
sistently on your mobile device. Once connected to a fixed node, instead of
requesting a list of active users and manually looking for friends, the Buddylist
can be called. The mobile device then checks whether the users in the Buddylist
are online, according to Fig. 3.7, and presents this information on a single screen
similar to an instant messenger.

An active user out of this list can be selected and information about its loca-
tion is then requested from the central unit. The answer includes the current
position and how long ago the user has last been seen.

As friendship don’t last forever, the possibility to remove a user from the Bud-
dylist must be available.

3.4.6 User Search

alias search

A\

-
list of matching aliases ‘

Fixed Node

Figure 3.8: Searching for users

With the above features only active users can be added to the Buddylist. To
enable the user to arrange his Buddylist without having to wait for all his
friends to be online, searching for any user who has ever been discovered by the
BlueLocation system must be possible. Similar to the design of the extended
active user list request, a textfield will be presented, where the user can enter
some letters. After receiving the answer from the central unit, all users whose
name starts with those letters will be presented in a list and can be added to
the Buddylist. (see Fig. 3.8)

A search with an empty textfield will display all users ever seen by BlueLocation.
If too many names match the search, the user will be asked to further specify
his search, until a reasonable number of results are returned.

3.4.7 Disconnecting from a Fixed Node

This command is straightforward, it closes the connection to the fixed node. The
user can call this command, if he wants to connect to another fixed node, since
only one connection with a fixed node can be active at a time. It is however not

CHAPTER 3. DESIGN 17

necessary to disconnect before closing the BlueLocation application, the closing
command takes care of this.

3.4.8 BlueMessage

‘Q BlueMessage
i
\
Phone 1 .
one Fixed Node 1
T
i Blu eMessage
0«\ e storage
Q Central Unit
& N BlueMessage
38 {

Phone 2 Fixed Node 2

Figure 3.9: Sending a BlueMessage

It is not a basic requirement for the BlueLocation system to support peer-to-
peer connections, i.e., from one mobile device to another, but nevertheless the
backbone hardware could be put to sound use that way. The functionality is
like SMS, the user can type a short text on his mobile device and send it to the
fixed node, which forwards it via the central unit to the fixed node, where the
receiver has an active connection. This fixed node will then forward the message
via Bluetooth. If the receiver was not active at the time the message was sent,
it could be stored centrally until the receiver had again an open connection to
a fixed node. Figure 3.9 sketches the involved nodes.

The advantage of BlueMessage over SMS is that it is faster and of course free
of charge.

3.4.9 Options

alias change

acknowledge

Fixed Node

Figure 3.10: Updating an alias

In the options menu, the user will be able to change settings, which will not be
asked interactively during operation.

e The alias will only be asked from the user the first time he starts Blue-
Location and is then saved persistently. A later change of the alias can
be done using the options menu, resulting in a data exchange as seen in
Fig. 3.10.

e The standard connection mode is active. If a lot of users are active simul-
taneously, changing to passive mode might produce better results. The
user can do so in the options menu.

CHAPTER 3. DESIGN 18

3.4.10 Detection of Connection Loss

ping

A\

pong ‘

Fixed Node

A

Figure 3.11: Testing the connection

Normally communication over the Bluetooth connection is stable, since it is im-
plemented as an end-to-end-bytepipe on the application layer and transmission
errors are handled on lower layers. However, the mobile device might move out
of range or the fixed node might crash, resulting in a loss of connection.

Such a loss is only detected when data is exchanged, the send or receive routine
terminates with an Exception or hangs waiting on data. Our design includes a
thread which is periodically pinging the fixed node to verify that the connection
is uninterrupted, see Fig. 3.11. Upon detection of connection loss, it informs the
user with a pop-up and sets the global state of BlueLocation to disconnected.
Now the user can either manually try to reestablish a connection with a fixed
node or the application automatically scans for other fixed nodes available and
connects to the first one found. The user should then again be notified that a
new connection exists.

CHAPTER 3. DESIGN 19

3.5 Localization Algorithms

3.5.1 Introduction

The BlueLocation infrastructure in our laboratory setup consists of multiple
standard PCs running Linux, equipped with an USB Bluetooth device. Each
fixed node performs a Bluetooth inquiry periodically. The result of this inquiry
is a list containing the Bluetooth addresses of all active Bluetooth devices in the
fixed nodes neighborhood. The acquired data are submitted over a secured TCP
connection to the central unit where the server software writes this information
into the database. This information will be used to find out the position of a
Bluetooth enabled device at a certain moment.

3.5.2 The Bluetooth Inquiry Process

During the inquiry process a Bluetooth device will try to discover other Blue-
tooth devices. The device enters the INQUIRY state and will choose 32 out of
the 79 frequencies of the Bluetooth spectrum to form a hopping sequence. This
selection depends on the local clock and the used inquiry access code. In our
case the Generic Inquiry Access Code (GIAC) is used because we are looking for
all types of discoverable devices. Inquiry packets are broadcasted periodically
over these frequencies in the hopping sequence.

A device which is discoverable will enter periodically the INQUIRY SCAN state
and listens for inquiry packets. If it detects an inquiry packet it will respond to
the inquiring device.

3.5.3 Input Data

The results of the Bluetooth inquiry do not include an estimation of the signal
strength (RSSI) or link quality between the fixed node and this device. This
information is only available if a Bluetooth connection is successfully established
with this device. It is in general not advisable to connect to each device in your
neighborhood after every inquiry because a connection setup is time and energy
consuming. This could be done if you need additional information such as the
signal strength to perform a better localization. Therefore, we can only say if
we have detected or not this device from a fixed node during Bluetooth inquiry.
The elements of the observation vector & take on only binary values.

o 1 if device can be detected by fixed node i
il = { 0 else

If we can detect a device from only one fixed node our decision is very simple.
We assume that this device is located very close to this fixed node and estimate
its location at the same position as the fixed node is.

If we can detect a mobile device from more than one fixed nodes during inquiry
we have to use a localization algorithm to decide where the user is located.

Algorithm Operation Overview

Whenever a user of the BlueLocation service wants to know the location of
another user, the phone application sends a localization request to the central

CHAPTER 3. DESIGN 20

bluetooth address fixed node A fixed node B fixed node C
00:13:46:05:A2:C7 found not found found
00:09:DD:10:46:7B not found found not found

Table 3.1: Sample data set for two bluetooth devices

unit (as described in the protocol section). The software running on the central
unit has to do the following steps before it can send back an answer to the user:

1. Find all entries for the chosen Bluetooth device and time in the database

2. Construct an observation vector from these data and pass it to the appro-
priate localization algorithm

3. Further processing of the result (if necessary)

4. Send back the result to the user

—

N |
__————————
—————

Inquiry results

1

Localization Localization Position(x,y) Mappin Name of
request algorithm Y pping 7 Position

Figure 3.12: Algorithm operation overview

A localization algorithm can be fed with input data, the observation vector, and
should return an estimation of the location of a device.

This estimate can be a name of a location such as the name of a fixed node or
it could be a position in a coordinate system. In the latter case we have to map
these coordinates to a human readable location.

3.5.4 Random Decision Algorithm

Maybe the simplest approach is to make a random decision based on the actual
observation vector.

Choose one of the fixed nodes where the corresponding entry Z[i] in the obser-
vation is 1. If we do so, we assume that the a-priori-probability of the device
location is equally likely everywhere. With this algorithm we can only assign a
device to the neighborhood of a fixed node.

The probability that we make a mistake in our estimation of a fixed node is

given by
1

Ply#ylyl=1-Plg=ylyl =1~ (3.1)

CHAPTER 3. DESIGN 21

where n denotes the number of fixed nodes which received an answer from the
device during Bluetooth inquiry.

3.5.5 Triangulation

y

Figure 3.13: Triangulation example: circles indicate the position of the fixed
nodes, a filled circle indicates that this fixed node can detect the device, the
cross indicates the position estimated by the triangulation algorithm

Because we have no information available about the signal strength of a de-
vice, we cannot estimate the distance from the fixed node to the mobile device.
Therefore, we try to localize the position of the device as the mean value of
both x and y coordinates. We only take into consideration the coordinates of
the fixed nodes which can detect the mobile device during inquiry.

1« 1«
Ltrian = ﬁ E Tk Ytriang = ﬁ E Yk
k=1 k=1

As result of the Triangulation algorithm we obtain a coordinate tuple

(Ztriang, ymang) which gives us the triangulated position. This position can be
at any location and is not necessarily located directly near a fixed node. We
have to map this position to a name of a room or location which we can return to
the user. This mapping is done using a simple look-up table (see example). The
name of the point in the map with shortest Euclidean distance to the estimated
position is returned.

i T s s S s s S s
BluelLocation - Central Unit - Map
s s g
example: x,y,"name"

35,4,"ETZ G60.1"

37,9,"ETZ G99 (coffee break)"
37,15,"ETZ GO7"

32,15,"ETZ G96"

28,15,"ETZ G95"

24,15,"ETZ G94"

21,15,"ETZ G93"

Table 3.2: File map.dat: sample of a look-up table

CHAPTER 3. DESIGN 22

3.5.6 Decision based on Data of Reference Nodes

The former two algorithms needn’t to know any information about the topology
of the environment, but obviously the signal strength of a Bluetooth device is
reduced if there is a wall or another obstacle in the line of sight.

Imagine the following situation:

Fixed Node B

Fixed Node A

Fixed Node C

Figure 3.14: Example of the Reference Node Algorithm

We have three fixed nodes A, B and C and a mobile device (phone). A line
indicates that the two devices can find each other during Bluetooth inquiry.
The mobile device can be found by every fixed node. Additionally, a fixed node
can find other fixed nodes in our infrastructure because they behave like every
other discoverable Bluetooth device. A can detect B and C, B detects A but
not C, C detects A but not B.

Fixed Node ‘ A B C
A -V V]V
B v - -
¢ Jv - -] v

Comparing the entries of the other fixed nodes with the mobile device’s entries
reveals that its properties are similar to fixed node A’s and it must therefore be
located near A.

3.5.7 Decision Based on Data of Reference Positions

A mobile device is put on a specific location and we take a look at the results
of the Bluetooth inquiry over a long enough time period. This information is
stored and can be used for further decisions. For every fixed node in the system
a value between 0 and 1 is assigned. This value corresponds to the percentage
of detection by the fixed node if the phone is positioned at the given position
(see sample data below). Given an observation vector, we can compare these
data with the reference data. We decide in favour of the reference point with
the most similar data.

CHAPTER 3. DESIGN

In this model, the specific topology of the environment is implicitly considered
in the measured data. However, it is very time consuming to make all these
reference measurements. It is necessary to take new measurements every time
changes to the infrastructure are made (add/remove fixed node).

reference data for position 2
(23,13)
G60.1"

"ETZ
"ETZ
"ETZ
"ETZ
"ETZ
"ETZ
"ETZ

G93"
Go4"
Go5"
Goe"
GOT7"
G99"

Table 3.3: File reference.dat: Reference data for position 2

1

0

1
0.95
0.
0
0

91

.38

0

I U@D
™ 94 @5 96

93
7 ® L (@ L @g

=

=

Figure 3.15: Map with reference positions

CHAPTER 3. DESIGN 24

3.5.8 Decision Based on a Wall Graph

Bluetooth devices can typically communicate with each other if they are not
more than a few meters apart. If there are walls on the line of sight between the
two devices this distance will be reduced. It is therefore a good idea to include
our knowledge about the topology of an area into a localization algorithm. We
need to build a model of the walls and obstacles in our fixed node infrastructure
and represent the topology as a weighted unidirectional graph. The nodes in
our graph represent a location or room and the weight of the edges corresponds
to the number of walls between these two positions.

Office A Office B

Office C

Figure 3.16: Map of the situation

Figure 3.17: Graph representation

From previous measurements we know that a fixed node can find another mobile
device during inquiry, if there are not more than one or two walls between them,
so we set the variable threshold to one or two, respectively. Now the problem
reduces to finding all adjacent nodes with a distance smaller or equal to the
threshold value from those fixed nodes that can detect the device. We obtain a
list of candidates for every fixed node which can detect the device. If we compare
these different lists to the list of fixed nodes which can detect the device, we can
decide for the fixed node whose list of candidates matches best.

Example of the Wall Algorithm

We look at the following situation:
e The phone is located at Office B

e The phone is detected by fixed nodes in Offices A, B and C

CHAPTER 3. DESIGN 25

e The threshold value is set to one

For every fixed node where we can detect the phone (indicated by the green
circles) we search for all adjacent fixed nodes with a distance smaller than the
threshold value one (indicated by the blue circles). These fixed nodes should also
be able to detect the device if it is positioned at the originating fixed node (green
circle). For every fixed node in the graph which has assigned a blue circle and
can detect the device we increase the counter variable of the originating fixed
node. If we have done this procedure for every fixed node where the device
is detected, we decide for the fixed node with the biggest value of the counter
variable. In this example node A and C have both a counter variable of value
one and node B has a counter variable of value two so the algorithm decides
correctly for node B.

D @O r

C C

Figure 3.18: Example of the wall algorithm

3.5.9 Decision Based on the Frequency of Detection by
Fixed Nodes

If you assume that the fixed node located in the same room as the mobile
phone will detect the phone during almost every inquiry and another fixed node
further away will detect the same phone only occasionally (because of stronger
interferences), then the algorithm decides for the fixed node with the biggest
frequency of detection. This algorithm only makes sense to use over a longer
time period (more than one inquiry, e.g. 10 inquiries). For this algorithm
looks at the history of detections, in the implementation it is called the "History
Algorithm’.

Given the sample data below this algorithm locates the phone near the fixed
node "A”.

Fixed node Detections during inquiry

A 10/10
B 8/10
C 3/10
D 0/10

Table 3.4: Number of detections during ten inquiries

Chapter 4

Implementation

4.1 BlueFramework

4.1.1 Introduction

BlueFramework [3] was a Master thesis at TIK in SS05. It is a framework based
on J2ME [17] and offers several modules often used for applications running on
Bluetooth enabled phones. It offers a straightforward approach for building the
user interface in MIDlets and for Bluetooth device discovery and communica-
tion.

The modules of this framework are actually designed for use in a system of
mobile devices only. In our case, where we have mobile and fixed devices, some
adjustments had to be made, since BlueFramework doesn’t run on fixed devices,
where J2SE [18] instead of J2ME is used.

For our project we used the following modules of BlueFramework:
e User Interface Module
e Discovery Module
e Communication Module
e Log Module

Further we used the RecordStoreAccess class to save data persistently in record
stores.

4.1.2 User Interface Module

The User Interface Module consists of a tool, which takes a XML file as source
and produces a Java class which implements elements of the library designated
javax.microedition.lcdui. This tool really helped with the programming of
the Graphical User Interface (GUI). The GUI layout can be described in XML
in a hierarchical way. This XML design is then checked against an XML Schema
for correctness to assure compatibility with the 1cdui library.

With this tool, understanding the use of J2ME’s GUI classes works in a learning-
by-doing way, i.e. after analyzing the generated Java class against the XML

26

CHAPTER 4. IMPLEMENTATION 27

design, one can implement further GUI Screens directly in Java. This saves a
lot of time, which would have been used, reading through all the JavaDoc of
the 1cdui library.

4.1.3 Discovery Module

The Discovery Module is responsible for finding Bluetooth devices with a cer-
tain service. Unfortunately, if applied according to the documentation and all
methods are called from the same thread, a deadlock occurs. Also the Discovery
Module is designed for use with mobile devices on both sides, i.e. that Blue-
Framework runs on the device discovering and the one to be discovered. In our
case, where the other side is not a mobile device and therefore not running Blue-
Framework, some changes had to be implemented. The main adaption was to
split the method calls into two threads to avoid locking. In the code of the class
BluetoothClient we made some changes with semaphores, since it seemed to
lead to racecondition.

With these changes, discovery of our fixed nodes worked stable but still slow.
Sometimes several scans were necessary until a device was found. Since we
were unsatisfied with these results, we stopped using the DiscoveryModule of
BlueFramework and implemented our own solution. During the course of pro-
gramming, we noticed, that the thread handler of the Nokia 6630 is not working
in the expected manner. After calling the wait method on the main MIDlet
thread, the CPU is not handed over to other threads in a runnable state and
therefore timeouts occurred. When wait is called in its own thread however, the
control switches between the threads and communication between them works.
Our discovery implementation now works a lot faster and finds fixed nodes with
the same stability as before.

Up to now, the result of discovery scans was a Vector of BTIDs. To improve
user readability we added the readout of the remote devices friendly name to the
scan. Now the Discovery Module returns a Vector of friendly names of the same
length as the BTID Vector with corresponding entries. The implementation in-
cludes the new class DeviceInfo and changes in the classes DiscoveryModule
and BluetoothClient.

4.1.4 Communication Module

Out of this module we only used the method to establish a connection. The ex-
isting sending and receiving methods were designed for use with other mobile de-
vices and, as above, communication with a non BlueFramework partner was not
planned. To fit our needs, we added methods to send and receive unprocessed
datastreams, which work on a lower layer. We also put a semaphore on those
methods to ensure that different threads don’t interfere with each other while
communicating. These changes concern the class BluetoothCommunicator.

4.1.5 Log Module

In the first phase of developing our BlueLocation MIDlet, we could test and
debug it on the Sun J2ME Emulator [11]. For debug output, we could simply
use the System.out.print routine.

CHAPTER 4. IMPLEMENTATION 28

As soon as we proceeded and were implementing features which included inter-
action with a fixed node, the emulator wouldn’t do its job, since we needed a
live communication partner. Unfortunately, the design of mobile phones doesn’t
offer a console, so debug output is a tricky thing. Here we could count on the
Log Module which simplifies the task of writing information to persistent mem-
ory. So even after crashes we could see where the program stalled and remove
these bugs.

What we are missing is the possibility to clear all entries from the log, since
scrolling through a long list of text gets inefficient.

Finally we did a minor change to enhance readability on the screen.

Figure 4.1: The Log Screen with some entries

4.1.6 Record Store

Record Stores are an easy way to save data persistently to the mobile devices
memory, without having to mess with files and filesystems. The mobile device
needs to have the PDA Profile for J2ME (JSR 75) implemented to support
Record Stores, which are accessed with the javax.microedition.rms package.
The RecordStoreAccess class of BlueFramework facilitates the work with Record
Stores even further, as it takes care of creating, opening and closing. Up to now
BlueFramework only supported writing information to and reading from Record
Stores. We added a method to also remove an entry from a Record Store.

4.2 Third Party Contributions

4.2.1 StringTokenizer

For some reason J2ME neither includes the method matches nor split usually
found in the java.lang.String class. We needed some method to parse the
String received from the central unit as reply to our request and split it into
smaller Strings at the delimiter characters for further processing. The StringTo-
kenizer class of the OstermillerUtils package (com.Ostermiller.utils) offered
exactly the functionality we were looking for.

CHAPTER 4. IMPLEMENTATION 29

4.3 Phone Application

For our implementation of BlueLocation to work on a mobile device, the follow-
ing specifications are required:

e CLDC 1.1 o0r 1.0

e MIDP 2.0

e Bluetooth for J2ME API(JSR 82)

e PDA Profile for J2ME API(JSR 75)
For a list of phones check [21].

4.3.1 Main Menu

Figure 4.2: Main menu of BlueLocation

After starting BlueLocation, the main menu is displayed. (Fig. 4.2) From here,
the user can access all basic features of BlueLocation. Right now only Connect,
Options and Log are active. To make the other commands available, the user
has to connect to a fixed node first.

4.3.2 Connect

If fixed nodes have been found on previous inquiries, they are now loaded from
cache, the device discovery is omitted. By executing the command refresh
an inquiry scan can be started manually. We chosed this workaround, because
device discovery may take a long time and doesn’t always find all fixed nodes.
This problem is further explained in Sec. 5.4. Another problem was, that our
device was delayed in the inquiry process by the many BTNodes, that were
active all the time.

Our final implementation doesn’t use the DiscoveryModule of BlueFramework
anymore due to the reasons explained in Sec. 4.1.3. Our own implementa-
tion uses two threads, which work together on the same semaphore. The
control thread starts the inquiry scan in another thread, waits on its results
and then starts a service scan for every found device. The search thread is
of class DiscoveryAgent of the javax.bluetooth package and handles lower
level communication with the Bluetooth device. Upon successful search, our

CHAPTER 4. IMPLEMENTATION 30

Figure 4.3: Screen during discovery and after fixed nodes have been found

DiscoveryListener is called, which is responsible for managing the results.
After these threads have been processed, the results can be read out of two
Vectors, one containing the BTIDs and the other one the friendly names of the
found fixed nodes, with their indices corresponding.

Besides presenting a list of results on the display, the above vectors are also
serialized and saved persistently using a record store.

The next step is to select one of the fixed nodes in the list and execute the con-
nect command. The index of the selected entry is read and the content of the
BTID vector at this index is forwarded to an instance of BluetoothSettings.
This instance is then passed to another thread, which calls the DiscoveryModule
of BlueFramework, which tries to establish a connection to the fixed node. If
successful, the user is notified with a pop-up. The reason for using threads here
is that a timer is started before attempting to connect. The method used for
connection setup might lock if it is unsuccessful, but by using threads control is
always returned to the main class after the timer runs up.

Once a connection to a fixed node is established, three more commands become
available:

Figure 4.4: Pop-up confirming a connection is established

o List of Active Users
e Buddylist

o Changing alias

CHAPTER 4. IMPLEMENTATION 31

4.3.3 List of Active Users

This command executes a method, which sends a request string to the central
unit and waits for a reply, according to our protocol (Sec. 4.7).

This reply is parsed for the delimiters ”:”,”;” and ”,” to split up the information.
Two vectors are again used to store the userIDs and aliases. All the aliases are
then listed on screen.

Figure 4.5: A list of all active users

4.3.4 Localizing

The method for receiving location information extracts the userID from the
vector at the index of the selected alias in the list above. A request string with
this userID is sent to the central unit and the reply again parsed for delimiters.
A pop-up with the received information is then displayed.

Figure 4.6: Pop-up informing about the location of a user

4.3.5 Buddylist

To ease handling with buddies a class Buddy was created. Every buddy is an
instance of this class holding userID, alias and real name. Information about
a users buddies are stored in two places: persistently in a record store as a
serialized object and volatile in a vector of Buddy objects. The latter could be
called the working copy.

Further there are five methods performing the following operations:

CHAPTER 4. IMPLEMENTATION 32

e Loading information from the record store to the Buddy-Vector
e Adding an entry to the record store
e Removing an entry from the record store

e Displaying the list of buddies on screen
This is done by sending an online request with the userIDs of all buddies
to the central unit. The answer is parsed as usual to get the status of all
buddies. For every buddy the alias is written to the screen accompanied
with either the online or the offline picture.

e Presenting the current location
This is done in the same fashion as localizing above.

Figure 4.7: Example of a Buddylist

4.3.6 User Search

The user search is implemented using a Form with a TextField where the search
string can be typed. The request is sent over the bytestream to the central unit
and the response is again parsed for aliases and userIDs, which are stored in a
vector each. The aliases are then displayed in a list.

If an entry is selected to be added to the buddylist, the content of the vectors
at the selected index is read and added to the record store.

Figure 4.8: Search Form and search result List

CHAPTER 4. IMPLEMENTATION 33

4.3.7 Change of Alias

The only item under Options being implemented is the change of alias. A Form
is displayed with the current alias and a TextField appears where a new alias
can be entered. A request with the new alias is sent to the central unit. If it is
accepted, the alias is also updated in the record store and a pop-up confirms the
change. If the alias already exists or another error occurrs, the user is prompted
to choose another alias. The old alias can be left unchanged if the back button
is pressed.

Figure 4.9: Example of a Buddylist

4.3.8 Detection of Connection Loss

This feature is implemented as a thread, which is started as soon as the con-
nection to the fixed node is established. On every cycle the thread sends a ping
and waits for the pong from the central unit. As soon as the pong arrives, the
thread is put to sleep for 10 seconds. After wake-up a new cycle is started.

If a CommunicationException occurs, the state in the main class is set to dis-
connected and a pop-up informs the user about the lost connection.

Figure 4.10: The pop-up displayed after a connection loss

CHAPTER 4. IMPLEMENTATION 34

4.4 Fixed Node Application

The fixed nodes are running the Debian GNU/Linux operating system [9]. The
fixed node software is implemented in the Java programming language. The
design of the fixed node application was taken from BlueLocation I, but large
parts of the software were modified and extended to the new requirements.
After starting up the program the FixedNode Class creates two different threads
called DeviceDiscoveryAgent and BluetoothListener.

4 M

FixedNode

[DeviceDiscoveryAgent} [BluetoothListener}

ConnectionHandler

ConnectionHandler
ShutdownHook
" J

Figure 4.11: Different threads and classes in the fixed node

4.4.1 DeviceDiscoveryAgent

The DeviceDiscoveryAgent thread will periodically start a Bluetooth inquiry
process and sleeps for the rest of the time. The list of devices found during
inquiry is passed back to the main program from where it will be sent to the
central unit.

4.4.2 BluetoothListener

The BluetoothListener thread publishes the BlueLocation service. This ser-
vice uses the Bluetooth Serial Port Profile (btspp) for communication with the
phones. The Thread blocks until a connection from a phone is established.
Then a new ConnectionHandler thread is started for handling the connection
with the phone. This ConnectionHandler communicates over Bluetooth with
the mobile device on the one side and over a secured TCP connection with the
central unit on the other side. The first string submitted to the central unit
after the connection setup is the Bluetooth address of the phone. It will be
stored in the central unit and assigned with this connection.

4.4.3 ShutdownHook

This thread is registered within the Java virtual machine(JVM) as a Shutdown-
Hook. It will be called before shutdown of the JVM and is our last chance to do
some cleanup. Unfortunately, our published BlueLocation Bluetooth service is

CHAPTER 4. IMPLEMENTATION 35

not removed automatically from the Bluetooth stack and, therefore, this service
remains advertised to other devices. Thus, within our ShutdownHook we have
to call the shutdown () method of the BluetoothListener class which will remove
the service record of the BlueLocation service from the Bluetooth stack.

4.5 Fixed Node Emulator

Because debugging the communication process or protocols on the phone device
is rather complicated we developed a simple emulator script for testing the
functionality of the fixed node and the central unit. Running the runEmulator
script in the fixed nodes directory on the computer passes a request to the
fixed node program as it would come directly from the phone over a Bluetooth
connection. The emulator validates the request and sends it to the central unit.
The reply from the central unit is printed directly to the console. Program
settings such as the server IP or the Bluetooth address of the (emulated) phone
can be set in the runEmulator shell script.

Compilation: fixedNode$./compileEmulator
Normal usage: fixedNode$./runEmulator <request>

CHAPTER 4. IMPLEMENTATION 36

4.6 Central Unit

4.6.1 Database

Database Connectivity

The BlueLocation system uses the PostgreSQL [15] database system for data
storage. The connection between the central unit software and the database is
done through the PostgreSQL Java Database Connectivity (JDBC) [16] Driver.
The database driver uses a TCP connection to the database so it would also be
possible to run the central unit and the database on different physical systems
or even to run multiple central units.

Database Layout

The bluelocation database must store all data collected by the fixed nodes
and all information available about the users of the system. It contains the
following four tables. The SQL script to generate the database can be found on
the CD.

table description

fixednodes information about fixed nodes

inquiries information about inquiries

deviceslocations devices found during inquiries

lastseen devices found during inquiries (cached for 30 minutes)
users information about BlueLocation users

permissions user permissions (granter/grantee)

Table 4.1: List of database tables

CHAPTER 4. IMPLEMENTATION

public.lastseen

deviceid varchar (12)
time timestamp
location varchar (12)

Y
public.fixednodes
; btid varchar (12)

ip varchar (15)
varchar (32)
xcoord int2

name

ycoord int2

A

Y

public.permissions

public.users

granter

grantee

Y

int4
int4

public.deviceslocations

deviceid varchar (12)
time timestamp
location varchar (12)

; userid

serial

alias varchar (32)
password varchar (0)
btid varchar (12)

public.inquiries

location varchar (12)
time timestamp

devices int4

Figure 4.12: Database structure

37

CHAPTER 4. IMPLEMENTATION 38

4.6.2 Central Unit Software
Server Class

The central unit software running in Java is started by the ./runServer shell
script. The database password must be passed to the script as the first command
line argument. The Server class is started by the script and initializes first the
database driver and the SSL socket on port 4223. Then it blocks in a while loop
until there is a new incoming connection from a fixed node. A new instance of
ConnectionHandler is created and from now on responsible for the processing
of this connection.

ConnectionHandler Thread

The ConnectionHandler uses a BufferedReader and BufferedWriter to read
and write data from/to the fixed node. It obtains a new RequestHandler in-
stance which will handle all requests associated with this connection. It waits
in a loop for further requests from the fixed node until the connection has been
closed.

RequestHandler Class

The RequestHandler is responsible for handling all requests as described in
the protocol section. When the RequestHandler Class is constructed a new
database connection is obtained and used during all requests associated with
this instance. The connection will be closed when the cleanup() method is
called. This method is called by the ConnectionHandler when the connection
has been closed.

The method doRequest (String request) takes a request String as argument
and returns the reply to this request. This method checks first if the request is
valid and calls the appropriate method which can handle this type of request.

/ M

Server

/\

[ConnectionHandler J[ConnectionHandler J

Y

A
[RequestHandler }[RequestHandler J

. /

Figure 4.13: Different threads and classes in the central unit

Localization Algorithms

Each localization algorithm is implemented in a separate Java class file in the
localization.algorithm package.

CHAPTER 4. IMPLEMENTATION 39

Random Algorithm RandomAlgorithm.java
Triangulation TriangulationAlgorithm.java
Reference Node Algorithm ReferenceNodeAlgorithm.java
Reference Point Algorithm ReferencePoint Algorithm.java
Wall Algorithm WallAlgorithm.java

History Algorithm HistoryAlgorithm.java

Table 4.2: Java classes for the localization algorithms

Additionally, some classes and methods are used for handling the required data
structures. They are part of the localization package. At the moment only
the Triangulation algorithm is used to perform a localization in the current
implementation of the central unit. Please refer for further details of the imple-
mentation to the JavaDoc on the CD.

Statistic Tool

The Statistic Tool is used to generate the graphs for the measurements. You
can give a list of the different positions where you placed the phone during the
measurement and the program will write the results in a text file. A linux shell
script (plot.sh) generates the graphs in the eps and pdf format using the gnuplot
tool.

CHAPTER 4. IMPLEMENTATION 40

4.7 Protocols

4.7.1 Overview

request

\

request
-
response

Fixed Node Central Unit

response

-t - - -

Bluetooth Ethernet

Figure 4.14: Communication within the BlueLocation system

The BlueLocation system follows a client/server model. The phone acts as
the client and sends requests to the central unit (server). The reply to this
request is sent back to the phone. Direct communication between the phone
and the central unit is not possible. A fixed node has to act as a gateway.
Communication between the phone and a fixed node is done over a Bluetooth
connection (btspp), and between the fixed node and the central unit over a TCP
(SSL) connection.

The phone sends a request String to the fixed node. The fixed node sends the
request to the central unit. The central unit processes the request and sends
the reply back to the fixed node and from there it goes to the phone.

The communication between the phone and the fixed node and between the
fixed node and the central unit is handled over a dedicated Bluetooth or TCP
connection. When the phone connects to the fixed node also the connection
between the fixed node and the central unit is set up. The fixed nodes sends
first the Bluetooth address of the phone to the central unit where this address
is assigned to this connection for further reference.

4.7.2 Type of Replies

Each reply from the central unit starts either with ”ok” or ”error” to indicate if
the request could be handled successfully or not. The actual reply starts after
these two keywords and the additional colon character ”:”.

4.7.3 Communication between Fixed Node and Central

Unit

request

> -
-
‘ response

Fixed Node Central Unit

Figure 4.15: Communication fixed node—central unit

CHAPTER 4. IMPLEMENTATION 41

Report devices found during Bluetooth inquiry

Each fixed node periodically performs a Bluetooth inquiry. The list with the
devices found during the last inquiry is sent to the Central Unit. If no devices
are found an empty list will be sent. This is to inform the central unit that this
fixed node is still active and scanning.

request: locationupdate?[deviceBTID;deviceBTID;deviceBTID...]
reply: ok

4.7.4 Communication between Phone and Central Unit

request

\j

response

Central Unit

Figure 4.16: Communiation phone—central unit

Ping request

The ping? request is used to test if the connection between the phone and the
BlueLocation system is still valid. The central unit sends the pong reply back.

request: ping?
reply: pong

List with currently active BlueLocation users

The listactive? request is used to obtain a list with all users of the BlueLo-
cation system currently active. Pairs of userid and alias are sent back to the
phone. An error message is returned in case there are no users present.

request: listactive?

response: ok:userid,alias;userid,alias...
or

response: error:no users active

Localization of a user

The locate? request is used to locate a user. This will start the localization
algorithm on the central unit. A string with a human-readable name of the
current position of the user is sent back. The time parameter is the time in
minutes when the user was last seen by the system.

CHAPTER 4. IMPLEMENTATION 42

request: locate?userid
response: ok:location,time
or

response: error:notfound

Search for users registered with BlueLocation

The searchuser? request is used to search for users who have registered with
the BlueLocation service (have an alias). The central unit searches the database
for all aliases starting with the submitted name argument. One or more results
are returned. If nothing is found an error message is returned. If the name
argument is the empty string then all users in the database are returned.

request: searchuser?name

response: ok:userid,alias;userid,alias...
or

response: error:no results

Register a new user/phone

The setname? request registers a new alias for the sending device in the Blue-
Location system.

request: setname?alias
response: ok:

or

response: error:

Check if a user is currently online

The buddylist functionality of the phone application requires information about
the current status of a BlueLocation user. Each user can be in two different
status: online or offline. Users are online if their phones are detected by an
inquiring fixed node during the last few minutes.

The phone sends a list of userids to the central unit. The status of each user is
checked in the database and the reply is returned. The reply is a list of ones and
zeros. One indicates that the user is currently online, zero offline. The reply is
in the same order as the userids in the request.

request: online?userid;userid;userid..
response: ok:1;1;0...

or

response: error:

CHAPTER 4. IMPLEMENTATION 43

Grant /revoke permission to/from another user

The allow? request updates the permissions table in the database. Permis-
sion is granted to the user with the specified userid.
Permission management is not implemented in the current version.

request: allow?userid
response: ok:

or

response: error:

The revoke? request updates the permissions table in the database. Permis-
sion is revoked from the user with the specified userid.

request: revoke?userid
response: ok:

or

response: error:

4.7.5 The BlueLocation Web Interface

To offer a web interface to the BlueLocation system was not included in our
design. It is a last minute addition and is just a really simple possibility to
interact with the system using a browser instead of the phone. The web interface
is implemented in PHP [20] and runs on the Apache2 webserver [19] at the
central unit. The main purpose is the ability to show a list of registered users,
to add a new user to the system or to remove one. Additionally, all currently
active users are visible and it is possible to send a request to the central unit
as it would come directly from the phone. Other functions could be easily
implemented if needed.

CHAPTER 4. IMPLEMENTATION

© - BlueLocation - Web Interface - Firefox NG
File Edt View Go Bookmarks Tools Help
3 @-p- & O @ [0 ntpiipc-5011 ethz.chi~biuelocation/ =

BlueLocation - Web Interface
BlueLocation users

userld alias Bluetooth address

11 hany potter 1234567890A8 delete
13 alice 00119FC1306D _delete
17 peter 00119FC143D3 _delete
18 vincent 00119FC143BE delete

19 bob 00119FC143AB _delete
20 seimour 00119FC1306C _delete
21 frudy 00119FC127D5 delete
22 bart 00119FC1306E _delete

Active BlueLocation users

userld alias
bob

20 seimour

22 bart

New user registration

alias: | phone: | register

Send request

request: ocate?19 9 =
Dane Adblack

Figure 4.17: Screenshot of the BlueLocation web interface

Chapter 5

Evaluation

5.1 Evaluation of the Bluetooth Inquiry Process

5.1.1 Simultaneous Inquiries by Different Fixed Nodes

We wanted to know if it leads to any problems if more than one fixed node is
performing a Bluetooth inquiry at the same time. Therefore, we conducted an
experiment with the following setup:

-+ 1m— l -+ 1m—» l

Fixed Node A Fixed Node B Fixed Node C

Figure 5.1: Inquiry test setup

There are three fixed nodes and two mobile phones in our test setup. Each
fixed node runs on a dedicated computer with all clocks synchronized by a time
server. All three fixed nodes perform simultaneous Bluetooth inquiries. The
phones have Bluetooth activated and are set to get discovered by other devices.

fixed node
A B C
inquiries 34 34 34

detected phone A 32 31 34
detected phone B 34 27 34

Table 5.1: Results of simultaneous inquiries

The result of this experiment showed that it is in most cases possible for the
fixed nodes to receive an answer from the phones. However, the fixed nodes
did not answer to other fixed nodes while they are inquiring. Therefore, two
different fixed nodes should not start inquiry at the exactly same moment if

45

CHAPTER 5. EVALUATION 46

they should be able to discover each other as it is required for the reference
node algorithm.

5.2 Measurements with Mobile Phones and the
Deployed Infrastructure

5.2.1 Fixed Nodes Infrastructure

Our test infrastructure consists of seven fixed nodes running on standard desktop
PCs. We have placed a fixed node inside every room and one on the floor (see
Fig. 5.2).

coordinates name Bluetooth address host OS

(20,13) ETZ G93 00134605A2D2 pc-3528 Linux 2.4.27
() ETZ G94 00134605A2D4 pc-3640 Linux 2.4.27
() ETZ G95 0020E07B41E0 nb-4788 Linux 2.6.7

(32,14) ETZ G96 00134605A2D3 pc-3255 Linux 2.4.27
() ETZ G97 00134605A317 pc-4209 Linux 2.4.31
(37,9) ETZ G99 00134605A2C7 pc-3296 Linux 2.4.27
(37.4) ETZ G60.1 00134605A2D1 pc-3641 Linux 2.4.27

Table 5.2: List of fixed nodes

5.2.2 Measurement Procedure

We placed the phones (Nokia 6630) on each test position for one hour. The fixed
nodes were performing a Bluetooth inquiry once per minute. We took care that
the inquiries of the different fixed nodes did not overlap to much.

The evaluation of the algorithms was done using a Java program (Statistic-
Tool.java) which splits the test period into intervals of one minute and analyzes
the results of the different algorithms. For each test position the closest fixed
node was assigned (shortest Euclidian distance). Thus, it was in some cases
possible that the closest fixed node was not the fixed node in the same room
but in an adjacent room. The triangulation and reference point algorithms re-
turned a position which was also mapped to the closest fixed node. If both the
closest fixed node for the test position and the algorithm result were equal, then
the decision was counted as correct. The results of this evaluation were written
into different files and plotted with gnuplot. It has to be stated that some
algorithms (topology, history, wall, reference point) can decide for more than
one fixed node simultaneously (e.g. when two fixed nodes are equally likely)
and therefore the sum of the bars in the graph was sometimes more than one
hundred percent.

CHAPTER 5. EVALUATION

47

position (coordinates) nearest fixed node date/time device address
1 (22,15) ETZ G93 23.12.05 09:00-10:00 00119FC143AB
2 (23,13) ETZ G94 23.12.05 09:00-10:00 00119FC1306D
3 (30,12) ETZ G96 23.12.05 09:00-10:00 00119FC127D5
4 (32,17) ETZ G96 23.12.05 09:00-10:00 00119FC143D3
5 (37,14) ETZ G97 23.12.05 09:00-10:00 00119FC143BE
6 (33,5) ETZ G60.1 23.12.05 09:00-10:00 00119FC1306E
7 (21,18) ETZ G93 23.12.05 10:15-11:15 00119FC143AB
8 (24,18) ETZ G94 23.12.05 10:15-11:15 00119FC1306D
9 (28,14) ETZ G95 23.12.05 10:15-11:15 00119FC127D5
10 (28,18) ETZ G96 23.12.05 10:15-11:15 00119FC143D3
11 (36,18) ETZ G97 23.12.05 10:15-11:15 00119FC143BE
12 (37,6) ETZ G60.1 23.12.05 10:15-11:15 00119FC1306E
13 (20,7) ETZ G94 27.12.05 10:00-11:00 00119FC1306E
14 (31,6) ETZ G99 27.12.05 10:00-11:00 00119FC1306C
15 (36,8) ETZ G60.1 27.12.05 10:00-11:00 00119FC143AB

Table 5.3: Measurements details

CHAPTER 5. EVALUATION

(0.0

= = -
O)//"\\

~

o

I

,,,,,,,,, o - n
— ai

_ O
P I

| o =

Ul = o

rq' <@

S i I

B i ﬂ - l_ —_J @g
| N :"]

=] L= o=
,,,,,,,,, 0 P N
—3 Q) [Ju
—_

I

- — 5
I

o

= SO
I

o0

— o0

1

Figure 5.2: Position of the fixed nodes

48

CHAPTER 5. EVALUATION

B
- ® =
|

= %G%
o |

90

Figure 5.3: Map of test positions

49

CHAPTER 5. EVALUATION 50

5.2.3 Measurement Results
Detections by Fixed Nodes

Looking at the number of detections by the fixed nodes, it is obvious that the
fixed nodes located in the same room as the phone were able to detect the phone
almost everytime. The fixed nodes in the adjacent rooms were able to detect
the device during most of the inquiries.

Please note, that although fixed nodes ETZ G95 and ETZ G99 were positioned
more exposed, they could not always find devices in their closer neighborhood.
This was due to a limitation of the fixed nodes (see Sec. 5.3.1), by which not all
devices can be found, if there are too many devices around. So it may occur,
that the fixed node cannot find the device although it is positioned very close
to the fixed node.

Reference Point Algorithm

The reference point algorithm operates on data obtained from previous mea-
surements at different known positions. Reference data are generated for all 15
positions where a phone was placed during the measurement procedure. Based
on the number of detections by the different fixed nodes an expected value for
the probability of detection was stored in the file reference.dat, which was
later used by the reference point algorithm. This algorithm performed on most
occasions very well. Sometimes it made a decision for another reference point in
the same room which leads also to a decision for the correct fixed node. It can
be stated that one reference point in every room is sufficient as the difference
between two positions in the same room can normally be neglected.

Reference Node Algorithm

The precision of this algorithm depends on two different factors:

1. detections of the mobile device by the fixed nodes

2. detections of fixed nodes by the other fixed nodes in the system

How often each fixed node is detected by other fixed nodes is shown in the
appendix C.

Wall Algorithm

The wall algorithm uses additional information about rooms and the number of
walls between them to construct a graph of the situation. For the test measure-
ment we used the following configuration:

The weight of the edges in the graph is the number of walls on the direct line be-
tween the two fixed nodes. All walls (and doors) have been assigned the weight
one, except for the walls around room ETZ G60.1 which have been assigned
weight two. The distance between two fixed nodes is not taken into account,
but this could be a further extension. The threshold value used in the algorithm
is set to two because our measurements showed, that a mobile device can be
detected, if not more than two walls are between it and a fixed node.

A lot more time for tuning parameters (weight of edges, threshold value) could

CHAPTER 5. EVALUATION 51

be invested and could probably lead to better results. However, for large envi-
ronments or for the usage for a specific event only, this would become too much
complicated.

History Algorithm

The history algorithm operates over a longer time period than the other algo-
rithms. In general, longer periods lead to better results because the probability
of detection by a fixed node increases over a longer time period. The diagrams
in appendix C are plotted for a time period of ten minutes. It is assumed that
the position of a device does not change during the measurement.

5.2.4 Number of Correct Decisions

Decisions for correct Fixed Node

W 1 result B2 results 3 results E>4 results

100%

80% A

60%

40%

20% A

0% -

Random
Reference
Point
Reference
Node

Wall
History

Triangulation -

Figure 5.4: Correct decisions for different algorithms

Figure 5.4 shows how often the different algorithms decided for the fixed node
which was positioned next to the phone during the measurement. Additionally,
it is indicated for how many different fixed nodes (results) the algorithm decided
simultaneously. Note that only one of these fixed nodes represents the correct
fixed node but for the algorithm they are all correct decisions. If only a single
result has to be returned to the client then a further algorithm has to be used.

5.2.5 Combination of different Algorithms

Comparing the number of decisions for the correct location made by the different
algorithms that were implemented during this thesis, it was obvious that there
was no single algorithm which did a correct decision for every position. It should
therefore be evaluated if the combination of different algorithms leads to better
results. Some algorithms (e.g. reference node algorithm) can decide for more
than one fixed node at the same time. This list of fixed nodes can then be

CHAPTER 5. EVALUATION 52

the input vector for another algorithm, e.g. the triangulation algorithm. The
triangulation algorithm returns always only one result, and this result can be
sent back to the client.

5.2.6 Scalability of the System

Our last measurement was a crash test with 45 Bluetooth devices in a small
area, interfering with the devices we wanted to find. The BlueLocation system
was able to handle the load, nothing crashed and the discovery scan did not
throw any exceptions. The drawback was, that not all Bluetooth devices were
discovered during a scan. The following figure shows the results obtained from
an example position. We can explain this result as a consequence of the hard-
ware limitation discussed in Sec. 5.3.1. The total number of Bluetooth devices,
including the fixed nodes, is 45. The average fixed node should be able to detect
slightly more than half of them, out of which only the first ten are returned,
SO % is about the probability of detection. Without the hardware limitation,
we forecast that the results would be more or less the same as during normal

operation. This will have to be tested when work on BlueLocation is continued.

Position 9 - Detections by fixed nodes during inquiry Position 9 - Detections by fixed nodes during inquiry

detections in %
detections in %

o
ETZ G60.1ETZ G93 ETZ G94 ETZ G95 ETZ G96 ETZ GO7 ETZ GO ETZG60.1 ET2G93 ETZG94 ETZGS5 ETZGU6 ETZGO7 ETZGO
fixed nodes fixed nodes

Figure 5.5: Detectability of device at position 9 during normal operation (left)
and crash test (right)

5.3 Fixed Node Limitations

5.3.1 Maximum Number of Devices Found

During the crash test with a lot of Bluetooth noise emitted from mobile devices,
we discovered that our Bluetooth adapters could find a maximum of ten devices
per inquiry scan. If more devices are active, the scan is stopped after the 10"
device. The maximum number of devices found depends on the hardware and
can not be addressed by the Java interface.

5.3.2 Master-Slave Role Switch

Bluetooth connections can only be established in a piconet. A piconet consists
of a master and up to seven active slaves. While it is theoretically possible for
a Bluetooth device to be active in more than one piconet, all of our Bluetooth
adapters couldn’t handle any other connections once they were connected in the
slave role. This is due to the limited resources in the adapters, the calculation
power of the onboard chip is probably too weak to handle another piconet.

CHAPTER 5. EVALUATION 53

The only solution for a fixed node to handle several mobile devices is for it to
be master and all the mobiles to be slaves. When our Nokia 6630 initiated a
connection they were always master and the fixed node slave. A role switch was
therefore necessary after the connection was established. We were able to trigger
such a role switch manually with the HCI Tool, but the Java implementation
was not able to do that switch, altough the necessary master and slave flags
were set.

As a result of this limitation, only one mobile device can be connected to a fixed
node at a time.

5.3.3 Discovery Scan During Connection

In the Bluetooth standard, there are different states a device can be in. Con-
nected and device discovery are two of them. While it is again theoretically
possible for a device to be in more than one state at a time, our Bluetooth
adapters were only able to start a device discovery, when they were in master
role. Unfortunately, due to the last limitation our fixed nodes are always in
slave role, therefore device discovery is interrupted as soon as a mobile device
is connected to it.

A role switch would solve this problem as well.

5.4 Mobile Device Limitations

5.4.1 Inquiry Scan

When BlueLocation is started, a connection to a fixed node has to be set up
before the application can be used. If no BTIDs of fixed nodes are stored in
cache or a refresh is called, an inquiry for devices with the BlueLocation UUID
is started. If this scan happens to coincide with a scan from a fixed node, no
devices are found, since the fixed node is busy and doesn’t answer to the phones
scan. The Bluetooth hardware doesn’t offer the possibility to listen for ongoing
scans before starting one itself, so collisions cannot be prevented (compare to
CSMA).

Something similar happens if the mobile device tries to connect to a fixed node,
which is scanning at that time. Another attempt has to be started a couple of
seconds later. Once a device is connected to a fixed node and tuned into its
frequency hopping succession, a scan does not limit communication with the
fixed node. Data can be sent and received during the scan.

5.4.2 Exit Command on Nokia Devices

On our mobile device testbed, the Nokia 6630, as well as on other Nokia devices
of the series 60 generation, a command called ”Exit” is automatically added to
every Screen, without the possibility to remove or alter this command. When
selected, the MIDlet is terminated without any control involved, and no defined
cleanup is done. There is no other way, than to warn the user not to use this
command. On other mobile phones or on the J2ME emulator, for example, no
default commands are added to screens.

Chapter 6

Outlook and Conclusion

6.1 Further Extensions to the BlueLocation Sys-
tem

6.1.1 Inquiry with RSSI

The current BlueLocation system can not perform a Bluetooth inquiry with Re-
ceived Signal Strength Indicator (RSSI) because the used Bluetooth hardware
on the fixed nodes does not support this functionality at this time. The RSSI
would give us an estimation of the signal strength to a Bluetooth device already
during the inquiry process. This would help us to improve the algorithms (es-
pecially the triangulation algorithm). At the moment we only know if a fixed
node has found or not a phone during inquiry. But we do not know if the signal
from the device is very strong or very weak.

6.1.2 Communication from the Central Unit to the Fixed
Nodes

In the current system architecture it is only possible to start a connection from
a fixed node to the central unit (inquiry results update) and not otherwise.
It would be useful if the fixed node would also listen on a special port for
incoming connections from the central unit. In this case, it would be possible
to dynamically change parameters of the system such as the interval between
subsequent Bluetooth inquiries or tell the fixed nodes to suspend/restart its
activities. Also the fixed nodes could be instructed to download a new software
version from a Subversion (SVN) repository and restart themself afterwards.
This would allow easy maintenance of the distributed fixed nodes.

6.1.3 Waiver of Limitations

For BlueLocation to be used in a larger context, the limitations of the fixed node
discussed in the last chapter must be removed. New Bluetooth hardware has to
be found that supports the three features that the present Bluetooth adapters
are lacking.

54

CHAPTER 6. OUTLOOK AND CONCLUSION 55

6.1.4 Mobility Models of Users

From the data collected by the BlueLocation system a mobility model of indi-
vidual users could be developed. Questions such as "Who was where for how
long?’ could be answered easily.

6.1.5 Web Interface to the BlueLocation System

The already started development of a web interface to the BlueLocation system
could be continued and further features implemented. A search function for
BlueLocation users could be implemented and the current position of a user
could be shown on an interactive map.

6.2 Conclusion

This semester thesis clearly proofed that a distributed system to localize people
based on data from Bluetooth radio is possible. We demonstrated that the loca-
tion of a Bluetooth device can be estimated with satisfying accuracy, although
no information about signal strength is available from the scanning fixed nodes.
The accuracy of the different algorithms, however, depends heavily on the po-
sition of the mobile devices and the fixed nodes. In our small test environment,
there were only two rooms which didn’t suffer from the edge effect. The trian-
gulation algorithm for example is only reliable in the non-edge area. To better
characterize our algorithms further tests in a larger environment are necessary.
Another aspect of algorithm evaluation is the fact that the reference node and
the wall algorithm need to be fed with information about the environment. The
more information is available and, therefore, the better the algorithm parame-
ters are adapted to the environment, the more exact the calculated results are.

The communication between the mobile device and the fixed node, once es-
tablished, works very reliable. It was quite unexpected how fast, not in terms
of bandwith, but reaction time, data were sent over the Bluetooth connection.
Since we are only transmitting short streams a couple of bytes long, this is
exactly what is relevant in our scope. To a human being, between sending a
request and receiving the answer on screen, no delay is perceivable.

List of Tables

3.1
3.2
3.3
3.4

4.1
4.2

5.1
5.2
5.3

Sample data set for two bluetooth devices 20
File map.dat: sample of a look-up table 21
File reference.dat: Reference data for position 2 23
Number of detections during ten inquiries 25
List of database tables 36
Java classes for the localization algorithms 39
Results of simultaneous inquiries 45
List of fixed nodes oL 46
Measurements details oL 47

56

List of Figures

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

3.14
3.15
3.16
3.17
3.18

4.1
4.2
4.3
44
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16

BlueLocation system overview 9
D-Link DBT-120 USB Bluetooth dongle 10
Active connection setup oL oL 13
Passive connection setup Lo Lo 14
Requesting a list of active users 15
Requesting location information 15
Checking which buddies are online 16
Searching for users oL 16
Sending a BlueMessage L. 17
Updating an alias oL 17
Testing the connection 18
Algorithm operation overview 20

Triangulation example: circles indicate the position of the fixed
nodes, a filled circle indicates that this fixed node can detect the
device, the cross indicates the position estimated by the triangu-

lation algorithm Lo 21
Example of the Reference Node Algorithm 22
Map with reference positions L. 23
Map of the situation 24
Graph representation Lo 24
Example of the wall algorithm 25
The Log Screen with some entries. 28
Main menu of BlueLocation 29
Screen during discovery and after fixed nodes have been found . 30
Pop-up confirming a connection is established 30
A list of all activeusers L. 31
Pop-up informing about the location of auser 31
Example of a Buddylist 32
Search Form and search result List 32
Example of a Buddylist 33
The pop-up displayed after a connection loss 33
Different threads and classes in the fixed node 34
Database structure oL 37
Different threads and classes in the central unit 38
Communication within the BlueLocation system 40
Communication fixed node—central unit 40
Communiation phone—central unit 41

57

LIST OF FIGURES 58

4.17 Screenshot of the BlueLocation web interface 44
5.1 Inquiry testsetup. L oL 45
5.2 Position of the fixednodes 48
5.3 Map of test positions 49
5.4 Correct decisions for different algorithms 51
5.5 Detectability of device at position 9 during normal operation

(left) and crash test (right) 52
C.1 Detections of the fixed nodes by other fixed nodes (27.12.05 10:00-

11:00) .« o o 66
C.2 Detections of the fixed nodes by other fixed nodes (23.12.05 13:40-

14:30) . . o 68
C.3 Results for Position 1 70
C.4 Results for Position 2 71
C.5 Results for Position 3 72
C.6 Results for Position4 73
C.7 Results for Position 5 74
C.8 Results for Position 6 75
C.9 Results for Position 7 76
C.10 Results for Position 8 77
C.11 Results for Position 9 78
C.12 Results for Position 10 79
C.13 Results for Position 11 80
C.14 Results for Position 12 81
C.15 Results for Position 13 82
C.16 Results for Position 14 83

C.17 Results for Position 15 84

Appendix A

Task Description

59

APPENDIX A. TASK DESCRIPTION 60

Institut fiir Eidgendssische Technische Hochschule Zirich
y . Swiss Federal Institute of Technology Zurich
' ' Technische Informatik und Ecole polytechnique fédérale de Zurich
Kommunikationsnetze Politecnico federale di Zurigo

Communications Systems Research Group

Winter 2005/06

Semester Thesis
for

Oliver Keiser (D-ITET), Philipp Sommer (D-ITET)

Advisors: Vincent Lenders and Bernhard Tellenbach
Supervisors: Dr. Martin May and Prof. Dr. Bernhard Plattner

Issue Date: 24th October 2005
Submission Date: 7th February 2006

BlueLocator Il - A Location Infrastructure for Bluetooth &led
Mobile Phones

1 Motivation

Most of today’s mobile phones feature Bluetooth for shonigeacommunication. In addition of using
Bluetooth for communication purposes, it is also imagigabluse Bluetooth for locating purposes. The
position of a mobile user can easily be determined by chegcttie connectivity of a user to the fixed
Bluetooth nodes that have been deployed at pre-determio&tigns. The connectivity information di-
rectly indicates the proximity of a user to a fixed node. Mappl&ations such as an (indoor) navigation
or people location systems for Bluetooth enabled mobilenpeaequire this position information. An-
other usage of a locating infrastructure is to establishiliyppatterns by collecting position information
of mobile users at various places over time. The latter usagggecially interesting to study the behavior
of mobile users which is of high interest in the networkinge@rch community.

2 Background

In a previous semester thesis [2] conducted at the CSG latadion infrastructure using Bluetooth
was designed and implemented. The goal of this thesis isedhis infrastructure to (i) test different
location algorithms and (ii) to extend it to allow users teeguthe location of other users with their
mobile phones. This thesis is part of the Blue* project[1].

3 Assignment

The students should start working together and solve therammtasks. Then, Task | and Il should be
worked out separately.

APPENDIX A. TASK DESCRIPTION 61

3.1 Common Tasks

e Familiarize yourself with the previous semester thesisBacator 1[2].

e Setup the BlueLocator infrastructure at the CSG lab. Thadtfucture consisting of the database
server and a few fixed nodes is already working. The task ddttigents is to verify that everything
is still working properly and to install additional fixed nesl

32 Taskl

Design different localization algorithms. The goal of thedgorithms is to estimate the location
of a device when it is seen by multiple fixed nodes simultaslou

Implement the designed algorithms in the programming lagguof your choice.

Evaluate the accuracy of each algorithm by making activesomesnents with mobile phones and
the deployed infrastructure.
33 Taskll

Familiarize yourself with BlueFramework[3]. The BlueFrawork should be used to implement
the application on the mobile phones.

Design the application for the mobile phones.

Implement the application.

Integrate the localization algorithm with the best perfanoe of Taks I into your application.

Test the application.

If time is remaining, identify a new hardware platform foetfixed nodes and port the code for
the fixed nodes to this new platform. The new platform shoelaniuch smaller and cheaper than
standard desktop PCs as we are using today.

3.4 Dediverables

At the end of the first week, a detailed time schedule of thees¢en thesis must be given and
discussed with the advisors.

At half time of the semester thesis, a short discussion of Hutes with the professor and the
advisors will take place. The students have to talk aboutrthjer aspects of the ongoing work. At
this point, the students should already have a preliminargion of the written report, including a
table of contents. This preliminary version should be bhawadong to the short discussion.

At the end of the semester thesis, a presentation of 15 nsimuist be given during the TIK or the
communication systems group meeting. It should give anvisé@ras well as the most important
details of the work and the demonstrator should be presextiis time.

The final report may be written in English or German. It musitam a summary written in both
English and German, the assignment and the time schedsiritcture should include an intro-
duction, an analysis of related work, and a complete doctatien of all used software tools. Four
copies of the final report must be delivered to TIK.

APPENDIX A. TASK DESCRIPTION 62

References

[1] TheBlueStar Project, http://www.csg.ethz.ch/research/running/Blue_sartober 2004.
[2] Katrin BretscherBlueLocation, TIK-SA-2005-17, ETH Zirich, Switzerland, September 2005

[3] Nicole Hatt, BlueFramework - Application Framework for Bluetooth Enabled Mobile Phones, TIK-
MA-2005-16, ETH Zurich, Switzerland, October 2005.

18th October 2005

Prof. B. Plattner

Appendix B

Project Timeline

This is our project timeline as submitted at the end of the first week.

Semester thesis “BlueLocation” - Project timeline

week 1 week 2 week 3 week 4 week 5 week 6 week 7

week 8

week 9

Task 1 (Location Algorithms)
Phili i
ilipp Sommer [I mplementation
| Measurements
| Documentation
Task 2 (Phone Application)
liver Kei i
Oliver Keiser | Implementation |
Tests
Documentation
Presentation

63

Appendix C

Measurement Results

64

APPENDIX C. MEASUREMENT RESULTS 65

C.1 Detections of Fixed Nodes by other Fixed
nodes

C.1.1 15 Bluetooth Devices in the Covered Area

APPENDIX C. MEASUREMENT RESULTS

detections in %

detections in %

detections in %

detections in %

100

100

ETZG60.1 - Detections by other fixed nodes during inquiry

ETZG93 - Detections by other fixed nodes during inquiry

8
£
9 «» 60
f=
k<]
=
o
4 2
(7]
=l
J 20|
. 0
ETZ G60.1 ETZG93 ETZ Ggfl ETZG95 ETZG96 ETZG97 ETZ G99 ETZ G60.1 ETZG93 ETZ Ggfl ETZG95 ETZG96 ETZG97 ETZ G99
fixed nodes fixed nodes
ETZG94 - Detections by other fixed nodes during inquiry ETZG95 - Detections by other fixed nodes during inquiry
- - - - - - - - - - - - - - -
80 al
=S
£
o 60 4
i=
k=]
3]
L w0 .
(7
=]

ETZ G60.1 ETZG93 ETZG94 ETZG95 ETZG96 ETZG97 ETZ G99
fixed nodes

ETZG96 - Detections by other fixed nodes during inquiry

ETZG60.1 ETZG93 ETZG94 ETZG95 ETZG96 ETZG97 ETZ G99
fixed nodes

ETZG97 - Detections by other fixed nodes during inquiry

detections in %

ETZ G60.1 ETZG93 ETZ GQf& ETZG95 ETZG96 ETZG97 ETZ G99
fixed nodes

ETZG99 - Detections by other fixed nodes during inquiry

ETZG60.1 ETZG93 ETZG94 ETZG95 ETZG96 ETZG97 ETZ G99
fixed nodes

ETZ G60.1 ETZG93 ETZ GB{! ETZG95 ETZG96 ETZG97 ETZ G99
fixed nodes

Figure C.1: Detections of the fixed nodes by other fixed nodes (27.12.05 10:00-
11:00)

APPENDIX C. MEASUREMENT RESULTS

C.1.2 45 Bluetooth Devices in the Covered Area

67

APPENDIX C. MEASUREMENT RESULTS

detections in %

detections in %

detections in %

detections in %

100

100

ETZG60.1 - Detections by other fixed nodes during inquiry

68

ETZG93 - Detections by other fixed nodes during inquiry

8
£

«» 60
f=
k<]
°©

4 2
(7]
=l

4 20

ETZ G60.1 ETZG93 ETZ Ggfl ETZG95 ETZG96 ETZG97 ETZ G99 ETZ G60.1 ETZG93 ETZ Ggfl ETZG95 ETZG96 ETZG97 ETZ G99
fixed nodes fixed nodes
ETZG94 - Detections by other fixed nodes during inquiry ETZG95 - Detections by other fixed nodes during inquiry
- - - - - - - . - - - - - - -

80
3
£

o 60
c
8
©

L w
(7
°

20 4
ETZ G60.1 ETZG93 ETZ GQ_A ETZG95 ETZG96 ETZG97 ETZ G99 ETZ G60.1 ETZG93 ETZ Ggfl ETZG95 ETZG96 ETZG97 ETZ G99
fixed nodes fixed nodes
ETZG96 - Detections by other fixed nodes during inquiry ETZG97 - Detections by other fixed nodes during inquiry
- - - - - - - - - - - - - - -

80
X
£

n 60
c
2
=
o

QL w0
Q
°

ETZ G60.1 ETZG93 ETZ Ggft ETZG95 ETZG96 ETZG97 ETZ G99
fixed nodes

ETZG99 - Detections by other fixed nodes during inquiry

ETZG60.1 ETZG93 ETZG94 ETZG95 ETZG96 ETZG97 ETZ G99
fixed nodes

ETZ G60.1 ETZG93 ETZ GB{! ETZG95 ETZG96 ETZG97 ETZ G99
fixed nodes

Figure C.2: Detections of the fixed nodes by other fixed nodes (23.12.05 13:40-
14:30)

APPENDIX C. MEASUREMENT RESULTS 69

C.2 Algorithm Results for the Measurement Po-
sitions

The following pages show the analysis of the measurements with the phones
placed at a fixed position and the BlueLocation infrastructure. There is a his-
togram with the percentage of detection by each fixed node. Additionally you
will find a graph with the results for each algorithm. It shows how often each
algorithm has decided for which fixed node. Note that some algorithms(Wall,
Reference Node, Reference Point, History) can decide simultaneously for more
than one fixed node and therefore the bars sum up to more than one hundred
percent. The last graph shows how often each algorithm has decided for the
correct fixed nodes (based on the position of the phone). The results are stacked
together. It is indicated for how many fixed nodes the algorithm decided simul-
taneously (only of them was correct).

APPENDIX C. MEASUREMENT RESULTS

detections in %

decisions in %

100

decisions in %

100

decisions in %

100%

Position 1 - Detections by fixed nodes during inquiry

ETZ G60.1ETZ G93 ETZ G9_4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
fixed nodes

Position 1 - Random Algorithm

Position 1 - Triangulation Algorithm

70

100

decisions in % (cummulative)

. . .
ETZ G60.1ETZ G93 ETZ 69.4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
fixed nodes

Position 1 - Reference Point Algorithm

1 2 8 9

3 4 5 6 7
distance[m] to the test position

Position 1 - Reference Node Algorithm

X
£
0 60 al
j=
(=}
)
8 40 q
°

20 q

1 2 3 4 5 6 7 8 9 . 10 11 12 13 14 1 ETZ G60.1ETZ G93 ETZ 69_4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
reference point fixed nodes
Position 1 - Wall Model Algorithm Position 1 - History Algorithm
- - - - - - - - - - - - : - -

80
B
f=
- 60 q
1%2]
i=4
k=]
2
8 40 q
°

ETZ G60.1ETZ G93 ETZ G9.4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
fixed nodes

Position 1 - Decisions for correct Fixed Node

W1 result @2 results N3 results E24 results

80%

60%

40%

20%

0%

%

= >
< s
= 7]

@2

Random
Triangulation
Reference
Point
Reference
Node

ETZ G60.1ETZ G93 ETZ 69.4 ETZ G95 ETZ G96 ETZ G97
fixed nodes

ETZ G99

Figure C.3: Results for Position 1

APPENDIX C. MEASUREMENT RESULTS

detections in %

decisions in %

100

decisions in %

100

decisions in %

100%

Position 2 - Detections by fixed nodes during inquiry

ETZ G60.1ETZ G93 ETZ G9_4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
fixed nodes

Position 2 - Random Algorithm

Position 2 - Triangulation Algorithm

71

100

ETZ G60.1ETZ G93 ETZ 69.4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
fixed nodes

Position 2 - Reference Point Algorithm

decisions in % (cummulative)

1 2 8 9

3 4 5 6 7
distance[m] to the test position

Position 2 - Reference Node Algorithm

X
£
0 60
j=
(=}
)
8 40
°

20 q

1 L e 0 ‘
1 2 3 4 5 6 7 8 9 . 10 11 12 13 14 1 ETZ G60.1ETZ G93 ETZ (39_4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
reference point fixed nodes
Position 2 - Wall Model Algorithm Position 2 - History Algorithm
- - - - - - - - - - - - : - -

80
8
f=
- 60
1%2]
i=4
k=]
2
8 40 q
°

ETZ G60.1ETZ G93 ETZ G9.4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
fixed nodes

Position 2 - Decisions for correct Fixed Node

W1 result @2 results N3 results E24 results

80%

60%

40%

20%

0%

Random

Triangulation

Reference
Point

Reference
Node

Wall

History

ETZ G60.1ETZ G93 ETZ 69.4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
fixed nodes

Figure C.4: Results for Position 2

APPENDIX C. MEASUREMENT RESULTS

100

detections in %

decisions in %

decisions in %

100

decisions in %

100%

Position 3 - Detections by fixed nodes during inquiry

ETZ G60.1ETZ G93 ETZ G9_4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
fixed nodes

Position 3 - Random Algorithm

72

Position 3 - Triangulation Algorithm

100
°
= ’7
B w0
g
£ —
=1
3 ®
=
£ »
0
=
2
k)
o 20
@
°
L
0
ETZ G60.1ETZ G93 ETZ G94 ETZ G95 ETZ G96 ETZ G97 ETZ G99 1 2 8 9 10

fixed nodes

Position 3 - Reference Point Algorithm

3 4 5 6 7
distance[m] to the test position

Position 3 - Reference Node Algorithm

X
£
0 60
j=
(=}
)
8 40
°
20 q
1 2 3 4 5 6 7 8 9 . 10 11 12 13 14 1 ETZ G60.1ETZ G93 ETZ (39_4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
reference point fixed nodes
Position 3 - Wall Model Algorithm Position 3 - History Algorithm
N
£
1%2]
i=4
k=]
2
o
Q
°

ETZ G60.1ETZ G93 ETZ G9.4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
fixed nodes

Position 3 - Decisions for correct Fixed Node

W1 result @2 results N3 results E24 results

80%

60%

40%

20%

0%

Random

Triangulation

Reference
Point

Reference
Node

Wall

History

Figure C.5:

ETZ G60.1ETZ G93 ETZ 69.4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
fixed nodes

Results for Position 3

APPENDIX C. MEASUREMENT RESULTS

100

detections in %

decisions in %

100

decisions in %

100

decisions in %

100%

Position 4 - Detections by fixed nodes during inquiry

ETZ G60.1ETZ G93 ETZ G9_4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
fixed nodes

Position 4 - Triangulation Algorithm

73

Position 4 - Random Algorithm

100

|

ETZ G60.1ETZ G93 ETZ 69.4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
fixed nodes

Position 4 - Reference Point Algorithm

decisions in % (cummulative)

1 2 8 9

3 4 5 6 7
distance[m] to the test position

Position 4 - Reference Node Algorithm

X
£
0 60
j=
(=}
)
8 40 q
°
20 q
1 2 3 4 5 6 7 8 9 . 10 11 12 13 14 1 ETZ G60.1ETZ G93 ETZ (39_4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
reference point fixed nodes
Position 4 - Wall Model Algorithm Position 4 - History Algorithm
- - - - - - - - - - - - : - - 1
80 al
8
f=
- 60 q
1%2]
i=4
k=]
2
8 40 q
°

ETZ G60.1ETZ G93 ETZ G9.4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
fixed nodes

Position 4 - Decisions for correct Fixed Node

W1 result @2 results N3 results E24 results

80%

60%

40%

20%

0%

Wall
History

Random
Triangulation
Reference
Point
Reference §
Node

ETZ G60.1ETZ G93 ETZ 69.4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
fixed nodes

Figure C.6: Results for Position 4

APPENDIX C. MEASUREMENT RESULTS

100

detections in %

decisions in %

100

decisions in %

100

decisions in %

100%

Position 5 - Detections by fixed nodes during inquiry

ETZ G60.1ETZ G93 ETZ G9_4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
fixed nodes

Position 5 - Random Algorithm

Position 5 - Triangulation Algorithm

74

100

-

-

ETZ G60.1ETZ G93 ETZ 69.4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
fixed nodes

Position 5 - Reference Point Algorithm

decisions in % (cummulative)

i

1 2 8 9

3 4 5 6 7
distance[m] to the test position

Position 5 - Reference Node Algorithm

X
£
0 60
j=
(=}
)
8 40 q
°
20 q
1 2 3 4 5 6 7 8 9 . 10 11 12 13 14 1 ETZ G60.1ETZ G93 ETZ (39_4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
reference point fixed nodes
Position 5 - Wall Model Algorithm Position 5 - History Algorithm
- - - - - - - - - - - - : - -
80 al
8
f=
- 60 q
1%2]
i=4
k=]
2
8 40 q
°

ETZ G60.1ETZ G93 ETZ G9.4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
fixed nodes

Position 5 - Decisions for correct Fixed Node

W1 result @2 results N3 results E24 results

80%

60%

40%

20%

0%

Random

Triangulation

Reference
Point

Reference
Node

Wall

History

ETZ G60.1ETZ G93 ETZ 69.4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
fixed nodes

Figure C.7: Results for Position 5

APPENDIX C. MEASUREMENT RESULTS

detections in %

decisions in %

100

decisions in %

100

decisions in %

100%

Position 6 - Detections by fixed nodes during inquiry

ETZ G60.1ETZ G93 ETZ G9_4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
fixed nodes

(0]

Position 6 - Triangulation Algorithm

Position 6 - Random Algorithm

100

]

ETZ G60.1ETZ G93 ETZ 69.4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
fixed nodes

Position 6 - Reference Point Algorithm

decisions in % (cummulative)

0 1 2

o

3 4 5 6 7
distance[m] to the test position

8 9 10

Position 6 - Reference Node Algorithm

X

£

0 60

j=

(=}

)

8 40

°
20

1 2 3 4 5 6 7 8 9 . 10 11 12 13 14 15 ETZ G60.1ETZ G93 ETZ (39_4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
reference point fixed nodes
Position 6 - Wall Model Algorithm Position 6 - History Algorithm
- - - - - - - ool - - - - : -

80 —

8

f=

- 60

1%2]

i=4

k=]

2

8 40

°

ETZ G60.1ETZ G93 ETZ G9.4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
fixed nodes

Position 6 - Decisions for correct Fixed Node

W1 result @2 results N3 results E24 results

80%

60%

40%

20%

0%

Random

Triangulation

Reference
Point

Reference
Node

Wall

History

ETZ G60.1ETZ G93 ETZ 69.4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
fixed nodes

Figure C.8: Results for Position 6

APPENDIX C. MEASUREMENT RESULTS

detections in %

decisions in %

100

decisions in %

100

decisions in %

100%

Position 7 - Detections by fixed nodes during inquiry

ETZ G60.1ETZ G93 ETZ G9_4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
fixed nodes

Position 7 - Random Algorithm

Position 7 - Triangulation Algorithm

76

100

ETZ G60.1ETZ G93 ETZ 69.4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
fixed nodes

Position 7 - Reference Point Algorithm

decisions in % (cummulative)

1 2 8 9

3 4 5 6 7
distance[m] to the test position

Position 7 - Reference Node Algorithm

X
£
0 60 al
j=
(=}
)
8 40 q
°
20 q
1 2 3 4 5 6 7 8 9 . 10 11 1 13 14 15 ETZ G60.1ETZ G93 ETZ 69_4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
reference point fixed nodes
Position 7 - Wall Model Algorithm Position 7 - History Algorithm
- - - - - - - - - - - - : - -
80 al
B
f=
- 60 q
1%2]
i=4
k=]
2
8 40 q
°

ETZ G60.1ETZ G93 ETZ G9.4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
fixed nodes

Position 7 - Decisions for correct Fixed Node

W1 result @2 results N3 results E24 results

80%

60%

40%

20%

0%

72

Random
Reference
Point
Reference
Node

Wall
History

c
S
8
S
=
=
8
=

ETZ G60.1ETZ G93 ETZ 69.4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
fixed nodes

Figure C.9: Results for Position 7

APPENDIX C. MEASUREMENT RESULTS

detections in %

decisions in %

100

decisions in %

100

decisions in %

100%

Position 8 - Detections by fixed nodes during inquiry

ETZ G60.1ETZ G93 ETZ G9_4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
fixed nodes

Position 8 - Random Algorithm

Position 8 - Triangulation Algorithm

[

100

-

ETZ G60.1ETZ G93 ETZ 69.4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
fixed nodes

Position 8 - Reference Point Algorithm

decisions in % (cummulative)

1

1 2 8 9

3 4 5 6 7
distance[m] to the test position

Position 8 - Reference Node Algorithm

N
£
0 60
j=
(=}
)
8 40
°
20
1 2 3 4 5 6 7 8 9 . 10 11 12 13 14 15 ETZ G60.1ETZ G93 ETZ (39_4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
reference point fixed nodes
Position 8 - Wall Model Algorithm Position 8 - History Algorithm
- - - - - - - - - - - - : - -
80 al
8
f=
- 60 q
1%2]
i=4
k=]
2
8 40 q
°

ETZ G60.1ETZ G93 ETZ G9.4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
fixed nodes

Position 8 - Decisions for correct Fixed Node

W1 result @2 results N3 results E24 results

80%

60%

40%

20%

0%

Random

Triangulation

Reference
Point

Reference
Node

Wall

History

Figure C.10:

ETZ G60.1ETZ G93 ETZ 69.4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
fixed nodes

Results for Position 8

APPENDIX C. MEASUREMENT RESULTS

detections in %

decisions in %

decisions in %

decisions in %

100%

80%

60%

40%

20%

0%

100

5

Position 9 - Detections by fixed nodes during inquiry

ETZ G60.1ETZ G93 ETZ G9_4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
fixed nodes

Position 9 - Random Algorithm

Position 9 - Triangulation Algorithm

78

100

JR— |

ETZ G60.1ETZ G93 ETZ 69.4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
fixed nodes

Position 9 - Reference Point Algorithm

decisions in % (cummulative)

0 1 2 8 9

3 4 5 6 7
distance[m] to the test position

Position 9 - Reference Node Algorithm

X
£
0 60
j=
(=}
)
8 40
°
20 q
1 2 3 4 5 6 7 8 9 . 10 11 12 13 14 15 ETZ G60.1ETZ G93 ETZ (39_4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
reference point fixed nodes
Position 9 - Wall Model Algorithm Position 9 - History Algorithm
- - - - - - - - - - - - : - -
80
8
f=
- 60
1%2]
i=4
k=]
2
8 40
°

ETZ G60.1ETZ G93 ETZ G9.4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
fixed nodes

Position 9 - Decisions for correct Fixed Node

W1 result @2 results N3 results E24 results

Random

Triangulation

Reference
Point

Reference
Node

Wall

History

Figure C.11:

ETZ G60.1ETZ G93 ETZ 69.4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
fixed nodes

Results for Position 9

APPENDIX C. MEASUREMENT RESULTS

Position 10 - Detections by fixed nodes during inquiry

79

100
80 — al
<
£
w» 60 4
=
2
©
L wr 1
[7)
o
20 q
o
ETZ G60.1ETZ G93 ETZ G9_4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
fixed nodes
Position 10 - Random Algorithm Position 10 - Triangulation Algorithm
o - - - - - - - -
H —
80 § 80
=]
X £
= E
@ 60 3 60
5 .
@ i
g £ w0
° 2
o
w
20 S 20
(7
=]
N J
ETZ G60.1ETZ G93 ETZ 69.4 ETZ G95 ETZ G96 ETZ G97 ETZ G99 1 2 . 3 4 5 6 .7. 8 9 10
fixed nodes distance[m] to the test position
Position 10 - Reference Point Algorithm Position 10 - Reference Node Algorithm
PO S S A . - - - - - - -
80 80
X X
£ £
0 60 0 60
c j=
o o
@ @
8 40 8 40
© °
20 20
1 2 3 4 5 6 7 8 9 . 10 11 12 13 14 1 ETZ G60.1ETZ G93 ETZ (39_4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
reference point fixed nodes
Position 10 - Wall Model Algorithm Position 10 - History Algorithm
80
B 8
[= f=
£ 4 £
[%2} 1%2]
=4 i=4
o k=]
2 K2}
g « 8
=] °
20

ETZ G60.1ETZ G93 ETZ G9.4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
fixed nodes

Position 10 - Decisions for correct Fixed Node

W1 result @2 results N3 results E24 results

100%

80%

60%

40%

20%

0%

Random

Triangulation

Reference
Point

Reference
Node

Wall

History

ETZ G60.1ETZ G93 ETZ 69.4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
fixed nodes

Figure C.12: Results for Position 10

APPENDIX C. MEASUREMENT RESULTS

Position 11 - Detections by fixed nodes during inquiry

80

100
80 — al
<
£
w» 60 4
=
2
©
L wr 1
[7)
o
20 q
o
ETZ G60.1ETZ G93 ETZ G9_4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
fixed nodes
Position 11 - Random Algorithm Position 11 - Triangulation Algorithm
o - - - - - - - -
m o
=
80 § 80
=]
X £
= E
@ 60 3 60
5 <
) a
8 40 = a0
° 2
o
w
20 ol g 20 —
3 0
0 0 d
ETZ G60.1ETZ G93 ETZ 69.4 ETZ G95 ETZ G96 ETZ G97 ETZ G99 1 2 . 3 4 5 6 .7. 8 9
fixed nodes distance[m] to the test position
Position 11 - Reference Point Algorithm Position 11 - Reference Node Algorithm
PO L A S A . - - - - - - -
80 80
X X
£ £
0 60 0 60
c j=
o o
@ @
8 40 8 40 4
© °
20 20 q
1 2 3 4 5 6 7 8 9 . 10 11 12 13 14 1 ETZ G60.1ETZ G93 ETZ 69_4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
reference point fixed nodes
Position 11 - Wall Model Algorithm Position 11 - History Algorithm
o - - - . - - - - - - . - . - -
80 80
B B
[= f=
- 60 - 60
[%2} 1%2]
=4 i=4
o k=]
@ 2
8 40 8 40
=] °
20 20 al

ETZ G60.1ETZ G93 ETZ G9.4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
fixed nodes

Position 11 - Decisions for correct Fixed Node

W1 result @2 results N3 results E24 results

100%

80%

60%

40%

20%

0%

Random

Triangulation

Reference
Point

Reference
Node

Wall

History

ETZ G60.1ETZ G93 ETZ 69.4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
fixed nodes

Figure C.13: Results for Position 11

APPENDIX C. MEASUREMENT RESULTS

100

detections in %

decisions in %

100

decisions in %

100

decisions in %

100%

Position 12 - Detections by fixed nodes during inquiry

ETZ G60.1ETZ G93 ETZ G9_4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
fixed nodes

Position 12 - Random Algorithm

Position 12 - Triangulation Algorithm

81

100

. . || . .
ETZ G60.1ETZ G93 ETZ 69.4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
fixed nodes

Position 12 - Reference Point Algorithm

decisions in % (cummulative)

1 2 8 9

3 4 5 6 7
distance[m] to the test position

Position 12 - Reference Node Algorithm

X
£
0 60 al
j=
(=}
)
8 40 q
°
20 q
1 2 3 4 5 6 7 8 9 . 10 11 12 13 14 15 ETZ G60.1ETZ G93 ETZGQ_A ETZ G95 ETZ G96 ETZ G97 ETZ G99
reference point fixed nodes
Position 12 - Wall Model Algorithm Position 12 - History Algorithm
- - - . - - - - - - . - . - -
80
B
f=
- 60
1%2]
i=4
k=]
2
8 40
°

ETZ G60.1ETZ G93 ETZ GQ.A ETZ G95 ETZ G96 ETZ G97 ETZ G99
fixed nodes

Position 12 - Decisions for correct Fixed Node

W1 result @2 results N3 results E24 results

80%

60%

40%

20%

0%

Random

Triangulation

Reference
Point

Reference
Node

Wall

History

ETZ G60.1ETZ G93 ETZ 69.4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
fixed nodes

Figure C.14: Results for Position 12

APPENDIX C. MEASUREMENT RESULTS 82

Position 13 - Detections by fixed nodes during inquiry

<
£
[%2}
=
2
©
L
[7)
o
ETZ G60.1ETZ G93 ETZ G9_4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
fixed nodes
Position 13 - Random Algorithm Position 13 - Triangulation Algorithm
o - - - - - - - -
o A
= -
80 § 80
=]
X £
= E
@ 60 3 60
5 <
@ 2
g £ w0
] 2
o
w
20 - 4 S 20
(7
=]
o]
ETZ G60.1ETZ G93 ETZ 69.4 ETZ G95 ETZ G96 ETZ G97 ETZ G99 0 1 2 . 3 4 5 6 .7. 8 9
fixed nodes distance[m] to the test position
Position 13 - Reference Point Algorithm Position 13 - Reference Node Algorithm
PO A S A . - - - - - - -
80 80
X X
£ £
0 60 0 60
c j=
o o
@ @
8 40 8 40
© °
20 20
1 2 3 4 5 6 7 8 9 . 10 11 12 13 14 15 ETZ G60.1ETZ G93 ETZ (39_4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
reference point fixed nodes
Position 13 - Wall Model Algorithm Position 13 - History Algorithm
o - - - . - - - - - - . - . - -
80 80
B 8
[= f=
- 60 - 60
[%2} 1%2]
=4 i=4
o k=]
@ 2
8 40 8 40
=] °
20 20
o . . — . . 0 .
ETZ G60.1ETZ G93 ETZ G9.4 ETZ G95 ETZ G96 ETZ G97 ETZ G99 ETZ G60.1ETZ G93 ETZ 69.4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
fixed nodes fixed nodes

Position 13 - Decisions for correct Fixed Node

W1 result @2 results N3 results E24 results
100%

80%

60%

40%

20%

0%

= >
< s
= 7]

@2

Random
Triangulation
Reference
Point
Reference
Node

Figure C.15: Results for Position 13

APPENDIX C. MEASUREMENT RESULTS

Position 14 - Detections by fixed nodes during inquiry

83

<
£
[%2}
=
2
©
QL
[7)
o
ETZ G60.1ETZ G93 ETZ GQ_A ETZG95 ETZ G96 ETZ G97 ETZ G99
fixed nodes
Position 14 - Random Algorithm Position 14 - Triangulation Algorithm
o - - - - - - - -
o o
=
80 § 80
=]
ES £
= E
@ 60 3 60
5 <
@ 2
g £ w0
] 2
(=} ’—l
2 —
20 al o 20
o) O
=l
]
ETZ G60.1ETZ G93 ETZ 69_4 ETZ G95 ETZ G96 ETZ G97 ETZ G99 1 2 . 3 4 5 6 _7_ 8 9
fixed nodes distance[m] to the test position
Position 14 - Reference Point Algorithm Position 14 - Reference Node Algorithm
PO O S A A . - - - - - - -
80 80
X X
£ £
0 60 0 60
c j=
2 2
Q 0
(53
g © 8 40
© °
20 20 q
0 I o e oW R ° L
1 2 3 4 5 6 7 8 9 . 10 11 12 13 14 15 ETZ G60.1ETZ G93 ETZ (39_4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
reference point fixed nodes
Position 14 - Wall Model Algorithm Position 14 - History Algorithm
o - - - . - - - - - - . - . - -
80 80
ES X
[= f=
- 60 - 60 q
[%2} 1%2]
c f=
o k=]
9 Q
8 40 8 40 4
h=} k=l
20 20 1

ETZ G60.1ETZ G93 ETZ G94 ETZ G95 ETZ G96 ETZ G97 ETZ G99
fixed nodes
Position 14 - Decisions for correct Fixed Node

W1 result @2 results N3 results E24 results
100%

80%

60%

40%

20%

%

0% T T T T T

R

Random
Triangulation
Reference
Point
Reference
Node

Wall
History

ETZ G60.1ETZ G93 ETZ G94 ETZ G95 ETZ G96 ETZ G97
fixed nodes

Figure C.16: Results for Position 14

ETZ G99

APPENDIX C. MEASUREMENT RESULTS

detections in %

decisions in %

decisions in %

decisions in %

100%

80%

60%

40%

20%

0%

20

Position 15 - Detections by fixed nodes during inquiry

ETZ G60.1ETZ G93 ETZ G9_4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
fixed nodes

Position 15 - Random Algorithm

84

Position 15 - Triangulation Algorithm

100

ETZ G60.1ETZ G93 ETZ 69.4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
fixed nodes

Position 15 - Reference Point Algorithm

decisions in % (cummulative)

[
0

0 1 2 8 9 10

3 4 5 6 7
distance[m] to the test position

Position 15 - Reference Node Algorithm

X
£
0 60
j=
(=}
)
8 40
°
20 -
NI N I —" I P ° L L L L L
1 2 3 4 5 6 7 8 9 . 10 11 12 13 14 15 ETZ G60.1ETZ G93 ETZ (39_4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
reference point fixed nodes
Position 15 - Wall Model Algorithm Position 15 - History Algorithm
8
£
1%2]
i=4
k=]
2
o
Q
°

ETZ G60.1ETZ G93 ETZ G9.4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
fixed nodes

Position 15 - Decisions for correct Fixed Node

E1 result B2 results B3 results B4 results

Random

Triangulation

Reference
Point

Reference
Node

Wall

History

ETZ G60.1ETZ G93 ETZ 69.4 ETZ G95 ETZ G96 ETZ G97 ETZ G99
fixed nodes

Figure C.17: Results for Position 15

Appendix D

Deliverables

D.1 CD-ROM

Content of the CD-ROM

directory content

avetanaBluetooth-20051023 Avetana Bluetooth

blueframework BlueFramework

centralUnit Java source for the central unit
database database definition file (SQL)
documention this documentation

fixedNode Java source for the fixed node
javadoc JavaDoc (HTML) of all Java classes
measurements measurement data (SQL)

phone Java source for the phone application
web web interface script

85

Appendix E

Installation Guide

E.1 Installation of a Fixed Node
E.1.1 Installation of the Java Software Development Kit
(SDK)

We recommend to use the latest version of Sun’s Java, although the application
is reported to run on Java implementations from other vendors. You need to
install a Java Runtime Environment(JRE) to run the software. If you want to
recompile the software on the fixed node you need the complete Java SDK. You
can obtain the Java software from the official Java website [8].

Installing Java ”The Debian Way”

Java is not part of the standard Debian distribution due to licence policies. You
have to install it on your own. These instructions can be found also [10].

1. Make sure that ”contrib” is in your /etc/apt/sources.list
example:
deb http://debian.ethz.ch/debian/ testing main contrib non-free
deb-src http://debian.ethz.ch/debian/ testing main contrib non-free

2. Update the package list:
apt-get update

3. Install java package to build a Java package for Debian
apt-get install java-package

4. Download the latest Java version from the Sun website [8]
5. Build your own Java Debian package fakeroot make-jpkg <downloaded file>.bin

6. Install the generated package on your system dpkg -i <package>.deb

86

APPENDIX E. INSTALLATION GUIDE 87

E.1.2 Linux Bluetooth Stack (BlueZ)

BlueZ is the official Bluetooth protocol stack for Linux and part of the Linux
kernel since version 2.4.6.

bluez-utils and Bluetooth libraries

BlueZ comes with some user-space tools called the bluez-utils. They are required
for computers running the fixed node software. You can download the bluez-utils
package from the BlueZ website [12] or get it from your Linux distribution. For
a Debian system you can install them running apt-get install bluez-utils
as root. Additionally, the 1ibbluetoothl and libbluetoothl-dev libraries are
required.

E.1.3 AvetanaBluetooth

AvetanaBluetooth [13] is an implementation of the JSR-82 specification. It is
freely available for the Linux platform at SourceForge.net [14]. We were using
version 20051023. Follow the build instructions which can be found in the down-
loaded package. A pre-compiled version of the software can be found on the CD.
The build scripts will create two files: AvetanaBT.jar and libavetanaBT.so.
You have to copy them into the fixed node’s root directory or to somewhere else
on the Java classpath.

E.2 Installation of the Central Unit
E.2.1 Installation of the Java SDK

You need to have an installed version of the Java SDK to compile and run the
central unit software. Build instructions can be found in the fixed node section.

E.2.2 Setting up the Database

Create a new system user bluelocation
root#: adduser bluelocation

Installation and Configuration of PostgresSQL

Install the PostgreSQL database either directly from their website [15] or use
the Debian package system (preferred):

root#: apt-get install postgresql postgresql-client
This will install PostgreSQL and will create the administrative user postgres.

We will next create the database user bluelocation
and the database bluelocation
root#: su postgres
postgres$: createuser --pwprompt --no-adduser\
--no-createdb bluelocation

APPENDIX E. INSTALLATION GUIDE 88

postgres$: createdb --owner bluelocation bluelocation
postgres$: exit

You have to edit the file /etc/postgresql/pg_hba.conf to allow the blueloca-
tion database user to access the database. At the end of this file you will find
the section with the client names.

After the following line:

TYPE DATABASE USER IP-ADDRESS IP-MASK METHOD

add the entry for the bluelocation user to allow local connections:
local all bluelocation ident sameuser

add the entry for the bluelocation user to allow connections by TCP sockets
(required for the JDBC driver)
host Dbluelocation bluelocation 127.0.0.1 255.255.255.255 mdb

Restart the PostgreSQL service.

Now you can login as user bluelocation and create the structure of the bluelo-
cation database root#: su bluelocation
bluelocation$: psql bluelocation -f <database definition file>
bluelocation$: exit

E.3 Installation of the mobile device application

On the CD directory phone/bin you will find two files named BlueLocation. jar
and BlueLocation. jad. The .jad file contains a description of the application
and the .jar file contains all classes in a compressed format.

The installation of BlueLocation on a mobile device really depends on the man-
ufacturer. The easiest way is to upload these two files using OBEX. Then the
Jjar file is executed, which should install the application

If this method doesn’t work, many manufacturers supply special cable and util-
ity software. This software can be used to upload the two files over the cable.
Consult the manual for details.

E.4 Installation of the Web Interface

System requirements:

e Apache Webserver with PHP support (Debian packages apache2, php4,
libapache2-mod-php4)

e PostgreSQL module for PHP (Debian package php4-pgsql)

APPENDIX E. INSTALLATION GUIDE 89

E.4.1 Configuring Apache

Uncomment the line #UserDir public_html in /etc/apache2/apache2.conf
to enable webpages for users. You can now access the public_html directory
in your home at http://<hostname>/~<username>.

Note: There are no access restrictions configured by default. Refer to the apache
website [19] for further instructions.

E.4.2 Installation

Copy the content of the directory web on the CD to the public_html directory.

Appendix F

Used Software Tools

Debian GNU/Linux
Debian Sarge, Version 3.1, http://www.debian.org/

Java 2 Standard Edition (J2SE)

Sun Microsystems, Version 1.5, http://java.sun.com/

AvetanaBluetooth

Avetana GmbH, latest CVS version from http: //sourceforge.net /projects/avetanabt/

PostgreSQL
PostgreSQL Global Development Group, Version 7.4, http://www.postgresql.org/

PgAdmin IIT - PostgreSQL tools
pgAdmin Development Team, Version 1.2.2, http://www.pgadmin.org/

Wireless Took Kit including J2ME Emulator

Sun Microsystems, Version 2.2, http://java.sun.com/products/sjwtoolkit/

StringTokenizer

OstermillerUtils, Version 1.12, http://ostermiller.org/utils/

XMLSpy
Altova, Version 2006 Home Edition, http://www.altova.com/products_ide.html

Eclipse SDK
The Eclipse Foundation, Version 3.1.1, http://www.eclipse.org/

90

APPENDIX F. USED SOFTWARE TOOLS 91

Xfig
Supoj Sutanthavibul, Version 3.2.5, http://www.xfig.org/

Dia
Alexander Larsson, Version 0.94, http://www.gnome.org/projects/dia/

Microsoft Office Visio

Microsoft Corporation, Version 2003, http://office.microsoft.com/

Gnuplot
Thomas Williams, Colin Kelley and many others, Version 4.0, http://www.gnuplot.info/

Scribus - Desktop Publishing
Version 1.2.2.99, http://www.scribus.net

BlueZ-utils
BlueZ Project, Version 2.19, http://www.bluez.org

Apache2 Webserver

Apache Software Foundation, Version 2.0.54, http://www.apache.org/

PHP - Hypertext Preprocessor (including the PostgreSQL module
for PHP)

The PHP Group, Version 4.3.10, http://www.php.net/

Appendix G

Used Mobile Devices

TIK-Number Name Bluetooth address
2640-4820 Test 1 00119FC1306C
2640-4929 Test 2 00119FC143BE
2640-4931 Test 3 00119FC127D5
2640-4821 Test 4 00119FC1306E
2640-4818 Alice 00119FC1306D
2640-4927 Bob 00119FC143AB
2640-4826 Peter 00119FC143D3

92

Bibliography

[1] ETH Zurich, TIK: The Blue* project
http://www.csg.ethz.ch/research/projects/Blue_star/, December
2005

[2] Katrin Bretscher: BlueLocation, TIK-SA-2005-
17, ETH Zurich, Switzerland, September 2005
ftp://www.tik.ee.ethz.ch/pub/students/2005-So/SA-2005-17.pdf

[3] Nicole Hatt: BlueFramework: Application Framework for Bluetooth En-
abled Mobile Phones, TIK-MA-2005-16, ETH Zurich, Switzerland, October
2005
ftp://www.tik.ee.ethz.ch/pub/students/2005-So/MA-2005-16. pdf

[4] Bluetooth: The Official Bluetooth Website
http://www.bluetooth.com/, December 2005

[5] Jason Yipin Ye: Atlantis: Location Based Services with Bluetooth, De-
partement of Computer Science, Brown University, Providence RI, U.S.A.
http://www.cs.brown.edu/publications/theses/ugrad/2005/jye.pdf,
December 2005

[6] Josef Hallberg, Marcus Nilsson, Kéare Synnes: Positioning with Bluetooth,
Department of Computer Science and Electrical Engineering, Lulea
University of Technology, Sweden
http://media.csee.ltu.se/publications/2003/hallberg03positioning.pdf,
December 2005

[7] JCP, JSR 179
http://www.jcp.org/en/jsr/detail?id=179, December 2005

[8] Sun Developer Network - Java Technology
http://java.sun.com/, December 2005

[9] Debian GNU/Linux, The Debian Project
http://www.debian.org/, December 2005

[10] Installing Java on Debian - Linuxquestions.org Wiki
http://wiki.linuxquestions.org/wiki/Java-Debian, December 2005

[11] Sun Microsystems, Wireless Took Kit including J2ME Emulator
http://java.sun.com/products/sjwtoolkit/, December 2005

93

BIBLIOGRAPHY 94

[12]

[13]

[14]

[15]

BlueZ - Offical Linux Bluetooth protocol stack
Project Website http://www.bluez.org/, December 2005

Avetana GmbH: AvetanaBluetooth JSR-82 implementation
http://www.avetana-gmbh.de/avetana-gmbh/produkte/jsr82.xml,
December 2005

AvetanaBluetooth JSR-82 implementation - SourceForge.net Project Page
http://sourceforge.net/projects/avetanabt/, December 2005

PostgreSQL: Open source relational database system
http://www.postgresql.org/, December 2005

JDBC: Java Database Connectivity
http://java.sun.com/products/jdbc/, December 2005

Java 2 Platform, Micro Edition (J2ME)
http://java.sun.com/j2me/, December 2005

Java 2 Platform, Standard Edition (J2SE)
http://java.sun.com/j2se/, December 2005

Apache2 - Webserver
http://www.apache.org/, December 2005

PHP - Hypertext Preprocessor
http://www.php.net/, December 2005

A list of which phones have which technologies implemented can be found
at:

e http://www.javabluetooth.com/jsr82devices.html, December
2005

e http://www.benhui.net/modules.php?name=Midp2Phones, Decem-
ber 2005

The latter has more recent updates.

	Introduction
	Motivation
	Summary

	Related Work
	Atlantis: Location Based Services with Bluetooth
	Positioning with Bluetooth
	JSR 179

	Design
	The BlueLocation System Architecture
	Fixed Nodes
	Central Unit
	Phone Application
	Localization Algorithms

	Implementation
	BlueFramework
	Third Party Contributions
	Phone Application
	Fixed Node Application
	Fixed Node Emulator
	Central Unit
	Protocols

	Evaluation
	Evaluation of the Bluetooth Inquiry Process
	Measurements with Mobile Phones and the Deployed Infrastructure
	Fixed Node Limitations
	Mobile Device Limitations

	Outlook and Conclusion
	Further Extensions to the BlueLocation System
	Conclusion

	Task Description
	Project Timeline
	Measurement Results
	Detections of Fixed Nodes by other Fixed nodes
	Algorithm Results for the Measurement Positions

	Deliverables
	CD-ROM

	Installation Guide
	Installation of a Fixed Node
	Installation of the Central Unit
	Installation of the mobile device application
	Installation of the Web Interface

	Used Software Tools
	Used Mobile Devices

